Adaptive software process modelling with SOCCA and PARADIGM

Adaptive software process
modelling with SOCCA and
PARADIGM

by Alex Wulms
University of Leiden, Department of computer science

April 12, 1995

Supervision by Dr. L.P.J. Groenewegen

page 1

Adaptive software process modelling with SOCCA and PARADIGM

Abstract

One of the unsolved problems in the world of software process modelling is the question of
formally incorporating change of a software process in the very model. To elucidate this prob-
lem and possibly solve it, the following approach has been chosen. In a standard case, the so-
called ISPW-7 example, is change a part of the described problem situation. The purpose is
that all, or many, existing software process modelling methodologies incorporate this change
in their model for the ISPW-7 case. This hopefully leads to a better understanding of a general
approach to model change.

In the ISPW-7 example has the process change been split up into two parts. One part
addresses some form of permanent evolution of a process, this is called ‘process modifica-
tion’. The other part addresses a temporary modification of the behaviour of the process, this is
called ‘process exception’.

One of the existing software process modelling methodologies is SOCCA, which is cur-
rently still under development at the University of Leiden, department of Computer Science.
This thesis concentrates on the topic of formally incorporating process change in the SOCCA
methodology.

First, SOCCA has been extended with some new concepts to make it possible to model proc-
ess change and secondly, this extended version of SOCCA has been applied to the ISPW-7
example. As it turns out, it is possible to model both the process modification part as the proc-
ess exception part of the ISPW-7 example with aid of the new concepts introduced in this the-
sis.

Acknowledgement

With thanks to my parents and my friends for their moral support and with thanks to Luuk
Groenewegen for the excellent supervision and the many discussions which lead to a deeper
insight into the ins and outs of process change and evolution within SOCCA.

page 2

Adaptive software process modelling with SOCCA and PARADIGM

Table of contents

ADStract. 2
Acknowledgement e 2
Table of contents. 3
1. INtrodUCHiON 5
2. A short introduction into SOCCA and PARADIGM 7
2.1. A short introduction into PARADIGM 8
3.Awayofviewingchange 9
3.1. A condition for managing subprocesses of asubprocess. 10
3.2. Introducing the manager process WODAN. i 10
3.3. Threetypesofchange e 11
3.4. The NULL PrOCESS. . . o ittt e e e e e e e e e e e 11
4. Using the new concepts to describe an evolutionstep. 12
4.1. A general method to describe an evolutionstep 12
4.2. Exploiting similarities between processes to refine the evolution step description. 13
4.3. Possible inconsistencies as a consequence of process change. 14
4.3.1. Consequences of process change for individual internal processes 14
4.3.2. Consequences of process change for the cooperation control 15
4.4, SolVINg INCONSISIENCIESot e e e e 18
4.4.1. Solving problem P1: a subprocess of an internal process has less states 18
4.4.2. Solving problem P2: the external process has lessstates 21
4.4.3. Solving problem P3: the external process has reached a state to early. 22
45. Concluding remarks. 25
5. An example of changing an enacting process model. 27
5.1. Designinganewmodel 29
5.2. Starting the new model during the enactment of a software process. 32
5.3. Designing WODAN to manage thechange. 33
5.4. Using an extra subprocess for int-monitor to avoid intermediate states 34
5.5. L0SINg SOME restriClioNS oo e 35
5.6. Concluding remarks. e 36
6. Extending the model to cover more of the ISPW-6 example 38
6.1. Redesigning the class diagrams. i 38
6.2. Designing the external behaviours oftheclasses 41
6.3. Designing the internal behaviours of the export operations 43
6.4. Adding PARADIGM to model the communication. 45

page 3

Adaptive software process modelling with SOCCA and PARADIGM

6.5. Concluding remarks. 55

7. Example 2: changing the model according to the ISPW-7 specification 58

7.1. Process modification: problem description L. 58
7.2. Designingthe new model. 58
7.3. Introducing the ISPW-7 model.. 61
7.3.1. Option 1: do not solve the inconsistency, 61
7.3.2. Option 2: solve the inconsistency. 64
7.4. Process exception: problem description. 68
7.5. Designing the exceptional model. 70
7.6. Starting the exceptional case e 72
7.7.CoNncluding remarks. 72
8. A very brief comparison of SOCCA with other paradigms. 74
8.1. The notion of process variables appliedto SOCCA 74
8.2. Comparing SOCCA with Document Flow Model (DFM) 75
8.3. Comparing SOCCAWith SPADE 75
9. Conclusions and furtherresearch. 77
10. ReferenCesSo 78
Appendix A. Listoffigures 79

page 4

Chapter 1 Introduction

Chapter 1
Introduction

One of the unsolved problems in the world of software process modelling is the question of
formally incorporating evolution of a software process in the very model. To this aim the
standard software process modelling example as formulated in ISPW-6 [3], has been
extended, among others, with change aspects. This has resulted in the ISPW-7 [4] example.

The extensions in the ISPW-7 example focusing on this so-called process change, have been
split up into two parts. One part is intended to represent some form of permanent evolution of
a process, this is called ‘process modification’ and it describes a permanent change in the
behaviour of the process. The other part addresses a temporary modification of the behaviour
of the process handling some exceptional circumstance, which has been called ‘process excep-
tion’; after the temporary modification, the process returns to its original form.

One way to model “normal” behaviour without any flavour of the above mentioned change,
especially the behaviour of a software process model, is by means of dynamic descriptions.
Dynamic descriptions which are used in this manner are in fact describing a specific form of
change, as the current state of the object behaving according to the dynamic description,
changes into another current state, which in turn changes into yet another current state, and so
on. So a dynamic description of behaviour reflects some kind of change.

Within this thesis we have put this observation the other way round: it is possible to describe
a change to something, like a software process model, with a dynamic description. Since a
behaviour description is a dynamic description, the description of process change as men-
tioned in the paragraph above, which is a change in the behaviour of a software process model,
can be considered as being a dynamic description (the change description) of another dynamic
description (the behaviour description).

In PARADIGM, see [1], the concepts of processes, manager processes, employee processes,
subprocesses, traps and state-action interpreters, have been used to describe a behaviour
change as a consequence of the communication between the various processes: a manager
process prescribes a subprocess to an employee process reflecting the behaviour of this
employee before the communication; the employee may only behave according to the restric-
tions as imposed by this subprocess. After a while such an employee will enter a trap to
another subprocess, which implies a communication to the manager, and from that moment
on, the manager process may decide to grant permission to this employee to enter its new sub-
process. This permission is the communication the employee is “waiting for” inside its trap.
The effect of this communication then is the new behaviour of the employee after the commu-
nication as reflected by the new subprocess. So within PARADIGM communication has been
used to describe a change of behaviour. By means of the communication between manager
processes and their employee processes, this actually is a dynamic description of a dynamic
description. Therefore it is useful to examine whether the PARADIGM approach can also
describe evolution.

As PARADIGM is an integrated part of SOCCA and as SOCCA aims at modelling software
processes, we will actually investigate whether the SOCCA approach can describe evolution
too. This thesis gives the results of this investigation. In order to present these results, the the-
sis has been structured as follows: the following chapter consists of a short introduction into
SOCCA and PARADIGM. In chapter 3 new concepts are introduced which are generaliza-
tions of the SOCCA concepts of external and internal processes. With aid of these new con-
cepts, evolving software process models within SOCCA become something quite natural. In

page 5

Adaptive software process modelling with SOCCA and PARADIGM

chapter 4 is shown how the new concepts introduced in chapter 3 can be used. Furthermore,
chapter 4 shows some simplifications of the general approach, which problems can occur
using these simplifications and some general solutions to solve those problems. Chapter 5
shows an example of the concepts developed in chapter 3 and in chapter 4. This example is
based on a small part of the ISPW-6 example. In chapter 6 a larger part of the ISPW-6 example
will be modelled using SOCCA and in chapter 7 is this model used to show more of the
aspects developed in chapter 3 and in chapter 4. This chapter follows the process change parts
from the ISPW-7 example. In chapter 8 a brief comparison between SOCCA and some other
modelling paradigms will be given with respect to process change and finally in chapter 9,
some conclusions and topics for further research are given.

page 6

Chapter 2 A short introduction into SOCCA and PARADIGM

Chapter 2
A short introduction into SOCCA and PAR-
ADIGM

In [2] a complete introduction of SOCCA has been given. Those readers familiar with
SOCCA may skip this chapter.

SOCCA is a software process modelling methodology, still under development at the Uni-
versity of Leiden, department of Computer Science. A SOCCA model describes the software
process from three different perspectives; the data perspective, the process perspective and the
behaviour perspective. To achieve this, SOCCA consist of (parts of) several formalisms com-
bined together to describe the software process models.

The following formalisms have been used to cover the different perspectives:

» The data perspective is described by means of object-oriented class diagram models, based
on Extended Entity-Relationship (EER) concepts. One of the features of the classes is that
they can have export operations. Such an export operation of one class can call export
operations of another class. To this aim in SOCCA an extra relationship exists between the
various classes; the so-called uses relationship. Therefore, the class models have been
extended with an extra diagram to display this uses relationship. Such a diagram is called
an import/export diagram of the model.

» The process perspective will be described with so-called Object Flow Diagrams (OFD),
being an extension of data flow diagrams with operations derived from the class diagram
perspective. So in an OFD not only the dataflow is given as in data flow diagrams, but also
the flow of the operations will be shown. The integration of OFD’s into a SOCCA model is
still a topic of research. They will not be discussed further in this thesis.

» The behaviour perspective is covered with State Transition Diagrams (STD’s) with PARA-
DIGM on top of them. The various classes have export operations which can be called in
some order. To describe the order in which the export operations can be called, STD’s are
used. So in fact, the behaviour of a class is described with an STD of which some transi-
tions are labelled with the export operations of that class. Each such export operation has
an internal behaviour; this internal behaviour actually achieves the task the corresponding
export operation is supposed to perform. In SOCCA, STD’s have been used as well to
describe these internal behaviours of the export operations. Since the cooperation between
the external behaviour of a class and the internal behaviours of its export operations has to
be coordinated, PARADIGM has been used in SOCCA to this aim. Moreover, the internal
behaviour of an export operation can also call export operations from other classes. There-
fore it is not only necessary to have communication between the external behaviour of a
class and the internal behaviour of its export operations, but there should also be commu-
nication between the internal behaviour of the export operations from one class and the
external behaviour of other classes. This communication is also modelled by means of
PARADIGM. The STD’s describing the external behaviours are PARADIGAhager
processesand the STD’'s showing the internal behaviours of the export operations, are
PARADIGM employee processels this way, the internal behaviour of an export opera-
tion can be controlled vithe state-action interpretesf the external behaviour of a class.

The italic terms will be described in the following section which gives a short introduction
into PARADIGM.

page 7

Adaptive software process modelling with SOCCA and PARADIGM

2.1. A short introduction into PARADIGM

PARADIGM is a specification mechanism developed to model parallel processes. A PARA-
DIGM model can be designed in the following manner:

» Describe the sequential behaviour of each process by means of a STD.

» Within each STD so-callesibprocessesan be indicated. These subprocesses are subdia-
grams of the STD and are used for the coordination with other processes. The set of sub-
processes of one process is cadquhrtition of that process

» Within each subprocess certain sets of states, so-¢adlesl can be identified. By enter-
ing such a trap, an object indicates that it is ready to switch to another subprocess. The set
of traps of a process is calldte trap structure of that proceSne important property of
a trap is that, within a subprocess, there are no transitions leading from one of the states of
a trap to another state outside the trap. So when a process has entered a trap, it is no longer
possible for the process to leave this trap as long as the same subprocess restriction
remains valid.

* There is also an extra STD called ttmanager processThis process coordinates the
behaviour of the various objects. The objects of which the behaviour is controlled by a
manager process, are called émployee processes that manager process. Depending
on the state it is in, the manager process prescribes a subprocess to each of its employees;
an employee may only behave according to the subprocess which is currently being pre-
scribed by its manager process. Next, the manager process monitors the behaviour of its
employees; when one of the employees enters a trap to another subprocess, the manager
process may follow a corresponding transition to another state where it can prescribe the
subprocess the employee wants to enter. Note that the maaageescribe the new sub-
process to its employee but that it is not obligated to do this. The manager may postpone
prescribing the new subprocess to its employee as long as it wants to. The mapping of the
states of a manager process to the subprocesses it prescribes to its various employees and
the mapping of the transitions that a manager can make to the traps of its employees, is
calledthe state-action interpretesf the manager process with respect to the partition and
trap structure of its employee processes. So the state-action interpreter of the manager
process labels each state of that manager with the subprocesses it prescribes in such a state
to its employee processes and it labels the transitions with those traps that enable this tran-
sition to be selected.

One individual process may be the employee of more manager processes. When this is the
case, such a process will have a separate partition and trap structure with respect to each of its
managers. The behaviour of that process then will be controlled by all of its manager proc-
esses together; at a given time instant, the process will be restricted to the intersection of the
various subprocesses prescribed by its various manager processes.

Note that this is only a very informal introduction into PARADIGM. The sequential behav-
iour of one process is in fact not fully determined by its STD. In addition to the STD a strategy
determines which transition in a state will be taken if several possibilities exist. Moreover, a
sojourn mechanism determines how long the process remains in each state. The strategy and
the sojourn mechanism can depend on the history of the process and on its current state. For-
mally spoken, the sequential behaviour of a process in PARADIGM is described by means of
a so-called decision process from the operations research field. However, the most important
features in SOCCA are formed by the STD which visualizes much of the behaviour of the
process and in addition to that a strategy, often informally described only, which tells what
transitions will be selected from a certain state when there are more possibilities.

page 8

Chapter 3 A way of viewing change

Chapter 3
A way of viewing change

This chapter starts with the definition of some terms. As stated in the previous chapter, in
SOCCA the various PARADIGM concepts have been used to manage the internal behaviour
of the operations from a class via the state-action interpreters of the external behaviour of the
classes. In the rest of this thesis, the internal behaviour of an operation isaailtedrnal
processand the corresponding STD is callibg internal process descriptio®imilarly the
external behaviour of a class is calltexternal procesand the STD describing this behav-

iour is callecthe external process description

As also described in the previous chapter, the external process descriptions are PARADIGM
manager processes and the internal process descriptions are the employees of these manager
processes. During enaction of a software process model an internal process is restricted to one
subprocess at a time (with respect to one partition of the internal process). Intuitively such a
restriction to a subprocess is a behaviour restriction for this internal process; the internal proc-
ess may only behave accordingly to those states and actions imposed by the subprocess. After
remaining a while in the same subprocess an internal process will enter a trap towards another
subprocess and at some time instant the permission to enter this new subprocess will be
granted by the manager. As soon as the internal process receives this permission it will start
behaving according to the new subprocess it has entered and it will remain behaving like this
for a while. This type of behaviour change of an internal process is a direct consequence of the
PARADIGM communication between the internal process and its manager process; the inter-
nal process changes from one behaviour restriction to another behaviour restriction as a conse-
guence of this communication.

When analysing this total behaviour of an internal process it can be seen that the transition
from one subprocess to another subprocess is the same kind of change as wanted for evolving
software process models; when a software process model has to evolve, the behaviour of some
part of the model has to be changed just like the behaviour of an internal process changes
when it makes a transition from one subprocess to another subprocess. This evolution of the
software process model can be considered as being a transition from one evolution stage (say
evolution stage 1, EVS1) to another evolution stage (say evolution stage 2, EVS2). A conclu-
sion drawn from this observation is that it might be possible to change a software process
model by viewing its internal and external process descriptions as being subprocesses of some
larger processes which have not explicitly been designed but which do exist. Furthermore it
might be possible to view the total state space of the process descriptions from the SOCCA
model up to now (which is in EVS1) as being a trap from the current process description to the
newly designed process description (which forms the SOCCA model in EVS2).

For example, when one of the components has to be changed the new STD of the compo-
nent, which does not yet exist, can be designed and after this design has been finished it can be
activated by switching from the subprocess corresponding with the old STD to the subprocess
corresponding with the new STD. This transition then corresponds with a transition from
EVS1 to EVS2. Such a transition from one evolution stage to another evolution stage will be
called arevolution step

As the not explicitly designed external and internal processes combine the various behav-
iours of the software process model during all possible evolution stages, they will be called
anachronisticexternal and internal processes in this thesis.

Note that viewing the process descriptions as being subprocesses means that we get a deeper

page 9

Adaptive software process modelling with SOCCA and PARADIGM

management hierarchy, in which a process can be both an employee process and a manager
process at the same time. We get the situation that a subprocess (of an anachronistic external
process) is managing the subprocesses of a subprocess (of an anachronistic internal process).
For example, let Ebe an external process,dn internal process and lg§|, ... ,hS, be the
subprocesses of with respect to E This means that in the original SOCCA approach, the
process Eis a manager of the subprocessé&s, ... ,|S,, of process4. However, when Eand
|, are considered being subprocesses of larger, not explicitly designed, anachronistic processes
(say Ey and |, respectively), then one can say thatshbprocess Eis a manager of the sub-
processes; b, ... 1S, of thesubprocess{.

3.1. A condition for managing subprocesses of a subprocess

The notion of managing subprocesses of a subprocess is possible because a subprocess is a
decision process by itself [1] and a decision process can have subprocesses [1]. Although it is
possible to manage the subprocesses of a subprocess, a problem may arise; suppose that the
above mentioned anachronistic internal procgdsals another subprocessahd suppose that

E, is still managing the subprocessgS,] ... ,hS, of I; (as in the previous section). Further
suppose that for some reason the subprogassplescribed in stead of, lfor example when

EVS2 has started in stead of EVS1. Then it can be no longer guaranteed that all states in the
subprocesses$, ... ,1|S, can be reached or do exist as some of the states and transitions of
11S;, ... ,hS, may no longer exist in the subprocessMoreover, when the subprocegsof

which the processesS,, ... ,4S,, are subprocesses, is not prescribed, one could say that the
subprocess;land its subprocessess|,S, temporarily do not exist. Therefore, it can not

be allowed that a process 5 managing the subprocessgS,] ... ,|S,, of a subprocess |

which is currently not prescribed by its manager process M1. Thus, to avoid these kind of
problems, we need the following extra condition when viewing the external and internal proc-
esses as being subprocesses themselves:

When the subprocessess|, ... ,1|S, of a process;| which in turn is the subprocess of a
process A, are being managed by a procegstiken the processg must be prescribed by the
manager process M1 of the procegswith M1 being the manager process pfith respect
to the partition of which,lis a subprocess of |

3.2. Introducing the manager process WODAN

To formalize the change of a software process model during enaction, it is useful to introduce
an extra manager process. This extra manager process will be called WODAN, which stands
for What Ought to be Done As Necessary. The manager process WODAN is a manager of all
(not explicitly designed) anachronistic external and internal processes and normally it stays in
the same state, just prescribing the (explicitly designed) external and internal process descrip-
tions. When a change has to be made, WODAN can go to a state which for example is called
changing the modelWwhen WODAN is in this state, the new external and internal process
descriptions can be designed. Moreover, WODAN can also design new class descriptions
when the static structure of the model has to be changed due to extra requirements. After the
new model has been designed, WODAN can go to a next state prescribing the new process
descriptions.

page 10

Chapter 3 A way of viewing change

3.3. Three types of change

The changes made to a software process model to achieve evolution, can be split up into three

different types of change; they range from a relatively simple change to more complicated

forms of change. The following three types of change can be distinguished:

1) Do not change the state space, only change the strategies and the subprocesses and possi-
bly add or remove transitions.

2) Do not add or remove processes, only change the strategies and subprocesses and add or
remove states and transitions.

3) Add or remove processes and change the strategies, etc. of other processes.

3.4. The NULL process

Adding or removing processes within SOCCA, as in change type 3, is possible since the proc-
esses we are looking at, are only subprocesses of the anachronistic processes. When a process
E, has to be added, one could say that the anachronistic proce$sviich E, is a subproc-
ess, already existed from the very beginning. However, WODAN was prescribing a nearly
empty subprocess of it before the procegsvBEs necessary. This nearly empty subprocess
consists of one state together with one transition from this state to itself. In the same manner, a
process Ecan be removed during evolution by prescribing a similar nearly empty subprocess
of the anachronistic procesg Bf which g is a subprocess with respect to WODAN.

Such a nearly empty subprocess will be calledNbiL processor shorter NULL. This
will also be used as a convention when designing WODAN to introduce new processes or
remove old processes; in the states of WODAN where the process did not exist yet or has been
removed already, the NULL process will be prescribed.

page 11

Adaptive software process modelling with SOCCA and PARADIGM

Chapter 4
Using the new concepts to describe an evolu-
tion step

In this chapter we will use the new concepts introduced in the previous chapter to describe the
way in which an evolution step has to be performed. First we will give a very general method
which will always work and then we will refine this method by making use of the notion that
most times there will be many similarities between the processes before and after an evolution
step. This however is a non-trivial notion which can lead to severe inconsistencies in the
enactment state of the model when it is applied inaccurately. Thus we will also identify when
such a refinement will fail and give some solutions to solve those inconsistencies in such a
way that the refinements still can be used.

4.1. A general method to describe an evolution step

When an evolution step has to be made, the enacted SOCCA model has to make a transition
from one evolution stage, for example EVS1, to another evolution stage, for example EVSZ2.
During EVSL1 a set of external and internal processes, reflecting the behaviour of some real life
processes, will be prescribed by WODAN and during EVS2 another set of processes, reflect-
ing the new behaviour of those real life processes, will be prescribed. Let for exarbplarP
internal or external process reflecting the behaviour of a real life process during EVS1 and let
P, reflect the new behaviour of that same real life process during EVS2. Then, the processes
P; and B will both be subprocesses of the same anachronistic progassl Buring the evo-
lution step, a transition fromyRo P, has to be made.

The process Pwill be in one of the states of its subprocegstithe moment that the evolu-
tion step has to be made and it will be in one of the states of its subpree@ssnRhe evolu-
tion step is finished. Thus the problem which has to be solved is that the prooasst §o
from one of the states of its subprocegsoPone of the states of its subprocessA? the sub-
processes fand B may have no mutual states ig Ehis can be a real problem. This problem
can be solved by using an intermediate, temporary, subproceE®Rvhich describes how
the transition from Pto P, has to be made. This subprocegds all states of,Pa non-
empty subset of the states of &d possibly some extra states. Furthermore, it has for each
state taken from fa path leading from that state to one, or more, of the states Dhétrap
from P, to R can consist of all states of, fnaking it possible to start the evolution step at any
moment, regardless of the state of the subprocedarihg EVS1. The trap from.Bo P, can
consist of those states gfwhich are taken fromPthus the evolution step can be finished as
soon as the temporary process is in one of the states which actually reflect some part of the
behaviour of the modelled process during EVS2.

When using such a temporary procegpfcess evolution can be modelled as follows: dur-
ing EVS1, WODAN prescribes the subproces®fP,. When process evolution is necessary,
WODAN defines the new model, including the temporary phase and possibly a new EER
model. WODAN will continue prescribing procesgwhile the design phase is active. When
the design phase has been finished, WODAN will presciibetich reflects the behaviour
during the evolution step, and as soonasners one of its traps, WODAN can prescribe P
thereby actually starting EVS2. An example of this approach is shown in figure 1.

page 12

Chapter 4 Using the new concepts to describe an evolution step

in Tl in Tt
start Close SWItCh
change change to_EVS2
neufral designing_ waifing neutral,

EVS1 busy new_ model EVS2 busy

WODAN: viewed as manager of, Buring one evolution step

P1: Subprocess of Pduring P;: Subprocess of fduring the evolu- P,: Subprocess of Pduring

EVS1. W.rt. WODAN tion step EVS2. W.r.t. WODAN
forms its whole state forms its whole state
space trap . space trap 7.

Figure 1. A general example of an evolution step

It is very likely that during one evolution step, more processes will change and that also the
communication between the various processes will change. The communication may change
due to extra requirements. This can be modelled similar to the above sketched evolution step.
However, in stead of using one temporary proceésrRhe change description of one anach-
ronistic procesij? one or more temporary procesgs have to be designed for each anach-
ronistic proces of which the behaviour changes from EVS1 to EVS2. In this case, more
temporary subprocesses may be necessary per anachronistic process that changes because of
the change in the communication structure. Such a communication structure change makes the
evolution step more complicated; it may be necessary that the evolution step has to be exe-
cuted in a phased manner to get the new communication between the various processes appro-
priate. Thus, in such a case, WODAN will first prescribe the first version of the temporary
processes, wait until the appropriate temporary processes reach their traps, prescribe new tem-
porary processes, and so on until the whole model is in a state which reflects some behaviour
of EVS2 and from that moment on, the subproce?ées can be prescribed to the anachronistic
processe@'a

Note that further categorisation of the various problems as a consequence of process change
is a topic of future research.

4.2. Exploiting similarities between processes to refine the evolution step description

The general method described in the previous section makes no use of any information availa-
ble about the specific problem of making one transition step. The temporary prdw@ssiie
separate state for each state of the procggefere the evolution step and some extra states
taken from a non-empty subset of the states of the progegsi¢h is prescribed after the evo-

lution step. However, the processgsaRd B both represent the behaviour of the same real

life process, which likely only changes slightly during the evolution step. Thus, there will be
many similarities between the processesid B. For example, there can be a large overlap

in the state space of And B, many transitions may be the same and there may be even many
similarities between the trap and partition structure,airiel of B when R and B are internal

page 13

Adaptive software process modelling with SOCCA and PARADIGM

processes.

For example, when making a change of type 1 as described in section 3.3, the prqcesses P
and B will have exactly the same state space. In such a case, it might be possible to make the
transition from EVS1 to EVS2 immediately, without using a temporary progess the proc-
ess B can stay in the same state when making the evolution step. Also, when a temporary
process Pis necessary, this processc@n be designed much simpler; all states,afalf be
taken from R and the additional states which are normally taken fremr® now not neces-
sary as they already exist ip FPhus, also the paths leading from the states taken froim P
the states taken fromyRre in such a case not necessary.

In the following sections, we will examine whether it is generally possible to exploit these
kind of similarities between the processes in the various evolution stages to simplify the evo-
lution steps. We will also examine which kind of problems can arise with exploiting these sim-
ilarities and sketch some ways to solve these problems in a formal manner with the aid of
WODAN.

The study of the problems which may arise will be split up in two parts.

In the first part, an analysis at the level of the internal processes will be made; this discussion
brings forward what inconsistencies may arise for the employee processes.

In the second part, the transition will be analysed at the more global level of the external
processes. Since an external process in its role of manager process is responsible for the coop-
eration between the internal processes that form its employees, this part of the discussion
underlines the possible inconsistencies in the cooperation control of the employees.

All inconsistencies will be related to the three types of change indicated in section 3.3. How-
ever, before starting with this survey, some terminology has to be introduced first:

* Let By be an anachronistic internal or external process with two subprocesses g,

with B, the internal or external process prescribed during E\ShePinternal or external
process prescribed during EVSk and k=j+1. So EVSK is the evolution phase next to and
after EVS]. Then the procesg Will be calledcorrespondingwith the process;P

* Let By, B and R denote the same processes as above. Furthermorepetostate of £

which exists in both subprocessgsaRd R of Fy. Then the state Xn B will be called
correspondingwith the state Xin B. So in fact, we will regard this same state as two dif-
ferent (but corresponding) states in the two corresponding subprocesses.

4.3. Possible inconsistencies as a consequence of process change

In this section, the consequences of switching from EVS1 to EVS2 will be examined to
detect possible inconsistencies. This will be done in two steps; first we will examine the con-
sequences of the process change for the individual internal processes and then we will exam-
ine the consequences of the process change for the cooperation between the internal and
external processes.

4.3.1. Consequences of process change for individual internal processes

In this subsection, the consequences of switching from EVS1 to EVS2 will be examined for
the internal processes. We assume that only one process changes during the transition from
EVS1 to EVS2. When more processes change, the cases below will hold for each individual
process. The internal process under consideration will be calleithl subprocesses3,, ...
11S, during EVS1 and the corresponding internal process during EVS2 will be caWth |

page 14

Chapter 4 Using the new concepts to describe an evolution step

subprocesses$,, ... ,bS,,. Furthermore we assume that the managef;, and later ofJ,
prescribes{S; during EVS1 and,§ during EVS2, and that;femains in the same state dur-
ing the transition from EVS1 to EVS2. So this means that the state-action inteqgpreter also
changes during the switching from EVS1 to EVS2, even itdelf remains unchanged. Note
that in this section we will not take the cooperation between the various processes into consid-
eration. Thus, in this subsection is it not relevant whether the traf;afiffers from the trap
of 1;S;. The consequences of changing traps will be analysed in subsection 4.3.2.

This situation is shown in figure 2.

Situation during EVS1 Situation during EVS2
o/o\O x/ \ f N x/
Internal process;| External processE Internal process,| External processE
11S; 11S; 115 11Sh LS 1S 155 12Sm

Figure 2. The general situation considered in this part

As only one subprocess of an internal process is active at the same time, we will consider the
possible differences between the subprocg§sahd the subprocessS. There can be many
differences between these two subprocesses. However, each difference will be a combination
of one or more of the following four cases:
al)l,S equals {S; this is the trivial case. As$ = 11§ there is no change of process. Even
¢(.) can remain unchanged.
a2)1,S; does not have all states frop§ in this case the transition from EVS1 to EVS2 can
not be made as long as5] is in a state that does not exist j§! This is problem P1 and
some solutions to it will be given in section 4.4. One of these solutions is very easy to
apply, but can not be used always. The other solutions are more complicated but they can
be used always.
a3)I1,S; does not have all transitions frop8; if 1,5 is designed properly this does not cause
any problem, the only consequence of missing transitions is,at thehaviour differs
from 1,S’s behaviour.
ad)1,S has some states or transitions that do not exigSnthis either does not cause any
problem. The only consequence of this case is #&fchn not be in one of these extra
states at the moment that the moment that the evolution step starts.
Thus, we have found only one problem, called problem P1, which occurs in case a2.

Note that all four cases can occur which each type of change as mentioned in section 3.3.
This is the case as we are looking at subprocesses of an internal process; even for the change
of type 1, where no states are removed from or added to an internal pretégspaess can
have extra or less states since the subprocesses may always change.

4.3.2. Consequences of process change for the cooperation control

After the survey at the subprocess level in the previous subsection, we will examine the coop-

page 15

Adaptive software process modelling with SOCCA and PARADIGM

eration between the internal processes via an external process in this subsection. It is assumed
that the external process can make the transition frpto E, when the evolution step from

EVS1 to EVS2 has to be made. When the change is of type 1, this assumption will always
hold. However, when the change is of type 2 or type 3 it might be possible that the external
process Emisses some states which exist in the external proge3$is problem, which will

be called problem P2, is similar to the problem P1 mentioned above. It can be solved with one
of the solutions shown in section 4.4.2 when it occurs. Furthermore, it is assumed that only
one external process changes. When more external processes change, the cases found below
apply to each external process individually.

For the cooperation between the external process and the internal processes that form its
employees, only the state-action interpreter of the external process and the partition and trap
structure of its employees are relevant so it will be only examined how the transition from
EVS1 to EVS2 influences these. The external process in EVS1 will be caletlih EVS2
it will be called . Furthermore, the state in which B before the transition, will be called
X1 and the corresponding state inill be called X% and the employees of; kvill be called
I, and 4 and the corresponding employees gfall be called } and J respectively. The fol-
lowing two cases can be distinguished:
b1)The state X in which E is at the moment that the evolution step from EVS1 to EVS2

starts, can only be reached via a path withirMBich is equal to the path leading to the
corresponding state Xwithin E,. This means that,Eand & have an overlapping part

from the start state up to the statgsaXd X respectively, thus fand B have the same
states, transitions, strategy and state-action interpreter from their respective start state up
to and including the states, Xnd X respectively. In this case, after the evolution stgp E

will be in a state in which it would have arrived at exactly the same manner as ywhen E
had been active since the very beginning of the enactment of the model. SimoaleE

have arrived in this state in the same manner if it had been active from the beginning, there
will be no difference between,B history as it is after the evolution step angsHistory

when B would have been prescribed from the very beginning. Therefore, the evolution
step from EVS1 to EVS2 can be made at once in this case. An example of this situation is
shown in figure 3.

Note that in this case it is not relevant whetbearid 4 have new or modified subproc-
esses during EVS2; the manager &d later k&, does not prescribe these new subproc-
esses in this part of the model so these subprocesses can not influence the behaviour here.

b2)This is the opposite of case b1, thus the stateXhich E is at the moment that the evo-
lution step from EVS1 to EVS2 has to start, can be reached via a path withimda is
different from the path to the corresponding stajenXE,. In this case, the external proc-
ess will have arrived in the state After the transition from EVS1 to EVS2 via a path it
would not have followed whensthad been active since the start of the enactment of the
model. As the path that,Bvould have followed to arrive in the statg determines the
global behaviour of its employees (via the subprocessgsdscribes to its employees)
and as it is also influenced by the behaviour of the employees (via the fiags 6 wait
for before it can make the transition to a next state), it is possiblefaat&te and history
is not consistent with the state and history g& Employees. One of the main problems
that can occur, which will be called problem P3, is thaslould not have arrived in the
state % yet, because one of its employees has not yet reached a trap whigds E
required to wait for in the past. Some solutions to problem P3 are shown in section 4.4.3.

An example of this problem is shown in figure 4. The manageés i& state X, waiting
for 1,S; to enter trapqk; when the transition to EVS2 is made. The manager, now called
E,, is still in the with X corresponding stateafter this transition. However, according

page 16

Chapter 4 Using the new concepts to describe an evolution step

Situation during EVS1

Situation during EVS2

First part of i

External processHs the manager of land J

SRy,

Internal process;lwith Internal process;vith
subprocess; 5, and kS, subprocess;$; and JS;

First part of B

External processHs the manager ofland

SHRY.

Internal process,lwith Internal process,Jvith
subprocess,B; and bS, subprocess,$; and S,

©

‘©6 ¢
1S, 1251 12 S S

Note that |S; in fact is the same subprocess 8 .10therwise, the state-action interpreter gfaould dif-
fer from the state-action interpreter of. Hhe same applies for the combination$4] 1,S,), (4S;, 1Sy

and (4, %S))-

©6 @6
111 IS AhS

Figure 3. Situation b1: the first part of E1 and E2 is the same

Situation during EVS1

in Jltl >‘ in Iltl '
X1 Y1

External processHs the manager of land J.
E; is in state X, waiting for ht; when EVS2 has to start.

Situation during EVS2

— - —
in Iyty in bty
X2 Y2

External processHs the manager of land b,
Subprocess,B; should be in trap,t; when the external
process is in statesX

Figure 4. The manager is different during EVS2

to the new model is,$,, corresponding withy5,, already in trap,t; when the manager is
in state »%. Thus, the manager makes the assumption that it can make the transition to state
Y, were it will prescribeJS, to the employee,l This, however, may not happen as the

page 17

Adaptive software process modelling with SOCCA and PARADIGM

trap bt; had not been entered when the transition from EVS1 to EVS2 was made. Section
7.3 shows an example which is very similar to this one.
Note that both case b1 and b2 can occur with all three types of change.

4.4. Solving inconsistencies

In the previous section, three different problems have been mentioned that can arise at the
moment that the evolution step from EVS1 to EVS2 has to be made. These three problems are:
P1 The subprocess$; of internal process, lis within EVSL1 in a state Xwithout a corre-
sponding state Xin the subprocess$ which will be prescribed within EVS2 in stead of
the subprocess$;. This problem can occur with all three types of change.

P2 The external process, s within EVS1 in a state Xwithout a corresponding state, ¥
the with i corresponding external processgviathin EVS2. This problem can only occur
with change type 2 and change type 3.

P3 The process P is an external process and therefore a manager of some internal processes. It
will arrive within EVS2 in a state X, which it could not have reached yet within EVS2,
since one of its employees has not reached a trap for which the manager should have
waited in the past. This problem will mostly arise with change type 3, when a new process
is added to the model.

In the following subsections, solutions to these problems will be suggested. Some of these

solutions have also been used in the examples described in this thesis. The problem P1 arises

in section 5.2, the problem P2 in section 7.6 and the problem P3 can be found in section 7.3.

4.4.1. Solving problem P1: a subprocess of an internal process has less states

Let I, be the internal process during EVS/S; the subprocess prescribed by the managger, X
the state in which;5 is before the transition and lej Be the manager of with respect to
the partition of which 4S; is a subprocess. Furthermore, lebé the corresponding internal
process during EVS2,$; the corresponding subprocess prescribed by the manggestXte
corresponding with Xand let & be the manager o§ with respect to the partition of which
Izﬁ is a subprocess. This situation is shown in figure 5.
ote that the state Xs no part of 3. However, it can be a state ¢f If there is no state X
in 1, at all, a temporary version of the internal process can be defined which has a state corre-
sponding to state in ;. This temporary version of the internal process will be cajletid
state corresponding to state Xill be called X and the subprocess corresponding W |
will be called {S;. Furthermore, the manager of this process will be called E
Note that X I; and E are not always necessary to solve the inconsistency. Whether they are
needed or not, depends on the chosen solution. They will be used in the second solution down
here. The processes namgdrEhe solution S1 have nothing to do with thea&in the solu-
tion S2. The name;ks only used to indicate that it is a temporary process.
The problem P1 can be solved in the following manners:
Sl)Let X be the set of states of Er which the problem occurs. Thus, frescribes in each
state of X, a subprocessesS while E, prescribes from its corresponding state a sub-
process 4§ which misses one or more states occurring & It is possible to define a
temporary external process Wwith the aid of the statesgX How this process will be
designed is described below. Whenhias been designed, it is possible for WODAN to
manage the transition from EVS1 to EVS2. To do this, it will consider all stateg of E
together being a trap fromy Eo the process that forms the successor, afufing the evo-
lution of the software process model. This successor will now be the external prpcess E

page 18

Chapter 4 Using the new concepts to describe an evolution step

Situation during EVS1 Situation during EVS2
)~ () (%)) ()

External process £ External process £
manager of{ manager of4

S A

o\ oY Y2

\ /2 \
Internal process; | Internal process,|

Q
'EEERNN \ /O 3 ey y ey y eey
11S; 11S; 115 11Sh P 1,S, 125 15Sm

Figure 5. Problem situation P1

and the successor of Will be E,.

The temporary external processill be designed analogous to the external process E
However, there will be two differences betweenaid E. The first difference is that;E
has a smaller trap with respect to WODAN; the trap ofdhsists of all states of, Evhile
the trap from Eto E, consists of all states of Except for the states of.¥ which lead to
the problem. In this way, WODAN is forced to wait with completing the transition from
EVS1 to EVS2 until Ehas left the states which form a problem. Secondly, all transitions
leading out of the trap ofEnust be removed, sq Ean no longer enter a state Qi after
it has entered its trap to,EThis is required to make sure thatr&mains trapped in the
states from where the transition tg &n be made safely. This solution has been used in
the sections 5.3 and 7.6. An example of this solution can be found in figure 6.

Note that this solution can not be used whep = XE1 , thus whemrofisists of all
states of Eas E will have an empty trap in this last case.

S2)In the second solution, a temporary version of the internal progesB be used, it will
be called | This temporary procesgWwill be designed analogous tg However, it will
have some extra states and transitions: all states that are no pdntitothiat are in4l will
be part of | together with transitions leading from those extra states to the states that are
also part of J. The extra states that exist {4 will be called X,. In the same way, the
subprocesses of inust be designed analogous to the subprocessgswithleventually
extra states fromyl In the description of the rest of this solution, the example given in the
introduction of this section will be considered. Thus we have a subprg&estll, a sub-
process S of I, and a state Xin 1;S with no corresponding state is§. Following the
first part of this solution, we now also have a temporary progtss resembles,| As, in
the example,J has the same states asrio extra state pwill exist in |;. The process; |
now needs a subprocesS Which consists of,5 together with an extra state correspond-
ing with the state Xin I; and a transition from that state to one of the other stateS.of |
As the state Xin I, has a corresponding state i I, (and in |), this state X will be cho-

page 19

Adaptive software process modelling with SOCCA and PARADIGM

Situation during EVS1 Situation during EVS2
External processEmanager ofil External process £manager ofd

The trap 1 is formed by the whole state space.The trap T is formed by the whole state space.

Situation during the temporary phase WODAN

neufral, designin waitin neutral,
EVSLbusy new model g EVS2 busy

\ / in Tgy in Tgy
start_ close_ switch_
@ Ly change change " to EVS2

T
External process;Emanager of4l et

The trap T is formed by the states in the box.

Figure 6. Example of solution S1

sen to complementS;. Generally spoken is it possible to design the subproceSsésr |

all combinations of subprocessg§jland bS that can lead to problems when switching

from EVS1 to EVS2. After these subprocesses have been designed, a temporal manager E
can be made. This processcén be designed analogous to the procgssli@vever, there

will be one difference: in the states wheregEescribes a subprocessSs| the processE

will prescribe a subprocessSl Just as in solution S1, the set of these special statgs of E
will be called X and the trap from Ho E, will consist of all states of Eexcept for the

states of X,. When this all has been designed, the transition from EVS1 to EVS2 will
elapse as follows: as soon as the transition has to be made, WODAN will prescribe E
Since E resembles E this means that in fact the new behaviour will start from the very
beginning. However, as long as one of the subprocesses is still in a state that only exists
during EVS1, this subprocess will keep behaving according to the EVS1 behaviour. After
a while, such a state will be left and from that moment on the subprocess will have the
EVS2 behaviour. As soon as the external behaviour enters a safe state (a state in which no
problems can arise), WODAN can prescribe the external progesiseEeby making the

EVS2 behaviour definitive. An example of this solution is shown in figure 7. This solution

is not used any further in the examples in chapter 5 or chapter 7. However, the following
variant of it, called solution S3, is used in section 5.4.

S3)As mentioned above, is this solution a small variant of solution S2. It follows solution S2
until the point where Eshould be designed. In stead of designing a temporal progess E
the process Ewill be modified slightly: in all states where Ehould prescribe a subproc-
ess b5, E; can now choose between prescribing the subprocessesd |S. The strat-
egy from B will be adapted to make this decision; there will be an extra statement like:
when it is possible to prescribe bofigland S, the subprocess should only be pre-
scribed when the internal process under consideration is in a state that only egstsin |
this way, the temporary subprocesses will only be used just after the transition from EVS1
to EVS2, as only immediately after this transition, the internal process under consideration
can be in such a state. When using this variant of the solution, the subpro@&sses |
part of the same partition as the subprocesssthey are both subprocesses of the very
internal process bnd the slightly modified manages is the manager of Wwith respect to
this partition.

page 20

Chapter 4 Using the new concepts to describe an evolution step

Situation during EVS1

ol
® OMEENN.
—>
External process£manager ofil Internal process, | 11S
The trap T, is formed by the whole state space.

&)

Situation during the temporary phase S
O—\. X3
\ Q
Ok | ok
>
@ Internal process | IS
Tet

External processEmanager ofl
The trap T;is formed by the states in the box.

Situation during EVS2 g

O\ X3
\ \ /4
O
—»
\@ Internal process,| 12§
External process&manager of4.
The trap T, is formed by the whole state space.

in Ty in Tg
start_ close_ 'switch_
change change to EVS2
neutral, designing_ waiting neutral,
EVS1 busy new_model EVS2 busy

Figure 7. Example of solution S2

4.4.2. Solving problem P2: the external process has less states

Let E; be the external process in EVS},tke corresponding external process in EVS2 and let

X; be the states of the external process that do exigthothat have no corresponding states

in E,. Just as in the case of the internal processes, two possible solutions can be given:

S4)Make a temporary version Bf the external process. ThigiE designed analogous tq.E
However, there are two differences: the first difference is thtada smaller trap then;E
the trap of Eexists of all states except for the statgsThe other difference is that all
transitions which would lead out of the trap Bust be removed from the processde
assure that Ewill stay in its trap as soon as it has been entered. WODAN can now pre-
scribe E as soon as the transition from EVS1 to EVS2 has to be made and as spon as E
enters its trap, WODAN can prescribg t finish the transition from EVS1 to EVS2. A
combination of this solution with solution S1 has been used in section 7.6.

S5)Also in this solution, a temporal versiopdE the external process will be used. This tem-
poral version however, is designed analogoustaie STD of Eexists of the STD of E
together with the states #nd transitions leading from these statgtoXhe states that are
taken from %. The trap of Econsists of all states taken frorp. Bs in the previous solu-
tion, WODAN can prescribe{Eas soon as the transition from EVS1 to EVS2 has to be

page 21

Adaptive software process modelling with SOCCA and PARADIGM

made and it can prescribe © finish the evolution step as soon a&s entered its trap
towards b.
The intuitively difference between solution S4 and solution S5, is that in solution S4 the
model will switch to the EVS2 behaviour only after a state that exists both in the EVS1 and
EVS2 behaviour, has been entered. It will always follow its natural path (according to the
EVS1 behaviour) to arrive in such a state. In solution S5 however, the EVS1 behaviour can be
aborted as soon as possible; as soon as the model wants to leave the state which only exists in
the EVS1 case, it can travel via the extra transitions tf & state of the EVS2 behaviour. In
this case, the model does not have to follow the complete path through the EVS1 behaviour as
in the case of solution S4.

4.4.3. Solving problem P3: the external process has reached a state to early

Since an external process manages the subprocesses of some internal process, an external
process can only make the transition from a stgtéoXa state X after the appropriate sub-
process has reached the trap that corresponds with this transition. A consequence of this
behaviour of the external process is, that its employees must have passed through various sub-
processes and have reached various traps, before the external process can arrive ip a state X
For example, let the internal procegsvith subprocesses$; be an employee of the external
process & Furthermore, let state,Xbe a state of £in which E, prescribes the subprocess

1,S; and in which E has to wait until JS; has reached its trapt{ to the subprocessS,. As

soon as4S; has entered this trap, Ehay follow the transition towards statgXthereby pre-

scribing bS, as soon as the statghas been entered. When the external procgsstk its
employees is active from the start of the enactment of the model on, the model will be in a
consistent state when the external procesisas entered the stateXthe internal processes

which are employees of,thave previously reached the traps to the subprocesses which they
are currently restricted to by,EBHowever, suppose thap Bnd its employees will be activated

for the first time when EVS2 starts and that during EVS1, the external procedslie used

in stead of & Let us consider the case in which the evolution step to EVS2 has to be made at
the moment that Fs in the state %, which corresponds to the statg,X%f E,. In this case £

will prescribe subprocessS, to the internal process tegardless of,lhas reached its trap to

1,S, or not. When 4 had not reached the trap #5), the model will not be in a consistent

state, since a subprocess of an internal process is prescribed at a moment that this is not yet
allowed. Such a situation is shown in figure 8.

Situation during EVS1 Situation during EVS2
in Iotg
— — — — — —
X11 X12
External processHs the manager of | External processﬁs the manager ofl
On the moment of the transition to EVS2 is E When EVS?2 is just started, Bill be in
in the state Xo. state X%,. However, this may not be allowed

as it is not assured thgthad already
entered the trapt; from I,S; to I,S,.

Note that the external procesgik corresponding to the external procegsiid the internal process
I, is corresponding to the internal process |

Figure 8. Example of problem P3

page 22

Chapter 4 Using the new concepts to describe an evolution step

Note that this problem will only arise when the trap structure isfleally different from that
of 14, with I, being the corresponding internal process during EVS1. This will mostly happen
when the internal procesgik an entirely new process; since during EVS1 the NULL process
will have been prescribed, the internal process will have had no history at all and therefore it
will not likely be in the state where it should have been at the moment of entering EVS2.
However, since this problem also can arise in other cases, the internal process during EVS1
still will be referred to as;land not as NULL.
The above given problem can be solved in one of the following manners:
S6)Let X, be the set of states of i which the problem can arise. Furthermore, Igt be
the set of corresponding states gf Besign a temporary external procegsmaich is
designed analogous tq.EThere will be two differences between &d k. The first dif-
ference is that the trap of; Eonsists of all states of,Evhile E’s trap consists of all states
of E; except for the states of the set of statgcErresponding with the set of stateg Xf
E;. The second difference is that all transitions leading out of the traplaivEé to be
removed. WODAN can then prescribgas soon as the transition from EVS1 to EVS2 has
to be made and it can finish the transition by prescribingsEsoon as;fas entered its
trap.

Note that this solution can only be used when the stateg of X; don’t form a trap by
themselves, otherwise the transition to EVS2 can never be finished whas éntered a
state X,. This solution has been used in section 7.3.1. An example of this solution is
shown in figure 9.

Situation during EVS1 Situation during EVS2
in |2t1
— —_— — — —_— — >
X11 X12
External process £ External process E
The trap T, is formed by the whole state space. The trap T, is formed by the whole state spac
Situation during temporary phase WODAN
|
- B0~ 00O
I Switch
NN N AN
EVSL busy ngj}?mgga waiting EVS2 busy
Xt X2
Tet

External process:E
The trap T;is formed by the states in the box.

Figure 9. Example of solution S6

S7)First analyse the specification of the software process during EVS1 and during EVS2 and
decide whether it is allowed to have an inconsistency during the first moment that EVS2 is
active. In the following step, a temporary external processukcbe made, which consists
of some kind of mixture of the external processeaiftl B; this § will partially have the
behaviour of & but it will wait for the trap of{ in another state then,vould have done.

In which state it will wait depends on where the inconsistency may exist according to the
analyses in the first step and where it is not allowed. In this way, when the external process
E; is in some states, it will permit the inconsistency to exist and whisnifesome other
states, it will prohibit the inconsistency to exists. The states in which the inconsistency is
not allowed, can form the trap from © E,. Just as in the previous solutions, WODAN

can first prescribeHo start the transition from EVS1 to EVS2 and it can prescrijite E

page 23

Adaptive software process modelling with SOCCA and PARADIGM

finish the transition as soon agHas entered its trap. An example of such a solution is
shown in figure 10.

Situation during EVS1 Situation during EVS2
in 14ty in It
_’ _}
X11 X12 X13 X21 X22 X23
External process fEmanager ofyl External process £
The trap T, is formed by the whole state space. The trap T, is formed by the whole state space
Situation during temporary phase WODAN
. in Tgy in Tgy
in|lty start_ close switcH_
—> oAl change _~ change — to EVS2 et
EVSL busy ﬁgﬁ}?m%a waiting EVS2 busy
Xu Xi2 X3
External processE Tet

The trap T;is formed by the states in the box.
Figure 10. Example of solution S7

S8)This is the most complex solution. In the previous two solutions, the transition was post-
poned until the external process was in a state were no inconsistencies can arise (solution
1) or the inconsistencies were allowed to exist for a while during the first moment of EVS2
(solution 2). In this solution however, the transition from EVS1 to EVS2 will be made
immediately, with the restriction that, when the inconsistency arises on entering EVS2, the
behaviour of E and its employees will be “rolled back” to a state/subprocess which is nor-
mally reached earlier during the enactment of the model. To get this effect, again a tempo-
rary external process;BEwill be necessary. The internal process | which causes the
inconsistency will also need a temporary versjamith subprocesseg. Since using this
solution is a matter of high qualified engineering for each individual change of each indi-
vidual model, the way to solve this problem will be sketched only roughly here. A more
detailed example can be found in section 7.3.2, where a solution of the ISPW-7 example is
given.

Let By, X1o, By, Xo1, X2, I2, 155, 1S, and bS, be as in the introduction of this section.
Then E can be designed analogous tplt with the following differences:;lhas some
extra state ¥ labelled ‘aborting process’, ‘turning back operations’ or whatever, with a
transition from the state X(corresponding with the state,Jf leading to this state (X
This transition can be labelled ‘abort process’ or something alike. Furthermore, a second
temporary process Ean be designed which consists at least of the sigteaxrespond-
ing with X, of E and a state pq corresponding with state,Xof E,. The processEan
have two traps: one consisting of all states in which no inconsistencies can arise and the
other one consists of the statg.X'he first one is a trap towards the subprocesstide
the second one is a trap towards the subprogesEhE trap of f can consists of the state
Xy1- Furthermore, the temporary internal procgsant its subprocesgS, can have an
extra transition in which it calls the export operation ‘abort process’ of the managet E
after this transition it will arrive in a trap to the previous subprog&€sWODAN can
now first prescribe the procesg when Eis in a consistent state, it will arrive in the trap
to E. In the other case, the internal process can be forced to follow the ‘call abort’ transi-
tion by prescribing an appropriate subprocess to it, and as soon as the internal behaviour
has done this call, the manager procgssdaa be prescribed by WODAN. The managgr E
can now manage the behaviour of the internal process until it arrives in a state that is com-

page 24

Chapter 4 Using the new concepts to describe an evolution step

pletely consistent with the EVS2 behaviour and as soon, d&&a& entered such a state,

WODAN can prescribe £ thereby completing the transition to EVS2. An example of this
scenario is shown in figure 11.

Situation during EVS1 Situation during EVS2
in |2t1
e > > o — —_—b
X11 X12
External process £ External process E

The trap 1 is formed by the whole state space. The trap E,is formed by the whole state spac

Situation during temporary phase 1 Situation during temporary phase 2
@ @
in It X2 Xu1
taabort_proces K a
et2 ut
|4
Xta Xua
=
External process;E ©@ External process E
It has two traps: The trap T is formed by the states in the box.
trap Ty to B
trap Toato B,
X WODAN
Q call_abort_proce(; ; in Teq in Terp >
It s}]art clr(])se_ switch_
ttabort T change — change " o EVS2 neutral,
Internal process$,. EVelhusy Cesoming Wa'“”Neta EVS2 busy
- in Tgt

to EVS2

aborting

Note that the subprocessés,; land ||S; may be nearly empty subprocesses consisting of only one st
just like the NULL process prescribed during EVS1 with which these two subprocesses correspon

Figure 11. Example of solution S8

Note that this scenario is just a skeleton to sketch the process of rolling back the behaviour
of a model during evolution to solve inconsistencies. In real life, many variants on this
skeleton can exist. Even the example in section 7.3.2 differs a bit from this scenario.

4.5. Concluding remarks

In this chapter we have seen how the new concepts of WODAN and anachronistic external
and internal processes can be used to describe process evolution. In the first section, a very
general method to describe process evolution has been shown. This method can always be

page 25

Adaptive software process modelling with SOCCA and PARADIGM

used but it will lead to unnecessary complex evolution descriptions in many cases. In the fol-
lowing sections, we have made use of the fact that many similarities between the processes
used before the evolution step and the processes used after the evolution step may exist. This
notion leads to simpler process evolution descriptions. However, there can be many problems
when using such simplifications. The rest of this chapter contained some general solutions to
solve the most important problems which can arise. These solutions range from very simple
ones to very complex ones. The last solution, solution S8 shown in section 4.4.3., is even that
complicated that it is merely an example of using the general method shown in section 4.1.
then an example of exploiting the similarities in the model before and after the evolution step.

page 26

Chapter 5 An example of changing an enacting process model

Chapter 5
An example of changing an enacting process
model

In this chapter, a concrete example of process evolution is shown which makes use of the con-
cepts developed in the previous chapters. In this first example, a dynamic change of type 1 will
be made. This means that only the strategy, the transitions and the subprocesses may change.
There will be no change in the state space of the processes or in the number of processes the
model consists of.

The reason to make an example of change type 1, is to examine whether such a strong
restriction is useful. As it turns out, it is possible to change a model with the type 1 change but
it makes the model unnecessary complex. To avoid this complexity, the type 1 change will be
redefined such that it will be a weaker restriction.

When making the wanted change to the model during enactment, the problem P1 -the sub-
process of an internal process has less states- will arise and this problem will be solved with
both solution S1 and solution S3.

The model that is going to be modified is an extension of the example in [2], which is an
example of using SOCCA to model (a small part of) the ISPW-6 case. In that example the cen-
tral class is the clad3esign which is the model for the process of designing a document. In
the extension, which is the start model for the example in this chapter, a monitor prbcess
monitorl has been introduced that monitors the progred3esign Designhas also been
modified to support this monitor process. The STOndimonitorl and of Designcan be

found in figure 12 and in figure 13 respectively.

1

act_mon call_not_mod_open, qotify mod

opened_

call_not_mod_clo5gdt mod
closed_asked

no

_ monitor_
monitoring

started

call_notify_
review_opened

update_

update
statistics

statistics

5

call_report_review_result

not_review
opened_
asked

report_rev_
result_asked

W.r.t. to WODAN is this subprocess s-36a and the state space is trap t-36a
Figure 12. Int-monitorl: STD of the internal behaviour
Int-monitorlhas been designed to follow every phasBesign Designmust send a notify to
the monitor when the modification has been opened and when it has been closed and it must
also notify the monitor when review has been opened and fiDalbygn must report the
review result to the monitor to give the monitor the opportunity to update the statistics (one of
the requirements of the ISPW-6 case, see [3], section 2.6.3).

As can be seen in figure 13 the STDDafsign(which is an external process and therefore a
manager process of some internal processes) is in fact just a subprocess with respect to
WODAN. In the normal case, when the software process is being enacted and no change has
to be made to it, this subprocess will continually be prescribed by WODAN so this notion of
an external process being only a subprocess does not influence the behaviour in normal case.

page 27

Adaptive software process modelling with SOCCA and PARADIGM

21

report

close_and_ rev_res

review_ readab

closed starting_review pre_review starting_copying

open_for
_review

report_review

_result int-34
pre_review
! 8 10 11 14
in 35 in t-31
O eﬁ. not

prepare create_\ pen— 5

first for_mod mod_op

non_existent creatable created pre_modifiable

create_next modify

13

starting_creation starting_modification

W.r.t. to WODAN is this subprocess s-36 and the state space is trap t-36
Figure 13. Design: only viewed as manager of int_monitorl

When the behaviour designhas to be changed for any reason, a new STDdsigncan be
made and at the appropriate time instant this new STD can be prescribed by WODAN in stead
of the actual one.

To monitor the behaviour ddesign the monitor needs some subprocesses, which can be
found in figure 14.

Subprocess s-31 is the start stat@wimonitorlfor the first instance ddesign there is only
one monitor per design document but there are many instanbesighfor each design doc-
ument: one instance for every separate version of the very same document (see [2] for a justi-
fication of this). In the subprocess s-Bit;monitorlwill be waiting untilDesignwill start the
modifications. In subprocess s-32 it will be waiting ubBisignhas closed the modification
and in s-33 and s-34 it will be waiting uriliesignhas started the review process and until it
has reported the review result respectively. Afterititisnonitorlwill go back to subprocess
s-31 (when the review result mot_oR or to the neutral subprocess s-35 (when the review
result isok). Note that s-35 is also the starting state for the other instanPesigin

page 28

Chapter 5 An example of changing an enacting process model

s-31

call_not_mod_openg

act_mon not mod

monitor_
closed_asked

started

no_
monitoring

call_notify_
review_opened

update

update -
statistics

statistics

call_report_review_result

not_review

report_rev_
result_asked

closed_askegd

s-33

t-32

call_notify_
review_opened

call_report_review_result not_review

opened_
asked

not_review
opened_
asked

t-33

call_not_mod_clobggt mod
closed_askgd

act_mon monitor \ call_not_mod_openg

started

call_notify_
update_ review_opened

update
statistics

statistics

call_report_review_result

not_review

report_rev_
result_asked

t-35
Figure 14. Int-monitorl: subprocesses and traps w.r.t. Design

5.1. Designing a new model

Suppose that the monitor gets a short-cut framotify mod_opened_askedo
report_review_resulbecause for small projects the exact intermediate result is not relevant,
then the monitor and its subprocesses can be designed as in figure 15 and in figure 16 respec-
tively.

When comparing int-monitorl with int-monitor2, the following notions can be found:

» The subprocesses of int-monitor2 are numbered the same as the subprocesses of int-
monitorl. This is done to show the correspondence between the subprocesses of int-
monitorl and int-monitor2; subprocesses with the same number in both models corre-
spond with each other.

 In the new model, subprocess s-34 has an extra state 3 and a transition from state 3 to 6.

* In the new model, subprocess s-35 has an extra transition from state 3 to 6.

 Int-monitor 2 has an extra subprocess s-39. This subprocess will be used in section 5.5,

until there it can be ignored.

page 29

Adaptive software process modelling with SOCCA and PARADIGM

1

no act_mon

o monitor_
monitoring

call_not_mod_clobggi mod
started . s

closed_asked

call_notify_

update review_opened

™ update_
statistics

ate call_report_review_
statistics

result

5

call_report_review_result

not_review
opened_
asked

report_rev_
result_asked

W.r.t. to WODAN is this subprocess s-36b and the state space is trap t-36b
Figure 15. Int-monitor2: new STD of the internal behaviour

As long as the current versiondésignis being kept as a manager of monitor, it is possible to
switch fromint-monitorlto int-monitor2when enacting without introducing inconsistencies.
Thus in this special case, we are not obliged to use a new ver&esighwhen switching to
the new evolution stage. However, as long as we keep using the old verBiesigt Int-
monitor2will show the same behaviour bBd-monitorl This follows from the notions below:

* As, with respect t®esign trap t-31 is only a trap from subprocess s-31 to s-32 the newly
introduced transition from state 3 (t-31) to state 6 (in s-34) will not be used, so the behav-
iour remains the same.

» With respect tdesigns-34 can only be reached from s-33 so the newly introduced state 3
in s-34 can not be reached and because of this it will not affect the behaviour.

» Subprocess s-35 (the neutral subprocess) means that all states from the monitor can be
reached so introducing an extra transition here does not effectively influence the behav-
iour.

As mentioned above, the design process also has to be changed to achieve the new result. This

new design process will be call&€eksign2 Its STD is shown in figure 1Design2can pre-

scribe different subprocesses in some states. Which subprocess will be chosen depends on the

strategy:

Str-1 Determine in state 11 whether it is a small project or a big project. When it is a small
project follow the path 12, (13), 15, 17 prescribing subprocess s-34 in all states. Other-
wise follow the path 12, (13), 14, 15, 16, 17 prescribing subprocess s-32, (s-32), s-32,
s-33, s-33 and s-34 respectively.

Another strategy which can be used is the following one:

Str-2 Determine in every state in which two different subprocesses can be prescribed
whether it is a small project or a large project. When it is a small project subprocess s-
34 has to be prescribed and the transition to the following state has to be taken follow-
ing the path 12, (13), 15, 17. Otherwise subprocess s-32 or s-33 has to be prescribed
(depending on the state) and the transition to the following state has to be taken follow-
ing the path 12, (13), 14, 15, 16, 17.

When using strategy str-2, one of the consistency problems as mentioned in the previous chap-

ter will arise. As it is one of the purposes of this example to clarify these problems with their

solutions, the strategy str-2 will be worked out in the following sections.

Note that in this special case, the consistency problem could have been avoided by using
strategy str-1 in stead of strategy str-2.
Note also that in fact the new process descriptiorBesignand ofint_monitorare only

new subprocesses of some anachronistic processes. The transition from the old subprocess

int_monitorlto the new subprocess_monitor2and from the old subproceBgsignto the

new subprocesBesign2is made when WODAN prescribes the subprocesses corresponding

page 30

Chapter 5 An example of changing an enacting process model

2

act_mon call_not_mod_opepg

monitor

no_ _
started

monitoring

update

update _
statistics

statistics

call_report_review_result

report_rev_|

not_review

result_asked

opened_
asked

closed_askegd

call_notify_
review_opened

5

s-32

notify_mod \call_not_mod_closs

opened_ closed_asked

call_notify_
review_opened

s-34 notify_mod
opened_

asked

not_review

call_report_review_
result t'33

call_report_review_result

report_rev_|

result_asked closed_askgd

t-34 call_notify_
6 5/ review_opened
report_rev call_report_review_result not_review
result_askef] opened_
asked
t-39
s-35

1

call_not_mod_clobggt mod

call_not_mod_opentgotify mod
ec closed_askgd

opened_

act_mon

monitor

no_ _
started

monitoring

call_notify_
review_opened

update

ate_ call_report_review_
statistics

update
result

statistics
5

call_report_review_result

not_review
opened_
asked

report_rev_
result_asked

t-35
Figure 16. Int-monitor2: subprocesses and traps w.r.t. Design
with the new STD'’s.

Despite the remark above that we are not obliged to use a new verdi@sighwhen
switching to the new evolution stage, it is still necessary to design WODAN in such a way that
the transition fromint-monitorl to int-monitor2is made simultaneously with the transition
from Designto Design2 just as has been pointed out in section 3.1. This is the case since
Design2can prescribe certain subprocessembmonitor2which are no subprocess loit-

monitorl
Thus in this case, it is possible to presciilesigntogether withint-monitor2 (in accord-

page 31

Adaptive software process modelling with SOCCA and PARADIGM

close_and_
review_

closed readab
not_ok

notify_r_opened
copy

closed starting_review \ pre_review starting_copying

open_for_review
15

report_review .
_result in t-34

pre_revieWw

in t-32
not_mod_closed

close_mod

14

prepare

non_existent creatable created pre_modifiable ifi
create_next modify

9 ’13
starting_creation starting_modification

W.r.t. to WODAN is this subprocess s-38 and the state space is trap t-38
Figure 17. Design2: only viewed as manager of int_monitor2

ance with the remark on page 30, but this is not very useful) but it is not possible to prescribe
Design2together witint-monitorl

5.2. Starting the new model during the enactment of a software process

In the previous section, we have designed new models to model the changed behaviour of the
monitor operation and the claBgsign In this section, we will model the behaviour of the
evolution step to switch from the old behaviour of the total model to the new behaviour of the
total model. As only the behaviour Biesignand ofInt-monitor changes, we will only take
these two behaviours into consideration.

In comparing the original model with the new model the following observations can be
made:
A) When the actual instance @fesign models designing a huge project the behaviour

remains the same so the new processes can be started immediately.

B) When the monitor is in s-31 or s-34 no inconsistencies will be introduced.

page 32

Chapter 5 An example of changing an enacting process model

C) When it is a small project and the monitor is in s-32 or s-33 a problem can arise: when

switching to the new modeDesign2will prescribe s-34 because of it is strategy str-2
(determine in every state which project type it is and prescribe the right subprocess accord-
ing to the project type). When at this moment the monitor is in state 4 (which is possible in
both subprocesses) it can not leave this state any more since state 4 and the transitions out
of state 4 are no part of s-34. This is an example of problem P1 as mentioned in chapter 4.

The problem introduced in observation C can be solved in 3 manners:

Introduce the new method only when the monitor is not in state 4, so when it is not in sub-
process s-32 or s-33. This means that the new behaviour must be introduced in some
phases: say to design that the new behaviour has started but that it has to wait with the new
strategy until it is in a safe state. This solution, which in fact is solution S1 of the previous
chapter, can be found in section 5.3..

Make an extra subprocess s-39 which consists of the states from the subprocesses that
would introduce inconsistencies and change the strate@esiin2to be the following

one (str-3): when switching to the new process description while prescribing s-32 or s-33
and according to the new strategy s-34 would be necessary, then prescribe s-39 in stead of
s-34. This method can be found in section 5.4. and it is an example of solution S3.

Use another strategy in which the problem does not arise (like strategy str-1). This solution
has not been mentioned in chapter 4 since it is not a solution to the general problem that
the subprocess which will be prescribed during EVS2, misses one of the states of the cor-
responding subprocess during EVS1. However, it will always be a good advise to examine
the model carefully to find out whether it is possible to avoid the inconsistencies by using
a differently designed model which exploits specific properties of the real life process
which has to be modelled and of the models which have been used in the original evolu-
tion stage. This approach is similar to the one used in the special solutions shown in chap-
ter 4. The special solutions shown there exploited a specific property of the models before
and after the evolution step; they all made use of the fact that many similarities exist
between the STD’s before and the STD’s after the evolution step. The special solution
shown here makes use of another specific property; it makes use of the fact that the total
behaviour of the model is not only determined by the STD’s but also by a strategy.

5.3. Designing WODAN to manage the change

When choosing for solution S1, WODAN must consist of 4 states:

There is no change made, the whole process can be enacted at a normal way.

The new processes are being designed. The process still has to be enacted at the old way.
The new processes have been designed. The intermediate phase of the design process can
be started.

Design has reached a safe state, the final subprocess of design can be prescribed and eve-
rything can enact at the new way.

The intermediate subprocess of design, which will be cd#edpDesignand WODAN are
shown in figure 19 and in figure 18 respectively.

TempDesignis a manager oint-monitorl As has been mentioned in solution S1, it is
designed analogous Besignwith the trap offempDesigreonsisting of the states in which no
problem will arise and with the transitions which would lead out of this trap, removed from
the STD ofTempDesign

page 33

Adaptive software process modelling with SOCCA and PARADIGM

29

no_changing designing_new_ switch_to_new no_changing
monitor_and_design _process

Figure 18. WODAN: switch to int-monitor2 and Design2 via TempDesign.

s-37

close_and_
review_

readab
not_ok

notify_r_opened

) @

closed starting_review pre_review startlng copyin

ﬁopen for_review

report_revie
_result

in t-32
not_mod_closed

14

7
in t-35
_>
prepars

non_existent creatable created pre_modifiable

create_next modlify

starting_creation starfing_modification

t-37
Figure 19. TempDesign: subprocess for transition to the new design

5.4. Using an extra subprocess for int-monitor to avoid intermediate states

When choosing for solution S3, WODAN only has to consist of 3 states since there is no inter-
mediate phase for the design process. The design processPaaigd3 has to manage eve-
rything at the right manner with the aid of the extra subprocess s-39 and strategy str-3.
Design3and WODAN to control the change are as displayed in figure 21 and in figure 20
respectively.

page 34

Chapter 5 An example of changing an enacting process model

no_changing

Figure 20. WODAN: switch to monitor2 and Designa3.

close_and_
review_
not_ok

closed starting_review pre_review starting_copying
open_for_revie
report_review . no trap or in t-39

* open_for_review
_resuft in t-34

15

pre_revie int-32
notify_mod_closed

close_mod
{ 11 1
in t-35 int-31
repare create Pe not_
Prep first for_mod mod_op
non_existent creatable created pre_modifiable

create_next modify

starting_creation starting_modification

W.r.t. to WODAN is this subprocess s-40 and the state space is trap t-40
Figure 21. Design3: only viewed as manager of int_monitor2

5.5. Losing some restrictions

As can be seen from this example, restriction 1 (only change strategies, transitions and sub-
processes) is too strong to make it possible to design models for the external processes which
are easy to interpret:

When there are no extra states (in accordance with restriction 1) the manager must examine
its strategy to determine which subprocess should be prescribed in some states. This makes the
model very complicated to interpret since one can no longer determine from the state of the
manager process in which subprocess the employee process is. To find this out one should
know all about the followed strategy and eventually the followed history up to now. Thus, it
would be useful when the manager has some extra states to prescribe the new subprocesses
introduced for the new behaviour restrictions.

page 35

Adaptive software process modelling with SOCCA and PARADIGM

Therefore, the first restriction will be redefined to the following one:

restriction 1') Do not change the state space of the internal processes, only change the strate-
gies, transitions and subprocesses. When necessary, do introduce extra states
for the external processes to prescribe the new subprocesses in a clear manner.

When applying this new restriction 1' to the example one only has to change the manager

processDesigr) and the introduction of this manager (via WODAN). In the new design proc-

ess description there will be enough states to prescribe only one subprocess per state. This will
also simplify the strategy:

Str-4 Determine in state 11 whether the current is project small or large. When it is a small
project the path 23, (24), 25, 17 has to be followed, prescribing the right subprocesses.
Otherwise the (old) path 12, (13), 14, 15, 16, 17 has to be followed, prescribing the
right subprocesses.

In fact this strategy is analogously to strategy str-1 in section 5.1., the only difference is that

following the right path and prescribing the right subprocesses is now explicitly forced by the

states of the STD ddesign while in the other case it was implicitly forced by the strategy.

As this new version oDesignhas been extended with some extra states and transitions, it
will be calledExtendedDesignNVhen switching t&ExtendedDesigmo inconsistencies will be
introduced sinc&xtendedDesigoan not prescribe s-34 when it was prescribing s-32 or s-33
according to the old behaviour. It now first has to follow the path corresponding to the old path
in subprocess s-36, since it can only decide in state 11 to follow the new path according to the
new strategy.

Therefore, introducing this change of the software process model only requires 3 states for
WODAN. WODAN andExtendedDesigare shown in figure 22 and in figure 23 respectively.

33 34 35

start_change

no_changing changing monitor and designno_changing
(design will be changed into
ExtendedDesign)

Figure 22. WODAN: switch to ExtendedDesign and int-monitor2.

5.6. Concluding remarks

 Although it is possible to change the behaviour of an enacting process with the restriction
that the state space is not to be changed at all, this introduces some problems:

» There is a high probability that problem P1 arises as in some states a new subprocess
will be prescribed which contains other states and transitions then the subprocess that
was prescribed according to the old strategy.

* Itis hard to interpret the exact state of the process as in one state more subprocesses
can be prescribed. To interpret the exact state one should be aware of the followed
strategy and the history up to then.

The first problem can be solved with the solutions mentioned in chapter 4. The second
problem however, can not be solved in such a manner. To avoid this problem, the first
restriction has been made less stronger to allow extra states for the managers.

* The problems mentioned in the previous chapter can sometimes be avoided by carefully
extending the model. In my personal opinion, such a carefully designed extension should
be used whenever possible as it seems to be better to avoid inconsistencies then to solve
them afterwards.

* In practice, it may be possible to exploit special properties of the real life processes and the

page 36

Chapter 5 An example of changing an enacting process model

close_and_

review_ closed readab
in t-33
notify_r_opened
copy

closed pre_review

starting_review starting_copying

. open_for_review
report_review open_for_review
_result int-34

pre_review pre_review

close_mod

23
.+ ao| NOtify_mod
in t-32 _closed

not_mod_open

v int-31
7 8 10 11 24 14
in t-35
prepara create \ open_
first for_mod - -
non_existent creatable created pre_modifiable\ starting_modification

create_next

starting_creation

starting_modification

W.r.t. to WODAN is this subprocess s-41 and the state space is trap t-41
Figure 23. ExtendedDesign: only viewed as manager of int_monitor2

models which have been used before and after the evolution, to simplify the evolution
step. Thus, one can not only make use of the similarities between the STD’s before and
after the evolution steps as has been shown in chapter 4 but one can also exploit other
properties like the strategy which is being used.

page 37

Adaptive software process modelling with SOCCA and PARADIGM

Chapter 6
Extending the model to cover more of the
ISPW-6 example

In the next chapter, the process change part of the ISPW-7 example will be worked out in
SOCCA. However, before we can start with this, the SOCCA example, which is based on the
ISPW-6 case, must be extended somewhat because of the following reason. The change that
has been proposed in the ISPW-7 example concerns the cooperation Heesggrbocu-
mentand (modify)Code As Codehas not yet been included in the current model, this has to

be done first.

We will continue with the last version of the model as presented in the previous chapter; for
designing a document, the modeEodtendedDesig(figure 23) will be used andt-monitor2
(figure 15) will be used to model the process of monitoring the progrésdesfdedDesiy

SinceExtendedDesigis a model for designing a document, it will be calDe$ignagain in
the sequel of this thesis and likewisg;monitor2will be referred to ast-monitorfrom now
on. Furthermore, the SOCCA model as it is at this moment, will be called ‘the original
SOCCA model’ or the ‘original SOCCA example’ and the model introduced in this chapter
will be called ‘the current model’ or ‘the current SOCCA example’.

In this chapter, the SOCCA approach will be followed as far as possible; not only the behav-
ioural aspects of the processes will be modelled with the PARADIGM part of SOCCA, but
also the data aspects will be modelled by means of the EER based class diagrams and the
SOCCA extensions to these. However, the process perspective will be ignored as the use of
object flow diagrams and the integration of these into SOCCA has currently not been worked
out completely.

6.1. Redesigning the class diagrams

First a new class diagram has to be defined, as in addition to the human agents also automated
tools are necessary. For example a compiler to compile a code source document into a code
object document. This class diagram is given in figure 24.

Together with this class hierarchy specification the attributes and operations of the various

classes have to be defined. They are presented in figure 25.
In this class diagram two extra classes have been defined compared with the original
SOCCA example:

» Compiler this is an automated tool for compiling source code into object code. It will be
discussed in detail further down.

» ProjectManagerthis is the project manager with several tasks, like scheduling and assign-
ing tasks and monitoring the progress of the design and review process. The behavioural
aspects of the monitor process have been worked out in chapter 5. However, as chapter 5
was only meant to show the basic aspects of dynamic process change within SOCCA, the
other SOCCA aspects of the monitor were not discussed there. Therefore, these other
SOCCA aspects of the monitor will be discussed here.

The project manager's task ‘scheduling and assigning tasks is called
assign_and_schedule_tasksd its behaviour will also be discussed here.
Furthermore, some operations are moved from the supebdaggDocumerntb the subclass

page 38

Chapter 6 Extending the model to cover more of the ISPW-6 example

Engineer

4 .

Project-
Manager

Compiler

QA Design
Engineer Engineer

Tools

b .

Project

Project
Team

Project
Docs

|

Docu-
ment

A

[
Design
Docu-
ment

A

Test
Docu-
ment

A

Design Code

Test
Pack

Test
Plan

Figure 24. Class diagram: classes and is-a and part-of relationships

DesignEngineer ProjectDocs Document DesignDocument
name documentname versionnumber
content
design create_version open_for_modify prepare
review modify create_first
code close_maodification create_next
notify_mod_opened copy
notify_mod_closed
Compiler ProjectManager Design Code
language name
compile assign_and_schedule_t| |open_for_review compile
monitor review compile_ok
close_and_review_ok compile_not_ok
close_and_review_not_0 |release_object _code
notify_review_opened test_object_code
notify_review_result test_ok
test_not_ok

page 39

Figure 25. Class diagram: attributes and operations
Design as these operations are only necessaBesignDocument'subclas®esignand not
in DesignDocument'subclas€ode A last change in the class diagram is that the part-of rela-
tion ship betweerProjectDocsand the various documents has been moved from the sub-
classedesign Code TestPlanandTestPacko their ancestor clagdocument This has been

Adaptive software process modelling with SOCCA and PARADIGM

done to show more explicitly thRrojectDocsis constituted of (manypocumens.

In the following step the general relationships between the classes have to be defined. For
the sake of completeness not only the relationships between the new classes are shown but
also the other relationships from the current SOCCA example. The general relationships are
shown in figure 26.

Project Docu- Project
Docs e ment Manager

A
e s i

ment

Compiler Design
Engineer

[1
4@, Code Design @
<TEviews

<<codes

Figure 26. Class diagram: classes and general relationships

Note that in the SOCCA example the superclassignDocumentas been defined. Both the
classesCodeandDesigninherit operations and attributes of this superclass. The Clads
represents a code document and likewise, the Elasgnrepresents a design document. In

the discussion in this theses, terminology is used to address both code documents and design
documents. The term ‘design document’ means an actual instance of tHeed@gsmnd not

an instance of the supercld3ssignDocument

As a last step in the EER part of the SOCCA specification, the uses relationship is given (fig-
ure 27) together with the import list (figure 28). Note that in the import list some export oper-
ations are parametrized with the paramei®s_nameEach such parametrized operation in
fact stands fon separate export operations wherés the number of different document
names.

One of the requirements of the ISPW-6 case is @ate has to wait with releasing the
object code for the test phase until the design document has been approved. The behaviour of
Codetherefore depends on the behaviouDe§ign this dependency is modelled via the inter-
nal behaviour ofelease_object_codé\s can be seen in figure 56 on page 55, which shows
the traps and subprocesses iot-release object _codewith respect toDesign int-
release_object_codaaits in its starting state unblesignhas been approved. Since it is wait-
ing in its starting state, there is no transition to this state which could be associated with an
export operation obesign This means that the dependency of the behavioGodéon the
behaviour ofDesignis not modelled via an explicit export operationDEsignbut via an
implicit dependency. Therefore this uses relationship (usesl11) is shown with a dashed arrow in
stead of a solid one in the import/export diagram. Note that this is a deviation of the original

page 40

Chapter 6 Extending the model to cover more of the ISPW-6 example

Project Design
Manager Engineer uses4
usesl uses?
uses8
uses10
uses2
Compiler Code Design
Project uses9 usesil
Docs == P
H uses5 ﬂ uses5
uses3 n “

uses6 “

Figure 27. Import/export diagram

usel
design(doc_name)
review(doc_name)
code(doc_name)
use2
create_version(doc_name)
use3
create_first
create_next
use4d
open_for_modification
modify
close_maodification
open_for_review
review
close_and_review_ok
close_and_review_not_ok
uses5

copy
prepare

uses6
notify_modification_opened
notify_modification_closed
notify_review_opened
report_review_result

uses?’
open_for_modification
modify
close_maodification

uses8
compile(doc_name)

uses9
compile_ok
compile_not_ok

usesi0
monitor(doc_name)

usesll
waiting for design approved (no explicit export oper.)

Figure 28. Import list

SOCCA approach. We will come back to this further on in the thesis were we discuss the com-
munication betweeodesexport operatiomelease _object_codand the external behaviour
of the clasPesign

6.2. Designing the external behaviours of the classes

The next step consists of modelling the external behaviours of the classes. From then on, the
order in which the export operations can be called will be known.
Modifying the code has to be carried out by a design engineer. The export opszdéoh
DesignEngineecan be parametrized, just like the export operatimssgnandreviewin the
original SOCCA example. The operations can be called in any order, so addiodébeer-
ation to the external behaviour DésignEngineers straightforward. The new STD will be as
in figure 29. Entering the stastéarting codecan be viewed as starting the modify code activ-
ity.
The behaviour of the clagsojectDocsis also extended because now not only new versions

page 41

Adaptive software process modelling with SOCCA and PARADIGM

design reviewl code

starting
review

starting

starting
code

design

Figure 29. DesignEngineer: STD of the external behaviour

of design documents have to be created but also new versions of code documents. The new
behaviour ofProjectDocsis shown in figure 30. This model has two transitions with the same

create_versio

starting
creation
of desig

create_version

starting
creation
of code

Figure 30. ProjectDocs: STD of the external behaviour

label create_versionThis is necessary because of the trap structure of its emplmgees
designandint-code One transition will be followed whéant-codeenters the appropriate trap
and the other transition will be followed whigrt-designenters the appropriate trap. See sec-
tion 6.4 for the details.

The third classDesign remains unmodified as the extensions to the original SOCCA model
do not influence the behaviour of this class.

Modifying the code document has been modelled by means of a separate class. This class is
calledCodeand it is the fourth class in the current SOCCA example. Just like in the case of
Designthere will be one instance Gfode representing exactly one version of a code docu-
ment (a source code and eventually the associated object code). The £bddwill is dis-
played in figure 31. Some of its operations are inherited from its superclasses
DesignDocumenand Document Other operations are specific for the cl@ssleitself. The
STD of Codeis designed analogously to the STDDafsign the first part models creating the
new version of the document and modifying it and the last part models the process of reading
and copying it. The only real difference is in the middle part; for a design document the model
has to reflect the behaviour of reviewing the design, while for the code document the behav-
iour of compiling and testing the code document has to be modelled. The part of testing the
document will not be worked out further in this example.

Note thatcompileautomatically creates an object code document when the compile result is
compile_okNote also that the ISPW-6 requirement that it must be possible to have multiple
object codes with one version of a source code, is not supported by this model. To support this
requirement, a separate class for the object code document should have been defined, whose
behaviour depends on the behaviour of the source code document. At this iGonatone
class, representing both the behaviour of a source code document and the only one object code
document associated with it.

The fifth class is the clag¥rojectManager In this example the export operatiangnitor
andschedule_and_assign_taskdll be used. The export operatiomonitor is parametrized
with the document name of the document which has to be monitored and it is called from the
internal behaviour of the export operatischedule_and_assign_taskshis means that the
export operationmonitor is an example of an export operation which is imported in another

page 42

Chapter 6 Extending the model to cover more of the ISPW-6 example

48

46 47 copy

starting
testing

starting
copying

readable

compile_not_ok

42

pre-compile

create_next

38

starting
creation

starting
modif.

W.r.t. to WODAN is this subprocess s-81 and the state space is trap t-81
Figure 31. Code: STD of the external behaviour

operation of the very same manager process. The S HpogdctManagers given in figure
32.

schedule_and_assign_tasks monitor

starting

starting
schedule

neutral !
monitor

Figure 32. ProjectManager: STD of the external behaviour
The sixth and last class to be modelled is the newly introdGoedpiler class with export
operationcompile This export operation can be parametrized with a document name, just like
the operationgesign reviewandcodeof DesignEngineercreate versiorf ProjectDocsand
monitor of ProjectManagerThe STD ofCompileris given in figure 33.
compile

starting

neutral compile

Figure 33. Compiler: STD of the external behaviour

6.3. Designing the internal behaviours of the export operations

After specifying the external behaviours of the classes, the internal behaviours of the opera-
tions can be specified. In this example only the various internal behaviaodegfrom the
classDesignEnginegr compile, release_object _codmdtest ok(from the classCompilen

and schedule_and_assign_taskom the classProjectManagey will be given. The other
internal behaviours are not really interesting within this example as they are highly internal

page 43

Adaptive software process modelling with SOCCA and PARADIGM

operations which do not communicate with other parts of the model. For the internal behav-
iour of schedule_and_assign_taskly a very rudimentary scheme will be given, as it is not
relevant for this example to model the complete behaviour of this complex task. It is only
intended to show the process of starting the monitor process (so it is an example of starting
one internal behaviour from within another internal behaviour of the same instance of the very
same manager). The STD’s of the internal behaviours are shown in the figures 34, 35, 36, 37
and 38 respectively.

call_compile&/ciosing
(usesg) | mod_asked

compile_
done

compile_
asked

finish_code

all_close_modif

no code (uses 7)

(uses 2) (uses 7)

call_modify
(uses 7)

W.r.t. to WODAN is this subprocess s-99 and the state space is trap t-99
Figure 34. Int-code: STD of its internal behaviour

act_release_object_code

code

no release released

-

W.r.t. to WODAN is this subprocess s-82 and the state space is trap t-82
Figure 35. Int-release_object_code: STD of its internal behaviour

call_compile_ok

object code
made

(uses 9)

. act_compile
no compil |

compile
started

report_errors

errors
reported

call_compile_not_o
(uses 9)

Figure 36. Int-compile: STD of its internal behaviour

Figure 37. Int-test_ok: STD of its internal behaviour

Note that these STD’s not only show what export operations are imported but also in which
uses relationship these export operations occur.

page 44

Chapter 6 Extending the model to cover more of the ISPW-6 example

act_schedule_and_
no schedule
assign_tasks

schedule
started

call_design

call_review
(uses 1)

call_monitor
(uses 10)

(useg 1)

review
assigned

assigned

monitor
assigned

Figure 38. Int-schedule_and_assign_task

6.4. Adding PARADIGM to model the communication

After the specification of the external and internal behaviours of the classes and operations,
the communication between these behaviours has to be specified. This communication specifi-
cation is shown in several parts.

The first part of the communication specification shows the communication between the
manager proced3esignEnginee(figure 29 and 41) and its employee procegsesode(fig-

ure 34 and 40)nt-design int-reviewandint-schedule_and_assign_tagkgure 38 and 39).
s-69

act_schedule_and_
no schedule

assign_tasks

schedule
started

call_design

call_cods

call_monito

design

review
assigned

assigned

monitor

assigned
t-69 t-70 71
s t_schedul d
no scheduler—r oo e ANt zggg&lle
assign_tasks
call_design

call_review t‘72call_code

design
assigned

review

code
assigned

assigned

monitor
assigned

Figure 39. Int-schedule_and_assign_tasks’s subp. and traps w.r.t. DesignEnginee

Note that the subprocesses and trapstedesignandint-revieware not given here, because
they remain the same as in the original SOCCA example.

The managebDesignEngineewaits in its neutral state untiit-schedule_and_assign_tasks

page 45

Adaptive software process modelling with SOCCA and PARADIGM

s-42 _
compilé closing_
finish_code

all_close_modif
no code

all_close_modi

act_rode

no code code started

call_modify

t-43
Figure 40. Int-code’s subprocesses and traps with respect to DesignEngineer

neutral

starting design starting review starting code
Figure 41. DesignEngineer, manager of int-design, int-review, int-code and int-sche

calls eithedesign reviewor code parametrized with a nanmame1 by entering the appropri-
ate trap. Assume thataall_codetransition has been made and timitcode likewise para-
metrized withnamel is in its trap t-42. At that momeBtesignEngineecan go to its state
starting_code prescribing subprocess s-43 ait-code and subprocess s-72 aht-
schedule_and_assign_tasksint-codewas in trap t-42, it will immediately enter subprocess
s-43, thereby starting the process of coding a document, and entering trap t-43. Likéwise,
schedule_and_assign_tasksl enter subprocess s-72 and therefore it will be allowed to go
back to its ‘neutral’ statechedule_startelom where it can start other tasks again. As soon as
it enters this state it will be in trap t-72,BesignEngineecan go back to its neutral state pre-
scribing s-42 oint-codeand s-69 ofnt-schedule_and_assign_taskgain, waiting for other
tasks to be assigned by the internal behaviouschedule_and_assign_taséisthe Project-

page 46

Chapter 6 Extending the model to cover more of the ISPW-6 example

ManagerInt-designandint-reviewcan be started analogous.

The second part of the communication specification shows the communication between the
manageiProjectDocs(figure 30 and 42) and its employaascode(figure 34 and 43)int-
designandint-create_versionSince the last two have not been modified, their traps and sub-

create_version create_version
s-6
e S
s-8
in t-45, t-8 in t-6, t-8

) i , , - .
starting creatlnon neutral starting creation
of code of design

Figure 42. ProjectDocs, manager of int-design, int-code and int-create-version

s-44

compile_
done

finish_code

s-45

finish_code

code started

call_modify

Figure 43. Int-code’s subprocesses and traps with respect to ProjectDocs

processes are not given here.

This new version oProjectDocsnot only allowsant-designto make a call tareate_version
by prescribing s-5 to it, but it also allows-codeto make such a call by prescribing s-44 to it.
As soon asnt-codeor int-designperforms acall_create_versiorby entering the appropriate
trap, ProjectDocswill allow its employee to continue by prescribing the new subprocess to it
and it will start up the internal behaviour @kate_versionSince now two employees can
perform acall_create_versionProjectDocshas two different states which can be reached in
one step from the neutral state: one state for the call domg-bgdeand the other state for
the call done bynt-design.

Note that another approach to moBebjectDocsis by making use of the concept of roles
and views. In stead of having two different transitions modelling the same operation
create_versionand likewise having two states modelling starting a creation, one can also

page 47

Adaptive software process modelling with SOCCA and PARADIGM

make a model dProjectDocswith oneneutral state, onetarting_creatiorstate and one tran-
sition labelleccreate versiorto model both creating a new version of a code document and of
a design document. Whether the transittogate versiormodels creating a new version of
codeor a new version alesigndepends on the view one has of the cRegectDocs at the
moment that one viewProjectDocsas a manager aht-code following the transition
create_versioryields the creation of a new code document. Likewise, a new design document
will be created whefrojectDocsis viewed being a manager iot-design This concept of
incorporating views and roles into SOCCA can be a topic of future research.

The third part of the communication specification shows the communication between the man-
ager Code (figure 31 and 48) and the employemd-code (figure 34 and 44),nt-
create_versionint-create_next (copy call from the next instance of Cadiegreate next (the
managers own internal behaviourht-compile (figure 36 and 45)int-release_object_code
(figure 35 and 46)int-test_ok (other instancdijgure 37 and 47 and int-test_ok (same
instance figure 37 and 49

s-56
no-releasad code
released
-
t-56
s-57
act_release_object_co
—‘>
no-release code
released
_ _ t-57 _
Figure 46. Int-release_object_code’s subprocesses and traps with respect to Coc
s-58

call_prep

t-58
Figure 47. Int-test_ok’s subprocesses and traps with respect to Code (other instanc

s-59

t-59

call_prepateprepare
asked

P
o
S

Figure 49. int-test_ok’s subprocesses and traps with respect to Code (same instar
Just likeDesign one instance ofodeexists for each version of a code document. The first
version starts in the state marked with *** and the other versions start in the state marked with
**** These latter versions are waiting in the state **** until the previous versioGade
enters trap t-58 aht-test_ok Just like in the case Bfesign,the other traps labelling this tran-

page 48

Chapter 6 Extending the model to cover more of the ISPW-6 example

s-46

no code code starte€

s-50 asked

compile compile call_compile
done asked d
t-50
call_modify
modify_
asked
s-51

finish_code

no code

call_modify

t-51

Figure 44. Int-code’s subprocesses and traps with respect to Code

sition from **** to *** do not really matter here, as they consist of the whole state space of
the internal processes they belong to.

Since both creating a new version of a code document and modifying it, are modelled
exactly likeDesignin the original example, this part @bdewill not be discussed here. After
the process of modifying the code document has been finiSoeewill be in the statgre-
compile waiting forint-compileto enter trap t-52 (which means that a possibly existing previ-
ous compilation process has been finished). When this trap has been &udeaalil pre-
scribe s-53 tant-compile thereby releasing it to start compiling a document, @ode will
keepint-code in s-50 until compiling the document has been finished. Whieoompile
enters its trap t-54cOmpile_not_ok Codewill restart the modify code activity. However,
when it enters trap t-58¢mpile_ok Codewill remain prescribing s-50 tot-codeto permit

page 49

Adaptive software process modelling with SOCCA and PARADIGM

s-52 object codg
made
s
. act_compile compile
. |
no compt »| started
report_errors
N—_
errors
reported
s-53 :
call_compile_ok)
object code
made
. act_compile compile
| _
no comptt started
report_errors
errors
call_compile_not_o reported
s-55

call_compile_ok

object code
made
make_obje
code

act_compile compile
asked

no compil
report_errors

errors
reported

call_compile_not_o

t-55

Figure 45. Int-compile’s subprocesses and traps with respect to Code
it to leave the stateompile_askednd enter the statmpile _doneThe manager will now be
waiting until int-compilehas reached its trap t-50, which means that the code has been com-
piled, andint-release_object_codkas reached trap t-56, which means that the object code
may be released. After prescribing s-54nibrelease_object_cod€odewill wait until int-
release_object_codbas reached trap t-57, which means that the object code has been
released. Note thatt-release_object_codeill wait in its first state as long as the design doc-
ument has not been approved Dgsign (see the discussion of the communication between
Designand its employees). After releasing the object code, the test round will be started until
the internal behaviour of test either performsall_test_okor acall_test not_okSince the
behaviour of testing the code document has not been worked out here, no traps for these
events are indicated in the figure. However, when such a call has been made, the manager has
to continue in the appropriate way; when the test result is not ok, a new modify, compile, test

page 50

Chapter 6 Extending the model to cover more of the ISPW-6 example

@ @ @ @ployee mapping order u&i;
s-20 s-21 | copy s-21)
5-22 s-22 | int-22 s-23 int-code _
5-24 5-24 s-24 int-create_version
s-53 s-55 s-55 int-create_next (other instance
s-57 s-57 s-57 int-create_next (same instanceg)
<_— [.
s-58 s-58 int-23 | s-58 int-compile
s-59 s-60 s-60 int-release_object_code
int-test_ok (other instance)
starting readable starting int-test_ok (same instance)
testing fest_ok test_object copying K /
in t-59 1
s-20 s-20 s-20 s-20
s-22 s-22 s-22 s-22
5;‘3‘ Sgg M Sgg compile_ok Ség
S- - s- s-53 M ——s-
t-57 In t-50, t-56 -
s-57 n s-57 s56 | MED3 s-56
s-58 s-58 s-58 s-58
s-59 s-59 s-59 s-59
testable releasing pretestable code being in t-52
test_not_ok compile compiled
not_ok
*kkk k%
o51) -y 46 (ea7) /e50)
s-21 s-18 s-20 s-20 s-20
s-22 s-22 s-22 s-22 s-22
s-24 s-24 .| s-24 | s-24 _1s-24
555 | Prepare 552 create_first 552 open_for_moglly 552 cIose_mog“f s-52
= = > . B 1
s-56 n t-51, t-21 s-56 int-18 5-56 n t'46, t-20 s-56 in t-47 s-56
s-58 | 298 Iogg s-58 s-58 s-58
s-59 s-59 s-59 s-59 s-59
create_ di
non existing creatable\Next created moaiy modifiable] . pre-compile
1 in t-48 in t-46
int- .
t-24 in t-25 @
s-20
s-22
s-24
s-52
S-56
s-58
s-59
starting starting
creation modif.

Figure 48. Code: manager of 8 employees.
round has to be started. Otherwise possible copy requests have to be handled. The copy
request are modelled in the same way as in the mo@eafinin the original example.

The fourth part of the communication specification shows the communication between the
manageCompiler(figure 33 and 50) and its employ@atscompile(figure 36 and 51) andt-
code(figure 34 and 52).

Compileris waiting in its neutral state unirit-codeperforms acall_compile parametrized
with a document nameamel by entering its trap t-63. As sooniatcodeis in trap t-63 and
int-compileis in trap t-61,Compiler will start compiling the document by entering its next
state and therefore prescribing the subprocesses s-62 and sa64dmpile and int-code
respectively. Afteint-compilehas startedCompilerwill wait until int-codehas left trap t-63
and entered trap t-64. As can be seen in the previous paragraph about the communication

page 51

Adaptive software process modelling with SOCCA and PARADIGM

compile
s-61 in t-61, t-63 s-62
s-63 s-64

compile
Figure 50. Compiler: manager of int-compile and int-code

s-61

call_compile_ok)
object code
made

compile
started

report_errors

errors
reported

call_compile_not_o

sS-62

act_compile compile

started

no compil
report_errors

errors
reported

call_compile_not_o

t-62
Figure 51. Int-compile’s subprocesses and traps with respect to Compiler

betweenCodeandint-code this means thaCompiler has to wait until the compilation has
been finished, before it can return to its neutral state.

The fifth part of the communication specification shows the communication between the man-
agerProjectManagel(figure 32 and 54) and its employessmonitor (figure 15 and 55) and
int-schedule_and_assign_tagkgure 38 and 53).

schedule_and_assign_tasks monitor
s-65 int-73 565 in t-65, t-74 S-66
s-75 s-73 s-75
in t-75 in t- =
starting schedule neutral in t-66, t-75 starting monitor

Figure 54. ProjectManager: manager of int-schedule_and_assign_tasks and
int-monitor

The manager procefsojectManagerstarts in it neutral state, waiting until the Configuration
Control Board (CCB) performs a call$chedule_and_assign_taskfie CCB is the authority
which, according to the ISPW-6 example, prompts for the required design and code modifica-
tion. Its behaviour is outside the scope of this example.

page 52

Chapter 6 Extending the model to cover more of the ISPW-6 example

S-63
compile_ compile_
done asked

no code

call_modify

s-64
compile_ compile_
finish_code done asked
call_ope
for_modi
o cod I ‘ i d all_close_modi
act_code call_creaté ~reation \call_open_/mod_ope
d de start —
no code code stantel rsion asked ffor_modif. asked
modify_
call_modify asked
. t-64 _ .
Figure 52. Int-code’s subprocesses and traps with respect to Compiler
S-65
no_ monitor_ \call_not_mod_opengdotify_mod_\ call_not_mod_clgsedtify_mod_
monitoring started Ga closed_asked
t65 - - | / o
update_statistics update_statistics call_report_review_ call_notify_review_
result opened
. call_report_review_result
report_reviev4
_result_asked
S-66

edtify_mod_
closed_asked

call_report_review_ call_notify_review_
result opened

call_report_review_result

monitor_ call_not_mod_clq

started

all_not_mod_openégdotify_mod_

act_mon

monitoring

update_statistics

report_reviewé
_result_askend

t-66

Figure 55. Int-monitor’s subprocesses and traps with respect to ProjectManager
At the moment that the CCB performs the calsthedule_and_assign_taskise manager
proces$rojectManagemill go to its statestarting scheduléhereby prescribing subprocess s-
75 toint-schedule_and_assign_taskdter a short whileint-schedule_and_assign_tasksl
enter its trap t-75, thereby allowiRyojectManagerto return to the neutral state. At some

page 53

Adaptive software process modelling with SOCCA and PARADIGM

s-73
L schedule
i started
call_design call_review call_monito
design review monitor
assigned assigned assigned
t-74
S-75
no schedu act_sthedule_and_ / schedule
assigh_tasks started
call_design call_review _monitor
design review monitor
assigned assigned assigned

t-75
Figure 53. Int-schedule_and_assign_tasks’s subp. and traps w.r.t. ProjectManage!

given time instant, the internal behaviour sfthedule_and_assign_tasksll perform a
call_monitor parametrized with a document nans@mel When at that moment the monitor
process which is parametrized withmelis in its trap t-65ProjectManagercan enter the

state labelledtarting monitoy starting the monitor by prescribing subprocess s-@@&-tmon-

itor and allowing int-schedule_and_assign_taski return to its ‘neutral’ state
schedule_startedNote that this is an example of one internal behaviour of an operation from
an external process controlling the internal behaviour of another operation of that very same
external process. This is in accordance with the original SOCCA approach. The advantage of
showing the internal behaviour of an export operation which is only called from another inter-
nal behaviour of that same external process is that the internal behaviour of that operation
becomes visible in the behaviour of the external process.

The sixth and last part of the communication specification shows the communication between
the managerDesign (figure 23 and 57) and its employeed-design int-review int-
create_version int-create_next (other instancgejnt-create_next (same instanceint-
review_ok (other instancghnt-review_ok (same instangé)t-monitor (figure 15 and 16) and
int-release_object_codégure 35 and 56).

The behaviour oDesignis being modified for the second time since the first model of it has
been designed in [2]. The first modification was required for managimgonitor (Chapter 5)
and the second time is the current modification, wibssign has to notifyCodethat the
design document has been approved. Because of these two modifications, a new informal
comment on the behaviour DEsignis necessary.

page 54

Chapter 6 Extending the model to cover more of the ISPW-6 example

S-67

no-release

t-67
s-68
act_release_object_code
— = P

code
released

no-release
g

Figure 56. Int-release_object_code’s subprocesses and traps with respect to Desig

Just as before, every instance@ésign except for the first one which starts in the state
labelled *, starts in the state labelled **, waiting for the previous instanBesifjnto enter

trap t-26 ofint-review_ok After this, it will wait untilint-create_versiorenters either trap t-18

or trap t-19 and it will continue with the old behaviour umitdesignenters trap t-9 anidt-
create_versiorenters trap t-20. NoWesignenters the state where it has to decide which route
has to be taken: the route with a full notification of the monitor or the route with a partial noti-
fication of the monitor. As already has been mentioned in the previous chapter, the outcome of
this choice depends on the size of the project. Let us assume that the size is large, so the longer
route will be taken. In this cagesignwill wait until int-monitorenters trap t-31. After this it

will prescribe subprocess s-32itd-monitor, thereby forcing it to be notified of all events that

will happen. It will now wait forint-designto enter trap t-10 to start modifying the document

or to enter trap t-11 to close the modification. After trap t-11 has been erdesegnwill

wait again forint-monitor, but now for trap t-32 and after this it will wait unitiit-review

wants to start a review round by entering trap t-13. When this has hapip¢mednitor has to

be notified again and the review round can really start. If the review of the document turns out
to be not ok, a new modify and review round will start. Otherwise the final paesijncan

be started to manage copying the document and to release a new version to be modified. How-
ever, before this end part stafgsignwill check whethemt-release_object_cods in trap t-

67. Since this is the starting statarifrelease_object_cod®esigndoes not have not to wait

at all, but it can prescribe subprocess s-6&taoelease object_codenmediately, thereby
allowing Codeto continue after releasing the object code document.

Note thatDesignhas no explicit export operation for this notification that the design docu-
ment has been approved @ode This is because of the fact that the trap in whith
release_object_code waiting, is the first state of it and therefore no transition that can per-
form a call_export_operationdoes exist. This way to start the behaviour iof-
release_object_codean be compared with the starting of an internal operation by an external
process in the normal way. From this point of view one could saynth@iease_object_code
is merely an internal operation Besignand not ofCode The fact thaDesigndoes not have
such an explicit export operation is a deviation from the original SOCCA approach. When the
original SOCCA approach had been followed, the communication be@@dandDesign
should have been modelled by means of an explicit export operatidesanwhich would
have been called from within the internal behaviour of one of the export operati©adef

6.5. Concluding remarks

In [2], the SOCCA approach has been defined. This SOCCA approach can be split up into two
parts:

page 55

Adaptive software process modelling with SOCCA and PARADIGM

employee mapping order u@

int-design report_r_res
int-review

int-create_version
int-create_next (other instance)
int-create_next(same instance)
int-review_ok (other instance)
int-review_ok(same instance)
int-monitor

Qt-release_object_code /

int-34

close_and

le
in t-23

s-22
s-24
s-26
s-27
. s-34
report_review_resul{ in t-34 5-67

pre_review pre_review

/\ lose_
. modification
s-10 7 A

s13 int
s-20
s-22
s-24 not_mod_| in t-32
s5-26 closed
s-27
s-34
s-67

modi \T/
int-10\ Modiiable i t-9

not_mod_opened

*k

prepare create_first open_for_mod

in t-9, t-20
21,1-26

int-12, t-17
-
t-35

non_existent2 creatable created pre_modifiable starting_modification closed

create_neXt 4 .13
) ! : not_mod_opene -
in t-19, t-24 int-25 int-31 s-20 tlose_modification

§-22 int-11

modify|

int-10 modifiable

starting_creation

int-9

starting_modification
Figure 57. Design: manager of 9 employees
» The SOCCA rules: these rules state that the external behaviours of the classes and the
internal behaviours of the export operations of these classes are modelled with STD’s and
that the communication between the various processes is modelled with PARADIGM on

page 56

Chapter 6 Extending the model to cover more of the ISPW-6 example

top of them. In the PARADIGM part are the manager processes formed by the external

behaviours and the employee processes are formed by the internal behaviours.

» The SOCCA conventions: these conventions are implied by the techniques which have
been used in the example in that paper. The following conventions can be identified:
Cl:Let all internal behaviours, denoted with “int-behave”, start with a transition labelled

“act-behave” leading from the first state of the STD to the second state of the STD.
The external behaviour of the class which exports the operation “behave” keeps the
internal behaviour “int-behave” trapped in the first state until the operation has to be
started. As soon as the external behaviour arrives in the state after the transition corre-
sponding with starting that internal behaviour, it will prescribe a new subprocess to the
internal behaviour, forcing it to leave its first state according to the transition “act-
behave”.

C2:Export operations of a class are called from the internal behaviours of operations from
other classes or at least from the internal behaviour of an operation from another
instance of the same class. Thus, export operations of one particular object are
imported into the internal behaviours of operations from a really different object.

In this chapter, two deviations from these SOCCA conventions have been made. These devia-
tions are not breaking with the formal SOCCA modelling rules as defined in [2], they are only
breaking with the conventions as implied by the original SOCCA example in that paper.

The first deviation is a deviation from convention C1: the first stateintf
release_object_codevhich is an export operation Gbde is not only a trap in the trap-struc-
ture with respect t€ode but it is also a trap in the trap-structure with respebigign Thus,
int-release_object_codeas two managers which keep-release_object_codiapped in its
first state in stead of only one manager. This has been done b€oaled®as to wait at that
moment until the design document has been approved.

This deviation could have been avoided by changing the behavieasain give Design
an export operation called something li#esign_doc_approvednd giveCode a state in
which it waits untildesign_doc_approveatrives in a state notifying that the design document
has been approved.

The main difference between both methods is that the first method models a direct coordina-
tion betweerDesignandCodevia a PARADIGM communication between the behaviour of
int-release_object_codand the behaviour dDesign which is not made visible with an
explicit export operation in the class diagrams. This in contrast to the second method where
the object oriented approach is used to make the PARADIGM communication b&esign
andCodeuvisible in the class diagrams.

The second deviation is a deviation from convention C2: in this example, the export opera-
tion monitor of ProjectManager is imported in the internal behaviour of
assign_and_schedule_taskshe very same instance of the external proBegigctManager
This means that the export operatioanitoris no real export operation BfojectManagey it
is not imported into any other class or instance. From the EER point of view, one could say
thatmonitoris an internal operation &frojectManagemvhich should not be visible from out-
side. However, by makingnonitor an export operation d?rojectManagerit is made visible
from the external behaviour &frojectManagerwhenever a new instance iot-monitor is
started byProjectManager

page 57

Adaptive software process modelling with SOCCA and PARADIGM

Chapter 7
Example 2: changing the model according
to the ISPW-7 specification

The ISPW-7 extensions address two issues: teamwork and process change. As within the con-
text of this thesis we are particularly interested in dynamic process modification, we will only
concentrate on the process change part of these extensions. The process change extensions
have been split up into two parts. One concerns process modification; this is a permanent
change to the model. The other part concerns process exception which is a temporary change
of the process to handle exceptional circumstances. After such a temporary change, the model
has to return to its original behaviour. These two parts will be discussed in the following sec-
tions.

7.1. Process modification: problem description

The proposed change in the ISPW-7 example is as follows; in the original ISPW-6 example,
coding could starbefore the design document was approved. From now on this restriction is
tightened: coding may only staafter the design document has been approved. This change of
the model has to be applied to some process which is being enacted and thereby three cases
should be considered (quoted from ISPW-7 example, section 4.2.1):
» ‘The executing process has not yet reached the step affected by the change, so the change
will have no immediate impact on the process state’.
* ‘The executing process has reached or passed the steps affected by the change, but for
whatever reason, the change is consistent with the existing process state’.
* ‘The executing process has reached or passed the steps affected by the change, and the
change is inconsistent with the existing process state’.
In the following section first a new model for the external behavioGodewill be given and
the internal behaviours of the operations will be modified as far as needed. This new model
will be referred to as thESPW-7 modebr thelSPW-7 caseLikewise, the current SOCCA
model will be referred to as tHEPW-6 modebr thelSPW-6 caseThe ISPW-6 model and
parts of it will also be referred to as tblel modeland the ISPW-7 model will sometimes be
called thenew model
Section 7.3 concentrates on making the transition from the ISPW-6 model to the ISPW-7
model. In that section, the three cases mentioned above will also be taken in consideration and
they will be related with the problems as mentioned in section 4.3. The solution to the third
problem will be derived from the solutions suggested in section 4.4. When necessary, new
(temporary) processes will be designed and the cooperation beBedeand other parts of
the model will possibly also be changed.

7.2. Designing the new model
In the ISPW-6 modelCodewaits with releasing the object code to the test phase by means of

the internal behaviour aft-release_object_codas long as the design document has not been
approved byDesign int-release_object_codean not enter trap t-57 arf@@bdewill have to

page 58

Chapter 7 Example 2: changing the model according to the ISPW-7 specification

wait in the state labelle@leasing

According to the ISPW-7 specificatior@pdemay only start after the design document has
been approved. This can be managed by designing a new model. In this newOodeiei)l
get an extra export operation calledit_for_approvalto model waiting for the design docu-
ment to be approved. In the STD of the external behaviour, the transition corresponding to this
operation will be placed before the state labetiezhtable The new model o€odeis dis-
played in figure 58.

starting starting

copying testing

copy test_object_code

release_ compile_ok

test_ok

readable testable code beiny

pretestable compiled

object_codg

test_not 0 compile_not_ok compile

pre- bl create_first g open_for \
creatable? creatable create odit pre-compile
wait_for_ modify
approval create_next

*kk

prepare starting starting

creation modif.

1

W.r.t. to WODAN is this subprocess s-83 and the state space is trap t-83
Figure 58. Code: new STD of the external behaviour

Note that in this case not only the dynamic description changes but also the static description;
the classCodegets the new export operatiarait_for_approval This new class description

will also be defined by WODAN, in exactly the same manner as WODAN defines the new
behaviour description. The internal behaviouwait_for_approvals shown in figure 59.

act_wait_for_approvalwait_
done

W.r.t. to WODAN is this subprocess s-85 and the state space is trap t-85
Figure 59. Int-wait_for_approval: STD of its internal behaviour

Note also that the state labelled wetleatablein the old STD offodecorresponds to the state
labelled withpre-creatablein the new STD offode This means that when the transition of
the old STD ofCodeto the new STD o€odeis made and the process is in the stedatable

in the STD ofCodebefore switching to the new STD, that the process after this transition will
be in the statpre-creatablein the new STD.

After these modifications of the external and internal behaviours, the new communication has

page 59

Adaptive software process modelling with SOCCA and PARADIGM

to be specified. In the figures specifying the communication, only the communication between
the relevant managers amd-release_object_codandint-wait_for_approvalwill be given.
The other parts remain the same as in the figures modelling the ISPW-6 case.

First the communication between the mandagede(figure 58 and 61) and its employie¢-
wait_for_approvalfigure 59 and 60) will be given.

sS-76

Vahwait_
done

s-77
Figure 60. Int-wait_for_approval’s subprocesses and traps w.r.t. Code

employee mapping order used;
int-release_object_code

starting_ copylng startlng _testing int-wait_for_approval

test_object_code

readable

pre-Creatable2 ab modifiable
wait_| for create next)
approva| nt-76 \ modlfy
*kkk

prepare
-

pre-compile

pre-creatable non existing starting_creation starting_modif.
Figure 61. Code: viewed as manager of int-release_obj_c and int-wait_for_approvz

All instances ofCode except for the first one which starts in the state labelled ***, will be
waiting in the stated labelled **** until the previous versiorGafdeperforms aall_prepare

At that moment however, the creation of the new version of a code document will not be
started immediately. In stead of thiSpde will wait in the statepre-creatable2until int-
wait_for_approvalhas entered trap t-77, which means that the design document has been
approved. From that moment on the behaviour will remain almost the same as described in the

page 60

Chapter 7 Example 2: changing the model according to the ISPW-7 specification

explanation of the ISPW-6 case; the only other difference is that with this new verSiodeof
it is no longer necessary to wait until the design document has been approved before releasing
the object code document (since the design document has already been approved).

However, this difference is not visible in the modelirtfrelease_object_coder in the
communication betwee@odeandint-release_object_codét is only visible in the new com-
munication betweerDesign and int-release_object_code; int-release_object _cadeno
longer an employee obesign thus Design can no longer keepnt-release_object_code
trapped in its first state. Insteddkesignis now a manager afit-wait_for_approval This new
communication structure is shown in figure 62 and in figure 63.

s-79

s-80

act_wait_for_approvalwait_
done

t-79
Figure 62. Int-wait_for_approval’s subprocesses and traps w.r.t. Design

Except for the fact thdDesignis no longer a manager oit-release_object _codeut of int-
wait_for_approvalinstead, no part of the behaviour@ésignhas been changed. Since from

the viewpoint oDesign the function of this new employee is the same as the function of the
replaced employee, the global behavioubDekigndoes not change at all; it still keeps this
employee trapped in the first state until the design document has been approved and after this
event,Designstill allows this employee to move freely through its state space.

7.3. Introducing the ISPW-7 model.

When this model is introduced during the enactment of a software process model, a problem
may arise; since in the ISPW-6 caSede could start before the design document was
approvedjnt-release_object_codeas an employee @esignto make it possible to wait for

the approval of the design document. In the ISPW-7 case howevwelease_object_cod®o

longer waits for the design document to be approved;ae waits with the aid ofnt-
wait_for_approvalfor the design document to be approved. However, when switching from
the ISPW-6 case to the ISPW-7 casepde may have past the transition labelled
wait_for_approvalwhile the design document has not yet been approved. This is problem P3
as defined in section 4.3. This problem corresponds with the inconsistency mentioned as the
third case in section 7.1.

In the ISPW-7 specification two options to solve this inconsistency have been suggested:
‘(1) you may allow the inconsistency to remain, or (2) you may attempt to change the state (by
rollback, or whatever) to achieve consistency’. In the following sections, these two solutions
will be followed. As it turns out, these solutions are equivalent with some of the solutions
mentioned in section 4.4.3

7.3.1. Option 1: do not solve the inconsistency
In this section option 1 will be worked out. For this purpose an intermediate ph@seef
will be given, which still has the structure of the ISPW-6 model. By choosing the traps from

this STD to the STD of the ISPW-7 model in the right manner, it is possible to switch only
from the ISPW-6 case to the ISPW-7 case before modify code has started (this situation is

page 61

Adaptive software process modelling with SOCCA and PARADIGM

close _and r o report_r_resul
_ _)
int-79

close_and

reviewab closed readable

cop!

closed starting_review pre_Teview starting_copying

review
open_foi
review H
pre_tevie pre_review
report_review_result close_ A
modification
modifiabl not_mod |
closed
not_mod_opene
modi
*% * v
prepare create_first open_for_mo
s-79
non_existent2 creatable created pre_modifiable starting_maodification closed
create_nex
_\ / not_mod_opene Adiﬁcation
starting_creation maodifiabl
modify

starting_modification
W.r.t. to WODAN is this subprocess s-86 and the state space is trap t-86
Figure 63. Design: viewed as manager of int-wait_for_approval
equivalent with the first case mentioned in section 7.1) or after modify code has waited until
the design document has been approved (this situation is equivalent with the second case men-
tioned in section 7.1). It is straightforward to incorporate these two cases into the SOCCA
model.

As Coderemains behaving like in the ISPW-6 case in the middle part of this intermediate
phase, the inconsistency as mentioned in the third case in section 7.1, will remain in this mid-
dle part. As soon as the intermediate phasgodiehas left the middle part, it will have waited
for the design document to be approved and the inconsistency does not arise at all.

This solution to the problem is equivalent with solution S6 from section 4.4.3.

The intermediate phase @bdeis given in figure 64. Note that this intermediate phase has
the same state-action interpreter as the original phaS&®»aé Therefore, the state-action
interpreter has not been shown in figure 64.

page 62

Chapter 7 Example 2: changing the model according to the ISPW-7 specification

starting

! readable starting
testing

copying

testable releasing

compile_not_ok

created

creatable

pre-compile

t-87

starting
creation

starting
modif.

W.r.t. to WODAN is this subprocess s-87
Figure 64. Intermediate phase of Code

The last step to finish the transition from the ISPW-6 case to the ISPW-7 case is designing
WODAN to manage this change. As stated in solution S6 in section 4.4.3, WODAN first has
to prescribe the intermediate phas€ofleand as soon as this intermediate phase has entered
its trap, WODAN can prescribe the ISPW-7 model. Note that in the state-action interpreter of
WODAN, only the employees of which the STD changes during the transition from the ISPW-
6 case to the ISPW-7 case, have been mentioned. WODAN is shown in figure 65.

employee mapping order used:
design (figure 23 and 63)

code (figure 31, 64 and 58)
int-wait_for_approval (figure 59)

no_changing designing_ - switching_to no_changing
(ISPW-6 case) new_model new_behaviour (ISPW-7 case)

Figure 65. WODAN: viewed as manager of 3 employees

In this example three important notions can be found:

* The only part oDesignthat changes when switching from the ISPW-6 case to the ISPW-7
case, is the state-action interpreter. The states, transitions, strategy and all other parts
defining a process remain the same. Siesignis a subprocess of an anachronistic proc-
ess, this means that a subprocess restriction not only defines a restriction on the states,
transitions, etc., as defined in [1] but that it also defines a restriction on the state-action
interpreter; the anachronistic process of whddsignis a subprocess, has a not explicitly
designed state-action interpreter which minimal consists of the union of the state-action
interpreters from the subprocesses s-41 and s-86.

» The subprocesst-wait_for_approvalis introduced for the first time in the ISPW-7 case.

page 63

Adaptive software process modelling with SOCCA and PARADIGM

Before that time it did not exist. Introducing this new process has been done by prescribing
the NULL process, defined in section 3.4, in those state viteveait_for_approvaldid
not yet exist and by prescribingt-wait_for_approvalas soon as the ISPW-7 case
becomes active.

« WODAN is not only able to change the dynamic model description part but it can also
change the static model description part; in this example the class descrifiliotebias
been extended with a new export operation calledl for_approval

7.3.2. Option 2: solve the inconsistency

In this section a solution to the inconsistency mentioned in the third case in section 7.1 will be
given. WhenCodealready has started before the design document is appwddwill go
back to its starting state, thereby discarding all changes made to the code.

Since some employees Gbdehave side effects, these side effects also have to be rolled
back. Therefore the behaviour of all employees has to be studied to find out how the side
effects of their behaviour can be discarded. Some employees may need extra states and/or
transitions to rollback the side effects. If so, subprocesses representing this temporal behav-
iour will be defined.

Codeneeds an intermediate STD for managing the process of rolling back all side effects.
This intermediate STD ofode which is displayed in figure 67, will be call@d@mpCode
since it is valid only temporary.

This solution will follow the procedure as sketched in solution S8 of section 4.4.3.

Codehas the following employeest-create versionint-create nextint-code int-com-
pile, int-release_object_codand int-test_ ok We will study each employee to determine
whether the behaviour of that employee has to be rolled back or not.

As creating the new version of a code document does not really change the code document -
it only changes the version number-, the behaviour of the employeaeate_versiorand
int-create_nextloes not have to be rolled back.

The employeent-codereally modifies the code document. Thus, this employee needs an
intermediate phase to rollback its side effects when the inconsistency arises. This intermediate
phase, which is shown in figure 66, caiésnpCode'export operatiomabort, which aborts the

compile_
done

compile_
asked

mod_asked

all_close_modif
(uses 7)

modify_
asked

W.r.t. to WODAN is this subprocess s-88 and the state space is trap t-88
Figure 66. Intermediate phase of int-code

modify code activity and discards all modifications made to the code document. This means
that after execution of the abort operation it seems as if no modification to the code document
has been made.

page 64

Chapter 7 Example 2: changing the model according to the ISPW-7 specification

Note that the temporary export operatabort also has to be placed in the class description
of TempCode

Note also thaint-codehas been designed in such a manner that, when the code document
has been opened for modifications, modify code has to be closed before calling abort. This is
necessary to assure that only one version of the code document is opened at the same time.

Int-compilereflects the behaviour of an automated tool which can not be modified and thus
the behaviour olnt-compilecan not be modified or rolled back.

WODAN (see figure 71) is designed in such a mannerTidaipCodewill only be pre-
scribed when the design document has not yet been approved. If the design document already
has been approved before the ISPW-7 case has to be started, the process will be in case 2 of
section 7.1 and no inconsistency will arise. Thus, the code document may not be release when
TempCodes prescribed. Therefore is the transition labelieldase object codeemoved
from TempCodeSo it is not necessary to rollback the behaviountefelease _object_code

Note that, asint-release_object codés removed from the behaviour dfempCodge
WODAN prescribes the NULL process fmt-release object _codduring the intermediate
phase.

The operationnt-test_okcan only be called when the design document has already been
approved, thus no rollback of this operation is necessary.

The communication structure to solve the inconsistency is shown in figunet-8®deas
employee offempCodg figure 67 (two temporary phasesT@mpCodeas manager aht-
codeand as employee of WODAN), figure 69 and 70 (two temporary phadessanas
employee of WODAN) and figure 71 (WODAN as manageDes$ign Code int-code int-

employee mapping order used:

design (figure 23, 63, 69 and 70)
code (figure 31 and 67)

int-code (figure 34 and 66)
int-release_object_code (figure 35)
int-wait_for_approval (figure 59)

no_changing

(ISPW-7 case) int-91, t-98

in t-90

in t-41, t-81,
t-99, t-81

no_changing designing switching_to switching_to switching_to
(ISPW-6 case) new_model new_behaviour new_behaviour ~ new_behaviour

Figure 71. WODAN: viewed as manager of 5 employees

release_object_codandint-wait_for_approval.

After designing the new model,. WODAN prescribes the intermediate ph&sesignto
determine what action has to be taken; wbesignis in trap t-90, the design document will
have been approved, which means that no inconsistency arises. Thus the transition to the
ISPW-7 case can be finished in that case. Otherwise, the design document has not been
approved and therefore it is necessary to abort the modify code process when it has already
been started. Thus, WODAN then starts the intermediate phase of the emflodeesnd
int-codeand WODAN prescribes the NULL processribrelease_object_codd&o determine
whether the modify code activity has started or not, WODAN examines the ffampfCode
WhenTempCodas in trap t-96, the modify code activity has not been started, thus the transi-
tion to the ISPW-7 model can be finished in that case. Otherwise, WODAN has to wait until

page 65

Adaptive software process modelling with SOCCA and PARADIGM

s-96
starting_copying starting_testing

l test_gbject_code

test_ok compile_ok

readable testable pretestable de_being_compiled

t-96

. a
pre-Creatable2 modifiable pre-compile
*%k%
prepare
-
pre-creatable i starting_creation anarting starting_modif.
t-

compile_not_ok

modifications|

96 t-97
s-98
Note that in this figure actually two different subprocessé3oafeexist; sub-
oroated process s-96 and subprocess s-98. They are both intermediate subproces
08 . can be prescribed by WODAN in the transition from the ISPW-6 case tc
in t-94 ISPW-7 case.
aborting

modifications
Figure 67. TempCode: viewed as manager of int-code
the modify code operation is aborted. This operation is aborted onlyTaftggCodehas
entered trap t-97TempCodeenters this trap aftant-code has reached trap t-92, which is
entered bynt-codeafter calling theabort operation.

Note thatint-codefirst closes the modify code document when it already has been opened,
this is modelled by means oft-codestrap t-93 andlempCods transition from the state
modifiable to the state pre-compile.

Further note thatempCodénas all states and transitions which are necessary for the com-
munication withint-compile These states and transitions are needed as the communication
between Temp)Codandint-compiledoes not change during the intermediate phase.

page 66

Chapter 7 Example 2: changing the model according to the ISPW-7 specification

s-92

compile_
asked

mod_asked

call_creaté¢ :
code startge—-— creation

no code

s-93

(uses 2)

call_abdr

all_close_modif
(uses 7)

mod_ope
asked

modify_
asked

compile_
asked

mod_asked

all_close_modif

mod_ope (uses 7)

asked

modify_
asked

Figure 68. Int-code’s subprocesses and traps with respect to TempCode

WhenTempCoddas finally entered trap t-97, WODAN will prescribe s-98aempCodeand

s-91 toDesignand then WODAN will wait until the design document has been approved (trap
t-91), the abort operation has been finished (trap t-98) and, via the cooperation Getwpen
Codeandint-code until int-codehas re-entered the state labelbeglation_askedTempCode

can only enter trap t-98 aftant-code has entered trap t-94. When this all finally happens,
WODAN finishes the transition to the ISPW-7 case.

page 67

Adaptive software process modelling with SOCCA and PARADIGM

report r_resul
@ readable
starting_
copying

pre_revie!

close_and

starting_
review

review

pre revie

report_review_result close_ A
modification
C modifiable

not_mod |
closed
not_mod_opene
modi
*k *
create_first pen for_| mo
non_ pre_ startm

t-90

not_mod_opened close_modification
starting_
modmable

modify

create_next

-89 W.r.t. to WODAN is this subprocess s-89

Figure 69. First intermediate phase of Design

7.4. Process exception: problem description

The second part of the ISPW-7 example concentrates on process exception; this is a temporary
change to the model due to an exceptional circumstance.

In SOCCA such a temporary change can be handled as follows:

» Design a model for the process as it should be during the process exception.

» Switch with aid of WODAN to this model at the right time instant.

» As soon as the exceptional circumstance has passed, WODAN can be used to switch back

to the standard situation.

As stated above, it is necessary to switch two times to another model; first to the model of the
process exception and later back to the model of the standard situation. This switching to the
right model can be handled in the same manner as switching to another model during process

page 68

Chapter 7 Example 2: changing the model according to the ISPW-7 specification

report_r_resul
——
readable
_rev

starting_

copying

starting_
review

open_for
review

pre_revie

pre_revie

report_review_result close_ A
modification

modifiable

not_mod_|
closed
not_mod_openeg
v modi
*k *
reate_first open_for_mo .
non_ - — (P startin:
—>—> modifiablg @

t-91
not_mod_opened close_modification
starting_ o
modifiable]
modify
starting_
modif.

W.r.t. to WODAN is this subprocess s-91
Figure 70. Second intermediate phase of Design
evolution. Also in this case, special care should be taken to avoid inconsistencies and if it is
not possible to avoid inconsistencies, they should be solved as indicated in chapter 4.

The proposed process exception in the ISPW-7 example is as follows: ‘Suppose that due to
unavailability of assigned personnel, it is decided to bypass a follow-up (say second) design
review. This decision is made dynamically at the time that this review was scheduled to occur.
The rest of the process continues normally in this instance.’ (quoted from section 4.2.2 of [4]).

In the following sections it will be examined how this exceptional circumstance can be
incorporated into the current SOCCA model and how WODAN must be designed to switch to
the exceptional circumstance and return back to the standard situation as soon as possible.

page 69

Adaptive software process modelling with SOCCA and PARADIGM

7.5. Designing the exceptional model

In this section, the model to handle the exceptional situation will be designed. According to
the ISPW-7 example, there is not enough personnel to review the design and therefore,
reviewing the design should be skipped. This can be modelled in two manners:

* Change the external behaviour Désignin such a manner that all parts that handle
reviewing the design document will be skipped; make one transition from state 15 (see fig-
ure 23 on page 37 for the state numbering) and one from state 25 (both labelled
pre_review to the state 20réview closed)and label these transitions with the export
operationskip_reviewThis however has a huge disadvantage; since the various instances
of Designdepend on each other through the behavioumteeview okandint-prepare
this dependence will be disturbed:

The behaviour of the next instanceld®signis initiated by a call to itprepareoperation
performed from the internal behaviouriof-close_and_review_odf the current instance
of Design However, as thelose_and_review_abperation of the current instance will be
skipped when the review process is skipped, the current instafmxesiginwill not call
the prepareoperation of the next instance@é&sign thus the next instance DBesignwill
not be initiated. This problem can be solved by changing the next instaBasighin
such a manner that it does not waitifurclose _and_review_o#f the current instance of
Designto call the prepare operation but that it does waitskip _reviewof the current
instance oDesignto call the prepare operation. Thus, when the current instamzEsan
is changed in such a way that the review process will be skipped, the next instance of
Designwill also have to be changed, despite of the fact that such a next instance should
behave in the normal manner without being aware of any exceptional circumstances.

» Change the behaviour oft-reviewin such a manner that reviewing the document will be
skipped but that the communication with other instancdesfgnwill not be disturbed.
Fortunately this is very easy; as starting the process of reviewing the design document is
modelled by means of entering trap t-14 of subprocess s-14 (a subpraoess\oéw), it
is only necessary to remove trap t-14 and the transition to it, lalwlledeview,from
subprocess s-14. This can be done without introducing inconsistendieEsigs is the
only manager that can react to tadl_reviewtransition;Designwill be waiting in its state
reviewable until int-review either performs aall_review a call_review_not_okor a
call_review_okand on such a calDesignwill make the appropriate transition. Whieit-
reviewdoes not perform eall_reviewbecause that transition has been removed, it will not
influence the behaviour @fesign

As the second way to handle the exception gives the least problems, this solution will be used.
Of course it is not possible to remove a transition and a state from a subprocess. However, it is
possible to make a new subprocess that resembles subprocess s-14 without that state and tran-
sition and to adapt the state-action interpret&baxignto prescribe this temporary subprocess
and react to the traps of it, instead of prescribing subprocess s-14 and reacting to the traps of
that one. The subprocessinf-reviewto handle the process exception is given in figure 72.

s-100

call_close_review_ok

review
opened
asked

t-100
Figure 72. Int-review’s subprocess to handle the ISPW-7 process exception

page 70

Chapter 7 Example 2: changing the model according to the ISPW-7 specification

Note that not only thecall _review transition has been removed but also the
call_close_review_not_okansition. This is because, in accordance with the ISPW-7 exam-
ple, the behaviour aht-review during the process exception has to reflect the behaviour of
bypassing a follow-up design review step; it is assumed that the design document has been
(re)designed in the right manner and thus that such a follow-up design review step is not nec-
essary.

Designas manager oiht-review has to be changed too in the exceptional circumstance
becausddesignhas to prescribe subprocess s-100 in stead of s-14. As s-100 has no trap t-14
nor a trap t-15, the transitions Designthat are followed on entering these traps, have to be
removed fronDesignto assure thddesignwill only follow the transition corresponding with
trap t-100. The state @esignthat corresponds with starting the review process, can also be
removed in the exceptional case, as this state will not be entered.

The STD forDesignas manager aht-reviewduring the exceptional case can be found in
figure 73.

in t-100

close_and r_report_r_{esul

reviewable closed readable

copy|

pre_review| starting_copying

t-101

open_fonNjn t-13
review

pre_revie pre_review
report_review_result close_ A
modification

modifiabl not_mod |
closed
not_mod_openel
v modi
prepare create_first open_for_moy 13
int-17

non_existent2 creatable created pre_modifiable starting_| mod|f|cat|on closed

create_&x / not_mod_opene %:diﬁcaﬂon

starting_creation maodifiabl

modify

W.r.t. to WODAN is this SprrOCGSS S_lﬁafing_modification
Figure 73. Design: viewed as manager of int-review during process exception

closed

open_fol in t-13
review

page 71

Adaptive software process modelling with SOCCA and PARADIGM

7.6. Starting the exceptional case

The last step consists of checking for the problems mentioned in chapter 4 and solving these
following the suggested solutions.

As the subprocess f@esignduring the exceptional case has less states then the subprocess
for Designduring the normal case, WODAN can not always switch to the exceptional case
immediately. This is problem P2 and the easiest way to solve this problem is applying solution
S4; make an intermediate phaseDafsignwith a trap consisting of those states that form no
problem and design WODAN in such a manner that first the intermediate plizesgriwill
be prescribed and afterwards, the exceptional phd3esfn

However, also another problem exists; subprocess s-10Q-@view (see figure 72) has
less states then subprocess s-14 (see [2]), which is prescribed from the sameDgtsigmof
This is problem P1 and the easiest way to solve it in this case, is using solution S1; make an
intermediate phase @fesignwith a trap consisting of those states in which no problem arises
and design WODAN to prescribe first the intermediate phaBesifjnand the standard phase
of int-reviewand afterwards the exceptional phas®es$ignand ofint-review

The solutions S1 and S4 can be combined to form the intermediate pliesigrfand to
design WODAN.

Note that the STD aht-reviewremains the same during the exceptional phase. The differ-
ent behaviour oint-reviewis modelled only by means of its new subprocess s-100.

When switching back from the exceptional phase to the normal phase, no problems will
arise, so this can be done without further special actions.

WODAN is displayed in figure 75, the ‘normal’ phaseD#signin figure 63, the excep-
tional phase obDesignin figure 73 and its intermediate phase is displayed in figure 74.

pre_exception N 102

start_exception
in t-86

finished_exception s-101
int-101

. start_changini ‘ close_changi[iﬂ

no_exception designing_ no_exception handling_exception
(ISPW-7 case) exceptional_model (ISPW-7 case)

Figure 75. WODAN: viewed as manager of Design

7.7. Concluding remarks

Modelling the change parts of the ISPW-7 example is completely possible within SOCCA.
The problems that have been mentioned in the ISPW-7 example correspond with the general
problems with process change in SOCCA as mentioned in chapter 4 and the intuitive solutions
like allowing the inconsistencies to remain or rolling the process back, correspond with the
SOCCA solutions introduced in chapter 4.

The definition of a subprocess has been slightly extended, compared with the original papers
defining PARADIGM; in these papers, a subprocess is defined being a restriction to a decision
process [1]. However, this definition does not take into account that a process may be the sub-
process of a manager process, like an external process which is the subprocess of an anachro-
nistic external process. When this is the case, the process is not only a decision process but it is
a decision process with a state-action interpreter. Likewise, the subprocess does not only
impose a restriction on the decision process but it also imposes a restriction on the state-action
interpreter. Thus, a subprocess is a restriction to a decision process, together with its state-

page 72

Chapter 7 Example 2: changing the model according to the ISPW-7 specification

report_r_iesul

closed readable
copyj

_opened ’H @

starting_review pre_review| starting_copyingd

t-102

close_and
reviewab

pre_Tevie pre_review

report_review_result close_ A
modification

modifiabl not_mod |
closed
not_mod_opene|
v modi
*% *
s-13
non_existent2 creatable created pre_modifiable starting_modification closed
create_nex
_\ / not_mod_opene close_modificatign
starting_creation modifiabl
modify

starting_modification

t-102 W.r.t. to WODAN is this subprocess s-102
Figure 74. Design: viewed as manager of int-review during start of exceptional cas

action interpreter when the process is a manager process. See also notion 1 on page 63.
WODAN is responsible for all possible changes of the model. It does not only change the
dynamic perspective by defining new external and internal processes, new subprocesses of the
internal processes and new state-action interpreters to model the changed communication but

WODAN can also change the static perspective by adapting the class structure; WODAN can
add and remove export operations from a class description whenever necessary and WODAN
can even define or remove complete classes. WODAN will probably also be able to change
the process perspective of a SOCCA model, which is described by means of object flow dia-

grams.

page 73

Adaptive software process modelling with SOCCA and PARADIGM

Chapter 8
A very brief comparison of SOCCA with
other paradigms

In this chapter the properties of SOCCA with respect to the ability of dynamic process modifi-
cation will be compared with some other paradigms mentioned in [5]. In [5] there is also a
paper considering some requirements for enactment mechanisms [6]. In that paper the notion
of so called process variables has been introduced as a fundamental mechanism for process
change. In the following section this notion of process variables will be applied to SOCCA
and in the sections afterwards SOCCA will be compared with some other existing paradigms.

8.1. The notion of process variables applied to SOCCA

In [6] the notion of process variables to control process change, has been introduced. Accord-
ing to that paper, process variables are not intended as a concrete feature of a process defini-
tion formalism but they represent a set of features needed by any effective process definition
formalism. Process variables should have the following features:

» They are introduced in the “text” of a process definition and can be associated there with
type specifications, constraints and default values.

* They need to represent a wide variety of different aspects of a process, like products pro-
duced by a performance of the process, tools to be used in performing the process, project
specific goals or subgoals or various process definition fragments.

* Process variable binding needs to be incremental and multi-faceted. For example, a proc-
ess variable might be first bound to a type specification, constraining the actual values to
which it can be bound, and have actual values conforming to that specification bound later
during enactment.

Process variables are mainly intended to represent yet undefined aspects of the process that is
being defined by the process definition formalism.

In chapter 3 the concept of anachronistic external and internal processes has been introduced.
The external and internal process descriptions that define the SOCCA process specification are
just subprocesses of these anachronistic processes. When applying the concept of process var-
iables to these notions found in SOCCA, the anachronistic processes can be regarded as being
process variables with the explicitly designed internal and external process descriptions being
the values that can be bound to these process variables. For example the STD of the internal
behaviour ofint_monitorlcan be regarded as the value that is initially bound to the process
variable representing the monitor process. When some time later, the SAtDnabnitorl

gets replaced by the STD iot_monitor2 it can be said that from that moment on the STD of
int_monitor2is the value bound to the process variable representing the monitor process.

The binding mechanism, to bind the process variable value to the process variable, is mod-
elled explicitly by WODAN and its state-action interpreter. So within SOCCA, this binding
mechanism itself is a part of the model instead of a property of the enactment mechanism.
This property makes SOCCA a reflective specification mechanism.

The notion of process variables can also be applied to the class perspective of the SOCCA
model; the static structure of the model can change when the model evolves, an example of

page 74

Chapter 8 A very brief comparison of SOCCA with other paradigms

such a change can be found in chapter 7. To achieve such a change of the static structure, one
can say that a process variable exists which value is the current static structure. When
WODAN has to change the static structure, WODAN only has to bind a new value to this spe-
cial process variable.

The notion of process variables can also be applied to WODAN itself; WODAN is in fact an
infinitely large decision process which can follow any arbitrary path through its state space.
Which path will be followed, and therefore how the model evolves, depends on the input -
specifying the process which has to be modelled, the wanted process change, etc.- WODAN
receives from somewhere outside the model. However, despite the fact that WODAN is infi-
nitely large, only a finite part of WODAN is relevant, and therefore visible, at any time instant.
Thus, the currently visible part of WODAN can be considered being a value bound to a proc-
ess variable representing WODAN.

When considering this from the viewpoint of the SOCCA approach, one could also say that
a not explicitly designed version of WODAN exists of which only one subprocess is visible
each time; the currently visible part of WODAN is only another subprocess of the not explic-
itly designed version of WODAN and starting the design of a new model and the transition to
the new evolution stage in which the new model is prescribed, is triggered by prescribing a
new subprocess of WODAN from somewhere outside of the model.

8.2. Comparing SOCCA with Document Flow Model (DFM)

In [7] three primary objectives have been mentioned which guided to the development of
DFM. These objectives are process mobility, framework for change and simplicity. According
to [7] these objectives can be reached when the enactment system has two basic properties:

* Independent processes

» Asynchronous communication
By independent processes it is meant that all processes are first class citizens within the model:
there is no master process and new processes can join the evolving network. At a first glance
SOCCA does not have this property, since the external processes are managers of the internal
processes and furthermore, WODAN is a manager of both the external and internal processes.
However, when comparing SOCCA and DFM in more detail it can be seen that somehow the
external processes in SOCCA correspond with the actons in DFM and the internal processes in
SOCCA correspond with the internal behaviours of the actons in DFM. Since the external
processes in SOCCA are first class citizens in relation to each other -no external process is the
master of another external process and new external processes may join the model-, this prop-
erty of independent processes is fulfilled. As WODAN is mainly used to guide the process
evolution, one can neglect the fact that WODAN is a manager of everything in the normal
case when the process is just enacting and no evolution has to happen.

As the communication in SOCCA between the various processes is PARADIGM communi-
cation, which is a form of asynchronous communication, all communication in SOCCA is
asynchronous so also the second property is fulfilled in SOCCA.

Thus, the two basic properties of DFM are fulfilled in SOCCA, which makes SOCCA pow-
erful enough to satisfy the three primary objectives that guided to the development of DFM.

8.3. Comparing SOCCA with SPADE

Another process centred environment is SPADE which is centred on a language, SLANG,

page 75

Adaptive software process modelling with SOCCA and PARADIGM

based on high level petri nets [8]. In SPADE the ability to process change is established via
modularization of the SLANG model: to change a part of the process during enactment, enact-
ment of the module to be modified can temporarily be stopped and after modification, enact-
ment of the module can continue. This has the disadvantage that the enactment partially has to
be stopped for a while, which is not necessary in SOCCA when changing a process.

One of the main features of SLANG is the possibility to model time constraints. For exam-
ple to automatically abort some function after a timeout period. Such time constraints can also
be used in SOCCA; an STD which is used to model the behaviour of a process in fact is a deci-
sion process with i.a. a sojourn mechanism that determines the time instant when the next tran-
sition is going to be followed. One can make use of this fact by making an abort transition
leading from a state which possibly has to be aborted to some other state. This transition can
then automatically be followed when the STD is still in the state where the abort transition
starts at the moment that the timeout period elapses.

page 76

Chapter 9 Conclusions and further research

Chapter 9
Conclusions and further research

This thesis shows that incorporating the concept of anachronistic processes together with
WODAN and its state-action interpreter into SOCCA, gives SOCCA the reflectivity necessary
for process evolution [9]. This reflectivity property is in fact a direct consequence of the exist-
ence of WODAN's state-action interpreter, which is a part of the model, describing another
part of the model. Thus, within SOCCA, the reflectivity is a natural feature of one of the con-
stituting formalisms, namely of PARADIGM.

Process evolution can lead to inconsistencies in the model after switching from one evolu-
tion stage to another evolution stage. These inconsistencies have to be detected by a careful
analysis of the effects of the intended change. This possibly can be supported by tools which
check for the occurrence of the problems P1, P2 and P3 mentioned in chapter 4 by comparing
the old SOCCA processes and the new SOCCA processes with each other. After detecting the
inconsistencies, they can be solved or even avoided by following the guidelines mentioned in
chapter 4.

Further categorisation of problems as a consequence of process change is a topic for further
research.

A SOCCA model can become very large. However, through the modular approach such a
large model can still be understood very well. This modular approach also makes it easier to
analyse the consequences of an intended change at a local level, without taking any part of the
model into account which is not directly related with the changed part.

An interesting approach to make SOCCA models smaller and less complex is by incorporat-
ing the concepts of roles and views into SOCCA. This approach has only slightly been men-
tioned in section 6.4. It can be a topic of further research to incorporate it fully into SOCCA.

In this thesis, the newly introduced concept of anachronistic processes in combination with
WODAN to incorporate change in SOCCA has only been used to model process evolution and
emergency handling, both mentioned in the ISPW-7 case. An interesting topic of future
research is to analyse the application of this change incorporation for model growth and incre-
mental modelling, prototyping in modelling and customizing. Another application of the
change incorporation may be reusability by viewing reuse as a certain evolution of a model
component and even interoperatibility might be incorporated with the above mentioned
change concepts.

page 77

Adaptive software process modelling with SOCCA and PARADIGM

Chapter 10
References

© 00

10

Groenewegen LParallel Phenomena 1-14niversity of Leiden, Dep. of Computer Sc.,
Techn. Rep. 86-20, 87-01, 87-05, 87-06, 87-11, 87-18, 87-21, 87-29, 87-32, 88-15, 88-17,
88-18, 90-18, 91-19. 1986-1991

Engels G., Groenewegen BOCCA: Specifications of Coordinated and Cooperative
Activities.University of Leiden, Dep. of Computer Sc., 1993

Kellner M., Feiler P., Finkelstein A., Katayama T., Osterweil L., Penedo M., Rombach H.:
ISPW-6 Software Process Exampie.Proc. of the 6th Int. Software Process Workshop:
support for the software process. Japan, October 1991

Kellner M., Feiler P., Finkelstein A., Katayama T., Osterweil L., Penedo M., Rombach H.:
ISPW-7 Software Process Exampith International Software Workshop. Yountville, Cal-
ifornia, 16-18 October 1991

Pre-prints of Papers, Third European Workshop on Software Process Technology,
EWSPT'94

Dowson M., FernStrom Chifowards Requirements for Enactment Mechanisms
EWSPT'94

Berrington N., De Roure D., Greenwood R., Hendersdnigtribution and Change:
Investigating two challenges for Process Enactment Systeni&NVSPT 94

Bandinelli S., Fuggetta A., Ghezzi C., Grigolli Brocess Enactment in SPADE

Conradi R., Fernstrom Chr., Fuggetta @ancepts for Evolving Software Processas

[10], 9-32

Finkelstein A., Kramer J., Nuseibeh B. (edSgftware Process Modelling and Technol-
ogy Research Studies Press Ltd., Taunton 1994

page 78

Ch

apter 10 References

Appendix A

L

OCOoO~NOUIDS,WNPE

Ist of figures

. A general example of an evolution step 13
. The general situation considered inthispart 15
. Situation b1: the first partof EL and E2 isthesame. 17
. The manager is different during EVS2. 17
CProblem situation PL. 19
CExample of solution S1. 20
cExample of SOIUtiON S2. 21
.Example of problem P3 22
CExample of solution S6. 23

.Example of SOIULION S7. 24

.Example of solution S8. 25

. Int-monitorl: STD of the internal behaviour 27

. Design: only viewed as manager of int_monitorl 28

. Int-monitorl: subprocesses and traps w.r.t. Design 29

. Int-monitor2: new STD of the internal behaviour 30

. Int-monitor2: subprocesses and traps w.r.t. Design 31

. Design2: only viewed as manager of int._monitor2 32

. WODAN: switch to int-monitor2 and Design2 via TempDesign. 34

. TempDesign: subprocess for transitiontothe newdesign 34

. WODAN: switch to monitor2 and Design3..t 35

. Design3: only viewed as manager of int_monitor2 35

. WODAN: switch to ExtendedDesign and int-monitor2. 36

. ExtendedDesign: only viewed as manager of int._monitor2. 37

. Class diagram: classes and is-a and part-of relationships. 39

. Class diagram: attributes and operations 39

. Class diagram: classes and general relationships 40

Jdmport/export diagram 41

IMPOrt LISt . o 41

. DesignEngineer: STD of the external behaviour 42

. ProjectDocs: STD of the external behaviour 42

. Code: STD of the external behaviour. 43

. ProjectManager: STD of the external behaviour 43

. Compiler: STD of the external behaviour. 43

. Int-code: STD of its internal behaviour 44

. Int-release_object_code: STD of its internal behaviour. 44

. Int-compile: STD of its internal behaviour. 44

. Int-test_ok: STD of its internal behaviour 44

.Int-schedule_and_assign_task. e 45

. Int-schedule_and_assign_tasks’s subp. and traps w.r.t. DesignEngineer 45

. Int-code’s subprocesses and traps with respect to DesignEngineer 46

. DesignEngineer, manager of int-design, int-review, int-code and int-sched.......... 46

. ProjectDocs, manager of int-design, int-code and int-create-version. 47

. Int-code’s subprocesses and traps with respect to ProjectDocs a7

. Int-code’s subprocesses and traps with respecttoCode. 49

page 79

Adaptive software process modelling with SOCCA and PARADIGM

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

Int-compile’s subprocesses and traps with respecttoCode 50
Int-release_object_code’s subprocesses and traps with respectto Code 48
Int-test_ok’s subprocesses and traps with respect to Code (other instance).......... 48
Code: manager of 8 employees. 51
int-test_ok’s subprocesses and traps with respect to Code (same instance).......... 48
Compiler: manager of int-compile and int-code. 52
Int-compile’s subprocesses and traps with respectto Compiler. 52
Int-code’s subprocesses and traps with respectto Compiler 53
Int-schedule_and_assign_tasks’s subp. and traps w.r.t. ProjectManager 54
ProjectManager: manager of int-schedule_and_assign_tasks and int-monitor 52
Int-monitor’s subprocesses and traps with respect to ProjectManager. 53
Int-release_object_code’s subprocesses and traps with respectto Design........... 55
Design: manager of 9 employees 56
Code: new STD of the external behaviour 59
Int-wait_for_approval: STD of its internal behaviour 59
Int-wait_for_approval’s subprocesses and trapsw.r.t.Code. 60
Code: viewed as manager of int-release_obj_c and int-wait_for_approval 60
Int-wait_for_approval’s subprocesses and trapsw.r.t. Design 61
Design: viewed as manager of int-wait_for_approval 62
Intermediate phase of Code e 63
WODAN: viewed as manager of 3employees. 63
Intermediate phase of int-code 64
TempCode: viewed as managerofint-code, 66
Int-code’s subprocesses and traps with respectto TempCode 67
Firstintermediate phase of Design 68
Second intermediate phase of Design. 69
WODAN: viewed as manager of 5employees. 65
Int-review’s subprocess to handle the ISPW-7 process exception 70
Design: viewed as manager of int-review during process exception 71
Design: viewed as manager of int-review during start of exceptionalcase 73
WODAN: viewed as manager of Design 72

page 80

