
Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 1

Adaptive software process
modelling with SOCCA and

PARADIGM

by Alex Wulms

University of Leiden, Department of computer science

 April 12, 1995

Supervision by Dr. L.P.J. Groenewegen



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 2

Abstract

One of the unsolved problems in the world of software process modelling is the question of
formally incorporating change of a software process in the very model. To elucidate this prob-
lem and possibly solve it, the following approach has been chosen. In a standard case, the so-
called ISPW-7 example, is change a part of the described problem situation. The purpose is
that all, or many, existing software process modelling methodologies incorporate this change
in their model for the ISPW-7 case. This hopefully leads to a better understanding of a general
approach to model change.

In the ISPW-7 example has the process change been split up into two parts. One part
addresses some form of permanent evolution of a process, this is called ‘process modifica-
tion’. The other part addresses a temporary modification of the behaviour of the process, this is
called ‘process exception’.

One of the existing software process modelling methodologies is SOCCA, which is cur-
rently still under development at the University of Leiden, department of Computer Science.
This thesis concentrates on the topic of formally incorporating process change in the SOCCA
methodology.

First, SOCCA has been extended with some new concepts to make it possible to model proc-
ess change and secondly, this extended version of SOCCA has been applied to the ISPW-7
example. As it turns out, it is possible to model both the process modification part as the proc-
ess exception part of the ISPW-7 example with aid of the new concepts introduced in this the-
sis.

Acknowledgement

With thanks to my parents and my friends for their moral support and with thanks to Luuk
Groenewegen for the excellent supervision and the many discussions which lead to a deeper
insight into the ins and outs of process change and evolution within SOCCA.



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 3

Table of contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acknowledgement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. A short introduction into SOCCA and PARADIGM . . . . . . . . . . . . . . . 7
2.1. A short introduction into PARADIGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. A way of viewing change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1. A condition for managing subprocesses of a subprocess. . . . . . . . . . . . . . . . . . . . . 10
3.2. Introducing the manager process WODAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3. Three types of change  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4. The NULL process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. Using the new concepts to describe an evolution step. . . . . . . . . . . . . . . 12
4.1. A general method to describe an evolution step  . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2. Exploiting similarities between processes to refine the evolution step description. 13
4.3. Possible inconsistencies as a consequence of process change. . . . . . . . . . . . . . . . . 14

4.3.1. Consequences of process change for individual internal processes . . . . . . . . 14
4.3.2. Consequences of process change for the cooperation control  . . . . . . . . . . . . 15

4.4. Solving inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.1. Solving problem P1: a subprocess of an internal process has less states . . . . 18
4.4.2. Solving problem P2: the external process has less states . . . . . . . . . . . . . . . . 21
4.4.3. Solving problem P3: the external process has reached a state to early. . . . . . 22

4.5. Concluding remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5. An example of changing an enacting process model . . . . . . . . . . . . . . . . 27
5.1. Designing a new model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2. Starting the new model during the enactment of a software process. . . . . . . . . . . . 32
5.3. Designing WODAN to manage the change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4. Using an extra subprocess for int-monitor to avoid intermediate states . . . . . . . . . 34
5.5. Losing some restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6. Concluding remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6. Extending the model to cover more of the ISPW-6 example . . . . . . . . . 38
6.1. Redesigning the class diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2. Designing the external behaviours of the classes  . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3. Designing the internal behaviours of the export operations  . . . . . . . . . . . . . . . . . . 43
6.4. Adding PARADIGM to model the communication. . . . . . . . . . . . . . . . . . . . . . . . . 45



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 4

6.5. Concluding remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7. Example 2: changing the model according to the ISPW-7 specification 58
7.1. Process modification: problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2. Designing the new model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3. Introducing the ISPW-7 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.1. Option 1: do not solve the inconsistency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.2. Option 2: solve the inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4. Process exception: problem description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.5. Designing the exceptional model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.6. Starting the exceptional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.7. Concluding remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8. A very brief comparison of SOCCA with other paradigms . . . . . . . . . . 74
8.1. The notion of process variables applied to SOCCA  . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2. Comparing SOCCA with Document Flow Model (DFM)  . . . . . . . . . . . . . . . . . . . 75
8.3. Comparing SOCCA with SPADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9. Conclusions and further research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

10. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix A. List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



Chapter 1 Introduction

                                                                                  page 5

Chapter 1
Introduction

One of the unsolved problems in the world of software process modelling is the question of
formally incorporating evolution of a software process in the very model. To this aim the
standard software process modelling example as formulated in ISPW-6 [3], has been
extended, among others, with change aspects. This has resulted in the ISPW-7 [4] example.

The extensions in the ISPW-7 example focusing on this so-called process change, have been
split up into two parts. One part is intended to represent some form of permanent evolution of
a process, this is called ‘process modification’ and it describes a permanent change in the
behaviour of the process. The other part addresses a temporary modification of the behaviour
of the process handling some exceptional circumstance, which has been called ‘process excep-
tion’; after the temporary modification, the process returns to its original form.

One way to model “normal” behaviour without any flavour of the above mentioned change,
especially the behaviour of a software process model, is by means of dynamic descriptions.
Dynamic descriptions which are used in this manner are in fact describing a specific form of
change, as the current state of the object behaving according to the dynamic description,
changes into another current state, which in turn changes into yet another current state, and so
on. So a dynamic description of behaviour reflects some kind of change.

Within this thesis we have put this observation the other way round: it is possible to describe
a change to something, like a software process model, with a dynamic description. Since a
behaviour description is a dynamic description, the description of process change as men-
tioned in the paragraph above, which is a change in the behaviour of a software process model,
can be considered as being a dynamic description (the change description) of another dynamic
description (the behaviour description).

In PARADIGM, see [1], the concepts of processes, manager processes, employee processes,
subprocesses, traps and state-action interpreters, have been used to describe a behaviour
change as a consequence of the communication between the various processes: a manager
process prescribes a subprocess to an employee process reflecting the behaviour of this
employee before the communication; the employee may only behave according to the restric-
tions as imposed by this subprocess. After a while such an employee will enter a trap to
another subprocess, which implies a communication to the manager, and from that moment
on, the manager process may decide to grant permission to this employee to enter its new sub-
process. This permission is the communication the employee is “waiting for” inside its trap.
The effect of this communication then is the new behaviour of the employee after the commu-
nication as reflected by the new subprocess. So within PARADIGM communication has been
used to describe a change of behaviour. By means of the communication between manager
processes and their employee processes, this actually is a dynamic description of a dynamic
description. Therefore it is useful to examine whether the PARADIGM approach can also
describe evolution.

As PARADIGM is an integrated part of SOCCA and as SOCCA aims at modelling software
processes, we will actually investigate whether the SOCCA approach can describe evolution
too. This thesis gives the results of this investigation. In order to present these results, the the-
sis has been structured as follows: the following chapter consists of a short introduction into
SOCCA and PARADIGM. In chapter 3 new concepts are introduced which are generaliza-
tions of the SOCCA concepts of external and internal processes. With aid of these new con-
cepts, evolving software process models within SOCCA become something quite natural. In



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 6

chapter 4 is shown how the new concepts introduced in chapter 3 can be used. Furthermore,
chapter 4 shows some simplifications of the general approach, which problems can occur
using these simplifications and some general solutions to solve those problems. Chapter 5
shows an example of the concepts developed in chapter 3 and in chapter 4. This example is
based on a small part of the ISPW-6 example. In chapter 6 a larger part of the ISPW-6 example
will be modelled using SOCCA and in chapter 7 is this model used to show more of the
aspects developed in chapter 3 and in chapter 4. This chapter follows the process change parts
from the ISPW-7 example. In chapter 8 a brief comparison between SOCCA and some other
modelling paradigms will be given with respect to process change and finally in chapter 9,
some conclusions and topics for further research are given.



Chapter 2 A short introduction into SOCCA and PARADIGM

                                                                                  page 7

Chapter 2
A short introduction into SOCCA and PAR-
ADIGM

In [2] a complete introduction of SOCCA has been given. Those readers familiar with
SOCCA may skip this chapter.

SOCCA is a software process modelling methodology, still under development at the Uni-
versity of Leiden, department of Computer Science. A SOCCA model describes the software
process from three different perspectives; the data perspective, the process perspective and the
behaviour perspective. To achieve this, SOCCA consist of (parts of) several formalisms com-
bined together to describe the software process models.

The following formalisms have been used to cover the different perspectives:
  • The data perspective is described by means of object-oriented class diagram models, based

on Extended Entity-Relationship (EER) concepts. One of the features of the classes is that
they can have export operations. Such an export operation of one class can call export
operations of another class. To this aim in SOCCA an extra relationship exists between the
various classes; the so-called uses relationship. Therefore, the class models have been
extended with an extra diagram to display this uses relationship. Such a diagram is called
an import/export diagram of the model.

  • The process perspective will be described with so-called Object Flow Diagrams (OFD),
being an extension of data flow diagrams with operations derived from the class diagram
perspective. So in an OFD not only the dataflow is given as in data flow diagrams, but also
the flow of the operations will be shown. The integration of OFD’s into a SOCCA model is
still a topic of research. They will not be discussed further in this thesis.

  • The behaviour perspective is covered with State Transition Diagrams (STD’s) with PARA-
DIGM on top of them. The various classes have export operations which can be called in
some order. To describe the order in which the export operations can be called, STD’s are
used. So in fact, the behaviour of a class is described with an STD of which some transi-
tions are labelled with the export operations of that class. Each such export operation has
an internal behaviour; this internal behaviour actually achieves the task the corresponding
export operation is supposed to perform. In SOCCA, STD’s have been used as well to
describe these internal behaviours of the export operations. Since the cooperation between
the external behaviour of a class and the internal behaviours of its export operations has to
be coordinated, PARADIGM has been used in SOCCA to this aim. Moreover, the internal
behaviour of an export operation can also call export operations from other classes. There-
fore it is not only necessary to have communication between the external behaviour of a
class and the internal behaviour of its export operations, but there should also be commu-
nication between the internal behaviour of the export operations from one class and the
external behaviour of other classes. This communication is also modelled by means of
PARADIGM. The STD’s describing the external behaviours are PARADIGMmanager
processes and the STD’s showing the internal behaviours of the export operations, are
PARADIGM employee processes. In this way, the internal behaviour of an export opera-
tion can be controlled viathe state-action interpreter of the external behaviour of a class.
The italic terms will be described in the following section which gives a short introduction
into PARADIGM.



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 8

2.1. A short introduction into PARADIGM

PARADIGM is a specification mechanism developed to model parallel processes. A PARA-
DIGM model can be designed in the following manner:
  • Describe the sequential behaviour of each process by means of a STD.
  • Within each STD so-calledsubprocesses can be indicated. These subprocesses are subdia-

grams of the STD and are used for the coordination with other processes. The set of sub-
processes of one process is calleda partition of that process.

  • Within each subprocess certain sets of states, so-calledtraps, can be identified. By enter-
ing such a trap, an object indicates that it is ready to switch to another subprocess. The set
of traps of a process is calledthe trap structure of that process. One important property of
a trap is that, within a subprocess, there are no transitions leading from one of the states of
a trap to another state outside the trap. So when a process has entered a trap, it is no longer
possible for the process to leave this trap as long as the same subprocess restriction
remains valid.

  • There is also an extra STD called themanager process. This process coordinates the
behaviour of the various objects. The objects of which the behaviour is controlled by a
manager process, are called theemployee processes of that manager process. Depending
on the state it is in, the manager process prescribes a subprocess to each of its employees;
an employee may only behave according to the subprocess which is currently being pre-
scribed by its manager process. Next, the manager process monitors the behaviour of its
employees; when one of the employees enters a trap to another subprocess, the manager
process may follow a corresponding transition to another state where it can prescribe the
subprocess the employee wants to enter. Note that the managercan prescribe the new sub-
process to its employee but that it is not obligated to do this. The manager may postpone
prescribing the new subprocess to its employee as long as it wants to. The mapping of the
states of a manager process to the subprocesses it prescribes to its various employees and
the mapping of the transitions that a manager can make to the traps of its employees, is
calledthe state-action interpreter of the manager process with respect to the partition and
trap structure of its employee processes. So the state-action interpreter of the manager
process labels each state of that manager with the subprocesses it prescribes in such a state
to its employee processes and it labels the transitions with those traps that enable this tran-
sition to be selected.

One individual process may be the employee of more manager processes. When this is the
case, such a process will have a separate partition and trap structure with respect to each of its
managers. The behaviour of that process then will be controlled by all of its manager proc-
esses together; at a given time instant, the process will be restricted to the intersection of the
various subprocesses prescribed by its various manager processes.

Note that this is only a very informal introduction into PARADIGM. The sequential behav-
iour of one process is in fact not fully determined by its STD. In addition to the STD a strategy
determines which transition in a state will be taken if several possibilities exist. Moreover, a
sojourn mechanism determines how long the process remains in each state. The strategy and
the sojourn mechanism can depend on the history of the process and on its current state. For-
mally spoken, the sequential behaviour of a process in PARADIGM is described by means of
a so-called decision process from the operations research field. However, the most important
features in SOCCA are formed by the STD which visualizes much of the behaviour of the
process and in addition to that a strategy, often informally described only, which tells what
transitions will be selected from a certain state when there are more possibilities.



Chapter 3 A way of viewing change

                                                                                  page 9

Chapter 3
A way of viewing change

This chapter starts with the definition of some terms. As stated in the previous chapter, in
SOCCA the various PARADIGM concepts have been used to manage the internal behaviour
of the operations from a class via the state-action interpreters of the external behaviour of the
classes. In the rest of this thesis, the internal behaviour of an operation is calledan internal
process and the corresponding STD is calledthe internal process description. Similarly the
external behaviour of a class is calledan external process and the STD describing this behav-
iour is calledthe external process description.

As also described in the previous chapter, the external process descriptions are PARADIGM
manager processes and the internal process descriptions are the employees of these manager
processes. During enaction of a software process model an internal process is restricted to one
subprocess at a time (with respect to one partition of the internal process). Intuitively such a
restriction to a subprocess is a behaviour restriction for this internal process; the internal proc-
ess may only behave accordingly to those states and actions imposed by the subprocess. After
remaining a while in the same subprocess an internal process will enter a trap towards another
subprocess and at some time instant the permission to enter this new subprocess will be
granted by the manager. As soon as the internal process receives this permission it will start
behaving according to the new subprocess it has entered and it will remain behaving like this
for a while. This type of behaviour change of an internal process is a direct consequence of the
PARADIGM communication between the internal process and its manager process; the inter-
nal process changes from one behaviour restriction to another behaviour restriction as a conse-
quence of this communication.

When analysing this total behaviour of an internal process it can be seen that the transition
from one subprocess to another subprocess is the same kind of change as wanted for evolving
software process models; when a software process model has to evolve, the behaviour of some
part of the model has to be changed just like the behaviour of an internal process changes
when it makes a transition from one subprocess to another subprocess. This evolution of the
software process model can be considered as being a transition from one evolution stage (say
evolution stage 1, EVS1) to another evolution stage (say evolution stage 2, EVS2). A conclu-
sion drawn from this observation is that it might be possible to change a software process
model by viewing its internal and external process descriptions as being subprocesses of some
larger processes which have not explicitly been designed but which do exist. Furthermore it
might be possible to view the total state space of the process descriptions from the SOCCA
model up to now (which is in EVS1) as being a trap from the current process description to the
newly designed process description (which forms the SOCCA model in EVS2).

For example, when one of the components has to be changed the new STD of the compo-
nent, which does not yet exist, can be designed and after this design has been finished it can be
activated by switching from the subprocess corresponding with the old STD to the subprocess
corresponding with the new STD. This transition then corresponds with a transition from
EVS1 to EVS2. Such a transition from one evolution stage to another evolution stage will be
called anevolution step.

As the not explicitly designed external and internal processes combine the various behav-
iours of the software process model during all possible evolution stages, they will be called
anachronistic external and internal processes in this thesis.

Note that viewing the process descriptions as being subprocesses means that we get a deeper



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 10

management hierarchy, in which a process can be both an employee process and a manager
process at the same time. We get the situation that a subprocess (of an anachronistic external
process) is managing the subprocesses of a subprocess (of an anachronistic internal process).

For example, let E1 be an external process, I1 an internal process and let I1S1, ... ,I1Sn be the
subprocesses of I1 with respect to E1. This means that in the original SOCCA approach, the
process E1 is a manager of the subprocesses I1S1, ... ,I1Sn of process I1. However, when E1 and
I1 are considered being subprocesses of larger, not explicitly designed, anachronistic processes
(say EA and IA respectively), then one can say that thesubprocess E1 is a manager of the sub-
processes I1S1, ... ,I1Sn of thesubprocess I1.

3.1. A condition for managing subprocesses of a subprocess

The notion of managing subprocesses of a subprocess is possible because a subprocess is a
decision process by itself [1] and a decision process can have subprocesses [1]. Although it is
possible to manage the subprocesses of a subprocess, a problem may arise; suppose that the
above mentioned anachronistic internal process IA has another subprocess I2 and suppose that
E1 is still managing the subprocesses I1S1, ... ,I1Sn of I1 (as in the previous section). Further
suppose that for some reason the subprocess I2 is prescribed in stead of I1, for example when
EVS2 has started in stead of EVS1. Then it can be no longer guaranteed that all states in the
subprocesses I1S1, ... ,I1Sn can be reached or do exist as some of the states and transitions of
I1S1, ... ,I1Sn may no longer exist in the subprocess I2. Moreover, when the subprocess I1 of
which the processes I1S1, ... ,I1Sn are subprocesses, is not prescribed, one could say that the
subprocess I1 and its subprocesses I1S1, ... ,I1Sn temporarily do not exist. Therefore, it can not
be allowed that a process E1 is managing the subprocesses I1S1, ... ,I1Sn of a subprocess I1
which is currently not prescribed by its manager process M1. Thus, to avoid these kind of
problems, we need the following extra condition when viewing the external and internal proc-
esses as being subprocesses themselves:

When the subprocesses I1S1, ... ,I1Sn of a process I1, which in turn is the subprocess of a
process IA, are being managed by a process E1, then the process I1 must be prescribed by the
manager process M1 of the process IA, with M1 being the manager process of IA with respect
to the partition of which I1 is a subprocess of IA.

3.2. Introducing the manager process WODAN

To formalize the change of a software process model during enaction, it is useful to introduce
an extra manager process. This extra manager process will be called WODAN, which stands
for What Ought to be Done As Necessary. The manager process WODAN is a manager of all
(not explicitly designed) anachronistic external and internal processes and normally it stays in
the same state, just prescribing the (explicitly designed) external and internal process descrip-
tions. When a change has to be made, WODAN can go to a state which for example is called
changing the model; when WODAN is in this state, the new external and internal process
descriptions can be designed. Moreover, WODAN can also design new class descriptions
when the static structure of the model has to be changed due to extra requirements. After the
new model has been designed, WODAN can go to a next state prescribing the new process
descriptions.



Chapter 3 A way of viewing change

                                                                                  page 11

3.3. Three types of change

The changes made to a software process model to achieve evolution, can be split up into three
different types of change; they range from a relatively simple change to more complicated
forms of change. The following three types of change can be distinguished:
1) Do not change the state space, only change the strategies and the subprocesses and possi-

bly add or remove transitions.
2) Do not add or remove processes, only change the strategies and subprocesses and add or

remove states and transitions.
3) Add or remove processes and change the strategies, etc. of other processes.

3.4. The NULL process

Adding or removing processes within SOCCA, as in change type 3, is possible since the proc-
esses we are looking at, are only subprocesses of the anachronistic processes. When a process
E1 has to be added, one could say that the anachronistic process EA of which E1 is a subproc-
ess, already existed from the very beginning. However, WODAN was prescribing a nearly
empty subprocess of it before the process E1 was necessary. This nearly empty subprocess
consists of one state together with one transition from this state to itself. In the same manner, a
process E1 can be removed during evolution by prescribing a similar nearly empty subprocess
of the anachronistic process EA of which E1 is a subprocess with respect to WODAN.

Such a nearly empty subprocess will be called theNULL process, or shorter NULL. This
will also be used as a convention when designing WODAN to introduce new processes or
remove old processes; in the states of WODAN where the process did not exist yet or has been
removed already, the NULL process will be prescribed.



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 12

Chapter 4
Using the new concepts to describe an evolu-
tion step

In this chapter we will use the new concepts introduced in the previous chapter to describe the
way in which an evolution step has to be performed. First we will give a very general method
which will always work and then we will refine this method by making use of the notion that
most times there will be many similarities between the processes before and after an evolution
step. This however is a non-trivial notion which can lead to severe inconsistencies in the
enactment state of the model when it is applied inaccurately. Thus we will also identify when
such a refinement will fail and give some solutions to solve those inconsistencies in such a
way that the refinements still can be used.

4.1. A general method to describe an evolution step

When an evolution step has to be made, the enacted SOCCA model has to make a transition
from one evolution stage, for example EVS1, to another evolution stage, for example EVS2.
During EVS1 a set of external and internal processes, reflecting the behaviour of some real life
processes, will be prescribed by WODAN and during EVS2 another set of processes, reflect-
ing the new behaviour of those real life processes, will be prescribed. Let for example P1 be an
internal or external process reflecting the behaviour of a real life process during EVS1 and let
P2 reflect the new behaviour of that same real life process during EVS2. Then, the processes
P1 and P2 will both be subprocesses of the same anachronistic process Pa and during the evo-
lution step, a transition from P1 to P2 has to be made.

The process Pa will be in one of the states of its subprocess P1 at the moment that the evolu-
tion step has to be made and it will be in one of the states of its subprocess P2 when the evolu-
tion step is finished. Thus the problem which has to be solved is that the process Pa must go
from one of the states of its subprocess P1 to one of the states of its subprocess P2. As the sub-
processes P1 and P2 may have no mutual states in Pa, this can be a real problem. This problem
can be solved by using an intermediate, temporary, subprocess Pt of Pa which describes how
the transition from P1 to P2 has to be made. This subprocess Pt has all states of P1, a non-
empty subset of the states of P2 and possibly some extra states. Furthermore, it has for each
state taken from P1 a path leading from that state to one, or more, of the states of P2. The trap
from P1 to Pt can consist of all states of P1, making it possible to start the evolution step at any
moment, regardless of the state of the subprocess P1 during EVS1. The trap from Pt to P2 can
consist of those states of Pt which are taken from P2, thus the evolution step can be finished as
soon as the temporary process is in one of the states which actually reflect some part of the
behaviour of the modelled process during EVS2.

When using such a temporary process Pt, process evolution can be modelled as follows: dur-
ing EVS1, WODAN prescribes the subprocess P1 of Pa. When process evolution is necessary,
WODAN defines the new model, including the temporary phase and possibly a new EER
model. WODAN will continue prescribing process P1 while the design phase is active. When
the design phase has been finished, WODAN will prescribe Pt, which reflects the behaviour
during the evolution step, and as soon as Pt enters one of its traps, WODAN can prescribe P2,
thereby actually starting EVS2. An example of this approach is shown in figure 1.



Chapter 4 Using the new concepts to describe an evolution step

                                                                                  page 13

It is very likely that during one evolution step, more processes will change and that also the
communication between the various processes will change. The communication may change
due to extra requirements. This can be modelled similar to the above sketched evolution step.
However, in stead of using one temporary process Pt for the change description of one anach-
ronistic process Pa, one or more temporary processes  have to be designed for each anach-
ronistic process  of which the behaviour changes from EVS1 to EVS2. In this case, more
temporary subprocesses may be necessary per anachronistic process that changes because of
the change in the communication structure. Such a communication structure change makes the
evolution step more complicated; it may be necessary that the evolution step has to be exe-
cuted in a phased manner to get the new communication between the various processes appro-
priate. Thus, in such a case, WODAN will first prescribe the first version of the temporary
processes, wait until the appropriate temporary processes reach their traps, prescribe new tem-
porary processes, and so on until the whole model is in a state which reflects some behaviour
of EVS2 and from that moment on, the subprocesses  can be prescribed to the anachronistic
processes .

Note that further categorisation of the various problems as a consequence of process change
is a topic of future research.

4.2. Exploiting similarities between processes to refine the evolution step description

The general method described in the previous section makes no use of any information availa-
ble about the specific problem of making one transition step. The temporary process Pt has one
separate state for each state of the process P1 before the evolution step and some extra states
taken from a non-empty subset of the states of the process P2 which is prescribed after the evo-
lution step. However, the processes P1 and P2 both represent the behaviour of the same real
life process, which likely only changes slightly during the evolution step. Thus, there will be
many similarities between the processes P1 and P2. For example, there can be a large overlap
in the state space of P1 and P2, many transitions may be the same and there may be even many
similarities between the trap and partition structure of P1 and of P2 when P1 and P2 are internal

X1,4

X1,3

X1,2X1,1 X2,1

X2,5

X2,6
Xt,4

Xt,3

Xt,2Xt,1

Xt,5

P1: Subprocess of Pa during
EVS1. W.r.t. WODAN
forms its whole state
space trap T1.

Pt: Subprocess of Pa during the evolu-
tion step

Figure 1. A general example of an evolution step

Tt

P2: Subprocess of Pa during
EVS2. W.r.t. WODAN
forms its whole state
space trap T2.

neutral,
EVS1 busy

start_
change

designing_
new_model

close_
change

in T1P1 P1 Pt

waiting

P2
in Tt

switch_
to_EVS2

neutral,
EVS2 busy

WODAN: viewed as manager of Pa during one evolution step

Pti

j

Pa
j

P2
j

Pa
j



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 14

processes.
For example, when making a change of type 1 as described in section 3.3, the processes P1

and P2 will have exactly the same state space. In such a case, it might be possible to make the
transition from EVS1 to EVS2 immediately, without using a temporary process Pt, as the proc-
ess Pa can stay in the same state when making the evolution step. Also, when a temporary
process Pt is necessary, this process Pt can be designed much simpler; all states of Pt can be
taken from P1 and the additional states which are normally taken from P2 are now not neces-
sary as they already exist in Pt. Thus, also the paths leading from the states taken from P1 to
the states taken from P2 are in such a case not necessary.

In the following sections, we will examine whether it is generally possible to exploit these
kind of similarities between the processes in the various evolution stages to simplify the evo-
lution steps. We will also examine which kind of problems can arise with exploiting these sim-
ilarities and sketch some ways to solve these problems in a formal manner with the aid of
WODAN.

The study of the problems which may arise will be split up in two parts.
In the first part, an analysis at the level of the internal processes will be made; this discussion

brings forward what inconsistencies may arise for the employee processes.
In the second part, the transition will be analysed at the more global level of the external

processes. Since an external process in its role of manager process is responsible for the coop-
eration between the internal processes that form its employees, this part of the discussion
underlines the possible inconsistencies in the cooperation control of the employees.

All inconsistencies will be related to the three types of change indicated in section 3.3. How-
ever, before starting with this survey, some terminology has to be introduced first:
  • Let PA be an anachronistic internal or external process with two subprocesses Pj and Pk,

with Pj the internal or external process prescribed during EVSj, Pk the internal or external
process prescribed during EVSk and k=j+1. So EVSk is the evolution phase next to and
after EVSj. Then the process Pk will be calledcorresponding with the process Pj.

  • Let PA, Pj and Pk denote the same processes as above. Furthermore, let Xl be a state of PA
which exists in both subprocesses Pj and Pk of PA. Then the state Xl in Pk will be called
corresponding with the state Xl in Pj. So in fact, we will regard this same state as two dif-
ferent (but corresponding) states in the two corresponding subprocesses.

4.3. Possible inconsistencies as a consequence of process change

In this section, the consequences of switching from EVS1 to EVS2 will be examined to
detect possible inconsistencies. This will be done in two steps; first we will examine the con-
sequences of the process change for the individual internal processes and then we will exam-
ine the consequences of the process change for the cooperation between the internal and
external processes.

4.3.1. Consequences of process change for individual internal processes

In this subsection, the consequences of switching from EVS1 to EVS2 will be examined for
the internal processes. We assume that only one process changes during the transition from
EVS1 to EVS2. When more processes change, the cases below will hold for each individual
process. The internal process under consideration will be called I1 with subprocesses I1S1, ...
,I1Sn during EVS1 and the corresponding internal process during EVS2 will be called I2 with



Chapter 4 Using the new concepts to describe an evolution step

                                                                                  page 15

subprocesses I2S1, ... ,I2Sm. Furthermore we assume that the manager E1 of I1, and later of I2,
prescribes I1Si during EVS1 and I2Sj during EVS2, and that E1 remains in the same state dur-
ing the transition from EVS1 to EVS2. So this means that the state-action interpreter also
changes during the switching from EVS1 to EVS2, even if E1 itself remains unchanged. Note
that in this section we will not take the cooperation between the various processes into consid-
eration. Thus, in this subsection is it not relevant whether the trap of I2Sj differs from the trap
of I1Si. The consequences of changing traps will be analysed in subsection 4.3.2.

This situation is shown in figure 2.

As only one subprocess of an internal process is active at the same time, we will consider the
possible differences between the subprocess I1Si and the subprocess I2Sj. There can be many
differences between these two subprocesses. However, each difference will be a combination
of one or more of the following four cases:
a1)I2Sj equals I1Si; this is the trivial case. As I2Sj = I1Si there is no change of process. Even

ϕ(.) can remain unchanged.
a2)I2Sj does not have all states from I1Si; in this case the transition from EVS1 to EVS2 can

not be made as long as I1Si is in a state that does not exist in I2Sj. This is problem P1 and
some solutions to it will be given in section 4.4. One of these solutions is very easy to
apply, but can not be used always. The other solutions are more complicated but they can
be used always.

a3)I2Sj does not have all transitions from I1Si; if I2Sj is designed properly this does not cause
any problem, the only consequence of missing transitions is that I2Sj’s behaviour differs
from I1Si’s behaviour.

a4)I2Sj has some states or transitions that do not exist in I1Si; this either does not cause any
problem. The only consequence of this case is that I2Sj can not be in one of these extra
states at the moment that the moment that the evolution step starts.

Thus, we have found only one problem, called problem P1, which occurs in case a2.
Note that all four cases can occur which each type of change as mentioned in section 3.3.

This is the case as we are looking at subprocesses of an internal process; even for the change
of type 1, where no states are removed from or added to an internal process, asubprocess can
have extra or less states since the subprocesses may always change.

4.3.2. Consequences of process change for the cooperation control

After the survey at the subprocess level in the previous subsection, we will examine the coop-

ϕ

Figure 2. The general situation considered in this part

Situation during EVS1 Situation during EVS2

Internal process I1

I1S1 I1S2 I1Si I1Sn

, ... , , ... ,

External process E1

I1Si

X l

Internal process I2 External process E2

I2Sj

X l

, ... , , ... ,

I2S1 I2S2 I2Sj I2Sm



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 16

eration between the internal processes via an external process in this subsection. It is assumed
that the external process can make the transition from E1 to E2 when the evolution step from
EVS1 to EVS2 has to be made. When the change is of type 1, this assumption will always
hold. However, when the change is of type 2 or type 3 it might be possible that the external
process E2 misses some states which exist in the external process E1. This problem, which will
be called problem P2, is similar to the problem P1 mentioned above. It can be solved with one
of the solutions shown in section 4.4.2 when it occurs. Furthermore, it is assumed that only
one external process changes. When more external processes change, the cases found below
apply to each external process individually.

For the cooperation between the external process and the internal processes that form its
employees, only the state-action interpreter of the external process and the partition and trap
structure of its employees are relevant so it will be only examined how the transition from
EVS1 to EVS2 influences these. The external process in EVS1 will be called E1 and in EVS2
it will be called E2. Furthermore, the state in which E1 is before the transition, will be called
X1 and the corresponding state in E2 will be called X2 and the employees of E1 will be called
I1 and J1 and the corresponding employees of E2 will be called I2 and J2 respectively. The fol-
lowing two cases can be distinguished:
b1)The state X1 in which E1 is at the moment that the evolution step from EVS1 to EVS2

starts, can only be reached via a path within E1 which is equal to the path leading to the
corresponding state X2 within E2. This means that E1 and E2 have an overlapping part
from the start state up to the states X1 and X2 respectively, thus E1 and E2 have the same
states, transitions, strategy and state-action interpreter from their respective start state up
to and including the states X1 and X2 respectively. In this case, after the evolution step E2
will be in a state in which it would have arrived at exactly the same manner as when E2
had been active since the very beginning of the enactment of the model. Since E2 would
have arrived in this state in the same manner if it had been active from the beginning, there
will be no difference between E2’s history as it is after the evolution step and E2’s history
when E2 would have been prescribed from the very beginning. Therefore, the evolution
step from EVS1 to EVS2 can be made at once in this case. An example of this situation is
shown in figure 3.

Note that in this case it is not relevant whether I2 and J2 have new or modified subproc-
esses during EVS2; the manager E1, and later E2, does not prescribe these new subproc-
esses in this part of the model so these subprocesses can not influence the behaviour here.

b2)This is the opposite of case b1, thus the state X1 in which E1 is at the moment that the evo-
lution step from EVS1 to EVS2 has to start, can be reached via a path within E1 which is
different from the path to the corresponding state X2 in E2. In this case, the external proc-
ess will have arrived in the state X2 after the transition from EVS1 to EVS2 via a path it
would not have followed when E2 had been active since the start of the enactment of the
model. As the path that E2 would have followed to arrive in the state X2 determines the
global behaviour of its employees (via the subprocesses E2 prescribes to its employees)
and as it is also influenced by the behaviour of the employees (via the traps E2 has to wait
for before it can make the transition to a next state), it is possible that E2’s state and history
is not consistent with the state and history of E2’s employees. One of the main problems
that can occur, which will be called problem P3, is that E2 should not have arrived in the
state X2 yet, because one of its employees has not yet reached a trap which E2 was
required to wait for in the past. Some solutions to problem P3 are shown in section 4.4.3.

An example of this problem is shown in figure 4. The manager E1 is in state X1, waiting
for I1S1 to enter trap I1t1 when the transition to EVS2 is made. The manager, now called
E2, is still in the with X1 corresponding state X2 after this transition. However, according



Chapter 4 Using the new concepts to describe an evolution step

                                                                                  page 17

to the new model is I2S1, corresponding with I1S1, already in trap I2t1 when the manager is
in state X2. Thus, the manager makes the assumption that it can make the transition to state
Y2, were it will prescribe I2S2 to the employee I2. This, however, may not happen as the

Situation during EVS1 Situation during EVS2

Internal process I1 with

I1S1 I1S2

Internal process J1 with

J1S1 J1S2

I1t1
I1t2 J1t1 J1t2

I1S1
J1S1

I1S2
J1S1

I1S2
J1S2

I1S1
J1S2

in I1t1
in J1t1

in J1t2
in I1t2

First part of E1

External process E1 is the manager of I1 and J1

subprocess I1S1 and I1S2 subprocess J1S1 and J1S2

External process E2 is the manager of I2 and J2

Figure 3. Situation b1: the first part of E1 and E2 is the same

X1

Internal process I2 with

I2S1 I2S2

Internal process J2 with

J2S1 J2S2

I2t1
I2t2 J2t1 J2t2

subprocess I2S1 and I2S2 subprocess J2S1 and J2S2

I2S1
J2S1

I2S2
J2S1

I2S2
J2S2

I2S1
J2S2

in I2t1
in J2t1

in J2t2
in I2t2

First part of E2

X2

Note that I1S1 in fact is the same subprocess as I2S1. Otherwise, the state-action interpreter of E2 would dif-
fer from the state-action interpreter of E1. The same applies for the combinations (I1S2, I2S2), (J1S1, J2S1)
and (J1S2, J2S2).

Figure 4. The manager is different during EVS2

Situation during EVS1

I1S1
J1S1

I1S2
J1S2

I1S1
J1S2in J1t1 in I1t1

External process E1 is the manager of I1 and J1.

X1 Y1

I2S1
J2S1

I2S2
J2S2

I2S1
J2S2in J2t1

External process E2 is the manager of I1 and I2,

X2 Y2

I2S1
J2S1in I2t1

Situation during EVS2

E1 is in state X1, waiting for I1t1, when EVS2 has to start.

Subprocess I2S1 should be in trap I2t1 when the external
process is in state X2.



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 18

trap I2t1 had not been entered when the transition from EVS1 to EVS2 was made. Section
7.3 shows an example which is very similar to this one.

Note that both case b1 and b2 can occur with all three types of change.

4.4. Solving inconsistencies

In the previous section, three different problems have been mentioned that can arise at the
moment that the evolution step from EVS1 to EVS2 has to be made. These three problems are:
P1 The subprocess I1Si of internal process I1 is within EVS1 in a state X1 without a corre-

sponding state X2 in the subprocess I2Sj which will be prescribed within EVS2 in stead of
the subprocess I1Si. This problem can occur with all three types of change.

P2 The external process E1 is within EVS1 in a state X1 without a corresponding state X2 in
the with E1 corresponding external process E2 within EVS2. This problem can only occur
with change type 2 and change type 3.

P3 The process P is an external process and therefore a manager of some internal processes. It
will arrive within EVS2 in a state X, which it could not have reached yet within EVS2,
since one of its employees has not reached a trap for which the manager should have
waited in the past. This problem will mostly arise with change type 3, when a new process
is added to the model.

In the following subsections, solutions to these problems will be suggested. Some of these
solutions have also been used in the examples described in this thesis. The problem P1 arises
in section 5.2, the problem P2 in section 7.6 and the problem P3 can be found in section 7.3.

4.4.1. Solving problem P1: a subprocess of an internal process has less states

Let I1 be the internal process during EVS1, I1Si the subprocess prescribed by the manager, X1
the state in which I1Si is before the transition and let E1 be the manager of I1 with respect to
the partition of which I1Si is a subprocess. Furthermore, let I2 be the corresponding internal
process during EVS2, I2Sj the corresponding subprocess prescribed by the manager, X2 a state
corresponding with X1 and let E2 be the manager of I2 with respect to the partition of which
I2Sj is a subprocess. This situation is shown in figure 5.

Note that the state X2 is no part of I2Sj. However, it can be a state of I2. If there is no state X2
in I2 at all, a temporary version of the internal process can be defined which has a state corre-
sponding to state X1 in I1. This temporary version of the internal process will be called It, the
state corresponding to state X1 will be called Xt and the subprocess corresponding with I2Sj
will be called ItSj. Furthermore, the manager of this process will be called Et.

Note that Xt, It and Et are not always necessary to solve the inconsistency. Whether they are
needed or not, depends on the chosen solution. They will be used in the second solution down
here. The processes named Et in the solution S1 have nothing to do with the Et as in the solu-
tion S2. The name Et is only used to indicate that it is a temporary process.

The problem P1 can be solved in the following manners:
S1)Let Xek be the set of states of E1 in which the problem occurs. Thus, E1 prescribes in each

state of Xek a subprocesses I1Si while E2 prescribes from its corresponding state a sub-
process I2Sj which misses one or more states occurring in I1Si. It is possible to define a
temporary external process Et with the aid of the states Xek. How this process will be
designed is described below. When Et has been designed, it is possible for WODAN to
manage the transition from EVS1 to EVS2. To do this, it will consider all states of E1
together being a trap from E1 to the process that forms the successor of E1 during the evo-
lution of the software process model. This successor will now be the external process Et



Chapter 4 Using the new concepts to describe an evolution step

                                                                                  page 19

and the successor of Et will be E2.
The temporary external process Et will be designed analogous to the external process E1.

However, there will be two differences between E1 and Et. The first difference is that Et
has a smaller trap with respect to WODAN; the trap of E1 consists of all states of E1 while
the trap from Et to E2 consists of all states of Et except for the states of Xek, which lead to
the problem. In this way, WODAN is forced to wait with completing the transition from
EVS1 to EVS2 until Et has left the states which form a problem. Secondly, all transitions
leading out of the trap of Et must be removed, so Et can no longer enter a state of Xek after
it has entered its trap to E2. This is required to make sure that Et remains trapped in the
states from where the transition to E2 can be made safely. This solution has been used in
the sections 5.3 and 7.6. An example of this solution can be found in figure 6.

Note that this solution can not be used when , thus when Xek consists of all
states of E1 as Et will have an empty trap in this last case.

S2)In the second solution, a temporary version of the internal process I2 will be used, it will
be called It. This temporary process It will be designed analogous to I2. However, it will
have some extra states and transitions: all states that are no part of I2 but that are in I1 will
be part of It together with transitions leading from those extra states to the states that are
also part of I2. The extra states that exist in It-I2 will be called Xtk. In the same way, the
subprocesses of It must be designed analogous to the subprocesses of I2 with eventually
extra states from I1. In the description of the rest of this solution, the example given in the
introduction of this section will be considered. Thus we have a subprocess I1Si of I1, a sub-
process I2Sj of I2 and a state X1 in I1Si with no corresponding state in I2Sj. Following the
first part of this solution, we now also have a temporary process It that resembles I2. As, in
the example, I2 has the same states as I1, no extra state Xt will exist in It. The process It
now needs a subprocess ItSj which consists of I2Sj together with an extra state correspond-
ing with the state X1 in I1 and a transition from that state to one of the other states of ItSj.
As the state X1 in I1 has a corresponding state X2 in I2 (and in It), this state X2 will be cho-

Figure 5. Problem situation P1

Situation during EVS1 Situation during EVS2

Internal process I1

I1S1 I1S2 I1Si I1Sn

, ... , , ... ,

External process E1,

I1Si

Internal process I2

, ... , , ... ,

I2S1 I2S2 I2Sj I2Sm

X1

X1
X2

Y2

Y2

manager of I1

I1Sk I1Sl

External process E2,

I2Sj

manager of I2

I2Sp I2Sq

Xek XE1
=



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 20

sen to complement ItSj. Generally spoken is it possible to design the subprocesses ItSj for
all combinations of subprocesses I1Si and I2Sj that can lead to problems when switching
from EVS1 to EVS2. After these subprocesses have been designed, a temporal manager Et
can be made. This process Et can be designed analogous to the process E2. However, there
will be one difference: in the states where E2 prescribes a subprocess I2Sj, the process Et
will prescribe a subprocess ItSj. Just as in solution S1, the set of these special states of Et
will be called Xek and the trap from Et to E2 will consist of all states of Et except for the
states of Xek. When this all has been designed, the transition from EVS1 to EVS2 will
elapse as follows: as soon as the transition has to be made, WODAN will prescribe Et.
Since Et resembles E2, this means that in fact the new behaviour will start from the very
beginning. However, as long as one of the subprocesses is still in a state that only exists
during EVS1, this subprocess will keep behaving according to the EVS1 behaviour. After
a while, such a state will be left and from that moment on the subprocess will have the
EVS2 behaviour. As soon as the external behaviour enters a safe state (a state in which no
problems can arise), WODAN can prescribe the external process E2, thereby making the
EVS2 behaviour definitive. An example of this solution is shown in figure 7. This solution
is not used any further in the examples in chapter 5 or chapter 7. However, the following
variant of it, called solution S3, is used in section 5.4.

S3)As mentioned above, is this solution a small variant of solution S2. It follows solution S2
until the point where Et should be designed. In stead of designing a temporal process Et,
the process E2 will be modified slightly: in all states where E2 should prescribe a subproc-
ess I2Sj, E2 can now choose between prescribing the subprocesses I2Sj and ItSj. The strat-
egy from E2 will be adapted to make this decision; there will be an extra statement like:
when it is possible to prescribe both I2Sj and ItSj, the subprocess ItSj should only be pre-
scribed when the internal process under consideration is in a state that only exists in ItSj. In
this way, the temporary subprocesses will only be used just after the transition from EVS1
to EVS2, as only immediately after this transition, the internal process under consideration
can be in such a state. When using this variant of the solution, the subprocesses ItSj are
part of the same partition as the subprocesses I2Sj; they are both subprocesses of the very
internal process It and the slightly modified manager E2 is the manager of It with respect to
this partition.

Figure 6. Example of solution S1

Situation during EVS1 Situation during EVS2

External process E1, manager of I1.

I1Si
I1Sk I1Sl

External process E2, manager of I2.

I2Sj
I2Sp I2Sq

The trap Te1 is formed by the whole state space.The trap Te2 is formed by the whole state space.

Situation during the temporary phase

External process Et, manager of I1.

I1Si
I1Sk I1Sl

The trap Tet is formed by the states in the box.

Tet

WODAN

neutral,
EVS1 busy

neutral,
EVS2 busy

in Te1 in TetE1 Et E2E1

start_
change

close_
change

designing_
new_model

switch_
to EVS2

waiting

I1 I1 I1 I2



Chapter 4 Using the new concepts to describe an evolution step

                                                                                  page 21

4.4.2. Solving problem P2: the external process has less states

Let E1 be the external process in EVS1, E2 the corresponding external process in EVS2 and let
X j be the states of the external process that do exist in E1 but that have no corresponding states
in E2. Just as in the case of the internal processes, two possible solutions can be given:
S4)Make a temporary version Et of the external process. This Et is designed analogous to E1.

However, there are two differences: the first difference is that Et has a smaller trap then E1;
the trap of Et exists of all states except for the states Xj. The other difference is that all
transitions which would lead out of the trap Et, must be removed from the process Et to
assure that Et will stay in its trap as soon as it has been entered. WODAN can now pre-
scribe Et as soon as the transition from EVS1 to EVS2 has to be made and as soon as Et
enters its trap, WODAN can prescribe E2 to finish the transition from EVS1 to EVS2. A
combination of this solution with solution S1 has been used in section 7.6.

S5)Also in this solution, a temporal version Et of the external process will be used. This tem-
poral version however, is designed analogous to E2; the STD of Et exists of the STD of E2
together with the states Xj and transitions leading from these states Xj to the states that are
taken from X2. The trap of Et consists of all states taken from E2. As in the previous solu-
tion, WODAN can prescribe Et as soon as the transition from EVS1 to EVS2 has to be

Figure 7. Example of solution S2

Situation during EVS1

Internal process I1 I1SiExternal process E1, manager of I1.

I1Si X1
X1

I1Sk I1Sl

Situation during the temporary phase

Internal process It
ItSj

X2

X3
X3

External process Et, manager of It.

ItSj
ItSp ItSq

Situation during EVS2

Internal process I2
I2Sj

X2

X3

X3

External process E2, manager of I2.

I2Sj
I2Sp I2Sq

X2

The trap Te1 is formed by the whole state space.

The trap Te2 is formed by the whole state space.

The trap Tet is formed by the states in the box.

WODAN

neutral,
EVS1 busy

neutral,
EVS2 busy

in Te1 in TetE1 Et E2E1

start_
change

close_
change

designing_
new_model

switch_
to EVS2

waiting

I1 I1 It I2

Tet



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 22

made and it can prescribe E2 to finish the evolution step as soon as Et has entered its trap
towards E2.

The intuitively difference between solution S4 and solution S5, is that in solution S4 the
model will switch to the EVS2 behaviour only after a state that exists both in the EVS1 and
EVS2 behaviour, has been entered. It will always follow its natural path (according to the
EVS1 behaviour) to arrive in such a state. In solution S5 however, the EVS1 behaviour can be
aborted as soon as possible; as soon as the model wants to leave the state which only exists in
the EVS1 case, it can travel via the extra transitions of Et to a state of the EVS2 behaviour. In
this case, the model does not have to follow the complete path through the EVS1 behaviour as
in the case of solution S4.

4.4.3. Solving problem P3: the external process has reached a state to early

Since an external process manages the subprocesses of some internal process, an external
process can only make the transition from a state X1 to a state X2 after the appropriate sub-
process has reached the trap that corresponds with this transition. A consequence of this
behaviour of the external process is, that its employees must have passed through various sub-
processes and have reached various traps, before the external process can arrive in a state Xj.
For example, let the internal process I2 with subprocesses I2Sj be an employee of the external
process E2. Furthermore, let state X21 be a state of E2 in which E2 prescribes the subprocess
I2S1 and in which E2 has to wait until I2S1 has reached its trap I2t1 to the subprocess I2S2. As
soon as I2S1 has entered this trap, E2 may follow the transition towards state X22, thereby pre-
scribing I2S2 as soon as the state X22 has been entered. When the external process E2 with its
employees is active from the start of the enactment of the model on, the model will be in a
consistent state when the external process E2 has entered the state X22; the internal processes
which are employees of E2 have previously reached the traps to the subprocesses which they
are currently restricted to by E2. However, suppose that E2 and its employees will be activated
for the first time when EVS2 starts and that during EVS1, the external process E1 will be used
in stead of E2. Let us consider the case in which the evolution step to EVS2 has to be made at
the moment that E1 is in the state X12, which corresponds to the state X22 of E2. In this case E2
will prescribe subprocess I2S2 to the internal process I2 regardless of I2 has reached its trap to
I2S2 or not. When I2 had not reached the trap to I2S2, the model will not be in a consistent
state, since a subprocess of an internal process is prescribed at a moment that this is not yet
allowed. Such a situation is shown in figure 8.

Figure 8. Example of problem P3

Situation during EVS1

External process E1 is the manager of I1.

in I2t1

Situation during EVS2

X11 X12

On the moment of the transition to EVS2 is E1
in the state X12.

External process E2 is the manager of I2.

X21 X22

I2S1 I2S2

When EVS2 is just started, E2 will be in
state X22. However, this may not be allowed
as it is not assured that I2 had already
entered the trap I2t1 from I2S1 to I2S2.

NULL NULL

Note that the external process E2 is corresponding to the external process E1 and the internal process
I2 is corresponding to the internal process I1.



Chapter 4 Using the new concepts to describe an evolution step

                                                                                  page 23

Note that this problem will only arise when the trap structure of I2 is really different from that
of I1, with I1 being the corresponding internal process during EVS1. This will mostly happen
when the internal process I2 is an entirely new process; since during EVS1 the NULL process
will have been prescribed, the internal process will have had no history at all and therefore it
will not likely be in the state where it should have been at the moment of entering EVS2.
However, since this problem also can arise in other cases, the internal process during EVS1
still will be referred to as I1 and not as NULL.

The above given problem can be solved in one of the following manners:
S6)Let X2k be the set of states of E2 in which the problem can arise. Furthermore, let X1k be

the set of corresponding states of E1. Design a temporary external process Et which is
designed analogous to E1. There will be two differences between E1 and Et. The first dif-
ference is that the trap of E1 consists of all states of E1 while Et’s trap consists of all states
of Et except for the states of the set of states Xtk corresponding with the set of states X1k of
E1. The second difference is that all transitions leading out of the trap of Et have to be
removed. WODAN can then prescribe Et as soon as the transition from EVS1 to EVS2 has
to be made and it can finish the transition by prescribing E2 as soon as Et has entered its
trap.

Note that this solution can only be used when the states of Xtk of Et don’t form a trap by
themselves, otherwise the transition to EVS2 can never be finished when Et has entered a
state Xtk. This solution has been used in section 7.3.1. An example of this solution is
shown in figure 9.

S7)First analyse the specification of the software process during EVS1 and during EVS2 and
decide whether it is allowed to have an inconsistency during the first moment that EVS2 is
active. In the following step, a temporary external process Et can be made, which consists
of some kind of mixture of the external processes E1 and E2; this Et will partially have the
behaviour of E2 but it will wait for the trap of I2 in another state then E2 would have done.
In which state it will wait depends on where the inconsistency may exist according to the
analyses in the first step and where it is not allowed. In this way, when the external process
Et is in some states, it will permit the inconsistency to exist and when Et is in some other
states, it will prohibit the inconsistency to exists. The states in which the inconsistency is
not allowed, can form the trap from Et to E2. Just as in the previous solutions, WODAN
can first prescribe Et to start the transition from EVS1 to EVS2 and it can prescribe E2 to

Figure 9. Example of solution S6

Situation during EVS1

in I2t1

Situation during EVS2

X11 X12 X21 X22

I2S1 I2S2NULL NULL

Situation during temporary phase

Xt1 Xt2

NULL NULL

External process E1.
The trap Te1 is formed by the whole state space.

External process Et.
The trap Tet is formed by the states in the box.

Tet

External process E2.
The trap Te2 is formed by the whole state space.

WODAN

neutral,
EVS1 busy

neutral,
EVS2 busy

in Te1 in Tet
E1 Et E2E1

start_
change

close_
change

designing_
new_model

switch_
to EVS2

waiting



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 24

finish the transition as soon as Et has entered its trap. An example of such a solution is
shown in figure 10.

S8)This is the most complex solution. In the previous two solutions, the transition was post-
poned until the external process was in a state were no inconsistencies can arise (solution
1) or the inconsistencies were allowed to exist for a while during the first moment of EVS2
(solution 2). In this solution however, the transition from EVS1 to EVS2 will be made
immediately, with the restriction that, when the inconsistency arises on entering EVS2, the
behaviour of E2 and its employees will be “rolled back” to a state/subprocess which is nor-
mally reached earlier during the enactment of the model. To get this effect, again a tempo-
rary external process Et will be necessary. The internal process I which causes the
inconsistency will also need a temporary version It with subprocesses ItSj. Since using this
solution is a matter of high qualified engineering for each individual change of each indi-
vidual model, the way to solve this problem will be sketched only roughly here. A more
detailed example can be found in section 7.3.2, where a solution of the ISPW-7 example is
given.

Let E1, X12, E2, X21, X22, I2, I2Sj, I2S1 and I2S2 be as in the introduction of this section.
Then Et can be designed analogous to E2 but with the following differences: Et has some
extra state Xta labelled ‘aborting process’, ‘turning back operations’ or whatever, with a
transition from the state Xt2 (corresponding with the state X22) leading to this state Xta.
This transition can be labelled ‘abort process’ or something alike. Furthermore, a second
temporary process Eu can be designed which consists at least of the state Xua correspond-
ing with Xta of Et and a state Xu1 corresponding with state X21 of E2. The process Et can
have two traps: one consisting of all states in which no inconsistencies can arise and the
other one consists of the state Xta. The first one is a trap towards the subprocess E2 while
the second one is a trap towards the subprocess Eu. The trap of Eu can consists of the state
Xu1. Furthermore, the temporary internal process It and its subprocess ItS2 can have an
extra transition in which it calls the export operation ‘abort process’ of the manager Et and
after this transition it will arrive in a trap to the previous subprocess ItS1. WODAN can
now first prescribe the process Et; when Et is in a consistent state, it will arrive in the trap
to E2. In the other case, the internal process can be forced to follow the ‘call abort’ transi-
tion by prescribing an appropriate subprocess to it, and as soon as the internal behaviour
has done this call, the manager process Eu can be prescribed by WODAN. The manager Eu
can now manage the behaviour of the internal process until it arrives in a state that is com-

Figure 10. Example of solution S7

Situation during EVS1
in I2t1

Situation during EVS2

X11 X12 X21 X22

I2S2

Situation during temporary phase

External process E1, manager of I1.
The trap Te1 is formed by the whole state space.

External process Et.
The trap Tet is formed by the states in the box.

Tet

External process E2.
The trap Te2 is formed by the whole state space.

WODAN

neutral,
EVS1 busy

neutral,
EVS2 busy

in Te1 in Tet
E1 Et E2E1

start_
change

close_
change

designing_
new_model

switch_
to EVS2

waiting

X13

I2S2

X23

in Itt1

Xt1 Xt2

ItS1 ItS1 ItS2

Xt3

I2S1
I1S1 I1S1 I1S2

in I1t1



Chapter 4 Using the new concepts to describe an evolution step

                                                                                  page 25

pletely consistent with the EVS2 behaviour and as soon as Eu has entered such a state,
WODAN can prescribe E2, thereby completing the transition to EVS2. An example of this
scenario is shown in figure 11.

Note that this scenario is just a skeleton to sketch the process of rolling back the behaviour
of a model during evolution to solve inconsistencies. In real life, many variants on this
skeleton can exist. Even the example in section 7.3.2 differs a bit from this scenario.

4.5. Concluding remarks

In this chapter we have seen how the new concepts of WODAN and anachronistic external
and internal processes can be used to describe process evolution. In the first section, a very
general method to describe process evolution has been shown. This method can always be

Figure 11. Example of solution S8

Situation during EVS1

in I2t1

Situation during EVS2

X11 X12 X21 X22

I2S1 I2S2NULL NULL

Situation during temporary phase 1

External process E1.
The trap Te1 is formed by the whole state space.

External process Et.

External process E2.
The trap Te2 is formed by the whole state space.

WODAN

neutral,
EVS1 busy

neutral,
EVS2 busy

in Te1 in Tet2
E1 Et E2E1

start_
change

close_
change

designing_
new_model

switch_
to EVS2

waiting

Xt1 Xt2

ItS1 ItS2

ItS2

Xta

abort_proces
in Itta

Tet2

Teta

Situation during temporary phase 2

Xu1

IuS1

IuS2

Xua

Tut

It has two traps:
  trap Tet2 to E2.
  trap Teta to Eu.

External process Eu.
The trap Tut is formed by the states in the box.

in Tet

Eu

switch_
to EVS2

in Teta

aborting

call_abort_process

Ittabort
Internal process ItS2.

Note that the subprocesses ItS1 and IuS1 may be nearly empty subprocesses consisting of only one state,
just like the NULL process prescribed during EVS1 with which these two subprocesses correspond.



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 26

used but it will lead to unnecessary complex evolution descriptions in many cases. In the fol-
lowing sections, we have made use of the fact that many similarities between the processes
used before the evolution step and the processes used after the evolution step may exist. This
notion leads to simpler process evolution descriptions. However, there can be many problems
when using such simplifications. The rest of this chapter contained some general solutions to
solve the most important problems which can arise. These solutions range from very simple
ones to very complex ones. The last solution, solution S8 shown in section 4.4.3., is even that
complicated that it is merely an example of using the general method shown in section 4.1.
then an example of exploiting the similarities in the model before and after the evolution step.



Chapter 5 An example of changing an enacting process model

                                                                                  page 27

Chapter 5
An example of changing an enacting process
model

In this chapter, a concrete example of process evolution is shown which makes use of the con-
cepts developed in the previous chapters. In this first example, a dynamic change of type 1 will
be made. This means that only the strategy, the transitions and the subprocesses may change.
There will be no change in the state space of the processes or in the number of processes the
model consists of.

The reason to make an example of change type 1, is to examine whether such a strong
restriction is useful. As it turns out, it is possible to change a model with the type 1 change but
it makes the model unnecessary complex. To avoid this complexity, the type 1 change will be
redefined such that it will be a weaker restriction.

When making the wanted change to the model during enactment, the problem P1 -the sub-
process of an internal process has less states- will arise and this problem will be solved with
both solution S1 and solution S3.

The model that is going to be modified is an extension of the example in [2], which is an
example of using SOCCA to model (a small part of) the ISPW-6 case. In that example the cen-
tral class is the classDesign, which is the model for the process of designing a document. In
the extension, which is the start model for the example in this chapter, a monitor processint-
monitor1 has been introduced that monitors the progress ofDesign. Design has also been
modified to support this monitor process. The STD ofint-monitor1 and ofDesign can be
found in figure 12 and in figure 13 respectively.

Int-monitor1 has been designed to follow every phase ofDesign: Design must send a notify to
the monitor when the modification has been opened and when it has been closed and it must
also notify the monitor when review has been opened and finallyDesign must report the
review result to the monitor to give the monitor the opportunity to update the statistics (one of
the requirements of the ISPW-6 case, see [3], section 2.6.3).

As can be seen in figure 13 the STD ofDesign (which is an external process and therefore a
manager process of some internal processes) is in fact just a subprocess with respect to
WODAN. In the normal case, when the software process is being enacted and no change has
to be made to it, this subprocess will continually be prescribed by WODAN so this notion of
an external process being only a subprocess does not influence the behaviour in normal case.

no_
monitoring

act_mon call_not_mod_opened call_not_mod_closedmonitor_
started

notify_mod_
opened_
asked

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

update_
statistics

update_
statistics

Figure 12. Int-monitor1: STD of the internal behaviour

1 2 3 4

56

W.r.t. to WODAN is this subprocess s-36a and the state space is trap t-36a



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 28

When the behaviour ofDesign has to be changed for any reason, a new STD forDesign can be
made and at the appropriate time instant this new STD can be prescribed by WODAN in stead
of the actual one.

To monitor the behaviour ofDesign, the monitor needs some subprocesses, which can be
found in figure 14.
   Subprocess s-31 is the start state ofint-monitor1 for the first instance ofDesign; there is only
one monitor per design document but there are many instances ofDesign for each design doc-
ument: one instance for every separate version of the very same document (see [2] for a justi-
fication of this). In the subprocess s-31,int-monitor1 will be waiting untilDesign will start the
modifications. In subprocess s-32 it will be waiting untilDesign has closed the modification
and in s-33 and s-34 it will be waiting untilDesign has started the review process and until it
has reported the review result respectively. After thisint-monitor1 will go back to subprocess
s-31 (when the review result isnot_ok) or to the neutral subprocess s-35 (when the review
result isok). Note that s-35 is also the starting state for the other instances ofDesign.

s-35 s-31 s-31 s-31 s-32 s-32

s-33

s-33

s-34

s-34

s-34 s-35

s-35s-34

s-31 s-32

in t-35 in t-31

in t-32

in t-33

in t-34

in t-34

non_existent

prepare

starting_creation

creatable created

open_
for_mod

not_
mod_op

pre_modifiable modifiable

close_
mod

closed

starting_modification

modifycreate_next

create_
first

pre_review

not_mod_closed

pre_review

open_for
_review

starting_reviewclosed

reviewable closed readable

starting_copying

close_and_
review_
not_ok

close_
and_rev
_ok

notify_
  review_
   opened

report_
rev_res

copy

report_review
_result

review

Figure 13. Design: only viewed as manager of int_monitor1
W.r.t. to WODAN is this subprocess s-36 and the state space is trap t-36

17 20 21

19 18 16 22

15

7 8 10 11

9

12 14

13



Chapter 5 An example of changing an enacting process model

                                                                                  page 29

5.1. Designing a new model

Suppose that the monitor gets a short-cut fromnotify_mod_opened_asked to
report_review_result because for small projects the exact intermediate result is not relevant,
then the monitor and its subprocesses can be designed as in figure 15 and in figure 16 respec-
tively.

When comparing int-monitor1 with int-monitor2, the following notions can be found:
  • The subprocesses of int-monitor2 are numbered the same as the subprocesses of int-

monitor1. This is done to show the correspondence between the subprocesses of int-
monitor1 and int-monitor2; subprocesses with the same number in both models corre-
spond with each other.

  • In the new model, subprocess s-34 has an extra state 3 and a transition from state 3 to 6.
  • In the new model, subprocess s-35 has an extra transition from state 3 to 6.
  • Int-monitor 2 has an extra subprocess s-39. This subprocess will be used in section 5.5,

until there it can be ignored.

no_
monitoring

act_mon call_not_mod_openedmonitor_
started

notify_mod_
opened_
asked

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

update_
statistics

update_
statistics

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

no_
monitoring

act_mon call_not_mod_opened call_not_mod_closedmonitor_
started

notify_mod_
opened_
asked

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

update_
statistics

update_
statistics

s-35

t-35

s-31

t-31

call_not_mod_closednotify_mod_
opened_
asked

not_mod_
closed_asked

s-32

t-32

s-33

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

t-33

s-34

t-34

Figure 14. Int-monitor1: subprocesses and traps w.r.t. Design



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 30

As long as the current version ofDesign is being kept as a manager of monitor, it is possible to
switch fromint-monitor1 to int-monitor2 when enacting without introducing inconsistencies.
Thus in this special case, we are not obliged to use a new version ofDesign when switching to
the new evolution stage. However, as long as we keep using the old version ofDesign, Int-
monitor2 will show the same behaviour asInt-monitor1. This follows from the notions below:
  • As, with respect toDesign, trap t-31 is only a trap from subprocess s-31 to s-32 the newly

introduced transition from state 3 (t-31) to state 6 (in s-34) will not be used, so the behav-
iour remains the same.

  • With respect toDesign s-34 can only be reached from s-33 so the newly introduced state 3
in s-34 can not be reached and because of this it will not affect the behaviour.

  • Subprocess s-35 (the neutral subprocess) means that all states from the monitor can be
reached so introducing an extra transition here does not effectively influence the behav-
iour.

As mentioned above, the design process also has to be changed to achieve the new result. This
new design process will be calledDesign2. Its STD is shown in figure 17.Design2 can pre-
scribe different subprocesses in some states. Which subprocess will be chosen depends on the
strategy:
Str-1 Determine in state 11 whether it is a small project or a big project. When it is a small

project follow the path 12, (13), 15, 17 prescribing subprocess s-34 in all states. Other-
wise follow the path 12, (13), 14, 15, 16, 17 prescribing subprocess s-32, (s-32), s-32,
s-33, s-33 and s-34 respectively.

Another strategy which can be used is the following one:
Str-2 Determine in every state in which two different subprocesses can be prescribed

whether it is a small project or a large project. When it is a small project subprocess s-
34 has to be prescribed and the transition to the following state has to be taken follow-
ing the path 12, (13), 15, 17. Otherwise subprocess s-32 or s-33 has to be prescribed
(depending on the state) and the transition to the following state has to be taken follow-
ing the path 12, (13), 14, 15, 16, 17.

When using strategy str-2, one of the consistency problems as mentioned in the previous chap-
ter will arise. As it is one of the purposes of this example to clarify these problems with their
solutions, the strategy str-2 will be worked out in the following sections.

Note that in this special case, the consistency problem could have been avoided by using
strategy str-1 in stead of strategy str-2.

Note also that in fact the new process descriptions ofDesign and ofint_monitor are only
new subprocesses of some anachronistic processes. The transition from the old subprocess
int_monitor1 to the new subprocessint_monitor2 and from the old subprocessDesign to the
new subprocessDesign2 is made when WODAN prescribes the subprocesses corresponding

no_
monitoring

act_mon call_not_mod_opened call_not_mod_closedmonitor_
started

notify_mod_
opened_
asked

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

update_
statistics

update_
statistics

1 2 3 4

56

call_report_review_
result

Figure 15. Int-monitor2: new STD of the internal behaviour
W.r.t. to WODAN is this subprocess s-36b and the state space is trap t-36b



Chapter 5 An example of changing an enacting process model

                                                                                  page 31

with the new STD’s.
Despite the remark above that we are not obliged to use a new version ofDesign when

switching to the new evolution stage, it is still necessary to design WODAN in such a way that
the transition fromint-monitor1 to int-monitor2 is made simultaneously with the transition
from Design to Design2, just as has been pointed out in section 3.1. This is the case since
Design2 can prescribe certain subprocesses ofInt-monitor2 which are no subprocess ofInt-
monitor1.

Thus in this case, it is possible to prescribeDesign together withInt-monitor2 (in accord-

no_
monitoring

act_mon call_not_mod_openedmonitor_
started

notify_mod_
opened_
asked

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

update_
statistics

update_
statistics

1 2 3 4

56

no_
monitoring

act_mon call_not_mod_opened call_not_mod_closedmonitor_
started

notify_mod_
opened_
asked

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

update_
statistics

update_
statistics

1 2 3 4

56

call_report_review_
result

call_not_mod_closednotify_mod_
opened_
asked

not_mod_
closed_asked

3 4

s-31

t-31

s-32

notify_mod_
opened_
asked

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

3

56

call_report_review_
result

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

4

5

s-33

t-33

call_not_mod_closednotify_mod_
opened_
asked

not_mod_
closed_asked

call_notify_
review_opened

not_review
opened_
asked

report_rev_
result_asked

call_report_review_result

2 3 4

56

s-34

t-34

s-39

s-35

t-35
Figure 16. Int-monitor2: subprocesses and traps w.r.t. Design

t-39



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 32

ance with the remark on page 30, but this is not very useful) but it is not possible to prescribe
Design2 together withInt-monitor1.

5.2. Starting the new model during the enactment of a software process

In the previous section, we have designed new models to model the changed behaviour of the
monitor operation and the classDesign. In this section, we will model the behaviour of the
evolution step to switch from the old behaviour of the total model to the new behaviour of the
total model. As only the behaviour ofDesign and ofInt-monitor changes, we will only take
these two behaviours into consideration.

In comparing the original model with the new model the following observations can be
made:
A) When the actual instance ofDesign models designing a huge project the behaviour

remains the same so the new processes can be started immediately.
B) When the monitor is in s-31 or s-34 no inconsistencies will be introduced.

s-35 s-31 s-31 s-31
s-32 or

s-32

s-33 or

s-33

s-34

s-34

s-34 s-35

s-35s-34

s-31

in t-35 in t-31

in t-32

in t-33

in t-34

in t-34

non_existent

prepare

starting_creation

creatable created

open_
for_mod

not_
mod_op

pre_modifiable modifiable

close_
mod

closed

starting_modification

modifycreate_next

create_
first

pre_review

not_mod_closed

pre_reviewstarting_reviewclosed

reviewable closed readable

starting_copying

close_and_
review_
not_ok

close_
and_rev
_ok

report_
rev_res

copy

report_review
_result

review

W.r.t. to WODAN is this subprocess s-38 and the state space is trap t-38

17 20 21

19 18 16 22

15

7 8 10 11

9

12 14

13

close_mod

notify_r_opened

open_for_reviewopen_for_review

Figure 17. Design2: only viewed as manager of int_monitor2

s-34

s-32 or
s-34

s-34



Chapter 5 An example of changing an enacting process model

                                                                                  page 33

C) When it is a small project and the monitor is in s-32 or s-33 a problem can arise: when
switching to the new model,Design2 will prescribe s-34 because of it is strategy str-2
(determine in every state which project type it is and prescribe the right subprocess accord-
ing to the project type). When at this moment the monitor is in state 4 (which is possible in
both subprocesses) it can not leave this state any more since state 4 and the transitions out
of state 4 are no part of s-34. This is an example of problem P1 as mentioned in chapter 4.

The problem introduced in observation C can be solved in 3 manners:
  • Introduce the new method only when the monitor is not in state 4, so when it is not in sub-

process s-32 or s-33. This means that the new behaviour must be introduced in some
phases: say to design that the new behaviour has started but that it has to wait with the new
strategy until it is in a safe state. This solution, which in fact is solution S1 of the previous
chapter, can be found in section 5.3..

  • Make an extra subprocess s-39 which consists of the states from the subprocesses that
would introduce inconsistencies and change the strategy ofDesign2 to be the following
one (str-3): when switching to the new process description while prescribing s-32 or s-33
and according to the new strategy s-34 would be necessary, then prescribe s-39 in stead of
s-34. This method can be found in section 5.4. and it is an example of solution S3.

  • Use another strategy in which the problem does not arise (like strategy str-1). This solution
has not been mentioned in chapter 4 since it is not a solution to the general problem that
the subprocess which will be prescribed during EVS2, misses one of the states of the cor-
responding subprocess during EVS1. However, it will always be a good advise to examine
the model carefully to find out whether it is possible to avoid the inconsistencies by using
a differently designed model which exploits specific properties of the real life process
which has to be modelled and of the models which have been used in the original evolu-
tion stage. This approach is similar to the one used in the special solutions shown in chap-
ter 4. The special solutions shown there exploited a specific property of the models before
and after the evolution step; they all made use of the fact that many similarities exist
between the STD’s before and the STD’s after the evolution step. The special solution
shown here makes use of another specific property; it makes use of the fact that the total
behaviour of the model is not only determined by the STD’s but also by a strategy.

5.3. Designing WODAN to manage the change

When choosing for solution S1, WODAN must consist of 4 states:
  • There is no change made, the whole process can be enacted at a normal way.
  • The new processes are being designed. The process still has to be enacted at the old way.
  • The new processes have been designed. The intermediate phase of the design process can

be started.
  • Design has reached a safe state, the final subprocess of design can be prescribed and eve-

rything can enact at the new way.
The intermediate subprocess of design, which will be calledTempDesign, and WODAN are
shown in figure 19 and in figure 18 respectively.

TempDesign is a manager ofint-monitor1. As has been mentioned in solution S1, it is
designed analogous toDesign with the trap ofTempDesign consisting of the states in which no
problem will arise and with the transitions which would lead out of this trap, removed from
the STD ofTempDesign.



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 34

5.4. Using an extra subprocess for int-monitor to avoid intermediate states

When choosing for solution S3, WODAN only has to consist of 3 states since there is no inter-
mediate phase for the design process. The design process, calledDesign3, has to manage eve-
rything at the right manner with the aid of the extra subprocess s-39 and strategy str-3.
Design3 and WODAN to control the change are as displayed in figure 21 and in figure 20

respectively.

s-36 s-36 s-37 s-38

no_changing

start_change

designing_new_
monitor_and_design

close_change

switch_to_new
_process

no_changing

in t-36 in t36a, t-37

Figure 18. WODAN: switch to int-monitor2 and Design2 via TempDesign.

26 27 28 29

s-36a s-36a s-36a s-36b

s-35 s-31 s-31 s-31 s-32 s-32

s-33

s-33

s-34

s-34

s-34 s-35

s-35s-34

s-31 s-32

in t-35

in t-32

in t-33

in t-34

in t-34

non_existent

prepare

starting_creation

creatable created

open_
for_mod

pre_modifiable modifiable

close_
mod

closed

starting_modification

modifycreate_next

create_
first

pre_review not_mod_closed

pre_reviewstarting_reviewclosed

reviewable closed readable

starting_copying

close_and_
review_
not_ok

close_
and_rev
_ok

report_
rev_res

copy

report_review
_result

review

17 20 21

19 18 16 22

15

7 8 10 11

9

12 14

13

notify_r_opened

open_for_review

s-37

t-37
Figure 19. TempDesign: subprocess for transition to the new design



Chapter 5 An example of changing an enacting process model

                                                                                  page 35

5.5. Losing some restrictions

As can be seen from this example, restriction 1 (only change strategies, transitions and sub-
processes) is too strong to make it possible to design models for the external processes which
are easy to interpret:

When there are no extra states (in accordance with restriction 1) the manager must examine
its strategy to determine which subprocess should be prescribed in some states. This makes the
model very complicated to interpret since one can no longer determine from the state of the
manager process in which subprocess the employee process is. To find this out one should
know all about the followed strategy and eventually the followed history up to now. Thus, it
would be useful when the manager has some extra states to prescribe the new subprocesses
introduced for the new behaviour restrictions.

s-36 s-36 s-40

no_changing

start_change close_change

in t-36, t-36a

no_changingchanging monitor and design

Figure 20. WODAN: switch to monitor2 and Design3.

30 31 32

s-36a s-36a s-36b

s-35 s-31 s-31 s-31 s-32

s-33

s-34

s-34

s-34 s-35

s-35s-34

s-31

in t-35 in t-31

in t-32

in t-33

in t-34

in t-34

non_existent

prepare

starting_creation

creatable created

open_
for_mod

not_
mod_op

pre_modifiable modifiable

close_
mod

closed

starting_modification

modifycreate_next

create_
first

pre_review

pre_reviewstarting_reviewclosed

reviewable closed readable

starting_copying

close_and_
review_
not_ok

close_
and_rev
_ok

report_
rev_res

copy

report_review
_result

review

17 20 21

19 18 16 22

15

7 8 10 11

9

12 14

13

close_mod

notify_r_opened

open_for_reviewopen_for_review

s-33 or
s-34 or
s-39

s-32 or
s-34 or
s-39

s-32 or
s-34 or
s-39

notify_mod_closed

no trap or in t-39

W.r.t. to WODAN is this subprocess s-40 and the state space is trap t-40
Figure 21. Design3: only viewed as manager of int_monitor2



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 36

Therefore, the first restriction will be redefined to the following one:
restriction 1') Do not change the state space of the internal processes, only change the strate-

gies, transitions and subprocesses. When necessary, do introduce extra states
for the external processes to prescribe the new subprocesses in a clear manner.

When applying this new restriction 1' to the example one only has to change the manager
process (Design) and the introduction of this manager (via WODAN). In the new design proc-
ess description there will be enough states to prescribe only one subprocess per state. This will
also simplify the strategy:
Str-4 Determine in state 11 whether the current is project small or large. When it is a small

project the path 23, (24), 25, 17 has to be followed, prescribing the right subprocesses.
Otherwise the (old) path 12, (13), 14, 15, 16, 17 has to be followed, prescribing the
right subprocesses.

In fact this strategy is analogously to strategy str-1 in section 5.1., the only difference is that
following the right path and prescribing the right subprocesses is now explicitly forced by the
states of the STD ofDesign, while in the other case it was implicitly forced by the strategy.

As this new version ofDesign has been extended with some extra states and transitions, it
will be calledExtendedDesign. When switching toExtendedDesign, no inconsistencies will be
introduced sinceExtendedDesign can not prescribe s-34 when it was prescribing s-32 or s-33
according to the old behaviour. It now first has to follow the path corresponding to the old path
in subprocess s-36, since it can only decide in state 11 to follow the new path according to the
new strategy.

Therefore, introducing this change of the software process model only requires 3 states for
WODAN. WODAN andExtendedDesign are shown in figure 22 and in figure 23 respectively.

5.6. Concluding remarks

  • Although it is possible to change the behaviour of an enacting process with the restriction
that the state space is not to be changed at all, this introduces some problems:
  • There is a high probability that problem P1 arises as in some states a new subprocess

will be prescribed which contains other states and transitions then the subprocess that
was prescribed according to the old strategy.

  • It is hard to interpret the exact state of the process as in one state more subprocesses
can be prescribed. To interpret the exact state one should be aware of the followed
strategy and the history up to then.

The first problem can be solved with the solutions mentioned in chapter 4. The second
problem however, can not be solved in such a manner. To avoid this problem, the first
restriction has been made less stronger to allow extra states for the managers.

  • The problems mentioned in the previous chapter can sometimes be avoided by carefully
extending the model. In my personal opinion, such a carefully designed extension should
be used whenever possible as it seems to be better to avoid inconsistencies then to solve
them afterwards.

  • In practice, it may be possible to exploit special properties of the real life processes and the

s-36 s-36 s-41

no_changing

start_change close_change
in t-36, t-36a

no_changingchanging monitor and design
(design will be changed into
ExtendedDesign)

33 3534

Figure 22. WODAN: switch to ExtendedDesign and int-monitor2.

s-36a s-36a s-36b



Chapter 5 An example of changing an enacting process model

                                                                                  page 37

models which have been used before and after the evolution, to simplify the evolution
step. Thus, one can not only make use of the similarities between the STD’s before and
after the evolution steps as has been shown in chapter 4 but one can also exploit other
properties like the strategy which is being used.

s-35 s-31 s-31 s-31 s-32

s-33

s-34

s-34

s-34 s-35

s-35s-34

s-31

in t-35

in t-32

in t-33

in t-34

in t-34

non_existent

prepare

starting_creation

creatable created

open_
for_mod

pre_modifiable

modifiable

closedstarting_modification

create_next

create_
first

pre_review

pre_reviewstarting_reviewclosed

reviewable closed readable

starting_copying

close_and_
review_
not_ok

close_
and_rev
_ok

report_
rev_res

copy

report_review
_result

review

17 20 21

19 18 16 22

15

7 8 10 11

9

23

1424

close_mod

notify_r_opened

open_for_review
open_for_review

notify_mod

W.r.t. to WODAN is this subprocess s-41 and the state space is trap t-41

modifiable

starting_modification

12

13

not_mod_opened

not_mod_opened

in t-31

in t-31 s-32

s-32

s-34

s-34

close_mod

_closed

s-33s-34

pre_review

25

Figure 23. ExtendedDesign: only viewed as manager of int_monitor2



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 38

Chapter 6
Extending the model to cover more of the
ISPW-6 example

In the next chapter, the process change part of the ISPW-7 example will be worked out in
SOCCA. However, before we can start with this, the SOCCA example, which is based on the
ISPW-6 case, must be extended somewhat because of the following reason. The change that
has been proposed in the ISPW-7 example concerns the cooperation betweenDesignDocu-
ment and (modify) Code. As Code has not yet been included in the current model, this has to
be done first.

We will continue with the last version of the model as presented in the previous chapter; for
designing a document, the model ofExtendedDesign (figure 23) will be used andint-monitor2
(figure 15) will be used to model the process of monitoring the progress ofExtendedDesign.

SinceExtendedDesign is a model for designing a document, it will be calledDesign again in
the sequel of this thesis and likewise,int-monitor2 will be referred to asint-monitor from now
on. Furthermore, the SOCCA model as it is at this moment, will be called ‘the original
SOCCA model’ or the ‘original SOCCA example’ and the model introduced in this chapter
will be called ‘the current model’ or ‘the current SOCCA example’.

In this chapter, the SOCCA approach will be followed as far as possible; not only the behav-
ioural aspects of the processes will be modelled with the PARADIGM part of SOCCA, but
also the data aspects will be modelled by means of the EER based class diagrams and the
SOCCA extensions to these. However, the process perspective will be ignored as the use of
object flow diagrams and the integration of these into SOCCA has currently not been worked
out completely.

6.1. Redesigning the class diagrams

First a new class diagram has to be defined, as in addition to the human agents also automated
tools are necessary. For example a compiler to compile a code source document into a code
object document. This class diagram is given in figure 24.

Together with this class hierarchy specification the attributes and operations of the various
classes have to be defined. They are presented in figure 25.

In this class diagram two extra classes have been defined compared with the original
SOCCA example:
  • Compiler: this is an automated tool for compiling source code into object code. It will be

discussed in detail further down.
  • ProjectManager: this is the project manager with several tasks, like scheduling and assign-

ing tasks and monitoring the progress of the design and review process. The behavioural
aspects of the monitor process have been worked out in chapter 5. However, as chapter 5
was only meant to show the basic aspects of dynamic process change within SOCCA, the
other SOCCA aspects of the monitor were not discussed there. Therefore, these other
SOCCA aspects of the monitor will be discussed here.

The project manager’s task ‘scheduling and assigning tasks’ is called
assign_and_schedule_tasks and its behaviour will also be discussed here.

Furthermore, some operations are moved from the superclassDesignDocument to the subclass



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 39

Design, as these operations are only necessary inDesignDocument’s subclassDesign and not
in DesignDocument’s subclassCode. A last change in the class diagram is that the part-of rela-
tion ship betweenProjectDocs and the various documents has been moved from the sub-
classesDesign, Code, TestPlan andTestPack to their ancestor classDocument. This has been

Engineer Docu-
ment

Compiler Project-
Manager

QA
Engineer

Design
Engineer

Design
Docu-
ment

Test
Docu-
ment

Tools Project
Team

Design Code Test
Plan

Test
Pack

Project

Project
Docs

Figure 24. Class diagram: classes and is-a and part-of relationships

design
review
code

DesignEngineer

name

create_version

ProjectDocs

open_for_modify
modify
close_modification
notify_mod_opened
notify_mod_closed

Document

documentname

prepare
create_first
create_next
copy

DesignDocument

versionnumber
content

compile

Compiler

language

assign_and_schedule_t.
monitor

ProjectManager

name

Figure 25. Class diagram: attributes and operations

compile
compile_ok
compile_not_ok
release_object_code
test_object_code
test_ok
test_not_ok

Code

open_for_review
review
close_and_review_ok
close_and_review_not_ok
notify_review_opened
notify_review_result

Design



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 40

done to show more explicitly thatProjectDocs is constituted of (many)Documents.
In the following step the general relationships between the classes have to be defined. For

the sake of completeness not only the relationships between the new classes are shown but
also the other relationships from the current SOCCA example. The general relationships are
shown in figure 26.

Note that in the SOCCA example the superclassDesignDocument has been defined. Both the
classesCode andDesign inherit operations and attributes of this superclass. The classCode
represents a code document and likewise, the classDesign represents a design document. In
the discussion in this theses, terminology is used to address both code documents and design
documents. The term ‘design document’ means an actual instance of the classDesign and not
an instance of the superclassDesignDocument.

As a last step in the EER part of the SOCCA specification, the uses relationship is given (fig-
ure 27) together with the import list (figure 28). Note that in the import list some export oper-
ations are parametrized with the parameterdoc_name. Each such parametrized operation in
fact stands forn separate export operations wheren is the number of different document
names.

One of the requirements of the ISPW-6 case is thatCode has to wait with releasing the
object code for the test phase until the design document has been approved. The behaviour of
Code therefore depends on the behaviour ofDesign, this dependency is modelled via the inter-
nal behaviour ofrelease_object_code. As can be seen in figure 56 on page 55, which shows
the traps and subprocesses ofint-release_object_code with respect to Design, int-
release_object_code waits in its starting state untilDesign has been approved. Since it is wait-
ing in its starting state, there is no transition to this state which could be associated with an
export operation ofDesign. This means that the dependency of the behaviour ofCode on the
behaviour ofDesign is not modelled via an explicit export operation ofDesign but via an
implicit dependency. Therefore this uses relationship (uses11) is shown with a dashed arrow in
stead of a solid one in the import/export diagram. Note that this is a deviation of the original

Project
Manager

Design
Docu-
ment

Design
Engineer

DesignCode

Compiler

Project
Docs

codes

compiles
modifies

reviews

monitors

Figure 26. Class diagram: classes and general relationships

assigns tasks

Docu-
ment



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 41

SOCCA approach. We will come back to this further on in the thesis were we discuss the com-
munication betweenCodes export operationrelease_object_code and the external behaviour
of the classDesign.

6.2. Designing the external behaviours of the classes

The next step consists of modelling the external behaviours of the classes. From then on, the
order in which the export operations can be called will be known.

Modifying the code has to be carried out by a design engineer. The export operationcode of
DesignEngineer can be parametrized, just like the export operationsdesign andreview in the
original SOCCA example. The operations can be called in any order, so adding thecode oper-
ation to the external behaviour ofDesignEngineer is straightforward. The new STD will be as
in figure 29. Entering the statestarting code can be viewed as starting the modify code activ-
ity.

The behaviour of the classProjectDocs is also extended because now not only new versions

Design
Engineer

Project
Docs

Code Design

Project
Manager

Compiler

uses1

uses2

uses3

uses4

uses5uses5

uses6

uses7

uses9

Figure 27. Import/export diagram

uses8

uses10

uses11

use1
design(doc_name)
review(doc_name)
code(doc_name)

use2
create_version(doc_name)

use3
create_first
create_next

use4
open_for_modification
modify
close_modification
open_for_review
review
close_and_review_ok
close_and_review_not_ok

uses5
copy
prepare

uses6
notify_modification_opened
notify_modification_closed
notify_review_opened
report_review_result

uses7
open_for_modification
modify
close_modification

uses8
compile(doc_name)

uses9
compile_ok
compile_not_ok

uses10
monitor(doc_name)

uses11
waiting for design approved (no explicit export oper.)

Figure 28. Import list



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 42

of design documents have to be created but also new versions of code documents. The new
behaviour ofProjectDocs is shown in figure 30. This model has two transitions with the same

label create_version. This is necessary because of the trap structure of its employeesint-
design andint-code. One transition will be followed whenint-code enters the appropriate trap
and the other transition will be followed whenint-design enters the appropriate trap. See sec-
tion 6.4 for the details.

The third class,Design, remains unmodified as the extensions to the original SOCCA model
do not influence the behaviour of this class.

Modifying the code document has been modelled by means of a separate class. This class is
calledCode and it is the fourth class in the current SOCCA example. Just like in the case of
Design there will be one instance ofCode, representing exactly one version of a code docu-
ment (a source code and eventually the associated object code). The STD forCode will is dis-
played in figure 31. Some of its operations are inherited from its superclasses
DesignDocument andDocument. Other operations are specific for the classCode itself. The
STD ofCode is designed analogously to the STD ofDesign; the first part models creating the
new version of the document and modifying it and the last part models the process of reading
and copying it. The only real difference is in the middle part; for a design document the model
has to reflect the behaviour of reviewing the design, while for the code document the behav-
iour of compiling and testing the code document has to be modelled. The part of testing the
document will not be worked out further in this example.

Note thatcompile automatically creates an object code document when the compile result is
compile_ok. Note also that the ISPW-6 requirement that it must be possible to have multiple
object codes with one version of a source code, is not supported by this model. To support this
requirement, a separate class for the object code document should have been defined, whose
behaviour depends on the behaviour of the source code document. At this momentCode is one
class, representing both the behaviour of a source code document and the only one object code
document associated with it.

The fifth class is the classProjectManager. In this example the export operationsmonitor
andschedule_and_assign_tasks will be used. The export operationmonitor is parametrized
with the document name of the document which has to be monitored and it is called from the
internal behaviour of the export operationschedule_and_assign_tasks. This means that the
export operationmonitor is an example of an export operation which is imported in another

starting starting
review

starting
code

codereviewdesign

neutral

design

Figure 29. DesignEngineer: STD of the external behaviour

create_version

neutral

create_version

starting
creation

starting
creation

Figure 30. ProjectDocs: STD of the external behaviour

(of code) (of design)

of code of design



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 43

operation of the very same manager process. The STD ofProjectManager is given in figure
32.

The sixth and last class to be modelled is the newly introducedCompiler class with export
operationcompile. This export operation can be parametrized with a document name, just like
the operationsdesign, review andcode of DesignEngineer, create_version of ProjectDocs and
monitor of ProjectManager. The STD ofCompiler is given in figure 33.

6.3. Designing the internal behaviours of the export operations

After specifying the external behaviours of the classes, the internal behaviours of the opera-
tions can be specified. In this example only the various internal behaviours ofcode (from the
classDesignEngineer), compile, release_object_code and test_ok (from the classCompiler)
and schedule_and_assign_task(from the classProjectManager) will be given. The other
internal behaviours are not really interesting within this example as they are highly internal

modifiable pre-compile

starting
modif.

createdcreatable

starting
creation

non existing

code being
compiled

compile_not_ok

pretestable
compile_ok

prepare create_first

create_next

open_for_

modif.

modify

close_modif

releasing

readable

test_object

test_not_ok

release_

object_code

Figure 31. Code: STD of the external behaviour

testable

test_ok

copy

starting
testing

**** ***

W.r.t. to WODAN is this subprocess s-81 and the state space is trap t-81

36 37

38

39 40

41

42

434445

46 47 48

starting
copying

_code

49

neutral starting
monitor

monitor

Figure 32. ProjectManager: STD of the external behaviour

starting
schedule

schedule_and_assign_tasks

neutral starting
compile

compile

Figure 33. Compiler: STD of the external behaviour



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 44

operations which do not communicate with other parts of the model. For the internal behav-
iour of schedule_and_assign_task, only a very rudimentary scheme will be given, as it is not
relevant for this example to model the complete behaviour of this complex task. It is only
intended to show the process of starting the monitor process (so it is an example of starting
one internal behaviour from within another internal behaviour of the same instance of the very
same manager). The STD’s of the internal behaviours are shown in the figures 34, 35, 36, 37
and 38 respectively.

Note that these STD’s not only show what export operations are imported but also in which
uses relationship these export operations occur.

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_open_

for_modif.

call_close_modif

call_modify

finish_code

Figure 34. Int-code: STD of its internal behaviour

call_compilecompile_
done

call_open_
     for_modif

compile_
asked

(uses 2) (uses 7)

(uses 7)

(uses8)

(uses 7)

(uses 7)

W.r.t. to WODAN is this subprocess s-99 and the state space is trap t-99

Figure 35. Int-release_object_code: STD of its internal behaviour

act_release_object_code

no release code
released

W.r.t. to WODAN is this subprocess s-82 and the state space is trap t-82

no compile compile
started

make_object
code

call_compile_ok

call_compile_not_ok

Figure 36. Int-compile: STD of its internal behaviour

object code
made

act_compile

report_errors

errors
reported

compile_ok
asked

compile_
not_ok_
asked

(uses 9)

(uses 9)

no ok test ok
prepare
asked

act_test_ok call_prepare

Figure 37. Int-test_ok: STD of its internal behaviour

(uses 5)



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 45

6.4. Adding PARADIGM to model the communication

After the specification of the external and internal behaviours of the classes and operations,
the communication between these behaviours has to be specified. This communication specifi-
cation is shown in several parts.

The first part of the communication specification shows the communication between the
manager processDesignEngineer(figure 29 and 41) and its employee processesint-code(fig-
ure 34 and 40),int-design, int-review andint-schedule_and_assign_tasks(figure 38 and 39).

Note that the subprocesses and traps ofint-design andint-review are not given here, because
they remain the same as in the original SOCCA example.

The managerDesignEngineer waits in its neutral state untilint-schedule_and_assign_tasks

act_schedule_and_

assign_tasks
no schedule schedule

started

call_design call_review call_monitor

design
assigned

review
assigned

monitor
assigned

Figure 38. Int-schedule_and_assign_task

call_code

code
assigned

(uses 1) (uses 1) (uses 1) (uses 10)

act_schedule_and_

assign_tasks
no schedule schedule

started

call_design call_review call_monitor

design
assigned

review
assigned

monitor
assigned

call_code

code
assigned

s-69

t-69 t-70 t-71

act_schedule_and_

assign_tasks
no schedule schedule

started

call_design call_review call_monitor

design
assigned

review
assigned

monitor
assigned

call_code

code
assigned

s-72

t-72

Figure 39. Int-schedule_and_assign_tasks’s subp. and traps w.r.t. DesignEngineer



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 46

calls eitherdesign, review or code, parametrized with a namename1, by entering the appropri-
ate trap. Assume that acall_code transition has been made and thatint-code, likewise para-
metrized withname1, is in its trap t-42. At that momentDesignEngineer can go to its state
starting_code, prescribing subprocess s-43 ofint-code and subprocess s-72 ofint-
schedule_and_assign_tasks. As int-code was in trap t-42, it will immediately enter subprocess
s-43, thereby starting the process of coding a document, and entering trap t-43. Likewise,int-
schedule_and_assign_tasks will enter subprocess s-72 and therefore it will be allowed to go
back to its ‘neutral’ stateschedule_startedfrom where it can start other tasks again. As soon as
it enters this state it will be in trap t-72, soDesignEngineer can go back to its neutral state pre-
scribing s-42 ofint-code and s-69 ofint-schedule_and_assign_tasks again, waiting for other
tasks to be assigned by the internal behaviourint-schedule_and_assign_tasks of the Project-

s-42

s-43

Figure 40. Int-code’s subprocesses and traps with respect to DesignEngineer

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_open_

for_modif.

call_close_modif

call_modify

call_compilecompile_
done

call_open_
     for_modif

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

call_create_

version

call_open_

for_modif.

call_close_modif

call_modify

finish_code

call_compilecompile_
done

call_open_
     for_modif

t-42

t-43

compile_
asked

compile_
asked

codereview
design

neutral

starting design starting review starting code

s-1
s-3
s-42
s-69

s-2
s-3
s-42
s-72

s-1
s-4
s-42
s-72

s-1
s-3
s-43
s-72

in t-1,

in t-2,

in t-3,
in t-4, in t-42,

in t-43,

Figure 41. DesignEngineer, manager of int-design, int-review, int-code and int-sched.

    t-70
     t-71

    t-72

    t-72

     t-72
    t-69



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 47

Manager.Int-design andint-review can be started analogous.

The second part of the communication specification shows the communication between the
managerProjectDocs(figure 30 and 42) and its employeesint-code(figure 34 and 43),int-
design andint-create_version. Since the last two have not been modified, their traps and sub-

processes are not given here.
This new version ofProjectDocs not only allowsint-design to make a call tocreate_version

by prescribing s-5 to it, but it also allowsint-code to make such a call by prescribing s-44 to it.
As soon asint-code or int-design performs acall_create_version by entering the appropriate
trap,ProjectDocs will allow its employee to continue by prescribing the new subprocess to it
and it will start up the internal behaviour ofcreate_version. Since now two employees can
perform acall_create_version, ProjectDocs has two different states which can be reached in
one step from the neutral state: one state for the call done byint-code and the other state for
the call done byint-design.

Note that another approach to modelProjectDocs is by making use of the concept of roles
and views. In stead of having two different transitions modelling the same operation
create_version and likewise having two states modelling starting a creation, one can also

starting creation

create_version
s-5
s-45
s-8

s-6
s-44
s-8

neutral

s-5
s-44
s-7

create_version

in t-5, t-7in t-44, t-7

in t-45, t-8 in t-6, t-8

Figure 42. ProjectDocs, manager of int-design, int-code and int-create-version

starting creation
of code of design

s-45

s-44

Figure 43. Int-code’s subprocesses and traps with respect to ProjectDocs

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_close_modif

call_modify

finish_code
call_compilecompile_

done

call_open_
     for_modif

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_open_

for_modif.

call_close_modif

call_modify

finish_code
call_compilecompile_

done

call_open_
     for_modif

t-44

t-45

compile_
asked

compile_
asked



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 48

make a model ofProjectDocs with oneneutral state, onestarting_creation state and one tran-
sition labelledcreate_version to model both creating a new version of a code document and of
a design document. Whether the transitioncreate_version models creating a new version of
code or a new version ofdesign depends on the view one has of the classProjectDocs; at the
moment that one viewsProjectDocs as a manager ofint-code, following the transition
create_version yields the creation of a new code document. Likewise, a new design document
will be created whenProjectDocs is viewed being a manager ofint-design. This concept of
incorporating views and roles into SOCCA can be a topic of future research.

The third part of the communication specification shows the communication between the man-
ager Code (figure 31 and 48) and the employeesint-code (figure 34 and 44),int-
create_version, int-create_next (copy call from the next instance of Code), int-create_next (the
managers own internal behaviour), int-compile(figure 36 and 45),int-release_object_code
(figure 35 and 46),int-test_ok (other instance, figure 37 and 47) and int-test_ok (same
instance, figure 37 and 49).

Just likeDesign, one instance ofCode exists for each version of a code document. The first
version starts in the state marked with *** and the other versions start in the state marked with
****. These latter versions are waiting in the state **** until the previous version ofCode
enters trap t-58 ofint-test_ok. Just like in the case ofDesign, the other traps labelling this tran-

Figure 46. Int-release_object_code’s subprocesses and traps with respect to Code

act_release_object_code

no-release code
released

no-release

s-56

t-56
s-57

code
released

t-57

no ok test ok
prepare
asked

act_test_ok call_prepare

s-58

t-58
Figure 47. Int-test_ok’s subprocesses and traps with respect to Code (other instance)

no ok test ok
prepare
asked

act_test_ok call_prepare

no ok

s-59

t-59
s-60

Figure 49. int-test_ok’s subprocesses and traps with respect to Code (same instance)



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 49

sition from **** to *** do not really matter here, as they consist of the whole state space of
the internal processes they belong to.

Since both creating a new version of a code document and modifying it, are modelled
exactly likeDesign in the original example, this part ofCode will not be discussed here. After
the process of modifying the code document has been finished,Code will be in the statepre-
compile, waiting forint-compile to enter trap t-52 (which means that a possibly existing previ-
ous compilation process has been finished). When this trap has been entered,Code will pre-
scribe s-53 toint-compile, thereby releasing it to start compiling a document, andCode will
keep int-code in s-50 until compiling the document has been finished. Whenint-compile
enters its trap t-54 (compile_not_ok), Code will restart the modify code activity. However,
when it enters trap t-53 (compile_ok), Code will remain prescribing s-50 toint-code to permit

Figure 44. Int-code’s subprocesses and traps with respect to Code

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_open_

for_modif.

compile_
done

call_open_
     for_modif

mod_open
asked

closing_
mod_asked

modify_
asked

call_close_modif

call_modify

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_open_

for_modif.

call_close_modif

call_modify

finish_code

call_compilecompile_
done

call_open_
     for_modif

call_compile

s-46

t-46

t-47

t-48

s-47

s-51

t-51

compile_
asked

compile_
asked

s-50

t-50

closing_
mod_asked

call_compilecompile_
done

compile_
asked



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 50

it to leave the statecompile_asked and enter the statecompile_done. The manager will now be
waiting until int-compile has reached its trap t-50, which means that the code has been com-
piled, andint-release_object_code has reached trap t-56, which means that the object code
may be released. After prescribing s-57 toint-release_object_code, Code will wait until int-
release_object_code has reached trap t-57, which means that the object code has been
released. Note thatint-release_object_code will wait in its first state as long as the design doc-
ument has not been approved byDesign (see the discussion of the communication between
Design and its employees). After releasing the object code, the test round will be started until
the internal behaviour of test either performs acall_test_ok or acall_test_not_ok. Since the
behaviour of testing the code document has not been worked out here, no traps for these
events are indicated in the figure. However, when such a call has been made, the manager has
to continue in the appropriate way; when the test result is not ok, a new modify, compile, test

no compile compile
started

call_compile_ok

call_compile_not_ok

object code
made

act_compile

errors
reported

compile_ok
asked

compile_
not_ok_
asked

no compile compile
asked

make_object
code

call_compile_ok

call_compile_not_ok

object code
made

act_compile

report_errors

errors
reported

compile_ok
asked

compile_
not_ok_
asked

no compile compile
started

object code
made

errors
reported

compile_ok
asked

compile_
not_ok_
asked

s-52

s-53

t-53

t-54
s-55

t-55
Figure 45. Int-compile’s subprocesses and traps with respect to Code

make_object
code

report_errors

make_object
code

report_errors

act_compile

t-52



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 51

round has to be started. Otherwise possible copy requests have to be handled. The copy
request are modelled in the same way as in the model ofDesign in the original example.

The fourth part of the communication specification shows the communication between the
managerCompiler (figure 33 and 50) and its employeesint-compile (figure 36 and 51) andint-
code (figure 34 and 52).

Compiler is waiting in its neutral state untilint-code performs acall_compile, parametrized
with a document namename1, by entering its trap t-63. As soon asint-code is in trap t-63 and
int-compile is in trap t-61,Compiler will start compiling the document by entering its next
state and therefore prescribing the subprocesses s-62 and s-64 toint-compile and int-code
respectively. Afterint-compile has started,Compiler will wait until int-code has left trap t-63
and entered trap t-64. As can be seen in the previous paragraph about the communication

modifiable pre-compile

starting
modif.

createdcreatable

starting
creation

non existing

code being
compiled

pretestable

compile_ok

prepare create_first open_for_modify

modify

close_modif

testable

starting
testing

test_not_ok

readable
test_ok

copy

starting
copying

s-51
s-21
s-22
s-24
s-55
s-56
s-58
s-59

s-46
s-18
s-22
s-24
s-52
s-56
s-58
s-59

s-46
s-20
s-22
s-25
s-52
s-56
s-58
s-59

s-46
s-20
s-22
s-24
s-52
s-56
s-58
s-59

s-46
s-20
s-22
s-24
s-52
s-56
s-58
s-59

s-47
s-20
s-22
s-24
s-52
s-56
s-58
s-59

s-50
s-20
s-22
s-24
s-52
s-56
s-58
s-59

compile_
not_ok

s-50
s-20
s-22
s-24
s-53
s-56
s-58
s-59

create_
next

s-50
s-20
s-22
s-24
s-53
s-56
s-58
s-59

s-50
s-20
s-22
s-24
s-53
s-57
s-58
s-59

s-51
s-21
s-22
s-24
s-55
s-57
s-58
s-60

s-51
s-21
s-23
s-24
s-55
s-57
s-58
s-60

s-50
s-20
s-22
s-24
s-53
s-57
s-58
s-59

test_object
_code

employee mapping order used:

int-code
int-create_version
int-create_next (other instance)
int-create_next (same instance)
int-compile
int-release_object_code
int-test_ok (other instance)
int-test_ok (same instance)

Figure 48. Code: manager of 8 employees.

in t-51, t-21 in t-46, t-20

in t-48

in t-47

in t-46

in t-18

in t-19

in t-23

    t-24 in t-25

    t-55, t-58

in t-52

in t-53

in t-54

release_obj_c.

in t-50, t-56

in t-59

in t-22

**** ***

in t-57

s-50
s-20
s-22
s-24
s-53
s-57
s-58
s-59

releasing



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 52

betweenCode and int-code, this means thatCompiler has to wait until the compilation has
been finished, before it can return to its neutral state.

The fifth part of the communication specification shows the communication between the man-
agerProjectManager(figure 32 and 54) and its employeesint-monitor (figure 15 and 55) and
int-schedule_and_assign_tasks(figure 38 and 53).

The manager processProjectManager starts in it neutral state, waiting until the Configuration
Control Board (CCB) performs a call toschedule_and_assign_tasks. The CCB is the authority
which, according to the ISPW-6 example, prompts for the required design and code modifica-
tion. Its behaviour is outside the scope of this example.

neutral starting
compile

compile
in t-61, t-63

in t-62, t-64

Figure 50. Compiler: manager of int-compile and int-code

s-61
s-63

s-62
s-64

no compile compile
started

make_object
code

call_compile_ok

call_compile_not_ok

object code
made

report_errors

errors
reported

compile_ok
asked

compile_
not_ok_
asked

no compile compile
started

make_object
code

call_compile_ok

call_compile_not_ok

object code
made

act_compile

report_errors

errors
reported

compile_ok
asked

compile_
not_ok_
asked

s-61

t-61

s-62

t-62
Figure 51. Int-compile’s subprocesses and traps with respect to Compiler

Figure 54. ProjectManager: manager of int-schedule_and_assign_tasks and
int-monitor

monitorschedule_and_assign_tasks

starting schedule neutral starting monitor

s-65
s-73

s-65
s-75

s-66
s-75

in t-73 in t-65, t-74

in t-75 in t-66, t-75



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 53

At the moment that the CCB performs the call toschedule_and_assign_tasks, the manager
processProjectManager will go to its statestarting schedule thereby prescribing subprocess s-
75 to int-schedule_and_assign_tasks. After a short while,int-schedule_and_assign_tasks will
enter its trap t-75, thereby allowingProjectManager to return to the neutral state. At some

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_open_

for_modif.

call_close_modif

call_modify

call_compilecompile_
done

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_open_

for_modif.

call_close_modif

call_modify

finish_code
compile_
done

call_open_
     for_modif

s-63

t-63

s-64

t-64
Figure 52. Int-code’s subprocesses and traps with respect to Compiler

compile_
asked

compile_
asked

no_
monitoring

monitor_
started

notify_mod_
closed_asked

report_review
_result_asked

notify_review_
opened_asked

notify_mod_
opened_asked

call_not_mod_opened call_not_mod_closed

call_notify_
opened

review_call_report_review_
result

update_statisticsupdate_statistics

call_report_review_result

no_
monitoring

monitor_
started

notify_mod_
closed_asked

report_review
_result_asked

notify_review_
opened_asked

notify_mod_
opened_asked

act_mon call_not_mod_opened call_not_mod_closed

call_notify_
opened

review_call_report_review_
result

update_statistics

call_report_review_result

Figure 55. Int-monitor’s subprocesses and traps with respect to ProjectManager

s-65

t-65

s-66

t-66



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 54

given time instant, the internal behaviour ofschedule_and_assign_tasks will perform a
call_monitor, parametrized with a document namename1. When at that moment the monitor
process which is parametrized withname1 is in its trap t-65,ProjectManager can enter the
state labelledstarting monitor, starting the monitor by prescribing subprocess s-66 toint-mon-
itor and allowing int-schedule_and_assign_tasks to return to its ‘neutral’ state
schedule_started. Note that this is an example of one internal behaviour of an operation from
an external process controlling the internal behaviour of another operation of that very same
external process. This is in accordance with the original SOCCA approach. The advantage of
showing the internal behaviour of an export operation which is only called from another inter-
nal behaviour of that same external process is that the internal behaviour of that operation
becomes visible in the behaviour of the external process.

The sixth and last part of the communication specification shows the communication between
the managerDesign (figure 23 and 57) and its employeesint-design, int-review, int-
create_version, int-create_next (other instance), int-create_next (same instance), int-
review_ok (other instance), int-review_ok (same instance), int-monitor (figure 15 and 16) and
int-release_object_code(figure 35 and 56).

The behaviour ofDesign is being modified for the second time since the first model of it has
been designed in [2]. The first modification was required for managingint-monitor (chapter 5)
and the second time is the current modification, whereDesign has to notifyCode that the
design document has been approved. Because of these two modifications, a new informal
comment on the behaviour ofDesign is necessary.

no schedule schedule
started

call_design call_review call_monitor

design
assigned

review
assigned

monitor
assigned

call_code

code
assigned

act_schedule_and_

assign_tasks
no schedule schedule

started

call_design call_review call_monitor

design
assigned

review
assigned

monitor
assigned

call_code

code
assigned

s-73

t-73

t-74

s-75

t-75
Figure 53. Int-schedule_and_assign_tasks’s subp. and traps w.r.t. ProjectManager



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 55

Just as before, every instance ofDesign, except for the first one which starts in the state
labelled *, starts in the state labelled **, waiting for the previous instance ofDesign to enter
trap t-26 ofint-review_ok. After this, it will wait untilint-create_version enters either trap t-18
or trap t-19 and it will continue with the old behaviour untilint-design enters trap t-9 andint-
create_version enters trap t-20. NowDesign enters the state where it has to decide which route
has to be taken: the route with a full notification of the monitor or the route with a partial noti-
fication of the monitor. As already has been mentioned in the previous chapter, the outcome of
this choice depends on the size of the project. Let us assume that the size is large, so the longer
route will be taken. In this caseDesign will wait until int-monitor enters trap t-31. After this it
will prescribe subprocess s-32 toint-monitor, thereby forcing it to be notified of all events that
will happen. It will now wait forint-design to enter trap t-10 to start modifying the document
or to enter trap t-11 to close the modification. After trap t-11 has been entered,Design will
wait again forint-monitor, but now for trap t-32 and after this it will wait untilint-review
wants to start a review round by entering trap t-13. When this has happened,int-monitor has to
be notified again and the review round can really start. If the review of the document turns out
to be not ok, a new modify and review round will start. Otherwise the final part ofDesign can
be started to manage copying the document and to release a new version to be modified. How-
ever, before this end part starts,Design will check whetherint-release_object_code is in trap t-
67. Since this is the starting state ofint-release_object_code, Design does not have not to wait
at all, but it can prescribe subprocess s-68 toint-release_object_code immediately, thereby
allowingCode to continue after releasing the object code document.

Note thatDesign has no explicit export operation for this notification that the design docu-
ment has been approved toCode. This is because of the fact that the trap in whichint-
release_object_code is waiting, is the first state of it and therefore no transition that can per-
form a call_export_operation does exist. This way to start the behaviour ofint-
release_object_code can be compared with the starting of an internal operation by an external
process in the normal way. From this point of view one could say thatint-release_object_code
is merely an internal operation ofDesign and not ofCode. The fact thatDesign does not have
such an explicit export operation is a deviation from the original SOCCA approach. When the
original SOCCA approach had been followed, the communication betweenCode andDesign
should have been modelled by means of an explicit export operation ofDesign which would
have been called from within the internal behaviour of one of the export operations ofCode.

6.5. Concluding remarks

In [2], the SOCCA approach has been defined. This SOCCA approach can be split up into two
parts:

Figure 56. Int-release_object_code’s subprocesses and traps with respect to Design

act_release_object_code

no-release code
released

no-release

s-67

t-67
s-68



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 56

  • The SOCCA rules: these rules state that the external behaviours of the classes and the
internal behaviours of the export operations of these classes are modelled with STD’s and
that the communication between the various processes is modelled with PARADIGM on

employee mapping order used:

int-design
int-review
int-create_version
int-create_next (other instance)
int-create_next(same instance)
int-review_ok (other instance)
int-review_ok(same instance)
int-monitor
int-release_object_code

s-9
s-13
s-18
s-22
s-24
s-26
s-27
s-31
s-67

s-12
s-17
s-21
s-22
s-24
s-26
s-27
s-35
s-67

s-9
s-13
s-20
s-22
s-24
s-26
s-27
s-31
s-67

s-9
s-13
s-20
s-22
s-25
s-26
s-27
s-31
s-67

s-10
s-13
s-20
s-22
s-24
s-26
s-27
s-34
s-67

s-9
s-13
s-20
s-22
s-24
s-26
s-27
s-31
s-67

s-9
s-13
s-20
s-22
s-24
s-26
s-27
s-34
s-67

reviewable

starting_review

closed readable

starting_copyingclosed pre_review

pre_review pre_review

modifiable

non_existent2 creatable created pre_modifiable starting_modification closed

starting_creation modifiable

starting_modification

prepare create_first

create_next

open_for_mod

not_mod_opened

not_mod_opened

modify

modify

close_modification

close_
modification

not_mod_
closed

open_for_
review

open_for_
review

not_
review
_opened

close_and_r_ok report_r_result

close_and
review_
not_ok

review
copy

report_review_result

in t-12, t-17
    t-21, t-26
    t-35

 in t-18

in t-19, t-24 in t-25

in t-9, t-20

in t-31

in t-31

s-10
s-13
s-20
s-22
s-24
s-26
s-27
s-32
s-67

s-9
s-13
s-20
s-22
s-24
s-26
s-27
s-32
s-67

in t-11

in t-11

s-10
s-13
s-20
s-22
s-24
s-26
s-27
s-32
s-67

s-10
s-13
s-20
s-22
s-24
s-26
s-27
s-34
s-67

in t-32

s-10
s-13
s-20
s-22
s-24
s-26
s-27
s-33
s-67

in t-13

in t-33 s-10
s-13
s-20
s-22
s-24
s-26
s-27
s-33
s-67

in t-13

s-10
s-14
s-20
s-22
s-24
s-26
s-27
s-34
s-67

s-10
s-13
s-20
s-22
s-24
s-26
s-27
s-34
s-67

in t-14
in t-13

in t-16, t-27,

in t-15

in t-34

in t-34

in t-22

in t-23
s-10
s-14
s-20
s-22
s-24
s-26
s-27
s-34
s-67

s-10
s-14
s-20
s-22
s-24
s-26
s-27
s-34
s-68

s-12
s-17
s-21
s-22
s-24
s-26
s-28
s-35
s-68

s-12
s-17
s-21
s-23
s-24
s-26
s-28
s-35
s-68

    t-67

Figure 57. Design: manager of 9 employees

** *
in t-10 in t-9

in t-10 in t-9



Chapter 6 Extending the model to cover more of the ISPW-6 example

                                                                                  page 57

top of them. In the PARADIGM part are the manager processes formed by the external
behaviours and the employee processes are formed by the internal behaviours.

  • The SOCCA conventions: these conventions are implied by the techniques which have
been used in the example in that paper. The following conventions can be identified:
C1:Let all internal behaviours, denoted with “int-behave”, start with a transition labelled

“act-behave” leading from the first state of the STD to the second state of the STD.
The external behaviour of the class which exports the operation “behave” keeps the
internal behaviour “int-behave” trapped in the first state until the operation has to be
started. As soon as the external behaviour arrives in the state after the transition corre-
sponding with starting that internal behaviour, it will prescribe a new subprocess to the
internal behaviour, forcing it to leave its first state according to the transition “act-
behave”.

C2:Export operations of a class are called from the internal behaviours of operations from
other classes or at least from the internal behaviour of an operation from another
instance of the same class. Thus, export operations of one particular object are
imported into the internal behaviours of operations from a really different object.

In this chapter, two deviations from these SOCCA conventions have been made. These devia-
tions are not breaking with the formal SOCCA modelling rules as defined in [2], they are only
breaking with the conventions as implied by the original SOCCA example in that paper.

The first deviation is a deviation from convention C1: the first state ofint-
release_object_code, which is an export operation ofCode, is not only a trap in the trap-struc-
ture with respect toCode, but it is also a trap in the trap-structure with respect toDesign. Thus,
int-release_object_code has two managers which keepint-release_object_code trapped in its
first state in stead of only one manager. This has been done becauseCode has to wait at that
moment until the design document has been approved.

This deviation could have been avoided by changing the behaviour ofDesign; give Design
an export operation called something likedesign_doc_approved and giveCode a state in
which it waits untildesign_doc_approved arrives in a state notifying that the design document
has been approved.

The main difference between both methods is that the first method models a direct coordina-
tion betweenDesign andCode via a PARADIGM communication between the behaviour of
int-release_object_code and the behaviour ofDesign which is not made visible with an
explicit export operation in the class diagrams. This in contrast to the second method where
the object oriented approach is used to make the PARADIGM communication betweenDesign
andCode visible in the class diagrams.

The second deviation is a deviation from convention C2: in this example, the export opera-
tion monitor of ProjectManager is imported in the internal behaviour of
assign_and_schedule_tasks of the very same instance of the external processProjectManager.
This means that the export operationmonitor is no real export operation ofProjectManager; it
is not imported into any other class or instance. From the EER point of view, one could say
thatmonitor is an internal operation ofProjectManager which should not be visible from out-
side. However, by makingmonitor an export operation ofProjectManager, it is made visible
from the external behaviour ofProjectManager whenever a new instance ofint-monitor is
started byProjectManager.



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 58

Chapter 7
Example 2: changing the model according
to the ISPW-7 specification

The ISPW-7 extensions address two issues: teamwork and process change. As within the con-
text of this thesis we are particularly interested in dynamic process modification, we will only
concentrate on the process change part of these extensions. The process change extensions
have been split up into two parts. One concerns process modification; this is a permanent
change to the model. The other part concerns process exception which is a temporary change
of the process to handle exceptional circumstances. After such a temporary change, the model
has to return to its original behaviour. These two parts will be discussed in the following sec-
tions.

7.1. Process modification: problem description

The proposed change in the ISPW-7 example is as follows; in the original ISPW-6 example,
coding could startbefore the design document was approved. From now on this restriction is
tightened: coding may only startafter the design document has been approved. This change of
the model has to be applied to some process which is being enacted and thereby three cases
should be considered (quoted from ISPW-7 example, section 4.2.1):
  • ‘The executing process has not yet reached the step affected by the change, so the change

will have no immediate impact on the process state’.
  • ‘The executing process has reached or passed the steps affected by the change, but for

whatever reason, the change is consistent with the existing process state’.
  • ‘The executing process has reached or passed the steps affected by the change, and the

change is inconsistent with the existing process state’.
In the following section first a new model for the external behaviour ofCode will be given and
the internal behaviours of the operations will be modified as far as needed. This new model
will be referred to as theISPW-7 model or theISPW-7 case. Likewise, the current SOCCA
model will be referred to as theISPW-6 model or theISPW-6 case. The ISPW-6 model and
parts of it will also be referred to as theold model and the ISPW-7 model will sometimes be
called thenew model.

Section 7.3 concentrates on making the transition from the ISPW-6 model to the ISPW-7
model. In that section, the three cases mentioned above will also be taken in consideration and
they will be related with the problems as mentioned in section 4.3. The solution to the third
problem will be derived from the solutions suggested in section 4.4. When necessary, new
(temporary) processes will be designed and the cooperation betweenCode and other parts of
the model will possibly also be changed.

7.2. Designing the new model

In the ISPW-6 model,Code waits with releasing the object code to the test phase by means of
the internal behaviour ofint-release_object_code: as long as the design document has not been
approved byDesign, int-release_object_code can not enter trap t-57 andCode will have to



Chapter 7 Example 2: changing the model according to the ISPW-7 specification

                                                                                  page 59

wait in the state labelledreleasing.
According to the ISPW-7 specifications,Code may only start after the design document has

been approved. This can be managed by designing a new model. In this new model,Code will
get an extra export operation calledwait_for_approval to model waiting for the design docu-
ment to be approved. In the STD of the external behaviour, the transition corresponding to this
operation will be placed before the state labelledcreatable. The new model ofCode is dis-
played in figure 58.

Note that in this case not only the dynamic description changes but also the static description;
the classCode gets the new export operationwait_for_approval. This new class description
will also be defined by WODAN, in exactly the same manner as WODAN defines the new
behaviour description. The internal behaviour ofwait_for_approval is shown in figure 59.

Note also that the state labelled withcreatable in the old STD ofCode corresponds to the state
labelled withpre-creatable in the new STD ofCode. This means that when the transition of
the old STD ofCode to the new STD ofCode is made and the process is in the statecreatable
in the STD ofCode before switching to the new STD, that the process after this transition will
be in the statepre-creatable in the new STD.

After these modifications of the external and internal behaviours, the new communication has

Figure 58. Code: new STD of the external behaviour

modifiable pre-compile

starting
modif.

createdcreatable

starting
creation

pre-

compile

code being
compiled

compile_not_ok

pretestable
compile_ok

prepare

create_first

create_next

open_for_

modif.

modify

close_modif

testable

starting
testing

test_object_code

test_not_ok

release_

object_code
readable

test_ok

copy

starting
copying

pre-

creatable2

*******

W.r.t. to WODAN is this subprocess s-83 and the state space is trap t-83

non existingcreatable

wait_for_
approval

Figure 59. Int-wait_for_approval: STD of its internal behaviour

no_wait wait_
done

W.r.t. to WODAN is this subprocess s-85 and the state space is trap t-85

act_wait_for_approval



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 60

to be specified. In the figures specifying the communication, only the communication between
the relevant managers andint-release_object_code and int-wait_for_approval will be given.
The other parts remain the same as in the figures modelling the ISPW-6 case.

First the communication between the managerCode(figure 58 and 61) and its employeeint-
wait_for_approval(figure 59 and 60) will be given.

All instances ofCode, except for the first one which starts in the state labelled ***, will be
waiting in the stated labelled **** until the previous version ofCode performs acall_prepare.
At that moment however, the creation of the new version of a code document will not be
started immediately. In stead of this,Code will wait in the statepre-creatable2 until int-
wait_for_approvalhas entered trap t-77, which means that the design document has been
approved. From that moment on the behaviour will remain almost the same as described in the

Figure 60. Int-wait_for_approval’s subprocesses and traps w.r.t. Code

no_wait

no_wait wait_
done

act_wait_for_approval

s-76

s-77
s-76

s-77

modifiable pre-compilecreatedcreatable

compilecompile_not_ok

pretestable

compile_ok

prepare

create_first

create_next

open_for_

modif.

modify

close_modif

testable

test_object_code

test_not_ok

release_obj_c

readable

test_ok

copy

non existing

Figure 61. Code: viewed as manager of int-release_obj_c and int-wait_for_approval

pre-creatable2

starting_creation starting_modif.

code_being_compiled

starting_copying starting_testing

s-56
s-76

s-56
s-77

s-56
s-77

s-56
s-77

s-56
s-77

s-76
s-78

s-56
s-77

s-56
s-77

s-57
s-77

s-57
s-77

s-57
s-77

s-57
s-77

s-56
s-77

s-56
s-77

employee mapping order used:

int-release_object_code
int-wait_for_approval

in t-76

in t-56

*******

in t-57

s-56
s-76

pre-creatable

wait_for_
approval

in t-77



Chapter 7 Example 2: changing the model according to the ISPW-7 specification

                                                                                  page 61

explanation of the ISPW-6 case; the only other difference is that with this new version ofCode
it is no longer necessary to wait until the design document has been approved before releasing
the object code document (since the design document has already been approved).

However, this difference is not visible in the model ofint-release_object_code or in the
communication betweenCode andint-release_object_code. It is only visible in the new com-
munication betweenDesign and int-release_object_code; int-release_object_code is no
longer an employee ofDesign, thus Design can no longer keepint-release_object_code
trapped in its first state. Instead,Design is now a manager ofint-wait_for_approval. This new
communication structure is shown in figure 62 and in figure 63.

Except for the fact thatDesign is no longer a manager ofint-release_object_code but of int-
wait_for_approval instead, no part of the behaviour ofDesign has been changed. Since from
the viewpoint ofDesign, the function of this new employee is the same as the function of the
replaced employee, the global behaviour ofDesign does not change at all; it still keeps this
employee trapped in the first state until the design document has been approved and after this
event,Design still allows this employee to move freely through its state space.

7.3. Introducing the ISPW-7 model.

When this model is introduced during the enactment of a software process model, a problem
may arise; since in the ISPW-6 caseCode could start before the design document was
approved,int-release_object_code was an employee ofDesign to make it possible to wait for
the approval of the design document. In the ISPW-7 case however,int-release_object_code no
longer waits for the design document to be approved, asCode waits with the aid ofint-
wait_for_approval for the design document to be approved. However, when switching from
the ISPW-6 case to the ISPW-7 case,Code may have past the transition labelled
wait_for_approval while the design document has not yet been approved. This is problem P3
as defined in section 4.3. This problem corresponds with the inconsistency mentioned as the
third case in section 7.1.

In the ISPW-7 specification two options to solve this inconsistency have been suggested:
‘(1) you may allow the inconsistency to remain, or (2) you may attempt to change the state (by
rollback, or whatever) to achieve consistency’. In the following sections, these two solutions
will be followed. As it turns out, these solutions are equivalent with some of the solutions
mentioned in section 4.4.3

7.3.1. Option 1: do not solve the inconsistency

In this section option 1 will be worked out. For this purpose an intermediate phase ofCode
will be given, which still has the structure of the ISPW-6 model. By choosing the traps from
this STD to the STD of the ISPW-7 model in the right manner, it is possible to switch only
from the ISPW-6 case to the ISPW-7 case before modify code has started (this situation is

Figure 62. Int-wait_for_approval’s subprocesses and traps w.r.t. Design

no_wait

s-79

t-79

s-80

no_wait wait_
done

act_wait_for_approval



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 62

equivalent with the first case mentioned in section 7.1) or after modify code has waited until
the design document has been approved (this situation is equivalent with the second case men-
tioned in section 7.1). It is straightforward to incorporate these two cases into the SOCCA
model.

As Code remains behaving like in the ISPW-6 case in the middle part of this intermediate
phase, the inconsistency as mentioned in the third case in section 7.1, will remain in this mid-
dle part. As soon as the intermediate phase ofCode has left the middle part, it will have waited
for the design document to be approved and the inconsistency does not arise at all.

This solution to the problem is equivalent with solution S6 from section 4.4.3.
The intermediate phase ofCode is given in figure 64. Note that this intermediate phase has

the same state-action interpreter as the original phase ofCode. Therefore, the state-action
interpreter has not been shown in figure 64.

s-79

Figure 63. Design: viewed as manager of int-wait_for_approval

reviewable

starting_review

closed readable

starting_copyingclosed pre_review

pre_review pre_review

non_existent2 creatable created pre_modifiable closed

starting_creation modifiable

starting_modification

prepare create_first

create_next

open_for_mod

not_mod_opened

not_mod_opened

modify

close_modification

close_
modification

not_mod_
closed

open_for_
review

open_for_
review

not_
review
_opened

close_and_r_ok report_r_result

close_and
review_
not_ok review copy

report_review_result

** *

s-79 s-79

s-79

s-79 s-79 s-79

s-79

s-79

modifiable

starting_modification

modify

s-79

s-79 s-79

s-80s-79s-79s-79

s-79 s-80 s-80in t-79

W.r.t. to WODAN is this subprocess s-86 and the state space is trap t-86



Chapter 7 Example 2: changing the model according to the ISPW-7 specification

                                                                                  page 63

The last step to finish the transition from the ISPW-6 case to the ISPW-7 case is designing
WODAN to manage this change. As stated in solution S6 in section 4.4.3, WODAN first has
to prescribe the intermediate phase ofCode and as soon as this intermediate phase has entered
its trap, WODAN can prescribe the ISPW-7 model. Note that in the state-action interpreter of
WODAN, only the employees of which the STD changes during the transition from the ISPW-
6 case to the ISPW-7 case, have been mentioned. WODAN is shown in figure 65.

In this example three important notions can be found:
  • The only part ofDesign that changes when switching from the ISPW-6 case to the ISPW-7

case, is the state-action interpreter. The states, transitions, strategy and all other parts
defining a process remain the same. SinceDesign is a subprocess of an anachronistic proc-
ess, this means that a subprocess restriction not only defines a restriction on the states,
transitions, etc., as defined in [1] but that it also defines a restriction on the state-action
interpreter; the anachronistic process of whichDesign is a subprocess, has a not explicitly
designed state-action interpreter which minimal consists of the union of the state-action
interpreters from the subprocesses s-41 and s-86.

  • The subprocessint-wait_for_approval is introduced for the first time in the ISPW-7 case.

Figure 64. Intermediate phase of Code
W.r.t. to WODAN is this subprocess s-87

t-87

modifiable pre-compile

starting
modif.

createdcreatable

starting
creation

non existing

code being
compiled

compile_not_ok

pretestable
compile_ok

prepare open_for_

modif.

modify

close_modif

releasing

readable

test_object

release_

object_code
testable

test_ok

copy

starting
testing

**** ***

starting
copying

_code

t-87

employee mapping order used:

design (figure 23 and 63)
code (figure 31, 64 and 58)
int-wait_for_approval (figure 59)

s-41
s-81
null

s-41
s-81
null

s-41
s-87
null

s-86
s-83
s-85

no_changing designing_ switching_to
new_behaviour(ISPW-6 case)

no_changing
(ISPW-7 case)

start_changing close_changing

in t-87in t-41, t-81,
    t-82

Figure 65. WODAN: viewed as manager of 3 employees
new_model



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 64

Before that time it did not exist. Introducing this new process has been done by prescribing
the NULL process, defined in section 3.4, in those state whereint-wait_for_approval did
not yet exist and by prescribingint-wait_for_approval as soon as the ISPW-7 case
becomes active.

  • WODAN is not only able to change the dynamic model description part but it can also
change the static model description part; in this example the class description ofCode has
been extended with a new export operation calledwait_for_approval.

7.3.2. Option 2: solve the inconsistency

In this section a solution to the inconsistency mentioned in the third case in section 7.1 will be
given. WhenCode already has started before the design document is approved,Code will go
back to its starting state, thereby discarding all changes made to the code.

Since some employees ofCode have side effects, these side effects also have to be rolled
back. Therefore the behaviour of all employees has to be studied to find out how the side
effects of their behaviour can be discarded. Some employees may need extra states and/or
transitions to rollback the side effects. If so, subprocesses representing this temporal behav-
iour will be defined.

Code needs an intermediate STD for managing the process of rolling back all side effects.
This intermediate STD ofCode, which is displayed in figure 67, will be calledTempCode,
since it is valid only temporary.

This solution will follow the procedure as sketched in solution S8 of section 4.4.3.
Code has the following employees:int-create_version, int-create_next, int-code, int-com-

pile, int-release_object_code and int-test_ok. We will study each employee to determine
whether the behaviour of that employee has to be rolled back or not.

As creating the new version of a code document does not really change the code document -
it only changes the version number-, the behaviour of the employeesint-create_version and
int-create_next does not have to be rolled back.

The employeeint-code really modifies the code document. Thus, this employee needs an
intermediate phase to rollback its side effects when the inconsistency arises. This intermediate
phase, which is shown in figure 66, callsTempCode’s export operationabort, which aborts the

modify code activity and discards all modifications made to the code document. This means
that after execution of the abort operation it seems as if no modification to the code document
has been made.

Figure 66. Intermediate phase of int-code
W.r.t. to WODAN is this subprocess s-88 and the state space is trap t-88

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_close_modif

compile_
done

compile_
asked

(uses 2)

(uses 7)

abort_
asked

call_abort



Chapter 7 Example 2: changing the model according to the ISPW-7 specification

                                                                                  page 65

Note that the temporary export operationabort also has to be placed in the class description
of TempCode.

Note also thatint-code has been designed in such a manner that, when the code document
has been opened for modifications, modify code has to be closed before calling abort. This is
necessary to assure that only one version of the code document is opened at the same time.

Int-compile reflects the behaviour of an automated tool which can not be modified and thus
the behaviour ofInt-compile can not be modified or rolled back.

WODAN (see figure 71) is designed in such a manner thatTempCode will only be pre-
scribed when the design document has not yet been approved. If the design document already
has been approved before the ISPW-7 case has to be started, the process will be in case 2 of
section 7.1 and no inconsistency will arise. Thus, the code document may not be release when
TempCode is prescribed. Therefore is the transition labelledrelease_object_code removed
from TempCode. So it is not necessary to rollback the behaviour ofint-release_object_code.

Note that, asint-release_object_code is removed from the behaviour ofTempCode,
WODAN prescribes the NULL process forint-release_object_code during the intermediate
phase.

The operationint-test_ok can only be called when the design document has already been
approved, thus no rollback of this operation is necessary.

The communication structure to solve the inconsistency is shown in figure 68 (int-code as
employee ofTempCode), figure 67 (two temporary phases ofTempCode as manager ofint-
code and as employee of WODAN), figure 69 and 70 (two temporary phases ofDesign as
employee of WODAN) and figure 71 (WODAN as manager ofDesign, Code, int-code, int-

release_object_code andint-wait_for_approval).
After designing the new model,. WODAN prescribes the intermediate phase toDesign to

determine what action has to be taken; whenDesign is in trap t-90, the design document will
have been approved, which means that no inconsistency arises. Thus the transition to the
ISPW-7 case can be finished in that case. Otherwise, the design document has not been
approved and therefore it is necessary to abort the modify code process when it has already
been started. Thus, WODAN then starts the intermediate phase of the employeesCode and
int-code and WODAN prescribes the NULL process toint-release_object_code. To determine
whether the modify code activity has started or not, WODAN examines the trap ofTempCode.
WhenTempCode is in trap t-96, the modify code activity has not been started, thus the transi-
tion to the ISPW-7 model can be finished in that case. Otherwise, WODAN has to wait until

Figure 71. WODAN: viewed as manager of 5 employees

s-41
s-81
s-99
s-82
null

no_changing designing_ switching_to
new_behaviour(ISPW-6 case)

no_changing
(ISPW-7 case)

in t-41, t-81,
   t-99, t-81

switching_to
new_behaviour

employee mapping order used:

design (figure 23, 63, 69 and 70)
code (figure 31 and 67)
int-code (figure 34 and 66)
int-release_object_code (figure 35)
int-wait_for_approval (figure 59)

s-89
s-96
s-88
null
s-85

s-86
s-81
s-99
s-82
s-85

s-41
s-81
s-99
s-82
null

s-89
s-81
s-99
s-82
s-85

start_changing close_changing

in t-90

in t-89

switching_to
new_behaviour

s-91
s-98
s-88
null
s-85

in t-97

in t-96

in t-91, t-98

new_model



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 66

the modify code operation is aborted. This operation is aborted only afterTempCode has
entered trap t-97;TempCode enters this trap afterint-code has reached trap t-92, which is
entered byint-code after calling theabort operation.

Note thatint-code first closes the modify code document when it already has been opened,
this is modelled by means ofint-codes trap t-93 andTempCode’s transition from the state
modifiable to the state pre-compile.

Further note thatTempCode has all states and transitions which are necessary for the com-
munication withint-compile. These states and transitions are needed as the communication
between (Temp)Code andint-compile does not change during the intermediate phase.

Figure 67. TempCode: viewed as manager of int-code

modifiable pre-compilecreatedcreatable

compile_not_ok

pretestable

compile_ok

prepare

create_first

create_next

close_modif

testable

test_object_code

readable

test_ok

copy

non existing

pre-creatable2

starting_creation starting_modif.

code_being_compiled

starting_copying starting_testing

s-95

*******

aborting_
modifications

abort

s-96

t-96

t-96 t-97

s-93s-94s-92

s-92s-93s-92s-92

s-94

s-92

s-94s-95 s-92 s-92

s-94

in t-93

in t-92

created

aborting_
modifications

s-98

t-98

s-94

s-94

in t-94

Note that in this figure actually two different subprocesses ofCode exist; sub-

process s-96 and subprocess s-98. They are both intermediate subprocesses that

can be prescribed by WODAN in the transition from the ISPW-6 case to the

ISPW-7 case.

s-94

pre-creatable



Chapter 7 Example 2: changing the model according to the ISPW-7 specification

                                                                                  page 67

WhenTempCode has finally entered trap t-97, WODAN will prescribe s-98 toTempCode and
s-91 toDesignand then WODAN will wait until the design document has been approved (trap
t-91), the abort operation has been finished (trap t-98) and, via the cooperation betweenTemp-
Code andint-code, until int-code has re-entered the state labelledcreation_asked; TempCode
can only enter trap t-98 afterint-code has entered trap t-94. When this all finally happens,
WODAN finishes the transition to the ISPW-7 case.

Figure 68. Int-code’s subprocesses and traps with respect to TempCode

no code code started creation_
asked

closing_
mod_asked

act_code call_create_

version

compile_
done

compile_
asked

(uses 2)

abort_
asked

call_abort

mod_open
asked

closing_
mod_asked

modify_
asked

call_close_modif
(uses 7)

s-92

t-92

s-93

t-93

no code code started creation_
asked

act_code call_create_

version
(uses 2)

abort_
asked

s-94

t-94

compile_
done

no code code started creation_
asked

mod_open
asked

closing_
mod_asked

modify_
asked

act_code call_create_

version

call_close_modif

compile_
done

compile_
asked

(uses 2)

(uses 7)

abort_
asked

call_abort

s-95

t-95



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 68

7.4. Process exception: problem description

The second part of the ISPW-7 example concentrates on process exception; this is a temporary
change to the model due to an exceptional circumstance.

In SOCCA such a temporary change can be handled as follows:
  • Design a model for the process as it should be during the process exception.
  • Switch with aid of WODAN to this model at the right time instant.
  • As soon as the exceptional circumstance has passed, WODAN can be used to switch back

to the standard situation.
As stated above, it is necessary to switch two times to another model; first to the model of the
process exception and later back to the model of the standard situation. This switching to the
right model can be handled in the same manner as switching to another model during process

Figure 69. First intermediate phase of Design

reviewable

starting_

create_first

create_next

open_for_mod

not_mod_opened

not_mod_opened

modify

close_modification

close_
modification

not_mod_
closed

open_for_
review

open_for_
review

not_
review
_opened

report_r_result

close_and
review_
not_ok review copy

report_review_result

** *

modify

W.r.t. to WODAN is this subprocess s-89

creatable created
pre_
modifiable

starting_
creation modifiable

modif.

starting_
modif.

modifiable

closed

pre_reviewpre_review

closed starting_
review

pre_review starting_
copying

readableclosed

non_
existing

t-89

t-90

t-90



Chapter 7 Example 2: changing the model according to the ISPW-7 specification

                                                                                  page 69

evolution. Also in this case, special care should be taken to avoid inconsistencies and if it is
not possible to avoid inconsistencies, they should be solved as indicated in chapter 4.

The proposed process exception in the ISPW-7 example is as follows: ‘Suppose that due to
unavailability of assigned personnel, it is decided to bypass a follow-up (say second) design
review. This decision is made dynamically at the time that this review was scheduled to occur.
The rest of the process continues normally in this instance.’ (quoted from section 4.2.2 of [4]).

In the following sections it will be examined how this exceptional circumstance can be
incorporated into the current SOCCA model and how WODAN must be designed to switch to
the exceptional circumstance and return back to the standard situation as soon as possible.

Figure 70. Second intermediate phase of Design

reviewable

starting_

create_first

create_next

open_for_mod

not_mod_opened

not_mod_opened

modify

close_modification

close_
modification

not_mod_
closed

open_for_
review

open_for_
review

not_
review
_opened

report_r_result

close_and
review_
not_ok review copy

report_review_result

** *

modify

W.r.t. to WODAN is this subprocess s-91

creatable created
pre_
modifiable

starting_
creation modifiable

modif.

starting_
modif.

modifiable

closed

pre_reviewpre_review

closed starting_
review

pre_review starting_
copying

readableclosed

non_
existing

t-91

t-91

close_
and_rev
_ok



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 70

7.5. Designing the exceptional model

In this section, the model to handle the exceptional situation will be designed. According to
the ISPW-7 example, there is not enough personnel to review the design and therefore,
reviewing the design should be skipped. This can be modelled in two manners:
  • Change the external behaviour ofDesign in such a manner that all parts that handle

reviewing the design document will be skipped; make one transition from state 15 (see fig-
ure 23 on page 37 for the state numbering) and one from state 25 (both labelled
pre_review) to the state 20 (review_closed) and label these transitions with the export
operationskip_review. This however has a huge disadvantage; since the various instances
of Design depend on each other through the behaviour ofint-review_ok and int-prepare,
this dependence will be disturbed:

The behaviour of the next instance ofDesign is initiated by a call to itsprepare operation
performed from the internal behaviour ofint-close_and_review_okof the current instance
of Design. However, as theclose_and_review_ok operation of the current instance will be
skipped when the review process is skipped, the current instance ofDesign will not call
theprepare operation of the next instance ofDesign, thus the next instance ofDesign will
not be initiated. This problem can be solved by changing the next instance ofDesign in
such a manner that it does not wait forint-close_and_review_ok of the current instance of
Design to call the prepare operation but that it does wait forskip_review of the current
instance ofDesign to call the prepare operation. Thus, when the current instance ofDesign
is changed in such a way that the review process will be skipped, the next instance of
Design will also have to be changed, despite of the fact that such a next instance should
behave in the normal manner without being aware of any exceptional circumstances.

  • Change the behaviour ofint-review in such a manner that reviewing the document will be
skipped but that the communication with other instances ofDesign will not be disturbed.
Fortunately this is very easy; as starting the process of reviewing the design document is
modelled by means of entering trap t-14 of subprocess s-14 (a subprocess ofint-review), it
is only necessary to remove trap t-14 and the transition to it, labelledcall_review,from
subprocess s-14. This can be done without introducing inconsistencies asDesign is the
only manager that can react to thecall_review transition;Design will be waiting in its state
reviewable until int-review either performs acall_review, a call_review_not_ok or a
call_review_ok and on such a call,Design will make the appropriate transition. Whenint-
review does not perform acall_review because that transition has been removed, it will not
influence the behaviour ofDesign.

As the second way to handle the exception gives the least problems, this solution will be used.
Of course it is not possible to remove a transition and a state from a subprocess. However, it is
possible to make a new subprocess that resembles subprocess s-14 without that state and tran-
sition and to adapt the state-action interpreter ofDesign to prescribe this temporary subprocess
and react to the traps of it, instead of prescribing subprocess s-14 and reacting to the traps of
that one. The subprocess ofint-review to handle the process exception is given in figure 72.

no
review

review
opened
asked

call_close_review_ok

t-100

s-100

Figure 72. Int-review’s subprocess to handle the ISPW-7 process exception



Chapter 7 Example 2: changing the model according to the ISPW-7 specification

                                                                                  page 71

Note that not only thecall_review transition has been removed but also the
call_close_review_not_ok transition. This is because, in accordance with the ISPW-7 exam-
ple, the behaviour ofint-review during the process exception has to reflect the behaviour of
bypassing a follow-up design review step; it is assumed that the design document has been
(re)designed in the right manner and thus that such a follow-up design review step is not nec-
essary.

Design as manager ofint-review has to be changed too in the exceptional circumstance
becauseDesign has to prescribe subprocess s-100 in stead of s-14. As s-100 has no trap t-14
nor a trap t-15, the transitions ofDesign that are followed on entering these traps, have to be
removed fromDesign to assure thatDesign will only follow the transition corresponding with
trap t-100. The state ofDesign that corresponds with starting the review process, can also be
removed in the exceptional case, as this state will not be entered.

The STD forDesign as manager ofint-review during the exceptional case can be found in
figure 73.

s-13

reviewable closed readable

starting_copyingclosed pre_review

pre_review pre_review

non_existent2 creatable created pre_modifiable closed

starting_creation modifiable

starting_modification

prepare create_first

create_next

open_for_mod

not_mod_opened

not_mod_opened

modify

close_modification

close_
modification

not_mod_
closed

open_for_
review

open_for_
review

not_
review
_opened

close_and_r_ok report_r_result

copy

report_review_result

** *

s-17 s-13

s-13

s-13 s-13 s-13

s-13

s-13

modifiable

starting_modification

modify

s-13

s-13 s-13

s-17s-13s-14

s-100 s-100 s-17in t-100

W.r.t. to WODAN is this subprocess s-101
Figure 73. Design: viewed as manager of int-review during process exception

in t-13

in t-13

in t-17

t-101



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 72

7.6. Starting the exceptional case

The last step consists of checking for the problems mentioned in chapter 4 and solving these
following the suggested solutions.

As the subprocess forDesign during the exceptional case has less states then the subprocess
for Design during the normal case, WODAN can not always switch to the exceptional case
immediately. This is problem P2 and the easiest way to solve this problem is applying solution
S4; make an intermediate phase ofDesign with a trap consisting of those states that form no
problem and design WODAN in such a manner that first the intermediate phase ofDesign will
be prescribed and afterwards, the exceptional phase ofDesign.

However, also another problem exists; subprocess s-100 ofint-review (see figure 72) has
less states then subprocess s-14 (see [2]), which is prescribed from the same state ofDesign.
This is problem P1 and the easiest way to solve it in this case, is using solution S1; make an
intermediate phase ofDesign with a trap consisting of those states in which no problem arises
and design WODAN to prescribe first the intermediate phase ofDesign and the standard phase
of int-review and afterwards the exceptional phase ofDesign and ofint-review.

The solutions S1 and S4 can be combined to form the intermediate phase ofDesign and to
design WODAN.

Note that the STD ofint-review remains the same during the exceptional phase. The differ-
ent behaviour ofint-review is modelled only by means of its new subprocess s-100.

When switching back from the exceptional phase to the normal phase, no problems will
arise, so this can be done without further special actions.

WODAN is displayed in figure 75, the ‘normal’ phase ofDesign in figure 63, the excep-
tional phase ofDesign in figure 73 and its intermediate phase is displayed in figure 74.

7.7. Concluding remarks

Modelling the change parts of the ISPW-7 example is completely possible within SOCCA.
The problems that have been mentioned in the ISPW-7 example correspond with the general
problems with process change in SOCCA as mentioned in chapter 4 and the intuitive solutions
like allowing the inconsistencies to remain or rolling the process back, correspond with the
SOCCA solutions introduced in chapter 4.

The definition of a subprocess has been slightly extended, compared with the original papers
defining PARADIGM; in these papers, a subprocess is defined being a restriction to a decision
process [1]. However, this definition does not take into account that a process may be the sub-
process of a manager process, like an external process which is the subprocess of an anachro-
nistic external process. When this is the case, the process is not only a decision process but it is
a decision process with a state-action interpreter. Likewise, the subprocess does not only
impose a restriction on the decision process but it also imposes a restriction on the state-action
interpreter. Thus, a subprocess is a restriction to a decision process, together with its state-

s-102

s-101s-86

no_exception
(ISPW-7 case)

in t-86

start_exception
in t-102

handling_exception

pre_exception

in t-101

finished_exception

Figure 75. WODAN: viewed as manager of Design

s-86

designing_
exceptional_model

close_changings-86
start_changing

no_exception
(ISPW-7 case)



Chapter 7 Example 2: changing the model according to the ISPW-7 specification

                                                                                  page 73

action interpreter when the process is a manager process. See also notion 1 on page 63.
WODAN is responsible for all possible changes of the model. It does not only change the

dynamic perspective by defining new external and internal processes, new subprocesses of the
internal processes and new state-action interpreters to model the changed communication but
WODAN can also change the static perspective by adapting the class structure; WODAN can
add and remove export operations from a class description whenever necessary and WODAN
can even define or remove complete classes. WODAN will probably also be able to change
the process perspective of a SOCCA model, which is described by means of object flow dia-
grams.

s-13

reviewable

starting_review

closed readable

starting_copyingclosed pre_review

pre_review pre_review

non_existent2 creatable created pre_modifiable closed

starting_creation modifiable

starting_modification

prepare create_first

create_next

open_for_mod

not_mod_opened

not_mod_opened

modify

close_modification

close_
modification

not_mod_
closed

not_
review
_opened

close_and_r_ok report_r_result

close_and
review_
not_ok review copy

report_review_result

** *

s-17 s-13

s-13

s-13 s-13 s-13

s-13

s-13

modifiable

starting_modification

modify

s-13

s-13 s-13

s-17s-79s-13s-14

s-14 s-14 s-17in t-16

W.r.t. to WODAN is this subprocess s-102

in t-17

in t-14

in t-13

in t-15

Figure 74. Design: viewed as manager of int-review during start of exceptional case
t-102

t-102



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 74

Chapter 8
A very brief comparison of SOCCA with
other paradigms

In this chapter the properties of SOCCA with respect to the ability of dynamic process modifi-
cation will be compared with some other paradigms mentioned in [5]. In [5] there is also a
paper considering some requirements for enactment mechanisms [6]. In that paper the notion
of so called process variables has been introduced as a fundamental mechanism for process
change. In the following section this notion of process variables will be applied to SOCCA
and in the sections afterwards SOCCA will be compared with some other existing paradigms.

8.1. The notion of process variables applied to SOCCA

In [6] the notion of process variables to control process change, has been introduced. Accord-
ing to that paper, process variables are not intended as a concrete feature of a process defini-
tion formalism but they represent a set of features needed by any effective process definition
formalism. Process variables should have the following features:
  • They are introduced in the “text” of a process definition and can be associated there with

type specifications, constraints and default values.
  • They need to represent a wide variety of different aspects of a process, like products pro-

duced by a performance of the process, tools to be used in performing the process, project
specific goals or subgoals or various process definition fragments.

  • Process variable binding needs to be incremental and multi-faceted. For example, a proc-
ess variable might be first bound to a type specification, constraining the actual values to
which it can be bound, and have actual values conforming to that specification bound later
during enactment.

Process variables are mainly intended to represent yet undefined aspects of the process that is
being defined by the process definition formalism.

In chapter 3 the concept of anachronistic external and internal processes has been introduced.
The external and internal process descriptions that define the SOCCA process specification are
just subprocesses of these anachronistic processes. When applying the concept of process var-
iables to these notions found in SOCCA, the anachronistic processes can be regarded as being
process variables with the explicitly designed internal and external process descriptions being
the values that can be bound to these process variables. For example the STD of the internal
behaviour ofint_monitor1 can be regarded as the value that is initially bound to the process
variable representing the monitor process. When some time later, the STD ofint_monitor1
gets replaced by the STD ofint_monitor2, it can be said that from that moment on the STD of
int_monitor2 is the value bound to the process variable representing the monitor process.

The binding mechanism, to bind the process variable value to the process variable, is mod-
elled explicitly by WODAN and its state-action interpreter. So within SOCCA, this binding
mechanism itself is a part of the model instead of a property of the enactment mechanism.
This property makes SOCCA a reflective specification mechanism.

The notion of process variables can also be applied to the class perspective of the SOCCA
model; the static structure of the model can change when the model evolves, an example of



Chapter 8 A very brief comparison of SOCCA with other paradigms

                                                                                  page 75

such a change can be found in chapter 7. To achieve such a change of the static structure, one
can say that a process variable exists which value is the current static structure. When
WODAN has to change the static structure, WODAN only has to bind a new value to this spe-
cial process variable.

The notion of process variables can also be applied to WODAN itself; WODAN is in fact an
infinitely large decision process which can follow any arbitrary path through its state space.
Which path will be followed, and therefore how the model evolves, depends on the input -
specifying the process which has to be modelled, the wanted process change, etc.- WODAN
receives from somewhere outside the model. However, despite the fact that WODAN is infi-
nitely large, only a finite part of WODAN is relevant, and therefore visible, at any time instant.
Thus, the currently visible part of WODAN can be considered being a value bound to a proc-
ess variable representing WODAN.

When considering this from the viewpoint of the SOCCA approach, one could also say that
a not explicitly designed version of WODAN exists of which only one subprocess is visible
each time; the currently visible part of WODAN is only another subprocess of the not explic-
itly designed version of WODAN and starting the design of a new model and the transition to
the new evolution stage in which the new model is prescribed, is triggered by prescribing a
new subprocess of WODAN from somewhere outside of the model.

8.2. Comparing SOCCA with Document Flow Model (DFM)

In [7] three primary objectives have been mentioned which guided to the development of
DFM. These objectives are process mobility, framework for change and simplicity. According
to [7] these objectives can be reached when the enactment system has two basic properties:
  • Independent processes
  • Asynchronous communication
By independent processes it is meant that all processes are first class citizens within the model:
there is no master process and new processes can join the evolving network. At a first glance
SOCCA does not have this property, since the external processes are managers of the internal
processes and furthermore, WODAN is a manager of both the external and internal processes.
However, when comparing SOCCA and DFM in more detail it can be seen that somehow the
external processes in SOCCA correspond with the actons in DFM and the internal processes in
SOCCA correspond with the internal behaviours of the actons in DFM. Since the external
processes in SOCCA are first class citizens in relation to each other -no external process is the
master of another external process and new external processes may join the model-, this prop-
erty of independent processes is fulfilled. As WODAN is mainly used to guide the process
evolution, one can neglect the fact that WODAN is a manager of everything in the normal
case when the process is just enacting and no evolution has to happen.

As the communication in SOCCA between the various processes is PARADIGM communi-
cation, which is a form of asynchronous communication, all communication in SOCCA is
asynchronous so also the second property is fulfilled in SOCCA.

Thus, the two basic properties of DFM are fulfilled in SOCCA, which makes SOCCA pow-
erful enough to satisfy the three primary objectives that guided to the development of DFM.

8.3. Comparing SOCCA with SPADE

Another process centred environment is SPADE which is centred on a language, SLANG,



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 76

based on high level petri nets [8]. In SPADE the ability to process change is established via
modularization of the SLANG model: to change a part of the process during enactment, enact-
ment of the module to be modified can temporarily be stopped and after modification, enact-
ment of the module can continue. This has the disadvantage that the enactment partially has to
be stopped for a while, which is not necessary in SOCCA when changing a process.

One of the main features of SLANG is the possibility to model time constraints. For exam-
ple to automatically abort some function after a timeout period. Such time constraints can also
be used in SOCCA; an STD which is used to model the behaviour of a process in fact is a deci-
sion process with i.a. a sojourn mechanism that determines the time instant when the next tran-
sition is going to be followed. One can make use of this fact by making an abort transition
leading from a state which possibly has to be aborted to some other state. This transition can
then automatically be followed when the STD is still in the state where the abort transition
starts at the moment that the timeout period elapses.



Chapter 9 Conclusions and further research

                                                                                  page 77

Chapter 9
Conclusions and further research

This thesis shows that incorporating the concept of anachronistic processes together with
WODAN and its state-action interpreter into SOCCA, gives SOCCA the reflectivity necessary
for process evolution [9]. This reflectivity property is in fact a direct consequence of the exist-
ence of WODAN’s state-action interpreter, which is a part of the model, describing another
part of the model. Thus, within SOCCA, the reflectivity is a natural feature of one of the con-
stituting formalisms, namely of PARADIGM.

Process evolution can lead to inconsistencies in the model after switching from one evolu-
tion stage to another evolution stage. These inconsistencies have to be detected by a careful
analysis of the effects of the intended change. This possibly can be supported by tools which
check for the occurrence of the problems P1, P2 and P3 mentioned in chapter 4 by comparing
the old SOCCA processes and the new SOCCA processes with each other. After detecting the
inconsistencies, they can be solved or even avoided by following the guidelines mentioned in
chapter 4.

Further categorisation of problems as a consequence of process change is a topic for further
research.

A SOCCA model can become very large. However, through the modular approach such a
large model can still be understood very well. This modular approach also makes it easier to
analyse the consequences of an intended change at a local level, without taking any part of the
model into account which is not directly related with the changed part.

An interesting approach to make SOCCA models smaller and less complex is by incorporat-
ing the concepts of roles and views into SOCCA. This approach has only slightly been men-
tioned in section 6.4. It can be a topic of further research to incorporate it fully into SOCCA.

In this thesis, the newly introduced concept of anachronistic processes in combination with
WODAN to incorporate change in SOCCA has only been used to model process evolution and
emergency handling, both mentioned in the ISPW-7 case. An interesting topic of future
research is to analyse the application of this change incorporation for model growth and incre-
mental modelling, prototyping in modelling and customizing. Another application of the
change incorporation may be reusability by viewing reuse as a certain evolution of a model
component and even interoperatibility might be incorporated with the above mentioned
change concepts.



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 78

Chapter 10
References

1 Groenewegen L.:Parallel Phenomena 1-14. University of Leiden, Dep. of Computer Sc.,
Techn. Rep. 86-20, 87-01, 87-05, 87-06, 87-11, 87-18, 87-21, 87-29, 87-32, 88-15, 88-17,
88-18, 90-18, 91-19. 1986-1991

2 Engels G., Groenewegen L.:SOCCA: Specifications of Coordinated and Cooperative
Activities. University of Leiden, Dep. of Computer Sc., 1993

3 Kellner M., Feiler P., Finkelstein A., Katayama T., Osterweil L., Penedo M., Rombach H.:
ISPW-6 Software Process Example. In: Proc. of the 6th Int. Software Process Workshop:
support for the software process. Japan, October 1991

4 Kellner M., Feiler P., Finkelstein A., Katayama T., Osterweil L., Penedo M., Rombach H.:
ISPW-7 Software Process Example. 7th International Software Workshop. Yountville, Cal-
ifornia, 16-18 October 1991

5 Pre-prints of Papers, Third European Workshop on Software Process Technology,
EWSPT’94

6 Dowson M., FernStröm Chr.:Towards Requirements for Enactment Mechanisms. In:
EWSPT’94

7 Berrington N., De Roure D., Greenwood R., Henderson P.:Distribution and Change:
Investigating two challenges for Process Enactment Systems. In: EWSPT’94

8 Bandinelli S., Fuggetta A., Ghezzi C., Grigolli S.:Process Enactment in SPADE
9 Conradi R., Fernström Chr., Fuggetta A.:Concepts for Evolving Software Processes. In

[10], 9-32
10 Finkelstein A., Kramer J., Nuseibeh B. (eds.):Software Process Modelling and Technol-

ogy. Research Studies Press Ltd., Taunton 1994



Chapter 10 References

                                                                                  page 79

Appendix A
List of figures

1. A general example of an evolution step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2. The general situation considered in this part  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Situation b1: the first part of E1 and E2 is the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4. The manager is different during EVS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5. Problem situation P1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6. Example of solution S1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7. Example of solution S2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8. Example of problem P3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9. Example of solution S6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10. Example of solution S7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11. Example of solution S8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12. Int-monitor1: STD of the internal behaviour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
13. Design: only viewed as manager of int_monitor1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
14. Int-monitor1: subprocesses and traps w.r.t. Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
15. Int-monitor2: new STD of the internal behaviour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
16. Int-monitor2: subprocesses and traps w.r.t. Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
17. Design2: only viewed as manager of int_monitor2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
18. WODAN: switch to int-monitor2 and Design2 via TempDesign. . . . . . . . . . . . . . . . . . 34
19. TempDesign: subprocess for transition to the new design . . . . . . . . . . . . . . . . . . . . . . . 34
20. WODAN: switch to monitor2 and Design3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
21. Design3: only viewed as manager of int_monitor2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
22. WODAN: switch to ExtendedDesign and int-monitor2.  . . . . . . . . . . . . . . . . . . . . . . . . 36
23. ExtendedDesign: only viewed as manager of int_monitor2 . . . . . . . . . . . . . . . . . . . . . . 37
24. Class diagram: classes and is-a and part-of relationships. . . . . . . . . . . . . . . . . . . . . . . . 39
25. Class diagram: attributes and operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
26. Class diagram: classes and general relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
27. Import/export diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
28. Import list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
29. DesignEngineer: STD of the external behaviour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
30. ProjectDocs: STD of the external behaviour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
31. Code: STD of the external behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
32. ProjectManager: STD of the external behaviour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
33. Compiler: STD of the external behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
34. Int-code: STD of its internal behaviour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
35. Int-release_object_code: STD of its internal behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 44
36. Int-compile: STD of its internal behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
37. Int-test_ok: STD of its internal behaviour  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
38. Int-schedule_and_assign_task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
39. Int-schedule_and_assign_tasks’s subp. and traps w.r.t. DesignEngineer . . . . . . . . . . . . 45
40. Int-code’s subprocesses and traps with respect to DesignEngineer . . . . . . . . . . . . . . . . 46
41. DesignEngineer, manager of int-design, int-review, int-code and int-sched. . . . . . . . . . 46
42. ProjectDocs, manager of int-design, int-code and int-create-version. . . . . . . . . . . . . . . 47
43. Int-code’s subprocesses and traps with respect to ProjectDocs . . . . . . . . . . . . . . . . . . . 47
44. Int-code’s subprocesses and traps with respect to Code . . . . . . . . . . . . . . . . . . . . . . . . . 49



Adaptive software process modelling with SOCCA and PARADIGM

                                                                                  page 80

45. Int-compile’s subprocesses and traps with respect to Code . . . . . . . . . . . . . . . . . . . . . . 50
46. Int-release_object_code’s subprocesses and traps with respect to Code  . . . . . . . . . . . . 48
47. Int-test_ok’s subprocesses and traps with respect to Code (other instance) . . . . . . . . . . 48
48. Code: manager of 8 employees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
49. int-test_ok’s subprocesses and traps with respect to Code (same instance) . . . . . . . . . . 48
50. Compiler: manager of int-compile and int-code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
51. Int-compile’s subprocesses and traps with respect to Compiler . . . . . . . . . . . . . . . . . . . 52
52. Int-code’s subprocesses and traps with respect to Compiler  . . . . . . . . . . . . . . . . . . . . . 53
53. Int-schedule_and_assign_tasks’s subp. and traps w.r.t. ProjectManager . . . . . . . . . . . . 54
54. ProjectManager: manager of int-schedule_and_assign_tasks and int-monitor  . . . . . . . 52
55. Int-monitor’s subprocesses and traps with respect to ProjectManager. . . . . . . . . . . . . . 53
56. Int-release_object_code’s subprocesses and traps with respect to Design . . . . . . . . . . . 55
57. Design: manager of 9 employees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
58. Code: new STD of the external behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
59. Int-wait_for_approval: STD of its internal behaviour  . . . . . . . . . . . . . . . . . . . . . . . . . . 59
60. Int-wait_for_approval’s subprocesses and traps w.r.t. Code. . . . . . . . . . . . . . . . . . . . . . 60
61. Code: viewed as manager of int-release_obj_c and int-wait_for_approval . . . . . . . . . . 60
62. Int-wait_for_approval’s subprocesses and traps w.r.t. Design . . . . . . . . . . . . . . . . . . . . 61
63. Design: viewed as manager of int-wait_for_approval  . . . . . . . . . . . . . . . . . . . . . . . . . . 62
64. Intermediate phase of Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
65. WODAN: viewed as manager of 3 employees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
66. Intermediate phase of int-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
67. TempCode: viewed as manager of int-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
68. Int-code’s subprocesses and traps with respect to TempCode  . . . . . . . . . . . . . . . . . . . . 67
69. First intermediate phase of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
70. Second intermediate phase of Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
71. WODAN: viewed as manager of 5 employees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
72. Int-review’s subprocess to handle the ISPW-7 process exception . . . . . . . . . . . . . . . . . 70
73. Design: viewed as manager of int-review during process exception . . . . . . . . . . . . . . . 71
74. Design: viewed as manager of int-review during start of exceptional case . . . . . . . . . . 73
75. WODAN: viewed as manager of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72


