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Abstract

The Chip Production Scheduling Problem concerns finding an optimal scheduling

solution of job-assignments to a set of machines that reduce the total production time,

called the makespan. We acquire the solution by using a Genetic Algorithm, but the

quality depends on the values chosen for the parameters of the Genetic Algorithm. Given

the large search-space of possible parameter values makes this a challenging problem.

This would amount to testing a large number of algorithms. Therefore, in this research,

we address the problem of selecting one of two Genetic Algorithm variants to the problem

of Chip Production Scheduling Problem using metalearning.

The metalearning approach is based on simple and landmarker meta-features. We

thereby carry out two metalearning tasks which are, 1) predicting the makespan of

each meta-heuristic variant and 2) selecting the best meta-heuristic for a given instance.

These represent a regression and classification task respectively. The classification task

is furthermore split into a straightforward classification and classification via regression

variant. We use different methods to evaluate the performance of both tasks. For

regression, it is the RMSE (Root Mean Squared Error) and for classification prediction

accuracy. We train five algorithms (Random Forest, k -Nearest Neighbour, Linear Model,

Multilayer Perceptron, Decision Tree) with their predefined setup on a reduced set of

meta-data with the Leave-One-Out method to learn meta-models, and ran the best ones

on the test data.

What appears from the preliminary findings is that the metalearning approach we

designed obtained promising results for recommending i.e. predicting the best Genetic

Algorithm for the instances of the Chip Production Scheduling Problem.
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Introduction

Large factory-plants deal with complex planning schedules of production-orders every

day. A production-order, better known as a job is a process-flow of machine-operations

which fabricate a product. These plants typically execute a high number of multiple

jobs, which in the case of inefficient planning leads to a lot of costs. Subsequently, the

aim for these plants is to obtain high-turnout and profit, while minimizing production

expenses. An important expense that needs to be reduced is the production time or

makespan. Essentially, the makespan worsens when multiple jobs need to access the

same machine and when machines run idle. Therefore it is necessary to find a scheduling

assignment of jobs that minimize these problems which lead to a reduced makespan.

In operations-research and machine-learning this problem is known as the Job-Shop

Scheduling Problem. In this thesis, the aim is to solve an instance called the Chip

Production Scheduling Problem. This instance includes jobs that produce different chip

and electronic components.

Various approaches [1–3] using heuristic algorithms to solve Job Shop Scheduling

Problem instances have been implemented with good performance results. The schedul-

ing solutions found by these approaches were subsequently the best ones for their re-

spective instances. Given these results, we decide to implement a heuristic algorithm

to find a good scheduling solution for the Chip Production Scheduling Problem. We

thereby choose the Genetic Algorithm, as the heuristic algorithm.

To find a good solution we need to set the values for the parameters of the Genetic

Algorithm. After all, these have a big impact on the performance of the algorithm. The

search space of possible parameter values is unfortunately too large to explore with lim-

ited resources and time. Therefore we will only investigate two sets of parameter values

1



Chapter 1 Introduction 2

of the algorithm. In other words, this means we investigate two Genetic Algorithms with

distinct parameter values. Nevertheless, we need to decide on the best algorithm for each

Chip Production Scheduling Problem instance because they find different solutions.

One approach to this problem is using machine learning i.e. data-mining on historical

data. More specifically, by applying data-mining techniques to the problem of select-

ing two different Genetic Algorithms. We are in particular interested in metalearning

because of its successful application to a diverse range of algorithm-selection instances.

In this research, we are addressing the problem of selecting one of two Genetic Algo-

rithm variants to the problem of Chip Production Scheduling Problem using metalearn-

ing. The main contribution of this thesis is the design of a metalearning approach for

the Job Shop Scheduling Problem instance, the Chip Production Scheduling Problem.

1.1 Thesis Overview

In chapter 2 we define and formalize the Job Shop Scheduling Problem instance of this

research, describe the optimization algorithm and metalearning.

In chapter 3 we discuss the metalearning solution to the Job Shop Scheduling Prob-

lem instance. Chapter 4 relates the results of the experiments.

Last, we summarize the findings and conclusions and pose suggestions for future work

in chapter 5.



Background

This research focuses on developing an integrated approach of a meta-heuristic and

metalearning to solve a Job Shop Scheduling Problem approach utilized for algorithm

selection in more detail.

2.1 Other Approaches

Researchers implemented heuristic approaches to solve various Job Shop Scheduling

Problem instances. These include Ant Systems [4], Ant Colony Optimization [1], heuris-

tic backtracking [5] and modified Filtered Beam Search [6]. Since these methods were

widely used and applied with success to Job Shop Scheduling Problem instances, we

decided as well to implement a heuristic algorithm to solve the Job Shop Scheduling

Problem. Therefore, we chose to implement a standard Genetic Algorithm (GA).

The good results obtained by the methods are consequences of selecting parameter

values which guarantee the best performance on the problem. The Genetic Algorithm

has four parameters, namely the mutation probability pm, crossover probability pm,

population size µ and the number of iterations n. The performance of the algorithm

is in particular affected by the crossover and mutation probabilities. For instance, a

too high mutation probability leads to the algorithm finding random solutions and not

converging to an optimal solution. On the other hand, a small mutation probability

may lead to fast convergence. As for the crossover probability, too high values might

cause the algorithm to converge too fast, thus skipping potential better solutions. A

basic approach to finding good a good parameter values is Grid-Search, which simply

searches all possible values for each parameter. However, the Genetic Algorithm has a

3



Chapter 2 Background 4

large search space of possible parameter values and given the limited amount of resources

and time, Grid Search would be too costly and inefficient. This amounts to trying out

a large number of algorithms. So, in order for the Genetic Algorithm to find the best

solution to the Job Shop Scheduling Problem instance, we have to 1) select a Genetic

Algorithm which provides an optimal solution and 2) improve the search efficiency. We

thereby limit the number of algorithms to two, but still, have to make an informed

decision about the best one for a given Job Shop Scheduling Problem instance. After

all, the Job Shop Scheduling Problem contains different instances. To realize this, we

will use metalearning.

2.2 Genetic Algorithm

Genetic Algorithms are heuristic search algorithms based on principles of the natural

evolution theory and genetics [7]. Genetic Algorithms are able to search for potential

solutions in large search spaces quickly while exhaustive or brute-force search meth-

ods cannot. Thus, these algorithms are often employed in many practical optimization

problems with large solution spaces. A Genetic Algorithm consists of 3 main operations:

selection, crossover, and mutation. It evolves a selection of candidate solutions into bet-

ter solutions by means of its operations, until a stopping criterion is verified. Algorithm

1 illustrates the concept: An initial population P (t) of encoded candidate solutions are

Algorithm 1 Genetic Algorithm

1: t := 0;
2: initialize P(t);
3: F(t)’ := evaluate P(t);
4: while not terminate do
5: P’(t) := select(F(t));
6: P”(t) := crossover(P’(t),pc);
7: P”’(t) := mutate(P”(t),pm);
8: F(t) := evaluate(P”’(t));
9: P(t+1) := P”’(t);

10: t := t + 1;
11: end while

created for the Genetic Algorithm. Next, an evaluation function assigns fitness scores to

each solution. The higher the value of the score, the better its corresponding candidate

is. For a given number of iterations, the Genetic Algorithm generates new individuals

from the initial population with its selection, crossover and mutation operators. The

fitness scores of the new population are then evaluated once again. The evaluation of the

new population continues into the next round of transformations and so forth. What
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follows is a brief description of the common implementations of Genetic Algorithms

operators.

Selection

The selection method chooses candidate solutions from the set of solutions P (t) in the

current iteration. We use elitist selection, which lets a small number of solutions with

the best fitness values pass to the next generation, avoiding the crossover and mutation

operators. This prevents the random destruction of good solutions.

Crossover

Figure 2.1: PMX crossover example, derived from [8].

Crossover is applied with probability pc to obtain new solutions. This course eventually

leads to better solutions. Per two parent solutions, a partially mapped crossover (pmx)

operation is performed. This method extracts a part of one parent for a new solution.

The corresponding part of the new solution filled in. The same process is repeated by

switching the two parent solutions. In the end, two new solutions are combined from

the parent solutions.

Mutation

Figure 2.2: Swap mutation example, derived from [9].
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Mutation is performed on the solutions P ′′(t) generated by the crossover operator, to

generate solutions which are more diverse. In the swap mutation, each bit has a mutation

probability pm of being inverted. Finally, the mutated solutions P ′′′(t) will become the

new candidate solutions P (t+ 1) for the next iteration.

2.3 Semiconductor Chip Production Scheduling Problem

The essential chip components that guarantee the working functionality of electronic

products are manufactured by semiconductor wafer fabrication facilities. Process-flows,

known as jobs produce the components. These jobs have to be scheduled appropriately

to reduce the total makespan. The total makespan refers to the processing time of all

jobs for a set of orders to produce many components. This describes a classic Job Shop

Scheduling Problem with a single optimization objective, that is defined as follows:

Let a set R be m jobs J : {j1, j2, ...jm} with a corresponding set of n machines

M : {m1,m2, ...,mn}. Each job consists of a set operations O: {Oj
1, O

j
2, ...O

j
n} to fabri-

cate its component by utilizing the machines with execution times d(Oj
k) in time units.

Furthermore, the number of Nij operations for all jobs is different. Within each job,

various operations can also use the same machine. Subsequently, the objective is to

plan a schedule s of job assignments to M such that the makespan of producing R is

minimized: min(makeSpan(s)). An example of a scheduling assignment is displayed

by the following figure:

Figure 2.3: Scheduling assignment of a set of 20 jobs. The job-operations (colored)
are arranged such that a minimum makespan (total production time) of 202 minutes

(visible right-above) is acquired.
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The following section explains the Genetic Algorithm approach to this problem.

Genetic Algorithm Approach to Chip Production Scheduling Problem

The representation of the candidate solutions, the choice of the fitness function and

the maximization or minimization objective(s) need to be set for the Chip Production

Scheduling Problem. As explained before, the input for the genetic algorithm population

P (t) consists of a set of randomly generated candidate solutions that are evolved over

the course of many evaluations. Given that this is the approach followed in this project,

we describe it in more detail. The input data of the problem instances are converted

into different priority lists, i.e. n × k matrices having n rows of machines with the

corresponding list of at most k jobs assignments. An example of the input is shown in

table 2.1.

Table 2.1: Example of input representation of the Chip Production Scheduling Prob-
lem data for the Genetic Algorithm .

Machines Jobs

m1 jobA jobB jobC

m2 jobB jobC jobB

m3 jobA jobC

Hence, the crossover and mutation operations described earlier can be performed

on these lists. Since in this case, a job can have multiple operations ni on the same

machine, k varies for each row. The fitness values for this problem are the makespan

values associated with the execution of a schedule s. These schedules are obtained

from the priority lists using the Giffler-Thompson algorithm [10]. At the same time,

the algorithm returns the calculated makespan. Thus, for the aforementioned problem,

the fitness value is the makespan of the schedule obtained with the Giffler-Thompson

algorithm.

2.4 Metalearning for Algorithm Selection

The research field of metalearning recently emerged. It successfully addressed different

Machine Learning tasks and challenges. In general, it concerns research that aims to
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learn from past knowledge of experiments with machine learning processes. For clari-

fication, a more precise definition by Brazdil et al. [11] can be considered: “The field

of Machine Learning exploits the relation between tasks or domains and learning algo-

rithms”. Simply put, the core purpose here is to obtain insight into which algorithm

and corresponding set of parameter values are suitable for some given data set. This

problem can be looked at as the algorithm selection problem, which is explained in the

next section.

2.4.1 Algorithm Selection Problem

The Algorithm Selection Problem was introduced by Rice’s framework [12]:

Figure 2.4: Rice’s Algorithm Selection framework, taken from [13]

The problem space P that represents the set of instances of a problem class. The

feature space F contains measurable characteristics of the instances generated by a

computational feature extraction process applied to P. Next, the set A consists of all

algorithms relevant to solving the problem. Finally, the performance space Y repre-

sents the mapping of each algorithm to a set of performance metrics. The problem is

subsequently defined as follows:

“ For a given problem instance x ∈ P, with features f(x) ∈ F find the

selection mapping S(f(x)) into algorithm space, such that the selected

algorithm a ∈ A maximizes the performance mapping y(a(x)) ∈ Y ”
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Essentially, the definition relates to finding an algorithm with maximal performance on

a problem instance described by certain features. This is difficult because there are

usually various algorithms available for solving a specific problem. Moreover, the No

Free Lunch Theorem [14] states that “(...) for any algorithm, any elevated performance

over one class of problems is offset by performance over another class”. In other words,

this means that one algorithm will perform well on particular data sets, but poorly on

others. Another important issue of the algorithm selection problem is the selection of

appropriate features. The framework illustrated in figure 2.3 provides an abstraction of

the approach to the algorithm selection problem and also serves as the backbone of the

metalearning procedure explained next.

Metalearning first collects meta-data from a set of problem instances and a set of can-

didate learning algorithms. The meta-data consists of meta-features and meta-targets.

The meta-features are characteristics of the problem extracted from the data. The meta-

targets contain information about the performance of the algorithms on the data sets,

also known as base-level performance data. Afterward, a meta-model is generated from

the obtained meta-data. Figure 2.4 illustrates this concept:

Figure 2.5: Metalearning framework
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Consequently, the model can make predictions concerning the relative performance

of the candidate learning algorithms on new instances.

2.4.2 Meta-features

Meta-features are characteristics of the problem extracted from the data. We can divide

these into 3 main classes. The first class contains simple, statistical information fea-

tures. These meta-features are estimated from the data set. They include, for example,

variance, kurtosis, the number of classes and the median.

The second class of meta features is model-based features. They are based on a simple

learning model and then some characteristics of that are measured and stored. If for

instance, the meta-model is a simple decision tree one can measure the number of leaves

and the number of nodes.

The final class consists of landmarker features. Landmarkers are fast estimates of algo-

rithm performances. A simplified version of the algorithm runs which collects various

performance measures. These measures provide richer data-characterization than sim-

ple, statistical features which merely describe the problem instance. By directly mea-

suring various performance data, landmarkers can give a good indication of the overall

performance of the algorithm on the problem instance.

2.5 Summary

In this chapter, we introduced the Chip Production Scheduling Problem (Chip Pro-

duction Scheduling Problem), the Genetic Algorithm and metalearning for algorithm

selection. The goal of the Chip Production Scheduling Problem is to reduce the total

processing time, makespan of the jobs to be produced. To achieve this, a meta-heuristic

such as a Genetic Algorithm searches for the corresponding s. To ensure finding the

best scheduling solution, certain parameters of the Genetic Algorithm need to be tuned.

More precisely, we need to find a good set of parameter values for the algorithm.



Approach

In this chapter, we explain the metalearning approach to the Chip Production Scheduling

Problem. We adapt the algorithm selection problem and the metalearning approach to

the Chip Production Scheduling Problem as follows. We have a set P of the problem

instances from the Chip Production Scheduling Problem. These instances have a feature

space F , that consists of the computed meta-features. Next, we have a set A of two

Genetic Algorithms. For each algorithm we compute the meta-targets for the instances.

The meta-features and meta-targets together form the meta-data. Next, we train a meta-

model with the meta-data for regression and classification. We then apply the model to

new instances and review its performance by looking at the regression and classification

predictions for the new instances. The better the performance of the model, the more

likely the predicted, i.e. recommended algorithm (in this case one of the two Genetic

Algorithms) is indeed the best choice for a new instance.

3.1 Metalearning tasks

The two Genetic Algorithms we are implementing, are derived from the standard Ge-

netic Algorithm parameter setup of deJong [15] and from Grefenstette [16]. Here, we

define a parameter setup as a set of values assigned to the parameters of the Genetic

Algorithm. The choice of metalearning models is a simple Decision Tree (DT), Multi-

layer Perceptron (MLP), k -Nearest Neighbour (NN), Random Forest (RF), Linear Model

(LM). The following sections give an overview of the models and elaborate in more detail

the regression and classification tasks.

11
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3.1.1 Models

• A Decision Tree builds regression or classification models in the form a tree

structure. The tree consists of decision nodes and leave nodes, where the decision

nodes have two or more branches and the leave nodes represent a prediction or

decision.

• A Random Forest [17] is an ensemble learning method for classification and

regression problems. It consists of an ’ensemble of weak learners’, i.e. group of

tree predictors. It returns the mode of all predictions from the decision trees.

• The k-Nearest Neighbour [18] algorithm is a method used for classification

and regression tasks. In the case of classification, an entity is classified by a

majority vote of its k nearest neighbours with the class that is common among

these neighbours. With regression, the entity gets assigned the average of the

output of its k nearest neighbours.

• A Multilayer Perceptron [19] is a supervised learning algorithm that learns

a function by mapping a set of input data onto a set of suitable outputs, with

training data. Given a set of input features and target values, it can approximate

a nonlinear function for either classification or regression tasks. For classification,

the target values can consist of binary or multiple classes. For regression, the

target values are numeric predictions.

• A Linear Model is a method that computes a linear relationship between the

input variables and a single output variable and is used for regression and clas-

sification predictions. For a regression task, it predicts a numeric output value.

Because classification tasks have class targets, the Linear Model uses a logistic

function to model the output into target classes.

3.1.2 Regression

For the regression task, the target-value yr is equal to the gain between the best fitness

values (makespans) ropt of the start-population and fopt generated by the best solution
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returned by the Genetic Algorithm:

yr =
ropt − fopt

ropt
(3.1)

We calculate two variants of yr, yrdJ and yrG. The yrdJ feature is computed for the

deJong Genetic Algorithm, the yrG for the Grefenstette Genetic Algorithm. These

are the ground-truth target values for the model. Next, the recommended meta-targets

yrecommend are acquired as follows. Given the training metadata, a meta-model is learned

for each regression task. The meta-model is applied to the test examples to obtain a

prediction of the gain obtained by the corresponding Genetic Algorithm on the given

instance. RMSE is used to evaluate the accuracy of the meta-model, by comparing the

predicted to the true values. Afterwards, we evaluate the performance of the model with

a baseline method. For the baseline, we calculate the ZeroRule as follows for both

Genetic Algorithms:

ri = (yir − Y )2 (3.2)

ZeroRule =
(
∑n

i=1 r
i)

n
(3.3)

3.1.3 Classification

For the classification task, we need to compute a different target attribute. The target ycl

for the true prediction is determined between the best fitness value fopt that is returned

by either the first or the second Genetic Algorithm (deJong and Grefenstette), which is

represented by the following equation:

iffoptdeJong < foptGref.then 1 else 0 (3.4)

The baseline we use in the case of classification is the Majority Class. That is the

most represented class of the true predictions.

We use two approaches to obtaining the classification. The first is using a straightfor-

ward classification approach, i.e. learning a model by applying a classification algorithm

to the data with the classification target. We refer to the predicted classes following this
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approach as ycl−normal. We also use the predictions of the regression models to obtain

the predicted class ycl−regression. The ycl−regression and ycl−normal targets are afterwards

evaluated by comparing them to the observed target value ycl with a simple accuracy

measure. This measure calculates the percentage p of correctly predicted targets. First,

the number of correctly predicted target values targcorr are obtained by comparing the

predicted target values with the observed target values. Afterward, we obtain p by

dividing targcorr by the total number of predicted target values. We compare the esti-

mated classification accuracies with the baseline, which is the Majority Class. Next,

we describe the sets of meta-features considered in this work.

3.2 Meta-features Chip Production Scheduling Problem

The first set of meta-features concerns the features that are based on simple measures

extracted from the instance. The second set consists of the experimental landmarker

features based on Genetic Algorithm properties, which includes proposed and adapted

features from the state-of-the-art research by Kanda et al.[20]. The features based on

the properties and search-space of the Genetic Algorithm are defined according to the

following notation:

• Si:
{
s1i , s

2
i , . . . , s

w
i

}
, the set of candidate solutions of the Genetic Algorithm for an

instance i.

• Ri:
{
r1i , r

2
i , . . . , r

y
i

}
, a set of randomly generated solutions where Ri ⊂ Si.

• Ni:
{
nj,1i , nj,2i , . . . , nj,vi

}
, the set of neighbour solutions of a solution sji with 1

mutation where the best neighbour solution nj,besti is the one with the lowest (best)

fitness value (makespan).

The Appendix A includes the mathematical expressions of the features.

3.2.1 Simple meta-features

The simple meta-features are calculated directly from the instance (data set). They are

listed in table 3.1.
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Table 3.1: Simple meta-features .

Meta-feature Description

avgM Average number of machines

avgT Average time-duration of the operations

HT Highest time-duration

LT Lowest time-duration

varT Time-duration variance

kurT Time-duration kurtosis

The first meta-feature avgM computes the average number of machines per instance.

It does this by summing up the total number of machines from all jobs listed and

averaging them by the job-count. The second feature avgT first calculates the average

amount of time per job, then sums these up and adopts the mean over the total number

of jobs of the instance. HT and LT respectively seek out the highest and lowest time-

duration from all jobs of the instance. varT and kurT compute the time-duration

variance and kurtosis per job and sums them up. Consequently, they are averaged over

all jobs of the instance.

We think it is good to include these meta-features, because simple information-based

features have been used extensively in metalearning. Thus, they form the minimal

basis of data-characterization for the Chip Production Scheduling Problem instances.

Subsequently, we can expand this basis with landmarking features, explained in the

next section.

3.2.2 Landmarker features

The landmarker features are divided into two groups: the proposed and adapted features,

which are shown in the next table.
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Table 3.2: Proposed and adapted landmarkers from the state-of-the-art .

Meta-feature Description

Proposed

avgF Average makespan i.e. fitness value

avgR Estimated average from random solutions

maxF Maximum solution value of the search-space

minF Minimum solution value of the search-space

Adapted

EPN Expected proportion of neighbours with a better solution

ERN Expected ratio between fitness of best neighbour solution

and the generated solution

QBO Quality of best offspring solution

RFP Average ratio between fitness of best offspring solution

and best solution of their parent

AOP Average number of times offspring is better than parents

These features are based on properties of the Genetic Algorithm and measure different

relations between various solutions found by the algorithm. We include these features,

because we think they provide an all around characterization of the Chip Production

Scheduling Problem instances.

The average makespan avgF feature is calculated over n different landmarkers run on

the instance and can be defined as follows: 1
n

∑n
k=1 f(rxi ). The avgR feature is calculated

by randomly sampling N solutions for an instance and calculating the average makespan

of these solutions: avg(f(r1i ), f(r2i ), . . . , f(rNi )). Next, the maxF and minF features

extract the maximum and minimum values of the search-space given by 2 iterations of

the Genetic Algorithm. The expected proportion of neighbours with a better solution,

EPN, is the proportion calculated between the makespan of a random solution and of

its neighbourhood. A random solution rji is picked along with its v neighbours nji .

The makespan of each neighbour is compared to the random solution, where we count

the number of times the makespan of the neighbour is worse than that of the random

solution and average the result.
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The ERN gives the average ratio between the fitness values of m random solu-

tions
{
r1i , r

2
i , . . . , r

m
i

}
and the corresponding fitness value of the each rji ’s best neigh-

bour (out of v neighbours). The computed ratios are averaged. The features RFP,

QBO and AOP involve a set of t parent-solutions Pi: {(p1,1i , p1,2i ), . . . , (pt,1i , pt,2i )} that

are selected from Ri. By applying pmx crossover to the parents, the offspring Oi:

{(o1,1i , o1,2i ), . . . , (ot,1i , ot,2i )} are created. The quality of the best offspring solution,QBO,

measures the average number of times that the best solution of an offspring pair is better

than the best solution of the corresponding parents.

The RFP meta-feature instead calculates the average of the ratio between the fitness

values from the best solutions of the offspring pairs and the parent pairs. Finally, the

AOP meta-feature measures the average number of times an offspring solution is better

than its parents.

3.3 Summary

We discussed the implemented metalearning solution for the Chip Production Scheduling

Problem. The metalearning approach is based on meta-data, consisting of meta-features

and a meta-targets for the instances. Since we address two metalearning tasks, 1)

predicting the makespan of each meta-heuristic variant and 2) selecting the best meta-

heuristic for a given instance, which represent regression and classification tasks we used

different evaluation methods. For regression, the MSE (Mean Squared Error) and for

the classification task prediction accuracy.

The implemented meta-features consist of simple features, proposed and adapted

Genetic Algorithm landmarkers. We excluded some of the proposed meta-features from

the experiments because of long computation time.



Experiments

We explain the experimental setup and results obtained with the metalearning frame-

work.

4.1 Experimental Setup

The experimental setup (figure 4.1) can be divided into three phases, namely:

1. Input generation (meta-features and meta-targets) for the metalearning model

2. Training the algorithm to derive a metalearning model and running it on test

instances

3. Evaluating the recommendations and the performance of the algorithm

Figure 4.1: Experimental setup.

18
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We used a Genetic Algorithm framework implemented in R [21] to generate most input

from the training and test data. The simple meta-features were calculated directly

from the data. The test data consists of 3 SEMATECH scheduling data sets derived

from real data of several chip fabrication facilities [22]. The training data includes 41

randomly generated scheduling data sets from Taillard’s Job Shop Scheduling Problem

benchmarks [23]. In addition, we adjusted these to match the nonlinear test sets having

unequal length. Namely, each set has a different number of jobs to process and multiple

jobs can use the same machine. We extend each job from every set with a random

number of machines.

Since the input generation of all features except the simple meta-features took a

long time, we parallelized the scripts and distributed them over multiple cores using

the foreach [24] and doParellel[25] packages. We give a brief overview of the setups

used for the input generation except for the simple meta-features since these are directly

computed from the data.

• We ran the avgF feature with 20 iterations, population sizes of 10 and 20, mutation

probabilities ∈ {01, 0.01, 0.1} and crossover probabilities ∈ {0.45, 0.5, 0.6, 0.75}.

We chose these mutation and crossover probabilities because they are located in

the range of known good parameter values for the Genetic Algorithm.

• All of the adapted features use a setup of the population size of 8 for the neighbour-

hood, 10 for both the random and parent population and a crossover probability

of 1.

• The avgR, maxF, and minF features were derived from the GA setup of two

iterations, a population size of 50 and mutation and crossover probabilities 01 and

0.6, respectively.

• As discussed in the previous chapter, the meta-targets are calculated with two

setups. The first one, derived from the Grefenstette setup consists of 30 iterations,

a population size of 30, and 0.01 and 0.95 for the mutation and crossover proba-

bilities. The second setup, derived from the deJong setup similarly consists of 30

iterations, a population size of 50, and 01 and 0.6 for the mutation and crossover

probabilities.
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The choice of algorithms includes a simple Decision Tree (DT), Multilayer Perceptron

(MLP), Nearest Neighbour (kNN), Random Forest (RF) and a Linear Model (LM). We

used the implementation of the regression and classification variants of these algorithms

in Python using the Scikit-Learn machine-learning package [26]. The important thing

to note is that some of these are stochastic algorithms. This signifies that an algorithm

produces different results for different runs because of randomness.

For the training run, we employed the Leave-One-Out training method. So to say,

the models train on all but one instance of their training data and predict the value of

the left-out instance. We used this training method due to the small size of the training

data set. The training data consisted of a reduced set of meta-features: a subset of the

landmarker features and all simple features. The reason for this is the long computation

time. For the test run, we train the models on all training data and run them afterward

the instances of the test data.

The following section reports the performance results of the training and test runs of

the models

4.2 Results

4.2.1 Training Run

We designed various meta-features, so it follows that we train and test algorithms on

these in separate experiments. We divided the training run into three different experi-

ments. The first experiment trains with the simple meta-features, the second with the

subset of landmarkers, and the third with the former two combined. The results per

experiment are displayed in the following tables.

The results of the regression and classification tasks are presented in the next tables

for all experiments. Both tasks were trained on 25 instances of the data. We normalized

the meta-features by subtracting the mean of each feature and dividing the result by its

standard deviation.



Chapter 4 Experiments 21

Table 4.1: Performance results from the Leave-One-Out Regression Task for all experi-
ments on training data.

Performance Measures ZR LM kNN DT RF MLP

Simple features

RMSE deJong 0.0228 0.0144 0.0171 0.0208 0.0158 0.0632

RMSE Gref. 0.0264 0.0211 0.0219 0.0352 0.0252 0.0755

Landmarker features

RMSE deJong 0.0228 0.0144 0.0171 0.0214 0.0181 0.0956

RMSE Gref. 0.0264 0.0211 0.0220 0.0340 0.0241 0.0753

Combined

RMSE deJong 0.0228 0.0216 0.0176 0.0212 0.0183 0.1249

RMSE Gref. 0.0264 0.0289 0.0213 0.0340 0.0265 0.1710

Notes: ZR-baseline = ZeroRule, LM = Linear Model, 5NN = Nearest Neighbour , MLP =

Multilayer Perceptron, DT = Decision Tree and RF: Random Forest.

Table 4.2: Performance results from the Leave-One-Out Classification
Task for all experiments on training data.

Performance Measures LM kNN DT RF MLP

Simple features

Accuracy Reg-Class. 64% 56% 64% 68% 60%

Accuracy Classification 28% 20% 32.0% 52% 48%

Landmarker features

Accuracy Reg-Class. 64% 56% 76% 68% 52%

Accuracy Classification 28% 20% 40% 32% 40%

Combined

Accuracy Reg-Class. 68% 68% 60% 64% 56%

Accuracy Classification 48% 20% 32% 48% 40%

Baseline Majority Class 56%

Notes: ZR = ZeroRule baseline, LM = Logistic Model,kNN = Nearest

Neighbour , DT = Decision Tree and RF = Random Forest.
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The following subsections explain the results for each experiment, shown by the

previous tables.

4.2.1.1 Simple Features

The results for the regression task show that all models except the Multilayer Perceptron

(MLP) have better predictive performance than the ZR-baseline for the deJong setup on

predicting the target gain. For the Grefenstette setup, the Decision Tree and Multilayer

Perceptron had the worst predictive performance. Furthermore, the Linear Model (LM)

and Random Forest (RF) got the best results for both Genetic Algorithm setups, with

the Nearest Neighbour model following close behind. Finally, the Decision Tree (DT)

acquired mixed results with a better predictive performance for the deJong setup than

that of Grefenstette. Since the algorithms, except the Linear Model, are stochastic the

predicted errors differ slightly per run. We confirmed this by running the models a few

times, where the results did not improve significantly.

The classification results, displayed in table 4.2 indicate that the straightforward

classification approach does not work well. The accuracy of the straightforward classi-

fication is worse than the baseline Majority Class. We repeated the classification task a

few times, but the results did not improve. In contrast, the accuracy results for the clas-

sification by regression approach are usually than the baseline. In this case, the Random

Forest (RF) outperformed the other models with the best accuracy score. However, the

repeated classification tasks show that for the classification by regression approach, the

accuracy of the models stays more or less the same.

4.2.1.2 Landmarker features

Once again, the results for the regression task show that the Multilayer Perceptron

(MLP) acquired the worst predictive performance of all models, as illustrated in the

next table. For this experiment, the Linear Model (LM) and Nearest Neighbour (kNN)

models acquired the best results for both Genetic Algorithm setups. The performance

results of the Random Forest (RF) follow close behind. The Decision Tree (DT) once

again acquired variable results, where it had better RMSE values for the deJong setup

than that of Grefenstette.
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The results of the classification for this experiment are similar to the previous one.

Namely, the models fail the straightforward classification task as can be clearly seen

in the results in the second row. This time, the Decision Tree (DT) acquired the best

accuracy performance (76%) for the classification by regression task, followed closely by

the Random Forest (68%). Incidentally, the same comments regarding the variation in

the accuracy of the classification by regression task RMSE values of the regression task

apply here too.

The performance results obtained by the models on the simple features and land-

markers reveal that simple features already lead to good performance results.

4.2.1.3 Simple and Landmarker features

The results for the regression task show that all models except the Multilayer Perceptron

(MLP) have better predictive performance than the ZR-baseline for the deJong setup.

For the Grefenstette setup, these were only the Random Forest (RF) and Nearest Neigh-

bour (kNN). In particular, the Random Forest and Nearest Neighbour models acquired

the best results for both Genetic Algorithm setups (deJong and Grefenstette). The De-

cision Tree (DT) and Linear Model (LM) acquired variable results. Both have better

RMSE errors for the deJong setup than that of Grefenstette. Finally, the Multilayer

Perceptron (MLP) had the worst performance of the entire set of models based on the

poor results it acquired for both Genetic Algorithm setups.

The classification results, confirm once again the conclusion that emerged from the

previous experiments: that worse results are obtained with a traditional classification

approach to this problem.

The accuracy of the straightforward classification is worse than the baseline Majority

Class. On the other hand, the results for the classification by regression approach are

as good or better than the baseline. The Logistic Model (LM) and Nearest Neighbour

(kNN) thereby outperformed the other models with the best accuracy score.

The first conclusions that can be drawn from these experiments are as follows:

• The straighforward classification approach to this problem obtained unsatisfactory

results so it will not be used on the test data.
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• The Random Forest algorithm consistently performed well in the regression tasks

for all experiments. For the classification by regression tasks, the algorithms ac-

quired different accuracy scores per experiment.

• There is little difference between the predictive performance of the models on the

different sets of meta-features for the regression-tasks.

Given the first conclusions, we look at the predicted performance of the Random

Forest for the regression task on the simple features, in more detail.

For each instance we converted the predicted gains yrecommend from the Random

Forest to their respective makespan values. We separately plotted the original makespan

value true computed by the Genetic Algorithm and the predicted value, to which we

refer to as pred, for both setups. Figure 4.2 presents the results:

Figure 4.2: Makespan predictions by the Random Forest model, for both Genetic
Algorithm setups.

It is clear that the predictive error of the makespan values is small, as shown by

the overlapping points in the plot. Since the classification-regression error is difficult to

deduce from this plot, we present those of the instances with the lowest RMSE values

of the predicted gains yrecommend for both setups:
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Table 4.3: Classification by regression predictions of best, low and worst RMSE values
from predicted gains

Instance Setup RMSE for yrecommend Pred. Class True Class

23 deJong 0.00088 deJong. deJong

5 Gref. 0.00058 deJong deJong.

10 deJong 0.00611 Gref. deJong

12 Gref. 0.00298 deJong Gref.

1 deJong 0.05903 Gref. Gref.

3 Gref. 0.07531 deJong Gref.

The results show that in general, most of the time the meta-model predicts the same

setup as the original for data sets with low RMSE values. Furthermore, the predicted

makespans converted from the gains with the correct classification prediction followed

the same classification. This indicates that, given the low RMSE values, the approach

selects the best Genetic Algorithm for an instance, leading to the best scheduling solu-

tion. Despite the difference in prediction accuracy, we think this model and the Nearest

Neighbour are good options for the classification by regression task of the test data.

4.2.2 Test Run

Given the results of the training run, we decided on the Random Forest and Nearest

Neighbour as the algorithms. We trained the algorithms on the same meta-features

sets we investigated in the three experiments. Afterward, we ran the models on 3 test

instances of the Chip Production Scheduling Problem described with the same meta-

features as the training set. Table 4.4 displays the results, including the Zero-Rule (ZR)

baseline.
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Table 4.4: Performance results from the Regression Task for all experiments on test
data .

Performance Measures ZR RF kNN

Simple features

RMSE deJong 0.0311 0.0290 0.0354

RMSE Gref. 0.0319 0.0339 0.0399

Landmarker features

RMSE deJong 0.0311 0.0386 0.0360

RMSE Gref. 0.0319 0.0379 0.0357

Combined

RMSE deJong 0.0311 0.0379 0.0356

RMSE Gref. 0.0319 0.0415 0.0457

The Random Forest algorithm has the best results on the simple set, with the lowest

RMSE values for its predicted gains yrecommend, although the obtained RMSE value for

the Grefenstette setup is worse than the baseline. The Nearest Neighbour model also

obtained the best results on the simple meta-features set, but its RMSE values were

also worse than the baseline. The remaining performance results show higher RMSE

values than those of the baseline and the simple meta-feature set, for both algorithms.

The classification accuracy performances for the classification by regression task were in

general better. The calculated majority class baseline for the test data was 66.67%. Both

models obtained classification accuracy performances of 66.67% for the combined set.

The Nearest Neighbour algorithm subsequently obtained 100% and 33.33% accuracy

performances for the landmarker and simple features respectively. Finally, Random

Forest got an accuracy performance of 66.67% for both the simple and landmarker

sets. We repeated the experiments and noticed little difference in the RMSE values and

classification accuracy performances.

Again, we analyze the predicted gains which are converted to predicted makespans

pred. Figures 4.3 and 4.4 display the predictions acquired by the models for the three

instances on the simple set of meta-features of the test data.
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Figure 4.3: Makespan predictions for the test sets by the Nearest Neighbour model,
for both Genetic Algorithm setups.

Figure 4.4: Makespan predictions for the test sets by the Random Forest model, for
both Genetic Algorithm setups.

Here too, we observe the same results as in the makespan prediction plot of the

training run which are the very small predictive errors between the original and the

predictive makespan values. We subsequently look at the classification by regression

errors for both models, on both setups:
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Table 4.5: Classification by regression predictions of best,low and worse RMSE values
from predicted gains.

Instance Setup RMSE for yrecommend Pred. Class True Class

Random Forest

1 deJong 0.01886 Gref. deJong.

4 Gref. 0.01553 Gref. Gref.

7 deJong 0.02492 Gref. Gref.

1 Gref. 0.03238 Gref. deJong

4 deJong 0.04326 Gref. Gref.

7 Gref. 0.05379 Gref. Gref.

Nearest Neighbour

1 deJong 0.02701 Gref. deJong

1 Gref. 0.03491 Gref. deJong

4 deJong 0.03080 Gref. Gref.

7 Gref. 0.04209 deJong Gref.

7 deJong 0.04829 deJong. Gref.

4 Gref. 0.04286 Gref. Gref

The models predicted the correct setup for instance 4. The Random Forest model

also predicted the correct Genetic Algorithm for instance 7, regardless of the higher

RMSE values. The Nearest Neighbour model furthermore predicted incorrect setups for

two out of the three instances. It shows that lower (better) RMSE values do not nec-

essarily correspond with a correct classification. By looking at the converted makespan

values of the predicted gains, we discover that the wrongly predicted classes for the

first data set were, in fact, better than the makespan values for the ‘would-be’ correctly

predicted class of the deJong setup. We assume that this has to do with the regression-

error. If the model, for instance, obtained perfect regression-errors of zero, its predicted

makespan values would be the same as the true values. Hence, it would predict the same

classification as the true classification.
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4.3 Discussion

The training experiments revealed various things. Addressing the algorithm selection

problem tackled in this project as a straightforward classification problem does not lead

to good results. On the other hand, the regression models acquired good predictive

performance (low RMSE values) on all sets of meta-features for the regression task.

From the set of meta-models, the Random Forest and Nearest Neighbour algorithms

were the best.

There was also little difference between the performance on the different sets. So

in this case, simple meta-features would indeed provide the minimal basis of data-

characterization of the instances for the meta-model to do good predictions for the

Chip Production Scheduling Problem instances. We worked with a preliminary set of

landmarkers but we expect that the inclusion of other meta-features of this kind, some

of which have already been discussed in this project, may improve the results, as they

did in other selection tasks.

Despite the small sample size of the training set, the Random Forest predicted the

correct Genetic Algorithm for the instances for which it acquired the lowest RMSE values

in the classification by regression task. Naturally, the model did not predict the correct

setups for all instances, but this can be expected. Here too, the prediction accuracy can

be improved taking the same measures that would improve the accuracy of the regression

task.

For the test experiments the chosen algorithms, Random Forest and Nearest Neigh-

bour, achieved mixed results on the regression task. The performance results obtained

by both models indicate that simple meta-features provide good data-characterization,

given the low RMSE values. The results of the classification by regression show that

Random Forest did better than the Nearest Neighbour. Both meta-models predicted

the correct setups for two out of three instances for the combined meta-feature set. For

the remaining sets, the Random Forest correctly predicted the setups for two out three

instances. In contrast, the Nearest Neighbour predicted correctly predicted the setup for

only one instance, for the simple meta-feature set. For the landmarker set, it predicted

the correct setup for two out of thee instances.
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The general observation can be made that given the small amount of data we worked

with, the metalearning approach to the Chip Production Scheduling Problem achieved

promising results. We carefully assume that the complete set of meta-features and a

greater sample size of training data will lead to better results.



Conclusions

In this thesis, we designed a metalearning approach to select one of two Genetic Algo-

rithms to find the best scheduling solutions for real-world instances of the Chip Pro-

duction Scheduling Problem, a Job Shop Scheduling Problem. The Chip Production

Scheduling Problem is about finding an optimal schedule of job assignments to a set

of machines, which reduces the makespan of multiple orders of different products. We

modeled the Chip Production Scheduling Problem as regression and classification tasks.

The classification problem was thereby approached as a straightforward classification

task and a regression-classification task. With straightforward classification, the algo-

rithms predict the targets, i.e. the algorithm that works best on the instance. While with

regression-classification, the algorithms predicted the class by comparing the makespan

values of the predicted regression targets for each instance, and choosing the algorithm

with the lowest one as prediction.

The training data for the metalearning process were a set of artificially generated

Job Shop Scheduling Problem instances and the test data the real-world instances of

the Chip Production Scheduling Problem. The instances were described with simple and

landmarker meta-features. We extracted statistical information from the instances to

form the simple meta-features. Afterward, we adapted and modified landmarker features

from the paper of J.Kanda [20] and also proposed some new ones. We computed different

meta-targets for the regression and classification tasks. For the regression task, this was

the gain between the makespan of the random scheduling solution, and the best one

found by the Genetic Algorithm for the two Genetic Algorithms. For classification, we

computed binary class labels that indicated which algorithm had lower makespan values,

31
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thus a better scheduling solution. We used a Random Forest, Decision Tree, k -Nearest

Neighbour, Multilayer Perceptron and Linear algorithms to learn the meta-model.

We trained the meta-models on each set of meta-features and on the whole set alto-

gether, where we worked with a preliminary set of landmarkers and a small sample size

of training instances. The results of the training experiment showed little performance

difference between the meta-models for the regression task. We noticed that simple

meta-features already obtained good performance results.

The Random Forest and Nearest Neighbour algorithms were the best of the training

set with the lowest RMSE scores. This translated into small predictive errors between

the original optimal makespan, and the predicted makespan. Another finding is the

fact that a straightforward classification approach to predicting the best algorithm for

an instance does not work, given the bad performance accuracy scores obtained by

the models. Namely, they were worse than the Majority-class baseline. In contrast,

the regression-classification task proved more successful. Here too, we noticed that the

Random Forest algorithm was one of the more successful algorithms.

For the test experiment, we subsequently trained the Random Forest and Nearest

Neighbour meta-models again on all meta-feature sets of the training data and ran

them on same the meta-features of the test instances. Both obtained the best results

for the simple meta-feature set with the lowest RMSE values. The remaining results

indicated no improvement in predictive performance for both meta-models for the other

sets of meta-features.

The classification by regression task showed that the Random Forest obtained better

results than the Nearest Neighbour algorithm. For all meta-feature sets, it predicted

the correct algorithm for two out of three instances. In contrast, the Nearest Neighbour

algorithm predicted the correct algorithm for one instance, for the simple meta-features

set. It subsequently predicted the correct algorithm for two out of thee instances for the

landmarkers set.
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What appears from all these findings we summarize as follows.

• The metalearning approach we designed obtains promising results for recommend-

ing i.e. predicting the best Genetic Algorithm for the instances of the Chip Pro-

duction Scheduling Problem.

• The performance of the meta-models does not vary much between the different

sets of meta-features. We saw that simple meta-features seem to work as well as

the landmarker features for this problem, given the results we obtained.

• By tuning the parameters of the meta-models and improving the set of meta-

features, a better metalearning approach can be constructed.

5.1 Future Work

There is still a lot of work to be done in improving the designed metalearning approach.

For instance, we could design meta-features that exploit more properties of the instances

of the Chip Production Scheduling Problem. We also suggest trying out different Ge-

netic Algorithm operators, implementing another heuristic algorithm and tuning the

parameters of the meta-models. Finally, we recommend increasing the training data by

ten-fold.
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Table A.1: Simple meta-features.

Meta-feature Mathematical Expressions

Simple

avgM 1
M (
∑M

j=1

∑k
i=1mi)

avgT 1
M (
∑M

j=1(
1
k

∑k
i=1 ti))

HT max([t1, t2, . . . , tk]j1 , . . . , [t1, t2, . . . , tk]jM )

LT min([t1, t2, . . . , tk]j1 , . . . , [t1, t2, . . . , tk]jM )

varT 1
M (
∑M

j=1 var(t1, t2, . . . , tk))

kurT 1
M (
∑M

j=1 kur(t1, t2, . . . , tk))
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Table A.2: Landmarker meta-features .

Meta-feature Mathematical Expressions

Proposed

avgF 1
n

∑n
k=1 f(rxi )

avgR avg(f(r1i ), f(r2i ), . . . , f(rNi ))

maxF max(f(rji ))

minF min(f(rji ))

Adapted

EPN 1
v

∑v
k=1 chk(f(nk,ji ) < f(rji ))

ERN 1
m

∑m
k=1

f(nk,best
i )

f(rki )

QBO 1
j

∑t
j=1

chk(f(min(oj,1i ,oj,2i ))<f(min(pj,1i ,pj,2i )))
t

RFP 1
j

∑t
j=1

f(min(oj,1i ,oj,2i ))

f(min(pj,1i ,pj,2i ))

AOP 1
4t

∑t
j=1

∑2
k=1

∑2
l=1 chk(f(oj,ki ) < f(pj,li ))



Bibliography

[1] Yahong Zheng, Lian Lian, and Khaled Mesghouni. Comparative study of heuristics

algorithms in solving flexible job shop scheduling problem with condition based

maintenance. Journal of Industrial Engineering and Management, 7(2):518–531,

2014. ISSN 2013-0953. doi: 10.3926/jiem.1038. URL http://www.jiem.org/

index.php/jiem/article/view/1038.

[2] Sönke Hartmann and Rainer Kolisch. Experimental evaluation of state-of-the-art

heuristics for the resource-constrained project scheduling problem. European Jour-

nal of Operational Research, 127(2):394–407, 2000.

[3] Peter J. M. van Laarhoven, Emile H. L. Aarts, and Jan Karel Lenstra. Job shop

scheduling by simulated annealing. Oper. Res., 40(1):113–125, January 1992. ISSN

0030-364X. doi: 10.1287/opre.40.1.113. URL http://dx.doi.org/10.1287/opre.

40.1.113.

[4] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, and Marco Trubian. Ant system

for job-shop scheduling. Belgian Journal of Operations Research, Statistics and

Computer Science, 34(1):39–53, 1994.

[5] Antonio Garrido, Miguel A Salido, Federico Barber, and MA López. Heuristic
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