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1 Introduction

In recent years students and staff from the Computer Science Department of Leiden University
have been working on a modelli ng method for the description, analysis and specification of the
software process. This method (called SOCCA: Specification of Coordinated and Cooperative
Activities [Engels 94]) is at present still  under development. 

A SOCCA model describes the software process from three different perspectives: the data
perspective, the behaviour perspective and the process perspective. It was decided to use a separate
modelli ng formalism for each of the different perspectives. This kind of modelli ng is not uncom-
mon in the realm of object-oriented modelli ng techniques, li ke Object Modelli ng Technique
(OMT) [Rumbaugh 91] or OOA/OOD [Coad 91]. 
Until  now most work on SOCCA has been devoted to the models for the data and behaviour
perspectives. Two existing formalisms have been adopted to achieve this.
Class diagram modelli ng, based on EER concepts, has been chosen for the data perspective. This
technique has the advantage of being reasonably well  understood and having a clear diagrammatic
representation.
The behaviour perspective is covered by the use of state transiti on diagrams (STDs). The
SOCCA approach however differs from many behaviour description models using STDs. First of
all, a distinction is made between external and internal behaviour(s) of the objects modelled.
Secondly, much effort is made to create a detailed picture of the communication between objects
and concurrency of different behaviours in one single object. For this purpose PARADIGM is
used, a formalism developed by Groenewegen and others [Groenewegen 86] to model parallel and
concurrent processes.

As I started out to work on this thesis, littl e attention had been paid to the process perspective in
SOCCA. The general idea was, that as in the case of the structural (or data) and behavioral per-
spectives an existing modelli ng formalism should be adopted and possibly adapted to cover for this
process or functional perspective. At that stage ideas about what formalism to adopt and the
modelli ng capabiliti es of such a technique were still  somewhat vague. 

So it was decided that I should

• investigate the modelli ng capabiliti es of the candidate formalism for the process perspec-
tive, which was already baptized the formalism of Object Flow Diagrams (OFDs) in the
discussions on SOCCA;

• apply it to the field of software process modelli ng and especially to the problems the
SOCCA research was focusing on;

• show how this formalism of OFDs, which I immediately called OFM or Object Flow
Modelli ng, could be integrated into the SOCCA method, and explain the relation it would
have to the other two modelli ng techniques used.
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This task in fact proved to be not that simple. Looking back, I see two reasons why the work
didn't quite work out the way I planned it:

• I held a different view from people working SOCCA about the phenomena a functional or
process model should be able to model, and therefore about the nature of the process
perspective. It took some time for me to realize this. 

• I soon found out, that in fact there was no one existing formalism of OFDs. In [Engels 94]
references were made to two different formalisms: the Visual Action Language (ViAL) and
the formalism of Data Flow Diagrams (DFDs). It was still  unclear how the formalism of
OFDs related to the concepts underlying both. 

So in fact what did I do? First of all I tried to make it more clear how a functional model should
be incorporated into SOCCA and what it should model. In chapter 2 we therefore take a short look
at SOCCA, the general field software process modelli ng and the different modelli ng perspectives
involved. After this chapter we should have a better view on the phenomena that to be captured by
a process or functional perspective and accordingly on the desired properties of the modelli ng
technique used. 

Chapter 3 and 4 take a look at the two sources of inspiration mentioned in the discussion on
process modelli ng in SOCCA, and discuss their merits:

• the well  known formalism of Data Flow Diagrams (DFDs). 
• the Visual Action Language ViAL, developed at the Technical University of

Braunschweig, Germany in the context of the CADDY project. 

The chapters should explain why ViAL and the formalism of DFDs are of different nature and
what concepts underlying both could be incorporated into the SOCCA method and formalisms. 

In chapter 5 I will  clarify some of the concepts fundamental to the behaviour model in SOCCA by
showing how they are related to the usage structure from the class model, and the concepts of
view and object situation. For myself I found great help in the understanding of the behaviour
model from the introduction of these concepts.

Chapter 6 discusses how integrity rules expressed by the SOCCA class model could be incorpor-
ated into the existing behaviour model of SOCCA, or are already fulfill ed by the existing models. 

Although it was my original ambition to present and apply a formalism for descriptions of the
transformations of objects of the SOCCA model, and how objects and values flow from one
transformation to another, littl e or no work has actually been done on the development of such a
technique. In chapter 7 I will  try to indicate in what direction the development of a formalism
should proceed and how in my view it should relate to the existing submodels.

Finally in chapter 8 the results of the work will  be briefly reviewed and some concluding remarks
will  be made. 
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2 Software Process Modelling and SOCCA

2.1 Software process modelling

Software process modelli ng deals with the entire process of software development. Although the
subject of software development or software engineering is broadly dealt with in computer science,
the field of software process modelli ng is relatively new; its origins in fact seem to date from the
late eighties. In software process modelli ng the emphasis shifts from the products or artifacts that
are the result of the software development process to the properties of the software process itself.
With the field of software process modelli ng (SPM for short) the software engineering methodol-
ogy evolves from a generator of methods, li fe-cycle models, modelli ng formalisms and languages,
to a true science of the software process. 

One might ask about the objectives for research programs in the field of software process
modelli ng.
In [Curtis 92] five basic categories of objectives for software process modelli ng, ranging from
understanding aids to automated execution support, are presented:

• Facilit ate human understanding and communication
Software development is teamwork. And, what may be even worse, the activities involved
are usually carried out by team members specialized in different disciplines, having differ-
ent interests and all too often using different 'languages'. An adequate model of the soft-
ware process should help to represent the process in a form understandable by humans,
and enable them to communicate about what should be done. 

• Support process improvements
In analysing processes and defining a basis for their understanding SPM can compare
alternative software processes, estimate the impacts of potential changes to a software
process without first putting them into actual practice, and assist in the selection and
incorporation of technology (e.g. tools)

• Support process management
SPM could help to deliver indicators that enable the monitoring, managing and
coordination of the software process, and support development of plans for software
development projects (forecast)1. 

• Automate execution support
The software process models established can be the basis for tools and procedures that can
automate or facilit ate some of the activities involved. Indicators of the performance and
guidance of the software project could then be automatically collected. Rules to ensure
process integrity could be enforced.

                                                       

     1 This will  demand a defined or idealized project against which the actual project behaviour
can be compared
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• Automate process guidance
Specification of what should be done by whom, how and at what time is a cumbersome
task that is usually left to the person designated as project manager. All  too often this task
is reinvented any time a new software development project is launched. A clear and formal
understanding of the software process can help to automate and facilit ate this task; by
retaining results from previous endeavours in a repository some knowledge and data could
possibly be reused.

The issues raised by these objectives range from comprehensibilit y to enactabilit y. Consequently,
many forms of information must be modelled and integrated to adequately describe the software
process. One way to deal with this, is to model the software process from different perspectives,
and to concentrate on different aspects of the process for each of these perspective. 
Curtis et al. [Curtis 92] justly discern four different views or perspectives:

• a functional or process perspective, representing what process elements are being per-
formed, and what flows of informational entities (e.g. data, artifacts, products) are relevant
to these process elements. In a way this functional perspective coincides with the classical
view of the field of software engineering, in which the software process is analyzed by its
functional behaviour;

• a behavioral perspective, representing when process elements are performed (e.g. sequenc-
ing), as well  as aspects of how they are performed through feedback loops, iteration,
complex decision-making conditions, entry and exit criteria and so forth;

• an informational perspective, representing the informational entities produced or manipu-
lated by a process; these entities include data, artifacts, products (intermediate and end),
and other objects; this perspective includes both the structure of informational entities and
the relationships between them;

• an organizational perspective, representing where and by whom (which agents) in the
organization process elements are performed, the (physical) communication mechanisms
used for transfer of entities or messages, and the (physical) media and locations used for
storing entities.

These perspectives underlie separate yet interrelated representations for analysing and presenting
process information. In my view, the first three of these perspectives are most appropriate for
analysing the process as an ideali zed model; here one might concentrate on the artifacts that 
should be produced, the functionality that produces them, and the behaviour of agents when
assigned to a certain role, i.e. a coherent set of process elements as a unit of functional responsi-
bilit y. The organizational perspective is important when dealing with implementation or enactment
of the software process, and could be compared to the system architecture view in a software
development process.

Although software process modelli ng was a new activity focus of software engineering science, its
objects of interest are of course compatible with process analysis and modelli ng underlying the
architecture of many software systems. As is stated in [Engels 94] however, the model should not
only account for the behaviour oof the technical parts of the software process, but should actually
account for the human components adding to its functionality. 
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As much as it was recognized in the field of software engineering, the different perspectives
important to software process modelli ng can effectively be dealt with by a multi -paradigm
approach, i.e. using different kind of modelli ng and different types of modelli ng formalisms to
account for each perspective. 
The advantage of such an approach is a certain ease of modelli ng. One simply chooses the
modelli ng language or formalism best fit to express the phenomena one is concentrating upon. The
drawback is an extra model complexity: it is hard to interrelate the different perspectives when
modelled in different languages. 

Using a multi -paradigm approach certain conditions must be met:

• there must be a kind of orthogonalit y between the different modelli ng formalisms. Phe-
nomena modelled by one (sub)formalism should not be modelled in another
(sub)formalism. In fact, as the alternative formalisms were chosen for each perspective,
phenomena modelled by one formalism should in general be harder to model in another
formalism. Further on, we should try and minimize our modelli ng effort.

• it should be possible to interrelate the techniques used. In developing a method for the
description of a software process using different modelli ng formalisms, interrelating the
models can be considered a separate task. And it is certainly not a trivial one.

• it should be clear what perspective will  be covered by which modelli ng approach or
paradigm. This is not always obvious. In the Design of a system in OMT, object
modelli ng and behaviour modelli ng can be added to models that account for the system
architecture in the organizational perspective of the system.

There are a few more criteria one might add to the li st:

• One must demand from all modelli ng formalisms that they constitute a firm basis for the
understanding of and discussion about the related phenomena involved. This can best be
met by using well -understood modelli ng languages or formalisms, having proved them-
selves in more than one specific context, and possibly of a diagrammatic or visual form2.

• Formalisms must be able to deal with a considerable level of complexity.
• Models should be able to cope with very different software processes organized in accord-

ance with the wide range of established software engineering methods or methodologies3.

                                                       

     2 As is argued in [Hennemann 91], p. 24-25 this usually helps to a better understanding. In
[Petre 95] however, there is an interesting discussion on this viewpoint.

     3 There are 2 different interpretations in literature for the term software engineering methodol-
ogy. Sometimes a methodology refers to a consistent complex of different methods. In other
discussions the term is reserved for its proper sense: a science or study of different methods. Here
of course we refer to its first meaning
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2.2 SOCCA

Having taken a quick look at the objectives of software process modelli ng and the features and
requirements for a multi -paradigm approach we can now take a closer look at SOCCA. 
As was stated in the introductory chapter SOCCA is at present still  under development. So in
many aspects it is not a complete method for the analysis and specification of the software pro-
cess. 

SOCCA is a multi -paradigm software process specification method which handles three different
perspectives: the data, process and behaviour perspective. 

Let us first shortly review the formalisms adopted so far. 
For the static and structural description of the processes involved, SOCCA uses class or rather
object modelli ng, taken from OMT [Rumbaugh 91], and by that it is confessing to the object-
oriented paradigm. Consequently the static description not only shows the bare data structure of
the system and its components, but also the operations or methods by which it can be manipulated.
This formalism can deal with complex structures, and has a diagrammatic representation. Further-
more, it has risen a wide interest and is therefore reasonably well  known and much commented
upon.

The specification method or modelli ng formalism PARADIGM was adopted for the behaviour
perspective. PARADIGM was originally developed for and restricted to the specification of
parallel processes. It is defined and presented in [Groenewegen 86]. Several applications of this
formalism can be found in [Steen 88] and [M orssink 93]. 
The use of PARADIGM certainly is not as widespread as for instance Harel's Statechart technique
[Harel 87], which was adopted in OMT for dynamic modelli ng. And, in my view, its diagrammatic
representation has not the elegance of Harel's Statecharts. 
Still , there were reasons for adopting this formalism and not use OMTs dynamic modelli ng:

• PARADIGM was conceived, used and elaborated at Leiden University, so there was much
interest in and expertise on the formalism.

• PARADIGM seems better equipped for the modelli ng of complex dynamical systems.
Coordination and communication between different processes can be modelled very
sophisticated using its notions of subprocess, trap and manager process.

As was noted in the Introduction littl e attention has been paid to the process or functional perspec-
tive, and the adoption of a modelli ng method for this perspective. Both a better understanding of
the phenomena to be covered by the model and the modelli ng capacities of such a formalism are
needed. 
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Now there are two factors hampering this understanding, in my view:

• The literature on SOCCA has not been very clear yet about the research objectives, which
will  influence the phenomena one wants to study or model and the techniques used for
modelli ng. However with the adoption of PARADIGM as a tool for the modelli ng of
model dynamics, the emphasis is li kely to be put on the analysis of software processes,
rather than on the enactment or design of computer-aided software development environ-
ments.

• There is a possible source for misunderstanding when discussing the functional or process
models in SOCCA (and similar multi -paradigm methods li ke OMT). Actually, one can
consider two types of functional or process models.
The first one deals with the process or functional perspective of the software process that
was discussed in the previous section. The other 'process perspective' has to do with
understanding one model in terms of other models, i.e. interrelating the different para-
digms. So when modelli ng behavioral phenomena, li ke state changes in an object, one is
anxious to understand these phenomena in terms of other models, li ke the object model. 
However, in the analysis of the effect of predefined export operations on objects, who will
certainly find their place in any functional model, both perspectives will  again coincide.

The rest of this thesis should contribute to the understanding of the concepts involved, by clarify-
ing some problems, and give hints for their solution or understanding, however incomplete.
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3 Data Flow Diagrams and Data Flow Modelling

3.1 Data Flow Diagrams

Data flow diagrams (DFDs) are a well -known and widely used notation for the functionality of an
information system. The diagrams, also known as 'bubble charts', have become popular with their
use in the SA/SD method [Constantine 79]4. A data flow diagram is a graph showing the flow of
data values from their sources through processes that transform them to their destination. So data
flow diagrams are function-oriented: they do not show control information such as the time at
which transformations are made, or decisions among alternate paths. A data flow diagram does not
show the organization of data values into structures. The attractive and rather intuiti ve graphical
notation makes DFDs easy to use.
A data flow diagram is particularly useful for showing the high-level functionality of a system and
its breakdown into smaller units. One could say that the use of DFDs is more or less 'natural' in
top-down methods, because breakdown and refinement are somehow inherent to the formalism5.

The DFD notation is not standardized. Since the formalism is widely used there are many slightly
different definitions and notations. Here I shall follow the notation and terminology of functional
modelli ng in OMT [Rumbaugh 91]. The basic elements of DFDs (shown in Figure 1) are:

Function-1 Function-2

Store

Source Sink

Actor

Process
Data Flow

Data Store

Figure 1. Elements of data flow diagrams

• processes (or bubbles), used to represent functions or transformation of data values;
• data flows (or arr ows), used to connect the processes, and designating the flow of data or

information from one process to another;
• actors (or terminators), that are the external boundaries to the system represented, that

drive the data flow by producing or consuming values. These actors lie on the 'boundary'
of the data flow graph, and terminate the 'flow' of data as sources and sinks.

• data stores represent values 'tucked away' from the direct influence of the system for
sometime, and to be used later on.

                                                       

     4 sometimes slightingly called 'doing bubbles and arrows'

     5 The discussion on ViAL in the next chapter will  show a formalism (or rather language)
having a bottom-up or constructive nature. 
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To get a view on the modelli ng power of DFDs and the use of high-level functional modelli ng in
software process modelli ng an example of a data flow model is given in the next section.

3.2 The ISPW-6 and ISPW-7 case 

The modelli ng efforts of the research on SOCCA have been concentrating to the problem descrip-
tions for software process modelli ng known as the ISPW-6 and ISPW-7 cases. The ISPW-6 soft-
ware process example [Kellner 91] was constructed in conjunction with the 6th International
Software Process Workshop. It consists of a rather informal description of a realistic software
change process, to be used as an example problem to which various modelli ng approaches can be
applied, and through which they can be evaluated and compared. The example focuses on the
designing, coding, unit testing and management of a rather localized change to a software system.
The ISPW-7 case [Kellner 91a] provides a set of extensions to the ISPW-6 example.

The core problem for the ISPW-6 case is the change of a single code unit (e.g. a module) in an
existing software system. The change is executed by a project team, and initiated by an external
authority, called the Configuration Control Board (CCB). The problem is presented as a consistent
collection of steps or tasks performed by the different members of the project team. 
Eight different steps or tasks are given in the example problem:

• Modify design
This step involves the modification of the design for the code unit affected by the require-
ments change received from the CCB. The modified design will  be reviewed, and ultimate-
ly implemented in code. This step may also modify the design based upon feedback from
the design review.

• Review design
This step involves the formal review of the modified design. 

• Modify code
This step involves the implementation of the design changes into code, and compilation of
the modified source code into object code. It may also be based on feedback from testing,
indicating that additional source code modifications are required.

• Test unit
This step involves the application of a unit test package on the modified code unit, and the
analysis of the results. If  all tests are successfully completed, then the unit has successfully
passed. In that case the example process has come to an end. Steps beyond unit testing,
such as integration testing, are beyond the scope of the example core problem.

• Modify unit test package
This step involves the modification of the actual unit test package for the affected code
unit, in accordance with the modifications made to the test plans and objectives. Subse-
quent iterations of this step may be based upon feedback from testing, indicating that
additional modifications to the unit test package are required.

• Modify test plans
This step involves the modification of test plans and objectives to include testing of the
specific capabiliti es related to the requirements change underlying this software modifica-
tion. The test plan is the blueprint for the actual unit test, as the design is for the actual
code unit.

• Schedule and assign tasks
This step is a project management function. It involves developing a schedule for the work
to be undertaken, and assigning individual tasks to specific staff members.
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• Monitor progress
This step involves the project manager monitoring progress and status of work. This
monitoring is based upon notification of completion of each step, together with the (for-
mal) results of the step undertaken.

As the description of the various tasks is process oriented, the process description is captured very
naturally in the dataflow diagram of Figure 26. 

ModifyDesign

ReviewDesign

ModifyCode

TestUnit

ModifyTestPlans

ModifyUnitTest

ScheduleAssign

MonitorProgress

CCB

Design

ObjectCode TestPackage

TestPlans

ProjectPlans

SourceCode

ReqChange,Task

ModifiedDesign

DesignReview

CodeReview TestReview

CancelRecommandation

ReqChange,Authorization

Notification,Results

ReqChange,Task

Notification,Results

Figure 2. Dataflow model for the ISPW-6 case

One can see quite clearly from the diagram there is a remarkable anomaly in the ISPW-6 process
description when compared to the usual create-review control cycles of the waterfall-l ike models.
In this process description the modified design is handed down directly both to the ReviewDesign
step and the ModifyCode and ModifyUnitTest steps. This effectively means that coding and testing
activities could be based on incorrect design. 

                                                       

     6 The reader may have noticed, that the placement of the task or process symbols ('bubbles') in
the dataflow diagram is suggestive: the four central tasks ModifyDesign, ReviewDesign,
ModifyCode and TestUnit should be reminiscent of the well  known Waterfall  Model for the
software engineering process [Royce 70]. This is one of the attractive features of diagrammatic
techniques li ke the dataflow model: it gives a kind of high-level intuiti ve grasp on the complexity
of processes, sometimes using rather loose associations. Note however the danger in using these
associations, as discussed in [Petre 95]
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Of course in any realistic software engineering process there is a distinct possibilit y for this to
occur. Here however a simple measure could be taken to prevent this by handing the modified
design to the ModifyCode and ModifyUnitTest steps only after it is approved of in the
ReviewDesign step.
In fact this correction was made in the ISPW-7 extensions to the process example. Figure 3 shows
the correspondingly adapted dataflow diagram.

ModifyDesign

ReviewDesign

ModifyCode

TestUnit

ModifyTestPlans

ModifyUnitTest

ScheduleAssign

MonitorProgress

CCB

Design

ObjectCode TestPackage

TestPlans

ProjectPlans

SourceCode

ReqChange,Task
ModifiedDesign

DesignReview

CodeReview TestReview

CancelRecommandation
ReqChange,Authorization

Notification,Results

ReqChange,Task

Notification,Results

ReviewedDesign

Figure 3. Dataflow model for the ISPW-7 correction.

Now the reviewed design is handed over to the ModifyCode and ModifyUnitTest steps. There is no
danger of creating source code from unapproved design.
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To show the abstraction and refinement capabiliti es of DFDs I have made two abstractions from
the model in Figure 3. 

ModifyDesign

ReviewDesign

Design

Modified
Design

D.Review ReqChange,Task

Notification,Results

ReviewedDesign

Project
Mgr

Notification,Results

ReqChange,Task

Design
Eng

QA
Eng

Figure 4. Abstraction for DesignEngineer

ModifySystem

CCB

ProjectDocs

ProjectPlans

ReqChange,Task

CancelRecommandationReqChange,Authorization

Notification,Results

MonitorProgress
ScheduleAssign

Figure 5. Abstraction for ProjectManager

Figure 4 shows an abstraction of the process model, if one is interested only in the activities of the
DesignEngineers working on the Design for the system. The tasks of the QA Engineers (respon-
sible for the testing activities), the DesignEngineers working on the system Code and the
ProjectManager's tasks have been left out. In fact, these agents have been abstracted out as 'black
boxes' and modelled as actors in the DFD. Now certainly, Figure 3 might be considered a refine-
ment of this model. However, modelli ng the agents as actors suggests, that we are not 'interested'
in their behaviour here. 
In contrast, in Figure 5, we see some of the processes abstracted away to concentrate on the tasks
of the ProjectManager. Now here elements from the model of Figure 3 can actually be considered
a refinement for this model; we have split  the task ModifySystem in the various subtasks to be
performed in modifying the system. 
Of course in any real design or analysis process refinement and abstraction need to be defined
more precisely than we have done here. For rules of how to refine to various levels of abstraction
for dataflow diagrams one can consult e.g. [Yourdon 94]. 

3.3 Data Flow Modelling

The examples of the previous section show how DFDs are an attractive graphical notation for
capturing, in a fairly immediate and intuiti ve way, the flow of data and the operations involved in
any information system, and therefore are an easy to use analysis and modelli ng tool.

However, as Ghezzi et al. state [Ghezzi 91], DFDs lack a precise semantics. Sometimes their
syntax, i.e. the rules for composing bubbles, arrows and boxes, and their refinement and abstrac-
tion mechanisms, is defined precisely, but their semantics is not. This gives rise to inconsistencies
in the applied modelli ng. Note the difference in the 'communication' between the ModifyDesign
and ReviewDesign steps in Figure 3 on the one hand and the 'communication' between the
ModifyCode and TestUnit steps on the other hand. In the first case the ModifiedDesign is handed
over to the ReviewDesign step by a dataflow arr ow; in the second case the modified ObjectCode
is handed over via the datastore ObjectCode. Both solutions seem plausible as there is no precise
semantics clearly discerning one from the other.
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In several ways diff iculties in the use of DFDs have been tried to overcome. In [Ghezzi 91] these
attempts are classified as follows:

• Usage of a complementary notation to describe those aspects of the system that are not
captured adequately by DFDs
In fact this is the approach of OMT and similar design and analysis techniques, and
consequently the approach of SOCCA. However when introducing DFD-like modelli ng in
SOCCA we have to make clear what problems can be handled by which modelli ng
subformalism, and what are the relations between the different formalisms.

• Revising the traditi onal definiti on of a DFD, to make it full y formal.
To define the exact semantics of these DFDs we have to formalize the syntactical rules for
the composition of DFDs, adhere semantics to the basic elements and to the syntactical
composition rules.

• Augmenting the DFD model in order to cope with aspects that are not captured by its
traditi onal version
This is the approach taken in the development of a language li ke ViAL. Here traditional
concepts from DFDs were enriched by specific symbols for the update of data stores, and
control or signal constructs as well  as error handling techniques. We will  examine ViAL in
the next chapter.

Data flow diagrams as used in OMT were augmented with additional constructs, too. In
[Rumbaugh 91] two additional flow elements were defined in the diagrams to create the link with
the control and structure submodels: the object creation arrow, and the control flow arrow.
The following diagrams show how both elements may be used to model part of the process
described by the ISPW-6 and ISPW-7 cases7.

ModifiedDesign

DesignReview Ok

ModifyDesign ModifyCode

ReviewDesign

Figure 6. Control flow

CreateVersion

Modify

Design
Engineer

ProjectDocs

DesignDoc

MAX(Version(Design))

Name

Content

Requirements

Figure 7. Object flow designating creation

Figure 6 shows how to incorporate control flow into the diagram. The modified design created in
the ModifyDesign process is handed over to both the Review and the ModifyCode process.
However, the ModifyCode process only is 'activated' if the Review process designates the Design
as successful; in other cases a DesignReview indicating flaws in the design is handed back to the
ModifyDesign process.

                                                       

     7 Both examples actually do not exactly comply to the behaviour description of the SOCCA
model in [Engels 94].
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In Figure 7 the CreateVersion process creates a new version of a DesignDocument in response to a
request from the DesignEngineer. This new document is then 'handed over' to the Modify process,
indicated by the special arrow 'creating' the data store DesignDocument.

The intuiti ve appeal of DFDs make them particularly suited as an analysis tool. The 'bubbles' of
the diagram can be refined to finer and finer levels, until  some satisfactory analysis level has been
reached. When used in multi -paradigm analysis and design methods, at some level the relation to
other models has to be formulated. 
In OMT ([Rumbaugh 91], section 6.6) this is done in an informal way by declaring the processes
at a certain 'atomic' level to be 'equivalent' to (a subset of) the operations defined in the object
submodel (and used in the behaviour submodel). 
It remains unclear however, how exactly to interrelate the concepts of the dataflow diagrams used,
i.e. processes, data stores, data flow arrows and actors with the concepts object, relationship or
link, and operation from the class model, and the concepts introduced in the behaviour model.

One way to define the interrelation, is to relate the three different models, class model, behaviour
model, and data flow model to one single underlying formal specification formalism or enactment
language. This would be possible, if all the concepts were clearly understood in an informal way.
As I belief this is not yet the case, I will  start paving the way in chapter 7.
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4 Visual Action Language and the EER model

ViAL, or Visual Action Language, was developed in connection with a research project called
CADDY (Computer-Aided Design of non-traditional Databases) at the University of Braunschweig,
Germany [Engels 92]. Here ViAL was implemented as part of a prototype design environment for
information systems. A complete description of the language may be found in [Hennemann 91]8 ;
for a comprehensive introduction see [Engels 95]. 

Why was it developed ?
In function-oriented9 design and analysis paradigms it was customary to start the design and
analysis of information systems with a high-level data model, and a high level functional model. 
It was soon realized that for a correct analysis sophisticated high-level data models were needed.
Thus we saw the development of new methods and languages to account for complex structural
descriptions. Many approaches were based on the ER model [Chen 76]. Extensions to this model
were made, in many cases adding inheritance structures to the ER model. These models are
generally known as enhanced or extended entity-relationship models (EER models).
For the dynamical or functional part of the design data flow diagrams were customary10. 

The objectives of the CADDY project included the construction of a computer-aided design
environment based on an extended entity-relationship model. An integration gap was felt between
the usual formalisms for the specification of functionality and the constructed EER models. Func-
tional specifications should obey inherent integrity constraints imposed by the structure specifica-
tion. For such inherently correct specifications a specification language had to be developed.
So a Visual Action Language was conceived. 

Constructed models in ViAL should have [Engels 95]:

• a specification of actions highly integrated with the database schemata. The language had
to have as its fundamental building blocks so-called elementary actions, the 'minimal' func-
tions that mapped one consistent database state into another.

• an intuiti vely comprehensible representation. For this a visual, diagrammatic representation
was chosen, adopting concepts of data flow diagrams.

• inclusion of arbitrary data queries with respect to the database. 

This made ViAL strongly tied to the EER model used in the CADDY project11. 
Before looking at the language itself we therefore will  have a quick look at this EER model, and
compare it to the class or object model used in SOCCA. 

                                                       

     8 where the language is abbreviated VAL

     9 or data-oriented design and analysis. Here I mean more 'classical' methods li ke SA/SD in
contrast to object-oriented methods, or methods with a heavy interest in behaviour.

     10 The past tense is a littl e out of place here. In fact this is still  today the main paradigm in
information system development. Again the contrast with oo-methods is to be stressed.

     11 A complete formal syntax and semantics of this EER model can be found in [Gogolla 91].
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4.1 The EER model

The 'semantic' data model used is an extension to the well  known ER-model [Chen 76], viewing
the universe of discourse as consisting of entiti es and relationships among them. The entities and
relationships are classified into entity, c.q. relationship types or classes, having certain properties as
defined by the model or schema. Information about entities or relationships is expressed by a set
of attribute-value pairs. So an attr ibute can be formally defined as a function which maps from an
entity set or a relationship set to a value set. In fact, in the EER model multi -valued attributes are
allowed, i.e. attributes delivering a set, li st (ordered set) or bag (sometimes called a multiset) of
values. 
Entities partaking in a relationship may be restricted by multi pli city constraints; they specify how
often an entity can be participant in a specific relationship type. The different roles of the entities
participating may be indicated by adding role names to the relationship.
To this classical concept of the ER model some new constructs are added. The result is a data
model with increased expressiveness. This model can be expressed in a diagram according to ER-
conventions, with some extensions. 
Basically the extensions to the data model encompass two concepts.

Speciali zation and generali zation
To provide modelli ng primitives for specialization and generalization the concept of type con-
struction is introduced. The general form of type construction is given by the diagram in Figure 8,
where i1 , . . . , in are already defined or basic entity types, called input types. 

i
n

i
1

o
1

o
m

Figure 8. Type construction

Starting with these types, the output types o1 , . . . , om are constructed. 
All  the entities from the input types are put together and distributed over the output types. The
entities from the output types are not new entities, they already exist (in the input types) but will
be seen in a new context, the output types. Every input type entity is assumed to be in at most 
one of the output types. So the following expressions will  hold:

∪ k=1,..,n ik ⊇  ∪ l=1,..,m ol and (∀  ok , ol , k ≠ l) ok ∩ ol = ∅

Indicated by the inclusion symbol ⊇  in the triangle, the inverted direction need not hold, but can
be explicitl y required by an additional constraint. 
Using this concept of type construction the well  known concepts of generali zation or superclasses
(n > 1, m = 1), speciali zation or subclasses (n = 1, m = 1) and partiti on (n = 1, m > 1) can be
defined. Complete hierarchies of type constructions are allowed. However, they must not contain
cycles.
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Components
The other added concept in the EER model is that of a component12. Certain attributes can hold
entities or objects for value. Every basic or constructed entity type can have components. 
Components arise in diagrams li ke Figure 9, showing the entity Personal Computer, having the
attribute Manufacturer and the component CPU, itself an entity of type Processor.
 

Personal
Computer

Processor

Manufacturer

Manufacturer

CPU

Figure 9. Components 

One can compare the modelli ng power of the EER schemata with that of the OMT class diagrams
used in SOCCA (of course operations or methods will  not be presented in the former). Figure 10
gives the class diagram for the SOCCA entities found in [Engels 94]. We will  translate this
diagram partly into a corresponding EER-diagram. 

Engineer

Project
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Engineer
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Docs
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Pack

Design
Document

Test
Document

Figure 10. Class diagram showing SOCCA objects and links

                                                       

     12 Although the concept of a component is an extension to the ER-model, Chen's original
model contained existence dependency of entities, which is comparable to the concept of compo-
nents.
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Figure 11. EER diagram showing SOCCA entities and relationships

As should be obvious to the reader both diagrams do not model exactly the same objects and
relationships. The Modifi es and Reviews relation are added in the EER diagram of figure 4; this
diagram does not contain the Test Documents nor the QA Engineer. Multipli city constraints are
given in the class diagram of figure 3, but lack in the EER diagram of figure 4. They could be
added however: the syntax of the EER model does provide them (although the notation is not
defined in any of the referenced works).

Some other more interesting remarks can be made:

• there is a difference in modelli ng power of the type construction from the EER model, and
the corresponding superclass/subclass constructions in the adopted OMT modelli ng.
The potential for overlapping membership of the ProjectManager and DesignEngineer
classes cannot be modelled using type construction from EER. 
To see why, consider the two modelli ng potentials of the EER type construct: specializ-
ation or generalization.
(i) If  ProjectManager and DesignEngineer would be speciali zations of the Engineer

entity type, both would belong to different output types of the associated type
construction, and consequently have no members in common. 

(i i) If  Engineer would be considered a generali zation of Projectmanager and
DesignEngineer, both Projectmanager and DesignEngineer would have to be input
or basic types. However, the EER model will  not allow basic entities to be of the
same type.
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More in general, there is a distinct difference between the interpretation of type member-
ship of entities in the EER model, and class membership in OMT's object model, as was
noted in [Ebert 94]. In a type-theoretic approach, which the EER model is advocating,
each object has exactly one class to which it belongs. In the set-semantic approach of
object-oriented models li ke OMT, an object is considered a member of all its superclasses. 

• although there might be a formal equivalence between the component construct of EER
diagrams and the aggregation construct in OMT's class diagrams, there seems to be a
conceptual difference. 
The reader might have noticed the difference in the construction of the aggregate class
ProjectDocs in Figure 10 and Figure 11. In the class diagram, the components of
ProjectDocs are from the classes Design and Code, both subclasses of DesignDocument. In
the EER diagram, both components are considered to be of type DesignDocument, but will
be partiti oned into the specializations Design and Code. 
In my feeling, the strong suggestion of their role in the component construction of
ProjectDocs (by the attribute names) makes this partition look somewhat superfluous,
while in the class diagram the subclass partitioning of DesignDocument is somehow the
indicator for their role. 

The last remark suggests a more economical approach in using inheritance hierarchies in the
models. When specialization is used just to clarify the role of a class in some relationship, this
might be considered bad design practice13. Indeed the component construct in the EER model
shows how this can be done: by assigning role names to the associations in the class model.

When compared to the OMT modelli ng capacity, this is even more true for the SOCCA models.
The 'role switching behaviour' of an object or entity can be modelled quite sophisticated using
different internal behaviours for an object in different roles. As an example one might look at the
behaviour of DesignEngineer in the dynamic model in [Engels 94]. The two different internal
behaviours int-design and int-review somehow represent the different relations the DesignEngineer
has to the DesignDocuments: he/she is Modify-ing documents or Review-ing documents (or both at
the same time: a distinct possibilit y in the SOCCA models). The external behaviour for
DesignEngineer is the manager for this 'role switching behaviour'.

                                                       

     13 although the construction of analysis or design models is in all cases somewhat arbitrary
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Engineer
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Figure 12. An alternative class diagram

An alternative way to shape this behaviour in a SOCCA model is suggested by the class diagram
of Figure 12. Here we have refined the different roles of a DesignEngineer a structural perspective.
Adhering to this model, the external behaviour of Designer and Reviewer in the corresponding
dynamical model would be somewhat li ke the 'old' internal behaviours int-design and int-review of
DesignEngineer.
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4.2 Elementary actions

The EER schema sets structural constraints for the information system adhering to this model. It
tell s us about the structure of the model (in terms of entities, relationships and attributes). By
adding dynamics to our model we specify a way to get from one state or instance of the model to
another. One way to do this is by the use of so called basic actions. The modifications made to
the model instance by the use of basic actions are (cf. [Engels 90])

• insertion or deletion of an instance of an entity or relationship type together with its
attribute values

• addition or removal of a component of an instance of an entity type
• the update of attribute values of existing database objects: entities or relationships
• insertion or deletion of the membership of a database object in a type construction

These basic actions form a complete set of operations: using these basic actions any state change
of the EER model instances could in principle be executed14. 
The basic actions describe the modification of exactly one object (entity, relationship). After the
execution of such an action the new model instance may not be a correct one. This means that
this local modification may violate the global structure as prescribed by the EER schema. In this
case additional basic actions, sometimes called update propagations may be needed to yield a new
and correct model state15. 
Wolff  [Wolff  89] has shown, that minimal sequences of basic actions starting and resulting in a
correct model instance can be defined, and in fact be automatically constructed from any given
EER model. These minimal sequences of basic actions are called elementary actions.

The elementary actions take account of rules li ke:

Insertion of objects
• after the insertion of an entity any required (i.e. not optional) components must be inserted
• the insertion of an entity being the input type of a partition, must result in the insertion of

an output entity of one of the partition output types

Deletion of objects
• before deleting an entity, any relation it participates in must be deleted first
• before deleting an entity, any entities belonging to output types corresponding with the

entity must be deleted first
• all components belonging to the entity must be deleted first

Update of objects, i.e. update of attr ibute values
• no elementary actions are constructed16; the basic update action will  suff ice

                                                       

     14 i.e. it is my firm belief that this could be proven in a formal way

     15 The notion of elementary actions is not unique for the EER model. In [Chen 76] some rules
for 'consistent' insert, update and delete operations were already formulated for the ER-model.

     16 As stated in [Wolff  89]. It shows however, that in spite of the careful construction of
elementary actions from the EER schema, a functional model completely adhering to the integrity
constraints from the model still  was not constructed. The update of key attr ibutes must not be
allowed, without having checked first the uniqueness of the key value over the database.



Functional Modelli ng in SOCCA 24

4.3 The language ViAL

Having taken a glimpse of the EER model and the concept of elementary actions we are now
ready to look at the language ViAL. 
ViAL is a visual programming language to construct complex transactions on databases that can be
considered instances of EER models. 
The language offers the following constructs, as building blocks from which one can compose
functionality in the corresponding diagrams:

• queries, functions on instances of the EER models that constitute values, value sets, or
even objects (entities, relationships) or sets of objects;

• actions, i.e. basic actions for the insertion and deletion of objects, the update of attribute
values, and the addition and removal of components;

• a declaration and invocation construct, which enables abstraction of compositions into
procedures;

• data flow edges, that can connect the aforementioned constructs.

Some of the transactions to be defined in the language are 'pre-modelled' and can be used by a
designer using the language as primitive building blocks for more complex operations. These 'pre-
modelled' transactions correspond to the elementary actions defined in section 4.2.

insert
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update

object type
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Figure 13. ViAL basic actions
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object type

Figure 14. ViAL representation of queries

Figure 13 shows the symbols that are used in ViAL for the basic actions (insertion, deletion, and
update of entities and relations). All  these basic actions can be simply and automatically derived
from a given EER model. These basic actions can be 'enriched' with some constructs, e.g. setting
(required) attribute values when inserting an entity. 
To select values from the database, or to test for database states, ViAL offers the query constructs
of Figure 1417 
An existential query tests the database for the existence of entities of a specific type, using a value
for the key attribute from the type. As a result of this query, either the object(s) themselves or a
signal value or error are produced. 

                                                       

     17 Actually the different ways queries can be built  are a littl e more complicated. Here two
main 'types' are shown.
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So the SQL/EER18 phrase roughly equivalent to an existential query is

select e 
from e in ENTITY
where e.KeyAttribute = keyvalue
if e exists then e else error

In addition to these existential queries, the user of ViAL is free to formulate arbitrary queries of
the database. The result of this query can be an error or signal value, or a data or object flow19.
The visual symbol of Figure 14 is used to incorporate the query in the definition of the transac-
tion; the query itself can separately be defined using either the SQL/EER language or a hybrid
(partly graphical, partly textual) formalism.

distributor join switch

object flow signal flow error  
handling

Figure 15. ViAL connector (flow) symbols

Queries and actions are interconnected using the flow symbols of Figure 15. Remember the result
of a query can be a (set of) value(s) or a (set of) objects, or a signal or error. 

Via the object flow edges objects or sets of objects flow through the specified processes. Multi -
value oriented processing is supported: doubly arrowed flow edges represent object/value sets. To
connect these multi -valued or multi -object flows to the basic actions, the basic actions can be
starred (i.e. marked with an asterisk) to denote the iterative application of the actions, li ke in the
symbolic code statement

foreach e in s do update e.someattribute with e.someattribute+1

Control constructs can be made with the error and signal edges. Signal edges handle boolean
values. Edges for error handli ng could connect an action to a standard error handling procedure in
an application.

                                                       

     18 SQL/EER is a SQL-like query language defined over the EER calculus of [Gogolla 91].
Consult [Hohenstein 92] for a formal definition of the language.

     19 more or less equivalent to the formal concept of a range in [Gogolla 91]
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The switch represents an operator to constrain data flow. The ongoing information (data or signal
flow) is delivered only if the signal carries a 'positi ve' value (true) , indicated by the symbolic
statement:

if s then d else ⊥

where ⊥  is a special null  value20, and d stands for the ongoing data or object flow.

The distr ibutor takes an ingoing signal and puts it through to the outgoing edges. Via the join
operator the different 'branches' of information flow can be recollected. Only one of the incoming
edges is allowed to carry value. The distr ibutor-join constructs could therefore best be compared to
guarded cobegin .. coend constructions, where only one of the parallel branches is thought to 'fire'
for any database instance.
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?Design =
  select   p.Design 
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?Code =
  select   p.Code 
  from   p in ProjectDocs

* *

Figure 16. Delete ProjectDocs elementary action

This section is concluded with an example giving an idea of the ViAL language constructs.
It is based on the EER model of Figure 11, although somewhat simpli fied.

                                                       

     20 cf. [Gogolla 91], p. 376
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Example. 
The elementary action modelli ng the deletion of a ProjectDocs document fil e for a Project.

To delete a ProjectDocs document file, we first need one. So with the existential query
ProjectDocs we select an entity of this type by its key attribute, which is supposed to be called
ProjectName21. 
If  the entity is not found, it cannot be deleted, and an error signal is forced.
In the other case, when the entity is found, we cannot simply delete it, because it possibly has
Design and Code components. 
So first we must delete the accessory DesignDocuments, which in turn can have either Code or
Design specializations or a Document generalization. However, we will  assume that an elementary
delete action for DesignDocuments has already been defined, and simply call it in our ViAL
definition. The resulting complex action Delete ProjectDocs is shown in Figure 16.
Observe the use of the multi -object flow and the asterisk for the deletion of the components. 
The example both shows definition/declaration (Delete ProjectDocs) and invocation (Delete
DesignDocs) of a complex transaction.

4.4 An evaluation of ViAL and its constructs

The central question directing my work on SOCCA was: 

Can we use ViAL to model the functional perspective, i.e. the functionality of the software
process, and add something extra to SOCCA's modelli ng power in addition to the class and
behaviour model ?
My conclusion is: no, we can't. And there are good reasons.

First of all, ViAL constructs model both functionality and behaviour. 
With its signal and error flows it is strongly control oriented. In SOCCA however, there was
already a satisfactory and to some extent superior modelli ng technique for the control flow of the
software process: the behaviour model with its PARADIGM constructs. 
There are some shortcomings in ViAL's handling of control constructs:

• ViAL's constructs (query and action) are conceived from a 'global view' on the database
adhering to the data model. So there is no 'local' mechanism to influence the control.
structure. In fact, the 'objects' in SOCCA are active components, and their control structure
or behaviour depends on local as well  as global state.

• There seems to be no clear semantics for the diagrams22, especially when concurrency of
behaviour is concerned. The example from the previous section shows this to some extent.
It is clear from the diagram, that the delete basic action for the ProjectDocs object cannot
precede the ?Design and ?Code queries. However, there is no syntactical reason why this
action must not precede the elementary actions Delete DesignDocument.
Furthermore, the result of the ?Code query might be influenced by the 'firing' of the Delete
DesignDocument action 'triggered' by the ?Design query. And lastly, there is no semantical
framework for the concurrent behaviour of the two complex transactions Delete
DesignDocument in the example. 

                                                       

     21 not modelled in Figure 11, however

     22 I have not consulted [Gerlach 92], where a ViAL interpreter over a database adhering to the
EER model was described
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Second, ViAL is a 'constructive' language. It is designed to build complex transactions from
simpler ones. As we have seen in chapter 3, DFDs were naturally top-down oriented and therefore
more suited for analysis and design. 
Moreover, the 'constructive' task, i.e. the packaging of behaviour into tasks or operations is 
already performed by the specification of external and internal behaviours in the behaviour model.

And third, the modelli ng primitives of ViAL for actions on the EER schema instances are the
basic actions for the EER model, which are to some extent 'unnatural' from an object oriented
point of view. Indeed, the operations from the class model must be considered the 'basic actions'
for the modelli ng of SOCCA functionality and behaviour.
In any case, the basic actions for the specialization, partitioning and generalization are superfluous
in the set-semantic interpretation of the class model of SOCCA (cf. section 4.1).

So we cannot simply adapt ViAL to our needs. But there are some interesting new ideas we can
learn from the quick look at ViAL:

• it should be possible to generate some 'blueprint for behaviour' for our objects, just by
studying the possible instantiations of the class model, similar to the way elementary
actions were conceived and implemented as basic building blocks in ViAL.

• it is possible to construct a dataflow-like diagrammatic language with a better formal
relation to the underlying data model than the original formalism of dataflow diagrams.

• inclusion of indicators for 'erroneous' behaviour, li ke the error flow in ViAL, might help to
pin-point expected weak spots in behaviour design.
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5 Behaviour modelling and some additional concepts

In the preceding chapters we had a brief look at the SOCCA class model for (part of) the ISPW-6
case, and made only a short mention of the behaviour model. Nevertheless we saw some remarks
about what concepts should be handled by the behaviour model, and what the relation between a
class model and functional model on the one hand, and the behaviour model on the other hand
should be. Let us take a closer look at behaviour modelli ng in SOCCA.

Based on the operations from the class model, in SOCCA one can build State Transition Diagrams
(STDs) showing all possible sequences in which these so-called export operations might be
'executed upon' an object belonging to the corresponding class. This is roughly equivalent to the
use of STDs for behaviour modelli ng in most object-oriented methods (see e.g. [Graham 94] for an
overview). However, behaviour modelli ng doesn't stop there. 
For the implementation of its export operations or methods, an object will  undergo some state
change, possibly alter some of its attributes and induce state changes in other objects, by calling
upon their methods. This 'calling behaviour' is explicitl y modelled as a sequential process in the
so-called internal behaviours corresponding to each of the export operations of the class. 
The corresponding behaviour model allows for asynchronous communication between the objects,
i.e. the effect of the calling behaviour will  generally not show itself immediately or 'during' the
call, and for concurr ency of behaviour within one object. The restrictions necessary to ensure the
'correctness' of behaviour are then modelled using PARADIGMs coordination structure of man-
agers, subprocesses and traps (which is adequately described in [Engels 94]).

An interesting question is how one should arrive at the specification of the internal behaviour.
From [Engels 94], p. 6 one may read:

from studying where the export operations are imported, the various internal behaviours of the
operations of a class are modelled as STDs exhibiti ng all  possible sequences of calli ng imported
operations

One may wonder if there is a systematic way or method by which one can arrive at the (possibly
partial) specification of the internal behaviour from the external behaviour of the objects involved,
and the import/export diagram SOCCA provides. I believe there is. To see why, we first take a
look at the import/export diagram, and the concept of a behavioural view as introduced by Ebert
and Engels [Ebert 94].

5.1 Import/export diagrams

In [Engels 94] the class diagram modelli ng based on EER-like modelli ng techniques is extended
by defining what is called the uses relationship, a new binary relationship type. This uses relation-
ship is shown in diagrams li ke the one in Figure 17.
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Figure 17. Import/export diagram

Each uses relationship has an 'attribute' uses_li st for keeping the li st of actually imported oper-
ations. As is remarked on p. 9 of [Engels 94] 'the li st of operations may differ between instances
of the same type depending on the role of this instance'.
I have some comments on this use of import/export diagrams:

• It is not clear why this uses relationship and consequently the import/export diagram is
considered part of the class diagram. If  the attribute uses_li st is dependent on the role of
the instances of the classes, this role must not be considered part of the class structure. In
fact the diagram seems roughly comparable to the event flow diagram used in dynamic
modelli ng in OMT, which is part of the behaviour model.

• The role switching behaviour of the DesignEngineer does suggest the possibilit y of defin-
ing the partition Reviewer / Designer as possible specializations of DesignEngineer, as was
done in section 4.1.

• By making the import/export diagram part of the dynamic model, the use of the calling
graph of Figure 18 might be considered. In fact it seems that when the import/export
diagram of Figure 17 is constructed, one has all the necessary information to construct the
calling graph of Figure 18, which of course contains more information.

The calling graph shows us exactly what operations from other objects are needed for the imple-
mentation of export operations. The review method of DesignEngineer uses 4 operations from
Design for its implementation: close_and_review_Ok, close_and_review_not_Ok, review, and
open_for_review. Note that the calling graph says nothing about the sequencing of these 'calls'.



Functional Modelli ng in SOCCA 31

Project
Manager

Design
Engineer
review

Design

close_and_
review_Ok

Design

copy

Project
Docs
create_
version

Design

open_for_
modification

Design

modify

Design

close_
modification

Design

create_next

Design

create_first

Design

open_for_
review

Design

review

Design

prepare

Design

close_and_
review_not_Ok

Design
Engineer
design

Figure 18. Calling graph as an alternative for the import/export diagram

5.2 Behavioural views and internal behaviour

The notion of a view is a well  known concept from database literature. The classical
ANSI/SPARC architecture was largely motivated by the intention to allow different users to have a
different view on the same database. 
Ebert and Engels [Ebert 94] have generalized the concept of a view to the object-oriented para-
digm. They define a view on a class C as a simpli fied variant C', which can be derived from C in
a methodical way. 
The simplest view is one for which:
• the attr ibutes of C' are a subset of the attributes of C (and retaining their proper data

sorts);
• the (export) operations of C' are a subset of the operations of C ;
• the state transiti on diagram for C' is the projection of the STD of class C to the restricted

set of operations of C', i.e. the STD of C, where all the operations which are not in the
subset of operations of C' have been replaced by unlabelled transitions (ε-transitions)23.

Now for each pair of classes where one class is using operations from another class for the imple-
mentation of its methods, a corresponding view can be constructed.

                                                       

     23 this 'abstracted view' corresponds to the notion of restriction (cf. [M ilner 89], ch. 2) or
abstraction (cf. [Baeten 87], ch. 5) known from communication theory.



Functional Modelli ng in SOCCA 32

 From the calling graph of Figure 18 one sees that the following views can be constructed:

• the DesignEngineerToDesign view for the implementation of the review method as the
view DesignEngineer (as a reviewer) 'holds on' Design;

• the DesignEngineerToProjectDocs view for the implementation of the design method as
the view DesignEngineer 'holds on' ProjectDocs;

• the DesignEngineerToDesign view for the implementation of the design method as the
view DesignEngineer (as a designer) 'holds on' Design;

• the ProjectDocsToDesign view for the implementation of the create_version method;
• the DesignToDesign view for the implementation of the close_and_review_Ok method;
• the DesignToDesign view for the implementation of the create_next method.
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Figure 19. Design's STD 

review

close_and_
review_ok

close_and_
review_not_ok

q0
not
existing

q1
creatable

q2
starting
creation

q3
created

q4
modifiable

  q6
starting
modification

q7
pre_review

q8
reviewable

q9
starting
review

q10
readable

q11
starting
copy

open_for_
review

Design'

Figure 20. Reviewers view on Design

Figure 19 shows the state transition diagram with all Design's export operations. Figure 20 shows
the corresponding view that DesignEngineer holds as a Reviewer. The subset of operations for the
corresponding abstraction is the set { open_for_review, review, close_and_review_not_Ok,
close_and_review_Ok} . All  other export operations (and consequently the transitions in the dia-
gram) in the view are substituted by unlabelled transitions. 
Now 'from the point of view' of the Reviewer some of these unlabelled (or ε-transitions) and some
of the states are redundant. The Reviewer has no influence over the transition (q3 → q4) nor over
the transition (q4 → q7) because both are ε-transitions. So for the sake over the Reviewer the
'complete ε-path' (q3 → q4 → q7) or (q3 → q4 → q6 → q4 → q7) might be replaced by one ε-
transition24. 

                                                       

     24 We may not however completely 'identify' state q3 with state q7, because the operation
open_for_review is not applicable in state q3. One could say that in state q3 the object Design is
not 'vulnerable' to open_for_review. See [M ilner 91], chapter 2 for a discussion on this subject.
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Figure 21. Reduced view on Design
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Figure 22. Another look at int-review

If  we now remove all the redundant states and transitions and replace them with their 'equivalent'
ε-transitions we arrive at the view of Figure 2125. What we now have is the 'natural image' of the
internal behaviour of the review method. Each state and each transition corresponds to a state or
transition in the int-review STD. To see this we compare the diagram of Figure 21 to that of the
int-review STD of Figure 22. There is a natural correspondence between most states and transi-
tions. Of course the call -transitions correspond to their counterparts in the Design"-view. 
We can see the direct correspondences

state in Design" state of int-review

reviewable ↔ review open asked
starting review ↔ review. asked
readable ↔ no review
pre_review ↔ review started26

closing review asked ↔ created

However, there is a difference between the int-review STD as given in [Engels 94] and the one
in Figure 22. In [Engels 94] there is a transition marked call _open_for_review as a transition from
the state closing review asked to the state review open asked. Here such a transition is only
possible after the ε-transition leading from the state closing review asked to the state review
started. For the sake of its communication behaviour however, the internal behaviour constructed
is equivalent to the int-review behaviour of [Engels 94]27. So the only thing that is not captured in
this 'natural image' of the internal behaviour of int-review is its instantiation/deletion behaviour. 

                                                       

     25 One might argue about the ε-transition (q10 → q10). We could leave out this transition.

     26 called review asked in [Engels 94]. This state label appears twice however.

     27 Again, this equivalence can be given a formal basis using the notion of bisimulation from
[M ilner 89] or [Baeten 86].
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Before proceeding, let us recapitulate the steps to 'construct' the internal behaviour:

(i) from the calli ng graph, deduce from the usage structure which operations are actually
imported and used for the implementation of the internal behaviour.

(i i) construct the corresponding abstraction of the external behaviour of the server object, by
replacing all unused internal operations by an ε-transition.

(i ii ) now remove redundant states and ε-transitions (cf. [M ilner 89], p. 39)
(iv) add default instantiation and deletion behaviour to complete the framework for the internal

behaviour

act-behaviour

not
existing

some
behaviour

final
state

final
state

finish-behaviour

finish-behaviour

Figure 23. Internal behaviour initial framework

This default instantiation and deletion behaviour is shown in Figure 23. The marked state corre-
sponds to the not_existing state of the internal behaviour to be constructed. From this state the act-
behaviour transition will  initiate some internal behaviour. In this internal behaviour then, some
states will  be marked final, from which a return to the not_existing state will  be allowed, using a
finish-behaviour transition. This instantiation and deletion behaviour has a 'natural subprocess and
trap structure' with respect to the corresponding management process from the external behaviour
of the object, symbolically shown by the dashed lines in the diagram. The corresponding
subprocesses can be constructed by leaving out the act-behaviour, respectively the finish-behaviour
transitions from the internal behaviour. 

Using this 'construction method' we now reconstruct the internal behaviours for the other oper-
ations relying on the usage structure in the calling graph of Figure 18, and compare these con-
structed internal behaviours with the internal behaviours given in [Engels 94].

We start with the simpler ones: the int-close_and_review_Ok (int-Ok for short) and int-create_next
internal behaviours.
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act_Ok call_prepare

finish_Ok

Figure 24. int-Ok internal behaviour

Figure 24 shows the 'constructed' internal behaviour for int-Ok. We can see that it is exactly the
same behaviour as given in [Engels 94], p. 15. The dashed lines show the symbolic trap structure
with respect to the management of this process by the Design external behaviour (same instance).

act_create_next call_copy

finish_create_next

Figure 25. Framework for int-create_next
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call_copy

finish_create_next
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Figure 26. int-create_next internal behaviour

In Figure 25 we see the constructed internal behaviour for int-create_next. Figure 26 shows the
corresponding internal behaviour from [Engels 94], p. 15. The difference of course is the
update_version_no transition modelli ng some 'perfectly local' control, administration or state
change in the internal behaviour. This 'extra' behaviour shows the 'double functionality' of the
internal behaviours: 
• They are the expression of the relation between the object and its 'acquaintances', the

objects it is communicating with. one might even say that the internal behaviours int-
review and int-design 'model' the corresponding Review and Modify relations from the EER
diagram in Figure 11. This communication behaviour is captured by the internal behaviour
framework, that can be constructed using the method of this section. 

• The internal behaviours model some local control, administration or state change in con-
nection with the desired functionality of the corresponding operation. 

The next example shows the framework for and the actual behaviour of int-create_version (cf.
[Engels 94] p. 15). First we construct the corresponding abstraction from the external behaviour of
DesignDocument and the calling graph of Figure 18.
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create_first

create_next

Figure 27. Abstraction from Design behaviour

We have abstracted out all redundant ε-transitions, and indeed one may wonder why the 'initial'
and 'final' ε-transitions have not been abstracted out. As far as the 'client-server' communication
between ProjectDocs and DesignDocument is concerned, they could be abstracted out. However,
they should remind the reader of the fact that the create_first and create_next operations are only
applicable in one definite state of the external behaviour of DesignDocument, and that any 'caller'
on this behaviour should 'wait' (although asynchronically) before the actual state admitting the calls
has been reached. However, for the framework construction for the int-create_version behaviour,
we may indeed abstract them out, as is shown in Figure 28.

call_create_first

call_create_next

finish-create_version

act-...

Figure 28. Framework for int-create_version
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Figure 29. int-create_version actual behaviour

The actual internal behaviour of Figure 29 deflects from this framework in the same way as was
the case for the int-create_next internal behaviour in the previous example: the det_next_version
state transition expresses the need for some 'local' administration.

The examples of this section might suggest, that the internal behaviour might actually be con-
structed in a deterministic way, up to some adjustments needed for the local administration. Unfor-
tunately, this is not the case. Note that for the implementation of its review operation,
DesignEngineer is only relying on Design as a 'server object', as was the case in all the examples
in this section. 
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For the DesignEngineer acting as a Designer, it is somewhat more complicated. In this case
DesignEngineer is relying on two 'server objects' for the implementation of its design internal
behaviour: Design (calling open_for_modifi cation, modify and close_modifi cation) and ProjectDocs
(calling create_version). In this case we cannot build the framework for the internal behaviour
using a straightforward construction from the corresponding behaviour abstractions. 
The only thing we can conclude beforehand, is that the internal behaviour will  include some
concurrent interleaving of these behaviour abstractions. However, the possibiliti es for interleaving
are further restricted by the PARADIGM communication already set up, the 'deep structure' of the
calling graph28, and the functionality requirements one wants to add for the behaviour. 

It might be an interesting idea for future research, possibly using the correspondence between the
behavioural view from [Ebert 94] and the abstraction concept from communication theory, to find
out how the 'deep structure' of the calling graph restricts the framework for internal behaviour as
used in this section.

5.3 Object situation and internal behaviour

The last section of this chapter will  shortly review the concept of state change for an individual
object. 
When concentrating on a specific perspective in system models, one is often inclined to look upon
every aspect of the system from this perspective. So from the data perspective it is natural to view
every state of an object reflected in a specific and recognizable set of values for its attributes, or
even to introduce an attribute to 'encode' the state of an object. 
When using a multi -paradigm modelli ng approach for system analysis and design, one can also
regard the various submodels involved as complementary (or orthogonal, cf. section 2.1).
In such an approach it is natural to regard everything we 'know' about the objects as the collection
of features modelled in the various submodels. 

This view of complementary models for the description of systems, was advocated for the OMT
method by Ebert and Engels [Ebert 94], and formalized using the concept of object situation.
In their model at a given point in time, an object o is in a precisely defined situation os, when it
has a concrete state q and a concrete value f, where the function f models the function assigning
values to the attributes in a given situation q. 
In this view, the state of the object does not exclusively determine the value of an object, and
neither does the state of an object determine the value it holds for its attributes. The way the value
of an object o may change then depends on its situation, i.e. it depends both on the value f that o
has, and on the state q that o is in.

                                                       

     28 which in this case tells us we must call create_version before open_for_modifi cation as the
external behaviour of DesignDocument dictates



Functional Modelli ng in SOCCA 38

Using SOCCA as a modelli ng method things even get more complex than in the OMT case. In
SOCCA the object situation does not only depend on both the value function for its attributes, or
the (external) state it is in, but also on the various states its internal behaviours may have and the
number of internal behaviours that are activated at some time. The model allows for concurrency
of internal behaviour. However, the restrictions modelled by the PARADIGM structure must be
obeyed. 
As information is encoded in the objects adhering to the SOCCA model in various ways, i.e. by
attribute value, instantiation of acquaintances (related objects or relations), and external and
internal state, there are various ways to model the functionality involved. To get at terms with
these encoding mechanisms I constructed the following example objects (indeed an remarkable
trio) and named them The Odd Transmitter, The Odd Receiver, and the Odd Transceiver. Their
collective behaviour can be modelled in a SOCCA model; however the class model will  be a very
trivial one.

The Odd Transmitter has an external operation called send, by which it is asked to pass the value
it has for its attribute this_attr ibute on to the Odd Transceiver, who will  do nothing but to pass it
on as soon as possible to the Odd Receiver, who will  encode it into its corresponding attribute
this_attr ibute. The value for this attribute can be any positi ve integer value.

send

pass_on

Receiver

value

value

Transmitter

Transceiver

Figure 30. Dataflow diagram for the odd trio.

The functionality of this send operation is given in the dataflow diagram of Figure 30. It shows
how the send process will  pass on the value to the pass_on process of the Odd Transceiver, who
will  pass it on to the Receiver. Note how the 'passive role' of the Odd Receiver is designated by its
being modelled as a data store.

The simplest way to model this functionality in the behaviour of the Odd Trio, is to model it as
function calls with value passing. In such a model, the send(value) operation would initiate some
int-send(value) internal behaviour calling a pass_on(value) operation from the Odd Transceiver.
Subsequently the corresponding internal behaviour would call on some receive(value) operation
from the Odd Receiver, to bring the value to its destination.
However, the Odd Trio will  do things differently.
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Figure 32. Odd Transceiver external STD

They decide to transfer the value not by value passing, but by 'transmission of behaviour'. 
The internal behaviour for the send operation on the Transmitter will  hold a copy of this_attr ibute,
and gradually decrease this value by one until  a value of 0 has been reached (cf. Figure 31).
Meanwhile, for every substraction it calls upon the inc operation from the Transceiver. Upon
finishing, a call is made to the Ok operation on the transceiver, and the send operation is finished.
So not the value itself is transmitted or communicated, but the sequence of +1 operations leading
to the value29. This 'encoding' could have been done otherwise, e.g. by factoring the value into its
prime factors. The point is, we do not actually communicate the value itself, but a behaviour
prescription constructing the value.

Now the Odd Transceiver does not actually 'hold' the value before passing it on.

act_inc call_incr

finish_inc

Figure 33. int-inc (Odd Transceiver)

act_ok call_start

finish_ok

call_end

Figure 34. int-ok (Odd Transceiver)

                                                       

     29 of course we must suppose some preceding behaviour for the Transceiver to 'clear' before
accepting inc operations. This behaviour is not given here.
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Figure 35. Odd Receiver external STD

For every call to inc it will  start its int-inc internal behaviour. We will  assume no PARADIGM
restriction for the multiple instantiation of this behaviour. However, this int-inc behaviour is not
allowed to finish off  immediately: it will  make a call to the incr operation of the Receiver, and
this call is restricted in the 'standard' SOCCA way, in which the Receiver external STD acts as a
manager. However, initially we assume the Odd Receiver to be in its external state q0, and is not
allowed to answer to the call-incr calls from the Odd Transceiver, until  some state transition to the
state q1 has been made. Note that the Odd Transmitter will  initiate as much int-inc internal behav-
iours as the value of the original attribute we wanted to transfer. So here in a way the number of
int-inc internal behaviours started is the encoding of the original attribute value.
The call to the Ok operation on the Transceiver will  trigger the int-ok internal behaviour of the
Odd Transceiver. This behaviour will  call the start operation on the Receiver, to bring the in the
state ready to handle all the incr calls waiting from the int-inc internal behaviours. When all these
behaviours have been dealt with we will  alow the transition (q1 → q3) on the Receiver external
STD. And on the Receiver some int-incr internal behaviour will  of course 'restore' the value of
some attribute. 

This (indeed very artificial) example shows us:

• The possibiliti es for the encoding of information into internal states, external states (or
rather communication states) and attributes are more complex than in the 'standard' object-
oriented models. So in the SOCCA models the concept of object situation is in fact more
complex than in other object-oriented models.

• It is possible to 'transfer value' by 'communicating behaviour': in fact the collective behav-
iour of the odd trio is an expression of the functionality of the DFD of Figure 30. There
are two other possibiliti es: passing value directly by returning value upon calling and
allowing for value parameters in the calls, or by the creation of 'value holding' objects,
flowing from transformation to transformation.
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6 Structural integrity and behaviour

In chapter 4 we saw how one of the points of focus in the CADDY project was the maintenance
of data model instance integrity as prescribed by the EER schema. This was done by 'packaging'
basic actions into so-called elementary actions. To define and build these and other complex
database transaction the language ViAL was conceived and implemented. 
We then argued that it was one of the restrictions to put on the behavioral model that it should
provide for a mechanism to safeguard against violations of the database integrity using the com-
munication between PARADIGM manager- and subprocesses. 

What would be needed is a kind of 'generic behaviour' or 'blueprint behaviour' for the
instantiation and deletion of objects. The following example shows how one may set about to 
define such a generic behaviour.

ProjectManager ProjectTeam

in_operation

not_existingq1

q2 in_operation

not_existingq1

q2

Figure 36. Generic external behaviour 

In Figure 36 we see what I have called 'generic behaviour' of two objects from the SOCCA
model: ProjectManager and ProjectTeam. Their external behaviour shows only two states: they are
either there (in_operation) or they are not (not_existing). 

In the in_operation state there are three possible transitions: 
• from in_operation to not_existing (the double arrow), indicating a delete method;
• from in_operation to in_operation (the triple arrow), indicating the call of an arbitrary

operation, and thereby possibly starting some internal behaviour;
• from in_operation to in_operation (the single arrow), indicating a sojourn in this state,

without any 'action'..

And li kewise in the not_existing state, there are two possible transitions:
• from not_existing to in_operation (the double arrow), indicating a insert method;
• from in_operation to in_operation (the single arrow), indicating a sojourn in this state,

naturally without any 'action'.

However, ProjectManager and ProjectTeam may not independently go about and change states.
They are bound to some form of collective behaviour by the restriction (specified in the class
model) that for each ProjectTeam there must be one and only one ProjectManager and vice versa.
This may be expressed as a behaviour restriction in PARADIGM by defining a subprocess and
trap structure for the collective behaviour of the objects, and by defining a manager process to
enforce the restriction.
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This behaviour restriction in shown in Figure 37 and Figure 38. There are three subprocesses for
the each of the two objects ProjectManager and ProjectTeam. The three subprocesses bear obvious
names: operating, appearing (or instantiating) and disappearing.
Now there are three possible states, as the manager process indicates. 

• The manager state operating (q1), corresponding to the state where both ProjectManager
and ProjectTeam are in the corresponding subprocess (labelled s1) and consequently either
'instantiated and operating' i.e. responding to export operation calls (other than those
causing instantiation or deletion) or are both not_existing (and remain that way);

• The manager state appearing (q2), when both ProjectManager and ProjectTeam are forced
to 'come alive', i.e. make the transition non_existing → operating. Note how they may not
respond to other export operations in this subprocess;

• The manager state disappearing (q3), when both ProjectManager and ProjectTeam are
forced to 'go to rest', i.e. make the transition operating → non_existing. In this subprocess
the normal export operations are also forbidden. So the initiation of new internal behav-
iours is not possible in this case. We suppose that all internal behaviours have a act-
operation and finish-operation initiation and finishing behaviour, and that the internal
behaviour is managed in the 'normal' way by the object behaviour. The object
ProjectManager will  only be allowed to make the transition operating → non_existing when
all its internal behaviours have come to a 'non existing' state. 

The trap structure (for both the objects ProjectManager and ProjectTeam) indicates the possible
transitions the manager process can make:

trap t1 is a trap from operating to appearing;
trap t2 is a trap from operating to disappearing;
trap t3 is a trap from appearing to operating;
trap t4 is a trap from disappearing to operating.

So, li ke in the case of the WODAN change enactment manager [Wulms 94] we now have a
manager process managing two processes, both acting as managers to their internal behaviours
themselves. We could say that the 'Collective instantiantion manager' is the behaviour model for
the 1-1 relation between ProjectTeam and ProjectManager. 

In some cases however the restrictions as defined in the class diagram are much more subtle. 
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Figure 39. 2nd DesignEngineer must wait

Although this was not in fact modelled by the SOCCA class diagram of Figure 10 we would
normally suppose that the attribute combination name+version would be a partial key or qualifi er30

uniquely determining the object DesignDocument as a component of ProjectDocs. So there should
not be two DesignDocuments belonging to the same set of ProjectDocs having the same value for
both their name and version attributes.
This restriction is indeed enforced by the behaviour of the objects as defined in [Engels 94]. 
Consider the following scenario, indicated in Figure 39. 
An 'unthoughtful' ProjectManager 'calls upon' two different DesignEngineers DE1 and DE2 to start
their int-design internal behaviour for the same DesignDocument and bearing the same name at
about the same moment. Both DE1 and DE2 can carry out their act-design internal operation and
start their corresponding internal behaviour. Now one of them, say DE1 is fastest and calls the
object ProjectDocs31 first with a create_version call. ProjectDocs starts its (first) internal behaviour,
making the internal transition act-create_version and promptly returns to its neutral state. 

Now for a new internal behaviour int-create_version (for the same document name) it can not 
immediately make the transition act-create_version again upon the reception of the create_version
call from DE2. It must wait for the internal behaviour int-create_version to enter its trap t7 (cf.
[Engels 94], p. 20) which creates a DesignDocument with a separate version number for each
create_version call is receives. So here the uniqueness of the partial key name+version is enforced
by the ProjectDocs manager process. It is as would the external behaviour of ProjectDocs (acting
as a manager for int-create_version) act as a lock manager on the update of the key values for
DesignDocument.

                                                       

     30 see e.g. [Elmasri 89] section 3.3.4 or [Rumbaugh 91] section 3.3.5

     31 consider the case where there is only one object instantiated for this class
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The two examples of this chapter support the following observations:

• it is very well  possible to construct behaviour restrictions on the dynamic models for the
various objects that ensure that the restrictions of the class model are enforced for any
external use one can make of the object instances32, and it in fact can be done quite
elegantly using PARADIGM.

• when analysing the example problem which was modelled in [Engels 94], i.e. a small
subproblem of the ISPW-6 case, one can see that indeed implicit and explicit restrictions
of the class diagram in Figure 10, are enforced by the behaviour and communication.

The next question then is: but how do we guarantee the enforcement of this 'structural integrity' of
the behaviour ? 

There are three ways to ensure this:

• in relying on the 'craftsmanship' of the designer/analyzer, responsible for the dynamic
modelli ng, as is done in the construction of the dynamic models in [Engels 94];

• in finding an algorithmic way to generate 'generic' or 'blueprint' behaviour from the class
diagram for all objects, in much the same way as elementary actions were constructed
from the EER model in [Wolff  89], and use this as a starting point for the construction of
the dynamic model;

• in combining both approaches, where the design from craftsmanship is compared to an
algorithmically constructed design with a verification method.

The construction of 'generic instantiation and deletion behaviour' from a class diagram is not
straightforward however, as it was in the case of the construction of elementary actions from the
EER model. There were only two operations to consider in this construction: the insertion and
deletion of database elements (entities, relationships, components). For an object-oriented
modelli ng method however, many different operations may lead to instantiation or deletion of
objects. The design of these operations is 'put at the discretion' of the analyzer/designer, who is not
only interested in the compliance to the class model, but also in the compliance to the functional
model. 

So in my view the most promising way, is the third alternative:

• as a first step, generate blueprint behaviour from the class diagram;
• as a second step, use craftsmanship to design detailed behaviour, and prove that this

detailed behaviour complies to the desired blueprint behaviour.

                                                       

     32 the first example shows that there are 'states' where both objects are 'not yet' full y
'instantiated'. However, they are not allowed to respond to any calls of their export operations
before this is the case
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7 Functional Modelling in SOCCA 

In chapter 3 we saw how the technique of dataflow modelli ng is an adequate tools for the analysis
of functionality of complex systems. In a top-down manner, subsequently refining the level of
description we can break down the high-level desired or observed functionality into a fine-grain
complex of functional elements, the 'atomic' processes. 
In chapter 3 we observed how in OMT functional modelli ng a relation was made between these
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Figure 40. The idea of a function
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Figure 41. Function with data stores

atomic processes and the 'elements of behaviour' of objects, i.e. its operations and transitions
between states. However, this relation was rather informal; there was no attempt for a more formal
approach. In that same chapter we noticed how this 'informal' status of data flow diagrams was
also noticed by others [Ghezzi 91] as one of the drawbacks of the use of data flow diagrams.
In this chapter I will  try to say something about a possible approach to 'formalize' the use of data
flow diagrams and to sharpen the relation between 'atomic' processes and the other two submodels
of SOCCA. To complete such a description is a sound task, however, for which I neither had the
necessary background in the construction of formal models, nor the available time. And so, the
ideas will  remain very sketchy.

7.1 The idea of a function

First we try to get an idea of a functional 'component' of a functional model in SOCCA, which can
be considered an object-oriented method. This idea of a function is in my view very well  captured
in the diagram of Figure 41. A function or process is in its most general form the transformation
of data values (as indicated by the top arrows) with a necessary side-effect on a distinct set of
objects (as indicated by the lower arrows). This side effect is a status change or configuration
change in the affected objects, but may also involve the creation or deletion of objects. 
Naturally there are simpler functions, i.e. those just transforming data values, and not having any
side effects, or the other way around, functions just intended to change the state of a set of objects
and 'not computing anything'.
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To analyze or specify a given function, we must indicate:

• what value transformation is made;
• the 'selection' of objects that either is to be affected by the side effect, or that are contrib-

uting to the value transformation;
• what status change the affected objects will  make.

To visualize the 'outside viewer's' look on a function we could further exploit the expressive
power of the data flow diagrams by adding the symbol for a data store to the diagram of
Figure 41, as indicated. Here, the symbol for the data store is indicating a 'substate' of the object
base, i.e. the aforementioned 'selection' of objects holding some status 'before' and 'after' the
process. This object base is the 'object model' we create for or software process, i.e. the totality of
model components.
As visualized, the arrow from the data store indicates this 'selection' of objects; the arrow to the
data store indicates the status change of the affected objects, and possibly the creation and deletion
of some objects. For the moment, we only worry about the 'functionality' of this 'transaction', as is
natural from the analyzers or designers point of view33. 

Now there are two important considerations to be made:

• primitive functionality is a local phenomenon.
Although the visualization is 'from the outside', i.e. holding a global view in the terminol-
ogy of [Engels 94], p. 6, in reality the active components of our (object-oriented) model
are (some of) the objects themselves. When we specify or analyze the functionality at this
lowest level we therefore must take a local or nearby view on the model, and take a
viewpoint 'from the inside', i.e. studying the model the way the active component 'sees' the
model . This view is different from the one used for ViAL specifications; in ViAL we con-
struct functionality from the 'outside', or, in SOCCA terms, from a global point of view

• functionality is restricted
We are free to analyze and specify the functional model independently from the other
models (the orthogonalit y of the submodels and perspectives), but only to a certain extent:
the 'functionality' we specify 'knowing' the relation of the 'atomic' components with
elements from our structural or behavioural submodels must be in accordance with the
restrictions of those submodels. 
Therefore we may not create or delete objects in a way that is not allowed by our class or
object model, and indeed may not model a sequence of state changes in the side effect that
in violation with the state transition diagrams of our behavioural model. 

                                                       

     33 To restrict ourselves to the functionality means, that for the moment we are not interested in
'implementation' aspects li ke concurrent transactions
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7.2 The elements of specification

So what are the elements with which to specify functionality ? The 'basic building blocks' we use
can be classified according to the three 'tasks' we mentioned in the previous section:

• elements to build values from other values, i.e. transforming input values to output values
• elements to 'select' objects, which we will  call queries, li ke they are called in [Rumbaugh

91] (cf. chapter 3) or ViAL, and to generate values from objects
• elements that transform object (base) states

In accordance with the EER model for which a formal semantics was developed in [Gogolla 91],
the class or object model for SOCCA can be considered a class or object model over a data
signature. In short, such a data signature consists of value domains for the value types one wants
to consider modelli ng, and operations and predicates defined on those domains and generating
other values from these domains. Those primitive data signatures over which our models might be
defined are e.g. the int and bool domains with all their usual operations and predicates. 
For the use in our class model we can extend these primitive types with set, list and bag construc-
tors to account for sets, ordered li sts or multisets defined over our primitive data domains. 

The operations, predicates and constructors used can transform values in a well -defined way. They
all can be considered 'primitive' functions of our specification or analysis model, i.e. the first 'type'
of elements. The outcome of such a transformation applied to a value furthermore has a well -
defined data type (or data sort).

Set
v2

v1

v3

{v1, v2, v3 }

Figure 42. Set construction

These transformations or functions can be represented rather 'naturally' in a data flow symbol li ke
the one in Figure 42, showing how one can arrive at the set {  v1, v2, v3}  from the input values
v1, v2, v3.
Note however that the representation is limited, as there is no natural 'order' defined for the input
values in our diagrams. The set { v2, v1, v3}  would mean the same thing, but the li st <v2,v3,v1>
is indeed different from the li st <v1,v2,v3>.
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Again, using data values of a set of, list of or bag of type, one can build other sets, bags or li sts
using the well -known set operations ∪  or ∩, or values of type int or bool using the well -known
aggregate functions over sets, bags or li sts li ke CNT (counting elements) or MAX. So from this
'toolbox' of primitive functions we can build more complex structures in combining the functions
by the well -known mechanism of function composition, also 'naturally' to be captured in our dia-
grams, by 'attaching' the 'output arrow(s)' from one 'process' or 'bubble' to an 'input arrow' of
another. There are however some restrictions:

• Data flows to and from processes are typed. We therefore can only connect the output
flow from one process to the input flow of another process if they are type compatible. 
These type compatibilit y rules have to be formulated: one can imagine a rule according to
which any object subclass can be used as an input type where the superclass is expected.

• Composition rules must adhere to the restrictions from the behaviour model. We cannot
allow sequential composition of processes in which the sequence for application is not
compatible with the operation sequence prescribed in the SOCCA behaviour model.

So from input values we can build other values or sets of values. But where do these values come
from ? They may be 'abstracted' from the analysis by viewing every object in the system as a data
source or data sink, which we do not further analyze or specify. In that case we are done. But we
want more; we want our model to show how data are delivered and transformed by the objects.
Remember we are looking at the objects from 'inside'. So for every process we want to analyze,
we assume there is an object performing it as an operation or a sequence of operations. Processes
that will  require 'teamwork' from different objects must then be regarded as processes on the
aggregate object representing the 'team'.
 
It remains to find out what data can be delivered by an object. 
Inspiration for DFD models on how to 'extract' values from the objects in a functional way can be
found in the high-level functional datamodels known from database theory (see e.g. [Elmasri 89],
chapter 15). 
First of all, there are the attr ibutes. Every attribute (from the viewpoint of the object in question)
might be considered a 0-ary function. Actually, it is a littl e more complicated because not in every
object situation a value has to be delivered (cf. chapter 6). For these cases we might adopt the
special null  value (⊥ ) li ke in [Gogolla 91], because in principle we want all attributes to be
callable for every object situation if we want to. Note that including sets, li sts and bags into our
data signature allows for the use of multi -valued attributes. 
The invocation of attribute methods from outside the object will  assume we add export operations
for the call to these attribute methods to any state of our external STDs where they are applicable.
They do not however induce state change.
The value to be returned by these attribute calls will  be assumed to return immediately.

The other way to 'generate value from an object' is to call an operation. Until  now this was not
done for the operations in a SOCCA model, but they might be considered data generating func-
tions, and assigned a data type for their 'output value'. Of course there will  be 'typeless' operations,
whose only effect will  be the state change of an object. So as a 'data generator' they may be
treated li ke attributes. But in this case there must be a side effect: by calling an operation, the
object will  undergo a state change, and induce state changes in its 'acquaintances', i.e. the objects it
is communicating with either by calling upon their respective export operations, or by 'forcing'
them to different behaviour by the communication mechanisms set up in our PARADIGM specifi-
cation. 
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The last thing to consider is, how objects may call upon their acquaintances. To set up any
communication with objects contributing to its methods, the object must use its access paths , i.e.
find the objects to communicate with using its relations or associations with other objects.
In the same way as it is done in the functional data model, one might define a function for any
relation defined for an object, that will  deliver for value the set of objects partaking in the relation
with the objects. As an example how an object might generate value from its acquaintances, the
diagram of Figure 7 shows how the implementation of the create_version operation for
ProjectDocs will  query its design components to determine the value for the version number to
assign to the new DesignDocument to create. 
By 'calling upon' its design component, a set of objects (components) will  be returned, to which
the version attribute function will  be applied. This will  deliver a set of values, the maximum value
of which will  be the basis to construct the new version number from. 
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8 Conclusions and suggestions for further research

The work on this thesis started out with the observation that 'some things were missing' from the
SOCCA method as explained in [Engels 94]. More specific, as was explained in chapter 2, there
was no clear functional perspective expressed in the SOCCA models, and furthermore, it was
unclear how the functionality of the example software process from [Engels 94] was related to the
class and behaviour models developed.

Most of my work has been devoted to find out what exactly 'was missing' in the SOCCA method.
And, admitted, I have not found a clear answer. Most of the desired functional features seem to be
'hidden' in the behaviour and communication model, which were already designed, perhaps
unwittingly, with a clear concept in mind on the functionality to be expected from the model.

From the discussion in chapter 3 on Data Flow Diagrams it should be clear, that for the analysis of
software process modelli ng a separate concentration on functional aspects is indeed useful, and that
the technique of data flow modelli ng is a valuable tool. Using this tool a more detailed analysis of
the ISPW-6 and ISPW-7 example process models can be performed, as there are many features
there that are still  not captured in the current SOCCA models.
To integrate this technique of data flow diagrams with SOCCA's class and behaviour modelli ng
should be an objective for further research on SOCCA. As indicated in chapter 4 the ViAL
approach is in my opinion not the road to follow. Modelli ng complex transactions in ViAL has too
much of an algorithmic or procedural flavour, where a more functional or appli cative approach is
desired. Moreover, ViAL's control structures have a number of shortcomings that make it less
applicable for the SOCCA situation.

In chapters 5 and 6 I clarified the some aspects of behaviour: 

• the behaviour that is necessary to maintain the communication requirements for the model
once the export operations and external STDs have been accomplished;

• the restrictions for the behaviour that can be derived from the class model;
• the behaviour that is the expression of algorithms for the realisation of other functionality .

Here too, there are some interesting questions remaining. It is still  unclear how the 'deep structure'
of the calling graph further restricts the freedom of modelli ng for the internal behaviour. It might
be an interesting subject for further study, possibly using the methods of formal communication
theory. And, it might be an interesting endeavour to actually derive blueprint behaviour for all the
SOCCA objects from the class diagram and start the construction of export STDs from this
behaviour.

In chapter 7 a very modest start has been made for the imbedding of the technique of dataflow
diagrams in SOCCA's methods. There is still  much to be done in this field. 

It is still  unclear how one of the central themes of an applicative approach, i.e. parameter binding
in functional composition, should be related to SOCCA's call-operation asynchronic conventions. 
And second, the concept of object situation is much more complex than in the case of other object
oriented methods li ke OMT, because of SOCCA's internal behaviour concept and will  have to be 
formalized.
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