Reflectionson

Functional Modelling in SOCCA

MaartenSteenhuis
student number 8839670

Leiden University, Department of Computer Science
Niels Bohrweg 1
2333 CA Leiden, The Netherlands

August, 1995

Functiona Modelling in SOCCA 2

Contents
1 INtrodUCtion e e 3
2 Software Process Modelling and SOCCA e 5
2.1 Software process modelling 5
2.2 SO C C A e 8
3 Data Flow Diagrams and Data Flow Modelling 10
3.1 Data FIow Diagramso oot i e e e e e 10
3.2 The ISPW-6 and [SPW-7 CaSE v v i ittt ittt et e e e e e e e e 11
3.3 Data Flow Modelling 14
4 Visual Action Language and the EER model 17
4.1 The EER model e e e e 18
4.2 Elementary actions 23
4.3 Thelanguage VIAL e 24
4.4 An evaluation of ViAL and itsconstructs 27
5 Behaviour modelling and some additional concepts 29
5.1 Import/export diagrams e 29
5.2 Behavioural views and internal behaviour 31
5.3 Object situation and internal behaviour 37
6 Structural integrity and behaviour 41
7 Functional Modelling in SOCCA e e e e e 45
7.1 Theideaof afunction et 45
7.2 The elements of specification 47
8 Conclusions and suggestions for further research 50

9 REfEIBNCES . . . o o e e e e 51

Functionad Modelling in SOCCA 3

1 Introduction

In recent years students and staff from the Computer Science Department of Leiden University
have been working on a modelling method for the description, analysis and spedfication of the
software process This method (called SOCCA: Specification of Coordinated and Cooperative
Activities[Engels 94]) is at present still under development.

A SOCCA mode describes the software processfrom three different perspedives. the data
perspedive, the behaviour perspedive and the process perspedive. It was dedded to use a separae
modelli ng formalism for each of the different perspedives. This kind of modelling is not uncom-
mon in the realm of objed-oriented modelli ng techniques, like Objed Modelling Tedchnique
(OMT) [Rumbaugh 91] or OOA/OOD [Coad 91].

Until now most work on SOCCA has been devoted to the models for the data and behaviour
perspedives. Two existing formalisms have been adopted to achieve this.

Classdiagram modelli ng, based on EER concepts, has been chosen for the data per spective. This
technique hasthe advantage of being reasonaldy well understood and having a clear diagrammatic
representation.

The behaviour perspective is covered by the use of state transition diagrams (STDs). The
SOCCA approach however differs from many behaviour description models using STDs. First of
all, a distinction is made between extrnal and internal behaviour(s) of the objeds modell ed.
Seoondy, much effort is made to create a detailed picture of the communication between objeds
and concurrency of different behaviours in one single objed. For this purpose PARADIGM is
used, a formalism developed by Groenewegen and others [Groenewegen 86] to model paralel and
concurrent processes.

As| started out to work on this thesis, littl e attention had been paid to the process per spective in
SOCCA. The general idea was that asin the case of the structural (or data) and behavioral per-
spedives an existing moddlli ng formalism shoud be adopted and posshbly adaged to cover for this
processor functiona perspedive. At that stage ideas about what formalism to adopt and the
modelli ng capahiliti es of such a technique were still somewhat vague.

So it wasdeaded that | shoud

. investigate the modelli ng capahiliti es of the candidate formalism for the process perspec
tive, which was already baptized the formalism of Object Flow Diagrams (OFDs) in the
discussons on SOCCA;

. apply it to the field of software process modelling and espedally to the problems the
SOCCA research wasfocusing on;

. show how this formalism of OFDs, which | immediately called OFM or Object Flow

Modelling, could be integrated into the SOCCA method, and explain the relation it would
have to the other two modelli ng techniques used.

Functiona Modelling in SOCCA 4

This tak in fad proved to be nat that smple. Looking badk, | seetwo reasons why the work
didnt quite work out the way | planned it:

. | held a different view from people working SOCCA about the phenomena afunctional or
processmodel shoud be able to model, and therefore about the nature of the process
perspedive. It took some time for me to realize this.

. | soonfoundout, that in fad there was no one existing formalism of OFDs. In [Engels 94]
references were made to two different formalisms: the Visual Action Language (ViAL) and
the formalism of Data Flow Diagrams (DFDs). It was still unclear how the formalism of
OFDs related to the concepts underlying both.

So in fad what did | do? First of all | tried to make it more clear how a functional model shoud
be incorporated into SOCCA and what it shoud model. In chapter 2 we therefore take a short look
at SOCCA, the general field software process modelling and the diff erent modelli ng perspedives
involved. After this chapter we shoud have a better view on the phenomena that to be captured by
a processor functional perspedive and accordingly on the desired properties of the modelling
technique used.

Chapter 3 and 4 take a look at the two sources of inspiration mentioned in the discusson on
processmodelling in SOCCA, and discusstheir merits:

. the well known formalism of Data Flow Diagrams (DFDs).
. the Visual Action Language ViAL, developed at the Technical University of
Braunschweig, Germany in the context of the CADDY projed.

The chapters shoud explain why ViAL and the fomalism of DFDs are of different nature and
what concepts underlying both could be incorporated into the SOCCA method and formalisms.

In chapter 5 1 will clarify some of the concepts fundamental to the behaviour model in SOCCA by
showing how they arerelated to the usage structure from the class model, and the concepts of
view and object situation. For myself | foundgreat help in the understanding of the behaviour
model from the introduction of these concepts.

Chapter 6 discusses how integrity rules expressed by the SOCCA class model could be incorpor-
ated into the existing behaviour model of SOCCA, or are already fulfill ed by the existing models.

Althoughit wasmy original ambition to present and apply a formalism for descriptions of the
transformations of objeds of the SOCCA model, and how objeds and values flow from one
transformation to another, littl e or no work has actually been dore on the development of such a
technique. In chapter 7 | will try to indicate in what direction the development of a formalism
shoud proceal and how in my view it shoud relate to the existing submodels.

Finally in chapter 8 the results of the work will be briefly reviewed and some concluding remarks
will be made.

Functiona Modelling in SOCCA 5

2 Softwar e Process M odelling and SOCCA
2.1 Softwar e process modelling

Software process modelli ng deals with the entire process of software development. Althoughthe
subjed of software development or software engineaing is broady dealt with in computer science,
the field of software processmodelling is relatively new; its origins in fad seam to date from the
late eighties. In software process modelli ng the emphass shifts from the products or artifacts that
arethe result of the software development processto the properties of the software processitself.
With the field of software process modelling (SPM for short) the software engineging mehodd-
ogy evolves from a gererator of methods, life-cycle models, modelli ng formalisms and languages,
to atrue science of the software process

One might ask about the objectivesfor research programs in the field of software process
modeli ng.

In [Curtis 92] five badc categories of objedives for software process modelli ng, ranging from
understanding aids to automated exeaution suppat, are presented:

. Facilitate human understanding and comnunication
Software development is teamwork. And, what may be even worse, the adivities invaved
are usually carried out by team members spedalized in different disciplines, having differ-
ent interests and all too often using diff erent 'languages. An adequate model of the soft-
ware process shoud help to represent the processin a form understandable by humans,
and enalde them to communicate about what shoud be dore.

. Suppot process improvenents
In analysing processes and defining a bags for their understanding SPM can compare
alternative software processs, estimate the impads of potential changes to a software
processwithou first putting them into adual pradice, and assist in the seledion and
incorporation of techndogy (e.g. todls)

. Suppot proces managenent
SPM could help to ddliver indicators that enable the monitoring, managng and
coardination of the software process and suppat development of plans for software
development projeds (forecag)®.

. Automate exection suppat
The software process models established can be the bads for tods and procedures that can
automate or fadlit ate some of the adivities invalved. Indicators of the performance and
guidance of the software projed could then be automatically colleded. Rules to ensure
processintegrity could be enforced.

! This will demand a defined or idealized projeda against which the actual projed behaviour
can be compared

Functionad Modelling in SOCCA 6

. Automate process guidance
Spedfication of what shoud be dore by whom, how and at what time is a cumbersome
task that is usually l€eft to the person designated as projed manager. All too often this tak
is reinvented any time a new software development projed is launched. A clear and formal
understanding of the software process can help to automate and fadlit ate this tas; by
retaining results from previous endeavours in a repository some knowledge and data could
posshbly be reused.

The isaues raised by these objedives range from comprehensibility to enadalility. Consequently,
many forms of information must be modell ed and integrated to adequately describe the software
process One way to deal with this, is to modd the software processfrom diff erent perspectives
and to concentrate on different ageds of the processfor each of these perspedive.

Curtis et al. [Curtis 92] justly discen four different views or perspecives

. afunctiona or process perspedive, representing what process elements are being per-
formed, and what flows of informational entities (e.g. data, artifads, products) are relevant
to these process elements. In a way this functional perspedive coincides with the classical
view of the field of software engineaing, in which the software processis analyzed by its
functional behaviour;

. a behavioral perspedive, representing when process elements are performed (e.g. sequenc-
ing), aswell asageds of how they are performed through feedbadk loops, iteration,
complex dedsiorHmaking conditions, entry and exit criteria and so forth;

. an informationa perspedive, representing the informational entities produced or manipu-
lated by a process these entities include data, artifads, products (intermediate and end),
and other abjeds; this perspedive includes both the structure of informational entities and
the relationships between them;

. an organizationa perspedive, representing where and by whom (which agents) in the
organizaton process e ements are performed, the (physical) communication mechanisms
used for transfer of entities or messages, and the (physical) media and locations used for
storing entities.

These perspedives underlie separake yet interrelated representations for analysing and presenting
processinformation. In my view, the first three of these perspedives are most appropriate for
analysing the processas an idedized model; here one might concentrate on the artifads that
shoud be produced, the functionality that produces them, and the behaviour of agents when
assigned to a cetain role, i.e. a coherent set of processelements asa unit of functional responsi-
bility. The organizaional perspedive is important when dealing with implementation or enadment
of the software process and could be compared to the sysem architecture view in a software
development process

Althoughsoftware process modelli ng was a new adivity focus of software engineging science, its
objeds of interest are of course compatible with processanalysis and modelli ng underlying the
architedure of many software systems. Asis stated in [Engels 94] however, the model shoud not
only accourt for the behaviour odf the technical parts of the software process but shoud acually
accourt for the human comporents adding to its functionality.

Functiona Modelling in SOCCA 7

As much asit wasrecogrized in the field of software engineaing, the different perspedives
important to software process modelli ng can effedively be dealt with by a multi-paradigm
approach, i.e. using different kind of modelling and different types of modelli ng formalisms to
accourt for each perspedive.

The advantage of such an approach is a catain ease of modelling. One simply choases the

modelli ng language or formalism best fit to expressthe phenomena one is concentrating upon The
drawbadk is an extra model complexity: it is hard to interrelate the diff erent perspedives when
modelled in different languages.

Using a multi-paradgm approach cetain condtions must be met:

. there must be a kind of orthogonadity between the diff erent modelli ng formalisms. Phe-
nomena modelled by one (sub)formalism shoud not be modelled in another
(sub)formalism. In fad, asthe alternative formalisms were chaosen for each perspedive,
phenomena modelled by one formalism shoud in general be harder to model in another
formalism. Further on, we shoud try and minimize our modelli ng eff ort.

. it shoud be posdble to interrelate the techniques used. In developing a metod for the
description of a software processusing different modelli ng formalisms, interrelating the
models can be considered a separak tak. And it is cetainly not atrivial one.

. it shoud be clear what perspective will be covered by which modelli ng approach or
paradigm. This is not always obvious. In the Desgn of a system in OMT, abjed
modelling and behaviour modelli ng can be added to models that accourt for the system
architedure in the organizaional perspedive of the system.

There are a few more criteria one might add to the list:

. One must demand from all modelli ng formalisms that they constitute a firm bass for the
understanding of and discusson about the related phenomena invaved. This can best be
met by using well-understood modelli ng languages or formalisms, having proved them-
selves in more than one spedfic context, and possbly of a diagrammatic or visual form?.

. Formalisms must be able to deal with a considerable level of complexity.

. Models shoud be able to cope with very different software processes organized in accord-
ance with the wide range of established software engineeaing methods or methoddogies®.

2 Asisargued in [Hennemam 91], p. 24-25 this usually helps to a better understanding. In
[Petre 95] however, there is an interesting discusgon on this viewpaint.

® There are 2 different interpretations in literature for the term software engineeling metodd-
ogy. Sometimes a methoddogy refers to a consistent complex of different methods. In other
discussons the term is reserved for its proper sense: a science or study of different methods. Here
of course we refer to its first meaning

Functionad Modelling in SOCCA 8

2.2 SOCCA

Having taken a quick look at the objedives of software process modelling and the features and
requirements for a multi-paradgm approach we can now take a closer look at SOCCA.

As was stated in the introductory chapter SOCCA is at present still under development. So in
many agpeds it is not a complete method for the analysis and spedfication of the software pro-
cess

SOCCA is amulti-paradgm software process spedfication method which handles three diff erent
perspedives. the data, proces and behaviour perspedive.

Let us first shortly review the formalisms adopted so far.

For the static and structural description of the processes involved, SOCCA uses class or rather
object modelling, taken from OMT [Rumbaugh 91], and by that it is confesgng to the objed-
oriented paradgm. Consequently the static description not only shows the bare data structure of
the system and its comporents, but also the operations or methods by which it can be manipulated.
This formalism can deal with complex structures, and has a diagrammatic representation. Further-
more, it hasrisen a wide interest and is therefore reasonably well known and much commented
upon

The spedfication method or modelli ng formalism PARADIGM was adopted for the behaviour
perspedive. PARADIGM was originally developed for and restricted to the spedfication of

parald processs. It is defined and presented in [Groenewegen 86]. Several applications of this
formalism can be foundin [Steen 88] and [M orssink 93].

The use of PARADIGM cetainly is not aswidespread asfor instance Hard's Statechart technique
[Hard 87], which wasadopted in OMT for dynamic modelling. And, in my view, its diagrammatic
representation has not the elegance of Hard's Statecharts.

Still, there were reasons for adopting this formalism and not use OMTs dynamic modelli ng:

. PARADIGM was conceived, used and elaborated at Leiden University, so there was much
interest in and expertise on the formalism.
. PARADIGM seams better equipped for the modelli ng of complex dynamical systems.

Coordination and communication between different processes can be modell ed very
sophisticated using its notions of subprocess trap and managr process

As was noted in the Introduction littl e attention has been paid to the process or functiona perspec
tive, and the adoption of a modelling method for this perspedive. Both a better understanding of
the phenomena to be covered by the model and the modelli ng capadties of such a formalism are
needed.

Functiona Modelling in SOCCA

Now there are two fadors hampering this understanding, in my view:

. The literature on SOCCA hasnat been very clear yet about the research objectives which
will influence the phenomena one warnts to study or model and the techniques used for
modelli ng. However with the adoption of PARADIGM asatod for the modelli ng of
mode dynamics, the emphags is likely to be put on the andysis of software processes,
rather than on the enaadment or design of computer-aided software development environ-
ments.

. There is a pasgble source for misunderstanding when discusgng the functional or process
models in SOCCA (and similar multi-paradgm methods like OMT). Actually, one can
consider two types of functional or process models.

The first one deals with the proces or functiona perspedive of the software processthat
was discussd in the previous sedion. The other ‘process perspedive’ hasto do with
understanding one model in terms of other models, i.e. interrelating the different para-
digms. So when modelli ng behavioral phenomena, like state changes in an objed, one is
anxious to understand these phenomena in terms of other models, like the objed model.
However, in the analysis of the effed of predefined export operations on abjeds, who will
certainly find their place in any functional modd, both perspedives will again coincide.

The rest of this thesis shoud contribute to the understanding of the concepts invaved, by clarify-
ing some problems, and give hints for their solution or understanding, however incompl ete.

Functiona Modelling in SOCCA 10

3 Data Flow Diagrams and Data Flow M odelling
3.1 Data Flow Diagrams

Data flow diagrams (DFDs) are a well-known and widely used notation for the functionality of an
information system. The diagrams, also known as 'bubble charts, have becme popuar with their
use in the SA/SD method [Constantine 79]*. A data flow diagram is a graph showing the flow of
data values from their sources through processes that transform them to their destination. So data
flow diagrams are function-oriented: they do not show control information such asthe time at
which transformations are made, or dedsions among alternate paths. A data flow diagram does not
show the organizaion of data values into structures. The attradive and rather intuiti ve graphical
notation makes DFDs easy to use.

A data flow diagram is particularly useful for showing the high-leve functionality of a system and
its breakdown into smaller units. One could say that the use of DFDs is more or less'natural' in
top-down methods, because breakdown and refinement are somehow inherent to the formalism®.

The DFD notation is not standardized. Since the formalism is widely used there are many slightly
different definitions and notations. Here | shall follow the natation and terminology of functional
modeling in OMT [Rumbaugh 91]. The basc e ements of DFDs (shown in Figure 1) are

Actor

/] o
Process

Function-1

Store

Data Store

Figure 1. Elements of data flow diagrams

. processes (or bubHes), used to represent functions or transformation of data values;

. data flows (or arrows), used to conred the processes, and designating the flow of data or
information from one processto another;

. actors (or terminators), that are the external boundaries to the system represented, that

drive the data flow by producing or consuming values. These adors lie on the 'boundary
of the data flow graph, and terminate the 'flow' of data as sources and sinks.

. data storesrepresent values 'tucked away' from the direct influence of the system for
sometime, and to be used later on.

* sometimes slightingly called 'doing bubbles and arrows

®> The discusgon on VIAL in the next chapter will show a formalism (or rather language)
having a bottom-up or constructive nature.

Functiona Modelling in SOCCA 11

To get a view on the modelling power of DFDs and the use of high-level functional modelling in
software process modelli ng an example of a data flow model is given in the next sedion.

3.2 The ISPW-6 and | SPW -7 case

The modelli ng efforts of the research on SOCCA have been concentrating to the problem descrip-
tions for software process modelli ng known asthe ISPN-6 and ISPW-7 cases. The ISPN-6 soft-
ware process example [K el ner 91] was constructed in conjunction with the 6th International
Software Process Workshop. It consists of a rather informal description of a realistic software
change process to be used as an example problem to which various modelli ng approaches can be
applied, and through which they can be evaluated and compared. The example focuses on the
designing, coding, unit testing and management of a rather localized change to a software system.
The ISPW-7 case [Kelner 91a] provides a set of extensions to the ISPW-6 example.

The core problem for the ISPW-6 cas is the change of a single code unit (e.g. a modue) in an
existing software system. The change is exeauted by a projed team, and initiated by an external
authority, called the Configuration Control Board (CCB). The problem is presented as a consistent
colledion of steps or taks performed by the diff erent members of the projed team.

Eight different steps or taks are given in the example problem:

. Modify desgn
This step invaves the modification of the design for the code unit affeded by the require-
ments change receved from the CCB. The modified design will be reviewed, and ulti mate-
ly implemented in code. This step may also modify the design based uponfeedbadk from
the design review.

. Review dedsgn
This step invaves the formal review of the modified design.
. Modify code

This step invaves the implementation of the design changes into code, and compil ation of
the modified source code into objed code. It may also be based on feedbadk from testing,
indicating that additi onal source code modifications are required.

. Ted unit
This step invalves the application of a unit test padkage on the modified code unit, and the
analysis of the results. If all tests are succesSully completed, then the unit has successully
passed. In that case the example process has come to an end. Steps beyond unit testing,
such asintegration testing, are beyond the scope of the example core problem.

. Modify unit ted package
This step invalves the modification of the acual unit test package for the affeded code
unit, in accordance with the modifications made to the test plans and objedives. Subse-
guent iterations of this step may be based uponfeeadback from testing, indicating that
additional modifications to the unit test padkage are required.

. Modify ted plans
This step invaves the modification of test plans and objedives to include testing of the
spedfic capahiliti es related to the requirements change underlying this software modifica-
tion. The test planis the blueprint for the actual unit test, asthe design is for the acual
code unit.

. Schedile and assgn tasks
This step is a projed management function. It invoves developing a schedule for the work
to be undertaken, and assigning individual taks to spedfic staff members.

Functiona Modelling in SOCCA 12

. Monitor progress
This step invaves the projed manager monitoring progressand status of work. This
monitoring is based uponndatification of completion of each step, together with the (for-
mal) results of the step undertaken.

As the description of the various taks is process oriented, the process description is captured very
naturally in the dataflow diagram of Figure 2°.

CancelRecommandation

ReqChange,Authorization
CCB | —
ReqChange, Task
ModifyDesign

DesignReview

ProjectPlans

\ Design TestPlans

Notification,Results .
CodeReview

[

MonitorProgres :
ObjectCode TestPackage

Notification,Results

Figure 2. Dataflow model for the ISPV-6 case

One can see quite clearly from the diagram there is a remarkalde anomaly in the ISPNV-6 process
description when compared to the usual create-review control cycles of the waterfall-like models.
In this process description the modified design is handed down directly both to the ReviewDesgn
step and the ModifyCode and ModifyUnitTeg steps. This effedively means that coding and testing
adivities coud be based on incorrect design.

® The reader may have naticed, that the placement of the task or process symbols (‘bubbles) in
the dataflow diagram is suggestive: the four central tasks ModifyDedgn, ReviewDesgn,
ModifyCode and TegUnit shoud be reminiscent of the well known Waterfall Model for the
software engineaing process[Royce 70]. Thisis one of the attradive features of diagrammatic
tedniques like the dataflow model: it gives a kind of high-leve intuitive grag on the complexity
of processes, sometimes using rather loose associations. Note however the danger in using these
associations, asdiscussd in [Petre 95|

Functiona Modelling in SOCCA 13

Of course in any realistic software engineaing processthere is a distinct posshility for this to
ocaur. Here however a smple measure could be taken to prevent this by handing the modified
design to the ModifyCode and ModifyUnitTeg steps only after it is approved of in the
ReviewDesdgn step.

In fad this correction was made in the ISPW-7 extensions to the process example. Figure 3 shows
the correspondngly adaged dataflow diagram.

CancelRecommandation o
ReqChange,Authorization

CCB

ReqChange, Task

K’

Al
ProjectPlans

ModifyDesign

ModifiedDesign

DesignReview

ModifyTestPlan$
ReviewDesign

\

ReviewedDesi
TestPlans

\ Design

ModifyCode

SourceCode

Notification,Results .
CodeReview

[

MonitorProgress ,
ObjectCode

TestPackage

Notification,Results

Figure 3. Dataflow model for the ISPN-7 correction.

Now the reviewed design is handed over to the ModifyCode and ModifyUnitTed steps. There is no
danger of creating source code from unapproved design.

Functiona Modelling in SOCCA 14

To show the abstradion and refinement capabiliti es of DFDs | have made two abstradions from
the model in Figure 3.

Notification,Results|

ReqChange Authorization CancelRecommandation

MonitorProgress

ReqChange, Tas Notification,Results

y . Modified
ModifyDesign . Design

N

ProjectPlans
view ReqChange, Task e
; ReviewDesign|
ReqChange, Tas
Design ReviewedDesign
- oA
Eng

Notification,Results

ModifySystem

s
ProjectDocs

Figure 4. Abstradion for DesignEnginee Figure 5. Abstradion for ProjedManager

Figure 4 shows an abstradion of the processmodd, if one is interested only in the adivities of the
DesignEngineas working on the Design for the system. The tasks of the QA Engineas (respon
sible for the testing adivities), the DesignEngineas working on the system Code and the
ProjedManage's tasks have been left out. In fad, these agents have been abstraded out as 'bladk
boxes' and modelled asadors in the DFD. Now certainly, Figure 3 might be considered a refine-
ment of this model. However, modelli ng the agents as adors suggests, that we are nat 'interested'
in their behaviour here.

In contrad, in Figure 5, we see some of the processes abstraded away to concentrate on the tasks
of the ProjedManager. Now here elements from the model of Figure 3 can adually be considered
a refinement for this model; we have split the task ModifySystem in the various subtasks to be
performed in modifying the system.

Of course in any real design or analysis process refinement and abstradion need to be defined
more precisely than we have dore here. For rules of how to refine to various levels of abstradion
for dataflow diagrams one can consult e.g. [Y ourdon 94].

3.3 Data Flow M odelling

The examples of the previous sedion show how DFDs are an attradive graphical notation for
capturing, in a fairly immediate and intuitive way, the flow of data and the operations invaved in
any information system, and therefore are an easy to use analysis and modelli ng tod.

However, as Ghezzi et al. state [Ghezzi 91], DFDs lack a precise semartics. Sometimes their
syntax, i.e. the rules for composing bubbles, arrows and boxes, and their refinement and abstrac
tion medhanisms, is defined precisaly, but their semarntics is nat. This gives rise to inconsistencies
in the applied modelling. Note the difference in the ‘communication’ between the ModifyDesgn
and ReviewDesgn steps in Figure 3 on the one hand and the ‘communication’ between the
ModifyCode and TegUnit steps on the other hand. In the first case the ModifiedDesign is handed
over to the ReviewDesgn step by a dataflow arrow; in the second case the modified ObjedCode
is handed over via the datastore ObjeadCode. Both solutions seem plausible asthere is no precise
semartics clearly discerning one from the other.

Functiona Modelling in SOCCA 15

In several ways difficulties in the use of DFDs have been tried to overcome. In [Ghezzi 91] these
attempts are classified asfoll ows:

. Usage of a complenmentary notation to desciibe those aspects of the sysemthat are not
captured adequately by DFDs
In fad this is the approach of OMT and similar design and analysis techniques, and
consequently the approach of SOCCA. However when introducing DFD-like moddlingin
SOCCA we have to make clear what problems can be handled by which modelling
subformalism, and what are the relations between the diff erent formalisms.

. Revising the traditiond definition of a DFD, to make it fully formal.
To define the exad semartics of these DFDs we have to formalize the syntadical rules for
the compaosition of DFDs, adhere semartics to the badc elements and to the syntadical
compaosition rules.

. Augmernting the DFD model in order to cope with aspects that are not captured by its
traditional version
This is the approach taken in the development of a language like VIiAL. Here traditional
concepts from DFDs were enriched by spedfic symbols for the update of data stores, and
control or signal constructs aswell as error handling techniques. We will examine VIAL in
the next chapter.

Data flow diagrams asused in OMT were augmented with additional constructs, too. In
[Rumbaugh 91] two additional flow elements were defined in the diagrams to create the link with
the control and structure submodels. the object creation arrow, and the control flow arrow.

The foll owing diagrams show how both elements may be used to model part of the process
described by the ISPW-6 and ISPW-7 cass'.

Design
Engineer

Requirement:
Modify
Name

Content

DesignReview ReviewDesign ok

a

ModifiedDesign
[S
> DesignDoc

ModifyDesign

Figure 6. Control flow Figure 7. Objed flow designating creation

MAX(Version(Design))

ProjectDocs

Figure 6 shows how to incorporate control flow into the diagram. The modified design created in
the ModifyDesign processis handed over to both the Review and the ModifyCode process
However, the ModifyCode processonly is 'adivated' if the Review process designates the Design
assuccesqul; in other cases a DesignReview indicating flaws in the design is handed back to the
ModifyDesign process

" Both examples actually do not exactly comply to the behaviour description of the SOCCA
mode in [Engels 94).

Functiona Modelling in SOCCA 16

In Figure 7 the CreateVersion process creates a new version of a DesignDocument in resporse to a
request from the DesignEngineea. This new document is then 'handed over' to the Modify process
indicated by the spedal arrow ‘creating the data store DesignDocument.

The intuiti ve appeal of DFDs make them particularly suited asan analysis tod. The 'bubbles' of
the diagram can be refined to finer and finer levels, until some satisfadtory analysis level has been
reached. When used in multi-paradgm analysis and design methods, at some level the relation to
other models hasto be formulated.

In OMT ([Rumbaugh 91], sedion 6.6) this is dore in an informal way by dedaring the processes
at a ceartain 'atomic' level to be 'equivalent’ to (a subset of) the operations defined in the objed
submode (and used in the behaviour submodd).

It remains unclear however, how exadly to interrelate the concepts of the dataflow diagrams used,
i.e. processs, data stores, data flow arrows and adors with the concepts objed, relationship or
link, and operation from the class model, and the concepts introduced in the behaviour model.

One way to define the interrelation, is to relate the three different models, class model, behaviour
model, and data flow model to one single underlying formal spedfication formalism or enacdment
language. This would be passhble, if all the concepts were clearly understood in an informal way.
As | belief thisis not yet the case, | will start paving the way in chapter 7.

Functiona Modelling in SOCCA 17

4 Visual Action Language and the EER model

ViAL, or Visual Action Language, was developed in conredion with a research projed called
CADDY (Computer-Aided Design of nontraditional Databases) at the University of Braunschweig,
Gemary [Engels 92]. Here ViAL wasimplemented as part of a prototype design environment for
information systems. A complete description of the language may be foundin [Hennemann 91]° ;
for a comprehensive introduction see [Engels 95].

Why wasit developed ?

In function-oriented® design and analysis paradgms it was customary to start the design and
analysis of information systems with a high-level data model, and a high level functiona model.
It was soon realized that for a correct analysis sophisticated high-level data models were needed.
Thus we saw the development of new methods and languages to accourt for complex structural
descriptions. Many approaches were based on the ER model [Chen 76]. Extensions to this model
were made, in many cases adding inheritance structures to the ER model. These models are
generally known asenhanced or extended entity-relationship models (EER models).

For the dynamical or functional part of the design data flow diagrams were customary*.

The objedives of the CADDY projed included the construction of a computer-aided design
environment based on an extended entity-relationship model. An integration gap wasfelt between
the usual formalisms for the spedfication of functionality and the constructed EER models. Func-
tional spedfications shoud obey inherent integrity constraints imposed by the structure spedfica-
tion. For such inherently correct spedfications a spedfication language had to be developed.

So a Visual Action Language was conceived.

Constructed models in ViAL shoud have [Engels 95]:
. a spedfication of adions highly integrated with the database schemata. The language had

to have asits fundamental buil ding blocks so-called elenentary actions, the 'minimal’ func-
tions that mapped one consistent database state into another.

. an intuitively comprehersible represntation. For this a visual, diagrammatic representation
was chosen, adopting concepts of data flow diagrams.
. inclusion of arbitrary data queries with resped to the database.

This made ViAL strongly tied to the EER model used in the CADDY projed™.
Before looking at the language itself we therefore will have a quick look at this EER model, and
compareit to the class or objed model used in SOCCA.

8 where the language is abbreviated VAL

° or data-oriented design and analysis. Here | mean more 'classical' methods like SA/SD in
contrad to objed-oriented methods, or methods with a heavy interest in behaviour.

19 The pad tense is a littl e out of place here. In fad this is still today the main paradgm in
information system development. Again the contrag with oo-methods is to be stressed.

' A complete formal syntax and semartics of this EER model can be foundin [Gogdla 91].

Functiona Modelling in SOCCA 18

4.1 The EER model

The 'semartic' data model used is an extension to the well known ER-model [Chen 76], viewing
the universe of discourse as consisting of ertities and relationships among them. The entities and
relationships are classified into entity, c.g. relationship typesor classes, having cetain properties as
defined by the mode or schenma. Information about entities or relationships is expressed by a set
of attribute-value pairs. So an attribute can be formally defined asa function which maps from an
entity set or a relationship set to a value set. In fad, in the EER modd multi-valued attributes are
allowed, i.e. attributes delivering a set, list (ordered set) or bag (sometimes called a multi set) of
values.

Entiti es partaking in a relationship may be restricted by multiplicity constraints; they spedfy how
often an entity can be participant in a spedfic relationship type. The different roles of the entities
participating may be indicated by adding role namesto the relationship.

To this classical concept of the ER model some new constructs are added. The result is a data
model with increased expressveness This model can be expressed in a diagram according to ER-
conventions, with some extensions.

Badcally the extensions to the data model encompass two concepts.

Speciali zation and gereralization

To provide modelli ng primitives for spedalization and generalization the concept of type con-
struction is introduced. The general form of type construction is given by the diagram in Figure 8,
where i, , . .. i, arealready defined or basic entity types, called input types.

Figure 8. Type construction

Starting with these types, the output types o, , . . . ,0,, are constructed.

All the entities from the input types are put together and distributed over the output types. The
entities from the output types are nat new entities, they already exist (in the input types) but will
be seen in a new context, the output types. Every inpu type entity is assumed to be in at most
one of the output types. So the foll owing expressons will hold:

Ogeronle O O o and (Oo,,0 ,k#l) o, no =0

Indicated by the inclusion symbol [in the triangle, the inverted direction need not hold, but can
be explicitly required by an additional constraint.

Using this concept of type construction the well known concepts of gereralization or superclasses
(n>1, m= 1), specialization or subclasses (n = 1, m = 1) and partition (n = 1, m > 1) can be
defined. Complete hierarchies of type constructions are allowed. However, they must not contain
cycles.

Functiona Modelling in SOCCA 19

Comporents

The other added concept in the EER modd is that of a component*2. Certain attributes can had
entities or objeds for value. Every badc or constructed entity type can have comporents.
Comporents arise in diagrams like Figure 9, showing the entity Persona Computer, having the
attribute Manufacturer and the comporent CPU, itself an entity of type Processor.

Personal
Computer

Processor

Figure 9. Comporents

One can compare the modelling power of the EER schemata with that of the OMT class diagrams
used in SOCCA (of course operations or metiods will nat be presented in the former). Figure 10
gives the class diagram for the SOCCA entities foundin [Engels 94]. We will translate this
diagram partly into a correspondng EER-diagram.

Engineer Document
| + | | A |
Project | |QA Design Design Test
Managefl |Engineer |Enginee Document Document
/ / Design Code
Project
Team
— Project Project
>—1Docs

Figure 10. Class diagram showing SOCCA objeds and links

12 Althoughthe concept of a comporent is an extension to the ER-model, Chen's original
model contained existence deperdency of entities, which is comparable to the concept of compo-
nents.

Functiona Modelling in SOCCA

20

Enginee r‘ Document

PN AN

Project

Manage

Design Design

Project

r
i

/ X
Team —designl> Design Code

Enginee Document
odifies

Project Project 7]
Docs code [

Figure 11. EER diagram showing SOCCA entities and relationships

As shoud be obvious to the reader both diagrams do nat model exadly the same objeds and
relationships. The Modifies and Reviews relation are added in the EER diagram of figure 4; this
diagram does not contain the Tes Documents nor the QA Engineer. Multiplicity constraints are
given in the class diagram of figure 3, but ladk in the EER diagram of figure 4. They could be
added however: the syntax of the EER model does provide them (althoughthe notation is not
defined in any of the referenced works).

Some other more interesting remarks can be made:

. there is a difference in modelli ng power of the type construction from the EER model, and
the correspondng superclass/subclass constructions in the adopted OMT modelli ng.
The potential for overdapping membership of the ProjedManager and DesignEnginee
classes cannot be modelled using type construction from EER.
To seewhy, consider the two modelling patentials of the EER type construct: spedaliz-
ation or generalizaion.

) If ProjedManager and DesignEnginea would be speciali zations of the Enginee

entity type, both would belong to different output types of the associated type
construction, and consequently have no members in common.

(i) If Enginea would be considered a gereralization of Projedmanagr and
DesignEnginea, both Projedmanagyr and DesignEnginea would have to be inpu
or bagc types. However, the EER model will nat allow basc entities to be of the
same type.

Functiona Modelling in SOCCA 21

More in general, there is a distinct diff erence between the interpretation of type member-
ship of entities in the EER modd, and class membership in OMT's objed model, aswas
noted in [Ebert 94]. In atype-thearetic approach, which the EER model is advocating,
each objed hasexadly one class to which it belongs. In the set-semantic approach of
objed-oriented models like OMT, an objed is considered a member of all its superclasses.

. althoughthere might be a formal equivalence between the comporent construct of EER
diagrams and the aggregation construct in OMT's class diagrams, there seems to be a
concepual difference
The reader might have naticed the difference in the construction of the aggregate class
ProjedDocs in Figure 10 and Figure 11. In the class diagram, the comporents of
ProjeaDocs are from the classes Design and Code, both subclasses of DesignDocument. In
the EER diagram, both comporents are considered to be of type DesignDocument, but will
be partitioned into the spedalizations Design and Code.

In my feding, the strong suggestion of their role in the comporent construction of
ProjedDocs (by the attribute names) makes this partition ook somewhat superfluods,
while in the class diagram the subclass partitioning of DesignDocument is somehow the
indicator for their role.

The lag remark suggests a more econamical approadh in using inheritance hierarchies in the
models. When spedalization is used just to clarify the role of a class in some relationship, this
might be considered bad design pradice™. Indeed the comporent construct in the EER model
shows how this can be dore: by assigning role names to the associations in the class model.

When compared to the OMT modelli ng capadty, this is even more true for the SOCCA models.
The 'role switching behaviour' of an objed or entity can be modelled quite sophisticated using
different internal behaviours for an objed in different roles. As an example one might look at the
behaviour of DesignEngined in the dynamic model in [Engels 94]. The two different internal
behaviours int-desgn and int-review somehow represent the different relations the DesignEnginee
hasto the DesignDocuments: he/she is Modify-ing documents or Review-ing documents (or both at
the same time: a distinct posshility in the SOCCA models). The external behaviour for
DesignEngineq is the manage for this 'role switching behaviour'.

13 althoughthe construction of analysis or design models is in all cases somewhat arhitrary

Functiona Modelling in SOCCA

22

Engineel

i

Project Design
Manager Engineer
Designer; Reviewer
O
Modifies

Design
Document

Figure 12. An alternative class diagram

An alternative way to shape this behaviour in a SOCCA mode is suggested by the class diagram
of Figure 12. Here we have refined the diff erent roles of a DesignEnginee a structural perspedive.

Adhering to this model, the exiernal behaviour of Designer and Reviewer in the correspondng

dynamical model would be somewhat li ke the 'old' internal behaviours int-desgn and int-review of

DesignEngines.

Functiona Modelling in SOCCA 23

4.2 Elementary actions

The EER schema sets structural constraints for the information system adhering to this model. It
tells us about the structure of the model (in terms of entiti es, relationships and attributes). By
adding dynamics to our model we spedfy a way to get from one state or instance of the model to
another. One way to do this is by the use of so called basic adions. The modifications made to
the modd instance by the use of badc adions are (cf. [Engels 90Q])

. insertion or deletion of an instance of an entity or relationship type together with its
attribute values

. addition or removal of a comporent of an instance of an entity type

. the update of attribute values of existing database objeds:. entities or relationships

. insertion or deletion of the membership of a database objed in a type construction

These badc adions foom a complete set of operations. using these badc adions any state change
of the EER modd instances could in principle be exeauted™,

The badc adions describe the modification of exadly one objed (entity, relationship). After the
exeaution of such an adion the new model instance may nat be a correct one. This means that
this local modification may violate the global structure as prescribed by the EER schema. In this
case additional badc adions, sometimes called updae propagaions may be nealed to yield a new
and correct model state™.

Wolff [Wolff 89 hasshown, that minimal sequences of badc adions starting and resulting in a
correct model instance can be defined, and in fad be automatically constructed from any given
EER model. These minimal sequences of basc adions are called elementary actions.

The elementary adions take accourt of rules like:

Insertion of objects

. after the insertion of an entity any required (i.e. nat optional) comporents must be inserted

. the insertion of an entity being the inpu type of a partition, must result in the insertion of
an output entity of one of the partition output types

Deleton of objects

. before deleting an entity, any relation it participates in must be deleted first

. before deleting an entity, any entities belongng to output types correspondng with the
entity must be deleted first

. all comporents belongng to the entity must be deleted first

Update of objects, i.e. updae of attribute values
. no elementary adions are constructed'®; the basc updae adion will suffice

4i.e it ismy fim belief that this could be proven in a formal way

!5 The nation of elementary adions is not unique for the EER model. In [Chen 76] some rules
for 'consistent’ insert, update and delete operations were already formulated for the ER-model.

16 As stated in [Wolff 89]. It shows however, that in spite of the careful construction of
elementary adions from the EER schema, a functional model completely adhering to the integrity
constraints from the mode still was not constructed. The update of key attributes must not be
allowed, withou having chedked first the uniguenessof the key value over the databa<e.

Functiona Modelling in SOCCA 24

4.3 The language ViAL

Having taken a glimpse of the EER model and the concept of elementary adions we are now

ready to look at the language ViAL.

VIAL is avisual programming language to construct complex transadions on databases that can be
considered instances of EER models.

The language off ers the foll owing constructs, as buil ding blocks from which one can compaose
functionality in the correspondng diagrams:

. queries functions on instances of the EER models that constitute values, value sets, or
even abjeds (entities, relationships) or sets of objeds;

. actions, i.e. badc adions for the insertion and deletion of objeds, the update of attribute
values, and the addition and removal of comporents;

. a dedaraton and invocation construct, which enables abstraction of compaositions into
procedures,

. data flow edges that can conred the aforementioned constructs.

Some of the transadions to be defined in the language are ‘pre-modell ed' and can be used by a
designer using the language as primitive building blocks for more complex operations. These pre-
modelled' transadions correspondto the elementary adions defined in sedion 4.2.

insert arbitrary query existential query

object type relationship gener_from

type object SQL/EER text object key
pe object type

? ?
query query

delete

relationship

object type type

identifier identifier

special_to
update

object
; felationship type
object type type J .) .

Figure 13. VIiAL badc adions Figure 14. VIiAL representation of queries

D@

Figure 13 shows the symbols that areused in VIiAL for the basc adions (insertion, deletion, and
update of entities and relations). All these basc adions can be simply and automatically derived
from a given EER model. These badc adions can be 'enriched’ with some constructs, e.g. setting
(required) attribute values when inserting an entity.

To seled values from the database, or to test for database states, ViAL offers the query constructs
of Figure 14"

An existertial query tests the database for the existence of entities of a spedfic type, using a value
for the key attribute from the type. As a result of this query, either the objed(s) themselves or a
signal value or error are produced.

7 Actually the different ways queries can be built are a littl e more compli cated. Here two
main 'types are shown.

Functiona Modelling in SOCCA 25

So the SQL/EER®® phrase roughly equivalent to an existential query is

select e

from ein ENTITY

wher e e KeyAttribute = keyvdue
if e exists then e else error

In aadition to these existential queries, the user of VIAL is free to formulate arbitrary queries of
the database. The result of this query can be an error or signal value, or a data or objed flow™.
The visual symbol of Figure 14 is used to incorporate the query in the definition of the transac
tion; the query itself can separaely be defined using either the SQL/EER language or a hybrid
(partly graphical, partly textual) formalism.

object flow signal flow error
handling
v ¥ v]
distributor join switch

/‘k ® Yo YD

Figure 15. VIiAL conredor (flow) symbols

Queries and adions areinterconneded using the flow symbols of Figure 15. Remember the result
of a query can be a (set of) value(s) or a (set of) objeds, or a signal or error.

Viathe object flow edges objeds or sets of objeds flow through the spedfied processes. Multi-
value oriented processng is suppated: dowbly arrowed flow edges represent objed/value sets. To
conred these multi-valued or multi-objed flows to the badc adions, the badc adions can be
starred (i.e. marked with an agerisk) to denote the iterative application of the adions, like in the
symboali ¢ code statement

foreach ein s do update e.someattribute with e.someattribute+1
Control constructs can be made with the error and signal edges. Signa edges handle bodean

values. Edgesfor error handing could conred an adion to a standard error handling procedure in
an application.

8 SQL/EER is a SQL-like query language defined over the EER calculus of [Gogdla 91].
Consult [Hohenstein 92] for a formal definition of the language.

¥ more or lessequivalent to the formal concept of arange in [Gogdla 91]

Functiona Modelling in SOCCA 26

The switch represents an operator to constrain data flow. The ongdng information (data or signal
flow) is delivered only if the signal carries a 'positive' value (true) , indicated by the symbolic
Statement:

if sthen d else O
where [is a spedal null value?®, and d stands for the ongdng data or objed flow.
The distributor takes an ingdang signal and puts it through to the outgoing edges. Via the join
operator the different 'branches’ of information flow can be recolleded. Only one of the incoming
edges is allowed to carry value. The distributor-join constructs could therefore best be compared to

guarded cobegin .. coend constructions, where only one of the paralel branches is thougtt to fire'
for any database instance

projectname
Delete ?Design =
ProjectDoc o selecp.Design
fromp inProjectDocs

Project
Docs
?Code =
selecp.Code
frompinProjectDocs

A 4
delete

Delete Delete

ProjectDocs DesignDoc DesignDoc

Figure 16. Delete ProjedDocs elementary adion

This sedion is concluded with an example giving an idea of the ViAL language constructs.
It is based on the EER model of Figure 11, althoughsomewhat simplified.

20 ¢f. [Gogdla 91], p. 376

Functiona Modelling in SOCCA 27

Example.
The elenmentary action modelling the deletion of a ProjectDocs documert file for a Project

To delete a ProjeaDocs document file, we first need one. So with the existential query
ProjectDocs we seled an entity of this type by its key attribute, which is suppased to be called
ProjectName?.

If the entity is nat found it cannot be deleted, and an error signal is forced.

In the other case, when the entity is found we cannot simply delete it, because it posgbly has
Desgn and Code comporents.

So first we must delete the accessory DesignDocuments, which in turn can have either Code or
Design spedalizaions or a Document generalization. However, we will assume that an elementary
delete adion for DesignDocuments has already been defined, and smply call it in our VIiAL
definition. The resulting complex adion Delete ProjectDocs is shown in Figure 16.

Observe the use of the multi-objed flow and the agerisk for the deletion of the comporents.
The example both shows definitior/dedaraion (Delete ProjedDaocs) and invocation (Delete
DesignDocs) of a complex transadion.

4.4 An evaluation of ViAL and its constructs
The central question directing my work on SOCCA was

Can we use ViAL to mode the functional perspedive, i.e. the functionality of the software
process and add something extra to SOCCA's modelli ng power in addition to the class and
behaviour modd ?

My conclusion is: no, we cant. And there are good reasons.

First of all, ViAL constructs model both functionality and behaviour.

With its signal and error flows it is strongly cortrol oriented. In SOCCA however, there was
already a satisfactory and to some extent superior modelli ng technique for the cortrol flow of the
software process the behaviour model with its PARADIGM constructs.

There are some shortcomings in ViAL's handling of control constructs:

. ViAL's constructs (query and adion) are conceived from a ‘global view' on the database
adhering to the data model. So there is no 'local' mechanism to influence the control.
structure. In fad, the 'objeds in SOCCA are adive comporents, and their control structure
or behaviour depends on local aswell asglobal state.

. There seams to be no clear semarntics for the diagrams??, espedally when concurrency of
behaviour is concerned. The example from the previous sedion shows this to some extent.
It is clear from the diagram, that the delete basc adion for the ProjedDocs objed cannot
precede the ?Design and ?Code queries. However, there is no syntadical reason why this
adion must not precede the elementary adions Delete DesignDocument.

Furthermore, the result of the ?Code query might be influenced by the 'firing of the Delete
DesignDocument adion ‘triggered' by the ?Design query. And ladly, there is no semartical
framework for the concurrent behaviour of the two complex transadions Delete
DesignDocument in the example.

I not modelled in Figure 11, however

22| have not consulted [Gerlach 92], where a ViAL interpreter over a database adhering to the
EER mode was described

Functiona Modelling in SOCCA 28

Sewnd ViAL is a'constructive' language. It is designed to build complex transadions from
simpler ones. As we have seen in chapter 3, DFDs were naturally top-down oriented and therefore
more suited for analysis and design.

Moreover, the ‘constructive' tag, i.e. the padkaging of behaviour into taks or operations is
already performed by the spedfication of external and internal behaviours in the behaviour model.

And third, the modelli ng primitives of VIiAL for adions on the EER schema instances are the
badc adions for the EER model, which areto some extent ‘unnatural' from an objed oriented
point of view. Indeed, the operations from the class model must be considered the 'basc adions
for the modelling of SOCCA functionality and behaviour.

In any case, the basc adions for the spedalization, partitioning and generalizaion are superfluous
in the set-semartic interpretation of the class model of SOCCA (cf. sedion 4.1).

So we camat simply adap VIiAL to our needs. But there are some interesting new ideaswe can
learn from the quick look at ViAL:

. it shoud be posgble to generate some 'blueprint for behaviour' for our objeds, just by
studying the posdble instartiations of the class modd, similar to the way elementary
adions were conceved and implemented as badc building blocks in ViIAL.

. it is possble to construct a dataflow-like diagrammatic language with a better formal
relation to the underlying data model than the original formalism of dataflow diagrams.

. inclusion of indicators for ‘erroneous’ behaviour, like the error flow in ViAL, might help to
pin-point expeded weak spats in behaviour design.

Functiona Modelling in SOCCA 29

5 Behaviour modelling and some additional concepts

In the preceding chapters we had a brief look at the SOCCA class moddl for (part of) the ISPV-6
case, and made only a short mention of the behaviour model. Neverthelesswe saw some remarks
about what concepts shoud be handled by the behaviour model, and what the relation between a
class model and functional model on the one hand, and the behaviour model on the other hand
shoud be. Let us take a closer look at behaviour modelling in SOCCA.

Based on the operations from the class model, in SOCCA onre can build State Transition Diagrams
(STDs) showing all possgble sequences in which these so-called export operations might be
‘exeauted upon an objed belongng to the correspondng class. This is roughy equivalent to the
use of STDs for behaviour modelling in most objed-oriented methods (seee.g. [Graham 94] for an
overview). However, behaviour modelling doesn't stop there.

For the implementation of its export operations or methods, an objed will undergo some state
change, posdbly alter some of its attributes and induce state changes in other objeds, by calling
upontheir methods. This ‘calling behaviour' is explicitly modelled as a sequential processin the
so-called internal behaviours correspondng to each of the export operations of the class.

The correspondng behaviour model allows for asynchronous comnunication between the objeds,
i.e. the effed of the calling behaviour will generally not show itself immediately or 'during' the
call, and for concurrercy of behaviour within one objed. The restrictions necessary to ensure the
‘correctness of behaviour are then modelled using PARADIGMs coordination structure of man-
agers, subprocesses and traps (which is adequately described in [Engels 94)]).

An interesting question is how one shoud arrive at the spedfication of the internal behaviour.
From [Engels 94], p. 6 one may read:

from studying where the export operations are imported, the various internal behaviours of the
operations of a classare modelled as STDs exhbiting all possble sequencesof calling imported
operations

One may wondkr if there is a systematic way or mehod by which one can arrive at the (possbly
partial) spedfication of the internal behaviour from the external behaviour of the objeds invalved,
and the import/export diagram SOCCA provides. | believe there is. To seewhy, we first take a
look at the import/export diagram, and the concept of a behavioural view asintroduced by Ebert
and Engels [Ebert 94].

5.1 Import/export diagrams
In [Engels 94] the class diagram modelling based on EER-like modelli ng tedhniques is extended

by defining what is called the uses relationship, a new binary relationship type. This usesrelation
ship is shown in diagrams like the one in Figure 17.

Functionad Modelling in SOCCA 30

Project Design
Manager ’ Engineer "
usesl: uses4: usesa.
design open_for_review %%ed? f_yfor_moflcatlon
review L?gls‘zwand review ok close_modification
close_and_review_not_ok
uses2: Design
create_version
\ usesb:
Project copy
Docs prepare
uses3:
create_first
create_next

Figure 17. Import/export diagram

Eadch usesrelationship has an "attribute’ uses list for keeping the list of acually imported oper-
ations. Asis remarked on p. 9 of [Engels 94] 'the list of operations may differ between instances
of the same type depending on the role of this instance.

| have some comments on this use of import/export diagrams:

It is not clear why this uses relationship and consequently the import/export diagram is
considered part of the class diagram. If the attribute uses list is dependent on the role of
the instances of the classes, this role must not be considered part of the class structure. In
fad the diagram seams roughy comparabe to the even flow diagram used in dynamic
modelling in OMT, which is part of the behaviour mode.

The role switching behaviour of the DesignEnginee does suggest the posshility of defin-
ing the partition Reviewer / Designer as posshble spedalizaions of DesignEnginee, aswas
dore in sedion 4.1.

By making the import/export diagram part of the dynamic model, the use of the calling
graph of Figure 18 might be considered. In fad it seems that when the import/export
diagram of Figure 17 is constructed, one hasall the necessary information to construct the
calling graph of Figure 18, which of course contains more information.

The calling graph shows us exadly what operations from other objeds are needed for the imple-
mentation of export operations. The review method of DesignEnginea uses 4 operations from
Design for its implementation: close_and_review Ok, close_and_review_nat_Ok, review, and
open for_review. Note that the calling graph says nothing about the sequencing of these 'calls’.

Functiona Modelling in SOCCA

31

— .

Design

close_and_
review_Ok

A 4

Design
Enginee

review

=

Design

close_and_
review_not_O

Project
Manager

Design

Design

open_for_
review

Design

prepare

review

Design
Engineer

design

%

Project | | Design || Design | | Design
Docs _

create open_for_ || modify close_
version modification modification

v\

Design Design
create_next create_first
v
Design
copy

Figure 18. Calling graph as an alternative for the import/export diagram

5.2 Behavioural views and internal behaviour

The nation of aview is awell known concept from database literature. The classical
ANSI/SPARC architedure was largely motivated by the intention to allow different users to have a
different view on the same databa<e.

Ebert and Engels [Ebert 94] have generalized the concept of a view to the objed-oriented para-

digm. They define aview on a class C asa simplified variant C', which can be derived from C in
a methodcal way.
The simplest view is one for which:

. the attributes of C' are a subset of the attributes of C (and retaining their proper data
sorts);

. the (export) operations of C' are a subset of the operations of C ;

. the state transition diagram for C' is the projedion of the STD of class C to the restricted

set of operations of C', i.e. the STD of C, where all the operations which arenat in the
subset of operations of C' have been replaced by unlabelled transitions (g-transitions)?2.

Now for each pair of classes where one class is using operations from another class for the imple-
mentation of its methods, a correspondng view can be constructed.

%3 this 'abstraded view' corresponds to the nation of restriction (cf. [Milner 89], ch. 2) or

abstradion (cf. [Bagen 87], ch. 5) known from communication theory.

Functiona Modelling in SOCCA

32

From the calling graph of Figure 18 ore sees that the foll owing views can be constructed:

. the DesgnEngineefToDesgn view for the implementation of the review method asthe
view DesignEnginee (asa reviewer) 'holds on' Design;

. the DesgnEngineefToProjectDocs view for the implementation of the desgn method as
the view DesignEnginee 'holds on' ProjedDaocs,

. the DesgnEngineefToDedgn view for the implementation of the desgn method asthe
view DesignEnginee (asa designer) 'holds on' Design;

. the ProjectDocsToDesgn view for the implementation of the create_version method

. the DesgnToDesgn view for the implementation of the close_and_review_Ok method

. the DesgnToDesgn view for the implementation of the create_next method

close_and_

review_n .
evIew_Not oK . iew

not

modify

0 Preparm create_first /!\g%edri]f_ o ﬁi%?ﬁf_
q ql - q3 a4
creat created modifatle

close_and.

eeeeeeee

close_and

of
q10
readable/

ql1
starting
copy

close_and_
review_not_ok’ reyiew

q9
starting
review
open_for |
review

q4

modifiable, re_revie:
q6

starting

modiicatior

(o)
created

Figure 19. Design's STD

Figure 20. Reviewers view on Design

Figure 19 shows the state transition diagram with all Design's export operations. Figure 20 shows
the correspondng view that DesignEnginee holds asa Reviewer. The subset of operations for the
correspondng abstradion is the set {open _for_review, review, close_and_review_na_OKk,
close_and_review_OKk}. All other export operations (and consequently the transitions in the dia-
gram) in the view are substituted by unlabelled transitions.

Now 'from the paint of view' of the Reviewer some of these unlabelled (or e-transitions) and some
of the states areredundant. The Reviewer has no influence over the transition (g3 — g4) nor over
the transition (g4 - q7) because both are e-transitions. So for the sake over the Reviewer the
‘complete e-path’ (g3 - g4 - g7) or (3 - g4 - g6 - g4 — q7) might be replaced by one ¢-

transiti or?*,

24 We may not however completely 'identify' state g3 with state q7, because the operation
open for_review is hat applicade in state g3. One coud say that in state g3 the objed Designis
not 'vulnerable' to open for_review. See[Milner 91], chapter 2 for a discusgon on this subjed.

Functionad Modelling in SOCCA 33

close_and

call_close_
q10" . - fevie and_review_ok no
readable Int-review open —————" review,
aske:

call_close_and
review_not_ok,

H m
DeS| g n close_and_
review_not_ol

review

call_
review
revie
asked

q9
starting
review

call_open_
for_review

@ /q;\ EEEEEEE closin
- = : rovey
Figure 21. Reduced view on Design Figure 22. Ancther look at int-review

If we now remove all the redundant states and transitions and replace them with their ‘equivalent'
e-transitions we arrive at the view of Figure 21?°. What we now have is the 'natural image' of the
internal behaviour of the review method Each state and each transition corresponds to a state or
transition in the int-review STD. To seethis we compare the diagram of Figure 21 to that of the
int-review STD of Figure 22. There is a natural correspondence between most states and transi-
tions. Of course the call-transitions correspondto their courterparts in the Design*-view.

We can seethe direct correspondences

state in Design” state of int-review
reviewable o review open asked
starting review o review. asked
readable o no review
pre_review - review startecf®
closing review asked o creaed

However, there is a diff erence between the int-review STD asgiven in [Engds 94] and the one
in Figure 22. In [Engels 94] there is a transition marked call_open for_review as a transition from
the state closing review askedto the state review open asked Here such a transition is only
possble after the e-transition leading from the state closing review asked to the state review
started. For the sake of its communication behaviour however, the internal behaviour constructed
is equivalent to the int-review behaviour of [Engels 94]%". So the only thing that is not captured in
this 'natural image' of the internal behaviour of int-review is its instantiatior/del etion behaviour.

%5 One might argue about the e-transition (q10 — g10. We could leave out this transition.
% called review askedin [Engels 94]. This state label appears twice however.

2" Again, this equivalence can be given a formal basd's using the nation of bisimulation from
[Milner 89 or [Baden 86.

Functiona Modelling in SOCCA 34

Before procealing, let us recapitulate the steps to ‘construct' the internal behaviour:

() from the calling graph, deduce from the usage structure which operations are actually
imported and used for the implementation of the internal behaviour.

(i) construct the correspondng abstraction of the external behaviour of the server objed, by
repladng all unused internal operations by an e-transition.

(iii) now remove redundart states and e-transitions (cf. [Milner 89, p. 39)

(iv) add default instantiation and deleion behaviour to complete the framework for the internal
behaviour

finishbehaviour

behaviour

finishbehaviour

Figure 23. Internal behaviour initial framework

This defaudlt instartiation and deletion behaviour is shown in Figure 23. The marked state corre-
sponds to the not_existing state of the internal behaviour to be constructed. From this state the ad-
behaviour transition will initi ate some internal behaviour. In this internal behaviour then, some
states will be marked final, from which a return to the not_existing state will be allowed, using a
finish-behaviour transition. This instantiation and deletion behaviour has a 'natural subprocessand
trap structure' with resped to the correspondng management processfrom the external behaviour
of the objed, symboalically shown by the dashed lines in the diagram. The correspondng
subprocesses can be constructed by leaving out the ad-behaviour, respedively the finish-behaviour
transiti ons from the internal behaviour.

Using this ‘construction method we now reconstruct the internal behaviours for the other oper-
ations relying on the usage structure in the calling graph of Figure 18, and compare these con-
structed internal behaviours with the internal behaviours given in [Engels 94].

We start with the simpler ones: the int-close_and_review Ok (int-Ok for short) and int-create_next
internal behaviours.

Functionad Modelling in SOCCA 35

finish_Ok

/_\ call_prepare

,,,,,,,,,,,,,,,,,,,,,,

Figure 24. int-Ok internal behaviour

Figure 24 shows the 'constructed' internal behaviour for int-Ok. We can seethat it is exadly the
same behaviour asgiven in [Engels 94], p. 15. The dashed lines show the symboalic trap structure
with resped to the management of this processby the Design external behaviour (same instance).

finish_create_next ! ‘ - finish_create_next
\

Q call_copy
I A

update_version

Lo
act_cteaté_next /_\
_(> call_copy
Lo

)
act_create_nex
T

,,

Figure 25. Framework for int-create_next Figure 26. int-create_next internal behaviour

In Figure 25 we seethe constructed internal behaviour for int-create_next Figure 26 shows the
correspondng internal behaviour from [Engels 94], p. 15. The difference of course is the
updae_version_notransition modelling some ‘perfedly local' control, administration or state
change in the internal behaviour. This 'extra’ behaviour shows the 'double functionality' of the
internal behaviours:

. They arethe expresson of the relation between the objed and its ‘acquaintances, the
objeds it is communicating with. one might even say that the internal behaviours int-
review and int-desgn 'model’ the correspondng Review and Modify relations from the EER
diagram in Figure 11. This communication behaviour is captured by the internal behaviour
framework, that can be constructed using the method of this sedion.

. The internal behaviours model some local cortrol, administration or state change in con
nedion with the desired functionality of the correspondng operation.

The next example shows the framework for and the actual behaviour of int-create_version (cf.
[Engels 94] p. 15). First we construct the correspondng abstradion from the external behaviour of
DesignDocument and the calling graph of Figure 18.

Functionad Modelling in SOCCA 36

o= 0—0

create_ne:

Figure 27. Abstraction from Design behaviour

We have abstraded out all redundant e-transitions, and indeed one may wonder why the ‘initial
and ‘final' e-transitions have nat been abstraded out. As far asthe 'client-server' communication
between ProjedDocs and DesignDocument is concerned, they could be abstraced out. However,
they shoud remind the reader of the fad that the create_first and create_next operations are only
applicade in one definite state of the external behaviour of DesignDocument, and that any ‘caller’
on this behaviour shoud ‘wait' (althoughasynchronically) before the actual state admitting the calls
has been reached. However, for the framework construction for the int-create_version behaviour,
we may indeed abstrad them out, asis shown in Figure 28.

finish-create_version

L
)
,
't call_create_firs|
—
ac‘t-.‘.. call_create_nex
L

Figure 28. Framework for int-create version Figure 29. int-create_version acdual behaviour

The adual internal behaviour of Figure 29 defleds from this framework in the same way aswas
the case for the int-create_next internal behaviour in the previous example: the det_next version
state transition expresss the need for some ‘local' administration.

The examples of this sedion might suggest, that the internal behaviour might acdually be con
structed in a deterministic way, up to some adustments neeled for the local administration. Unfor-
tunately, thisis not the case. Note that for the implementation of its review operation,
DesignEngineq is only relying on Design asa 'server objed’, aswasthe cas in all the examples
in this sedion.

Functiona Modelling in SOCCA 37

For the DesignEnginea ading asa Designer, it is somewhat more compli cated. In this case
DesignEngineq is relying on two 'server objeds for the implementation of its desgn internal
behaviour: Design (calling open_for_modifi cation, modify and close_modification) and ProjeadDocs
(calling create_version). In this case we camnot build the framework for the internal behaviour
using a straightforward construction from the correspondng behaviour abstradions.

The only thing we can conclude beforehand, is that the internal behaviour will include some
concurrent interleaving of these behaviour abstradions. However, the possbiliti es for interleaving
are further restricted by the PARADIGM communication already set up, the 'dee structure' of the
calling graph®, and the functionality requirements one warts to add for the behaviour.

It might be an interesting idea for future research, possbly using the correspondence between the
behavioural view from [Ebert 94] and the abstradion concept from communication theory, to find
out how the 'dee structure' of the calling graph restricts the framework for internal behaviour as
used in this sedion.

5.3 Object situation and internal behaviour

The lag sedion of this chapter will shortly review the concept of state change for an individual
objed.

When concentrating on a spedfic perspedive in system models, one is often inclined to look upon
every agpoed of the system from this perspedive. So from the data perspedive it is natural to view
every state of an abjed refleded in a spedfic and recogrizalle set of values for its attributes, or
even to introduce an attribute to 'encode’ the state of an objed.

When using a multi-paradgm modelli ng approach for system analysis and design, one can also
regard the various submodels involved as complementary (or orthogoral, cf. sedion 2.1).

In such an approach it is natural to regard everything we 'know' about the objeds asthe colledion
of features moddled in the various submodels.

This view of complementary models for the description of systems, was advocated for the OMT
method by Ebert and Engels [Ebert 94], and formalized using the concept of object situation.

In their model at a given paint in time, an objed o isin a precisely defined situation os, when it
has a concrete state g and a concrete value f, where the function f models the function assigning
values to the attributes in a given situation g.

In this view, the state of the objed does nat exclusively determine the value of an objed, and
neither does the state of an objed determine the value it halds for its attributes. The way the value
of an objed o may change then depends on its situation, i.e. it depends both on the value f that o
has and on the state q thato isin.

28 which in this case tell s us we must call creae_version before open for_modification asthe
external behaviour of DesignDocument dictates

Functionad Modelling in SOCCA 38

Using SOCCA as a modelling method things even get more complex than in the OMT cas. In
SOCCA the objed situation does not only depend on both the value function for its attributes, or
the (external) state it is in, but also on the various states its internal behaviours may have and the
number of internal behaviours that are adivated at some time. The mode allows for concurrency
of internal behaviour. However, the restrictions modelled by the PARADIGM structure must be
obeyed.

As information is encoded in the objeds adhering to the SOCCA model in various ways, i.e. by
attribute value, instantiation of acguaintances (related objeds or relations), and external and
internal state, there are various ways to model the functionality involved. To get at terms with
these encoding mechanisms | constructed the following example objeds (indeed an remarkalde
trio) and named them The Odd Transmitter, The Odd Recever, and the Odd Transcever. Their
coll edive behaviour can be modelled in a SOCCA model; however the class model will be a very
trivial one.

The Odd Transmitter has an external operation called send, by which it is aked to pass the value
it hasfor its attribute this_attribute on to the Odd Transcever, who will do nothing but to pass it
on as soon as posshble to the Odd Receaver, who will encode it into its correspondng attribute
this_attribute. The value for this attribute can be any pasitive integer value.

@

Transmitter

pass_on

value
Transceiver

Receiver

Figure 30. Dataflow diagram for the odd trio.

The functionality of this send operation is given in the dataflow diagram of Figure 30. It shows
how the send processwill pass on the value to the pass_on process of the Odd Transceiver, who
will pass it on to the Recéaver. Note how the ‘passive role' of the Odd Receéver is designated by its
being modelled as a data store.

The simplest way to model this functionality in the behaviour of the Odd Trio, is to modd it as
function calls with value passing. In such a model, the send(value) operation would initi ate some
int-send(value) internal behaviour calling a pass_on(value) operation from the Odd Transceiver.
Subsequently the correspondng internal behaviour would call on some receve(value) operation
from the Odd Recaver, to bring the value to its destination.

However, the Odd Trio will do things differently.

Functiona Modelling in SOCCA

39

finish_send

act_send /_\ call_ok

value =0
call_inc
inc
asked

Ok

Figure 31. int-send (Odd Transmitter)

Figure 32. Odd Transcdaver external STD

They dedde to transfer the value not by value passing, but by 'transmisgon of behaviour'.
The internal behaviour for the send operation on the Transmitter will hold a copy of this_attribute,
and gradually deaea this value by one until a value of 0 has been reached (cf. Figure 31).
Meanwhil g, for every substradion it calls uponthe inc operation from the Transcever. Upon
finishing, a call is made to the Ok operation on the transcever, and the send operation is finished.
So nat the value itself is transmitted or communicated, but the sequence of +1 operations leading
to the value?®. This 'encoding could have been dore otherwise, e.g. by fadoring the value into its
prime fadors. The point is, we do not adually communicate the value itself, but a behaviour

presciption constructing the value.

Now the Odd Transceiver does not adually 'hold' the value before passing it on.

finish_inc

act_inc /_\ call_incr

finish_ok

f\ call_start /\ call_en
_/ NI

Figure 33. int-inc (Odd Transceiver)

Figure 34. int-ok (Odd Transcever)

29 of course we must suppcse some preceding behaviour for the Transcever to 'clear' before
accepting inc operations. This behaviour is nat given here.

Functiona Modelling in SOCCA 40

start

Figure 35. Odd Recéver external STD

For every call to inc it will startits int-inc internal behaviour. We will assume no PARADIGM
restriction for the multiple instantiation of this behaviour. However, this int-inc behaviour is not
allowed to finish off immediately: it will make a call to the incr operation of the Recaver, and
this call is restricted in the 'standard SOCCA way, in which the Recédver external STD ads asa
manager. However, initially we assume the Odd Recéver to be in its external state qO, and is not
allowed to answer to the call-incr calls from the Odd Transcaver, until some state transition to the
state g1 has been made. Note that the Odd Transmitter will initiate as much int-inc internal behav-
iours asthe value of the original attribute we wanted to transfer. So here in away the number of
int-inc internal behaviours started is the encoding of the original attribute value.

The call to the Ok operation on the Transcaver will trigger the int-ok internal behaviour of the
Odd Transcever. This behaviour will call the start operation on the Recever, to bring the in the
state ready to handle all the incr calls waiting from the int-inc internal behaviours. When all these
behaviours have been dealt with we will alow the transition (q1 — g3) on the Recéver external
STD. And on the Recéver some int-incr internal behaviour will of course 'restore’ the value of
some attribute.

This (indeed very artificial) example shows us:

. The posgbiliti es for the encoding of information into internal states, external states (or
rather communication states) and attributes are more complex than in the 'standard objed-
oriented models. So in the SOCCA models the concept of objed situation isin fad more
complex than in other objed-oriented models.

. It is posdble to 'transfer value' by ‘communicating behaviour': in fad the coll edive behav-
iour of the odd trio is an expresgon of the functionality of the DFD of Figure 30. There
aretwo other posshiliti es: passing value directly by returning value uponcalling and
allowing for value parameters in the calls, or by the creation of ‘value halding objeds,
flowing from transformation to transformation.

Functiona Modelling in SOCCA 41

6 Structural integrity and behaviour

In chapter 4 we saw how one of the paints of focus in the CADDY projed was the maintenance
of data modd instance integrity as prescribed by the EER schema. This was dore by ‘packaging
badc adions into so-called elementary actions. To define and build these and other complex
database transadion the language ViAL was concaved and implemented.

We then argued that it was one of the restrictions to put on the behavioral mode that it shoud
provide for a mechanism to safeguard against violations of the database integrity using the com-
munication between PARADIGM manager- and subprocesses.

What would be needed is a kind of 'generic behaviour' or 'blueprint behaviour' for the
instartiation and deletion of abjeds. The following example shows how one may set about to
define such a generic behaviour.

ProjectManager ProjectTeam

~

gl | not_existing ql not_existing

N N
w in_operation m in_operation

Figure 36. Generic external behaviour

In Figure 36 we seewhat | have called 'generic behaviour' of two objeds from the SOCCA
modd: ProjedManagyr and ProjedTeam. Their external behaviour shows only two states: they are
either there (in_operation) or they arenaot (not_existing).

In the in_operation state there are three possble transitions:

. from in_operation to not_existing (the douwble arrow), indicating a delete method

. from in_operation to in_operation (the triple arrow), indicating the call of an arhitrary
operation, and thereby posgbly starting some internal behaviour;

. from in_operation to in_operation (the single arrow), indicating a sojourn in this state,

withou any ‘'adion’..

And likewise in the not_existing state, there aretwo posdble transitions:

. from not_existing to in_operation (the douwble arrow), indicating a insert method

. from in_operation to in_operation (the single arrow), indicating a sojourn in this state,
naturally withou any ‘adion’.

However, ProjedManager and ProjedTeam may not independently go about and change states.
They are boundto some form of coll edive behaviour by the restriction (spedfied in the class
model) that for each ProjedTeam there must be one and only one ProjedManager and vice versa.
This may be expressed as a behaviour restriction in PARADIGM by defining a subprocess and
trap structure for the coll edive behaviour of the objeds, and by defining a manager processto
enforce the restriction.

Functiona Modelling in SOCCA 42

Subprocess s1 Subprocess s2 Subprocess s3 0 H Fati
operating appearing disappearing Collective instantiation manager

] © SOMNCE

appearing disappearing

2 3

Figure 37. Subprocessand trap structure Figure 38. Manager process

This behaviour restriction in shown in Figure 37 and Figure 38. There are three subprocesses for
the each of the two objeds ProjedManager and ProjedTeam. The three subprocesses bear obvious
names: operating, appearing (or instantiating) and disappearing.

Now there are three possble states, asthe manager processindicates.

. The manager state operating (gl), correspondng to the state where both ProjedManager
and ProjedTeam arein the correspondng subprocess (labelled s1) and consequently either
'instartiated and operating i.e. respondng to export operation calls (other than those
causing instantiation or deletion) or are both not_existing (and remain that way);

. The manager state appearing (g2), when both ProjedManager and ProjedTeam are forced
to '‘come alive, i.e. make the transition non_existing — operating. Note how they may not
respondto other export operations in this subprocess

. The manager state disappearing (g3), when both ProjedManagr and ProjedTeam are
forced to 'go to rest', i.e. make the transition operating — non_existing. In this subprocess
the nomal export operations are also forbidden. So the initiation of new internal behav-
iours is nat posshle in this case. We suppase that all internal behaviours have a ad-
operation and finish-operation initiation and finishing behaviour, and that the internal
behaviour is managed in the 'normal' way by the objed behaviour. The objed
ProjedManager will only be allowed to make the transition operating — non_existing when
all its internal behaviours have come to a 'non existing state.

The trap structure (for both the objeds ProjedManagr and ProjedTeam) indicates the passble
transiti ons the managgr process can make:

trap tl is a trap from operating to appearing;
trap t2 is a trap from operating to disappearing;
trap t3 is a trap from appearing to operating;
trap t4 is a trap from disappearing to operating.

S0, like in the case of the WODAN change enadment manager [Wulms 94] we now have a
manager process managng two processes, both ading as managers to their internal behaviours
themselves. We could say that the 'Coll edive instantiantion manager’ is the behaviour model for
the 1-1 relation between ProjedTeam and ProjedManag.

In some cases however the restrictions as defined in the class diagram are much more subtle.

Functiona Modelling in SOCCA 43

Design
Engineer

Design
Engineer

int-design

int-design

Project
Docs

int-create
version

int-create|
version

Figure 39. 2nd DesignEnginea must wait

Althoughthis wasnat in fad modelled by the SOCCA class diagram of Figure 10 we would
nomally suppcse that the attribute combination name+version would be a partial keyor qualifi er*
uniquely determining the objed DesignDocument as a comporent of ProjedDacs. So there shoud
nat be two DesignDocuments belongng to the same set of ProjedDocs having the same value for
both their name and version attributes.

This restriction is indeed enforced by the behaviour of the objeds asdefined in [Engels 94].
Consider the following scenario, indicated in Figure 39.

An 'unthoughful' ProjedManager ‘calls upori two different DesignEngineas DE1 and DE2 to start
their int-dedgn internal behaviour for the same DesignDocument and bearing the same name at
about the same moment. Both DE1 and DE2 can carry out their act-desgn internal operation and
start their correspondng internal behaviour. Now one of them, say DEL1 is fagest and calls the
objed ProjedDocs™ first with a creae_version call. ProjedDocs starts its (first) internal behaviour,
making the internal transition act-create_version and promptly returns to its neural state.

Now for a new internal behaviour int-create_version (for the same document name) it can not
immediately make the transition act-create_version again uponthe reception of the creae_version
call from DE2. It must wait for the internal behaviour int-create_version to enter its trap t7 (cf.
[Engels 94], p. 20) which creates a DesignDocument with a separat version number for each
creae_version call is receives. So here the uniquenessof the partial key name+version is enforced
by the ProjeadDocs managr process It is aswould the external behaviour of ProjeaDocs (ading
asa manager for int-create_version) ad asalock manager on the update of the key values for
DesignDocument.

% seeeg. [Elmagi 89] sedion 3.3.4 or [Rumbaugh 91] sedion 3.3.5

%1 consider the case where there is only one objed instantiated for this class

Functiona Modelling in SOCCA 44

The two examples of this chapter suppat the following observations:

. it is very well possble to construct behaviour restrictions on the dynamic models for the
various objeds that ensure that the restrictions of the class model are enforced for any
external use one can make of the objed instances®?, and it in fad can be dore quite
elegantly using PARADIGM.

. when analysing the example problem which was modelled in [Engels 94], i.e. a small
subproblem of the ISPW-6 case, one can seethat indeed implicit and explicit restrictions
of the class diagram in Figure 10, are enforced by the behaviour and communication.

The next question then is: but how do we guararteethe enforcement of this 'structural integrity' of
the behaviour ?

There are three ways to ensure this:

. in relying on the ‘craftsmanship’ of the designer/analyzer, resporsible for the dynamic
modedlling, asis dore in the construction of the dynamic models in [Engels 94];
. in finding an algorithmic way to generate 'generic’ or 'blueprint' behaviour from the class

diagram for all objeds, in much the same way as elementary adions were constructed
from the EER model in [Wolff 89], and use this asa starting paint for the construction of
the dynamic mode!;

. in combining both approaches, where the design from craftsmanship is compared to an
algorithmically constructed design with a verification method

The construction of ‘generic instartiation and deletion behaviour' from a class diagram is not
straightforward however, asit wasin the case of the construction of e ementary adions from the
EER model. There were only two operations to consider in this construction: the insertion and
deletion of database elements (entiti es, relationships, comporents). For an objed-oriented
modelling method however, many different operations may lead to instantiation or deletion of
objeds. The design of these operations is 'put at the discretion’ of the analyzer/designer, who is not
only interested in the compliance to the class model, but also in the compliance to the functional
mode.

So in my view the most promising way, is the third alternative:
. asafirst step, generate blueprint behaviour from the class diagram;

. asa seoond step, use craftsmanship to design detailed behaviour, and prove that this
detailed behaviour complies to the desired blueprint behaviour.

%2 the first example shows that there are 'states’ where both objeds are 'not yet' fully
‘instartiated'. However, they are nat allowed to respondto any calls of their export operations
before this is the case

Functiona Modelling in SOCCA 45

7 Functional M odelling in SOCCA

In chapter 3 we saw how the technique of dataflow modelling is an adequate todls for the anayss
of functionality of complex systems. In a top-down manner, subsequently refining the level of
description we can break down the high-level desired or observed functionality into a fine-grain
complex of functional elements, the 'atomic' processes.

In chapter 3 we observed how in OMT functional modelling a relation was made between these

inputvalues

outpuvalues

7

inputvalues

outpuvalues

7

Function

Function

Object 'Flow' affected selection

or contributing

Object base Object base
(beforestate) (afterstate)

Figure 40. The idea of a function Figure 41. Function with data stores

atomic processes and the 'elements of behaviour' of objeds, i.e. its operations and transitions
between states. However, this relation was rather informal; there was no attempt for a more formal
approach. In that same chapter we naticed how this 'informal' status of data flow diagrams was
also naticed by others [Ghezzi 91] as one of the drawbadks of the use of data flow diagrams.

In this chapter | will try to say something about a possble approach to ‘formalize the use of data
flow diagrams and to sharpen the relation between 'atomic' processes and the other two submodels
of SOCCA. To complete such a description is a soundtask, however, for which | neither had the
necessary badkgroundin the construction of formal models, nor the available time. And so, the
ideaswill remain very sketchy.

7.1 The idea of a function

First we try to get anidea of a functional 'comporent’ of a functional model in SOCCA, which can
be considered an objed-oriented method This idea of a function isin my view very well captured
in the diagram of Figure 41. A function or processis in its most general form the transformation
of data values (asindicated by the top arrows) with a necessary side-efecton a distinct set of
objeds (asindicated by the lower arrows). This side effed is a status change or configuration
change in the affeded objeds, but may also involve the creation or deletion of objeds.

Naturally there are simpler functions, i.e. those just transforming data values, and not having any
side effeds, or the other way around, functions just intended to change the state of a set of objeds
and 'not computing anything'.

Functiona Modelling in SOCCA 46

To analyze or spedfy a given function, we must indicate;

. what value transformation is made;

. the 'seledion’ of objeds that either is to be affected by the side effed, or that are contrib-
uting to the value transformation;

. what status change the affeded objeds will make.

To visualize the 'outside viewer's' ook on a function we could further exploit the expressve
power of the data flow diagrams by adding the symbol for a data store to the diagram of

Figure 41, asindicated. Here, the symbol for the data store is indicating a 'substate’ of the objed
bas, i.e. the aforementioned 'seledion’ of objeds hading some status 'before’ and 'after' the
process This object base is the ‘objed model' we create for or software process i.e. the totality of
model comporents.

As visualized, the arrow from the data store indicates this 'seledion’ of objeds; the arrow to the
data store indicates the status change of the affeded objeds, and possbly the creation and deletion
of some abjeds. For the moment, we only worry about the ‘functionality' of this transadion, asis
natural from the analyzers or designers paint of view®,

Now there aretwo important considerations to be made:

. primitive functionality is alocal phenomenon
Althoughthe visualization is ‘from the outside, i.e. halding a globa view in the terminadl-
ogy of [Engels 94, p. 6, in reality the active components of our (objed-oriented) model
are (some of) the objeds themselves. When we spedfy or analyze the functionality at this
lowest level we therefore must take a local or nearby view on the model, and take a
viewpoaint ‘from the inside, i.e. studying the model the way the adive comporent 'sees' the
mode . This view is different from the one used for ViAL spedfications; in ViAL we con
struct functionality from the 'outside, or, in SOCCA temms, from a globa point of view

. functionality is redricted
We arefree to analyze and spedfy the functional model independently from the other
models (the orthogondity of the submodels and perspedives), but only to a cetain extent:
the 'functionality' we spedfy 'knowing' the relation of the ‘atomic’ comporents with
elements from our structural or behavioural submodels must be in accordance with the
restrictions of thase submodels.
Therefore we may not create or delete objeds in away that is nat allowed by our class or
objeda modd, and indeed may not modd a sequence of state changes in the side effed that
in violation with the state transition diagrams of our behavioural model.

% To restrict ourselves to the functionality means, that for the moment we are not interested in
‘implementation’ agpeds like concurrent transadions

Functiona Modelling in SOCCA 47

7.2 The elements of specification

So what are the elements with which to spedfy functionality ? The 'badc building blocks we use
can be classified according to the three ‘tasks we mentioned in the previous sedion:

. elements to build values from other values, i.e. transforming input values to output values

. elements to 'seled’ objeds, which we will call queries like they are called in [Rumbaugh
91] (cf. chapter 3) or ViAL, and to generate values from objeds

. elements that transform objed (bas) states

In accordance with the EER model for which a formal semantics was developed in [Gogdla 91],
the class or objed mode for SOCCA can be considered a class or objed model over a data
signature. In short, such a data signature consists of value domains for the value types one wants
to consider modelli ng, and operations and predicates defined on those domains and generating
other values from these domains. Those primitive data signatures over which our models might be
defined are e.g. the int and bool domains with all their usual operations and predicates.

For the use in our class model we can extend these primiti ve types with set, list and bag construc-
tors to accourt for sets, ordered lists or multi sets defined over our primiti ve data domains.

The operations, predicates and constructors used can transform values in a well-defined way. They
all can be considered 'primitive’ functions of our spedfication or analysis model, i.e. the first ‘type
of elements. The outcome of such a transformation applied to a value furthermore has a well -
defined data type (or data sort).

vl

v2 {vi,v2,v3}

Set ey

v3

Figure 42. Set construction

These transformations or functions can be represented rather 'naturally’ in a data flow symbol like
the ore in Figure 42, showing how one can arrive at the set { v1, v2, v3} from the inpu values
vl, v2, v3.

Note however that the representation is limited, asthere is no natural ‘order’ defined for the inpu
values in our diagrams. The set {v2, v1, v3} would mean the same thing, but the list <v2,v3,v1>
is inded different from the list <vl,v2,v3>.

Functiona Modelling in SOCCA 48

Again, using data values of a set of, list of or bag of type, one can build other sets, bags or lists
using the well-known set operations [J or n, or values of type int or bool using the well-known
aggregate functions over sets, bags or lists like CNT (courting elements) or MAX. So from this
‘todlbox' of primitive functions we can build more complex structures in combining the functions
by the well-known mechanism of function compaosition, also 'naturally' to be captured in our dia-
grams, by 'attaching the 'output arrow(s)' from one ‘process or 'bubbl€e' to an 'inpu arrow' of
another. There are however some restrictions:

. Data flows to and from processs are typed. We therefore can only conned the output
flow from one processto the inpu flow of another processif they aretype compatible.
These type compatibility rules have to be formulated: one can imagine a rule according to
which any objed subclass can be used asan inpu type where the superclass is expeded.

. Composition rules must adhere to the restrictions from the behaviour model. We camat
allow sequential composition of processs in which the sequence for application is not
compatible with the operation sequence prescribed in the SOCCA behaviour mode.

So from inpu values we can build other values or sets of values. But where do these values come
from ? They may be 'abstracted' from the analysis by viewing every objed in the system asa data
source or data sink, which we do naot further analyze or spedfy. In that case we are dore. But we
want more; we want our model to show how data are delivered and transformed by the objeds.
Remember we are looking at the objeds from 'inside’. So for every processwe wart to analyze,
we assume there is an objed performing it asan operation or a sequence of operations. Processes
that will require ‘teamwork' from diff erent objeds must then be regarded as processes on the
aggregate objed representing the ‘team'.

It remains to find out what data can be delivered by an objed.

Inspiration for DFD models on how to 'extrad’ values from the objeds in a functional way can be
foundin the high-level functiona datamodels known from database theory (seeeg. [EImagi 89,
chapter 15).

First of all, there arethe attributes Every attribute (from the viewpaoint of the objed in question)
might be considered a 0-ary function. Actually, it is a little more compli cated because nat in every
objed situation a value hasto be delivered (cf. chapter 6). For these cases we might adopt the
spedal null value () like in [Gogdla 91], because in principle we wart all attributes to be
callabe for every objed situation if we want to. Note that including sets, lists and bags into our
data signature allows for the use of multi-valued attributes.

The invocation of attribute metods from outside the objed will assume we add export operations
for the call to these attribute methods to any state of our external STDs where they are applicale.
They do not however induce state change.

The value to be returned by these attribute calls will be assumed to return immediately.

The other way to ‘generate value from an objed' is to call an operation. Until now this wasnot
dore for the operations in a SOCCA model, but they might be considered data generating func-
tions, and assigned a data type for their 'output value'. Of course there will be 'typeless operations,
whose only effed will be the state change of an objed. So as a 'data generator' they may be
treated like attributes. But in this case there must be a side effed: by calling an operation, the
objea will undergo a state change, and induce state changes in its ‘acquaintances, i.e. the objeds it
is communicating with either by calling upontheir respedive export operations, or by ‘forcing
them to different behaviour by the communication medanisms set up in our PARADIGM spedfi-
cation.

Functiona Modelling in SOCCA 49

The lag thing to consider is, how objeds may call upontheir acquaintances. To set up any
communication with objeds contributing to its methods, the objed must use its acces paths , i.e.
find the objeds to communicate with using its relations or associations with other objeds.

In the same way asit is dore in the functional data model, one might define a function for any
relation defined for an objed, that will deliver for value the set of objeds partaking in the relation
with the objeds. As an example how an objed might generate value from its aoquaintances, the
diagram of Figure 7 shows how the implementation of the create_version operation for
ProjeadDocs will query its desgn comporents to determine the value for the version number to
assign to the new DesignDocument to create.

By 'calling upon its desgn comporent, a set of objeds (comporents) will be returned, to which
the version attribute function will be applied. This will deliver a set of values, the maximum value
of which will be the bags to construct the new version number from.

Functionad Modelling in SOCCA 50

8 Conclusions and suggestions for further research

The work on this thesis started out with the observation that 'some things were missng from the
SOCCA method as explained in [Engels 94]. More spedfic, aswas explained in chapter 2, there
was no clear functiona perspective expressed in the SOCCA models, and furthermore, it was
unclear how the functionality of the example software processfrom [Engels 94] was related to the
class and behaviour models devel oped.

Most of my work has been devoted to find out what exadly ‘wasmisgng in the SOCCA method
And, admitted, | have nat founda clear answer. Most of the desired functional features sean to be
‘hidden’ in the behaviour and communication model, which were already designed, perhaps
unwittingly, with a clear concept in mind on the functionality to be expeded from the model.

From the discusson in chapter 3 on Data Flow Diagrams it shoud be clear, that for the analysis of
software process modelli ng a separae concentration on functional agpeds is indeed useful, and that
the technique of data flow modelling is a valuabe tod. Using this tod a more detailed analysis of
the ISPW-6 and ISPW-7 example process models can be performed, asthere are many features
there that are still not captured in the current SOCCA models.

To integrate this technique of data flow diagrams with SOCCA's class and behaviour modelling
shoud be an objedive for further research on SOCCA. As indicated in chapter 4 the ViAL
approach isin my opinion not the road to follow. Modelling complex transadions in ViAL hastoo
much of an algorithmic or procedural flavour, where a more functional or applicative approach is
desired. Moreover, ViAL's control structures have a number of shortcomings that make it less
applicable for the SOCCA situation.

In chapters 5 and 6 | clarified the some agpeds of behaviour:

. the behaviour that is necessary to maintain the communication requirements for the model
once the export operations and external STDs have been accompli shed;

. the restrictions for the behaviour that can be derived from the class modd;

. the behaviour that is the expresgon of algorithms for the realisation of other functionality .

Here too, there are some interesting questions remaining. It is still unclear how the 'dee structure'
of the calling graph further restricts the freedom of modelli ng for the internal behaviour. It might
be an interesting subjed for further study, pasgbly using the methods of formal communication
theory. And, it might be an interesting endeavour to actually derive blueprint behaviour for all the
SOCCA abjeds from the class diagram and start the construction of export STDs from this
behaviour.

In chapter 7 a very modest start has been made for the imbedding of the tedhnique of dataflow
diagrams in SOCCA's methods. There is still much to be dore in this field.

It is still unclear how ore of the central themes of an appli cative approad, i.e. parameter binding
in functional compasition, shoud be related to SOCCA's call-operation asynchronic conventions.
And seaond the concept of objed situation is much more complex than in the case of other objed
oriented methods like OMT, because of SOCCA's internal behaviour concept and will have to be
formalized.

Functiona Modelling in SOCCA 51

9 References

[B agten 86]

[Chen 76]

[Coad 91]

[Constantine 79]

[Curtis 92]

[Ebert 94]

[Elmagi 89

[Engels 90]

[Engels 97]

[Engels 93]

[Engels 94]

[Gerlach 92]

[Ghezzi 91]]

[Gogdla 9]

[Graham 94]

[Groenewegen 86]

[Hard 87]

J.PM. Bagen, Procesalgelra: eenformalisme voor parallelle,
communicerende processen. Deventer : Kluwer, 1986

P.P. Chen, The Entity-Relationship Model - Toward a Unified View of
Data. In: ACM Transactions on Database Sysens, 1(1), March 1976 p. 9-
36.

Peter Coad, Edward Y ourdon, ObjectOriented Analysis. 2nd ed.
Englewood Cliffs, NJ : Yourdon Press 1991

L.L. Constartine, E. Yourdon, Structured Desgn. Englewood Cliffs, NJ :
Prentice-Hall, 1979

Bill Curtis, Marc 1. Kelner, Jim Over, Proces Modelling. In: Commun.
ACM 35, 9 (Sept. 92)

Jurgen Ebert, Gregor Engdls, Structural and Behavioural Views on OMT-
classes In: Elisa Bertino, Susan Urban (eds.), ObjectOriented Methodd-
ogiesand Systens. Proc. Int. Symp ISOOMS 1994 LNCS, Berlin :
Springer, 1994 p. 142-157

Ramaz Elmagi, Shamkant B. Navathe, Fundamentals of Database Systens.
Redwood City, California : The Benjamin/Cummings Publishing Co. Inc.,
1989

Gregor Engels, Elenmentary Actions on an Extended Entity--Relationship
Database. In: H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Graph-
Grammars and Their Application to Computer Sciernce, Internationd
Workshop, LNCS 532, Berlin : Springer, 199Q p. 344362

Gregor Engels, Perdita Lohr-Richter, CADDY: A Highly Integrated Envi-
ronment to Suppat Conceggual Database Desgn. In: G. Forte, N.
Madhavji, and H. Mdller (ed.), Proc. 5th Int. Workshop on Computer-
Aided Sdtware engineeling, Montread, Canada IEEE Computer Society
Press 1992 p. 19-22

Gregor Engels, Perdita Lohr, Visual Specification of Complex Database
Actions. In: J. Eder, C.A. Kalinichenko (eds.), Proc. 2nd Int. East/Weg
Database Workshop, Klagenfurt, Septenber 1994 Workshops in Compuit-
ing. Berlin : Springer, 1995 p. 303-314.

Gregor Engels, Luuk Groenewegen, SOCCA: Specffication of Coordinated
and Cooperative Activities Technical Report 94-10. Leiden University,
Department of Computer Science, 1994

K. Gerlach, Ein Interpreter fur visuell speifizierte komplexe Aktionen auf
EER-Datenbarnken Diplomarbeit. Technische Universitét Braunschweig,
1992

Carlo Ghezzi, Mehd Jazagri and Dino Madrioli, Fundamentals of Sdt-
ware Engineeling. Englewood Cliffs, New Jeasey : Prentice Hall, 1991
Martin Gogdla, Uwe Hohenstein, Towards a Semantic View of an
Extended Entity-Relationship Model. In: ACM Transactions on Database
Systens, 16:369-416, 1991

lan Graham, Object Oriented Methods. 2nd edition. Wokingham, England :
AddisonWesley , 1994

Luuk Groenewegen. Parallel Phenomena 1-14. Various Tednical Reports.
Leiden University, Department of Computer Science, 19861991

David Hard, Statecharts: a visual formalism for complex systens. In:
Science of Computer Programming 8 (1987), 231-274.

Functiona Modelling in SOCCA 52

[Hennemann 91]

[Hohenstein 92

[Kellner 91]

[Kelner 91a]

[Milner 89]

[Morssink 93]

[Petre 95]
[Royce 7(]
[Rumbaugh 91]

[Steen 88

[Wolff 89]

[Wulms 94]

[Y ourdon 89

Christiane Hennemann, Entwurf und Implenentierung einer Sgrache zur
visuellen Speifikation von Aktionen auf erweiterten Entity-Relationship-
Datenbarken Diplomarbeit. Technische Universitéat Braunschweig, 1991
Uwe Hohenstein, Gregor Engels, SQL/EER - Syntax and Senmantics of an
Entity-Relationship-based Query Languag. In: Information Systens
17(3):209-242, 1992

Marc|. Kelner et al., ISPW-6 Sdtware Proces Example. In: Takuya
Katayama, ed., Proceedng of the 6th Internationa Sdtware Process Work-
shop: Suppat for the Sdtware Process, IEEE Computer Society Press
1991

Marc|. Kdlner et al., ISPW-7 Sdtware Proces Example. 7th International
Software Workshop. Yourtvill e, California, 16-18 October 1991

Robin Milner, Communication and Concurrency, New York : Prentice
Hall, 1989

P.J.A. Morssink, Behaviour Modelling in Information Sysemns Desgn :
Application of the PARADIGM Formalism. Ph.D. Thesis, Leiden Univer-
sity, Department of Computer Science, 1993

Marian Petre, Why Looking Isn't Always Seeing: Readership Skills and
Graphical Programming. In: Comnun. ACM 38, 6 (June 95), p. 33-44
W.W. Royce Managng the Devebpment of Large Sdtware Systens:
Conceps and Techiques Procealings IEEE WESTCON, 197Q

James Rumbaugh et al., ObjectOriented Modeling and Desgn, Engewood
Cliffs, New Jasey : Prentice Hall, 1991

M. R. van Steen, Modelling Dynamic Systens by Parallel Decision Pro-
ceses Ph. D. Thesis, Leiden University, Department of Computer Science,
1988

Matthias Wolf, Eine Sprache zur beschreibung schema-abhangger
Aktionen in einem erweiterten Entity-Relationship-Modell. Diplomarbeit.
Tedhnische Universitat Braunschweig, 1989

Alex Wulms, Adaptive Sdtware Proces Modelling with SOCCA and
PARADIGM. Mader Thesis. Leiden University, Department of Computer
Science 1994

Edward Y ourdon, Modern Structured Analysis. London: Prentice Hall,
1989

