Blackboard Systems in SOCCA

Process Evolution visualised by
Reproductive, communicating
Blackboard Systems

Carla Spruit

Augustus 1997

MASTER'S THESIS

Department of Computer Science
Leiden University

P.0O.Box 9512

2300 RA Leiden

The Netherlands

Abstract

Goal of this thesis is to specify Blackboard Systems in SOCCA and to investiggpossibility to
model evolving processes by means of communicating Blackboard Systems. lidthe Sieftware
Process Modelling, the ability to model evolution is of great interest as iuppors the structured
thinking and simulation of processes.

Blackboard Systems were originally developed in the field of artificialligence as a method to
organise problem-solving programs. The problem-solving is dynamically codtbyllautomated
experts that communicate with each other through a global database, called ‘Ke&idc

The evolution of the problem-solving is visualised by the recording of the successiifecations on
the Blackboard.

By replacing the automated experts by humans, Blackboard Systems naturafigmepvelution of
human collaboration processes.

First, a Blackboard System that is fit to represent human collaboration psoedssigned by using
SOCCA, a process modelling language that models automated and human parts of in ®ystetty
the same way. As no automated parts are included in the proposed Blackboard Syste@Cihe SO
model will be a model of a completely non-automated process.

Like processes, this Blackboard System has to be able to create, influencenamateesther
Blackboard Systems. They must be able to operate concurrently and communicasehviather.

Secondly, the representation of evolving processes by means of Blackboard $ydtestsated by
applying the Blackboard System model to a ‘real-life’ example. This exampelubssa ‘groupware
like’, non-automated human collaboration process: the collaboratively writing of a book

28/8/97 Blackboard Systems in SOCCA 2

Acknowledgement

First of all, I would like to thank Dr. Luuk Groenewegen and Dr. Ida Sprinkhuizen-Kuypal for
their guidance and support, enabling me to work with constant pleasure on two topics of esy. inter
Blackboard Systems and SOCCA.

Furthermore, | would like to thank my parents for their ready support and encouragementduri
study.

And finally, thank you Cor, for motivating me and for listening to all that abstnaift st

28/8/97 Blackboard Systems in SOCCA 3

Abstract 2

Acknowledgement 3

Contents 4
Part | Basic concepts 7
11 Introduction7
1.2 Contents8
13 Blackboard System8
14 SOCCA9
15 The examplel0
1.5.1 Introduction to the exampl&0
1.5.2 A verbal description of the exampl®
Part II: Specification of the Blackboard System 13
2.1 The basic concept of a single Blackboard Systé&m
2.1.1. A Blackboard System Process Modé&l
2.2 Problems14
2.3 Child-Blackboard System$6
2.4 Proposalsl?
2.5 Behaviour of the KS48
2.6 Behaviour of the CK3.8
2.6.1 General behaviour of the CKIB
2.6.2 The CKS and human rold®
2.6.3 Multiple CKSs in a BB-syster0
2.6.4 The CKS and communication between BB-syst@ths
2.7 Information on the BB20
2.8 Communication between the BB-systefiis

Part lll: The SOCCA model 22

3.1 SOCCA?22
3.2 Class diagramg?2
3.3 The export diagran25
3.3.1 The communication between the objects of one Blackboard Sy€tem
3.3.2 Communication between a parent-Blackboard System and a child-Blackboard
System26
28/8/97 Blackboard Systems in SOCCA 4

3.4
3.5

3.6

3.3.3

All other communication between Blackboard Syst@ms

STD’s External behaviou?28
STD’s Internal behaviou80

3.5.1

3.5.2

3.5.3

3.54

3.55

STD's Internal behaviour Blackboard Syst&B (sy$ 30
3.5.1.1 Operatiomt_create_BB_sys0

3.5.1.2 Operatiomt-modify_BB_sys31

3.5.1.3 Operatiomt_finish_BB_sys32

3.5.1.4 Operatiomt_get_info 32

STD's Internal behaviour Knowledge Souri€&)(33
3.5.2.1 Operatiomt-activate_KS33

3.5.2.2 Operatioint-activate_proposal34

3.5.2.3 Operatiot_deactivate K35

STD's Internal behaviour Control Knowledge Souftl€y 36
3.5.3.1 Operatiomt-activate_ CKS36

3.5.3.2 Operatioint-deactivate_ CKS37

STD's Internal behaviour Blackboai&B) 38

3.5.4.1 Operatiomt-select_problen38

3.5.4.2 Operatiomt-modify_BB 38

3.5.4.3 Operatiomt-put_on_BB38

STD's Internal behaviour Control Blackboa@BB) 39
3.5.5.1 Operatioint-select_proposa39

3.5.5.2 Operatiomt-put_on_CBB39

3.5.5.3 Operatiomt-update_HistoryList39

3.5.5.4 Operatioint-delete_nonrelevant_proposaB9

Subprocesses and tra$8

3.6.1
3.6.2
3.6.3
3.64
3.6.5

Subprocesses with respect to Blackboard Sy&8msy$ 40
Subprocesses with respect to Knowledge SoUi8e46
Subprocesses with respect to Control Knowledge ScOkS (52
Subprocesses with respect to BlackboBB) (4

Subprocesses with respect to Control Blackbd@2idB) 56

Part IV: Application of the given example 60

4.1 Introduction60
4.2 Event trace$0
4.3 The export operations and their parametfis
4.4 The division of the example into BB-systems, child-BB-systems, problems and
subproblems61
4.5 Representation of the example in 9 sté@s
451 Step 1l : The creation of the root-BB-systnocess Creatiorb2
45.2 Step 2 : Creation and activation of the first child-BB-system
Promoter Meeting64
45.3 Step 3 : BB-systeRromoter Meetingnakes decisions about the second
book 66
45.4 Step 4 : The creation of more than one child-BB-system to solve a single
problem 69
455 Step5 : BB-systePromoter Meetingeceives the results of the child-BB-
systems72
28/8/97 Blackboard Systems in SOCCA 5

Part V:

4.5.6

4.5.7

4.5.8
45.9

Step 6 : Processing the results of the child-BB-systems and the termination
of the child- BB-system&5
Step 7 : Adiscussion on the BBGliapter 9 Groumand
Promoter Meetingoroposes its own termination8
Step 8 : BB-syste@hapter 9changes its own ‘initial’ problen80
Step 9 : Pare®ook2formulates a second problem for BB-syst€hapter 9
83

Conclusions and further research 85

References 86

Appendix A: Identification of BB-systems and problens of the given
example 87

28/8/97

Blackboard Systems in SOCCA 6

Part I: Basic concepts

Part |. Basic concepts

1.1 Introduction

Blackboard Systems were originally developed in the field of artificialligence as a method to
organise problem-solving programs. The problem-solving is dynamically codtbyllautomated
experts that communicate with each other through a global database, called ‘Kivo&idd1].

As the automated experts are in control, one of the tasks of the automated expertsisde tirg
problem-solving on the Blackboard. In other words, they have to enforce opportunistic evolution on
the Blackboard.

This evolution can be visualised by the recording of the successive modificationsBiackimoard.

In the field of Software Process Modelling, the Blackboard System concept i@ spierest as
Blackboard Systems naturally provide a way to model the evolution of processebilith&anodel
evolution is of great interest as it can support the structured thinking of processes

By replacing the automated experts by humans, Blackboard Systems can also meiuhg evol
processes of human collaboration.

Not surprisingly, Blackboard Systems are already recognised in the fielddW@Somputer

Supported Cooperative Work) as a method to model and support human collaboration environments

[71.

In this thesis, a Blackboard System is defined that is appropriate to model humboratta
processes.

As processes can influence and create other processes, the Blackboard Systewenibs
capability to start up, influence and terminate other Blackboard Systems. Theyenalde to process
concurrently and communicate with each other.

The Blackboard System model is specified by using SOCCA, a Software Proogaking

Language, that is currently still under development at the University of Ledglen [

SOCCA is a suitable language to model this human collaboration Blackboard System, a
distinction is made between the modelling of automated and human parts. This way, dlcganter
between human- and automated parts or even the interaction between human partsrof easybe
modelled more explicitly than usual.

As no automated parts are included in the proposed Blackboard System, the SOCCA rhbdel wil
model of a completely non-automated process.

However, as the model provides a detailed description of the behaviour of all parpaicuctive
Blackboard System and the communication between the systems, it can alss Seevesaic design
of similar automated Blackboard Systems.

A SOCCA-model can become very complicated when too many details are to be moadeltas F
reason, some choices have to be made. As a result, this SOCCA-model will enhleasise
organisation of the problem-solving more than the problem-solving itself. Howewée axperts are
personified by humans, it is better to avoid too many details concerning the way prafeléonbea
solved.

In order to visualise the evolving of and communication between human collaboration ggptess
Blackboard System model is applied to a ‘real life’ example.

In this example, describing the process of the collaborative writing of a book, |stferant
‘groupware-like’ subprocesses can be identified, like the progress of- anedeunaking during an
assembly, the cooperatively working on a chapter of the book, a discussion concerninggtits cont
of the chapter, the contracting of activities out to other groups and the evaluatioresilits and
finally, individual processes.

28/8/97 Blackboard Systems in SOCCA 7

Part I: Basic concepts

1.2 Contents

This thesis is structured as follows:

Part | introduces the main concepts that are used in this thesis like Blackboard $S#EGA
and the given example.

Part Il presents the design of a Blackboard System that is fit to represent the eublvimgan
collaboration processes.

Part Ill presents the SOCCA model of this Blackboard System.

Part IV illustrates the evolution on the Blackboard Systems by the application of the SQQ{&A
to the given example. The evolution on the Blackboard Systems is represented bynthefregant
traces and process models.

Appendix A presents the translation of the verbal description of the example into problems and
Blackboard Systems.

1.3 Blackboard Systems

The Blackboard System concept was developed by Al researchers as a method to handle
organisational aspects of problem-solving programs [1] .
The idea behind the Blackboard System is first mentioned in 1962 by Al researchelénell:

‘Metaphorically we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge when he has
something worthwhile to add to it. This conception is just that of Selfridge’s
Pandemonium (Selfridge, 1995) : a set of deamons, each independently looking at
the total situation and shrieking in proportion to what they see that fits their
natures....[6]

Later, between 1971 and 1976, the concept was developed further during the Hearsay-Il speech
understanding project [9] , leading to the first Blackboard System, commonly known+éesatisay-
Il Speech-Understanding System

A Blackboard System consists of 3 parts:

Knowledge Sources Independently operating software modules that have special
knowledge about the problems to be solved.

The Blackboard A global database that contains all information concerning the
problems and through which the Knowledge Sources communicate
with each other.

The control System The system that determines the order in which the Knowledge
Sources make changes to the Blackboard.

28/8/97 Blackboard Systems in SOCCA 8

Part I: Basic concepts

The advantages of this concept lie in the ability to:

- model different points of view on the problem-solving into separate modules that caa beha
independently of each other.

- change the knowledge involved in the problem-solving by refinement of the KnowledgesSour
by the addition of new Knowledge Sources.

- specify different problem-solving techniques into different Knowledge Sources

-dynamically control the problem-solving on the Blackboard as the Knowledge Sorgcetfa
activating and only controlled by the Control System.

The Blackboard concept is very general and only outlines organisational princhees.ig no
information provided about the way working Blackboard Systems are to be developed.
Therefore, the design of a Blackboard System depends highly on the purpose of the Blackboard
System.

The Blackboard System concept has proven to be a very strong and general conceptahdtsié

is successfully applied to a large variety of problems.

Although originally designed as a method to organise problem-solving programs, ¢kiedalal
System concept is currently also used in other ways.

By replacing the automated experts by humans, Blackboard Systems can seweha&syan
organisational model of human collaboration.

As a result, the Blackboard approach is also recognised in the field of CSCW able suaty to
dynamically control and support the processes within human collaboration environmenrdsoSee

[71.

1.4 SOCCA

This section will only introduce SOCCA (Specification Of Coordinated and Coopertiwities)
briefly, as the complete description can be found in [4].

Until now, no formalism exists that is suitable to model all aspects of softwaresses. For this
reason, SOCCA proposes a combination of 3 different formalisms to model processes:

1) The use of EER (Extended Entity Relation) diagrams to specify the data peespdtt
classes and the relations between the classes that describe the staticeestf the process
are specified by means of EER diagrams.

In addition to the EER diagrams, the so-called export-diagrams are used. Exp@mdiagr
specify for every object the imported export operations of itself or other objects.

2) The use of STD'’s (State Transition Diagrams) to specify the first ptre dfehaviour
perspective.
The external and internal behaviour of the objects are defined by means of STD’s. The
external behaviour of an object defines the behaviour that is visible from outside, or, the
allowed sequences of operation calls to the object.
The internal behaviour of an operation, represents the functionality of the operatiomel$ def
, the possible sequences of calls to itself or to other objects. By defining the internal
behaviour of every export-operation of an object, the complete internal behaviour, or the
‘hidden behaviour’ of an object is defined.

3) Finally, the second part of the behaviour perspective is defined by the use of Paradigm
Paradigm (PARallelism, its Analysis, Design and Implementation by a @eévethod)[5] is
a formalism that is based on STD’s, enabling the specification of coordinate@lparall
processes.

28/8/97 Blackboard Systems in SOCCA 9

Part I: Basic concepts

By using Paradigm on top of the STD’s of the external and the internal behaviour, the
coordination between the internal behaviour of an object and the communication between the
objects is specified.

To model this coordination, subprocesses and traps within the STD’s of the internal behaviour
of the objects have to be identified. A subprocess denotes temporary behaviouiorestfct

the complete behaviour of an operation, a trap is a part of the subprocess that régulates t
switching between the subprocesses.

The subprocesses and traps of an object are ‘managed’ by an STD, called the manager
process. Every object has its own manager process in which possible combinations of
subprocesses define the states of the object and the possible combinations of traieedefine
state-transitions between the objects.

1.5 The example

This thesis presents a SOCCA-model of a Blackboard System. This Backbdard Byssed to
visualise evolution of processes on the basis of a given example, describing theratlle writing
of a book. In part IV, the actual application of the Blackboard System on the examplenisdoutli
This section presents the example.

1.5.1 Introduction to the example

The example, the verbal description of the example is presented in the next sectioatesrigom
the second book of the PROMOTER community [3].

PROMOTER is a European project, financed by ESPRIT, in which a number of universities
participate to exchange ideas on Software Process Modelling.

The example is part of chapter 7 of the book, titled "Where will Software ProcesssNisbus’. It
describes the actual history of the collaborative writing of chapter 7 and is uesttate the
correspondence between Organisational Process Models and Software ProcessliMorigr to do
so, the example is modelled in both modelling techniques.
As the choice of the example itself was not made without discussion, the objectioiss thgai
example — and the refutations against these objections — are also part of the chapter.
Some of the advantages mentioned also apply to the use of the example in this thegianéer. ins

- there is much evolution

- there is a meta process

- the example is from another process world, far away from software processes

- the example describes no automated processes

The fact that the example is already analysed and modelled in the book, adds an impamtdagedv
to the use of the example in this thesis. Furthermore the example relates typesrotdilabaration
that are so familiar to everybody that they do not need any further explanation.

1.5.2 A verbal description of the example

On 19940209 — date descriptions like this give the year, month and day in this order; so this date
refers to the 9of February, 1994 — it was being proposed in a PROMOTER meeting in Villard de
Lans, France, that the PROMOTER community should start working on a second book, this second
book should contain a problem-oriented presentation of the software process modedlirfgtiel

some preliminary discussions about the book structure, it was decided to prepare sonaspropos
concerning this structure for the following day. Furthermore it was decided thaittioe af this

28/8/97 Blackboard Systems in SOCCA 10

Part I: Basic concepts

second PROMOTER book should be PROMOTER, that Jean-Claude should be the general editor,
that Alfonso should be the general co-editor, and that Ali should give technical supporéto thes
editors. In addition, for every chapter to be part of the book there should be one editor,&bleast t
authors, and two reviewers. Editors and authors were to be appointed the following dé#ye after
decision about the (chapter) structure would have been taken.

On 19940210 there were two proposals for a possible structure. After some discussion cideags de

to have a structure of the book consisting of 9 chapters. As for this example only chaptecl9is whi
the present chapter 7 — is relevant, the details of the other chapters will bel.aofiipter 9 should

have the title Software Process Perspectives — an earlier versionitétaettially was Related

Domains. The main topic to be addressed in chapter 9 should be the question, where will software
processes lead us. During a subsequent discussion, this time in groups in order to regkeat ea

form a team for each chapter consisting of an editor and at least two authors, Viwthrolkahave
formed such a small group. First they had the idea to have a preference for chapied Bseal
Interaction and Social aspects. But it was decided to prefer chapter 9, and it wasgemdeeided

that Luuk should be the editor of that chapter, and that Jacques and Vicenzo should be the authors. As
Jacques had already left Villard de Lance, it was necessary to ask hinaedterand also to inform

him about any further ideas for and possible global decisions about the chapter-to-be.

Before the discussion in small groups really started, it was also decidedcthahepter team should
spend some part of the evening or the night to discuss a possible set-up of their chapter, dhd to put
result of that discussion on 1 or 2 sheets, to be presented by each editor in the PROMOIMER mee
of the following morning, in order to discuss the various set-ups. Moreover it was décitidtete

should be three writing and review rounds for each chapter in parallel, followed bytihg wirian
introduction and finishing the coherence between the parts of the book. The three roundsfpr writi
and reviewing were also meant for enabling the various writing groups to dstablifficient level

of coherence and cross-referencing between the chapters.

During the evening discussion Vicenzo and Luuk started on the idea of having a well-ctavsplee
as an illustrative answer to the main question of the chapter, where will sofire@esses lead us.
The very mentioning of this example triggered a whole stream of objectionstagdinsalso the
refutations of the objections. So they decided to let these objections and refutationbdiarztial

part of the chapter, as they certainly would be clarifying for others too. Moreogeadjgbussion
actually led them to the formulation of a theorem, the current Theorem 7.5. As at éhtiteyninad

no idea of how to prove this theorem, they did not think it probable to find a proof of it before the
final version of the chapter had to be produced. So they decided, instead of proving the theorem, to
give a rather thorough illustration of the theorem by presenting and discussing tipeexaan
sufficiently instructive manner. In their opinion the collaborative writing o thiapter could very
well serve as such. So formally, their theorem would have the status of a conjstiher point in
this part of the discussion was, that by carefully considering the refutations of ¢bo@any, one

might be able to find new arguments that could illustrate the theorem. In this wayttbEtpa
process where the process was being described, would lead to a better result, soéagdald |
better process than before.

On 19940211 in the full PROMOTER meeting the results of this evening discussion weted&gor
Luuk as chapter editor. There was an agreement on this first set-up.

Upon returning to Leiden, The Netherlands, Luuk informed Jacques in Nancy, France, abayt all thi
and asked him whether he would like to participate. Which he liked, viewing the topicobiatbier

as not an easy but an interesting challenge. His reaction too was conveyed by ey, toot uuk,
but also to Vicenzo in Pisa, Italy.

Then Luuk as the responsible editor was faced with two problems, one, how to organisertgenwrit
more detail, especially which time period(s) should be reserved for it and who should danghat
two, how to be as illustrative as possible in representing the example, such titaeafte
representation the theorem would look like just a straightforward abstraamfusier.

28/8/97 Blackboard Systems in SOCCA 11

Part I: Basic concepts

Concerning the first problem, from the beginning it was the idea that Luuk should also kedrwol
the writing. This was actually based on an earlier writing and editing experMooeover, Luuk had

a few sabbatical months to spend. Why not use two of these, at least partly, to get the job one. S
was arranged that in September Luuk should visit Vicenzo in Pisa, and in Novembes Jdacque
Nancy.

In trying to find an acceptable solution for the second problem, it became graduallyeaotbat
such a maximally illustrative representation of this particular co-openatiting example should
also work for other examples from a certain larger class. So the question wais, avbaitable class,
and how to represent it. This actually led to the ideas expressed in Lemma 7.4 and Lemma 7.5
respectively, and thus to the idea how to prove the theorem.

Upon arriving in Pisa on 19940901 Luuk discussed this new idea of proving the theorem with

Vicenzo, and they agreed upon it. The set-up of the chapter was changed accordingly, smfrom the

on, 19940905 to be precise, the chapter was supposed to consist of more or less ten sections, the first
five presenting the theory, and the last five presenting the example. It remaimee\ahat open

guestion whether the role of the example should indeed be so large as to cover the secorkhalf of t
chapter. But they decided to start like this, and to judge from the result.

As Vicenzo was too heavily involved in local duties, Luuk did the writing of the fustsiections
while being in Pisa until 19940928, and by using Framemaker.

In the meantime Jacques was being informed about the changed set-up of the chaptergéiserahe

co-editor was informed. At the end of his stay in Pisa, Luuk mailed the Framemfaberth to
Vicenzo and Jacques.

This finishes the relevant part of the verbal, informal description of the example.

28/8/97 Blackboard Systems in SOCCA 12

Part II: Specification of the Blackboard System

Part II: Specification of the Blackboard System

Based on the general Blackboard System concept, a new Blackboard Systenmteghrésst is fit to
serve as a organisational model for human collaboration. This part will introdube thés
collaboration Blackboard System and its features. The SOCCA-model of thd&adiSystem is
presented in Part Ill.

2.1. The basic concept of a single human collaborah Blackboard
System

A Blackboard SysterfBB-systemn) contains @&lackboard(BB), aControl BlackboardCBB),
Knowledge Sourcg¥&Ss) and aControl Knowledge Sourg€KsS).

The purpose of a Blackboard System is to sphablems
The problems to be solved are put on the Blackboard, which can be viewed as the global alagabase
Blackboard System.

TheKnowledge Sources continuously check the BB to see if there are any unsolved problems.
In order to help solving the problems, a KS can apply his knowledge by proposing actions on an
unsolved problem. The KS has to formulate the proposed actionsapasalwhich is to be put on
the Control Blackboard.

The Control Knowledge Source continuously checks the proposals on the CBB.

The CKS decides which proposals are to be executed and in what order.

When a proposal is to be executed, the CKS will activate the KS that created thelplidpoES
will then execute the proposed action on the BB.

All modifications on the BB will be registered by the CKS in Itistory on the CBB.

The KSs have special knowledge about the problems. The CKS has special knowleddesabout t
organisation of the problem-solving activity.

2.1.1. A Blackboard System Process Model

In order to visualise the human collaboration Blackboard System, a special BlacRysgem

Process Model is designed. Fig 2.1 presents a Blackboard System Process Modegl®f a s
Blackboard System.

The KSs are represented by the small circles at the side of the BB. The CK& b gl the bottom of
the BB.

The unsolved problems on the BB are lined up in the top-section of the BB, the CBB is regregente
a box in the bottom section of the BB.

The CBB contains the History and the proposals.

This model is used to register the state of the BB-system at a certain poire.of¢ show the
evolving of processes, Blackboard System Process Models have to be drawn at fiteedfgone.
The presented model is very simple, as it must be fit to represent a compleXatomnsied
communicating BB-systems.

In section IV, this model is used to represent the evolving of processes as derdtieegiven
example.

28/8/97 Blackboard Systems in SOCCA 13

Part II: Specification of the Blackboard System

2.2.

All information on the BB is stored in the form pfoblems

Problems

BB-sys

BB

Problem 1

Problem 2

Problem n

Proposals

History
(Problem 1: unsolved
(Problem 2: unsolved

(Problem n: unsolved

CBB

1\

&

Fig. 2.1. Blackboard System Process Model of glsiBlackboard System

Every problem has to be defined bypeoblem descriptiomnd has to be in one of three states:
unsolved, solved or unsolvable. Problems in a solved state contain a ‘solution’ and problems in a
unsolvable state have to contain a ‘failure’, describing the reason why the prohlesolisable.

A KS can apply his knowledge to an unsolved problem on the BB in the fornmadi&ication of the
BB. The KS can choose from 3 possible modifications of the BB:

1) By putting a new subproblem on the BB

If the KS detects a ‘partial’ problem of the original problem, the KS can modifyBhayB

The addition of a new ‘unsolved’ subproblem on the BB. This way, the KS can
influence the search direction of the KSs in their problem-solving activity.

The division of an unsolved complex problem into several unsolved subproblems also
simplifies the solving of the original problem

The addition of a new ‘solved’ subproblem on the BB when the KS is also able to
formulate its ‘solution’.

The addition of a new ‘unsolvable’ subproblem when the KS has detected a ‘partial’
problem that is unsolvable and is able to specify its ‘failure’.

The creation of subproblems can be viewed as the top-down approach of problem-solving.

2) By changing the state of a problem on the BB

28/8/97

Blackboard Systems in SOCCA

14

Part II: Specification of the Blackboard System

3)

When the solutions of the subproblems together have solved the original problem, all useful
solutions of the subproblems will be attached to the original problem and the state of the
original problem will be changed from ‘unsolved’ to ‘solved'.

If one of the vital subproblems of a problem is ‘unsolvable’, the state of the original
‘unsolved’ problem will be changed from ‘unsolved’ to ‘unsolvable’.

The observation that the solved subproblems have ‘solved’ the original problem can be
viewed

as the bottom-up approach of the problem-solving activity. The same applies to the
observation that an ‘unsolvable’ subproblem has made the original problem ‘unsolvable’.

By the deletion of a problem on the BB
In the course of problem-solving, some problems may have become superfluous onirreleva

To avoid that KSs continue searching in these no longer relevant directions, thesegproble
will be deleted.

If all ‘initial’ problems on the BB are ‘solved’ we can say that the BB-sgsge‘solved’. On the other
hand, if there are no ‘unsolved’ initial problems left on the BB, and at least one irotié&tmoris
unsolvable, we will say that the BB-system is ‘unsolvable’.

Problem

Problem description:
solve : (1 +4)3+2/(3-3)

State: unsolved

Subproblem 1 Subproblem 2

Problem description:
solve: (1+4)3

Problem description:
solve : 2/(3 - 3)

State: unsolved State: unsolved

Subproblem 1.1

Subproblem 1.2

Problem description:

Problem description:
solve : 5*3

Subproblem 2.1

Subproblem 2.2

Subproblem 2.3

Problem description:

Problem description:

Problem description:

solve : (1 + 4) solve : (3-3) solve : 2/0 solve : 2/0
State: solved State: solved State: solved State: solved State: unsolvable
Solution 1.1: Solution 1.2: Solution 2.1: Solution 2.2: Failure 2.3:
1+4=5 5*3=15 3-3=0 20=4 2/0 is unsolvable
as division by O illegal
Fig. 2.2. Example: Top-down problem-solving
28/8/97 Blackboard Systems in SOCCA 15

Part II: Specification of the Blackboard System

For example, imagine a BB-system that has to solve a simple mathematidahpr

The KSs attached to the BB-system only have the knowledge to solve ‘parts’ atthenprfor

instance a few KSs can only add up numbers, some can only multiply numbers and some can only
divide numbers. All KSs are able to divide compound mathematical statements rh&d' ‘pa
statements.

First, the problem is divided into subproblems until the KSs can solve the subproblems.
Fig 2.2 illustrates this top-down problem-solving by the KSs by representing the toingéeof
subproblems.

Note that subproblem 2.2 contains a false solution. This has to be recognised by the ‘dision’ K
and they will see to it that this subproblem is deleted.

A problem can have more than one solution. During bottom-up problem-solving, KSs may have to
choose between the different solutions of a subproblem.

Problem Problem
Problem description: Problem description:
solve : (1 +4)3+2/(3-3) solve : (1 +4)3+2/(3-3)
State: unsolved State: unsolvable
Solution 1:
(1+4)3=15
Failure 2:
2/(3 - 3) is unsolvable

as division by 0 illegal

Failure:
(1+4)3+2/(3-3)
is unsolvable
as division by 0 illegal
Subproblem 1 Subproblem 2
Problem description: Problem description:
solve: (1+4)3 solve : 2/(3 - 3)
State: solved State: unsolvable
Solution 1.1: Solution 2.1:
1+4)=5 3-3=0
Solution 1.2: Failure 2.3:
5*3=15 2/0 is unsolvable
Solution 1: as division by 0 illegal
(1+4)3=15 Failure 2:
2/(3 - 3) is unsolvable
as division by 0 is illegal

Fig. 2.3. Example: Bottom-up problem-solving.

Fig 2.3 represents two steps of the bottom-up problem-solving. The final step showsltlef tkes
problem, containing all ‘solutions’ and ‘failures’ found during problem-solving.

Note that as soon as an essential ‘unsolvable’ subproblem is detected, its oridilehpcan also be
declared ‘unsolvable’ before the other subproblems are solved.

2.3. Child-Blackboards

A subproblem may need other KSs and CKS than those connected to the current Blackboard Syste
Or, they may be the same Knowledge Sources, but their roles are different.

If the creation of a subproblem affects the KSs and CKS involved, child-BlackbcstehfSycan be
created.

28/8/97 Blackboard Systems in SOCCA 16

Part II: Specification of the Blackboard System

For example:

A team of engineers is working on a large software project. They will be divittedraller teams
that work on specified subprojects.

Sometimes, specialists that are no member of the original team, are neegedidijebs. And some
engineers may have roles in different teams.

This organisation structure can be modelled by giving each team a Blackbo@m 8f/gs own.

A new child-BB-system is only generated by the creation of a new subproblem by thieBiwre
system. This subproblem will be the ‘initial’ problem of the child-BB-system.
Like the KSs and CKS, an ‘initial’ problem will be viewed as a part of the Blac#fgstem.

As child-BB-systems can also create their own child BB-systems, thagolva problem may cause
the creation of a tree of BB-systems. The root or very first BB-systdrbewlalled the root-BB-
system. This is the only BB-system in the tree that has no parent-BB-system.

The parent of the root-BB-system will be referred to as ‘outside’.

During problem-solving, the parent (or ‘outside’) can modify the child-BB-systemo¢t-BB-
system) by changing its KSs or CKS or its ‘initial’ problems.

KSs can also modify their own BB-system. However, if a child-BB-system rasdife problem
description of its own ‘initial’ problem, or changes its KSs or CKS, this will dfgztathe problem-
solving of the parent-BB-system. As the parent expects an answer to thé pnatidém by the
chosen KSs and CKS, the child is only allowed to modify its own BB-system if the @Besyistem
approves with the changes to the BB-system.

This also applies to the root-BB-system: changes to the root-BB-systenplanitsSs have to be
authorised by ‘outside’

A modification of an ‘initial’ problem or a change to the KSs and CKS involved idcalle
modification of the BB-system

2.4. Proposals

Before a KS can execute any action that concerns the BB or the BB-system, thehéSenio
propose this action on the CBB first.
In order to do this, the KS will create a proposal.

A KS can create a proposal for:

1) A modification of the BB (as described in section 2.2)

2) The creation of a child-BB-system

3) A madification of a child-BB-system (as described in section 2.3)
4) The termination of a child-BB-system

5) A madification of its own BB-system (as described in section 2.3)
6) The termination of its own BB-system

If the proposal is of type 1, 2, 3 or 4, and the proposal is accepted by the CKS, the KS that created the
proposal, is activated by the CKS to execute the proposed actions.

The proposals of type 5 or 6 can only be activated by the parent. If the CKS of the sansteBB-sy
selects this proposal, the CKS will transfer the proposal to the CBB of the p&-ayst&m.

If the BB-system is declared ‘solved’ or ‘unsolvable’, the CKS will cregimposal for the final

resultand put the proposal on the CBB of the parent-Blackboard System.

If the parent is ‘outside’ the results have to be related to ‘outside’.

28/8/97 Blackboard Systems in SOCCA 17

Part II: Specification of the Blackboard System

A CKS will accept any proposal of a result of a child-BB-system and put the restdtawn BB as
the result contains the answer of the child to an unsolved problem on the BB.

When a child-BB-system is no longer needed, KSs can propose the termination of the ohilgl, Us
this will be done after the child has delivered its final result. But, even if thesthi has unsolved
problems, the child can be terminated, for instance, when the parent has ‘solved’ itsitoaln ‘i
problems before the child has come to a result.

Obviously, KSs of a child-BB-system can only terminate their own BB-systeen ¥his is authorised
by the parent as the termination of a child also affects the problem-solving ofene par

Note that KSs of a parent BB-system cannot propose modifications of the BB of a Blsigs&@m.
They can only influence a child by proposing modifications of the child-BB-system.

2.5. Behaviour of the KSs

In a Blackboard System with automated Knowledge Sources, the design of the difesaatmost
essential to the functioning of the BB-systems. Automated KSs may storertbeiekige in rule-
bases and make use of inference techniques to apply their knowledge.

Each KS involved must have his own unique knowledge and problem-solving techniques to give
every KS a different view on the unsolved problems.

The proposed concept of a Blackboard System is especially designed to model humaratohabor

As we can assume that humans already have their own unique knowledge and techniques, we do not
have to specify this knowledge of the KSs any further.

Therole of the KS defines what special knowledge is required.

Persons can play more than one role at the same time. For instance, it is possiedon & be a

parent, tennisplayer and programmer at the same time. The person will havetidsiviteen these

roles according to the circumstances. We will assume that persons controltithengwetween

different roles themselves.

In a Blackboard System, a person can have more than one role. Every different imdermatelled

as a separate KS.

A person can also belong to more than one Blackboard System. A KS, however, can only belong to
one BB-system.

When a person is involved in different Blackboard Systems with the same role, 9be wél be

modelled as separate KSs: one for every system.

2.6. Behaviour of the CKS

2.6.1 General behaviour of the CKS

Like the KSs, the part of the CKS is also played by a person. All properties of the H&scabed
before, also concern the CKS.

In the context of the Blackboard System, more information is needed about the behaviouiSof a CK
In a Blackboard System, the KSs play the ‘creative’ part and the CKS the ‘Gogtrpart of the
problem-solving activity.

The complete control of the BB-system is an interaction between the KSs and the CKS

The task of the CKS is to check whether the proposals are created by competard i8staer the
proposed actions are legal and feasible.

The way the problem-solving takes place, depends highly on the role of the CKS.

28/8/97 Blackboard Systems in SOCCA 18

Part II: Specification of the Blackboard System

If the CKS has the role of a chairman of an assembly, he will have to behave acaptdeng t
democratic rules that belong to an assembly, in other cases, when the CKS has aranohéchiele,
he can lead the problem-solving activity in a more authoritarian way.

A CKS can also influence the amount of alternative solutions on the BB. He can leaglyat&m-in
a very permissive way, but he can also lead in a more restrictive way.

2.6.2 The CKS and human roles

So far, this seems to be a ‘natural’ way to model human roles into the KSs or CKSseHakisv
modelling needs some refinement.

This refinement is needed because of the very strict distinction between thdlifessif a KS and
those of a CKS.

A KS can modify the BB, but as the CKS selects the proposals, the KS can only comnwitlicate
other KSs through the CKS. On the other hand, the CKS has only indirect influence on the progress of
the BB by the selection and activation of proposals.

The fact that KSs are restricted by the controlling of the CKS does only &iggotdblem-solving in
a positive way. The CKS will see to it that the information on the BB is filteoed $uperfluous and
incorrect information.

On the other side, the limitations of the CKS can be too restrictive to model mahagiag roles.
For instance, a chairman does not only play a ‘controlling’ role, he can also play adleat# in an
assembly. He should be able to influence the direction of the search of the KSs in nstieawayst
by selecting proposals.

BB-sys Assembly BB-sys Assembly
BB BB
I Problem I Problem |
A b
‘@ s member ‘A@ As member
Proposals 1 Proposals 1

History A History =N
(Problem : unsolved N As member CProblem : unsolved N As member
EN As
CBB leading
cBB N chairman

T, T,

S &
. As
As chairman controlling
chairman

Fig. 2.4. Process Model of a Blackboard Systemesgmting an assembly. In the left Process Molel(OKS plays
the role of chairman. In the right Process Modwe, role of chairman is split into a role ‘controtf
chairman played by the CKS and a role ‘leading’ichan, played by a KS.

In this case, the role of chairman has to be split into two roles : a role of ‘contrdilagnan’
executed by the CKS, and a role of ‘leading chairman’, executed by a KS (Fig. 2.2). As husian role
are hardly ever definite roles, it is also possible to split up the roles of a ahaix@n further.

This need for distinction between separate roles within a human role is not so impbgartumnan
roles are applied to KSs. A KS may play more distinct roles at the same tiomg &s the KS
controls the switching between the different roles himself.

28/8/97 Blackboard Systems in SOCCA 19

Part II: Specification of the Blackboard System

Note that the more restrictive a human role becomes, the more human behaviourereaatnbiated
behaviour or the easier the human role is to be automated. As the CKS only plays aragpnbtelli
the part of the CKS is probably the easiest part to be automated. By splitting up the ¢lesrahthe
KSs likewise, the KSs too are easier to be automated.

2.6.3 Multiple CKSs in a BB-system

The proposed Blackboard System model does not exclude the use of multiple CKSs. More than one
CKS can be activated by the same BB-system.

Like the KSs, the CKSs operate completely parallel, but, there is no mechanistegtowcontrol

the parallel behaviour of the CKSs. The parallel behaviour of the KSs is, in a wayp|ledriy the

CKS.

The use of multiple CKSs probably works best when the roles of the CKSs are not omgrlappi

For instance, a Blackboard System representing a project in which severakpmes involved could

have a CKS that controls the financial aspects of the proposals and another CKSrapattaither
aspects of the proposals.

In this thesis, only BB-systems with one CKS are discussed.

2.6.4 The CKS and communication between BB-systems

The CKS also plays a major role in the communication between the BB-systems.

Of all participants in a BB-system, the CKS has the best overview concdraistate of the
problem-solving activity on the BB. As the role of a CKS is to control and to monitor theprobl
solving on the BB, the CKS is the most-fit Knowledge Source to control the communicatiaebe
the BB-systems.

When the BB-system has solved the ‘initial’ problems, the CKS will put the @stite CBB of the
parent-BB-system. Or, when a KS proposes an ‘illegal’ action, like the maidificz the problem
description of an ‘initial’ problem, the CKS will put this proposal on the CBB of the pBEnt-
system.

The CKS also takes care of the input received from the child-BB-systems.

2.7 Information on the BB

Until now, there is only one possible structure to handle the information on the BBobiem.
Obviously, this information type cannot be sufficient in a normal working Blackboatd8y

There are two objections against the addition of information types and in connection sethyjes,
the definition of the possible modifications of these information types on the BB.

First, the proposed Blackboard System must be able to serve any possible prollegrastiity.
Different problem-solving activities may require different sorts of mattion types to store the
intermediate and final results.

Secondly, as the roles of the KSs involved in the BB-systems are played by perseracthe
knowledge of the KSs is indefinite. In connection with this property, too many detailsmiogdhe
definition of information types and possible modifications of the BB by the KSs will oniyne the
problem-solving activity.

The KSs may invent and create their own necessary information types to sto(atienediate)
results.

A possible approach for working Blackboard Systems may be the definition of alimiteber of
‘standard’ Blackboard types as most Blackboards used in human collaboration envisomithent
probably resemble one of these ‘prototypes’.

28/8/97 Blackboard Systems in SOCCA 20

Part II: Specification of the Blackboard System

In addition to the standard information types, other information types may be defined bysthe KS
involved in the BB-system.

2.8. Communication between the BB-systems

Until now, two methods of communication between BB-systems have already beenedisthess
transportation of results of a child to the CBB of the parent-BB-system, the gossilaihodify the
child-BB-system or the request from a child to modify its own BB-system.

In addition to these methods, a BB-system is able to ask for information of all otksysiins. A
BB-system may ask for information without permission from any of its descendamtsild-, grand
child-, grand grand child- systems etc. When a child-BB-system wants infonnadita parent, the
child will receive the requested information if it is permitted to ask for nédion.

The proposed ways of communication between the BB-systems seems rathdr kottestance
message passing and information from the ‘outside world’ are not explicitly nebdeile they are
essential to human collaboration environments.

They may not be explicitly modelled, but this information can be communicated betweds the B
systems in the form of modifications of the problem description of the ‘initial’ pnublef the
Blackboard System. Information from the ‘outside world’ or messages can be madsed t
Blackboard Systems by the modification of the root-BB-system by ‘outside’. Thavilbptass the
information to its children by the modification of these child-BB-systems and so on.

As the child-BB-systems can ask permission of their parent to modify its ovay&8m, the parent
is notified of the changed circumstances of the child. When the parent thinks that thedobaosge
also concerns its own BB-system, it can even asks its own parent to modify its esystBBI. This
way, messages that concern the complete tree of BB-systems can be passee wbthe leaf-BB-
systems to the root-BB-system and from the root back to all other BB-systémestiafe of existing
BB-systems.

Note that information of the ‘outside’ world is already gathered by the CKS and KiSsyasan ask
for information from the ‘outside’ world freely and at any moment in time.

The passing of information between BB-systems by modifying a BB-systememianyssrather
‘strong’ way to relate information to another Blackboard System. But as only giiomis passed
that is vital to the problem-solving of the Blackboard System, this is a caragdb deal with
message passing and information from ‘outside’.

28/8/97 Blackboard Systems in SOCCA 21

Part lll: The SOCCA model

Part Il The SOCCA model
3.1. SOCCA

This part presents the SOCCA-model of the Blackboard System, described In Part |

In section 3.2 and 3.3, the data-perspective of the Blackboard System is described.

Section 3.2 presents the EER-diagrams and section 3.3 presents the export-diagratrdiagrpos
specify for every object the imported export operations of other objects or the impguted e
operations of itself.

In section 3.4, 3.5 and 3.6, the behaviour-perspective is described.

Section 3.4 presents the STD'’s of the external behaviour of the objects. The externalbethawn
object defines the allowed calling sequences of operation calls to the object.

Section 3.5 presents the STD'’s of the internal behaviour of the objects. The internalrathefines
the possible sequences of calls to itself or other objects.

In section 3.6, Paradigm is applied to the STD'’s of the internal and external behaviouslyétte.
Paradigm regulates the coordination between the internal and the external behaaooibjett and
the communication between the objects.

3.2. Class diagrams

Before a model can be made, the classes involved in the SOCCA-model have to beddemEfg.
3.1 the classe®B_sys, Control System, BB, KS, GBBICKSare drawn in a class diagram.

All relations between these classes are ‘part-of’ relations. A ‘parelaition is indicated by a small
empty diamond at the side of the class that consists of the specified parts.

The classe€ontrol System, BBndKSare parts of the clagB_sysThe classeEBBandCKSare
parts of the clas€ontrol System

Blackboard System (BB_sys)

‘ | 1+

Control System Blackboard (BB) Knowledge Source (KS)

1+

Control Control
Blackboard (CBB) Knowledge
Source (CKS)

Fig. 3.1. Class diagram: classes and part-afiogls

The ‘1+’ at the side oKSat the relation betwedBB_sysandKS denotes that at least one object of
classkSis related to one object of claBB_sysAll relations without the ‘1+’ denote that exactly one
object of the class is involved in the part-of relation. For instance, to an obBt 8fs exactly

one object of clasBBis related.

The class diagram of Fig. 3.1 indicates that more than one CKS can be attached {steBBIhis
situation can occur, however, in this SOCCA model only BB-systems with one CKig&will
discussed.

28/8/97 Blackboard Systems in SOCCA 22

Part lll: The SOCCA model

The class diagram of Fig. 3.1 shows no ‘is-a’ relations. In the SOCCA-model ofldo&ad System,
no significant is-a relations are identified.

In Fig. 3.2, the general relationships between the classes are given.

i modifies

- KS BB
® ‘
modifies <>
BB-sys
finishes
creates
: child-BB-sys
modifies q
finishes

Fig. 3.2. Class diagram: classes and generalaeitips

A general relationship is indicated by a single line labelled with the name afidtiem.

A black dot at the end of a line indicates a multiplicity of zero or more. If no dot is dtaia end of
a line, the multiplicity is exactly one.

The relations drawn in Fig. 3.2 indicate that a KS can modify only one Blackboard and that a
Blackboard can be modified by zero or more KSs.

In the model of Fig. 3.2, a distinction is made between a BB-system and a child-BB:syke
classes KS and BB are part of BB-sys.

A KS can create or finish zero or more child Blackboard Systems but a child Bleti&ystem can
only be created or finished by one KS belonging to the parent-BB-system.

A KS can modify zero or more child Blackboard Systems and a child Blackboard ®ystdma
modified by zero or more KSs belonging to the parent-BB-system.

A KS can modify his own BB-system and the BB-system can be modified by zero or nsore KS
belonging to the same BB-system.

Finally a KS can finish his own BB-system but a BB-system can only be finished dijyex@e of
the KSs belonging to the same BB-system.

Fig 3.3 shows the attributes and export operations of every class. The attributesrane tihe
middle section, the operations in the lower section.

The class Control System is not included in Fig. 3.3 because it plays no role in the cormomunica
between the classes.

28/8/97 Blackboard Systems in SOCCA 23

Part lll: The SOCCA model

Blackboardsystem

(BB-sys) Knowledge Source (KS) Control Knowledge Source (CKS)
BB-sys_lId Role Role
Initial_Problems Proposal '
— activate_CKS
create_BB_sys activate_KS deactivate_ CKS
modify_BB_sys deactivate_KS
finish_BB_sys activate_proposal
get_info

Blackboard (BB) Control Blackboard (CBB)

Problems

Proposals
select_problem HistoryList
modify_BB
put_on_BB select_proposall

delete_nonrelevant_proposals
put_on_CBB
update_HistoryList

Fig. 3.3. Classdiagram: Classes with their attributes and operations

The attributdnitial_Problemsof the clas8B_syscontains the initial problems of the BB-system.

The export operatioBB_sys.create BB _sgseates and activates a new instance of the B&ssys
BB_sys.finish_BB_symishes, deactivates and deletes an instand@BEys

The operatiomodify_BB_sysan be called to modif8B_sys

The operatioBB_sys.get_infean be used by other BB-systems to get information about the state of
the called BB-system.

The attributeBB_sys.Permissiorkeeps the information concerning the BB-systems that are permitted
to call the operatioBB_sys.get_info

The classeKSandCKShave an attributRole The role gives important information about the
knowledge and behaviour of the KS or CKS.

A KS or CKS can only have one role.

The attributeKS.proposatontains the proposal a KS is currently creating.

The operation&S.activate_ K@ndKS.deactivate_K&qgulate the activation and deactivation of the
KS. A KS is activated at the start of a BB-system and deactivated whersgsBn is finished.
These operations can also be called in connection with a modification of the BB:system

The operation€KS.activate_ CK8ndCKS.deactivate CK&re used in the same way.

The operatiorKS.activate_proposas called by a CKS that has chosen a proposal to be executed

The attributeBB.problemsstores all problems on the BB. If a KS wants to select a problem, he will
call the operatio®B.select_problenThe KS can calBB.modify_BBo propose or execute
modifications on a problem on the BB.

The operatioBBB.put_on_BBs called by a CKS to put a final result of a child-BB-system on the BB,
or by aBB-systo put a new or modified problem on the BB.

The attributeCBB.HistoryListof the class CBB stores the history of the BB-system. All actions on the
BB are kept inCBB.HistoryListby the CKS. The CKS updates this HistoryList by calling the
operationCBB.update_HistoryList

The attributeCBB.proposalstores all proposals on the CBB.

The operatiofCBB.put_on_CBRan be called by a KS or CKS to put a proposal on the CBB of a BB-
system.

The CKS can cleanup the CBB by calling the operdiiBrdelete_nonrelevant_proposals

By callingCBB.select_proposathe CKS can select a proposal on the CBB.

28/8/97 Blackboard Systems in SOCCA 24

Part lll: The SOCCA model

3.3. The Export diagram

The export diagram (Fig 3.4.) shows the uses-relations between the classestefatisesspecifies
the export operations a class can use from another class. For instance, usesusdatidrindicates

thatBB_syscan call the operatior@KS.activate CK@&ndCKS.deactivate_ CK& classCKS.
The short arrows that show no particular ‘caller’, indicate that there is aldeamaty to call the
specified export operations. These operations can be called from ‘outside’. This ima¢ainsre is
also communication possible between a Blackboard System and ‘outside’.

This kind of communication will only take place in exceptional cases, like theoerea termination

of the very first or root-Blackboard System.

uses 1
create_BB_sys
modify _BB_sys

finish_BB_sys
get_info

uses 10 uses 11 ' _
put_on_BB BB sys update_HistoryList
uses 9
- uses 3
ggg\(/:etlisea_tsSKS activa_te_CKS
uses 12 — f ses 2 deactivate_CKS
activate_ create_BB_sys
proposal modify_BB_sys
finish_BB_sys
get_info
KS
<€ CKS
- uses 4
activate_proposal
uses 6
select_proposal
uses 8 put_on_CBB
select_problem update_HistoryList
modify_BB delete_
nonrelevant_
proposals
uses 7
V put_on_CBB V
> BB CBB e
Fig. 3.4. Export diagram
28/8/97 Blackboard Systems in SOCCA 25

Part lll: The SOCCA model

uses 10 uses 11 _
put_on_BB update_HistoryList

BB-sys

uses 9
activate_KS
deactivate_KS

uses 3
activate_CKS
deactivate_CKS

uses 2
modify_BB_sys
finish_BB_sys

KS |« CKS

uses 4
activate_proposal

‘P

uses 6
select_proposal

uses 8 update_HistoryList

select_problem uses 5 delete_

modify_BB put_on_BB nonrelevant_
proposals

uses 7
put_on_CBB

Y Y

> BB CBB [«

Fig. 3.5. Export diagram: Communication betweendbjects of one BB_sys

3.3.1. The communication between the objects of otackboard System.

The export diagram of Fig. 3.4, shows all possible uses-relations between theasiddsetsveen the
classes and ‘outside’.

Some operations, however, are only used within one Blackboard System.

Fig 3.5. presents all communication possible within one BB-system.

In Fig. 3.5, we can see that there are two operations that cannot be called within oiséeBB-Elye
export operationBB_sys.create_ BB_sgsdBB_sys.get_infean only be called by the parent-BB-
system.

3.3.2. Communication between a parent-Blackboard Syasm and a child-
Blackboard System.

The communication between a parent-BB-system and a child-BB-system (Fig. 8 §)dcial case of
communication between two Blackboard Systems.

Nearly all communication between Blackboard Systems occurs between padeciild-systems.
The only exception on this strict parent-child communication is the opeBifiosys.get_infoTlhis
operation can get information from other Blackboard Systems.

28/8/97 Blackboard Systems in SOCCA 26

Part lll: The SOCCA model

Parent_BB_sys
BB-sys
KS CKS
uses 2 uses 4
get_info activate_
create_BB_sys proposal
modify_BB_sys
finish_BB_sys
BB CBB
uses 6
put_on_CBB
KS CKS
BB CBB
Child_BB_sys

Fig. 3.6. Communication between parent- and eBiatkboard Systems

Note the similarity between the communication between a BB-system and ‘bo(Egjd8.4) and the
communication between a parent-BB-system and a child-BB-system (Fig. 3.8id®gan use the
export operationBB_sys.modify_BB_sys, BB_sys.create_BB_sys, BB_sys.finish_BB_sys
BB_sys.get_infand the operatiodS.activate_proposah parent-BB-system can use exactly the
same operations of a child-BB-system.

The operatiofCBB.put_on_CBHBs called by a child-BB-system to communicate the final result of the
child-BB-system to the parent-BB-system. There is no export-operation @ tlegafinal result of the
root-BB-system to ‘outside’. This will be handled by an internal operation.

3.3.3 All other communication between Blackboard Syems

In principle, it is not necessary to have this parent-child restriction for comatiomdetween BB-
systems.

But, this will raise another problem : if KSs can modify the cBBssysof every other BB-system,
this can complicate the problem-solving activity of the systems.

To structure this complexity, some hierarchy between the BB-systems had tonleel defi

28/8/97 Blackboard Systems in SOCCA 27

Part lll: The SOCCA model

3.4. STD’s External behaviour

In this section, the STD’s of the ‘external’ or visible behaviour of every dagisen.
The external behaviour of a class is defined by the allowed calling sequencesxpbiitoperations
and the possible states of the object.

In Fig. 3.7., the external behaviour®B _syss presented.

BB_syshas two states: ‘BB_sys non existing’ and ‘BB_sys existing’. \Bi@nsyss in the state
‘BB_sys non existing’ only operatiacreate BB_sysan be called. The calling of this operation
causes the state transition to the state ‘BB_sys existing’. From theBRatgys existing’ , the
operationsnodify BB _sys, get_infmdfinish_BB_sysan be called. By the calling fifish_BB_sys,
BB_syswill transit back to the state ‘BB_sys non existing’.

The calling of the operatiomaodify _BB_syandget_infodo not cause a state transition.

KSandCKSshow a similar behaviour in res. Fig. 3.8 and 3.9

The classes BB and CBB only have one state called ‘neutral’. From this dtaxgaat operations
can be called.

modify_BB_sys

create_

BB_sys activate_
- KS
BB_sys
non BB_sys
proposal
finish :
- deactivate_
BB_sys KS
get_info
Fig. 3.7. External behaviour BB_sys Fig. 3.8. External behaviour KS

activate_
CKS

deactivate_
CKS

Fig. 3.9. External behaviour CKS

28/8/97 Blackboard Systems in SOCCA 28

Part lll: The SOCCA model

modify_BB

select_
problem

put_on_BB

Fig. 3.10 External behaviour BB

delete__
nonrelevant_
proposals
select
proposal
. put_on_CBB
update

HistoryList

Fig. 3.11 External behaviour CBB

28/8/97

Blackboard Systems in SOCCA

29

Part lll: The SOCCA model - STD's internal beloar

3.5. STD’s Internal behaviour

In this section, the internal behaviour of all objects is described. The internaldxehaivan object is
determined by the separate internal behaviours of its export operations.

In section 3.5.1, the STD’s of the internal behaviour of the export operati®is sfsare presented.
The sections 3.5.2, 3.5.3, 3.5.4 and 3.5.5 present the internal behaviour of respeStiGiis, BB
andCBB.

Within the STD’s, representing the internal behaviour of the objects, two opergiemegn be
identified: exported operations and internal operations.

The exported operations are preceded by the word ‘call’. All other operations arel iopemagions.
An internal operation, preceded by the prefix ‘act’, is used to regulate communicati@ebehe
external and internal behaviour of the object (section 3.6).

All other internal operations are highly internal operations within the internavioeha@f an object.

3.5.1. STD'’s Internal behaviour Blackboard Systen(BB-sys)

3.5.1.1. Operationint-create BB_sys

next_KS
Create . ;
Efeate act create BB sys) create_and_init creation)__call CKS. activ. call KS.
BB_sys started /' BB_sys ready activate_CKS stated/ activate_KS

finish_

: call BB.put_on_BB
creation Clarme

call CBB.update (initial_problems)

HistoryList(new BB_sys) \0n BB

Fig. 3.12. STD internal behavioint-create_BB_sys

The operatiortreate BB _syeegulates the creation and activation of a new Blackboard System.

After activation ofcreate_BB_syghe operation will proceed with the internal operation
create_and_init_BB_sys

create_and_init_ BB_sygeates and initialises new instancesB# sysand associateiB andCBB.
The operatiortreate_and_init_ BB_sywiill also initialise the new BB-system with the initial
problems and KSs and CKS with their roles.

By calling CKS.activate_ CK&ndKS.activate KSor every chosen CKS and KSs, the new
Blackboard System is activated.

By callingBB.put_on_BBthe initial problems will be put on the BB.
The HistoryList of the new Blackboard System will be updated for the firstitin@alling
CBB.update_HistoryList

The operatiortreate BB_syis called by a KS from the internal behaviour of operation
KS.activate_proposdB.5.2.2) of a parent-BB-system or the calldoeate BB _syis made from
‘outside’.

28/8/97 Blackboard Systems in SOCCA 30

Part lll: The SOCCA model - STD's internal beloar

3.5.1.2. Operationint-modify BB _sys

The operatiomodify_BB_syss called by a KS that is asked to activate a proposed change to a BB-
system.

In principle, only a parent can create, modify or finish a BB-system. If a KS proposatifecation

or the finishing of the BB-system within the same BB-system, this proposal haadtJaged by the
parent. The CKS has to control the correct handling of this kind of proposals.

Call CKS.
activate_ CKS(CKS, role)

odified

call CKS.

action
ready
. CKS de-
deactivate_ CKS activatgd
(CKS, role)
fy call
>»{attr. IP BB.put on BB In.Pr
initial_problems “\modified (initial_problems) on BB

call KS.
activate_KS
(KS, role

attr. KS) call KS. action
odified) deactivate KS(KS, role) \ ready
KS de-
next activated

action

modify_CKS

modify_KSs

finish_modify_

BB_sys call CBB.

update_HistoryList

Fig. 3.13. STD internal behavioint-modify_BB_sys

By callingmodify_BB_syschanges can be made to the KSs, CKS or the initial problems. As there is
no good reason to change a BB or CBB, these parts of the BB-system cannot be changed.

After activation, the operation continues with the chosen modification, which isiegdnyfthe
parameter of the operation.

If a change to the KSs is asked, the internal operatimtify KS$s executed. Depending on the
proposed changes, a KS can be deactivated or activated more than once. For instaScka# K
be given an other role, the KS with the old role has to be deactivated first by calling
deactivate_KS(old_roleBy executingiext_actionthe BB-system can continue with the activation
of the KS with his new role by calliractivate_ KS(new_role)

When the KS has finished the modifications of the BB-system, the HistoryList ofatiéied BB-
system is updated by callifgBB.update_HistoryList

The call formodify_BB_sysan be made by a KS from the internal behaviour of operation
KS.activate_proposdB.5.2.2) from within the parent-BB-system or from within the same BB-system.
The call formodify_BB_sysan also be made from ‘outside’.

28/8/97 Blackboard Systems in SOCCA 31

Part lll: The SOCCA model - STD's internal beloar

3.5.1.3. Operationint-finish_BB_sys

act_finish_ A call CKS. call KS.
no inish_ n deactiv. i
finish_ BB_sys BB deactivate_CKS @ deactivate_KS
BB started started
next KS

delete_BB_sys

Fig. 3.14 STD internal behavioint-finish_BB_sys

The operatioriinish_BB_sys(Fig. 3.14) regulates the deactivation and deletion of a Blackboard
System.

The operatioriinish_BB_sywvill usually be called after the child-Blackboard System has declared its
initial problems solved or unsolvable and notified its parent.

If the proposal for the finishing &B_syds made by a KS of the BB-system, the proposal will have
to be activated by the CKS of the parent-BB-system.

The operatioriinish_BB_sysan be called by a KS from the internal behaviour of operation
KS.activate_proposdB.5.2.2) from within the parent-BB-system or from within the same BB-system.
The call forfinish_BB_sysan also be made from ‘outside’.

When the root-BB-system has declared its initial problem ‘solved’ or ‘unsolydbléside’ is

notified. ‘Outside’ can terminate the BB-system by calfingsh_BB_sysThis will deactivate and

delete the last or root-BB-system.

3.5.1.4. Operationint-get_info

This is a very simple operation. This operation will be called by a KS of anotheydB8rsthat
wants information about the current state of the BB-system. The operation wileturly the
information when the BB-system to which the KS is connected has permission to as&rfoation.
The permission is controlled BB-sysby checking the attributBB_sys.Permission

A BB-system is permitted to receive information from any of its descendiantild-, grand child-,
grand grand child- systems etc. When a child-BB-system wants information &, plae child will
only receive the requested information when it has the right permission.

get_infodelivers the information without any further calls. So, we can omit the STD-eepaésn of
int-get_info.

The operatiomget_infocan be called from the internal behaviouK&.activate_K®r by ‘outside’.

28/8/97 Blackboard Systems in SOCCA 32

Part lll: The SOCCA model - STD's internal beloar

3.5.2. STD’s Internal behaviour Knowledge SourceKsS)

3.5.2.1. Operationint-activate KS

wait

proposal_failed

proposal
created

call CBB. >
put_on_CBB
(proposal)

proposal

finish_activation selection_failed

next_selection

Fig. 3.14 STD internal behavioint-activate KS

There can only be ongoing activity in a Blackboard System after the KSs and G&KBeleawv
activated.

The KSs will be activated after the creation of the Blackboard System.

From that moment on, the KSs will continuously check the blackboard (BB) , by calling
BB.select_problenif there are problems to be solved.

If the KS cannot find a ‘fit' problem, the KS will execute the internal operatidection_failedand
check the BB later.

If the KS has found a problem, the operat8® select_problemwill make a copy of the chosen
problem. By making a copy of the problem, the problem itself will remain availablarechanged on
the BB for other KSs during proposal-creation and proposal-selection.

The KS will create a proposal for the copied problem by executing the internal operation
create_proposal

In the proposal, actions on the copied problem can be defined.

If the proposal fails, the internal operatiproposal_faileds executed.

If the proposal is created successfully, the KS will put the proposal on the CBB of hiBesystem
by callingCBB.put_on_CBB

Although not represented in the STD, the call for the oper&8rsys.get_infts also made frormt-
KS.activate_ KSBB_sys.get_infean be called from all statesiof-activate_ KSexcept the state ‘no
activate KS'. As the calling dB_sys.get_infdoes not cause any state-transition, the representation
of this calling is left out.

To regulate the continuous checking of the BB by KSs, the KS can make use of the opeiation
Usually, the STD of an operation only specifies all possible sequences of eveditéhaine the
behaviour of the operation. There is no information given about the time an operation wiifi neia
specific state.

In this special case, we want to be more explicit about the time a KS will remthim $tate ‘KS
activated’ before he continues with calling the operdBrselect_problem.

In a BB-system, many KSs can be involved. They all continuously check the BB by calli
BB.select_problenAs this continuously checking of the BB may affect the ongoing activity on the
BB, we may want the KS to ‘wait’ before he checks the BB again, especially wk@mas just
executed the internal operatisalection_failed

28/8/97 Blackboard Systems in SOCCA 33

Part lll: The SOCCA model - STD's internal beloar

After the execution of the wait-function, the KS can decide to ‘wait’ even longer.

A KS will remain active until termination of the BB-sys or until the KS is tieated in connection
with a modification of the BB-system.

The call foractivate_KSwill be made from the internal behaviour BB_sys.create_BB_sy3.5.1.1)
or BB_sys.modify_BB_sy¥3.5.1.2.)

3.5.2.2. Operationint-activate proposal

activate_
proposal_succesful

call BB_sys
create_BB_sys finish
BB_sys

asked
no prop \ act activate act fin?sah” BBE—SSySS
activ. proposal gg?iﬁ)/osal —_Eb_sY action
. ready
= modify_
call BB BB
modify_BB asked

call
BB_sys.

next_action modify>
BB_sys

modif.
BB_sys
asked

activate_
proposal_failed

Fig. 3.15. STD internal behavioimt-activate_proposal

The operatioractivate _proposais called by the CKS when the CKS has selected a proposal. By
calling this operation, the KS that created the chosen proposal will activateposega actions on
the original problem. The proposed actions are specified by the use of a parameter ohtienope

A proposal can contain one or more of the following actions:

(1) a change of the state of the problem, for instance, the change of state ‘unsohadétb. ‘s
(2) the deletion of the problem on the BB.

(3) the addition of a subproblem of the problem on the BB

(4) the creation of a new child-BB-system to solve a subproblem of the problem

(5) a modification of a BB-system

(6) the termination of a child-BB-system

The actions (1), (2) and (3) are executed by caliBgnodify BB
the action (4) is executed by calliBf_sys.create_BB_sys
the action (5) is executed by calliB§_sys.modify_BB_sys

28/8/97 Blackboard Systems in SOCCA 34

Part lll: The SOCCA model - STD's internal beloar

and the action (6) is executed by callBi§_sys.finish_BB_sys

Before a proposal is activated, the CKS will have to check the HistoryListke sure that the
proposed actions of a chosen proposal do not conflict with proposals that are alreadydactivat
As it is very unlikely that a proposed action fails, no special precautions arettakandle failed
actions.

If the activation of a proposed action fails, the failure will be registered bgKisein the HistoryList
on the CBB.

The call foractivate_proposabill be made from the internal behaviour of
CKS.activate_CK$3.5.3.1) belonging to the parent-BB-system or the same BB-system.

KS.activate_proposalan also be called from ‘outside’ in case the BB-system concerned is the root-
BB-system.

3.5.2.3. Operationint-deactivate KS

This is a very simple operation, calledBB_sys
This operation is called when the BB-system is finished or when the KS is destttgaa result of a
modification of the BB-system.

As no calls for other export operations are made from the internal behaviK8rdefactivate KSwe
will omit a STD for the internal behaviour oift-deactivate KS

The call fordeactivate_ KSvill be made from the internal behaviourBB_sys.finish_BB_sys
(3.5.1.2.) oBB_sys.modify_BB_sys.

28/8/97 Blackboard Systems in SOCCA 35

Part lll: The SOCCA model - STD's internal beloar

3.5.3 STD’s Internal behaviour Control Knowledge $urce (CKS)

3.5.3.1. Operationint-activate CKS

parent
asked

call CBB.delete_ selection_ call CBB.
nonrelevant_ failed put_on_CBB_~_
proposals (proposal ~output_

Id .
~ outside

e

7
call BB.
put_on_BB
(problem)

result
child on
BB

CKS
non-
active

proposa
selection
eady

call CBB.
select_proposal

act activate

proposal
fixed

call CBB.
update_HistoryList

finish_
activation

activate__
proposal

prepare_
______ prop. proposal_for
ready result_
call CBB. BB_sys
put_on_CBB
(proposal)

Fig. 3.17. STD internal behaviount-activate_ CKS

Like the KSs, the CKS is activated after the creation of the BB-system.

After activation, the CKS will try to select a proposal on the CBB by callingatipar
CBB.select_proposalf the selection fails, the CKS will go back to the previous state by executing
the internal operatiogselection_failedand try again later.

If the selection is successful, the CKS will have to decide what to do next:

(1) : If the selected proposal is a proposal for the result (solution or failure) dfla chi BB-
system, created by the CKS of a child-BB-system, the CKS will call thatoger
BB.put_on_BBto put the received result on the BB.

(2) If the selected proposal is a proposal for the modification or the termination afrtaetc
BB-system, this proposal can only be activated by the parent of the BB-system.
In this case, the CKS will callBB.put_on_CBBf the parent-BB-system to put the
proposal on the CBB of the parent-BB-system.
If there is no parent-BB-system, the BB-system in question is the root-B&siise result
has to be related to ‘outside’. In this case, instead of the opeGBBrput_on_CBBthe
internal operatiomutput_outsidevill be called.

3) In all other cases, the proposal will be activated by callfagctivate_proposaif the KS
that created the proposal.

The CKS will continue with the call faZBB.update_HistoryLisin which all actions are kept. By
doing this, the CKS can keep track with the state of his own Blackboard Systemt&uocens all
initial problems are solved, the CKS will know that his own BB-system is ‘dblve

28/8/97 Blackboard Systems in SOCCA 36

Part lll: The SOCCA model - STD's internal beloar

When the CKS receives no ‘fit’ proposals, the CKS can decide, after a certaith petime, that the
initial problem(s) is (are) unsolvable. The CKS will then execute the internatmreno_solution

If the BB-system has arrived in a solved or unsolvable state, the CKS wilt@r@epeoposal for the
result of the BB. This proposal, will be put on the CBB of the parent-BB-system.

Again, if there is no parent-BB-system, the result has to be related to ‘outsitles tase, instead of
the operatiorCBB.put_on_CBB the internal operatiooutput_outsidevill be called.

A CKS will remain active until termination of the BB-system or until the GK&eactivated in
connection with a modification of the BB-system.

The CKS can clean up the CBB by deleting nonrelevant proposals from the CBB by balling t
operationCBB.delete_nonrelevant_proposals

The call foractivate_ CKSwill be made from the internal behaviour of
BB_sys.create_BB_sy3.5.1.1) oBB_sys.modify_BB_sy¥3.5.1.2).

3.5.3.2. Operationint-deactivate CKS

deactivate_ CKSs a very simple operation, called BB_sys
This operation is called when the BB-system is finished or when the CKS is destthg a result of
a modification of the BB-system.

As no calls for other export operations are made from the internal behaviokiGadeactivate_ CKS
we will omit the STD of the internal behaviourinf-deactivate CKS

The call fordeactivate_ CK®ill be made from the internal behaviourBB_sys.finish_BB_sys
(3.5.1.2.) oBB_sys.modify_BB_sy¥3.5.1.2)

28/8/97 Blackboard Systems in SOCCA 37

Part lll: The SOCCA model - STD's internal beloar

3.5.4. STD’s Internal behaviour Blackboard (BB)

3.5.4.1. Operationint-select_problem

The operatiorselect_problenis called by a KS in order to select a problem.
In fact, a KS has to check the BB before the KS can select a problem. This chechin@Bfis not
explicitly modelled, in order to simplify the model.

As no calls for other export operations are made from the internal behavi®Brselect_problem
we will omit a STD for the internal behaviour BB.select_problem

The call forBB.select_problens made from within the internal behaviourk®.activate KS
(3.5.2.1) that belongs to the same BB.system.

3.5.4.2. Operationint-modify BB

The operatiomodify_BBis called by a KS that is asked to execute a proposed action on the BB.
By calling the operatiomodify BB one of the following actions can be executed on the BB:

(1) a change of the state of a problem, for instance, the change of state ‘unsolved’ to
‘solved’.

(2) the deletion of a problem on the BB.

(3) the addition of a subproblem on the BB

As no calls for other export operations are made from the internal behavi®Bmobdify BBwe
will omit a STD for the internal behaviour BB.modify BB.

The call forBB.modify_BHs made from within the internal behaviour K.activate _proposal
(3.5.2.2), that belongs to the same BB-system.

3.5.4.3. Operationint-put_on_BB

This is a simple operation. It puts a problem on the BB.

As no calls are made from the internal behaviounput_on_BBwe will leave out the STD of this

operation.

The call for this operation will be made from within the internal behavio@K@.activate CKS,
BB_sys.create_BB_spsBB_sys.modify_BB_syhat belongs to the same BB-system.

28/8/97 Blackboard Systems in SOCCA 38

Part lll: The SOCCA model - STD's internal beloar

3.5.5. STD’s Internal behaviour Control Blackboard(CBB)

All operations of clas€BBare very simple operations. As no calls for other export operations are
made from the internal behaviour of the operationSBB, we will omit the STD’s of the internal
behaviour of the operations GBB.

3.5.5.1. Operationint-select_proposal

The operatiorselect_proposak made by a CKS that wants to select a proposal.
Like the operatioBB.select_problenthe checking of th€BB by theCKSbefore the selection is
made, is not included in this model.

The call forselect_proposals made from within the internal behaviour of operation
CKS.activate_CK$3.5.3.1.) that belongs to the same BB-system.

3.5.5.2. Operationint-put_on_CBB

The call forput_on_CBBis made from within the internal behaviour of operai@activate_KS
(3.5.2.1.) of the same BB-system or from within the internal operati@iK8&tactivate_ CKS
(3.5.3.1.) of the parent-BB-system or the same BB-system.

3.5.5.3. Operationint-update HistoryList

The call forupdate_HistoryListis made from within the internal behaviour of operation
BB_sys.create_BB_sy8.5.1.1.) BB_sys.modify_BB_sy@8.5.1.2.) or from within the operation
CKS.activate_CKJ3.5.3.1.) Both calls will be made from within the sdie sys

3.5.5.4. Operationint-delete_nonrelevant_problems
The call fordelete_nonrelevant_proposals made from within the internal behaviour of operation
CKS.activate_CKY3.5.3.1.) of the sant®B_sys

28/8/97 Blackboard Systems in SOCCA 39

Part lll: The SOCCA model - Subprocesses aaqubtr

3.6. Subprocesses and traps

The STD's of the external and internal behaviour only describe the sequential behatheur of
objects. To regulate the interaction between the internal and external behaviberslgetts and the
communication between the objects, Paradigm is used.

The STD of the external behaviour of an object serves as the manager procesgeshall i
behaviours of this object as well as manager process of all internal behawourgtier objects that
call some operation provided by this manager in its external behaviour.

The internal behaviours are called the ‘employees’ of the manager process.

The manager process prescribes all permitted state transitions of theemaplaywever, as the states
of these combined behaviours determine the state of the manager process, we agrif@Esthe
‘manager’ is managed by its ‘employees’.

To coordinate the parallel behaviour of the employees, subprocesses and traps are used.

3.6.1. Subprocesses with respect to Blackboard SysteBB(_sys)

In Fig. 3.23., the manager proces8& syds presented.

In this subsection, we first present the subprocesses and traps with respecttteatienaaf the

export operations d8B_sysNext, the subprocesses and traps with respect to the calling of the export
operations oBB_sysare presented.

Subprocesses and traps in connection with the activation of the operatiooEBB_sys:

The subprocesses S1and S 2,andtraps T 1 and T 2 of the ofeRatiys.create BB _systh
respect t@B_sys are presented in Fig. 3.18.

If the operatiorcreate_ BB_syis called and its internal behaviour is in subprocess S 1 and also in trap
T 1,BB_syscan transit from subprocess S 1 to S 2.

BB_syswill then go through all states oft-BB_sys.create_ BB_syantil T 2 is entered.

When T 2 is entere®B_syscan now transit back to subprocess S 1 where the operation can be
finished.

Note that T 2 coincides with the last state before the opefdBosys.create_BB_sissfinished. In
this state, the neBB_syss already created and activated.

If T 2 had been chosen as large as possible, conflicts between the behavigRirsystould arise.
For instance: iBB_sys.finish_BB_sys called immediately after the calling of
BB_sys.create_ BB_s\BB syscould callKS.deactivate_KB8eforeKS.activate K$s called.

T1 next_KS
‘create i
o 00 e |ECt create BB_sys |_create and init g (creation) _call CK e\ callks.
create BB_sys started /~ BB_sys ready /" activate_CKS started/ activate_KS

finish_

. call BB.put_on_BB
creation

HLéStIed call CBB.update (initial_problems)
T2 Pca HistoryList(new BB_sys)

S1
S2

Fig. 3.18. S1and S 2 : subprocessestaBB_sys.create_BB_systh respect t@B_sys

Fig 3.19. and 3.20. represent the subprocesses and traps of respectively the internal belfidveour
operation88B_sys.modify_BB_sg®dBB_sys.finish_BB_sys

28/8/97 Blackboard Systems in SOCCA 40

Part lll: The SOCCA model - Subprocesses aaqubtr

The traps are chosen the same way as the traps of the opBBitigys.create_BB_syE 4 coincides

with the last state before termination of the internal behaviour of the operation.

This way the activation and deactivation of the KSs and CKS are co-ordinated iect a@y.

The trap T 6 also makes sure that the manager procB& efscannot arrive in state ‘BB_sys not

existing’ before BB_sysds actually deactivated and deleted.

Fig 3.21. represents the subprocesses and traps of the opertaB&n sys.get_info This time, trap
T 8 is chosen as large as possible. This way the manager proB&ssyfcan go back to the state

‘BB_sys existing’ as soon as the internal behaviolBBfsys.get_infcs started.

Other operations can be started when the manager process has arrived backien'Bie stys.

— y
existing’.
T3
modify
BB_sys
nonact,
finish_modify_
BB_sys
S3
HList
updated,
Call CKS.)
activate_ CKS(CKS, role)(action
ifi ready
modify_CKS call CKS. CKS de-
Y- deactivate_CKS activated
(CKS, role)
modify .
act-modi
BB_sys BB_sys

nonact,

call KS.
activate_KS
(KS, role,

modify_KSs

. call
modify_ ottr. 1P BB.put on BB In.Pr
initial_problems modified | (initial_problems) on BB

attr. KS
odified

call KS.
deactivate_KS(KS, role)

activated
next

action

S4
T4
updated

Fig. 3.19. S 3 and S 4: subprocesses6BB_sys.modify_BB_syath respect tdB_sys

call CBB.
update_HistoryList

28/8/97 Blackboard Systems in SOCCA

41

Part lll: The SOCCA model - Subprocesses aaqubtr

o o act_finish_ o call CKS. f call KS.
) inis| i tiv) :
finish_ finish_ BB_sys g - | deactivate CKS Ciasc v\ deactivate_KS e
BB BB started started
next_KS

T5
finish_finish_BB T6 k delete_BB_sys
S5
S6
Fig. 3.20. S 5and S 6 : subprocessasteBB_sys.finish_BB_sysith respect tB_sys

T7

no
get
info

no get_ info
get .aCt—g et info read_ received
info info started/ @ttribUtES

get_info finished T8

S7 S8

Fig. 3.21. S7 and S 8 : subprocessaataBB_sys.get_infavith respect tBB_sys

The subprocesses and traps with respect to the activation and finishing of the babavédurs of
the export operations are in this SOCCA-model always chosen in one of the two presgated wa
The trap of the subprocess representing the activated behaviour is chosen:
(Al) aslarge as possible when the internal behaviour of the operation does notiimerfer
an illegal way with other operations or
(A2) the last state before the finishing of the internal behaviour if the operatioo bas
finished before other operations can be called.
And the trap of the subprocess representing the terminating of the behaviour containsdtieenona
state of the behaviour.

Subprocesses and traps in connection with the calling of the operationsBi_sys:

The subprocesses and traps of the internal behaviour of ‘caller’ opeéf&tiactivate proposaif
KS within a parent-BB-system are given in Fig. 3.22.

From the internal behaviour &fS.activate_proposafrom within the parent-BB-system, the
operation8BB_sys.create BB _s\BB_sys.modify BB _swnidBB_sys.finish_BB_sysn be called.
BB_sys.modify BB_sgmdBB_sys.finish_BB_sysn also be called from within the same BB-
system.

In Fig. 3.22. the subprocesses and traps concerning the calls from within the parestedBasy
presented.

28/8/97 Blackboard Systems in SOCCA 42

Part lll: The SOCCA model - Subprocesses aaqubtr

BB_syswill arrive in trap T 9 when the call f{@B_sys.create_ BB_sismade by the parent. When

BB_sys.create_ BB _sisin T 1, the transit can be made from S 9to S 11.
Toa T10(T 14)

activate_
proposal_succesful

activate_
proposal_succesful

create

create
BB_sys
asked

call BB_sys

call BB_sys create_BB_sys

create_BB_sys

call BB_sys.

call BB_sys.
= finish_BB_sys

finish_BB_sys

act activate

no prop

no prop | act activate
activ. proposal

action
ready

activate

> activate_
proposal_failed

proposal_failed

S9 S 10 (S 13)

Tila (T15a) T13(T17)

activate_
proposal_succesful

activate_
proposal_succesful

create
BB_sys
asked

create
BB_sys
asked

call BB_sys,
create_BB_sys

call BB_sys,
create_BB_sys

finish

BB_sys
asked
call BB_sys.
finish_BB_sys

modify_
BB
asked

finish
BB_sys
asked

call BB_sys.
finish_BB_sys

no prop \ act_activate no prop \ act_activate
activ. proposal activ. proposal

(T 15
action action
ready ready

activate_
proposal_failed

activate_
proposal_failed

S 11(S 14) S 12 (S 15)

Fig. 3.22. S 9, S 10, S11 and S 12: subproce$sesiS.activate_proposalvithin the parent BB-system with
respect t@3B_sys.
The subprocesses and trapsntfKS.activate_proposakithin the same BB-system with respecBB_sys
are very similar. S 13, S 14, and S 15 with tragdgl, T 15, T 15a, T 16 and T 17 are exactly theesas
resp. S 10, S 11, and S 12 with traps T 10, T 11& T 12, and T 13. As a BB-system cannot criés,
the subprocess that corresponds with S 9 is S 13.

WhenBB_syss a root-BB-systemBB_sys.create_BB_sigscalled from ‘outside’. In this casiat-
KS.activate_proposdias to transit from S 9 to S 10 as no calls can be ma@&88faysrom a
parent-BB-system. As a transition from one subprocess to another can only be made when the
subprocess has entered a trap, an additional trap is needed. This trap, T 9a, is used to force the
transition from S 9 to

S 10 before subprocess S 9 has reached T 9. Note, that subprocess S 9 contains a nested trap.

28/8/97 Blackboard Systems in SOCCA 43

Part lll: The SOCCA model - Subprocesses aaqubtr

In S 11, the call foBB_sys.create_BB_syses not need a trap, BB_syss already created. Only

calls for the creation of other instanceB& _syscan be made.

In S 11, calls can be made BB_sys.modify_BB_sgsd BB_sys.finish_BB_sys
WhenBB_sys.finish_BB_sys called, int-KS.activate_proposatill arrive in T 11. When
int-BB_sys.finish_BB_sysin T 5, the transition can be made from S 11 to S 10, where only other
instances oBB_syscan be called. When BB_sys isin T 10 and T 6, the transition can be made back
to S9and S 5, wheBB_syss no longer existing .

As the operationBB_sys.modify_BB_sgsidBB_sys.finish_BB_sysn also be called by a KS from
within the same BB-system, 3 subprocesses are added that resemble the subgnesEssed in

Fig. 3.22. very much.

S 13 with trap T 14 will be exactly the same as S 10 and T 10 : no calls can be made in connection
with BB_sysf BB_syds not existing.

S 14 with traps T 15, T 15a and T 16 will be exactly the same as S11and T 11, T 11aand T 12: when
BB_sysds existing, calls can be made for the operatiBBssys.modify _BB_sgsd
BB_sys.finish_BB_sys

The traps T 11a and T 15a are needed to regulate the calliBB feys.finish_BB_sys/ two

different BB-systems. WhelBB_sys.finish_BB_sys called by the parerkS.activate_proposaif a

KS of the child will also have to transit from S 14 to S 13 before reaching a trap addhlemnohot

make any calls for BB_syghat is no longer existing. In this case T 15a will be used to transit from S
14t0 S 13.

WhenBB_sys.finish_BB_sys called by a child, T 11a is used to force S 11 to transit to S 10.

S 15 with trap T 17 is exactly the same as S 12 and T 13.

As a BB-system cannot create itself, the subprocess corresponding with S 9SvilBbe

The subprocesses S9-S12 all concern the behaviour &®okthe parent-BB-system and S13-S15
concern the behaviour of ol& of the same BB-system.

In fact, several KSs can be involved in the parent BB-system. The BB-sysé#incan also have

several KSs attached to it. As all KSs involved behave in parallel, alliBédshave their own
subprocesses in the manager proce&Besys

To simplify the manager processBB_systhe subprocesses that are to be multiplied in case of more
than one KS, are indicated by the symbol **" in the manager process.

The operatioBBB_sys.get_infes called from within the internal behaviourk®.activate KSAs
long asKSis activated, th&Sis free to call this operation at any point in time. For this reason, it is
not necessary to include any subprocesses and traps with respect to the dalBingystget_info

The manager process of Fig. 3.23 shows that the manager process of a root-BB-dystes be
differently from the manager process of a child BB-system.

The cause of this difference is that all operatiorBBfsyscan be called from within the internal
behaviours of KSs of a parent-BB-system. As a root BB-system has no pareydtBiB;she
operationBB_sys.create_BB_sgéthe root-BB-system has to be called from ‘outside’.
BB_sys.modify_BB_sys, BB_sys.get_amnfdBB_sys.finish_BB_sysn also be called by ‘outside’ as
these operations can be called by a parent.

The fact thaBB_syscan be a root- or a child-BB-system, combined with the fact that
BB_sys.modify_BB_swgndBB_sys.finish_BB_sysn be called from within a parent-system or from
within the same system, complicates the manager proc& sf/srery much.

Note that for every state transition of the external behavioBBoBystwo transitions are needed in
the manager processBB_sys This difference is caused by the switching between the subprocesses.

28/8/97 Blackboard Systems in SOCCA 44

Part lll: The SOCCA model - Subprocesses aaqubtr

(create_ modify_
BB_sys BB_sys
(root) called by
called by outside
outside
S1
S2 S4
S3 S5
S5 S7
S7 S 10*
S 10* S 14*
\.S 14*) T2 ;/
/finish_ T4 (modify
BB_sys BB_sys BB_sys
create_ (root) (root) _ called by
called by existing modify_ own
outside finish_ BB_sys BB_sys
BB_sys S1 T3, T1l6* -
“1S1
T5,T15a* <<
T4,T17* S4
S5
S7
S 10*
T7 \S 15*)
get_info —
get_info_
T8 BB_sys
called
S1
S3
S5
S8
S 10*
) S 14*
g % create_ \S 13" / —
S5 BB_sys (create_ modify
sS7 T1, BB_sys BB_sys
" T9* (child) called by
S9 parent
1 BB_sys
S1
S4
S5
T2 S7
S 12*
S 15*
\
modify_
BB_sys
finish_ BB._sys called by
BB_sys s1 T3,T16* |BB sys
__ T5,T11* g g —
[~ * -
T 1% 27 Ta,T170 |32
S 11* S5
S 14* S7
— *
S11
get_info w
T8
4) \
T5,T15% T 11a* get_info_
BB_sys
called
S1

*

nunmuunwm
=00 U1 W
N

Fig. 3.23. BB_sysmanager of 6 employees
* . only the subprocesses of one KS per BB-systendeawn in the manager process

28/8/97 Blackboard Systems in SOCCA

Part lll: The SOCCA model - Subprocesses aaqubtr

3.6.2. Subprocesses with respect to Knowledge Souftes)

The manager processlig6is presented in Fig. 3.31.
Every KS object represents one role. So, for each role there is a separate maTags.

Subprocesses and traps in connection with the activation of the operatioosKS:

In Fig. 3.24 the subprocesses and trapatekS.activate_KSvith respect t&KS are given.

A KS remains active until deactivation, so, the operdatiSractivate_K$annot terminate before the
operationKS.deactivate_K$ called.

As soon a¥S.activate_K$s activated, the internal behaviour of this operation will remain intrap T 2
until KS.deactivate K8 called. Whenleactivate K$s called, the transit from S 2to S 1 can be
made.

Note that subprocess S1 does not admit any new proposal selection or creation, the behaviour of
KS.activate_K®an only terminate in S 1.

The subprocesses and traps (Fig. 3.2mteKS.activate_proposalre chosen as large as possible as
the calls foBB_sys.create_BB_sys, BB_sys.finish_BB_sys, BB_sys.modify_Bigd sys
BB.modify_BB_syare already controlled by respectivBlB_sysandBB.

The subprocesses and trapsntfKS.deactivate_ K§ig. 3.26) are chosen so that the operation has to
be terminated before a new operation can be handled by the manager pr&&ss of

proposal_failed

proposal
created

no proposal
activate] on BB
KS

T1

finish_activation selection_failed

next_selection

S1

wait

proposal_failed

proposal

call BB.
select_problem

problem
selection
eady

selection_failed

proposal
created

call CBB. >
put_on_CBB
(proposal)

KS
activated

) act
activate_KS

T2

next_selection

S2

Fig. 3.24. S 1 and S 2 : subprocessedstedictivate KSwith respect t&KS

28/8/97 Blackboard Systems in SOCCA 46

Part lll: The SOCCA model - Subprocesses aaqubtr

activate

proposal_succesful

create
BB_sys

T4

no prop \ act activate|
proposal >

call BB_sys,

T3 create_BB_sys

no prop
activ.

call BB_sys.
finish_BB_sys

call BB_sys.
finish_BB_sys

action
ready

call BB:
modify_BB

S4

activate_
proposal_failed

Fig. 3.25. S3 and S 4 : subprocessantefS.activate_proposatith respect t&S

no deactiv. . i
deactiv. KS disconnect doosiv)_act_deactivate deactiv) gisconnect 3
KS stated/ KS KS KS started/ KS

T6

finish_deactivation

S5 S6

Fig. 3.26. S5 and S 6 : subprocessanteS.deactivate_KSvith respect tS

Subprocesses and traps in connection with the calling of the operationskf:

The subprocesses and traps with respect to the callikgp.attivate K@re given in Fig. 3.27. and
Fig. 3.30. The trap T 8 contains the complete STBBfsys.create_ BB_sgs the KS can be
activated only once in connection with the same BB_sys. T 17 is chosen as large as posisdil
the manager process €6 can admit another call this operation again as soon as possible.
Note that S 7 has an extra state ‘activ. KS started’, as other KSs may bteddiiefore KS is to be
activated

28/8/97 Blackboard Systems in SOCCA 47

Part lll: The SOCCA model - Subprocesses aaqubtr

tarted

call KS.

) next_KS
activate_KS

create
BB_sys
started

activ.
CKS
started

call KS.
activate_KS

ativate_CKS

groeate act create create_and_init creation
BB_sys BB_sys ready

S7

next_KS

VRS

create - ' activ
BB_sys) create and init o (creation) _call CKS. cKS call KS.
stated /~ BB_sys =\ ready activate_ CKS started / activate_KS

call BB.put_on_BB
(initial_problems)

act create

no
create

finish_
creation

HL(ifatled . call CBB.update problems
P ~~ HistoryList(new BB_sys) \on BB

T8

S8

Fig. 3.27. S7and S8 : subprocessastadBB_sys.create_BB_systh respect tS

call KS. next_KS

deactivate_KS

act_finish_
BB_sys

call CKS.
deactivate_ CKS

no
finish_
BB

call KS.
deactivate_KS

call CKS.
deactivate_CKS

act_finish_
BB_sys

deactiv.
CKS
started

next_KS

finish_finish_BB delete_BB_sys

T 10
S 10

Fig. 3.28. S9 and S 10 : subprocessasteBB_sys.finish_BB_sygith respect t&KS

28/8/97 Blackboard Systems in SOCCA

48

Part lll: The SOCCA model - Subprocesses aaqubtr

parent
asked

e
~output_
outside

call CBB.delete ; call CBB.
— selection
nonrelevant_proposals failed put_on_CBB

CKS
non-
active

call CBB. -~
select_proposal

act_activate CKS

active

finish_
activation

no_ activate_
proposal

T11

call CBB.put_on_CBB

\ output_

(proposal) \outside
all CBB.
< update_HistoryList
" prepare_
proposal_for_
result_
BB_sys
S 11 (S 13)
T 12 (T 14)
parent
call CBB.delete_ selection_ call CBB.
nonrelevant_proposals failed P
~output_
outside

CKS
non-
active

call CBB. proposa
selection

eady

act_activate

(problem)

finish_

activation
activation
asked
call CBB.put_on_CBB \ output
loizpeeal) \outside
. call CBB.
~prepare_ update_HistoryList
proposal_for_
result_
BB_sys
S 12 (S 14)
Fig. 3.29. S 11 and S 12 : subprocessasteEKS.activate_ CK# connection with the calling of

KS.activate_proposdly the CKS oBB_sys.

S13,S 14 and T 13 and T 14 are subprocessesagaddf int-CKS.activate_CK# connection
with the calling ofKS.activate_proposdly the parent-CKS. They are exactly the samess re

S11,S12and T1land T 12.

The subprocesses and traps with respect to the callikgs.deactivate K8&re given in Fig. 3.28.
and Fig. 3.30. The trap T 10 contains the complete STHBoys.finish_BB_sys akKS can only be

deactivated once in connection with the finishin@Bf sys

S 11 and S 12 present the subprocessid-GKS.activate CK$ connection with the calling of

KS.activate_proposdly the CKS oBB_sys

As activate_proposatan be also called by the CKS of a parent-BB-system, extra subprocesses are

needed to handle these calls.

The subprocesses and traps that handle the calls of the CKS of the parent-BB-Sy$&r814, T 13

and T 14, will be exactly the same asresp. S11,S 12, T1l1and T 12.

28/8/97 Blackboard Systems in SOCCA

Part lll: The SOCCA model - Subprocesses aaqubtr

all CKS.
activate_ CKS(CKS, role)

modify_CKS call CKS.

CKS de-
activated,
(CKS, role)

deactivate_CKS
di call /‘\
modify_ attr. IP BB.put on_BB <« [In.Pr o
initial_problems modified] (initial_problems) ’\TB/ >

call KS.
activate_KS g
(KS, role,
attr. ks | call KS.
odified / deactivate_ KS(KS, role
Q KS_de—
activated

modify_KSs

action
ready

finish_modify_
BB_sys call CBB.

update_HistoryList

T17

Call CKS.
activate_ CKS(CKS, role)

i call CKS.
: CKS de-
OUVEEKS deactivate_CKS activat:d
(CKS, role)

initial_problems
KS de-
activated

action
ready

modify_KSs

=N
action
ready

finish_modify_
BB_sys

e call CBB.
update_HistoryList

S 16

Fig. 3.30. S 15 and S 16: subprocesseastd#B_sys.modify_BB_systh respect tiS

The manager process of KS (Fig. 3.31) shows that the behaviour of KS is also affebtetypg df
the BB-system (root or child) the KS belongs tok&sactivate proposalan also be called by

‘outside’

The manager process also shows that KS can only transit from S 2 to S 1 when the call for

KS.deactivate_K$ made.

28/8/97 Blackboard Systems in SOCCA

Part lll: The SOCCA model - Subprocesses aaqubtr

activate_KS
called by
BB_sys.
create_BB_sys
S2
S3
S5
S8
g i 1 activate_
s13 e by
S 15 outsidey
activate_KS \ /
S2
g s T8 S5
a?)aisfiii’BB_sys g g
) T3 S11
sS3 ac’rivateal_ S 13
S5 propos: S 15
S7 T4
S9
(\ S11 T17 4 A Y
ESnactive S 13 gcstive activate_
S 16 propasal
: alled b
g % N proposT own CKS
S5 deactivate_KS T3 111 < S2
S7 B sye. S4
S9 T10, T6 finish_BB_sys T4 T12 S5
s11 s1 ’ S7
S13 S3 S9
S15 S6 S12
S7 activate_ S13
S 10 S15
S11
T 17, S13
NG e
calle by
parent CKS
deactivate_KS
(éeélled by S2
moaisf))ji.BB_sys S3
S5
S1 S7
S3 S9
S6 S12
S7 S14
S9 S15
S11 L/
S13
S16
N

Fig. 3.31. KS, manager of 8 employees

28/8/97 Blackboard Systems in SOCCA

Part lll: The SOCCA model - Subprocesses aaqubtr

3.6.3. Subprocesses with respect to Control Knowleddsource (CKS)

The manager process ©KSis very similar to the manager proces¥6&f

If we leave out the operatid€S.activate_proposalnd its subprocesses in the manager procdsS of
, the remaining manager process is exactly the same as the manager pré&&s3 bé only thing

left to do is to change ‘KS’ into ‘CKS’. The manager process of CKS is given in Fig. 3.33.

The subprocesses S3, S4, S11, S 12, S 13 and KBaaftivate_proposare excluded from the
manager process of CKS.

Like the KS, the CKS remains active until deactivation.

Only the subprocesses @KS.activate_ CK@ill be presented, as all other behaviour€&fSare
handled exactly the same way as the behavioufSof

The subprocesses and trapsntfactivate_CKSare presented in Fig. 3.32.

Subprocess S 1 forces the operali@activate_K$o terminate as soon as possible, but also gives
the CKS the opportunity to settle the already started actions. For instance, B-fystBm has finally
come to a solution of the initial problems, the CKS can still bring the proposal for tiictodbe

CBB of the parent-BB-system.

parent
asked

'
~output_

call CBB.
put_on_CBB
(proposal

selection_
failed

T1 .~ outside
7
s
CKsS proposal call BB.
non- selection put_on_BB
active _/ eady (problem)
call KS.

finish_
activation

activate_
proposal

call CBB.put_on_CBB!
(proposal)

\ output_
\outside

call CBB.
update_HistoryList

prepare_

proposal_for_

result_

BB_sys

S1
T2
parent

call CBB.delete_ aallasien call CBB.
nonrelevant_proposals failed put_on_CBB

'
~output_
outside

CKs

non- act

active / activate_
CKS

activate_
proposal

(proposal) call CBB.
. ¢ update_HistoryList
prepare_
proposal_for_
result_
BB_sys

S2

Fig. 3.32. S1and S 2 : subprocessestedctivate_ CKSwith respect taCKS

The subprocesses and trapsntfCKS.deactivate CKES 5, S 6, T 5, T 6) aridt-modify_BB_sys

28/8/97 Blackboard Systems in SOCCA 52

Part lll: The SOCCA model - Subprocesses aaqubtr

(S 15, S 16) are similar to the subprocesses presented in Fig. 3.26 and<&30 of

The subprocesses and trapsnofcreate_BB_sy6S 7, S 8, T 7, T 8) andt-finish_BB_sys

(59,510, T9, T10) are also very similar to the subprocesses presented in Fig. 3.27 and 3.28, only
the traps have to be modified to handle the call€#®.activate CK&8ndCKS.deactivate CKS

activate_CKS
called by
BB_sys.
create_BB_sys

activate_CKS
T1,
activate_CKS T8
called by
BB_sys.
modify_BB_sys

S2

activate_ CKS,

nunnn
=~

N~ T17 e N

CKS
active

CKS
nonactive

S1 S92

ggﬁg(tjlvba;e_CKs deactivate_CKS
BB_sys. T2
5 T10,T6 finish_BB_sys 9)

nunnunm
R oO~NO

nunnunm
R oO~NO

_‘

N deactivate_CKS
T 17, T2,T15,T5

deactivate_CKS
called by
BB_sys.
modify_BB_sys

_|
o
nunnunuom
PR NO R
oo
_‘
o1

nunnnm

1
6
7
9
1

Fig. 3.33. CKS manager of 5 employees

28/8/97 Blackboard Systems in SOCCA 53

Part lll: The SOCCA model - Subprocesses aaqubtr

3.6.4. Subprocesses with respect to Blackboard (BB)

In Fig. 3.34. The manager proces8&is presented.

In section 3.6.1., the two ways of choosing traps in connection with the activation of an export
operation are already explained.

The way subprocesses and traps are drawn with respect to the calling of an opeeagiso @rosen
in a standard way:

(C1) If the called operation can be called again later in connection with the stameensf

the class, the subprocesses and traps are drawn as S 11 andKS &8 pfesented in Fig.

3.29:

a subprocess with a trap containing the state immediately following the ciiéfoperation

and

a subprocess with a trap that contains the complete STD of the operation except &tethe st
from which the subprocess starts.

(C2) If the called operation cannot be called again later in connection with thensaamee
of the class, the subprocesses and traps are draw as S 9 andBB16yshs presented in
Fig. 3.22:

a subprocess with a trap containing the state immediately following the ciiéfoperation
and

a subprocess with a trap that contains the complete STD.

As the traps oBB andCBBare always chosen in this standard way, the STD’s of subprocesses and
traps in connection with the activation and the callinB®&andCBB are omitted.
For every operation @B, the subprocesses and traps will only be described

Subprocesses and traps in connection with the activation of the operatiooEBB:

BB.select_problem subprocesses S1and S 2 withtraps T1and T 2.
T 2 contains the final state before the finishinghofBB.select_probleras
callerint-CKS.activate_ CK$an only continue when the result of
BB.select_probleris known.

BB.modify_BB subprocesses S 3and S 4 withtraps T 3and T 4
T 4 contains the final state before the finishin@Btmodify_BB
BB.modify_BBis called byKS.activate_proposathat can transit to another
subprocess before the operation is completely terminated (Fig. 3.25).
As callerint-CKS.activate_ CKShas to be able to put the result on the CBB of
the parent when the BB-system is declared solved or unsolvable, the operation
BB.modify_BBhas to be ready before the operatiBB.put_on_CBB(from
the state ‘prop. ready’) can be called.

BB.put_on_BB subprocesses S5and S 6 withtraps T5and T 6
T 6 is chosen as large as possible.

Subprocesses and traps in connection with the calling of the operationsii:

BB.select_problem subprocesses S 7 and S 8 withtraps T 7and T 8.
BB.select_probleris called byKS.activate_KS
T 8 is chosen as described in (C1B&sselect_problernan be called again
in KS.activate_ K$ connection with the same BB.

BB.modify_BB subprocesses S 9 and S 10 with traps T 9 and T 10.

28/8/97 Blackboard Systems in SOCCA 54

Part lll: The SOCCA model - Subprocesses aaqubtr

BB.put_on_BB

BB.put_on_BB

BB.put_on_BB

select (o\

problem modify_
BB

called calld

S2

put_on_BB
called by
put_on_BB crean
cce:llgd by BB_sys
activéte
CKS S1
S3
S1 S6
S3 S 7*
S6 S o*
S7* S12
S o*
s11 S1 2 iﬁ
S13 S3 \ J
S 16 S6
\ / S7*
S o*
S11
S 14
S 15
__

BB.modify_BBs called byKS.activate proposal
T 10 is chosen as described in (C1B&modify_BRcan be called again in
KS.activate_proposah connection with the same BB.

subprocesses S 11 and S 12 with traps T 11 and T 12.

BB.put_on_BBs called byBB_sys.create_BB_sys

T 12 is chosen as described in (C2B&sput_on_BRan only be called once
in connection with the creation of the BB-system.

subprocesses S 13 and S 14 with traps T 13 and T 14.
BB.put_on_BBs called byBB_sys.modify_BB_sys

T 14 is chosen as described in (C1B&sput_on_BEan be called again in
connection with the modification of the BB-system.

subprocesses S 15 and S 16 with traps T 15 and T 16.

BB.put_on_BBs called byCKS.activate_ CKS

T 12 is chosen as described in (C1B&sput_on_BEan only be called again
in CKS.activate_ CKS

select_problem modify_BB S1
T1, T3, S4
neutral T 9* S5

T 10*

S7
S1
T4, [S1
S1
S1

put_on_BB

Fig. 3.34.BB, manager of 8 employees

* . only the subprocesses of one KS per BB-systendeawn in the manager process

28/8/97

Blackboard Systems in SOCCA 55

Part lll: The SOCCA model - Subprocesses aaqubtr

3.6.5. Subprocesses with respect to Control Blackbiah(CBB)

The manager process ©BB (Fig. 3.37.) is similar to the manager procesBBf
Subprocesses and traps in connection with the activation of the operatiooSCBB:

CBB.select_proposal subprocesses S land S2 andtraps T 1 and T 2.
T 2 contains the final state before the finishingho{CBB.select_proposaas
int-KS.activate_K$an only continue when the result@BB.select_proposal
is known.

CBB.delete_nonrelevant_proposalsubprocesses S3and S4 andtraps T 3and T 4.
T 4 contains the final state before the finishingnof
CBB.delete_nonrelevant_propos#dsprevent thaint-CKS.activate_ CKSan
select a proposal that is going to be deleted by
CBB.delete_nonrelevant_proposals.

CBB.update_HistoryListsubprocesses S5and S6 andtraps T5and T 6.
T 6 is chosen as large as possible.

CBB.put_on_CBB subprocesses S7and S8 andtrapsT 7 and T 8.
T 8 is chosen as large as possible.

Subprocesses and traps in connection with the calling of the operationsCBB:

CBB.update_HistoryListsubprocesses S9and S 10 and traps T 9 and T 10.
CBB.update_HistoryLigs called byBB_sys.create_BB_sys
T 10 is chosen as described in (C2C&88.update_HistoryListan only be
called once in connection with the creation of a BB-system

CBB.update_HistoryListsubprocesses S 11 and S 12 andtraps T 11 and T 12.
CBB.update_HistoryLidgs called byBB_sys.modify_BB_sys
T 12 is chosen as described in (C1LC&8.update_HistoryListan be called
more than once in connection with the modification of a BB-system

CBB.put_on_CBB subprocesses S 13 and S 14 andtraps T 13 and T 14.
CBB.put_on_CBBs called byKS.activate_KS
T 14 is chosen as described in (C1LC&8.put_on_CBRBan be called more
than once by the KS in connection with the same CBB.

All other calls for operations @BB are made from the internal behavioulGi{S.activate_ CKS
Note that S 15 allows the calling of 3 different services and that S 17 allowslihg c&P different
services.

Fig 3.35 presents the subprocesses S 15 and S 16 with respect to the c@BBgselect_proposal,
CBB.delete_nonrelevant_proposalsdCBB.update_HistoryLidty the CKS of the same BB-system..

Fig. 3.36 presents the subprocesses S 17 and S 18 with respect to the c@BBgpoft_on_CBBy
the CKS of the parent-BB-system.

28/8/97 Blackboard Systems in SOCCA 56

Part lll: The SOCCA model - Subprocesses aaqubtr

T 15
del.
asked
parent
A asked
call CBB.delete_|
nonrelevant_
proposals

CKS
non-
active

act_activate

CKS call CBB.
active select_proposal

result
child on

proposal
fixed

no_
finish_ olution
activation
next_
prop
call CBB.
output_ update_HistoryList
outside &
prop. Y= = = = =~ prop. HList
om0) ready updated
Qe call cBB.
put_on_CBB
(proposal) T17
S 15
del.
asked i
call CBB.
put_on_CBB gg{g&t
. (proposal)
selection|

failed

s
~, ~output_
P outside

-

’call BB.
put_on_BB >
(problem)

act_activate
e

proposal
fixed

activation

proposal

T18

output_

outside prepare_

proposal_for

ready

call CBB.
put_on_CBB
(proposal)

S 16

Fig. 3.35. S 15 and S 16 : subprocessést@lctivate_ CKSwith respect to the calling @BB.select_proposal,
CBB.delete_nonrelevant_proposalsl CBB.update_HistoryLigdty the CKS of the same BB-system

28/8/97

Blackboard Systems in SOCCA 57

Part lll: The SOCCA model - Subprocesses aaqubtr

parent T19
asked

call CBB.delete_| selection call CBB.

nonrelevant_ failed put_on_CBB_~_ 7

proposals ~output_

7 outside

CKS
non-
active

call CBB.

act_activate
K select_proposal

proposal
fixed

finish_
activation

activate_
proposal

no_
solution

call CBB.
output update_HistoryList
outside _ _
call CBB.
T20 put_on_CBB
(proposal)
S 17
parent
asked
call CBB.delete_| selection_
nonrelevant_ failed
proposals

CKS
non-
active

call BB.
put_on_|
(problem)

act_activate call CBB.

select_proposal

proposal
selection
eady

proposal
fixed

finish_
activation

activate_
proposal

no_
solution

call CBB.
update_HistoryList

prop.
sent to
parent

prepare_

T21

result_
BB_sys

S 18

Fig. 3.36. S 17 and S 18: subprocessiséctivate_CKSwith respect to the calling &BB.put_on_CBBy the
CKS of the parent-BB-system

28/8/97 Blackboard Systems in SOCCA 58

Part lll: The SOCCA model - Subprocesses aaqubtr

glgéom delete_
called by select_ nonrelevant |
CKS. proposal proposals
activate_CKS called called
S1 S2 S1
S3 S3 S4
S5 S5 S5
S8 S7 S7
S9 S9 S9
S11 S11 S11
S13 g 12 S13
S15 Con coB S 16
\ S 18 J pron- K S17 j gglr?rteelévantf
T 7, A proposals
T 20
select_ |
proposal
T8, T1, T2,
Tie| | T18
Y
[puon_ IR [iPaonist)
cBs called b
called by b sysy
chtislate CKY neutral create_.
- put_on_CBB s1 update_HistoryList BB_sys
S1 ‘T7,T19 S 3 T5T9 o sS1
2 T : alk
> < S6
S8 T8, T21 g; T6, T 10 sS7
S9 S11 S 10
013 S13 S11
g 3 S 15 S13
o 1a S17 S15
\ / update_HistoryList \ S 17)
A
T5,
T17
update_
V HistoryList
dats
(o)) e
called by called by called by
KS. sctvate oy,
activate_KS CcKS BB_sy§
s1 51 <1
S3 s3 S3
S5 S6 S6
2 S7 S7
S9 S9 S9
S11 S 11 S12
S 14 S 13 S 13
S17
w \ S17) \ S17)

Fig. 3.37.CBB, manager of 9 employees

28/8/97

Blackboard Systems in SOCCA

59

Part IV: Application of the given example

Part IV: Application of the given example

4.1. Introduction

In this part the SOCCA model is applied to the given example, as described in section 1.5.
Two different representation types will be used to illustrate the way they&Brss process the
details of the given example.

The actual calling of the export operations is worked out in event traces. In additioretevieat
traces, process models will represent the state of the BB-systemsigidirés of time.

The complete event trace is divided into 9 steps. Every step is concluded withati@aé&a new
process model. This process model, representing a BB-systems as presentexhi.⪙, is
shown for every step.

4.2. Eventtraces

Event traces are a well known common ‘tool’ for case-oriented analysis oficgtem of
communication triggering. We will use this method to illustrate how the SOCGFehfior a
Blackboard System can handle the writing of a book, as described in the given example.
The details of the given example will be translated into the parameters of thaamyser

To simplify the event trace, it is not possible to show parallel communicationdsetdgects. Only
one ‘possible’ sequence of events will be shown.

For the sake of ‘readability’ of the event trace, most proposals for an actiaillenetl immediately
by their activation. This is not a very probable sequence in a working BlackboagthSBsit, if the
actual sequence of proposal-creation and -activation of different proposals doesuantethe
problem-solving activity, we will maintain this order of events.

For the same reason, all proposals will be selected and activated by the CKS. Al phapasa
rejected does not show any action, it will only be deleted.

4.3. The export operations and their parameters

The parameters of the operations are given in fig. 4.1.
The given parameters do not represent the actual implementation details. Sometqrgrare only
shown for the sake of readability.

The parametepk/not_okis a boolean parameter of the operatiGB8.select_proposand
BB.select_problenThe returned value indicates whether the selection was successful or not.
The parametetaller of the operations dB_sysandKS denote the ‘calling BB-system’ or ‘outside’.
The operatioBBB.put_on_BRan be called bBB_sysor byCKS A CKS will use this operation to
put a result of a child-BB-system on the BHB_syswill use this operation to put new initial
problems on the BB. For this reason, the third paramet@Bgdut_on_BBwill be eitherresultor
Initial_Problems

28/8/97 Blackboard Systems in SOCCA 60

Part IV: Application of the given example

The details in the event trace, representing the parameter autitiesexport operation
BB.modify_BBg¢annot be traced back in the STD’s of the SOCCA-model. As all modifications on the
BB are executed by internal operations of the internal behavioBBaihodify BB the STD’s do not
specify these operations any further.

BB sys

create_BB_sys (new-BB_sys, caller, Initial_ProldeiSs + Roles, CKS + Role)
modify_BB_sys (called-BB_sys, caller, modification

finish_BB_sys (called-BB_sys, caller)

get_info (called-BB_sys, caller)

KS

activate_KS (BB_sys, KS + Role)
activate_proposal (called-BB_sys, caller, Propdsal)
deactivate_KS (BB_sys, KS + Role)

CKS
activate_CKS (BB_sys, CKS + Role)
deactivate_CKS (BB_sys, CKS + Role)

BB

select_problem (BB_sys, ok/not_ok, Problem)
modify_BB (BB_sys , Problem, actions, Proposal)
put_on_BB (BB_sys, Problem, Initial_Problems/résul

CBB

select_proposal (BB_sys, ok/not_ok, Proposal)
put_on_CBB (called-BB_sys, caller-BB_sys, Propdsa
update_HistoryList (BB_sys, Problem, registratidistory)
delete_nonrelevant_proposals (BB_sys, Proposals)

fig 4.1. Export operations and their parametergh{e context of the event trace)

4.4. The division of the example into BB-systems, itth-BB-systems,
problems and subproblems

The KSs communicate through the BB with other KSs by putting new subproblems on the BB.
The schema’s of appendix A show the translation of the informal description of the givepleexa
into problems and subproblems, BB-systems and child-BB-systems.

Every step will introduce new problems and/or new BB-systems. The schema’s mdliappean
help to keep track with all these problems and BB-systems.

The division into problems and subproblems must be viewed as only one possible interpretagon of
given example. In connection with the example, innumerable other acceptable inieny et

possible.

The SOCCA model emphasises the communication between the BB-systems mdre grablem-
solving on the BB. For this reason, the selection of the subproblems concentrates on fleaiabenti

of the separate BB-systems that model the processes of the given example. Thehumbe
subproblems is kept low to avoid too many details.

Unfortunately, this low number of subproblems complicates a ‘realistic’ repiedem of the details

of the given example. However, on the basis of the process models and event tranesdgretes
section, it is not difficult to imagine a more realistic processing of thelslefethe example.

28/8/97 Blackboard Systems in SOCCA 61

Part IV: Application of the given example

4.5. Representation of the example in 9 steps

45.1 Step 1: The creation of the root-BB-systefrocess Creation

In this section we will present the start-up of the activities of the givenge&am

To start up the process of the collaborative writing of a book, we will firsteceeaiot-Blackboard
System that can create and activate metaprocess-like activities.

The root-BB-system will represent Jean-Claude, viewed from the pergpetthe PROMOTER
Community. Jean Claude is the coordinator of the PROMOTER community and we arallgspeci
interested in the role that he plays in the start-up and registration of the psdbessee described in
the example.

Fig. 4.2. shows the process model of this root-BB-system, nBnoegss Creation The model
shows the two KSs and their roles: Jean Claude (JC) as ‘Process creator’ anBréCess Model
creator’.

JC is also the CKS of the BB-system, as he performs the role of ‘co-ordinator’.

As discussed in section 2.5, a person can have more than one role at the same time.

BB-sys Process Creation

BB

| P1: create new Process |

| P2: create new Process Model | KSs

As Process

Proposals creator

L©
History *‘C As
A

CPO: create new Process (P1),

Process
unsolved Model
QPO: create new Process Model (P2,) creator
unsolved
(P2: create Process Model step 1 (P3),
solved
CBB
17
\
@ As coordinator
CKS

fig 4.2. Process model step 1

There are two problems on the BBreate new Procesandcreate new Process Moddlhe first
problem,create new Processan create and start-up any possible new process.

The solving of this problem can be viewed as a meta-activity: the problem daupst@w processes
forever and remain unsolved as long as the KS Jean Claude as Process crgator like

The same applies to the probleneate new Process ModeThis problem can register the evolving
of the processes taking place in the example by creating a process model feigniécant step.
The KS, Jean Claude as Process Model creator, will create a new process teiodetgf step by
creating and solving a new subproblem nagredite Process Model Step x.

28/8/97 Blackboard Systems in SOCCA 62

Part IV: Application of the given example

The process model shows in tHistoryListon the CBB what action has taken place on the BB before
the process model was created.

In the HistoryList we can also trace back the parent-problem of every problempaiém-problem of

the initial problems is PO, representing the parent-BB-system with the prdtdercatised the new
BB_systems. The probleaneate Process Model Stepsla sub problem of P2reate Process

Model.

The HistoryList also shows that at the moment the process model is created ihiéaiproblems

are unsolved and the problem B&ate Process Model Stepid solved.

To avoid too many details in the process model, only the unsolved problems will be shown on the BB
of the process model. In addition to this, only the results (solutions or failures) of the chil
BB_systems will be shown on the BB of the process model.

The details of all other solved or unsolvable problems can be found in the HistoryLisGiBBhe

There are no proposals on the CBB. The process model was drawn when all proposalsvwatrd acti
and updated in the HistoryList.

Usually, there may be many proposals on the CBB. We will only show the proposals that will
activated later. As we want the event trace to show the activation imelgditier the proposal of a

new subproblem, there will hardly be any proposal on the CBB in our process models. Again, this not
very likely to happen in a working Blackboard System.

Fig. 4.3 presents the event trace of stepl.

Section (1) of the event trace shows the creation and activation of the veB}daighoard System,
Process Creation

The parameter ‘outside’ that denotes the caller of the opeagate_BB_syshows that the BB-
system to be created is the very first or root-BB-system.

We can see that every KS and CKS involved is to be activated separatelyll§ far edl activate-
operations are made from the internal behaviour of the operatate_BB_sysAs the dotted
vertical lines indicate the operations of the classes, we can trace baegriocal from which
internal behaviour the call is made.

As soon as the problems are put on the BB, they can be selected by the KSs by calling
BB.select_problem

All remaining operations in the event trace of step 1 show the proposal for and @ttfdtie

creation of the new process model of step 1.

All process models that are created in a later stage, will be made by thg aiéixactly the same
operations and parameters.

For this reason, only an empty grey square will be shown when the next process model is being
created.

The only change to the parameters of the operations is the name of the subproblem of iba operat
create new process mod&he name of this subproblem is in stepcteate process model stepi

step 2:.create process model stepelc.

The names of these operations can be found in the HistoryList, drawn in the process model.

28/8/97 Blackboard Systems in SOCCA 63

@

&)

Part IV: Application of the given example

outside BB_sys KS CKS BB CBB o
! o' gl 8 = Z Sa
12, ol g 8 2 5 S 1% e
‘%"g’r %.%I ﬁl‘g] o -fé‘w 58 g S¢ By g% £ 5 Eé S ég %Eg
@ °om =m @ i :] BY §! 2 gm sm o n R4 F
g 58 £8 A B&E eX B§ &8¢ 35 8% %0 Em Zm of 38 82 S8R
-._‘zq . .
c%
< . .
%
2 °_ create_BB_sys (Process_ Creauon ‘outside’, create:_new_| Process create_new_| Process Model KSs: JC as Process_creator, JC as Process Model_creator, : :
g% 5 > CKS:JCas coordmator) . .
g%‘ g activate_ CKS (Process Creation, JC as Coordlnator) . . .
2B > : :
5.;5 activate KS(Process Creation, JC as Process _creator) : :
§5% . .
-% g% activate KS(Process Creation, JC as Process Model_creator) : :
o B . >
g;_,_n. putfoniBB(Processtreauon, createfnewiProcess,createinewiPro(‘:essﬁModeI) - . .
update_HistoryList (Process_Creation, ‘outside’, ‘PO: create new Process, unsolved, PO: create new Process Model, unsolved’) '; :
— : : : . o :
. select_Problem (Process_Creatioh, ok,createfnewarocessiModel) . .
Eca . put_on_CBB (Process_Credtion, Process_Creation, propl)) . .
. . . . - - - - > .
g % select_proposal (Process_Creation, ok, propl) . .
-?;E: - a‘ctivate_proposaI(Process Creation Process._ Creation propl Jc as Process Model‘creator) .
o .
o ‘ .
-% modlfy BB (Process_Creation, create_new_Process_Model, create model |_stepl, solved propl) :
WeE > .
§!-'§ update HistoryList (Process, Creauon create_new_Process_| Model :
BE ‘ P2: create Process Model stepl (A3) solved) .
aaq . ‘:
>
: : : delete nonrelevant proposals(Process Creation, propl) :
¢ Creation Process Model step 1 :

"
A
I

All operatlon in thls square are related tQ the creation of a new Process’ Mode[
These operatlons are texactly the same for each new Process Model :

fig 4.3. Eventtrace step 1

45.2 Step 2: Creation and activation of the firstlgild-BB-system

Promoter Meeting
This step describes the starting of the Promoter meeting.

As the process model shows (Fig 4.4) , JC as process creator has proposed and activated a ne
process: the Promoter Meeting. The initial problem on the BB ahoter Meetingis go through
agenda The formulation of the initial problem indicates that this problem is solved when the KS
have made decisions about all topics on the ‘agenda’.

The *‘agenda’ will have to be defined in the problem descriptiogmthrough agendaHowever, like
in usual meetings, a KS can also add a topic to the ‘agenda’.

The KSs of Promoter Meetingre the members of the Promoter community and JC as the leading
chairman. Jean Claude is the CKS as he performs the role of controlling chairman.

We need this refinement of the role of chairman as Jean Claude may also havertodrfiae
meeting in a more ‘active’ way (see also 2.6).

28/8/97 Blackboard Systems in SOCCA 64

Part IV: Application of the given example

The dotted arrow frorRrocess Creatiomo Promoter Meetinghows that the BB-systeRromoter
Meetingis activated by the parent-BB-syst@rocess Creation
The arrow labelled ‘info’ indicates that the KS, JC as Process Model cre&ext,fasinfo about the
new BB-sys in order to make the process model of step 2.

BB-sys Process Creation

BB

| P1: create new Process |

| P2: create new Process Model |

Proposals

History

QPO: create new process (P1),
unsolved

@PO: create new Process Model (P2,)
unsolved

solved

@P2: create Process Model step 1 (P3),

activate

As process
N/ creator

®
N ¢ Process

Model
creator

BB-sys

Promoter Meeting

BB

| P1: go through agenda

| KSs

' @ As member
‘

Proposals

History

unsolved

@PO0: go through agenda (P1),

As member
N

A

(P1: new BB-sys: Promoter Meeting,

info ‘ As leading
go through agenda (P4), CBB A\ chairman
unsolved

@P2: create Process Model step 2 (P5), R4 \
solved \\ »

)

CBB CKS
7

!
@ As codrdinator

CKS

As controlling
chairman

fig 4.4 . Process model step 2

Fig. 4.5. shows the event trace of step 2.

Section (3) of the event trace of step 2 shows the selection of a problem on the BB ardahe cal
put_on_CBRo put the proposal on the CBB. The proposal concerns the creation of a new BB-
system, named ‘Promoter Meeting'.

In section (4), this proposal is accepted by the CKS. The KS that created the propeseagked to
activate the proposal.

The new BB-system is activated and the HistoryList of both Blackboard Systempdated.

This step ends with the creation of the process model of step 2.

Before JC can make the next model, he receives the most recent information aboutBBe ne
system by using the operati&®_sys.get_info

The creation of the new process model is described in section (5)

28/8/97 Blackboard Systems in SOCCA 65

~
w
=

proposal for a new BB_sys

Promoter Meeting

~—~
~
Nt

activation of proposal for a new BB_systsm

Promoter Meeting

—~
o1
~

proposal and activation of

Part IV: Application of the given example

outside

a modification of Process Model

4.5.3

BB_sys KS CKS BB
'3 | g %I [%I E 1
-2 o &4, e | J6 S ¢
©§$I% o g g‘g‘ ‘g‘w -EQ é@ E% Ein ;!m
Eim £o BE By B8 8¢ 85 8§ %0 €m 2m

select_Problem (Process_Creation, ok, create_new_Proces)

put_on_CBB (Process_Creation, Process_Creation, prop2)

CBB

B
L8 d o
S5 <8 i8
Ejﬁ. E.O ST
o
"
>

select_proposal (Process;Crealibn, ol{, prop2)
. . ;

g
> ‘ ‘
activate_KS (:Promoter_Meeting, m1 as member)

i o

dctivate_KS (. Promoter_Meeﬁlg, JC as leading chairman)

>
>

h activate_proposal (Process_Creation, Process_Creation,fpropi ,JC ais Process_creatorj

create_BB_sys (Promoter Meeting, Process_Creation, go_through_agenda, KSs: m1 as member,.......m26 as member, JC as leading chairman,
. . . . ! . . CKS: JC as controlling chairman).

dctivate_CKSf(Promoter_Meetihg, JC as controlling chairman)

put_on_BB (Promoter Meeting, create. new_process, go_through_agenda)

update_HistoryList (Promoter_Meeting, create_new_process, ‘PO: gb through agenda (P1)’) :
>

update_HistoryList (Process Creation, create_new_process, created: new BB_sys, Promoter_Meeting)

delete_
nonrelevant
proposals

- delete_nonrelevant_proposals (Process; Creation, prop2) -

>

h - - - >
© select_Problem (Process_Creation, ok,create_new_Proces_model)

get_info (Pro¢es_Creation, Promoter_Meeting)

¢ Creation Process Model step 2

fig 4.5 Event trace step 2

Step 3: BB-systerRromoter Meeting makes decisions about the

second book

In step 3, the first decisions are made by the KSs of Promoter Meeting concerningstlunguaised
during the meeting of 19940209 as described in the given example..

The History on the CBB d?Promoter Meetinghows all decisions made by the KS®admoter

Meeting

The first new problemmake decisions about Bogk& probably a topic on the ‘agenda’ and put on
the BB by JC as leading chairman.
The first question raised by this new problem is whether the members of the Pramutemity
want to make this new Book. In the History on the CBB we can see that a subproblenmzkaed
Book2? is created by a KS with an immediate answer ‘yes’. As this new subproblem hiztdhe s
‘solved’, we can say that the KS that created this subproblem ‘posits’ that a new losidiem

created.

28/8/97

Blackboard Systems in SOCCA

66

Part IV: Application of the given example

BB-sys Process Creation BB-sys Promoter Meeting

BB BB

I P1: create new Process | I P1: go through agenda | KSs

| P2: create new Process Model I KSs | P2: make decisions about Book2 | - - As member
A | As

As Process I P7: make Bookstructure
creator 1

Proposals N

............... Proposals

) Process [] -) S member
| M Model History A

creator CPO: go through agenda (P1),
CP2: create Process Model step 2 (P5), unsolved
solved 19940209
19940209 (P1: make decisions about Book2 (P2),
(P2: create Process Model step 3 (P6), info unsolved
solved (P2: make Book2? (P3)
yes, solved
CBB (P2: decide roles Book2 (P4),
JC is general editor,
7 Ali gives general support,

\ } 1 editor, >=2authors and
b 2 reviewers per chapter,
@ As codrdinator decide chapter editors and

authors next day,
solved
CKS CP2: make Bookplan (P5),
Book2 is problemoriented,
solved
(P2: decide tools (P6),

use framemaker and email, A
solved ' As leading
(P2: make Bookstructure (P7) ~ chairman

unsolved

A

CBB

T
F

@ As controlling
chairman

CKS

fig 4.6. Process model step 3

The decision to make a second book, in these steps referred to as Book2, is the firgttidemocr
decision made by the KSs of Promoter Meeting.

The SOCCA-model does not regulate this democratic decision making. The knowl¢agd& 8k
and CKS has to define their behaviour in a democratic situation.

The KS Jean Claude as leading chairman has to find out whether a majority of thed€Ssnatl a
decision and the KSs have to make sure that their opinion concerning a decision on the BB is know
by JC as leading and controlling chairman. The CKS has to control this democraimnd@eiking.
There are several ways to enforce democratic decision making on the BB.

To simplify the actions on the BB, we will assume that KSs only react to a decisioa BB if they
do not agree completely with the decision and that the KS in the role of leading chdiresating
KSs time to react on a decision.

The given example only relates ‘vague’ details about the way decisions wageatrtae Promoter
Meeting. As we are mainly interested in the ‘complete’ process of the colli@eareeating of a
book, we will not pay too much attention to the way KSs respond to new subproblems on the BB.

28/8/97 Blackboard Systems in SOCCA 67

Part IV: Application of the given example

If we want to present a more ‘realistic’ way of decision making at the ProiMetting , we would
need many more steps to model the example.

The problenmake decisions about Book2uses many new subproblems li¢tecide roles Book2,
make bookplaand make Bookstructure

At the time the process model of step 3 was created, all new subproblems are sofyed) ake
decisions about Book&ndmake Bookstructure

In the given example, date descriptions are used to indicate at what point of tinseteskpiace. It
is a very natural activity of the CBB to register the actual date of tlwaain the BB.

As the given example only relates dates occasionally, only the dates mentidrimpsdcessed in
the History of the process models.

A modification of the BB can be represented by the following sequence of events:

select_problem();

put_on_CBBj();

select_proposal();

activate_proposal();

modify_BB ();

update_HistoryList();

delete_nonrelevant_proposals();
As we confine ourselves to one sequence of events to simplify the event trace xahtpee we
only have to define the parameters of the listed operations that reflect thecaimtifon the BB.
The given order of events is already illustrated in the event trace of step4l3FiNote that there is
one small difference with the events of the event trace of step 1: the updatesotitms £6) and
(11) show the addition of an ‘unsolved’ subproblem to the BB instead of a ‘solved’ subproblem.
However, the state of the added subproblem does not affect the sequence of events.

In the event trace of step 3 (Fig 4.7), all actions proposed and activated by the K8difications
of the BB.

As the interaction between the objects is already worked out in section (2) of thérawe of step 1,
we will only specify the parameters of the operatl©BB.update_HistoryList

The parameters @IBB.update_HistoryListhow all details of the proposed and activated
modifications on the BB.

We will leave out all other operations of the event trace of step 3.

By doing this, some information will be lost, such as the actual KSs that proposed aaiecé¢hie
modifications of the BB. As the given example does not tell us who took the decisions iartioed?r
Meeting of 19940209, we will just assume that the ‘unsolved’ subproblems are added by JC the
leading chairman and the ‘solved’ subproblems by different members.

28/8/97 Blackboard Systems in SOCCA 68

Part IV: Application of the given example

outside

4.5.4

The problermake Bookstructureemains unsolved in step 3.

BB_sys KS CKS BB CBB |
I | - E
] [) 0 @
| s & (-] ¥ gﬁ
2 Je e 2 % E o B - 8 & o 88
3@ %Q ga %w 28 ‘ 20 tg ?;15 5 2 88 2m g2 322
ok 28 =% 8E a¥ 88 8¢ 8S 85 %8 23 23 ef 20 §f ZEE
(6) r L,
update HistoryList (Promoter Meetrng go through_: agenda .
Pl make decisions about Book2 (P2) unsolved’)
@) |

(8)

9)

(10)

(11)

update HrstoryLrst(Promoter Meetrng make decisions about BookZ
. ‘P2: make Book2? (P3), yes solved)

update HrstoryLrst(Promoter Meetrng make _decisions about Book2

‘P2: decide roles Book2 (P4)

JC is general editor, Ali gives general support,
1 editor, >= 2 authors and.2 reviewers per chapter,
decide chapter editors and authors next day,

solved)

update HrstoryLrst(Promoter Meetrng make decrsrons about Bookz,

‘P2:make Bookplan (P5), |
Book2 is problemorrented solved)

>

update HrstoryLrst(Promoter Meetrng make _decisions about Book2 ¢

P2: decide tools (P6),
use framemaker and emarl solved)

N

>

update HrstoryLrst(Promoter Meetrng make decrsrons about Book2, *

P2: make Bookstructure (P7)
unsolved) '

-y

select Problem (Process_¢ Creatron

get info (Process._ Creatron Promoter ~_Meeting)

: >
create_new_Proces_model) :

¢ Creation Process Model step 3

(12)

Fig 4.7 Event trace step 3

Step 4: The creation of more than one childBBsystem to solve

a single problem.

prepare a bookstructure for the following day.

28/8/97

Blackboard Systems in SOCCA

69

In step 4, the members are asked to

Part IV: Application of the given example

BB-sys Member 1

BB-sys Member 26

BB BB
[P1: prepare Bookstructure I KSs I P1: prepare Bookstructure | KSs
As member As member
IProposals creator Proposals creator
TE X (s a®
19940%09 AS 19940209 A g
CPO: prepare Bookstructure (P1), QPO: prepare Bookstructure (P1)
unsolved unsolved
CBB CBB
4 A A 1
' | .
As member . - _ As member
codrdinator N codrdinator
info
CKS ' CcKs
info activate : : activate
BB-sys Process Creation | | BB-sys Promoter Meeting
v 11
BB BB
| P1: create new process | [P1: go through agenda | KSs
| P2: create new Process Model | KSs | P2: make decisions about Book2 |
As member
2N As process | P7: make Bookstructure | N
Proposals I~ creator 1
--------------- Proposals 1
History A As A
| T As member
N '\Pﬂrgg :ISS History A @
19940209 creator (PO0: go through agenda (P1),
P2: create Process Model step 3 (P6), unsolved
solved 19940209
(P2: create Process Model step 4 (P7), |
solved - — |
info (P2: make Bookstructure (P7)
CBB unsolved
CP7: new BB_sys: Member 1
prepare Bookstructure (P8),
4 ready next day,

@ As coordinator

CKS

unsolved,
|
new BB_sys: Member 26
prepare Bookstructure (P8),
ready next day,
unsolved

CBB

As leading
chairman

<G

4

@ As controlling
chairman

CKS

Fig 4.8 Process model step 4

In the BB-sys Promoter Meeting, the new problaepare Bookstructures created as a subproblem
of make Bookstructure
All members are asked to prepare a bookstructure separately. This inspiieatevery member

needs a separate BB-system as every member, as creator and controbexativity, has to be the
only KS and the CKS involved in the solving of this new problem.

28/8/97

Blackboard Systems in SOCCA

70

Part IV: Application of the given example

The process model (Fig 4.8) shows the new BB-systems. The new BB-systentvateddoy the
BB-systemPromoter Meetingand they all have the unsolved ‘initial’ probl@mepare Bookstructure

on the BB.

Section (13) of the event trace of step 4 (Fig 4.9) presents the creation of all reystBiBs and the
activation of all KSs and CKSs involved. In section (14) HistoryListof Promoter Meetings

updated.

Section (15) of the event trace shows how JC as process model creator from tis¢eBB-sy
Process Creatiomsks information from the BB-systefsomoter Meeting, Membeyl.. and
Member 26before he creates the process model of step 4.

outside BB_sys KS CKS BB CBB N
. g | g § I T % §%
18 Sl L e E) L (N B e 23
fo%050 e i 5 £ % 33 30 % 85 % £2 520
&m Em £3 -g.g gx 'E-SQ -ug TS I8 3x 28 2@ or 20 ST $E=
. . : select problem (Promoter_Meeting, ok, make_Bookstructure) - . . .
put_on_CBB (Promoter Meeting, Promoter_Meeting, prop3) C
: select_proposal (Promoter_Meeting, ok, prop3) .
% o actlvate _proposal (Promoter_Meeting, Promoter Meetlng prop3 m? as member)
; create BB sys(Memberl Promotor Meetrng prepare_Bookstructure, KS: mlasmember creator CKS: ml1 as member ~_coordinator)
« > .
-§ actlvate KS(Memberl mlasmember ._Creator)
g actlvate CKS(Memberl mlasmember ~_coordinator) -
2 >
‘l:' o put on BB(Memberl make Bookstructure prepare_Bookstructure) .
£ 2 | 5
(13) §§g update HlstoryLlst(Memberl make Bookstructure PO: prepare Bookstructure (P1), unsolved)
% 2l C | C
[=) <l
g%ﬁ N create BB_sys(act Member26 Promoter ~_Meeting, prepare_Bookstructure, KS: m26asmember creator CKS: m26 as- member_coordinator)
>
EaS
gm'-% actrvate KS(Member26 m26 as member _creator)
om >
S0 a3
gg a actlvate CKS (Member26, m26 as member ~_coordinator)
=
OO Q| >
put on BB(Member26 prepare Bookstructure) .
update HlstoryLlst(Member26 make Bookstructure PO: prepare_Bookstructure (Pl) unsolved) -
B — : >
f . update HistoryList (Promoter_Meeting, make_| Bookstructure '
(14) mé 2 ‘P5: new BB_sys: Memberl prepare Bookstructure (PG) unsolved,
TEF |
.§'I:‘I.9 g P5: new BB_sys: Member26, prepare;Bookstructure (P6), unsolved’)
. select probIem(Prooess Creation, ok, create_new_Process Model)
5 s get info (Process_ Creatlon Promoter_Meeting) :
o
E E g o get_info (Process_Creatron, Memberl)
k- NN - ' '
(15) el 2 ‘Q o get_info (Process_Creation, Member26)
8esy \ S
1o . - : :
Pomc®
oom ® q\ ¢ Creation Process Model step 4
Fig 4.9 Event trace step 4
28/8/97 Blackboard Systems in SOCCA 71

Part IV: Application of the given example

4.5.5 Step 5: BB-system Promoter Meeting recetivesesults of the child-BB-
systems

BB-sys Member 1

BB-sys Member 26
BB
Final Result BB
Final Result |
Proposals || "
Proposals
History
19940209 KSs P KSs
COPO: prepare Bookstructure (P1), As member 155928/209 As member
unsolved creator creator

CP1: concept_Bookstructure (P2),

CPO: prepare Bookstructure (P1),

solved
solved

CBB

CP1: prepare Bookstructure (P1),

)

CBB

unsolved
CP1: no Bookstructure (P2), '

need more time, unsolvable|
P1: prepare Bookstructure
(P1), unsolvable

Ty
)

CKS

As member
coordinator

BB-sys Process Creation

YY

info

result
Member 26

result Member 1

BB

| P1: create new Process |

| P2: create new Process Model |

As member
codrdinator

BB-sys Promoter Meeting

KSs

Proposals

History

|
19940209
(OP2: create Process Model step 3 (P6),
solved
(OP2: create Process Model step 4 (P7),
solved
19940210
COP2: create Process Model step 5 (P8),
solved

CBB

As Process
creator

©

A
-

As
Process
Model
creator

A

info

4

@ As codrdinator

CKS

BB

| P1: go through agenda |

P2: make decisions about Book2 I

| P7: make Bookstructure I

R1: result Memberl I

R76. Tesult Member 26 |

Proposals

History
CPO: go through agenda (P1),
unsolved
19940209
|

|
COP7: new BB_sys: Member 1
prepare Bookstructure (P8),
ready next day,
unsolved,

|
new BB_sys: Member 26

prepare Bookstructure (P8),
ready next day,
unsolved

19940210

OP7: Memberl:
prepare Bookstructure (P8)
result Member 1 (R1)
solved

|
CP7: Member 26:
prepare Bookstructure (P8)
result Member 26 (R26)
unsolvable

CBB

KSs

@ As member
S

N
) As member

As leading
chairman

<)

Fig 4.10. Process

1

CKS @

model step 5

As controlling
chairman

28/8/97

Blackboard Systems in SOCCA

72

Part IV: Application of the given example

The process model of step 5 (Fig 4.10) shows that member 1 has found a solution to the problem
prepare Bookstructurélhe BB-system of member 26 indicates that member 26 has declared the
initial problem unsolvable. The reason is that the KS, member 26 ‘needed more timeéttbam
solution.

There may also be members that still have the prolgespare Bookstructuren an unsolved state.

The given example says that there are two proposals for a possible structure, SBBesyatems of

the members together, there must be two solutions.

The CKS of every member puts the result of its BB-system as a proposal on the thBEBBf
systemPromoter Meeting The CKS of PromoterMeetingputs the result of every child-BB-system

on the BB.

outside BB_sys KS CKS BB CBB |
| |]
)]
] ﬁ ‘§ | b £3
1 2 o 0 | 13 2 433
L Z 22 %, 3% 2. o B2 5q B5 §25
Fm &x ‘E g2 lﬁjg $x Eg B0 Em Em RE 28 8¢ 8388
. . - select. problem (Memberl ok, prepare_ Boo@tructure) . .
. >
. put on _CBB(Memberl, Memberl prop6) -
' KS member1 : j j : selecl _proposal (Memberl ok pr0p6)
16 ' proposes and - —
(16) - activates a concept . : actlvate _proposal (Memberl Memberl, pr0p6 m1 as member creator)
- for a bookstructure N > Co
' ' ' © modify_BB (Memberl, prepare_| Bookstructure concept Bookstructure, solved., prop6)
B >
. updale_HlsloryLlst(Memberi prepare_| Bookstructure I
| ! L . . ! ‘P11 concept Bookstructure ., solved’)
- KS member1 :
: proposes and : > o
. activates the . select_problem (Memberl, ok, prepare_Bookstiucture) :
. change of state of . Lo . . 1 . . .
.initial problem Lo . : ' 1 : . 1 1 .
| prepare_ Bookslruct L ; . >
17 jurefrom ' : : : : update HlstoryLlst(Memberl prepare_ Bookstructure
() . state ‘unsolved’ tO — ‘ P1 prepare Bookstructure Solved)
fslata solved . . Lo Lo
. — . L) . . R . . Lo
The CKS of Member 1 : : : . put_on_CBB (Promloter;M’eéling, Memberl, prop_result_m1)
puts the resutt on the S L NG I
CBB of Promoter Meeting S . select_proposal (Promotor_Meeting, ok, prop_result_m1
(18) The CKS of PM puts the Do . select_proposal (F - 9. ok, prop_result_m1)
resiilt on the BBof PM | . put_on_BB (Promoter_Meeting, prepare_Bookstructure, result_m1)
1 .
B : - - - - ; . .
: : : : Select_problem (Member26, Ojk, prepare_Bookstructure) :
. KS member26 | . M >
. proposes and Iput on CBB(Member 26, Member26 prop7)
. adtivates a change o : >
: of state OfPrOblsm ' ' ' ' select_proposal (Membet26, ok, prop7)
. prepare . . <
(19) : goé)ks{mcﬂ”s from ' activate_proposal (: Member26 Member26 prop7 m26 as member creator)
. ‘unsolved'to | -
" ‘unsolvable’ . . rmodlfy_BB(MemberZG prepare Bookstruclure prepare Bookstructure unsolvable prop7)
. . . . update_Hlstolest (Member26, prepare_Bookstructure, .
! ' ' L : : : : : © ‘P1:prepare Bookstructure, unsolvable’)
The CKS ofMembet 2% [~ oo — M S
puts the result on the. pu‘t on_CBB (Prombter ‘M'e‘ting Membe‘r26 prop ‘resUIt m26)
(2 Q)CBB of Promoter Meéting o . >
The CKS of PM puts the Lo . sélect_proposal (Promoter | Meeting, ok prop_result m26)
result on the BB of PM Lo . >

put on BB(Promotor Meetmg prepare Bookstructure result_m26)

(21)

creation of PM step 5

< Creation Process Model step 5

Fig 4.11 Eventtrace step 5

The event trace of step 5 is presented in Fig 4.11.

In the event trace, the activities on the child-BB-syststemberlare recorded in sections (16) and
(17) and the activities dflember 26in section (19). In sections (18) and (20), the CKS of the
parent-BB-systerPromoter Meetingeceives the input frodlemberlandMember 26

28/8/97 Blackboard Systems in SOCCA 73

Part IV: Application of the given example

Note that the KS oMember Ineeds two sections, section (16) and section (17), to come to a result.
In section (16), he creates a new ‘solved’ subprobteamcept Bookstructurd.ater, he will come to
the conclusion that this subproblem has also solved the ‘initial’ problepare Bookstructurdn
section 17, the state pfepare Bookstructures changed from ‘unsolved’ to ‘solved’.

Member 26only needs 1 section , section (19), to come to a resWteatder 26executes two

actions by only making one call f8B_sys.modify_BB_sy&irst, he will add an ‘unsolvable’
subproblem to the BBjo Bookstructurgand later he also changes the state of ‘initial’ problem
prepare Bookstructuréfom ‘unsolved’ to ‘unsolvable’. As a modification of the BB can consist of
more actions, this modification by the KS of Member 26 is permitted.

As Member 1 to Member 26 are intended to solve the same problem in parallel, the sequence of
events as represented in fig 4.11 is not a very ‘probable’ sequence of events.

28/8/97 Blackboard Systems in SOCCA 74

Part IV: Application of the given example

4.5.6 Step 6: Processing the results of child-BBst¢ms and the
termination the child-BB-systems.

In step 6, a decision has to be made about the book structures, prepared by the membersieFinally, t
chapter structures have to be made. First, the chapter groups are formed. Ligtgroenpestarts
working on the chapter structure of the chosen chapter.

The process model of step 6 is presented by Fig. 4.12 and the event trace of step 6 is présgnted i
4.13.

On the BB ofPromoter Meetingire the results of the BB-systeMsmber 1 - Member 26A KS
proposes and activates the decision that the resMleofber 1, R1, is the best result and with a small
modification, this book structure is accepted as the final book structure.

The original problenmake Bookstructuris declared ‘solved'.

As make Bookstructuris solved, all the results of the other BB-systems can be deleted.

Finally, the BB-systemblember 1 - Member 2@re to be terminated. In section (25) of the event
trace, the finishing dMember 1lis worked out.

The event trace of step 6 only represents parts of the complete event traceaiomssare already
worked out in the previous event traces.

The part of the termination dlember lis worked out, as this is the only action of a BB-system that
is not worked out before.

The sections (22), (23), (24), (26) and (27) all concern modifications of the BB. The section (28)
represents the creation of a new BB-system. Section (4) of the event traze Dh#teady shows the
creation of a new BB-system.

The second part of the event trace concerns the new subpmolaleenChapterstructurén order to
work in small groups on the problem, a new subprolitem groupsof problemmake
Chapterstructures created.

Whenform groupss solved, a new BB-system, nan@kapter 9 Groups created, so that the
members Luuk, Vicenzo and Jacques can work separately on the chapter structureo®chapt
During the formation of groups, it was already decided that Luuk should be the editor anaVicenz
and Jacques should be the authors of chapter 9. As Jacques already left the meetings Jatques
included as KS in th€hapter 9 Group

Note that the BB-syste@hapter 9 Groughas two initial problems on the BBrepare structure
chapter 9andprepare 1 or 2 sheets

28/8/97 Blackboard Systems in SOCCA 75

Part IV: Application of the given example

KSs

@ As member
Y_,

BB-sys Process Creation BB-sys Promotor Meeting
BB BB
| P1: create new Process I P1: go through agenda I
| P2: create new Process Model I KSs P2: make decisions about Book2 I
As Process P10: make Chapterstructure I
Proposals I~ creator
Proposals
History A As
| A Process |} T
| AE Model History
19940210 creator 19940209
(OP2: create Process Model step 5 (P8), (PO: go through agenda (P1),
solved) unsolved
(OP2: create Process Model step 6 (P9) info |
solved - |
19940210
CBB (P7: Memberl:
€ prepare Bookstructure (P8)
- result Member 1 (R1)

4 solved

r (P7: Member 26:

@ As coordinator prepare Bookstructure (P8)
result Member 26 (R26)
unsolvable

CKS (P7: decide Bookstructure (P9),

R 1 best result, modification R1,
solved,
P7: make Bookstructure (P7),
BB-sys Chapter 9 Group info solved 7
(P7: R2: deleted
BB

| P1: prepare structure chapter 9 |

| P2: prepare 1 or 2 sheets |

Proposals

History
19940210

unsolved
QPO: prepare 1 or 2 sheets (P2),
unsolved

CBB

QPO: prepare structure chapter 9 (P1),

LA
~/

4

As contolling
editor

CKS

Fig 4.12 process model step 6

KSs
A
"@ As author

As writing
editor

activate

|
(P7: R26: deleted
CQP7: BB_sys Member 1 terminated,,

|
BB_sys Member 26 terminated
(P2: make Chapterstructure (P10)
unsolved
QP10: form groups (P11)

group 9: Luuk as editor,
Jaques and Vicenzo as authors
solved

(P10: new BB_sys: Chapter 9 group,
prep. structure chapter 9 (P11),
prepare 1 or 2 sheets (P12),

ready next day,
unsolved

CBB

A
As membe

As leading
chairman

<@
»

1
Y '
CKS @ As controlling

chairman

28/8/97

Blackboard Systems in SOCCA

76

Part IV: Application of the given example

outside BB_sys KS CKS BB CBB |
g i] £ = 5 52
19, oo g 8 g3 a - B 8 o3 4B
%IZI %:wl 5;' o 2,28 g g@ ‘%Q E% gm 2Im Eg— Slg iﬁ ﬁ‘gg
58 23 ER B: B8 gS 8¢ 35 85 35 £32 &3 gk 38 5T 228
(22) — — ‘ —3

: update _HistoryList (Promoter Meetlng, make Bookstructure ;
. ‘P7: decide Bookstructure (P9), .
R 1isbest result modlflcatlon R 1,
. . solved | '
(23) X P7; make Bookstructure (P7) solved_)

. update_HistoryList (Promoter_Meeting, make Bookstructurel
. . ‘R2 deleted 9 . .

(24) [. .

‘ "
. update HistoryList (Promoter_Meeting, make Bookstructure .
' R26 deleted 9) '

!

> ‘ ‘
. select problem (Promoter Meetihg, ok, make Books‘tructt‘rre) 3

Ly
put on CBB(Promoter Meetlng, Promoter Meetlng prop8) .
>
< select proposaI(Promoter Meetlng ok, prop8)
. < . . . actlvate _proposal (Promoter Meeting, Promoter meetlng prop8, M? as member)

flnlsh _BB_sys (Memberl Promoter Meeting)

(25) deactlvate_KS (Member;l, m;l as member_creator)
-

> .
deactivate_ CKS (Member 1, m1 as member_coordinator)
terminate all other member-BB-systems
. “ "
. update HistoryList (Promoter Meetlng make_| Bookstructure
. . P7 Member 1term|nated

..., and Member 26

" the termination of the BB-systems Memberi T

Member 26 terminated') -

(26)

update HistoryList (Promoter_Meeting, make_| deC|S|ons about Book2,
‘P2: make, Chapterstructure(PlO)‘
unsolved)
. . >

. update HistoryList (Promoter_Meeting, make ChapterstrUcture

@7
‘P10 ‘form_groups (P11)

group9Luuk as editor,
Jaques and Vicenzo as authors,

so Ived)

(28) >
. update HistoryList (Promoter_Meeting, make Chapterstructure
. ‘PlO‘ new BB_sys: Chapter 9.group |
prepare structure chapter9,
prepare 1 or 2 sheets chapter 9,
ready next day,
unsolved')

' (29)

¢ Creation Process Model step 6

Fig 4.13 Event trace step 6

28/8/97 Blackboard Systems in SOCCA 77

Part IV: Application of the given example

4.5.7 Step 7: A discussion o@hapter 9 Group and Promoter Meeting
proposes its own termination.

BB-sys Process Creation BB-sys Promotor Meeting

BB BB
| P1: create new process | Final Solution | KSs

I P2: create new Process Model I KSs)
P ; As member
¢ roposals)
(@ As process p -
I~

CP10: terminate Chapter 9 Group
Proposals creator OPO: terminate Promotor Meeting 1
_______________ I
History A As o N
| ; Process . v As member
| I~ CPO0: go through agenda (P1), I~
19940210 Mode! unsolved
creator
CP2: create Process Model step 5 (P8), 19940209
solved
CP2: create Process Model step 6 (P9), . info 19940210
199482|1/fd o CP10: new BB_sys: Chapter 9 group
OP2: create Process Model step 7 (P10),) prep. structure chapter 9 (P11),
solved result Promotor Meeting prepare 1 or 2 sheets_(Plz),
to be presented by editor
next day,

result Chapter 9 Group (R27)
solved

OP10: decide chapter structures (P13)
accept results Chapter 9 Group

BB-sys Chapter 9 Group

<€
CBB unsolved
19940211
4 = CP10: Chapter 9 Group:
¢] prepare structure chapter 9 (P11
; ’ result Chapter 9 Group (R26)
solved
CKS @ As codrdinator prepare 1 or 2 sheets (P12)
info

BB solved
Final Solution fPlfo) ma:<e ghapterstructure Ahs leading
, solve chairman
result Chapter 9 Group OP2: make decisions about Book2 (P2)
Proposals solved CA
COP1: go through agenda (P1) I

_______________ solved ~-
History
19940210
CPO: prepare structure chapter 9 (P1), CBB

unsolved
CPO: prepare 1 or 2 sheets (P2),

unsolved

4
CP1:determine strategy Chapter 9 (P 3) - ’
unsolved i
OP3: decide using example (P 4) CKS @ ?;a?ronr.lnargllmg
arguments
solved
CP4: formulate objections (P5)
arguments
solved
CP4: formulate refutation objections(P6)
arguments
solved
CP4: decide integration objections (P7)
arguments
solved
CP4: decide using example (P4)
solved
CP3: choose example (P8)
collaborative writing of chapter 9,

KSs
solved A
CP3:: formulate theorem(P9) ~
A

arguments
solved s
OP3: determintne strategy (P3) Author
solved
CP1: prepare chapter 9 (P1)

solved :
CP2: concept sheets (P10) [
concept, N

solved A it
P2: prepare 1 or 2 sheets P5) S writing
solved editor

CBB

1
¥
CKS @ As controlling editor

Fig 4.14 process model step 7

28/8/97 Blackboard Systems in SOCCA 78

Part IV: Application of the given example

The given example relates the discussion of the group that prepares a chaptee sifuttapter 9.
The next day, the results of this discussion are related to the members of PromdBeoridter
meeting agrees with the chapter structure of chapter 9.

By finishing the decision of the chapter structures, the Promoter meeting haslimadessary
decisions to start up the second book. When all topics on the agenda are finished, the Promoter
meeting is to be terminated.

All details of the given example of step 7 concern features of the SOCCA modekthatady
worked out in former steps.
The event trace of step 7 is therefore omitted.

The process model of step 7 (Fig. 4.14), shows all details processed during step 7.

At the moment the process model is drawn, 2 proposals are on the GB&adter Meeting

The first, is a proposal for the termination of Chapter 9 Group and the second is a proposal for the
termination of Promoter Meeting. In step 8, these proposals are activated.

28/8/97 Blackboard Systems in SOCCA 79

Part IV: Application of the given example

45.8 Step 8: BB-systerhapter 9 changes its own ‘initial’ problem.

This step concerns all remaining details of the given example: the writingmiec®eof the second
book

Step 8 starts with the actual terminatiorCofapter 9 GrouandPromoter MeetingBoth proposals
for termination were created by KSsRrfomoter MeetingAlthough both proposals concern the
termination of a BB-system, they are handled differently. The termination of&tea@roup is
activated and executed Byomoter MeetingThis action is handled in exactly the same way as the
termination oMember las described in section (25) of the event trace of step 6.

The termination oPromoter Meetindiowever, has to be activated by the parférdcess Creationin
section (30) of the event trace of step 8 (Fig. 4.16), the terminati®roofoter Meetings worked

out.

Based on the results Bfomoter Meetingknowledge Source JC as ‘Process creatoProtess
Creationcreates a new process: the actual making of the second book. JC will createBx new B
system, calledook 2that is responsible for the writing of the second book. The members of the
Promoter community will be involved in this new BB-system as members.

All decisions made by the membersRybmoter Meetingwith respect to the writing of the second
book will now be part of the problem description of the ‘initial’ problem of Book 2, namakie
Book2

The first subproblem ahake Book & write round 1

Book 2will then create a new separate BB-systelapter Sthat is responsible for the writing of
chapter 9Chapter %s initial problem iswrite chapter 9

Nearly all details described in the given example concerning the writing oectegmtan be modelled
as modifications of the BB @hapter 9 These modifications can be traced back in the History of
Chapter 9in theprocess model of step 8, Fig. 4.15.

The only exception is described in the last paragraph of the example: the changed shapfepbc

In terms of the SOCCA model, the changing of the set-up of chapter 9 is the changing of #ra probl
description of the initial problem &hapter 9

As a modification of an initial problem is a modification of the BB-system ingplthés modification
can only be activated by the parent of the BB-system.

In section (31) of the event trace of step 8, this particular modification of the 8&y¥9hapter 9is
worked out.

28/8/97 Blackboard Systems in SOCCA 80

Part IV: Application of the given example

BB-sys Process Creation

BB-sys Book 2

BB

| P1: create new Process

| P2: create new Process Model

BB

| P1: make Book2 | KSs

CBB

Proposals

History

|
19940211

|
CP1: Promoter Meeting:

go through agenda (P4)

result Promoter Meeting (R1)

solved

CP1: new BB-sys: Book 2,

make Book2 (P11),
unsolved

19940901
CP2: create Process Model step 8 (P12)

solved

creator

KSs .
| P2: write round 1 | As member
@ As Process AS

Proposals 1
1

As History A

P Istory As member
I~ rocess 19940211 ~

Model OP0: make Book2 (P1),
creator unsolved

CP1: write round 1 (P2), =N
inf unsolved As ge_neral
- inio OP2: new BB_sys: Chapter 9 d co-editor

write chapter 9 (P3),

~
unsolved, N)
activate 19940901 ‘_ ?jptsgnm cal
_________ > | GP3: Chapter 9: -

Change setup chapter 9 (P4)
..., solved

CBB A As leading
~x general editor

info

1y

Ty

As coordinator

CKS

activate

' As controlling
CKS @ general editor

BB-sys Chapter 9

I
|
|
|
I
V

BB

I P1: write chapter 9 |

| P4: work on contents chapter 9 |

Proposals

History
19940209
CPO: write chapter 9 (P1),
unsolved
CP1:inform Jaques (P2)
solved KSs
CP1: organise writing (P3) A
use sabattical months !
solved X
CP1: work on contents chapter 9 (P4) As
unsolved Author
CP4: how to prove theorem (P5)
lemma 7.4 and 7.5 @
solved X
19940901 As
CP4: sent to parent: Author
proposal change setup of chapter

CP4: change setup of chapter (P6) i *@

solved -
As writing
editor

CBB

As controlling editor

CKS

Fig 4.15 process model step 8

28/8/97

Blackboard Systems in SOCCA 81

Part IV: Application of the given example

The event trace of section (31) starts when one of the KSkayfter Shas already created and

posted a proposal for the modification of the initial problem. The CKShapter 9Luuk as

controlling editor, selects this proposal and puts the proposal on the CBB of the parent-BB-system,
Book2

The CKS ofBook 2, Jean Claude as controlling editor, selects this proposal and activates the
proposed modification dChapter 9

The selection and activation of the proposal triggers 3 callSB&.update_HistoryListhe first call
registers the transportation of the proposal to the CBB of the parent. By the remaltsnthe

change ofChapter 9is registered b hapter 9andBook 2 This way the Members of Book 2 are also
informed of the changes of the set up of chapter 9.

outside BB_sys KS CKS BB CBB N
| | - c
g e @ d oF 8 d 8 &g g g < 3 3%
| = @ E g > = o <
%m %ml 52 g S ER % %czn 2o 8= g 3 28 2o gg g8e
68 Ef =8 8 82 §8 ¢ 35 2O gk £3 28 9& 28 5T 32k
— ' ' ! ! ! ! ! ! ! ! “ ' ' '
>
select_proposal (Promoter_Meeting, ok, prop9) |

pdt_on_CBB (Prooess_:Creation, Promoter_Meeting, prop9) '
- .

Ll
select_proposal (Process Creatlon ok, prop9)

dctivate_proposal (Prdmoter Meetlng Process_ Creatloh prdp9 JC as leadlng chalrman)

finish_BB_sys (Promoter Meet|ng Promotor Meetlng)

V

(30)1 deact|vate KS (Promoter Meetlng M1 as member)

. -
deactivate_KS (Promoter Mﬁng M26 as member)

deactivate_KS (Promo‘ter_Meﬁlg, JC as leading chairrnan).

deactivate_ CKS (Promoter_Meting, JC as chairman)

update HistoryList (Process Creatlon create_| new process :
‘P1: Promoter Meeting: go through agenda (P4)
result Promoter Meeting (R1), solved’) '

the activation of & proposal for the temination of Promotor
Meeting, praposed by a KS of Promotor Meeting

|
| S
| other actions -
| A
|

select_proposal (Chapter9, ok, prop10)

put_on_CBB (Book2, Chapter9, prop10)

Y.

l‘ . select t_proposal (Book2,.0k, proplO)

a,ctlvate proposal (Chapterg Book2, prop10, Luuk as wrltlng edltor)

) . modlfy BB sys(ChapterQ Chapter9 modified_initial problem prop10)
(31) '

the activation of a prapasal for the modification the'initial’

\‘
. ' put_on_BB (Chapter9, wtite_chaptet9, modified_initial_problem} -
E’ update HlstoryLlst(Chapter9 work_on_contents ohapter9
o . ‘P4: sent to parent:
‘5 proposal change setup chapter)
g - >
k=) . update HistoryList (Chapter9 work on_contents, chapter9 .
g : ‘P4: change setup of chapter (P6),
solved) ‘
Lo A >
— ' ! ' ' ' ' ' update HistoryList (Book2, write_chapter9,

‘P3: Chapter 9: change setup of. ohapter (P4)

solved)

Fig 4.16 eventtrace step 8

28/8/97 Blackboard Systems in SOCCA 82

Part IV: Application of the given example

4.5.9

systemChapter 9.

Step 9: ParenBook 2 formulates a second problem for BB-

This final step is not explicitly described in the given example. It is worked out tondérate an
interesting feature of the Blackboard model that is not yet described in one of tlhepreteps.

BB-sys Process Creation

BB

| P1: create new process |

I P2: create new Process Model I

Proposals
History

|
19940901
OP2: create Process Model step 8 (P12)
solved
CP2: create Process Model step 9 (P13)
solved

BB

BB-sys Book 2

>

@ As coordinator

CKS

KSs
| P6: write round 2 | @ As member
@ As process As
N creator Proposals 1
|
As Histor A
:@ Process History | » As member
Model | N
creator 19940901
CP3: Chapter 9: A
info Change setup chapter 9 (P4) As ge_neral
< ~ co-editor
solved A
oP2: Cha_pterg: ¢ As technical
write chapter 9 (P3) ~ support
- result Chapter 9 (R9)
) solved
CP2: write round 1 (P2)
solved
CP1: review round 1 (P5)
soived |
CP1: write round 2 (P6)
unsolved
CP6: Chaptgr 9 ‘\
rewrite chapter 9 (P7) 4 As leading
unsolved ~
CBB
CKS As controlling |
result general editor |
Chapter 9
activate
info | new problem
BB-sys Chapter 9 +
BB
P7: rewrite chapter 9 first time | KS
S
A
Proposals ~
--------------- As
History Author
A
| @
19940901 A g
CP4: sent to parent: As
proposal change setup of chapter Author
CP4: change setup of chapter (P6))
e o)
CP4: write chapter sections (P7), As
solved -
19940928 writing
OP4: work on contents chapter 9 (P4), editor
solved
CP1: write chapter 9 (P1),
solved
CPO: rewrite chapter 9 first ime (P7)
unsolved
CBB
EAN
@ As controlling editor
CKS

BB

| P1: make Book2 |

KSs

Fig 4.17 process model step 9

general editor

28/8/97

Blackboard Systems in SOCCA

83

Part IV: Application of the given example

Chapter 9has now solved the initial problemrite chapter Sand put the result on the CBB of the
parent,Book2

The result is accepted and put on the BBobk 2 Based on the result @hapter 9 the subproblem
write round 1is now solvedBook 2now starts up the review of chapter 9 by creating a new
subproblem, nameeview round 1As the given example relates no details of the review of chapter
9, this subproblem ahake Book2s not worked out any further.

Whenreview round Iis solved, a new subproblemwfite Book2 namedwrite round 2is started.
write round 2has a new subproblerawrite chapter 9 first timewhich is to be the new ‘initial’
problem ofChapter 9

In this way, the result d@hapter 9is modified byBook 2andChapter 9in turn.

In section (32) of the event trace of steB&pk 2puts the new ‘initial’ problem on the BB of
Chapter 9

outside BB_sys KS | CKS | BB CBB __.
g e B " 23 g o 8 E g 1 3 % Ig%
17} -] o > c c o 2 g
S T il b 2 §o 32 50 2 82 B 85 228
58 E8 E8 &% BE s¢ 8 &6 2& 28 &R T5 340 &% €8s

Y

- select_problem (Book2, ok, write_round2)

N A

- put_on_CBB (Book2, Book2, prop11:)

N A

: : select _proposal (Book2, ok, prop1l)

act|vate _proposal (Book2 Book2 propl1, JC as leading editor)

(32

<

- mod|fy BB sys(Chapter9 Book2 rewme _chapter9_first_ t|me)

>
>

put on BB (Chapter9, wme round2 rewrite_chapter9_first tlme)

update HistoryList (Chapterg Wr|te round2 ‘PO: rewrite chaptergflrst time (P7),
unsolved)

>
>

. update HistoryList (Book2, write_round2, ‘P6: Chapter 9:
. rewrite chapter 9 first tlme (P7)
- : unsolved)

__ The parent BB-system Book 2 puts a new problem
on the BB of child-BB-system Chapter 9

Fig 4.18 Eventtrace step 9

28/8/97 Blackboard Systems in SOCCA 84

Part V: Conclusions and further research

Part V: Conclusions and further research

Summarising, it can be concluded that non-automated Blackboard Systems can be modelled
successfully in SOCCA.

By applying the Blackboard System to a ‘real-life’ example, it was demeeii@at the proposed
Blackboard System is fit to model even complex human collaboration processes. filegpsooess
models, that were created at fixed points in time, clearly visualise theiemadutthe Blackboards by
means of changes to the problems on the Blackboards and by means of changes to the Blackboard
Systems involved. In the course of the complete process of the collaborating wfithe book,
several different Blackboard Systems were generated of which somesweirgated later.

In the event traces, the communication between the objects in their problem-sciiviityg ia

outlined. This way, the actual realisation of evolution is visualised.

Naturally, this evolution can also be visualised in other ways, depending on the typero&tidor
that is to be illustrated.

In the course of the design of the Blackboard-System, some interesting featuwesaafbehaviour
were detected.

The notion of human roles is very important when humans are involved in processes. Thergfine
of human roles can sometimes clarify the human behaviour that is associated Wwithémerole.

If the relevant, distinct roles of a human can be identified, even human behaviour caunladiby
means of a Blackboard System. The control of the Blackboard System will beerepdelsy the

human part that personifies the Control Knowledge Source. The coordination between the human
roles is the responsibility of the Control Knowledge Source.

If human behaviour in relation to (evolving) human collaboration processes is to be thatiedle
human behaviour or the coordination of the different human roles has to be modelled moreyexplicitl
Also the use of multiple control of a Blackboard System needs to be studied further.

As the design of the Blackboard System emphasises its reproductiveness andhbaication
between the systems, the evolution on the Blackboard itself remains rglatidelrexposed.
Especially when Blackboard Systems are used to investigate specsabthsenan collaboration
processes, this evolution may need more refinemen

28/8/97 Blackboard Systems in SOCCA 85

References

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Robert Engelmore and Tony Morgalackboard SystemsAddison Wesley Publishing
Company, 1988

Promoter,Software Process Modelling and Technolofygthony Finkelstein, Jeff Kramer and
Bashar Nuseibeh (eds.), Research Studies Press LTD., Taunton, England, 1994

Promoter,Software Process: Principles, Methodology, Technoldggn Claude Derniame,
A. B. Kaba and Brian Warboys (eds.), publisher and date of release not yet known

Gregor Engels and Luuk Groeneweg8@®CCA: Specifications of Coordinated and Cooperative
Activities University of Leiden, Department of Computer Science, 1993

Luuk GroenewegerRarallel Phenomena 1-14niversity of Leiden, Department of Computer
Science, Technical reports, 86-20, 87-01, 87-05, 87-11, 87-18, 87-21, 87-29, 87-32, 88-15,
88-17, 88-18, 90-18, 91-19, 1986-1991

Allen Newell, Some problems of the basic organization in problem-solving pregham
Proceedings of the Second Conference on Self-Organizing Systemts, M.C., Jacobi, G.T.,
and Goldstein (eds.), pp 393-423, Spartan Books, 1962

Daniel D. Corkill, National Science Foundation Phase | Final Repddtackboard Based
Collaboration Environment for Human Problem-SolvirBlackboard Technology Group,
Amherst, MA, 1996

Tineke de Bunje, Gregor Engels, Luuk Groenewegen, Aart Matsinger, Mark &{jhbeustrial
Maintenance Modelled in SOCCRhilips Research Laboratories and Leiden University,
Computer Science Department,

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser and D. Raj R€ddyearsay-II
speech- understanding system: Integrating knowledge to resolve unce@ntputing Surveys,
1980

28/8/97 Blackboard Systems in SOCCA 86

Appendix A

Appendix A: Identification of BB-systems and problems
of the given example

In this section, the BB-systems and their child-BB-systems and the problemsiasdiipsoblems of the
given example are outlined.

Fig A.1 represents all BB-systems involved in the given example. The B&ysysbcess Creatiois the
root-BB-system. The BB-syster®somotor MeetingandBook 2are child-BB-systems d¢frocess
Creation The BB-systemMemberl,....Member 2@andChapter 9 groure child-BB-systems of
Promotor MeetingFinally, Chapter 9is child-BB-system oBook 2.

Process Creation

Promotor Meeting Book 2

Member 1 Member 2 Member 26 Chapter 9 group Chapter 9

fig A.1. All BB-systems of the example

Every Blackboard system has its own tree of subproblems. The name of a Blackisbana iSyrinted at
the top of the tree. The root of the tree of subproblems is the ‘initial’ problem. If g&&yshas more
than one ‘initial’ problem, every ‘initial’ problem has its own tree of subproblems.

If a subproblem causes a child-Blackboard System, the name of the child-BB-sy/gtgtten below the
subproblem.

In fig A.2, the two initial problems of the root-BB-system and their subprocesspreeasnted.

The initial problem create new Process creates two new subproblems or proeessesgo through
agenda’ and ‘make Book2'.

‘go through agenda’ causes the new BB-sydteamotor Meetingand the subproblem ‘make Book 2’
causes the child-BB-systeBook 2

Fig A.2. also presents the subproblem®amotor MeetingandMember 1, Member 26
Finally fig A.3. presents the subproblemdaGifapter 9 groupBook2andChapter 9

28/8/97 Blackboard Systems in SOCCA 87

Appendix A

Process Creation

create new Process

go through agenda

make Book2

Promotor Meeting

Process Creation

Book 2

create new Process Model

create Process Model

create Process Model

create Process Model

create Process Model
step 1 step 2 step3 | 77777 step 9
Promotor Meeting
go through agenda
make decisions about Book2
make Book2? make decide decide make make
book roles Book2 tools book chapter
plan structure structure
|
| I 1
decide prepare prepare prepare decide
book book groups structure 1 or 2 sheets chapter
structure structure chapter 9 chapter 9 structures
Member1 Chapter 9 Chapter 9
Member2 group group
|
Member26
Member 1 Member 2 Member 26

prepare book structure

prepare book structure

concept book structure

prepare book structure

fig A.2. subproblems of the BB-systeriReocess Creation, Promotor MeetiagdMemberl,, Member 26

28/8/97

Blackboard Systems in SOCCA

88

Appendix A

Chapter 9 group

prepare structure chapter 9

C

hapter 9 group

prepare 1 or 2 sheets

determine strategy chapter 9 concept
o P sheets
[
[[I
decide choose formulate
using example example theorem
decide
formulate formulate h .
objection refutation integration
objection objections
in chapter
Book 2
make Book2
write review write review write review finish write
round 1 round 1 round 2 round 2 round 3 round 3 coherence introduction
write rewrite rewrite
chapter 9 chapter 9 chapter 9
first time second
Chapter 9 time
Chapter 9
Chapter 9
Chapter 9 Chapter 9 Chapter 9
write chapter 9 rewrite chapter 9 rewrite chapter 9
first time second time
inform organize work on
Jaques writing contents
chapter 9
how to]
prove change set up write chapter
theorem chapter sections
figA.3. Subproblems BB-systen@hapter 9 group, Book 2
28/8/97 Blackboard Systems in SOCCA 89

