
Trees and Texts

Omslag

Tekening: `Winterswijkse wilg' van Agatha Koers

Ontwerp: C�edilles, Amsterdam

Trees and Texts

Proefschrift

ter verkrijging van de graad van Doctor

aan de Rijksuniversiteit te Leiden,

op gezag van de Rector Magni�cus Dr. L. Leertouwer,

hoogleraar in de faculteit der Godgeleerdheid,

volgens besluit van het College van Dekanen

te verdedigen op woensdag 17 mei 1995

te klokke 16.15 uur

door

Paulien ten Pas

geboren te Vlissingen in 1966

Promotiecommissie

Promotor: Prof. dr. G. Rozenberg

Co-promotor: Dr. H.J. Hoogeboom

Referent: Prof. dr. A. Salomaa (Universiteit van Turku, Finland)

Overige leden: Prof. dr. W. Thomas (Christian-Albrechts-Universit�at Kiel, Duitsland)

Dr. T. Harju (Universiteit van Turku, Finland)

Prof. dr. G. Engels

Prof. dr. H.A.G. Wijsho�

Wie

een boom

tekent

laat

het weten

zien.

Jan Arends, `Lunchpauzegedichten', 1974.

Preface

This thesis consists of two parts, each consisting of three chapters, and an introduction. Each

of the chapters is a paper; however, the references from the papers have been collected at the

end of the respective parts. Chapters 1,2, and 4 are written in cooperation with A. Ehrenfeucht

and G. Rozenberg, Chapter 3 is written in cooperation with A. Ehrenfeucht, J. Engelfriet, and

G. Rozenberg, and Chapters 5 and 6 are written in cooperation with H.J. Hoogeboom.

Chapter 1 (Properties of Grammatical Codes of Trees) has appeared in Theoretical Com-

puter Science 125 (1994) pp. 259{293, Chapter 2 (A Note on Binary Grammatical Codes

of Trees) will appear in Theoretical Computer Science, Chapter 3 (Grammatical Codes of

Trees and Terminally Coded Grammars) will appear in Fundamenta Informaticae, Chapter

4 (Context-free Text Grammars) has appeared in Acta Informatica 31 (1994) pp. 161{206,

Chapter 5 (Text Languages in an Algebraic Framework) will appear in Fundamenta Informat-

icae, Chapter 6 (Monadic Second-Order De�nable Text Languages) is a technical report of

Leiden University (submitted for publication) { a short version of this chapter has appeared

in the proceedings of the conference Mathematical Foundations of Computer Science 1994.

Since the chapters are written as independent journal contributions, several notions and

notations are introduced more than once.

The research presented here has been carried out within the framework of ESPRIT Basic

Research Action \ASMICS".

Contents

Introduction 1

Part I: Grammatical codes of trees : 3

Outline of Part I : 5

Part II: Text languages : 6

Outline of Part II : 7

References : 8

I Grammatical Codes of Trees 11

1 Properties of Grammatical Codes of Trees 13

Introduction : 13

Preliminaries : 14

1.1 Strict codes : 16

1.2 Binary codes : 30

1.3 Codes for node-labeled trees : 35

2 A Note on Binary Grammatical Codes of Trees 47

Introduction : 47

2.1 Grammatical codes of trees : 47

2.2 Binary grammatical codes with 4 letters : 50

2.3 Extensions of binary codes : 53

3 Grammatical Codes of Trees and Terminally Coded Grammars 61

Introduction : 61

Preliminaries : 63

3.1 Grammatical codes of trees : 64

3.2 Terminally coded grammars : 72

3.3 VSP grammars : 80

3.4 Classes of languages : 87

Bibliography of Part I 95

II Text Languages 97

4 Context-free Text Grammars 99

Introduction : 99

Preliminaries : 100

4.1 Labeled 2-structures : 102

4.2 Bi-orders and texts : 112

4.2.1 Labeled T-structures and bi-orders : 112

4.2.2 T-functions and texts : 120

4.3 Context-free text grammars : 123

4.4 Traditional normal forms : 127

4.5 The primitive normal form : 132

4.6 Shapely cft grammars : 135

4.7 Ambiguity and pumping : 140

4.8 Discussion : 143

5 Text Languages in an Algebraic Framework 145

Introduction : 145

Preliminaries : 147

5.1 Sigma-algebras : 148

5.1.1 Recognizable and equational sets : 149

5.2 Texts and text languages : 152

5.2.1 Texts and bi-orders : 152

5.2.2 Hierarchical representation of texts : 153

5.2.3 Text grammars : 156

5.3 An algebra of texts : 158

5.4 Recognizable text languages : 160

5.5 Comparing text, word, tree languages : 165

5.6 Closure properties : 169

6 Monadic Second-Order De�nable Text Languages 175

Introduction : 175

6.1 Texts and trees : 177

6.2 Mso de�nable text languages : 180

6.3 Recognizable and right-linear text languages : : : : : : : : : : : : : : : : : : : 186

6.4 Discussion : 189

6.4.1 The r-shape of a 2-structure : 191

Bibliography of Part II 195

Samenvatting 199

Curriculum Vitae 203

Introduction

One of the central notions in computer science is that of a tree, in particular that of a (directed)

ordered tree. As Knuth puts it ([12]), trees are the most important nonlinear structures

arising in computer algorithms. In general, any hierarchical classi�cation scheme leads to a

tree structure.

In formal language theory, ordered trees function as syntactic structures of words; such

a syntactic structure expresses the syntactic relationships between various parts of a word.

Knowing the syntactic structure of a word allows one to give a semantical interpretation of

the word.

Classically, the syntactic structure of a word is determined by an (unambiguous) grammar

the language of which contains the given word. Thus, a context-free grammar de�nes a

language, and it assigns to every word in the language a syntactic tree, viz. its derivation tree.

In the framework given by Chomsky, this tree is the deep structure of the word ([3]), from

which its meaning can be derived. Since such a syntactic tree is determined by a grammar,

we will also call it the grammatical tree structure of the word.

Clearly, a word belongs to many di�erent languages, and so it may have many di�erent

grammatical tree structures. In this thesis, we are interested in the situation where each

separate word has an \individual", a priori available, syntactic structure, which is independent

of any language generating device. Then, for a grammar de�ning a set of such \structured"

words, we require that for every generated word, the grammatical structure assigned to it

by the grammar matches its individual syntactic structure. In this context a grammar may

be seen as a de�nition of similarity of individual syntactic structures of the words from its

language.

The two parts of this thesis represent two di�erent approaches within this set-up:

A. implicit: the individual syntactic tree can be deduced from the word itself, or

B. explicit: the word is equipped with an additional structure, which determines its indi-

vidual syntactic tree.

Let us �rst discuss the approach A. We consider a language such that each of its words

\contains" an encoding of its individual syntactic tree (which is an unlabeled ordered tree). If

this language is generated by a context-free grammar G, then for every word its grammatical

tree, i.e., its unlabeled derivation tree in G, should be equal to its individual syntactic tree.

One may expect that such a grammar has a simple parsing algorithm, and hence that a

language with the above property can be e�ciently recognized.

1

2 Introduction

An example of such a situation is a parenthesis language (see, e.g., [14]), consisting of

words over an alphabet � [f(;)g, where the parentheses inside every word determine an

unlabeled ordered tree \on top of" the word. We do not view the parentheses as additional

structure on a parenthesis-free word, but as part of the word { the parentheses are just labels

occurring at certain positions in the word. A parenthesis grammar G, with productions of the

form A! (w), generating a parenthesis language satis�es our requirement that the unlabeled

derivation tree in G of a word equals the tree de�ned by the parentheses inside the word.

In a generalization of this idea, every unlabeled ordered tree is encoded into a code-word

over an arbitrary �nite alphabet, i.e., an alphabet without explicit pairs of parentheses. This

code-word must be recoverable from the word that is generated by the grammar. Since the

encoding of trees we use is applied to derivation trees, it is natural to require the following

property: when a production is applied, i.e., when children are added to a leaf of the tree,

then the code-word for the new tree can be obtained by locally altering the code-word for the

original tree.

Such a property is guaranteed if one encodes trees in a grammatical way, using \gram-

matical codes of trees". In Part I of the thesis we study these codes. Grammatical codes are

interesting in itself as an elegant way of coding trees into strings. But we will also use these

codes to de�ne a class of context-free grammars satisfying our basic requirement: the syntactic

tree can be deduced from the word itself. More precisely, for every word its syntactic tree is

obtained by applying a projection followed by a decoding of the so obtained code-word. The

parenthesis grammars form a subclass of this class of grammars.

The idea of the approach B is to generate objects each of which consists of a word equipped

with an additional structure, that can be used to construct the individual syntactic tree on

top of the word.

To start with, the additional structure may be an explicit tree. We discuss two known

examples of such a situation.

Tree adjoining grammars (TAGs) are designed by Joshi et al. ([11]) for the purpose of

describing natural languages. Starting from a base set of elementary trees, larger trees are

obtained by substituting subtrees for inner nodes. A sentence is generated by a TAG if it is

the yield of a tree generated by the TAG. In our terminology, this tree can be seen as the

\individual syntactic structure" of the sentence. The meaning of a sentence generated by a

TAG is supposed to be obtained from its \derivation structure"(see [11]). This derivation

structure is the \grammatical tree structure" assigned to the sentence by the TAG. The

situation here is more general than our approach, since the derivation structure is not equal

to the generated tree, but implicitly characterizes it.

Regular tree grammars ([10]) generate trees, where in one generation step a subtree is

substituted for a leaf. The word languages generated by regular tree grammars, obtained

by taking the yields of generated trees, are precisely the context-free languages. In fact,

every context-free grammar G can be interpreted as a regular tree grammar G

0

such that

G

0

generates precisely the (unlabeled) derivation trees of G. Thus, \grammatical trees", i.e.,

derivation structures assigned by the grammar, coincide with \individual syntactic trees", i.e.,

the objects in the generated tree language.

Grammatical codes of trees 3

In the cases of TAGs and regular tree grammars, the additional structure for a word is a

tree. Suppose now that the additional structure is given by binary relations, or dependencies,

between various occurrences of (possibly di�erent) letters. This means that the object to be

generated is a graph rather than a tree.

There is an extensive theory of di�erent types of graph grammars, based on di�erent

substitution mechanisms (see, e.g., [8]). In general it will not be easy to obtain for every

graph generated by a graph grammar a grammatical tree structure that can also be de�ned

independently of the grammar in terms of the graph itself. In Part II of the thesis we consider

speci�c graphs, called \texts", for which this can be done. As is the case for regular tree

languages, the underlying word languages generated by the corresponding grammars are the

context-free word languages.

Texts are close to words, in the sense that they are obtained from words by a simple

generalization. More precisely, a text is a labeled domain with two linear orders on it. Note

that a word is a labeled domain with a single linear order on it, and so a text is a word with

an additional linear order of its (labeled) domain.

What kind of information can be described by a text? One can think of a situation where

the �rst order gives the actual order in which information is given, and the second order

reorders the information in such a way that it becomes easier to process. E.g., in the case

of programming languages, the �rst order may give the sequence of statements composing a

program, while the second order gives the order in which these statements should be evaluated.

Also, for natural languages, the �rst order may represent the word order from a given sentence

and the second order gives another order of the words satisfying certain logical properties; e.g.,

an adjective modifying a subject is put before that subject in the second order (whereas, e.g.,

in French, in the �rst order it may come either before or after its subject).

The additional structure of a word in a text, viz. the second linear order, determines a

tree. This tree is the individual syntactic structure associated with the text. It should be

stressed here that such a tree is more general than the ordered trees considered until now {

the di�erence is explained in this introduction later on.

The next step of our methodology is to have a notion of \text grammar" that assigns

grammatical tree structures to texts. This is achieved by a straightforward generalization to

texts of the notion of context-free word grammar. Following our approach, the derivation

trees obtained within such a context-free text grammar should be equal to the syntactic trees

as de�ned by the additional linear orders of the generated texts. In Part II of the thesis we

consider the languages of texts obtained in this way.

We now continue our introductory explanation for each part of the thesis separately.

Part I: Grammatical codes of trees

Grammatical codes of trees are introduced in [5]. In particular a subclass of these codes, called

strict codes, is studied there. We recall now brie
y the basic concepts from [5]. A code (of

trees) is an injective function from the set of all chain-free ordered trees to words over a �nite

alphabet (we consider trees modulo isomorphism { injectivity means that non-isomorphic trees

get di�erent images; by chain-free we mean that every inner node has at least two children).

4 Introduction

r

�

�

�

�

�

Q

Q

Q

Q

Q

�

�

�

A

A

Ar

�

�

�

A

A

A

r r

�

�

�

A

A

A

r

r r r r r

�

�

�

A

A

Ar r

m

�

�

�

Q

Q

Q

�

�

A

A

`

3

�

�

A

A

m m

�

�

A

A

r

1

`

3

r

2
`

3

m

r

1

�

�

A

A

`

1

r

1

Figure 0.1: A tree t and its labeled version

Furthermore, a code is supposed to have the following properties:

� length-preserving: the length of the word coding a tree equals the number of leaves of

that tree, hence the code-word can be seen as a leaf-labeling of its frontier,

� local: given a tree t coded by the word x, the code-word of the tree obtained by adding

n children to the i'th leaf of t is obtained by substituting a word of length n for the i'th

letter of x.

A length-preserving and local code is called a grammatical code. This is because the local

function de�ning for each letter a and each n � 2 the word of length n that must be substituted

for a determines the production set of a grammar.

The grammars that are used for this purpose are unlimited OS systems. Such a system is

like a context-free grammar except that there is no distinction between terminals and non-

terminals, and it may have in�nitely many productions. Moreover, in order to correspond

exactly to a code, an unlimited OS system must be unambiguous and such that for each letter

a and for each n � 2 there is precisely one production of length n for a. The code-word for a

tree t is then the yield of the (unique) derivation tree that has t as its underlying tree. E.g.,

the unlimited OS system with axiom m and productions

`

1

! `

2

m

k

r

1

; m! `

3

m

k

r

1

;

`

2

! `

2

m

k

r

2

; r

1

! `

1

m

k

r

1

;

`

3

! `

3

m

k

r

2

; r

2

! `

1

m

k

r

2

;

for all k � 0, gives a grammatical code. For the left tree t in Figure 0.1, the corresponding

derivation tree is the right tree, and hence the code-word for t is `

3

r

2

m`

3

m`

1

r

1

r

1

.

Strict codes are de�ned by certain consistency properties on the occurrences of subwords

in a code-word, and by the condition that the code is rich, meaning that every word must

occur as a subword of some code-word. The consistency properties of a strict code ensure its

injectivity, and hence the unambiguity of the corresponding grammar.

The example grammar given above corresponds to a strict code. The grammars corre-

sponding to strict codes can be characterized by certain demands on the alphabet and the

production rules. One of these demands is that such a grammar uses exactly six letters. Note

that any length-preserving code must use at least six letters, since the number of trees with

n leaves exceeds 5

n

for large enough n (see, e.g., [12]). Hence in this sense, strict codes are

minimal. This minimality follows from the richness condition.

Grammatical codes of trees 5

Outline of Part I

Part I consists of three chapters. The �rst two chapters continue the investigation of basic

properties of grammatical codes of trees, and in the third chapter these codes are related to

context-free grammars.

The �rst section of Chapter 1 establishes properties of a code that are weaker than the

properties of strict codes, but already ensure the unambiguity of the corresponding grammar.

This leads to the notions of marked and nonoverlapping codes.

For a marked code it is required that the borders of right-hand sides of productions from

the corresponding grammar are \marked", and hence distinguishable within a code-word; in

the example given above, the letters `

1

, `

2

, and `

3

mark left borders, and the letters r

1

,

r

2

mark right borders. Due to the marking of the borders, bottom-up parsing for such a

grammar is easy. It follows that the grammar is indeed unambiguous and moreover bottom-

up parsing corresponds to decoding. It is shown that marked codes with a minimal alphabet

(of 6 letters) are precisely the strict codes. In a non-overlapping code, the right-hand sides of

the corresponding grammar do not overlap, which implies that also in this case, right-hand

sides can be recognized within a code-word. The class of non-overlapping codes contains the

marked codes, as well as minimal codes (with 6 letters) that are not strict.

The third section of Chapter 1 concerns codings of node-labeled trees. The grammatical

code used to code the underlying tree de�nes a \direction function", which determines for

each inner node a path to a leaf, where the label of the inner node is stored. Hence a leaf

of a node-labeled tree is labeled by a triplet consisting of the label of the leaf itself, a code-

letter of the underlying grammatical code, and, if present, a stored label of an inner node.

The so obtained coding of node-labeled trees into words over an alphabet of such triplets

is then length-preserving, and local in the sense that when adding a subtree at a leaf, the

corresponding code-word is obtained by substituting a word for the triplet at that leaf.

The special case of binary trees (which are chain-free, and hence full) is considered in the

second section of Chapter 1. An alphabet of 4 letters (rather than 6 letters) su�ces here {

strict binary codes have two \left" letters marking left borders of right-hand sides, and two

\right" letters marking right borders. Again, minimizing marked binary codes leads to strict

binary codes.

It is shown in Chapter 2 that every minimal grammatical code for binary trees (i.e., a

grammatical code that uses 4 letters) is strict. Also, a way of extending binary codes to codes

for arbitrary trees is presented. This yields a class of codes for arbitrary trees incomparable

with the classes of strict, marked, and nonoverlapping codes.

According to our approach, we consider context-free grammars such that the grammatical

tree structures of generated words are equal to the individual syntactic structures of those

words. We use marked codes to code the individual syntactic structures. This leads to

the notion of terminally coded grammars, which are investigated in Chapter 3. These are

context-free grammars for which there exists a projection from the terminal alphabet onto a

set of code-letters such that for every generated word, the code-word for any of its unlabeled

derivation trees equals the projective image of the word. Then the grammar (unlimited OS

system) that de�nes the marked code is \contained" in the terminally coded context-free

6 Introduction

grammar. The simple decoding mechanism for marked codes provides the basis of an e�cient

parsing algorithm for terminally coded languages. In fact, terminally coded grammars are

closely connected to a subclass of the simple precedence grammars ([1]). Also, terminally

coded languages have a decidable equivalence problem. Although the class of terminally coded

languages seems rather restricted, it nevertheless turns out that every context-free language

is the projection of a terminally coded language.

Part II: Text languages

As explained already, a text is a word equipped with an additional linear order on its labeled

domain. Formally, a text is de�ned as a triple � = (�; �

1

; �

2

) such that � is a labeling function,

and �

1

and �

2

are linear orders on the domain of �. Usually, we abstract from the elements

of the domain; one may assume then that the �rst order equals (1; 2; : : : ; n) and thus view

the text � as the word �(1)�(2) : : : �(n) together with the additional linear order �

2

on the

domain f1; : : : ; ng.

This notion of text was introduced in [7], as a representation of speci�c \2-structures". A

2-structure is a directed edge-labeled, loop-free graph such that between every pair of distinct

nodes there is precisely one (directed) edge. 2-structures are introduced in [6], where also

the theory of hierarchical representations (decompositions) for 2-structures is developed. This

theory is closely related to the theory of modular decompositions of graphs (see, e.g., [13, 9]). It

provides a way of assigning node-labeled trees to a 2-structure. In particular, each 2-structure

has a unique tree representation of a speci�c form, called the \shape" of the 2-structure, from

which all other tree representations can be derived.

Through the correspondence between texts and certain 2-structures, the results on de-

composition trees may be transferred to texts. The tree-like structure used to represent a

text hierarchically is a so-called leaf-labeled bi-ordered tree, which generalizes the concept of

a leaf-labeled ordered tree often used to give the syntactic structure of a word. A tree is

bi-ordered if with each inner node two linear orderings of its children are associated. These

local orderings determine then two orderings on the leaves of the tree, and hence, together

with the leaf-labeling function, a text on the leaves.

A bi-ordered tree representing a text describes a modular decomposition of the text, which

coincides with the decomposition as given by the theory of 2-structures. In general, a text may

have several such decomposition trees. If a text has no non-trivial decomposition, then it is

called primitive, and the unique (trivial) tree representing such a text consists of root and leaves

only, where the orderings at the root are the orderings of the text itself. For non-primitive

texts, it is natural to look for a \maximal" decomposition. Such a maximal decomposition does

not have to be unique. However, it follows from results on the decomposition of 2-structures

that maximal decompositions of a text di�er only by certain binary subtrees. Hence, by not

decomposing the parts represented by these binary subtrees one obtains for each text a unique

bi-ordered tree, which is the \shape" of the text; by decomposing every such part into a

\right-most" binary subtree one obtains for each text a unique maximal decomposition, called

the \r-shape" of the text.

Text languages 7

s

�

�

�

�

�

@

@

@

@

@

-

s

�

�

�

�

A

A

A

A

�

s

��

�

�

�

�

A

A

A

A

�

��

1

a

�

��

2

a

�

��

3

b

�

��

4

b

�

��

5

a

s

�

�

�

�

�

@

@

@

@

@

-

s

�

�

�

�

A

A

A

A

�

s

�

�

�

�

A

A

A

A

A

�

�

��

1

a

�

��

2

a

�

��

3

b

s

�

�

�

�

A

A

A

A

�

�

��

4

b

�

��

5

a

s

�

�

�

�

�

@

@

@

@

@

-

s

�

�

�

�

A

A

A

A

�

s

�

�

�

�

�

A

A

A

A

�

�

��

1

a

�

��

2

a

s

�

��

5

a

�

�

�

�

A

A

A

A

�

�

��

3

b

�

��

4

b

Figure 0.2: Three tree representations for the text � = (�; (1; 2; 3; 4; 5); (2; 1; 5; 4; 3))

For the text � = (�; (1; 2; 3; 4; 5); (2; 1; 5; 4; 3)), where �(1) = �(2) = �(5) = a; �(3) =

�(4) = b, three bi-ordered trees are given in Figure 0.2. The �rst ordering on children of

a node is the left-to-right order, the second one is indicated by arrows. The leftmost tree

is the shape of � , the middle tree is the r-shape of � , and the rightmost tree is a maximal

decomposition of � which is not the r-shape.

Thus, the additional linear order of a text determines an individual syntactic tree for the

text, which may be one of the above \natural" tree representations. Following our method-

ology, we consider context-free grammars for texts such that for every generated text the

derivation tree matches its syntactic tree. There are three candidates for this \natural" tree

representation: a maximal decomposition, the shape, and the r-shape. These alternatives lead

to di�erent classes of text languages. The obtained classes are well-behaved in the sense that

they admit characterizations in terms of universal algebra and second-order logic.

Outline of Part II

Part II consists of the last three chapters of this thesis.

In Chapter 4 we begin with an explanation of the relationships between texts and 2-

structures, and between tree representations for both of them. Subsequently, context-free text

grammars are introduced, which are direct generalizations of context-free word grammars.

Productions are of the form A ! � with A a nonterminal and � a text. Application of

such a production, say to a sentential form �

0

= (�

0

; �

0

1

; �

0

2

), amounts to substituting the text

� = (�; �

1

; �

2

) for an element of the domain of �

0

with label A, where �

1

is substituted into

�

0

1

, and �

2

is substituted into �

0

2

.

While derivation trees in a context-free word grammar are node-labeled ordered trees,

derivation trees in a context-free text grammar are node-labeled bi-ordered trees. These deriva-

tion trees (without inner labels) are required to be either maximal decompositions, or shapes,

or r-shapes, corresponding to the three natural representations for texts.

It is shown that, given a context-free text grammar, one can decompose each text at the

right-hand side of a production, obtaining in this way an equivalent context-free text grammar

8 Introduction

such that every right-hand side of a production is a primitive text. Each derivation tree of

the so obtained grammar is a maximal decomposition of the generated text. Hence, requiring

that derivation trees are maximal decompositions yields the whole class of context-free text

languages.

Requiring that derivation trees are shapes of the generated texts leads to shapely grammars,

and their languages called shapely languages. The shapes of such a language have bounded

out-degree, which in general does not hold for a context-free text language. Hence not every

context-free text language is shapely. It is shown that the shapely languages are characterized

by the requirement that the shapes have bounded out-degree. Still every context-free word

language is the underlying word language of a shapely text language.

The case where derivation trees are required to be r-shapes is dealt with in Chapter 5.

First of all, an algebraic framework for text languages is given, leading to the de�nition of

equational and recognizable text languages. The equational text languages are precisely the

context-free ones, which supports the naturality of our notion of context-freeness. The main

result of Chapter 5 is that the recognizable text languages coincide with the \right-linear"

text languages, which are the languages generated by a context-free grammar the derivation

trees of which are precisely r-shapes. Recognizable text languages form a proper subclass

of the class of context-free text languages, and strictly contain the shapely languages. The

properties of the obtained classes of text languages are compared with those of the analogous

language classes in the case of trees and words.

Recognizable languages can be characterized in terms of monadic second-order logic for

structures such as words, trees, and traces (see [2, 4, 15, 16]). In Chapter 6 we obtain a similar

result for text languages, by using the known equivalence for tree languages. The major step

in the proof consists of showing that the construction of the r-shape from a given text is

expressible in monadic second-order logic. From this it follows that a formula de�ning a tree

language of r-shapes can be translated into a formula for the corresponding text language.

With the help of a similar (reverse) translation from text languages to tree languages, we

prove that a text language is recognizable if and only if it is de�nable by a formula in monadic

second-order logic.

The proof idea used here will in general not apply for arbitrary graphs instead of texts.

However, by looking closely at the properties on which the proof relies, it is possible to extend

this result to a speci�c class of graphs. These matters are discussed at the end of Chapter 6.

References

[1] A.H. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, Prentice

Hall, New Jersey, 1972.

[2] J.R. B�uchi, Weak second-order arithmetic and �nite automata, Zeitschrift f�ur Mathe-

matik, Logik und Grundlagen der Mathematik 6 (1960) 66{92.

[3] N. Chomsky, Aspects of the theory of syntax, M.I.T. Press, Cambridge, Massachusetts,

1965.

References 9

[4] J. Doner, Tree acceptors and some of their applications, Journal of Computer and System

Sciences 4 (1970) 406{451.

[5] A. Ehrenfeucht and G. Rozenberg, Grammatical codes of trees, Discrete Applied Mathe-

matics 32 (1991) 103{129.

[6] A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures, Parts I and II, Theoretical

Computer Science 70 (1990) 277{342.

[7] A. Ehrenfeucht and G. Rozenberg, T-structures, T-functions, and texts, Theoretical Com-

puter Science 116 (1993) 227{290.

[8] H. Ehrig, H.-J. Kreowski, and G. Rozenberg, eds., Graph Grammars and their Application

to Computer Science, Lecture Notes in Computer Science 532, Springer, Berlin, 1990.

[9] J. Engelfriet, T. Harju, A. Proskurowski, and G. Rozenberg, Characterization and com-

plexity of uniformly non-primitive labeled 2-structures, Technical Report 94-31 (1994),

Leiden University.

[10] F. Gecseg and M. Steinby, Tree Automata, Akademiai Kiado, Budapest, 1984.

[11] A. Joshi, L. Levy, and M. Takahashi, Tree adjunct grammars, Journal of Computer and

System Sciences 10 (1975) 136{163.

[12] D. Knuth, The Art of Computer Programming, vol.1: Fundamental Algorithms, Addison-

Wesley, Reading, Massachusetts, 1973.

[13] R. M�ohring and F.J. Radermacher, Substitution decomposition for discrete structures

and connections with combinatorial optimization, Annals of Discrete Mathematics 19

(1984) 257{356.

[14] A. Salomaa, Formal Languages, Academic Press, New York and London, 1973.

[15] J.W. Thatcher, J.B. Wright, Generalized �nite automata theory with an application to a

decision problem of second-order logic, Mathematical Systems Theory 2 (1968) 57{82.

[16] W. Thomas, On logical de�nability of trace languages, in Proc. ASMICS Workshop `Free

Partially Commutative Monoids', V. Diekert, ed., Rep. TUM I9002 (1990), TU M�unchen.

10 Introduction

Part I

Grammatical Codes of Trees

Chapter 1

Properties of Grammatical Codes of

Trees

Abstract

In this paper grammatical codes of trees are investigated. In particular it is shown

how to extend grammatical codes of trees to node-labeled trees, and the case of binary

trees (forests) is studied.

Introduction

Trees play an important role in many branches of science, among others in linguistics, mathe-

matics, and computer science. Linear notations, or linear codings, for trees are useful in many

applications and there are many methods for obtaining such codings (see, e.g., [12, 14]). The

notion of a strict code for trees has been introduced in [5] where it has been shown that strict

codes are grammatical (in a well-de�ned sense). The intrinsic feature of a strict code is that

the length of the word coding a tree t (according to a strict code) equals the number of leaves

of t, and so it can be considered as a labeling of the leaves of t by letters of the alphabet of

the code. It is also shown in [5] that, in order to code (the class of) all trees, a strict code has

to use precisely six letters; in linguistic terms this means that one needs precisely six letters

to code deep structures of words.

In this paper we continue the investigation of grammatical codes of trees, and in particular,

the investigation of strict codes.

In Section 1.1 we recall the notion of a strict code and we give an equivalent de�nition of

strict codes (through the notion of a marked code). Also, the notion of a composite category

(basic to parsing of strict codes) is discussed.

In Section 1.2 we consider the case of coding binary trees (or forests). In particular we

prove that there are 24 di�erent (non-isomorphic) strict codes for coding binary forests, and

one needs exactly four letters for such a code.

In Section 1.3 we demonstrate how to extend the notion of a strict code to node-labeled trees.

We give an axiomatization of such codes, and then we provide a combinatorial characterization

of them.

13

14 Chapter 1. Properties of Grammatical Codes of Trees

Preliminaries

We assume the reader to be familiar with the basic notions of graph theory, especially con-

cerning trees (see, e.g., [9, 12]) and the basic notions concerning context-free grammars (see,

e.g., [14]). In this section we recall some of these notions in order to establish the notation for

this paper, and we introduce some notions to be used in this paper.

For a set Z, #Z denotes its cardinality; ; denotes the empty set. For sets Y and Z, Y � Z

denotes the inclusion of Y in Z, and Y � Z denotes the strict inclusion of Y in Z.

N

+

denotes the set of all positive natural numbers.

For a function ' : X ! Y , dom(') denotes X and ran(') = fy 2 Y j y = '(x) for some

x 2 Xg. We consider only total functions.

For a sequence x, jxj denotes its length, �rst(x) denotes the �rst element of x, and last (x)

denotes the last element of x. For an 1 � i � jxj, x(i) denotes the ith element of x. A segment

of a sequence x is a sequence (x(i); x(i+ 1); : : : ; x(i+ k)), where 1 � i � i + k � jxj. These

notations carry over to words which are sequences of letters.

In this paper, by a tree we mean a nonempty rooted directed ordered tree without chains

(i.e., each inner node of t has at least two direct descendants).

Let t be a tree.

nd(t) denotes the set of all nodes of t, in(t) denotes the set of internal nodes of t, leaf (t)

denotes the set of leaves of t, hleaf i(t) denotes the sequence of all leaves of t ordered according

to the order of t, and root(t) denotes the root of t.

For an internal node v of t, ddes

t

(v) is the set of all direct descendants of v in t and

hddesi

t

(v) is the sequence of all direct descendants of v in t (i.e., the elements of ddes

t

(v)

ordered according to the order of t).

A path (from v

1

to v

n

) is a sequence of nodes (v

1

; : : : ; v

n

), n � 1, such that v

i+1

2 ddes

t

(v

i

)

for all i = 1; : : : ; n� 1. The path from v to w, where v;w 2 nd (t), is denoted by �(v;w), and

the set of nodes on this path is denoted by �(v;w). For v 2 nd(t), the level of v, denoted by

level (v), is j�(root(t); v)j�1; the depth of t, denoted by depth(t), is maxflevel (v) j v 2 leaf (t)g.

If x 2 leaf (t), then

x is a leftmost child if there exists v 2 in(t) such that x = �rst(hddesi

t

(v)), (we then write

x = left

t

(v)),

x is a rightmost child if there exists v 2 in(t) such that x = last(hddesi

t

(v)), (we then write

x = right

t

(v)),

x is a middle child if there exists v 2 in(t) such that x is not root(t) and x is neither a leftmost

nor a rightmost child.

For v 2 nd(t), sub

t

(v) denotes the subtree of t rooted at v; leaf (sub

t

(v)) is called the

contribution of v, denoted by contr

t

(v), and the ordered contribution of v, i.e., hleaf i(sub

t

(v)),

is denoted by hcontr i

t

(v).

If w is a segment of hleaf i(t), then

w is a sibling segment (of hleaf i(t)) if jwj = 2 and there exists v 2 in(t) such that w is a

segment of hddesi

t

(v), and

w is a complete segment (of hleaf i(t)) if there exists v 2 in(t) such that w = hddesi

t

(v).

Preliminaries 15

Two trees t and t

0

are isomorphic if there is a bijection � : nd (t) ! nd(t

0

) such that

�(root(t)) = root(t

0

) and for each v 2 in(t), if hddesi

t

(v) = (v

1

; : : : ; v

n

), then hddesi

t

0

(�(v)) =

(�(v

1

); : : : ; �(v

n

)).

For a subtree t

0

of t, t

r

t

0

denotes the tree that results from t by removing t

0

(if the

resulting tree has no chains), and t

b

t

0

denotes the tree that results by removing t

0

except its

root. If we remove several subtrees t

i

(i 2 I) from t, then we write t

b

S

i2I

t

i

(resp. t

r

S

i2I

t

i

)

for the resulting tree.

For 1 � i � #leaf (t) and n � 2, subs

t

(i; n) denotes the family of all isomorphic trees

resulting from t by adding n new nodes and making them the direct descendants of hleaf i(t)(i)

(which in the resulting tree becomes an internal node).

A cut of t is a set � � nd(t) such that, for each w 2 leaf (t), #(�(root(t); w) \ �) = 1. For

v 2 in(t), a cut of t below v is a cut � of t such that �(root(t); v) \ � = ;.

For a cut � of t, tree(t; �) denotes the tree t

b

S

v2�

sub

t

(v).

A binary tree is a tree in which each internal node has exactly two direct descendants

(recall that trees have no chains). A node-labeled tree t is a pair (t

0

; �), where t

0

is a tree and

� : nd(t

0

) ! � is a mapping, with � an alphabet. We say that t

0

is the underlying tree of t,

denoted by und (t), and � is the node-labeling function of t, denoted by lb

t

. The notation and

terminology concerning und (t) carry over to t. Also, yield (t) = lb

t

(v

1

) � � � lb

t

(v

n

) 2 �

+

, where

(v

1

; : : : ; v

n

) = hleaf i(t). In this paper, by a forest we mean a sequence of trees. All notions

concerning (node-labeled) trees carry over to (node-labeled) forests in the obvious way.

If we do not want to distinguish between isomorphic trees, then we can consider a selector

set (of trees) which is a set of trees T such that, for each tree t, there exists t

0

2 T isomorphic

with t, and, moreover, for all distinct t

1

; t

2

2 T, t

1

is not isomorphic with t

2

.

AnOS system is like a context-free grammar, except that it does not have terminal symbols.

Formally, an OS system is a triple (�; P; �), where � is the (�nite) alphabet of G, P � ����

+

is the set of productions, and � 2 � is the initial symbol. For (a; x) 2 P we use the notation

a! x. Note that we assume here that, for each production a! x 2 P , jxj � 2. An unlimited

OS system is an OS system with in�nitely many productions.

Let G = (�; P; �) be an (unlimited) OS system.

For words x; y 2 �

+

, y)

G

x means that y directly derives x (in G), y)

�

G

x means that

y derives x (in G), and y)

+

G

x means that y derives x (in G) in at least one step.

A sequence of words y = x

0

; x

1

; : : : ; x

n

= x, n � 0, such that x

i�1

)

G

x

i

for i = 1; : : : ; n,

is a derivation of x from y (in G).

For a node-labeled tree t, and v 2 in(t), the production for v in t, denoted by prod

t

(v),

is the production lb

t

(v) ! lb

t

(v

1

) � � � lb

t

(v

n

), where (v

1

; : : : ; v

n

) = hddesi

t

(v). Then the set of

productions for t, denoted by Prod(t), is the set fprod

t

(v) j v 2 in(t)g.

For x 2 �

+

and a 2 �, a derivation tree of x from a (in G) is a node-labeled tree t such that

lb

t

(root(t)) = a, yield(t) = x, and Prod(t) � P . If a = �, then we say that t is a derivation

tree of x (in G). A node-labeled tree is a derivation tree (in G) if it is a derivation tree of

some x 2 �

+

. As usual, for a 2 � and x 2 �

+

, there is a derivation tree of x from a in G i�

a)

�

G

x.

Whenever the OS system G is clear from the context, we use) and)

�

rather than)

G

and)

�

G

.

16 Chapter 1. Properties of Grammatical Codes of Trees

An (unlimited) OS system G = (�; P; �) is backwards deterministic if a ! x 2 P and

a

0

! x 2 P imply that a = a

0

. It is deterministic if, for each a 2 �, there exists exactly one

production a! x 2 P .

In this paper, we assume that each OS system G = (�; P; �) is reduced, i.e., for each a 2 �

there are x; y 2 �

�

such that �)

�

xay (a is reachable). It should be clear that for each OS

system (�; P; �) an equivalent reduced OS system can be constructed by removing from � all

letters that are not reachable and from P all productions in which these letters occur.

1.1 Strict codes

In this section we consider grammatical codes for trees. First we present \strict codes", which

were introduced in [5]. Then we give an alternative way to obtain strict codes by introducing

\marked codes". Finally, looking at marked codes as grammars, we consider the parsing of

these codes; this leads to the notion of a \non-overlapping code".

We begin by recalling the notion of a code and of a strict code, and we present some results

from [5] concerning strict codes.

De�nition 1.1.1 Let T be a selector set of trees, let � be a (�nite) alphabet, and let ' :

T! �

�

.

(i) ' is length-preserving if, for all t 2 T, j'(t)j = #leaf (t).

(ii) ' is local if there exists a mapping : � � (N

+

� f1g)! �

+

such that, for all t

1

; t

2

2 T,

where t

2

2 subs

t

1

(i; n) for some i 2 N

+

, n 2 N

+

� f1g, if '(t

1

) = xay with jxj = i� 1 and

a 2 �, then '(t

2

) = x (a; n)y.

(iii) ' is a code (of T) if ' is injective, length-preserving, and local.

Let ' : T! �

�

be a code. The value of ' for the one node tree in T is denoted by one

'

.

A mapping as above is called a local function of '. � is called the alphabet of ', denoted

by alph('). Note that one

'

and a local function of ' determine '.

From now on, T is a �xed but arbitrary selector set of trees. Also, we assume for each

code ' that for each a 2 alph(') there exist x; y 2 alph(')

�

such that xay 2 ran('); in other

words, we assume that a code uses all letters of its alphabet. Consequently, each code has a

unique local function.

De�nition 1.1.2 Let ' : T! �

�

be a code with local function .

(i) ' is sibling consistent if for all x 2 �

+

and all y; z 2 ran(') such that jxj = 2, y = y

1

xy

2

,

and z = z

1

xz

2

for some y

1

; y

2

; z

1

; z

2

2 �

�

with jy

1

j = i and jz

1

j = j,

(hleaf i('

�1

(y))(i+ 1); hleaf i('

�1

(y))(i+ 2)) is a sibling segment of hleaf i('

�1

(y)) i�

(hleaf i('

�1

(z))(j + 1); hleaf i('

�1

(z))(j + 2)) is a sibling segment of hleaf i('

�1

(z)).

(ii) ' is completeness consistent if

(1) for all x 2 �

+

and all y; z 2 ran(') such that jxj = n, y = y

1

xy

2

, z = z

1

xz

2

for some

n � 2, y

1

; y

2

; z

1

; z

2

2 �

�

with jy

1

j = i and jz

1

j = j,

(hleaf i('

�1

(y))(i+ 1); : : : ; hleaf i('

�1

(y))(i+ n)) is a complete segment of hleaf i('

�1

(y)) i�

(hleaf i('

�1

(z))(j+1); : : : ; hleaf i('

�1

(z))(j+n)) is a complete segment of hleaf i('

�1

(z)), and

1.1. Strict codes 17

(2) ' is locally injective, i.e., for all a; b 2 � and all n 2 N

+

� f1g, (a; n) = (b; n) implies

a = b.

(iii) ' is rich if for each x 2 �

+

there exist y; z 2 �

+

such that yxz 2 ran(').

(iv) ' is strict if ' is sibling consistent, completeness consistent, and rich.

A strict code induces a special kind of partition of its alphabet.

De�nition 1.1.3 Let ' be a code and let a 2 alph(').

(1) a is left (w.r.t ') if there exist x 2 ran(') and 1 � i � jxj, such that x(i) = a and

hleaf i('

�1

(x))(i) is a leftmost child.

(2) a is right (w.r.t ') if there exist x 2 ran(') and 1 � i � jxj, such that x(i) = a and

hleaf i('

�1

(x))(i) is a rightmost child.

(3) a is middle (w.r.t ') if there exist x 2 ran(') and 1 � i � jxj, such that x(i) = a and

hleaf i('

�1

(x))(i) is a middle child.

We use L

'

, R

'

, and M

'

to denote the sets of left, right, and middle letters respectively.

Proposition 1.1.4 Let ' be a strict code.

(1) fL

'

;M

'

; R

'

g is a partition of alph(').

(2) Either #M

'

= 1, #L

'

= 3, and #R

'

= 2, or #M

'

= 1, #L

'

= 2, and #R

'

= 3.

By Proposition 1.1.4, for each strict code ', #alph(') = 6. For convenience, in what

follows we restrict ourselves to the case that one

'

= m, where fmg = M

'

{ from now on m

will be a reserved symbol used in this way.

De�nition 1.1.5 Let ' : T ! �

�

be a code, and let x 2 �

+

, where jxj = n. x is complete

(w.r.t. ') if, there exist y 2 ran(') and i � 0, such that y(i + 1) � � � y(i + n) = x, and

(hleaf i('

�1

(y))(i+ 1); : : : ; hleaf i('

�1

(y))(i+ n)) is a complete segment of hleaf i('

�1

(y)).

We use C

'

to denote the set of all complete words (w.r.t. ') of �

�

. Clearly, by De�ni-

tion 1.1.3, C

'

� L

'

M

�

'

R

'

. If ' is a strict code, then C

'

= L

'

M

�

'

R

'

(see [5, Lemma 2.7]).

The following lemma was stated for strict codes in [5, Lemma 3.1], where it was used to prove

Proposition 1.1.4(2). Here we give it for arbitrary codes that are locally injective.

Lemma 1.1.6 Let ' be a code, and let be the local function of '.

(i) For each a 2 � and each n � 2, j (a; n)j = n.

(ii) If ' is locally injective, then is a bijection from alph(')� (N

+

� f1g) onto C

'

.

Proof.

(i) Follows from the fact that ' is length-preserving and uses all letters of alph(').

(ii) Since ' uses all letters of alph(') and ' is local, it follows that, for each a 2 � and each

n � 2, (a; n) 2 C

'

. Since ' is local, each complete word is of the form (a; n) for some

a 2 � and n � 2. Hence is onto C

'

.

Suppose that (a; n) = (b;m) for some a; b 2 alph('), and n;m 2 N

+

� f1g. By (i)

n = j (a; n)j = j (b;m)j = m. Since is locally injective, it follows that a = b.

Hence is a bijection from alph(')� (N

+

� f1g) onto C

'

. 2

Strict codes can be described in terms of unlimited OS systems.

18 Chapter 1. Properties of Grammatical Codes of Trees

De�nition 1.1.7 Let G = (�; P; �) be an unlimited OS system.

(1) G is semi-deterministic if, for each a 2 � and each n � 2, there exists exactly one

production a! x in P such that jxj = n.

(2) G is strict if G is semi-deterministic, backwards deterministic, and there exists a partition

of � into three sets L;M;R such that M = f�g, either #L = 3 and #R = 2, or #L = 2 and

#R = 3, and for each production a! x 2 P , x 2 LM

�

R.

In [5] it was shown that there is a one-to-one correspondence between strict codes and

strict unlimited OS systems (see Proposition 1.1.12). Since we consider also other kinds of

codes than strict codes in this paper, we would like to have such a correspondence between

arbitrary codes and unlimited OS systems. Therefore, we state the results of [5] concerning

this correspondence in more general terms here.

With each code we can associate a semi-deterministic unlimited OS system whose produc-

tions are given by the local function . Conversely, with each semi-deterministic unlimited

OS system we can associate a \code", by taking the yield of a derivation tree as the image of

its underlying tree. Formally, this is not a code, since it might not be injective. Accordingly,

we give de�nitions not in terms of codes but in terms of local and length-preserving mappings.

All the same, for such mappings we use the same terminology as for codes.

De�nition 1.1.8 Let ' : T! �

�

be a length-preserving and local mapping, and let be the

local function of '. The unlimited OS system induced by ', denoted OS('), is the unlimited

OS system (alph('); P; one

'

), where P = fa! x j (a; n) = x for some n � 2g.

De�nition 1.1.9 Let G = (�; P; �) be a semi-deterministic unlimited OS system, and let

t 2 T.

(i) The node-labeling of t induced by G is the mapping � : nd (t)! � de�ned as follows:

�(root(t)) = �;

if v 2 in(t) is such that hddesi

t

(v) = (v

1

; : : : ; v

k

) for k � 2, and �(v) = a, then �(v

i

) = x(i)

for each 1 � i � k, where x is such that a! x 2 P and jxj = k.

(ii) The mapping induced by G, denoted COD

G

, is the mapping of T into �

�

de�ned as follows:

for t 2 T, COD

G

(t) = yield ((t; �)).

Lemma 1.1.10

(1) For each length-preserving and local mapping ', OS(') is a semi-deterministic unlimited

OS system and COD

OS(')

= '.

(2) For each semi-deterministic unlimited OS system G, COD

G

is length-preserving and local,

and OS(COD

G

) = G.

(3) For each length-preserving and local mapping ', ' is locally injective i� OS(') is backwards

deterministic.

Proof.

(1) By De�nition 1.1.1(ii), OS(') is semi-deterministic. By the construction of OS('),

COD

OS(')

(t) = '(t) for each t 2 T.

(2) Clearly, COD

G

is length-preserving. Let G = (�; P; �), and let be the mapping de�ned

as follows : for each a 2 � and each n � 2, (a; n) = x such that a ! x 2 P . Since

1.1. Strict codes 19

obviously satis�es De�nition 1.1.1(ii), COD

G

is local, and is the local function of COD

G

.

Clearly, one

COD

G

= �. It follows that OS(COD

G

) = G.

(3) Follows immediately from the de�nition of the productions in OS('). 2

Remark 1.1.11 We use the following notations : for a tree t 2 T and a local and length-

preserving mapping ', t['] denotes the node-labeled tree (t; �), where � is the node-labeling

induced by OS('). Hence lb

t[']

denotes �. Note that t['] is a derivation tree in OS('). In

fact, it is the unique derivation tree with t as its underlying tree. Hence, yield (t[']) = '(t).

For technical reasons, when we consider OS systems, we will assume that the underlying

tree of each derivation tree is in the selector set T. Hence, for each derivation tree t in OS('),

t = und (t)['].

Note that it also follows from the above constructions that if ' uses all letters of its

alphabet, then OS(') is reduced, and if G is reduced, then COD

G

uses all letters of its

alphabet. 2

Lemma 1.1.10 establishes a one-to-one correspondence between codes and semi-deter-

ministic OS systems for which the induced mapping is injective. This correspondence relates

strict codes with strict OS systems.

Proposition 1.1.12

(1) For each strict code ', OS(') is a strict unlimited OS system.

(2) For each strict unlimited OS system G, COD

G

is a strict code.

Hence we may specify strict codes in the form of strict unlimited OS systems.

Example 1.1.13 Consider the unlimited OS system G = (�; P;m), where � = f`

1

; `

2

; `

3

;

m; r

1

; r

2

g, and P consists of the productions, for k � 0,

`

1

! `

1

m

k

r

1

; m! `

2

m

k

r

2

;

`

2

! `

1

m

k

r

2

; r

1

! `

3

m

k

r

1

;

`

3

! `

2

m

k

r

1

; r

2

! `

3

m

k

r

2

:

Clearly, G is semi-deterministic, backwards deterministic, and L = f`

1

; `

2

; `

3

g,M = fmg, and

R = fr

1

; r

2

g satisfy the conditions in De�nition 1.1.7(2). Hence G is a strict OS system, and

for convenience, we also say that G is a strict code. 2

This concludes our recalling of results from [5].

Now we consider strict codes from another point of view. We distinguish a priori left,

middle, and right letters in the alphabet. This leads to the notion of a marked code. We will

show that strict codes are then precisely marked codes with an alphabet of minimal size.

De�nition 1.1.14 A code ' is marked if

(i) ' is locally injective, and

(ii) L

'

, R

'

, and M

'

are mutually disjoint.

20 Chapter 1. Properties of Grammatical Codes of Trees

It follows from De�nition 1.1.2(ii.2) and Proposition 1.1.4(1) that each strict code is

marked. Because we wish to make further comparisons between marked and strict codes,

and since we have restricted ourselves to strict codes ' with one

'

= m, we assume for each

marked code ' that one

'

2 M

'

. Marked codes can also be described in terms of unlimited

OS systems.

De�nition 1.1.15 An unlimitedOS systemG = (�; P; �) ismarked if it is semi-deterministic,

backwards deterministic, and there are three mutually disjoint subsets L;M;R of � such that,

for each production a! x 2 P , x 2 LM

�

R and � 2M .

Clearly, each strict OS system is marked, but there exist marked OS systems that are not

strict, as the following example shows.

Example 1.1.16 Consider the unlimited OS system G = (�; P;m), where � = f`

1

; `

2

; `

3

;

m; r

1

; r

2

; r

3

g, and P consists of the productions, for k � 0,

`

1

! `

1

m

k

r

1

; r

1

! `

3

m

k

r

3

;

`

2

! `

2

m

k

r

1

; r

2

! `

3

m

k

r

1

;

`

3

! `

1

m

k

r

2

; r

3

! `

1

m

k

r

3

:

m! `

2

m

k

r

3

;

Clearly, G is semi-deterministic, backwards deterministic, and L = f`

1

; `

2

; `

3

g,M = fmg, and

R = fr

1

; r

2

; r

3

g satisfy the conditions in De�nition 1.1.15. Hence G is a marked OS system.

However, G is not strict, because #� > 6. Note that in particular COD

G

is not rich : the

word `

2

r

2

does not occur in the yield of any derivation tree in G. 2

There is a one-to-one correspondence between marked codes and marked OS systems,

analogous to Proposition 1.1.12. The fact that the mapping induced by a marked OS system

is injective follows from the fact that this mapping is completeness consistent. We will return

to this later in detail, when we consider the parsing of marked OS systems.

First we will establish the precise relationship between marked and strict codes.

A marked code ' is minimal if #alph(') � #alph('

0

) for every marked code '

0

.

We will show that the class of minimal marked codes is exactly the class of strict codes

(Theorem 1.1.19).

Lemma 1.1.17 For each marked code ', #alph(') � 6.

Proof. Let ' be a marked code.

De�ne C

2

'

= fx 2 C

'

j jxj = 2g. Note that C

2

'

� L

'

R

'

. By Lemma 1.1.6(ii), #alph(') =

#C

2

'

. Thus, #alph(') � #L

'

#R

'

, and, since L

'

, M

'

, and R

'

are disjoint, #alph(') >

#L

'

+#R

'

.

It is easily seen that if x; y 2 N

+

are such that xy > x+ y, then either x � 2 and y > 2,

or x > 2 and y � 2. Consequently the above implies that either #L

'

� 2 and #R

'

> 2, or

#L

'

> 2 and #R

'

� 2. Hence, #alph(') > #L

'

+#R

'

� 5. 2

We have already observed that each strict code is a marked code, which has an alphabet

of 6 letters. Hence, by Lemma 1.1.17, each strict code is a minimal marked code. Moreover it

1.1. Strict codes 21

follows that minimal marked codes are exactly those marked codes that have an alphabet of

6 letters.

We will show now that the unlimited OS system of a minimal marked code is strict. Hence,

the class of minimal marked codes is exactly the class of strict codes.

Lemma 1.1.18 Let ' be a minimal marked code. Then OS(') is strict.

Proof. By Lemma 1.1.10(1) OS(') is semi-deterministic, and by Lemma 1.1.10(3) OS(') is

backwards deterministic. In the proof of Lemma 1.1.17 it is shown that either #L

'

� 2 and

#R

'

> 2, or #L

'

> 2 and #R

'

� 2. By De�nition 1.1.14(ii), #alph(') � #L

'

+#M

'

+#R

'

.

Since #alph(') = 6, it follows that either #L

'

= 2, #R

'

= 3, and #M

'

= 1, or #L

'

= 3,

#R

'

= 2, and #M

'

= 1. Since by de�nition one

'

2M

'

, M

'

= fone

'

g. Hence L

'

, M

'

, and

R

'

satisfy the conditions in De�nition 1.1.7(2), because, for each production a! x of OS('),

if is the local function of ', then x = (a; jxj) 2 C

'

, and so x 2 L

'

M

�

'

R

'

. Consequently,

OS(') is strict. 2

Theorem 1.1.19 A code ' is strict i� ' is a minimal marked code.

Proof. As observed before, if ' is strict, then ' is a minimal marked code.

Suppose that ' is a minimal marked code. By Lemma 1.1.18, OS(') is strict. By

Lemma 1.1.10, COD

OS(')

= ', and then, by Proposition 1.1.12(2), ' is a strict code. 2

We now turn to the parsing of (marked) OS systems.

De�nition 1.1.20 Let G = (�; P; �) be an unlimited OS system. A word x 2 �

+

is an origin

(w.r.t. G) if, for each y 2 �

+

, y)

�

x implies that y = x.

Hence an origin is a word that is not derivable from any other word, and so it does not

contain an occurrence of the right-hand side of any production.

To prove that COD

G

is injective for a marked OS system G (see the observation following

Example 1.1.16), we will show that G is unambiguous, in the sense that there is a unique

derivation tree for every word x generated by G. In fact, we will even show that G has the

nice property that every x 2 �

+

(not only those generated by G) has a unique origin and a

unique derivation forest from it. As we will see, this property of a marked OS system is, in

essence, caused by the fact that the right-hand sides of its productions are non-overlapping. For

this reason, we will consider OS systems (and the corresponding codes) with non-overlapping

right-hand sides. It will turn out that the above property is precisely characterized by such

non-overlapping OS systems.

De�nition 1.1.21

(1) Let � be an alphabet, and x; y 2 �

+

(not necessarily distinct). Then x and y are overlap-

ping if there exists v 2 �

+

such that x = u

1

vw

1

, y = u

2

vw

2

, u

1

w

1

u

2

w

2

6= �, and u

i

w

j

= � for

some i; j 2 f1; 2g.

(2) A code ' is non-overlapping if ' is locally injective, and, for all a; b 2 alph('), and all

n;m � 2, (a; n) and (b;m) are not overlapping, where is the local function of '.

(3) An unlimited OS system is non-overlapping if it is semi-deterministic, backwards deter-

ministic, and, for all productions a! x and b! y, x and y are not overlapping.

22 Chapter 1. Properties of Grammatical Codes of Trees

Note that according to De�nition 1.1.21(1) a word may or may not overlap itself.

Example 1.1.22 Let � = fa; bg, and let x = aabb, y = abab, z = abbb. Then x and z are

overlapping (take v = abb, x = u

1

vw

1

, z = u

2

vw

2

, then u

2

w

1

= �), y and z are overlapping,

and x and y are not overlapping.

Furthermore, x is not overlapping itself; y is overlapping itself (take v = ab, u

1

= �,

w

1

= ab, u

2

= ab, w

2

= �, then u

1

vw

1

= y = u

2

vw

2

, and u

1

w

2

= �). Also, z is not

overlapping itself. 2

Clearly, each marked code is a non-overlapping code, and each marked OS system is a

non-overlapping OS system. Not all non-overlapping OS systems are marked, as the following

example shows.

Example 1.1.23 Consider the unlimited OS system G = (�; P;m), where � = f`

1

; `

2

; `

3

;

m; r

1

; r

2

; cg, and P consists of the productions, for k � 0,

`

1

! cm

k

r

1

; r

1

! `

3

m

k

r

1

;

`

2

! `

1

m

k

r

2

; r

2

! `

3

cm

k

r

2

;

`

3

! `

2

m

k

r

1

; r

2

! `

3

r

2

;

m! `

2

m

k

r

2

; c! `

1

m

k

r

1

:

Clearly, G is semi-deterministic and backwards deterministic, and no right-hand sides are

overlapping. Hence G is a non-overlapping code.

However, G is not marked, because if L;M;R are subsets of � such that x 2 LM

�

R for

each a! x 2 P , then L;M;R are not disjoint, since c 2 L \M . 2

The following lemma gives a basic technical property of non-overlapping OS systems. It

strengthens the notion of completeness consistency and implies the \unique origin property".

Lemma 1.1.24 Let G = (�; P; �) be a non-overlapping OS system. For all y; u 2 �

+

, w;w

0

2

�

�

, and a 2 �, if y is an origin such that y)

�

wuw

0

with corresponding derivation forest f ,

and a! u 2 P , then (z(i+ 1); : : : ; z(i+ n)) is a complete segment of z, where z = hleaf i(f),

i = jwj, and n = juj, and the direct ancestor of this complete segment is labeled a.

Proof. Let y; u 2 �

+

, w;w

0

2 �

�

, and a 2 � be such that y is an origin, y)

�

wuw

0

, and

a! u 2 P . Let f be the corresponding derivation forest of wuw

0

from y. Let z = hleaf i(f),

i = jwj, and n = juj, and let v

k

= z(i+ k) for k = 1; : : : ; n. Thus u = lb

f

(v

1

) � � � lb

f

(v

n

).

Since y is an origin, y does not contain u. Hence there exists k 2 f1; : : : ; ng such that

v

k

62 root(f). Let m = minfk 2 f1; : : : ; ng j level (v

k

) � level (v

j

) for all j 2 f1; : : : ; ngg. Note

that either v

m

is a leftmost child or m = 1, and that v

m

62 root(f). Let v be the direct ancestor

of v

m

in f , and let hddesi

f

(v) = (w

1

; : : : ; w

s

), s � 2. Since f is a derivation forest in G, there

is a production b! u

0

in P such that b = lb

f

(v) and u

0

= lb

f

(w

1

) � � � lb

f

(w

s

).

Let j 2 f1; : : : ; sg be such that v

m

= w

j

(thus, j = 1 or m = 1). We will prove by induction

that v

m+k

= w

j+k

for all k = 0; : : : ;min(n �m; s� j). By de�nition, v

m

= w

j

. Suppose that

v

m

= w

j

; v

m+1

= w

j+1

; : : : ; v

m+k�1

= w

j+k�1

. If v

m+k

6= w

j+k

, then there is a path of length

� 1 from w

j+k

to v

m+k

. But then level (v

m+k

) > level (v

m

), which contradicts the de�nition of

m. Consequently, v

m+k

= w

j+k

and the induction is completed.

1.1. Strict codes 23

Hence (v

m

; : : : ; v

m+r

) = (w

j

; : : : ; w

j+r

), where r = min(n�m; s�j). De�ne t; u

1

; u

2

; u

0

1

; u

0

2

2

�

�

as follows:

t = lb

f

(v

m

) � � � lb

f

(v

m+r

) = lb

f

(w

j

) � � � lb

f

(w

j+r

)

u

1

= lb

f

(v

1

) � � � lb

f

(v

m�1

);

u

2

= lb

f

(v

m+r+1

) � � � lb

f

(v

n

);

u

0

1

= lb

f

(w

1

) � � � lb

f

(w

j�1

); and

u

0

2

= lb

f

(w

j+r+1

) � � � lb

f

(w

s

):

Hence u = u

1

tu

2

and u

0

= u

0

1

tu

0

2

.

Note that m = 1 or j = 1, and m+ r = n or j + r = s.

Claim 1.1.25 m = j = 1 and n = m+ r = j + r = s.

Proof. Assume to the contrary that m 6= j or n 6= s. Then u

1

u

2

u

0

1

u

0

2

6= �. Since

G is non-overlapping, u and u

0

are not overlapping. However, since m = 1 or j = 1

we have that u

1

= � or u

0

1

= �, and since m + r = n or j + r = s we have that

u

2

= � or u

0

2

= �. Consequently one of the words u

1

u

2

; u

0

1

u

0

2

; u

1

u

0

2

; u

0

1

u

2

is the

empty word, which contradicts the fact that u and u

0

are not overlapping. 2

Hence, by Claim 1.1.25, (w

1

; : : : ; w

s

) = (v

1

; : : : ; v

n

), and u = u

0

. Since G is backwards

deterministic it follows that a = b.

Consequently, (v

1

; : : : ; v

n

) = (z(i+1); : : : ; z(i+n)) is a complete segment of z, with direct

ancestor v, which is labeled a. 2

Now we are able to prove that non-overlapping OS systems do have the property that

each word has a unique origin and a unique derivation forest from it. Moreover, they are

characterized by this property.

Theorem 1.1.26 Let G = (�; P; �) be a semi-deterministic OS system. Then G is non-

overlapping i� for each x 2 �

+

there exist a unique origin y such that y)

�

x and a unique

derivation forest of x from y.

Proof. (Only if) Let G = (�; P; �) be a non-overlapping OS system.

For each x 2 �

+

the productions of G can be applied backwards, and each application

shortens the word. Hence, for each x 2 �

+

, there exist an origin y such that y)

�

x and a

derivation forest f of x from y. It remains to be proved that y and f are unique. We will

prove this by induction on jxj.

If jxj = 1, then x is its own unique origin with a unique corresponding derivation forest,

since there are no chain productions.

Suppose now that each word x 2 �

�

with jxj � n, n � 1, has a unique origin and a unique

derivation forest from it. Let x 2 �

�

be such that jxj = n + 1. If x is an origin, then it has

itself as unique origin and there is a unique corresponding derivation forest. If x is not an

origin, then x contains a right-hand side of a production of G. Let x = wuw

0

, where u is a

right-hand side, and w;w

0

2 �

�

.

24 Chapter 1. Properties of Grammatical Codes of Trees

Let y; y

0

be origins such that y)

�

x and y

0

)

�

x. Let f be a derivation forest of x

from y and let f

0

be a derivation forest of x from y

0

. Let z = hleaf i(f), z

0

= hleaf i(f

0

),

i = jwj, and n = juj. By Lemma 1.1.24, (z(i + 1); : : : ; z(i + n)) is a complete segment of z,

and (z

0

(i + 1); : : : ; z

0

(i + n)) is a complete segment of z

0

. Let v 2 in(f) and v

0

2 in(f

0

) be

the direct ancestors of these complete segments, respectively. Then, by Lemma 1.1.24, v and

v

0

are both labeled by a, where a is such that a! u 2 P . Then f

b

sub

f

(v) is a derivation

forest for waw

0

from y, and f

0 b

sub

f

0

(v

0

) is a derivation forest for waw

0

from y

0

.

Since G is chain-free, jwaw

0

j < jwuw

0

j, and hence by the inductive assumption waw

0

has a

unique origin and a unique derivation forest from it. Consequently, y = y

0

and f

b

sub

f

(v) =

f

0
b

sub

f

0

(v

0

). Since v is the (i + 1)th leaf of f

b

sub

f

(v), and v

0

is the (i + 1)th leaf of

f

0
b

sub

f

0

(v

0

), it follows that v = v

0

, and because f and f

0

are both obtained by adding to

v a segment of n leaves labeled by u, f = f

0

. Hence x has a unique origin y and a unique

derivation forest from y. This completes the induction proof.

(If) Let G = (�; P; �) be a semi-deterministic OS system such that, for each x 2 �

+

, there

exist a unique origin y such that y)

�

x and a unique derivation forest from y. We will prove

that G is non-overlapping. Clearly, G is backwards deterministic, since each right-hand side

has a unique origin. It remains to be proved that no right-hand sides of G are overlapping.

Assume to the contrary that there exist a ! x, b ! y in P such that x = u

1

vw

1

and

y = u

2

vw

2

, with v 6= �, u

1

w

1

u

2

w

2

6= �, and u

i

w

j

= � for some i; j 2 f1; 2g. We will obtain

a contradiction in all of these four cases. It is su�cient to consider the cases u

1

w

1

= � and

u

2

w

1

= �; the other two cases (u

2

w

2

= � and u

1

w

2

= �) follow by symmetric arguments. If

u

1

w

1

= �, then x is a subword of y. Clearly, the origin of x is a, and the origin of y is b,

and the derivation tree t of y from b is such that ddes

t

(root(t)) = leaf (t). Also, the origin of

u

2

aw

2

is b. Let t

0

be the derivation tree of u

2

aw

2

from b. Let t

00

be the tree that results from

t

0

by adding jxj labeled nodes as direct descendants of the leaf in t

0

with label a. Then, since

u

2

w

2

6= �, t

00

is a derivation tree of y from b di�erent from t. This contradicts the fact that y

has a unique derivation tree from its origin b.

Now suppose that u

2

w

1

= �. Let z be the unique origin of aw

2

in G. Then z is also the

origin of u

1

vw

2

. Similarly, the origin of u

1

b is the origin of u

1

vw

2

. Hence aw

2

, u

1

b, and u

1

vw

2

all have the same origin z.

Let f

1

be the unique derivation forest of aw

2

from z, and let f

0

1

be the forest that results

from f

1

by adding jxj labeled nodes as direct descendants of the leaf in f

1

with label a, such

that the new segment is labeled x. Then f

0

1

is a derivation forest of xw

2

= u

1

vw

2

from z.

Analogously, given the derivation forest f

2

of u

1

b from z, we can construct a derivation

forest f

0

2

of u

1

y = u

1

vw

2

from z by adding a segment labeled y to the node that is labeled b.

Clearly, since u

1

w

2

6= �, f

0

1

6= f

0

2

. Hence we have constructed two di�erent derivation forests

of u

1

vw

2

from z, a contradiction.

Consequently, G is non-overlapping. 2

Remark 1.1.27 For the only-if part of the proof, we might also consider the semi-Thue

system formed by the production rules of a OS system in reverse direction. Then the semi-

Thue system corresponding to a non-overlapping OS system has no critical pairs, and hence

is con
uent; since there are no chain productions, it is also length-terminating. From this it

1.1. Strict codes 25

follows (see, e.g., [11]) that each word has a unique normal form, i.e., a unique origin. Here we

have proved more, namely that also the derivation forest from the origin is also unique. 2

Now we can prove that the mapping induced by a non-overlapping OS system is injective.

Corollary 1.1.28 For each non-overlapping OS system G, COD

G

is injective.

Proof. Let ' = COD

G

, and let t

1

; t

2

2 T. Then t

1

['] and t

2

['] are derivation trees in OS(') =

G. Furthermore, '(t

1

) = yield (t

1

[']) and '(t

2

) = yield(t

2

[']). Hence, by Theorem 1.1.26, if

'(t

1

) = '(t

2

), then t

1

['] = t

2

['] and hence t

1

= t

2

. 2

From Corollary 1.1.28 we obtain that there is a one-to-one correspondence between non-

overlapping codes and non-overlapping OS systems (cf. Lemma 1.1.10 and Proposition 1.1.12),

and similarly between marked codes and marked OS systems.

Theorem 1.1.29

(1) For each non-overlapping code ';OS(') is a non-overlapping unlimited OS system.

(2) For each non-overlapping unlimited OS system G, COD

G

is a non-overlapping code.

Proof. (1) By Lemma 1.1.10(1) OS(') is semi-deterministic, and by Lemma 1.1.10(3), OS(')

is backwards deterministic. Note that for each production a ! x of OS('), x = (a; jxj),

where is the local function of '. Hence for all productions a ! x and b ! y in OS('), x

and y are not overlapping, since ' is non-overlapping.

Hence OS(') is non-overlapping.

(2) By Lemma 1.1.10(2) COD

G

is local and length-preserving. By Corollary 1.1.28 COD

G

is

injective. Hence COD

G

is a code. By Lemma 1.1.10(3), COD

G

is locally injective. For the

local function of COD

G

, (a; n) is a right-hand side of a production in G for each a 2 �

and each n � 2. Hence, for all a; b 2 � and n;m � 2, (a; n) and (b;m) are not overlapping.

Hence COD

G

is non-overlapping. 2

Theorem 1.1.30

(1) For each marked code ', OS(') is a marked unlimited OS system.

(2) For each marked unlimited OS system G, COD

G

is a marked code.

Proof.

(1) By Theorem 1.1.29(1), OS(') is semi-deterministic and backwards deterministic. For each

production a ! x of OS('), x = (a; jxj) 2 L

'

M

�

'

R

'

, where is the local function of '.

Hence L

'

, M

'

, and R

'

satisfy the conditions in De�nition 1.1.15. Consequently, OS(') is

marked.

(2) By Theorem 1.1.29(2), COD

G

is a non-overlapping code. Hence COD

G

is a locally injective

code. If L;M , and R are sets as in De�nition 1.1.15, then L

COD

G

� L, R

COD

G

� R, and

M

COD

G

� M . Hence L

COD

G

, M

COD

G

, and R

COD

G

are disjoint. This shows that COD

G

is a

marked code. 2

It can be shown, using arguments in the spirit of the proof of Lemma 1.1.17, that each

non-overlapping code has an alphabet of at least 6 letters.

26 Chapter 1. Properties of Grammatical Codes of Trees

By minimizing marked codes, we obtained strict codes (Theorem 1.1.19). By Exam-

ple 1.1.23, there exist non-overlapping codes that are not marked. The following example

shows that if we minimize non-overlapping codes, we can still obtain codes that are not

marked. Hence not all minimal non-overlapping codes are strict.

Example 1.1.31 Consider the unlimited OS system G = (�; P; �), where � = f`

1

; `

2

; `

3

;

r

1

; r

2

; r

3

g, � = r

3

, and P consists of the productions, for k � 0,

`

1

! `

1

r

k

3

r

1

; r

1

! `

2

r

k

1

r

3

;

`

2

! `

1

r

k

3

r

2

; r

2

! `

3

r

k

2

r

1

;

`

3

! `

2

r

k

1

r

2

; r

3

! `

3

r

k

2

r

3

:

Clearly, G is semi-deterministic and backwards deterministic, and no right-hand sides are

overlapping. Hence G is a non-overlapping code.

However, G is not marked. 2

We have that non-overlapping (marked, strict) codes can be seen as non-overlapping

(marked, strict) OS systems. Hence for a non-overlapping code ', when we speak of \an

origin w.r.t '", it is an origin w.r.t OS('). The set of origins of a non-overlapping code ' is

denoted by OR

'

. This is the set of words that do not contain complete subwords. Hence if '

is a strict code, then OR

'

= (R

'

[M

'

)

�

(L

'

[M

'

)

�

� f�g, since C

'

= L

'

M

�

'

R

'

.

If ' : T ! �

�

is a non-overlapping code, then by Theorem 1.1.26, one can assign to each

word over � its (composite) category.

De�nition 1.1.32 Let ' : T! �

�

be a non-overlapping code, and let x 2 �

+

. The composite

category of x, denoted by cat

'

(x), is the unique origin of x. If jcat

'

(x)j = 1, then it is called

the category of x.

Example 1.1.33 Let ' be the strict code such that for all k � 0,

m! `

1

m

k

r

3

; r

1

! `

2

m

k

r

3

;

`

1

! `

1

m

k

r

2

; r

2

! `

2

m

k

r

2

;

`

2

! `

1

m

k

r

1

; r

3

! `

2

m

k

r

1

:

If x = `

1

mr

2

`

1

`

1

mr

3

`

2

r

3

, then cat

'

(x) = `

1

`

2

, and the derivation forest f of x from `

1

`

2

is as shown in Figure 1.1.

If x

0

= `

2

r

1

r

2

`

1

mr

3

, then cat

'

(x

0

) = r

3

r

2

m , and the derivation forest f

0

of x

0

from r

3

r

2

m

is as shown in Figure 1.2. 2

f

r

2

f

m

f

`

1

Q

Q

Q

Q

Q

�

�

�

�

�

f

`

1

f

r

1

f

m

f

`

1

Q

Q

Q

Q

Q

�

�

�

�

�

f

`

2

f

`

1

f

m

f

r

3

�

�

�
�

A

A

A
A

f

r

3

f

`

2

�

�

�
�

A

A

A
A

Figure 1.1: derivation forest of x = `

1

mr

2

`

1

`

1

mr

3

`

2

r

3

from `

1

`

2

1.1. Strict codes 27

f

r

3

f

m

f

`

1

Q

Q

Q

Q

Q

�

�

�

�

�

f

m

f

r

2

f

r

3

�

�

�

�

@

@

@

@

f

`

2

f

r

1

Figure 1.2: derivation forest of x

0

= `

2

r

1

r

2

`

1

mr

3

from r

3

r

2

m

The following theorem says that the composite category of a word can be computed by

�rst computing the composite categories of subwords comprising the word.

Theorem 1.1.34 Let ' : T! �

�

be a non-overlapping code, and let x 2 �

+

. If x = x

1

� � �x

n

with x

i

2 �

+

, then cat

'

(x) = cat

'

(cat

'

(x

1

) � � � cat

'

(x

n

)).

Proof. Let y

i

= cat

'

(x

i

) for all i = 1; : : : ; n. Let y = cat

'

(x) and y

0

= cat

'

(y

1

� � � y

n

). We

must prove that y = y

0

.

We have that y 2 OR

'

, y)

�

x, y

0

2 OR

'

, y

0

)

�

y

1

� � � y

n

, and y

i

)

�

x

i

for all i = 1; : : : ; n.

So y

0

)

�

x

1

� � �x

n

= x.

By Theorem 1.1.26, x has a unique origin. Hence, y = y

0

, and cat

'

(x) = y = y

0

=

cat

'

(y

1

� � � y

n

) = cat

'

(cat

'

(x

1

) � � � cat

'

(x

n

)). 2

Example 1.1.35 (Example 1.1.33 continued.) Let ' and x be as in Example 1.1.33. Let

x

1

= `

1

mr

2

`

1

, and x

2

= `

1

mr

3

`

2

r

3

. Then x = x

1

x

2

, cat

'

(x

1

) = `

1

`

1

, and cat

'

(x

2

) = mr

1

.

Hence cat

'

(cat

'

(x

1

)cat

'

(x

2

)) = cat

'

(`

1

`

1

mr

1

) = `

1

`

2

= cat

'

(x). 2

Corollary 1.1.36 Let ' : T! �

�

be a non-overlapping code.

For each w 2 �

+

, each k 2 N

+

, all w

1

; : : : ; w

k

2 �

+

such that w = w

1

� � �w

k

, and each

tree t with #leaf (t) = k, there is a unique labeling � : nd(t)! OR

'

such that

(i) �(hleaf i(t)(i)) = cat

'

(w

i

) for i = 1; : : : ; k,

(ii) for each v 2 in(t), �(v) = cat

'

(�(v

1

) � � � �(v

n

)), where (v

1

; : : : ; v

n

) = hddesi

t

(v), and

(iii) �(root(t)) = cat

'

(w).

Proof. Let w 2 �

+

, k 2 N

+

, and w

1

; : : : ; w

k

2 �

+

be such that w = w

1

� � �w

k

, and let t be a

tree with #leaf (t) = k. Let � be the labeling de�ned by (i) and (ii). De�ne, for each v 2 nd(t),

w

v

:= w

i

w

i+1

� � �w

i+`

, where i � 1 and ` � 0 are such that contr

t

(v) = fhleaf i(t)(j) j j =

i; : : : ; i+ `g.

Claim 1.1.37 For all v 2 nd(t), �(v) = cat

'

(w

v

).

Proof. By induction on depth(sub

t

(v)).

If depth(sub

t

(v)) = 0, then v = hleaf i(t)(i) for some i 2 f1; : : : ; kg, and w

v

=

w

i

. Hence �(v) = cat

'

(w

i

) = cat

'

(w

v

).

Suppose now that the claim holds for all v 2 nd (t) with depth(sub

t

(v)) �

m;m � 0. Let v 2 nd(t) with depth(sub

t

(v)) = m + 1. Then, by condition (ii),

28 Chapter 1. Properties of Grammatical Codes of Trees

�(v) = cat

'

(�(v

1

) � � � �(v

n

)), where (v

1

; : : : ; v

n

) = hddesi

t

(v). By the induction

hypothesis �(v

i

) = cat

'

(w

v

i

) for all i = 1; : : : ; n.

Clearly, w

v

= w

v

1

� � �w

v

n

. Then, by Theorem 1.1.34,

cat

'

(w

v

) = cat

'

(cat

'

(w

v

1

) � � � cat

'

(w

v

n

)) = cat

'

(�(v

1

) � � ��(v

n

)) = �(v):

This completes the induction proof of Claim 1.1.37. 2

By Claim 1.1.37, �(root(t)) = cat

'

(w

root(t)

) = cat

'

(w

1

� � �w

k

) = cat

'

(w). Hence the

unique labeling � determined by conditions (i) and (ii) also satis�es condition (iii). 2

fff

Q

Q

Q

Q

Q

�

�

�

�

�

f

�

�

�

�

@

@

@

@

f f

�

�

�

�

A

A

A

A

f f f

�

�

�

�

@

@

@

@

f f

�

�

�

�

A

A

A

A

f f f

Figure 1.3: t

f

r

1

r

1

r

2

f

r

2

m

f

r

3

mr

1

`

1

`

2

Q

Q

Q

Q

Q

�

�

�

�

�

f

r

3

mr

1

r

3

r

2

�

�

�

�

@

@

@

@

f

r

3

f

mr

1

`

1

`

2

�

�

�

�

A

A

A

A

f

m

f

r

1

f

`

1

`

2

�

�

�

�

@

@

@

@

f

r

1

f

r

1

r

2

�

�

�

�

A

A

A

A

f

`

1

f

mr

1

f

r

3

r

2

Figure 1.4: (t; �)

1.1. Strict codes 29

Example 1.1.38 Let ' be the strict code from Example 1.1.33, and let

w = `

1

r

1

r

1

m`

2

mr

3

`

1

`

2

r

2

mr

1

`

1

mr

1

r

3

r

2

. Then w = w

1

w

2

� � �w

9

, where w

1

= `

1

r

1

r

1

, w

2

= m,

w

3

= `

2

mr

3

, w

4

= `

1

`

2

, w

5

= r

2

m, w

6

= r

1

, w

7

= `

1

, w

8

= mr

1

, w

9

= r

3

r

2

. Consider the tree

t with #leaf (t) = 9 shown in Figure 1.3. Then (t; �) is as shown in Figure 1.4, where � is the

node-labeling of t as in Corollary 1.1.36.

Also, w = w

0

1

w

0

2

� � �w

0

7

, where w

0

1

= `

1

, w

0

2

= r

1

r

1

m, w

0

3

= `

2

m, w

0

4

= r

3

, w

0

5

= `

1

`

2

r

2

mr

1

,

w

0

6

= `

1

mr

1

, and w

0

7

= r

3

r

2

. Consider tree t

0

with #leaf (t

0

) = 7 shown in Figure 1.5. Now

(t

0

; �

0

) is as shown in Figure 1.6, where �

0

is the node-labeling of t

0

as in Corollary 1.1.36. 2

ff

Q

Q

Q

Q

Q

�

�

�

�

�

f

�

�

�
�

S

S

S
S

f f

�

�

�

�

A

A

A

A

f f

�

�

�
�

A

A

A
A

f f

�

�

�
�

S

S

S
S

f f

�

�

�

�

A

A

A

A

f f

Figure 1.5: t

0

f

r

3

r

2

f

r

3

mr

1

Q

Q

Q

Q

Q

�

�

�

�

�

f

r

3

mr

1

r

3

r

2

�

�

�
�

S

S

S
S

f

`

1

f

r

1

r

1

mr

1

�

�

�
�

A

A

A
A

f

r

1

r

1

m`

2

m

f

r

3

�

�

�
�

S

S

S
S

f

`

2

`

2

f

r

3

r

2

�

�

�
�

A

A

A
A

f

`

2

f

`

2

�

�

�

�

A

A

A

A

f

`

2

f

`

2

Figure 1.6: (t

0

; �

0

)

30 Chapter 1. Properties of Grammatical Codes of Trees

1.2 Binary codes

In this section we consider binary OS systems, which can be identi�ed with binary codes, i.e.,

codes on the set of binary trees.

Many notions and notations for arbitrary trees are carried over to binary trees. Since it

is normally clear how these notions and notations are formally de�ned in the binary case, we

often do not give those de�nitions here.

De�nition 1.2.1 Let T

b

be a selector set of binary trees and let � be an alphabet.

(1) A mapping ' : T

b

! �

�

is local if there is a : � ! �

2

, such that for all t

1

; t

2

2 T

b

,

where t

2

2 subs

t

1

(i; 2) for some i 2 N

+

, if '(t

1

) = xay with jxj = i � 1 and a 2 �, then

'(t

2

) = x (a)y.

(2) A mapping ' : T

b

! �

�

is a binary code if it is injective, length preserving, and local.

(3) A binary code ' is a strict binary code if it is completeness consistent and rich.

Note that sibling consistency is not needed here, because the sibling segments of a binary

tree are the same as its complete segments.

Also in the binary case, we assume that a binary code uses all letters of its alphabet. Then

again, each binary code has a unique local function. From now on T

b

is a �xed selector set of

binary trees. Note that nothing is assumed about one

'

.

For strict binary codes a result analogous to Proposition 1.1.4(1) holds.

Lemma 1.2.2 Let ' be a strict binary code. Then fL

'

; R

'

g is a partition of alph(').

Proof. Since ' is rich, alph(') = L

'

[R

'

. It remains to be proved that L

'

\ R

'

= ;.

Assume to the contrary that there is an a 2 alph(') such that a 2 L

'

\ R

'

. Hence, there

exist b; c; d 2 alph(') such that ab; ca 2 C

'

, d ! ca, and x

1

dx

2

; x

1

cax

2

2 ran(') for some

x

1

; x

2

2 alph(')

�

. Since ' is rich there exist y

1

; y

2

2 alph(')

+

such that y

1

dby

2

2 ran(').

Then also w = y

1

caby

2

2 ran('). But, clearly ab does not label a complete segment in '

�1

(w),

which contradicts the completeness consistency of '.

Hence L

'

\ R

'

= ;, and fL

'

; R

'

g is a partition of alph('). 2

As in Section 1.1, another point of view is taken by requiring that the sets of left and right

letters are disjoint in the de�nition of a binary code, leading to the notion of a marked binary

code.

De�nition 1.2.3 A binary code ' is marked if ' is locally injective, and L

'

and R

'

are

disjoint.

We now investigate the number of letters of the alphabet of binary marked codes and

binary strict codes. Recall that in the case of marked (resp. strict) codes for arbitrary trees

this number is at least 6 (resp. exactly 6). Now we will show that in the binary case this

number is at least 4 (resp. exactly 4), by using similar arguments as in Lemmas 1.1.6 and

1.1.17.

1.2. Binary codes 31

Lemma 1.2.4 Let ' be a marked binary code, with local function . Then is a bijection

from alph(') onto C

'

.

Lemma 1.2.5 For each marked binary code ', #alph(') � 4, and, for each strict binary

code ', #alph(') = 4.

Proof. Let ' be a marked binary code. Note that C

'

� L

'

R

'

. By Lemma 1.2.4, #alph(') =

#C

'

. Thus, #alph(') � #L

'

#R

'

, and, since L

'

and R

'

are disjoint, #alph(') � #L

'

+

#R

'

. It is easily seen that if x; y 2 N

+

are such that xy � x+y, then x; y � 2. Consequently,

the above implies that #L

'

� 2 and #R

'

� 2. Hence, #alph(') � #L

'

+#R

'

� 4.

If ' is a strict code, then the richness of ' implies that C

'

= L

'

R

'

(see [5] for the general

case) and #alph(') = #L

'

+#R

'

. Hence, in that case, #alph(') = #L

'

+#R

'

= #L

'

#R

'

,

which implies that #L

'

= 2, #R

'

= 2, and #alph(') = 4. 2

Marked and strict binary codes can also be translated to \binary" OS systems.

De�nition 1.2.6 An OS system G = (�; P; �) is a binary OS system if for each a! x 2 P ,

jxj = 2.

De�nition 1.2.7 Let G = (�; P; �) be a binary OS system.

(1) G is a strict binary OS system if G is deterministic, backwards deterministic, and there is

a partition of � into two sets L and R such that #L = 2, #R = 2, and, for each production

a! x 2 P , x 2 LR.

(2) G is a marked binary OS system if G is deterministic, backwards deterministic, and there

are two disjoint subsets L and R of � such that, for each production a! x 2 P , x 2 LR.

For a binary OS system G = (�; P; �), we use L

G

and R

G

to denote fb 2 � j b =

�rst(x) for some a! x in Pg, and fb 2 � j b = last(x) for some a! x in Pg, respectively.

Remark 1.2.8

(1) Note that if G is a marked (strict) binary OS system, then L

G

= L

COD

G

and R

G

= R

COD

G

.

(2) In a strict binary OS system G, the two sets L and R mentioned in De�nition 1.2.7(1) are

exactly the sets L

G

and R

G

of left resp. right letters of G. In a marked binary OS system, this

is not necessarily the case. Let G = (�; P; �) be a marked binary OS system, and let L and R

be sets as in De�nition 1.2.7(2). Then L

G

� L and R

G

� R, and if L

G

� L, then L = L

G

[f�g,

if R

G

� R, then R = R

G

[f�g. Hence, we get an equivalent de�nition of a marked binary

OS system if we replace the third condition in De�nition 1.2.7(2) by L

G

\R

G

= ;. 2

In the binary case we have the same correspondence between marked (strict) binary codes

and marked (strict) binary OS systems as in the general case (cf. Lemma 1.1.10, Proposi-

tion 1.1.12 and Theorem 1.1.30).

Theorem 1.2.9

(1) For each marked (resp. strict) binary code ', OS(') is a marked (resp. strict) binary OS

system, and, moreover, COD

OS(')

= '.

(2) For each marked (resp. strict) binary OS system G, COD

G

is a marked (resp. strict)

binary code, and, moreover, OS(COD

G

) = G.

32 Chapter 1. Properties of Grammatical Codes of Trees

Proof. Analogous to the proof of Theorem 1.1.30 and the proof of Proposition 1.1.12 (see

[5]). What is not trivial is to show that COD

G

is rich for a strict binary OS system G (see

[5]). 2

Again, proving that COD

G

is injective can be done through the notion of \non-overlapping

binary OS system". It should be clear that a binary OS system G is non-overlapping i� it is

marked, since each right-hand side is in L

G

R

G

.

From Lemma 1.2.2, Lemma 1.2.5, De�nition 1.2.7, and Theorem 1.2.9, we obtain the

following result, which is analogous to Theorem 1.1.19.

Corollary 1.2.10 A binary code ' is strict i� ' is a minimal marked binary code.

Such minimal marked (i.e., strict) binary codes do exist, as the following example shows.

Example 1.2.11 Let G = (�; P; �) be the OS system with � = f`

1

; `

2

; r

1

; r

2

g, P = f`

1

!

`

2

r

2

; `

2

! `

1

r

1

; r

1

! `

1

r

2

; r

2

! `

2

r

1

g, and � 2 � arbitrarily chosen. Clearly, G is a deter-

ministic binary OS system that is backwards deterministic. Furthermore, if L = f`

1

; `

2

g and

R = fr

1

; r

2

g, then L and R satisfy the conditions in De�nition 1.2.7(1). Hence G is a strict

binary OS system. 2

Of course, we can also use the marked OS systems from Section 1.1 to code binary trees, if

we restrict them in such a way that they become binary OS systems. That is, the productions

with right-hand sides of length > 2 are removed. Formally, an OS system G = (�; P; �) is

a 2-restricted OS system if there is a marked unlimited OS system G

0

= (�; P

0

; �) such that

P = f(a! x) 2 P

0

j jxj = 2g. Note that a 2-restricted OS system is reduced. As we will show

now, 2-restricted OS systems are an example of marked, but not strict (because not minimal)

binary OS systems.

Theorem 1.2.12 A binary OS system G = (�; P; �) is 2-restricted i� it is a marked binary

OS system such that � 62 L

G

[R

G

.

Proof. Let G = (�; P; �) be a binary OS system.

Suppose that G is 2-restricted. Since the marked unlimited OS system from which G

originates is semi-deterministic and backwards deterministic, it follows that G is deterministic

and backwards deterministic. Obviously, if L;M;R are the original subsets of � satisfying

the conditions of De�nition 1.1.15, then L and R satisfy the conditions of De�nition 1.2.7(2).

Hence G is a marked binary OS system, and, since � 2M , � 62 L

G

[R

G

.

Suppose now that G is a marked binary OS system such that � 62 L

G

[R

G

. Let G

0

=

(�; P

0

; �) be the unlimitedOS system such that P

0

= fa! `�

k

r j a! `r 2 P; k � 0g. Clearly,

G

0

is semi-deterministic and backwards deterministic becauseG is deterministic and backwards

deterministic. Furthermore, L

G

, f�g, and R

G

satisfy the conditions in De�nition 1.1.15. Hence

G

0

is a marked OS system. Since P = fa! x 2 P

0

j jxj = 2g, it follows that G is a 2-restricted

OS system. 2

Since in the binary case the notions of marked and non-overlapping OS systems coincide,

we obtain a result similar to Theorem 1.1.26 for marked binary OS systems.

1.2. Binary codes 33

Theorem 1.2.13 A deterministic binary OS system G = (�; P; �) is marked i�, for each

x 2 �

+

, there exist a unique origin y such that y)

�

x and a unique derivation forest of x

from y.

Proof. Analogous to the proof of Theorem 1.1.26. 2

From Theorem 1.2.13 we obtain that a deterministic binary OS system with the \unique

origin property" has an alphabet of at least four letters (by Lemma 1.2.5), and that such a

binary OS system is minimal (i.e., has an alphabet of exactly four letters) i� it is a strict

binary OS system (by Corollary 1.2.10).

We now show that we obtain the same results if we relax the determinism requirement.

De�nition 1.2.14 Let G = (�; P; �) be a binary OS system.

(1) G is binary forest complete if, for each binary forest f , there is a derivation forest in G

such that f is its underlying forest.

(2) G is a binary forest coding scheme, abbreviated as bfcs, if

(i) G is binary forest complete, and

(ii) for each word x 2 �

+

there is a unique origin y, and a unique derivation forest of x from y.

By requiring that a bfcs is binary forest complete, we have made sure that still for each

binary forest f there is at least one code-word, which is the yield of a derivation forest of which

f is the underlying forest. Note that this way of \coding", using a bfcs, is not necessarily

unique. However, due to Property 2(ii) of De�nition 1.2.14, it is injective.

If we minimize bfcs's, then we obtain deterministic bfcs's.

Theorem 1.2.15 Every minimal bfcs is deterministic.

Proof. It is clear from the proof of Theorem 1.1.26 that an arbitrary bfcs has the property

that no right-hand sides overlap, i.e., L

G

\R

G

= ;.

Let G = (�; P; �) be a minimal bfcs. We �rst show that

(�) for each letter b of � there is at least one production in P starting with b.

Assume to the contrary that there is ab 2 � such that none of the productions in P starts

with b. Then, in any derivation forest, b can label leaves only. But then it would be possible

to construct a bfcs with the remaining letters of � in the following way.

Let G

0

= (�� fbg; P

0

; �), where P

0

= fa! `r 2 P j b 6= `; rg. Note that � 6= b. We claim

that G

0

is a bfcs. First we show that G

0

is binary forest complete.

Let f be a binary forest. Attach to each leaf of f two descendants. Label the so obtained

forest f

0

according to a derivation in G. This can be done since G is binary forest complete. If

we cut f

0

in such a way that we obtain f again, then we have a labeling for f which does not

use b. Hence the thus constructed labeled forest is a derivation forest in G

0

with underlying

forest f . Hence G

0

is binary forest complete.

Let x 2 (� � fbg)

+

, and let y; y

0

2 (� � fbg)

+

be origins in G

0

such that y)

�

x and

y

0

)

�

x in G

0

, with corresponding derivation forests f and f

0

, respectively. Since y and y

0

do

not contain b; y and y

0

are also origins in G. Obviously, f and f

0

are derivation forests of x

from y and y

0

, respectively, in G. Hence y = y

0

and f = f

0

, because G is a bfcs. Hence each

word x 2 (�� fbg)

+

has a unique origin and a unique derivation forest from it in G

0

.

34 Chapter 1. Properties of Grammatical Codes of Trees

Consequently, G is a bfcs, with an alphabet of j�j � 1 letters. But this contradicts the

minimality of G. Hence for each letter b of � there is at least one production starting with b.

Since each right-hand side has a unique origin, G is backwards deterministic. Hence there

are at most #L

G

#R

G

productions. By (�) there are at least #L

G

+#R

G

productions. Hence

#L

G

+ #R

G

� #P � #L

G

#R

G

. Consequently, #L

G

� 2 and #R

G

� 2. Since there exist

bfcs's with 4 letters (e.g., see Example 1.2.11), it follows that #� = 4, #L

G

= 2, #R

G

= 2,

and #P = 4.

Hence, by (�), for each letter b 2 � there is exactly one production, i.e., G is deterministic.

2

Obviously it follows from Theorem 1.2.15 that each bfcs has at least 4 letters, and (using

Theorem 1.2.13 and Corollary 1.2.10) that a bfcs is minimal i� it is a strict binary OS system.

We now consider the number of non-isomorphic strict binary codes (cf. [5]). Two binary

codes ' and '

0

are isomorphic if there exists a bijection f : alph(')! alph('

0

) such that for

each t 2 T

b

, f('(t)) = '

0

(t) (where the homomorphic extension of f is also denoted simply

by f). Hence two strict binary OS systems G = (�; P; �) and G

0

= (�

0

; P

0

; �

0

) are isomorphic

(as codes) if there exists a bijection f : � ! �

0

such that f(P) = P

0

(i.e., a ! x 2 P i�

f(a)! f(x) 2 P

0

) and f(�) = �

0

.

Theorem 1.2.16 There are exactly 24 mutually non-isomorphic strict binary OS systems.

Proof. It is su�cient to consider only the strict binary OS systems G = (�; P; �) with �

such that L

G

= f`

1

; `

2

g and R

G

= fr

1

; r

2

g. The right-hand sides are then `

1

r

1

; `

1

r

2

; `

2

r

1

, and

`

2

r

2

.

There are 4 � 4! = 96 possibilities to construct G. But some of these strict binary OS

systems are isomorphic.

Claim 1.2.17 For each strict binary OS system as given above there are exactly

4 isomorphic strict binary OS systems.

Proof. Two strict binary OS systems G = (�; P; �) and G

0

= (�; P

0

; �

0

) are

isomorphic i� there exists a permutation f : � ! � such that f(P) = P

0

and

f(�) = �

0

. For such a permutation f it must be that f(f`

1

; `

2

g) = f`

1

; `

2

g and

f(fr

1

; r

2

g) = fr

1

; r

2

g. Hence there are 4 such permutations, say f

1

; f

2

; f

3

; f

4

. Let

G = (�; P; �) be a strict binary OS system. We will show that these 4 permutations

give 4 distinct isomorphic strict binary OS systems. Let i; j 2 f1; : : : ; 4g be such

that f

i

(P) = f

j

(P) and f

i

(�) = f

j

(�). Consider � ! `

�

r

�

in P . Since f

i

(P) =

f

j

(P), f

i

(�) ! f

i

(`

�

)f

i

(r

�

) 2 f

j

(P). Since f

i

(�) = f

j

(�), it follows that f

i

(`

�

) =

f

j

(`

�

) and f

i

(r

�

) = f

j

(r

�

). Consequently f

i

j

L

G

= f

j

j

L

G

and f

i

j

R

G

= f

j

j

R

G

. Hence

f

i

= f

j

.

Thus, for each strict binary OS system there are exactly 4 isomorphic strict

binary OS systems. 2

By Claim 1.2.17 it follows that there are 96/4 = 24 mutually non-isomorphic strict binary

OS systems. This proves the theorem. 2

1.3. Codes for node-labeled trees 35

1.3 Codes for node-labeled trees

In this section we investigate grammatical codings for node-labeled trees. For this purpose,

\storage functions" are introduced and a combinatorial characterization of these functions is

given. For convenience, we consider all concrete trees instead of the trees in a selector set.

Clearly, a code ' for a selector set can be extended to a mapping on all trees (which is injective

modulo isomorphism).

From now on, unless clear otherwise, ' is a �xed arbitrary code and � is its alphabet.

It is obvious that we can de�ne grammatical codes for leaf-labeled trees: a leaf of a tree

will simply be labeled by (x; a), where x is the original label of the leaf and a is the label that

is assigned by coding the underlying tree.

Example 1.3.1 Consider the leaf-labeled tree t as shown in Figure 1.7.

ff

s

f

Q

Q

Q

Q

Q

�

�

�

�

�

f

�

�

�

�

@

@

@

@

f

p

f

p

�

�

�

�

@

@

@

@

f

s

f

q

Figure 1.7: leaf-labeled tree t

Let ' be the (strict) code such that, for all k � 0,

m! `

1

m

k

r

2

; `

1

! `

1

m

k

r

3

; `

2

! `

2

m

k

r

3

;

r

1

! `

2

m

k

r

1

; r

2

! `

2

m

k

r

2

; r

3

! `

1

m

k

r

1

:

Then t is coded by the word (p; `

1

)(p; r

3

)(s;m)(s; `

2

)(q; r

2

). 2

As for node-labeled trees, a natural way to solve the problem of coding them is to store the

labels of internal nodes into leaves. Fortunately, there are more leaves than internal nodes in

each tree (recall that trees are assumed to be chain-free). To formalize the storing of internal

nodes, we need the notion of a storage function, which for each internal node tells us in which

leaf its label is stored.

De�nition 1.3.2 A storage function is a function
 such that

(1) for each tree t and each v 2 in(t),
(t; v) 2 leaf (t), and

(2) for each tree t and all v

1

; v

2

2 in(t), v

1

6= v

2

implies
(t; v

1

) 6=
(t; v

2

).

36 Chapter 1. Properties of Grammatical Codes of Trees

Example 1.3.3 Let t be the tree shown in Figure 1.8.

��

��

v

3

��

��

v

2

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

��

��

v

1

�

�

�

�

�

@

@

@

@

@

��

��

v

4

��

��

v

5

��

��

v

6

�

�

�

�

�

@

@

@

@

@

��

��

v

7

��

��

v

8

Figure 1.8: t

The values for a storage function
 on t are:

(t; v

1

) = v

4

;
(t; v

2

) = v

7

;
(t; v

3

) = v

8

:

Hence indeed, all three values are di�erent leaves. 2

Clearly, for a given code ', not every storage function makes sense. There must be some-

thing \consistent" about storage functions, e.g., if we extend a tree t to a tree t

0

, then the

storage function of t

0

must \extend" the storage function of t. The notion of a consistent

storage function is axiomatized as follows.

De�nition 1.3.4 A storage function
 is consistent with ' if it satis�es the following axioms:

(A1) for each tree t and each v 2 in(t),
(t; v) 2 contr

t

(v);

(A2) for all trees t; t

0

, and all v 2 nd(t), v

0

2 nd (t

0

), if there exists an isomorphism � from

sub

t

(v) onto sub

t

0

(v

0

) and if lb

t[']

(v) = lb

t

0

[']

(v

0

), then for all w 2 in(sub

t

(v)), �(
(t; w)) =

(t

0

; �(w));

(A3) for each tree t, each v 2 in(t), and each cut � of t which is below v,
(tree(t; �); v) =

� \ �(v;
(t; v)); and

(A4) for each tree t, each v 2 in(t), and each v

0

2 nd (t) such that
(t; v) 62 contr

t

(v

0

),

(t

r

sub

t

(v

0

); v) =
(t; v).

The above axioms are surely natural. They are illustrated in Figure 1.9.

(A1) says that for each internal node v the label is stored into a leaf that is reachable from

v. (A2) says that in isomorphic subtrees that are coded by ' in the same way, the labels of

corresponding internal nodes are stored into corresponding leaves. By (A3), if a tree t is cut,

then for each remaining internal node v, the node that becomes the new leaf where the label

of v is stored lies on the path from v to the leaf of t where the label of v was stored originally.

By (A4), if a subtree is removed from a tree, then the label of a remaining node is stored in

the same leaf as it was before assuming that this leaf was not removed (
(t; v) 62 contr

t

(v)).

1.3. Codes for node-labeled trees 37

v

contr t
(v)

γ(t,v)

t

(A1)

γ

γ

γ

γ

γ

γ

γ

γ

γ

t
t’

w δ(w)

(t’, (w))= ((t,w))δ δ γ

v v’

(t,w)

δ

(A2)

v

γ(t,v)

t

ρ

γ(tree(t,),v)ρ

(A3)
v

γ(t,v)

t

v’

= (t subt(v’),v)γ

(A4)

Figure 1.9: axioms (A1) to (A4)

Example 1.3.5

(1) The storage function
 from Example 1.3.3 is not consistent with any code ' because

(t; v

2

) 62 contr

t

(v

2

).

(2) Consider the trees t and t

0

in Figures 1.10 and 1.11, respectively.

Let ' be such that, for all k � 0,

m!

'

`

1

m

k

r

1

; `

1

!

'

`

1

m

k

r

2

; `

2

!

'

`

2

m

k

r

2

;

`

3

!

'

`

3

m

k

r

1

; r

1

!

'

`

2

m

k

r

1

; r

2

!

'

`

3

m

k

r

2

:

Then t['] and t

0

['] are as shown in Figures 1.12 and 1.13, respectively.

38 Chapter 1. Properties of Grammatical Codes of Trees

��

��

v

1

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

@

@

@

@

@

��

��

v

2

#

#

#

#

#

#

c

c

c

c

c

c

��

��

v

6

��

��

v

7

��

��

v

8

�

�

�

�

C

C

C

C

��

��

v

18

��

��

v

19

�

�

�

�

A

A

A

A

��

��

v

20

��

��

v

21

��

��

v

22

�

�

�

�

C

C

C

C

��

��

v

28

��

��

v

29

��

��

v

3

�

�

�

�

A

A

A

A

��

��

v

9

��

��

v

10

��

��

v

4

�

�

�

�

S

S

S

S

��

��

v

11

��

��

v

12

��

��

v

13

�

�

�

�

A

A

A

A

��

��

v

23

��

��

v

24

��

��

v

5

�

�

�

�

S

S

S

S

�

�

�

�

C

C

C

C

��

��

v

14

��

��

v

15

��

��

v

16

��

��

v

17

�

�

�

�

A

A

A

A

��

��

v

25

��

��

v

26

��

��

v

27

�

�

�

�

C

C

C

C

��

��

v

30

��

��

v

31

Figure 1.10: t

(2.1) Let

1

be a storage function such that

1

(t; v

4

) = v

23

;

1

(t; v

7

) = v

29

;

1

(t; v

12

) = v

24

;

1

(t; v

21

) = v

28

:

Then

1

is not consistent with ', because lb

t[']

(v

7

) = lb

t[']

(v

4

) and there is an isomorphism

� of sub

t

(v

7

) onto sub

t

(v

4

) such that �(

1

(t; v

7

)) = �(v

29

) = v

24

6=

1

(t; v

4

); hence (A2) is not

satis�ed.

��

��

v

4

��

��

v

3

��

��

v

2

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

��

��

v

1

�

�

�

�

�

@

@

@

@

@

��

��

v

5

��

��

v

6

Figure 1.11: t

0

1.3. Codes for node-labeled trees 39

��

��

v

1

m

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

@

@

@

@

@

��

��

v

2

`

1

#

#

#

#

#

#

c

c

c

c

c

c

��

��

v

6

`

1

��

��

v

7

m

��

��

v

8

r

2

�

�

�

�

C

C

C

C

��

��

v

18

`

1

��

��

v

19

r

2

�

�

�

�

A

A

A

A

��

��

v

20

`

1

��

��

v

21

m

��

��

v

22

r

1

�

�

�

�

C

C

C

C

��

��

v

28

`

1

��

��

v

29

r

1

��

��

v

3

m

�

�

�

�

A

A

A

A

��

��

v

9

`

1

��

��

v

10

r

1

��

��

v

4

m

�

�

�

�

S

S

S

S

��

��

v

11

`

1

��

��

v

12

m

��

��

v

13

r

1

�

�

�

�

A

A

A

A

��

��

v

23

`

1

��

��

v

24

r

1

��

��

v

5

r

1

�

�

�

�

S

S

S

S

�

�

�

�

C

C

C

C

��

��

v

14

`

2

��

��

v

15

m

��

��

v

16

m

��

��

v

17

r

1

�

�

�

�

A

A

A

A

��

��

v

25

`

1

��

��

v

26

m

��

��

v

27

r

1

�

�

�

�

C

C

C

C

��

��

v

30

`

1

��

��

v

31

r

2

Figure 1.12: t[']

(2.2) Let

2

be a storage function such that

2

(t

0

; v

1

) = v

5

;

2

(t

0

; v

2

) = v

6

;

2

(t; v

15

) = v

31

;

2

(t; v

25

) = v

30

:

Then

2

is not consistent with ', because lb

t

0

[']

(v

1

) = lb

t[']

(v

15

) and there is an isomorphism

� of t

0

onto sub

t

(v

15

) such that �(

2

(t

0

; v

1

)) = �(v

5

) = v

30

6=

2

(t; v

15

); hence (A2) is not

satis�ed.

��

��

v

4

r

1

��

��

m

v

3

��

��

v

2`

1

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

��

��

v

1

m

�

�

�

�

�

@

@

@

@

@

��

��

v

5

`

1

��

��

v

6

r

2

Figure 1.13: t

0

[']

40 Chapter 1. Properties of Grammatical Codes of Trees

(2.3) Let

3

be a storage function such that

3

(t; v

1

) = v

8

;

3

(t; v

2

) = v

19

;

3

(t; v

3

) = v

9

;

3

(t; v

4

) = v

11

;

3

(t; v

5

) = v

17

;

3

(t; v

6

) = v

18

;

3

(t; v

7

) = v

20

;

3

(t; v

12

) = v

23

;

3

(t; v

15

) = v

31

;

3

(t; v

21

) = v

28

;

3

(t; v

25

) = v

30

;

3

(t

0

; v

1

) = v

6

;

3

(t

0

; v

2

) = v

5

:

Note that, indeed,

(i)

3

(t; v) 2 contr

t

(v) for each v 2 in(t), and

3

(t

0

; v) 2 contr

t

0

(v) for each v 2 in(t

0

); hence

(A1) is satis�ed.

(ii) lb

t[']

(v

4

) = lb

t[']

(v

7

), and for the isomorphism �

1

of sub

t

(v

4

) onto sub

t

(v

7

) we have that

�

1

(

3

(t; v

4

)) = �

1

(v

11

) = v

20

=

3

(t; v

7

), and �

1

(

3

(t; v

12

)) = �

1

(v

23

) = v

28

=

3

(t; v

21

);

lb

t[']

(v

6

) = lb

t[']

(v

25

), and for the isomorphism �

2

of sub

t

(v

6

) onto sub

t

(v

25

) we have that

�

2

(

3

(t; v

6

)) = �

2

(v

18

) = v

30

=

3

(t; v

25

);

lb

t[']

(v

3

) = lb

t[']

(v

12

), and for the isomorphism �

3

of sub

t

(v

3

) onto sub

t

(v

12

) we have that

�

3

(

3

(t; v

3

)) = �

3

(v

9

) = v

23

=

3

(t; v

12

);

lb

t

0

[']

(v

1

) = lb

t[']

(v

15

), and for the isomorphism � of t

0

onto sub

t

(v

15

) we have that

�(

3

(t

0

; v

1

)) = �(v

6

) = v

31

=

3

(t; v

15

), and �(

3

(t

0

; v

2

)) = �(v

5

) = v

30

=

3

(t; v

25

).

Hence (A2) is satis�ed. 2

In the rest of the section, we will characterize consistent storage functions, which were

de�ned axiomatically above. This characterization will be given in terms of walks along paths

in trees: an internal node v is stored in the leaf which lies at the end of such a path beginning

in v.

De�nition 1.3.6

(1) A direction function is a function : �! fleft; rightg.

(2) Let be a direction function, t a tree, v 2 in(t), and w 2 ddes

t

(v).

(2.1) The ordered pair (v;w) agrees with if

(i) w = left

t

(v) if (lb

t[']

(v)) = left, and

(ii) w = right

t

(v) if (lb

t[']

(v)) = right.

(2.2) The ordered pair (v;w) disagrees with if

(i) w = right

t

(v) if (lb

t[']

(v)) = left, and

(ii) w = left

t

(v) if (lb

t[']

(v)) = right.

(3) Let be a direction function.

A storage function
 follows the -strategy if for each tree t and each v 2 in(t), there is a path

from v to
(t; v), and this path �(v;
(t; v)) = (v = v

0

; v

1

; : : : ; v

n

=
(t; v)) is such that

(i) (v

0

; v

1

) agrees with and

(ii) (v

i

; v

i+1

) disagrees with for i = 1; : : : ; n� 1.

(4) A storage function
 is an agree/disagree function, abbreviated as A/D function, if there

exists a direction function such that
 follows the -strategy.

1.3. Codes for node-labeled trees 41

��

��

v

1

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

��

��

v

2

��

��

v

3

��

��

v

4

�

�

�

�

S

S

S

S

��

��

v

5

��

��

v

6

��

��

v

7

�

�

�

�

A

A

A

A

��

��

v

10

��

��

v

11

�

�

�

�

A

A

A

A

��

��

v

15

��

��

v

16

��

��

v

17

�

�

�

�

S

S

S

S

��

��

v

8

��

��

v

9

�

�

�

�

A

A

A

A

��

��

v

12

��

��

v

13

��

��

v

14

Figure 1.14: t

Example 1.3.7 Let ' be the strict code such that, for all k � 0,

m!

'

`

1

m

k

r

1

; `

1

!

'

`

1

m

k

r

2

; `

2

!

'

`

3

m

k

r

1

;

`

3

!

'

`

3

m

k

r

2

; r

1

!

'

`

2

m

k

r

1

; r

2

!

'

`

2

m

k

r

2

:

Let be the direction function de�ned by

 (m) = left; (`

1

) = right; (`

2

) = left;

 (`

3

) = left; (r

1

) = left; (r

2

) = left:

Consider the tree t shown in Figure 1.14. Then t['] is as shown in Figure 1.15.

The storage function
 that follows the -strategy is de�ned as follows:

(t; v

1

) = v

5

;
(t; v

2

) = v

17

;
(t; v

4

) = v

14

;

(t; v

7

) = v

10

;
(t; v

8

) = v

12

;
(t; v

11

) = v

15

:

Figure 1.16 illustrates the directions and the strategy. 2

Now we can give a combinatorial characterization of consistent storage functions.

Theorem 1.3.8 A storage function
 is an A/D function i�
 is consistent with '.

42 Chapter 1. Properties of Grammatical Codes of Trees

��

��

v

1

m

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

��

��

v

2

`

1

��

��

v

3

m

��

��

v

4

r

1

�

�

�

�

S

S

S

S

��

��

v

5

`

1

��

��

v

6

m

��

��

v

7

r

2

�

�

�

�

A

A

A

A

��

��

v

10

`

2

��

��

v

11

r

2

�

�

�

�

A

A

A

A

��

��

v

15

`

2

��

��

v

16

m

��

��

v

17

r

2

�

�

�

�

S

S

S

S

��

��

v

8
`

2

��

��

v

9

r

1

�

�

�

�

A

A

A

A

��

��

v

12

`

3

��

��

v

13

m

��

��

v

14

r

1

Figure 1.15: t[']

��

��

v

1

m

Q

Q

Q

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�

��

��

v

2

`

1

��

��

v

3

m

��

��

v

4

r

1

�

�

�

�

S

S

S

S

S

Sw

��

��

v

5

(t; v

1

) =

`

1

��

��

v

6

m

��

��

v

7

r

2

�

�

�

�

�

��

A

A

A

A

��

��

v

10

(t; v

7

) =

`

2

��

��

v

11

r

2

�

�

�

�

�

��

A

A

A

A

��

��

v

15

(t; v

11

) =

`

2

��

��

v

16

m

��

��

v

17
=
(t; v

2

)

r

2

�

�

�

�

�

�/

S

S

S

S

��

��

v

8`

2

��

��

v

9

r

1

�

�

�

�

�

��

A

A

A

A

��

��

v

12

(t; v

8

)

A

AA

A

`

3

��

��

v

13

m

��

��

v

14
=
(t; v

1

)

r

1

Figure 1.16:
 following the -strategy

1.3. Codes for node-labeled trees 43

Proof. (Only if) Assume that
 is an A/D function, and let be the direction function such

that
 follows the -strategy.

(A1)
 satis�es (A1), since for each tree t, and for each v 2 in(t) there is a path from v to

(t; v).

(A2) Let t; t

0

be trees, and let v 2 nd(t), v

0

2 nd(t

0

) be such that there exists an isomorphism

� from sub

t

(v) onto sub

t

0

(v

0

) and lb

t[']

(v) = lb

t

0

[']

(v

0

).

Note that, for each w 2 in(sub

t

(v)), lb

t[']

(w) = lb

t

0

[']

(�(w)).

Let w 2 in(sub

t

(v)), and let �(w;
(t; w)) = (w = w

0

; w

1

; : : : ; w

n

=
(t; w)). Since
 follows

the -strategy, it follows that (�(w

0

); �(w

1

)) agrees with , and (�(w

i

); �(w

i+1

)) disagrees with

 for i = 1; : : : ; n � 1. Hence, in sub

t

0

(v

0

) the path from �(w) to �(
(t; w)) equals the path

from �(w) to
(t

0

; �(w))). Consequently, for each w 2 in(sub

t

(v)), �(
(t; w)) =
(t

0

; �(w)), and

so
 satis�es (A2).

(A3) Let t be a tree, let v 2 in(t), and let � be a cut of t below v. If �(v;
(t; v)) = (v =

v

0

; v

1

; : : : ; v

n

=
(t; v)), then �(v;
(tree(t; �); v)) = (v = v

0

; v

1

; : : : ; v

s

), with 1 � s � n. Since

v

s

2 leaf (tree(t; �)), v

s

2 �, and therefore
(tree(t; �); v) = v

s

= � \�(v;
(t; v)).

Hence,
 satis�es (A3).

(A4) Let t be a tree, and let v 2 in(t), v

0

2 nd(t) be such that
(t; v) 62 contr

t

(v

0

). Then

�(v;
(t; v))\ nd(sub

t

(v

0

)) = ;, and therefore
 follows from v the same path in t

r

sub

t

(v

0

)

as in t. Hence
(t; v) =
(t

r

sub

t

(v

0

); v), and so
 satis�es (A4).

Consequently,
 satis�es (A1), : : : , (A4), and so
 is consistent with '.

(If) Assume that
 is a storage function consistent with '.

Claim 1.3.9 For each tree t, each v 2 in(t), and each v

0

2 nd(t), if v

0

2

�(v;
(t; v)) and v

0

6= v, then v

0

is not a middle child.

Proof. Assume to the contrary that there is a tree t, v 2 in(t) and v

0

2

�(v;
(t; v)) such that v

0

6= v and v

0

is a middle child.

Let u 2 in(t) be the direct ancestor of v

0

, and consider the cut � = (leaf (t) �

contr

t

(u))[ddes

t

(u) of t. Since
 satis�es (A3),
(tree(t; �); v) = �\�(v;
(t; v)) =

v

0

. Let t

1

= tree(t; �)

r

S

w2V

1

sub

t

(w), with V

1

= ddes

t

(u)� fv

0

; left

t

(u)g, and let

t

2

= tree(t; �)

r

S

w2V

2

sub

t

(w), with V

2

= ddes

t

(u) � fv

0

; right

t

(u)g. Since v

0

is

a middle child, u has exactly two direct descendants in t

1

, and u has exactly two

direct descendants in t

2

.

Let � be the mapping from nd (t

1

) to nd (t

2

) de�ned by �(u) = u, �(v

0

) =

right

t

2

(u), �(left

t

1

(u)) = v

0

, and �(x) = x for all x 2 nd(t

1

r

sub

t

1

(u)) = nd(t

2

r

sub

t

2

(u)).

Clearly, � is an isomorphism of t

1

onto t

2

. By (A4),
(t

1

; v) =
(tree(t; �); v) =

v

0

, and
(t

2

; v) =
(tree(t; �); v) = v

0

. By (A2), �(v

0

) = �(
(t

1

; v)) =
(t

2

; �(v)) =

(t

2

; v) = v

0

; which contradicts the de�nition of �.

Hence for each tree t, each v 2 in(t), and each v

0

2 nd(t), if v

0

2 �(v;
(t; v)),

then v

0

is not a middle child. 2

Claim 1.3.10 For all trees t

1

; t

2

, each v

1

2 in(t

1

), each w

1

2 nd (t

1

), each v

2

2

in(t

2

), and each w

2

2 nd (t

2

), if w

i

2 ddes

t

i

(v

i

) and w

i

2 �(v

i

;
(t

i

; v

i

)) for i = 1; 2,

44 Chapter 1. Properties of Grammatical Codes of Trees

and lb

t

1

[']

(v

1

) = lb

t

2

[']

(v

2

), then w

1

= left

t

1

(v

1

) i� w

2

= left

t

2

(v

2

), and w

1

=

right

t

1

(v

1

) i� w

2

= right

t

2

(v

2

).

Proof. Let �

i

= (leaf (t

i

) � contr

t

i

(v

i

)) [ddes

t

i

(v

i

)) for i = 1; 2. Then, by (A3),

(tree(t

i

; �

i

); v

i

) = w

i

for i = 1; 2.

Let t

0

i

= tree(t

i

; �

i

)

r

S

u2V

i

sub

t

i

(u), with V

i

= ddes

t

i

(v

i

)�fleft

t

i

(v

i

); right

t

i

(v

i

)g

for i = 1; 2. By Claim 1.3.9, w

i

62 V

i

, and so sub

t

i

(w

i

) is not removed for i = 1; 2.

By (A4),
(t

0

i

; v

i

) =
(tree(t

i

; �

i

); v

i

) = w

i

for i = 1; 2.

Clearly, there exists an isomorphism from sub

t

0

1

(v

1

) onto sub

t

0

2

(v

2

). Since

lb

t

1

[']

(v

1

) = lb

t

2

[']

(v

2

), it follows, by (A2), that �(w

1

) = �(
(t

0

1

; v

1

)) =
(t

0

2

; v

2

) = w

2

,

and therefore both w

1

and w

2

are leftmost or both w

1

and w

2

are rightmost. 2

Now de�ne : �! fleft; rightg as follows.

Let a 2 � and let t be a tree such that there exists a v 2 in(t) with lb

t[']

(v) = a, and

hddesi

t

(v) = (v

1

; v

2

), for some v

1

; v

2

2 leaf (t).

Then

 (a) =

(

left if
(t; v) = v

1

;

right if
(t; v) = v

2

:

Note that by (A1),
(t; v) 2 fv

1

; v

2

g, and, by Claim 1.3.10, (a) does not depend on the

choice of t. Hence is a well-de�ned direction function.

Claim 1.3.11 Let t be a tree, and let v 2 in(t). If �(v;
(t; v)) = (v = v

0

; v

1

; : : :

: : : ; v

n

=
(t; v)), then (v

0

; v

1

) agrees with , and (v

i

; v

i+1

) disagrees with for

i = 1; : : : ; n� 1.

Proof. Let t

a

be the tree we used in de�ning (a), where a = lb

t[']

(v

0

). So there

is a w 2 in(t

a

) that has exactly two direct descendants, which are leaves, and

lb

t

a

[']

(w) = a. By Claim 1.3.10, both v

1

and
(t

a

; w) are leftmost, or both v

1

and

(t

a

; w) are rightmost. From the de�nition of it follows that (v

0

; v

1

) agrees with

 .

It remains to be proved that (v

i

; v

i+1

) disagrees with for i = 1; : : : ; n� 1.

To this aim, assume to the contrary that there is a j, 1 � j � n � 1, such

that (v

j

; v

j+1

) agrees with . Let v

0

be the second node in �(v

j

;
(t; v

j

)). We have

already proved that then (v

j

; v

0

) agrees with . Hence v

0

= v

j+1

.

Let � = (leaf (t)� contr

t

(v

j

))[ddes

t

(v

j

). Then by (A3),
(tree(t; �); v) = v

j+1

and
(tree(t; �); v

j

) = v

0

.

This, however, contradicts the injectivity of
 (condition (2) of De�nition 1.3.2),

and so (v

i

; v

i+1

) disagrees with for i = 1; : : : ; n� 1. 2

By Claim 1.3.11,
 is an A/D function. This completes our proof of Theorem 1.3.8. 2

From Theorem 1.3.8 the following corollary is immediate.

Corollary 1.3.12 For each strict code ', there are exactly 2

6

= 64 storage functions consis-

tent with '.

1.3. Codes for node-labeled trees 45

��

��

v

1

+

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

��

��

v

2

+

��

��

v

3

d

��

��

v

4

�

�

�

�

�

S

S

S

S

��

��

v

5

a

��

��

v

6

b

��

��

v

7
�

�

�

�

�

A

A

A

A

��

��

v

10

a

��

��

v

11
+

�

�

�

�

A

A

A

A

��

��

v

15

c

��

��

v

16

c

��

��

v

17

a

�

�

�

�

S

S

S

S

��

��

v

8
+

��

��

v

9

a

�

�

�

�

A

A

A

A

��

��

v

12

b

��

��

v

13

d

��

��

v

14

a

Figure 1.17: (t; �)

Example 1.3.13 Let '; ; t, and
 be the strict code, the direction function, the tree, and the

storage function from Example 1.3.7. Consider the node-labeling � of t shown in Figure 1.17.

Then, using
 and ' we obtain the leaf-labeling of t shown in Figure 1.18. Hence we have

coded the node-labeled tree (t; �) by the code-word (+; a; `

1

)(;; b;m)(�; a; `

2

)(+; c; `

2

)(;; c;m)

(+; a; r

2

)(;; d;m)(+; b; `

3

)(;; d;m)(�; a; r

1

)(;; a; r

1

). 2

Acknowledgement

The authors are indebted to J. Engelfriet and K. Salomaa for very useful comments concerning

the previous versions of this paper.

46 Chapter 1. Properties of Grammatical Codes of Trees

��

��

v

1

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

��

��

v

2

��

��

v

3

d

m

��

��

v

4

�

�

�

�

S

S

S

S

��

��

v

5

+

a

`

1

��

��

v

6

b

m

��

��

v

7

�

�

�

�

A

A

A

A

��

��

v

10

�

a

`

2

��

��

v

11

�

�

�

�

A

A

A

A

��

��

v

15

+

c

`

2

��

��

v

16

c m

��

��

v

17

+

a

r

2

�

�

�

�

S

S

S

S

��

��

v

8

��

��

v

9

a

r

1

�

�

�

�

A

A

A

A

��

��

v

12

+

b

`

3

��

��

v

13

d

m

��

��

v

14

�

a

r

1

Figure 1.18: leaf-labeled version of (t; �)

Chapter 2

A Note on Binary Grammatical

Codes of Trees

Introduction

Grammatical codes of trees provide a way to encode ordered trees into strings over a �nite

alphabet in such a way that the length of each code-word is precisely the number of leaves of

the coded tree. Such codes are grammatical because they result by applying production rules

of a grammar G to a tree t which becomes then a derivation tree t

0

in G and the yield of this

derivation tree t

0

becomes the code-word for t. Grammatical codes were investigated in [5]

and [4], see also [3].

In this note we present two topics related to grammatical codes of binary trees.

The �rst topic (see Section 2.2) is binary grammatical codes with a minimal code alphabet.

It is shown that the only binary codes that are minimal in this sense are the so-called \strict"

binary codes (as considered in [4]).

The second topic (see Section 2.3) concerns the extension of binary grammatical codes

to grammatical codes for trees of arbitrary degree. We make comparisons between classes of

codes obtained in this way and the classes from [5, 4].

In Section 2.1 we recall (from [5, 4]) some notions and results concerning grammatical

codes.

2.1 Grammatical codes of trees

In this note, by a tree we mean a nonempty rooted directed ordered tree without chains (i.e.,

each inner node of t has at least two direct descendants). Hence a tree t is a pair (V;O), where

V is the set of nodes of t, and O is a function on the inner nodes of t that assigns to each

inner node the sequence of its children. We use nd (t) to denote the set of nodes V , in(t) to

denote the set of inner nodes of t, and leaf (t) to denote the set of leaves of t. The frontier of

t is the sequence of all leaves of t ordered according to O.

A binary tree is a tree in which each internal node has exactly two direct descendants {

hence here binary trees are full binary trees. A node-labeled tree t is a pair (t

0

; �), where t

0

is

47

48 Chapter 2. A Note on Binary Grammatical Codes of Trees

a tree and � : nd(t

0

)! � is a mapping, with � an alphabet. We say that t

0

is the underlying

tree of t, denoted by und (t). The notation and terminology concerning und(t) carries over to

t. Also, yield (t) = �(v

1

) � � � �(v

n

) 2 �

+

, where v

1

� � � v

n

is the frontier of t. An inner-labeled

tree is a pair (t; �) where t is a tree and � is a mapping de�ned on the inner nodes of t.

We do not distinguish between isomorphic trees. Trees t = (V;O) and t

0

= (V

0

;O

0

) are

isomorphic if there is a bijection � : V ! V

0

such that for each v 2 in(t),O(v) = (v

1

; : : : ; v

n

) i�

O

0

(�(v)) = (�(v

1

); : : : ; �(v

n

)). The set of all (chain-free) trees modulo isomorphism is denoted

by T; the set of all binary trees modulo isomorphism is denoted by T

b

; for n � 1, T

b

(n)

denotes the set of all binary trees with n leaves modulo isomorphism.

By a code we mean a mapping ' : T! �

+

that is injective and length-preserving, i.e., for

each t 2 T, j'(t)j = #leaf (t). Analogously, a binary code is a mapping ' : T

b

! �

+

that is

injective and length-preserving. A word '(t) in �

+

with t 2 T (or t 2 T

b

in the binary case)

is called a code-word; the set of all code-words of ' is denoted by ran(').

A OS system is like a context-free grammar, except that it does not have terminal symbols,

and it may have in�nitely many productions. Formally, a OS system G is a triple (�; P; �),

where � is the (�nite) alphabet of G, P is the (possibly in�nite) set of productions of the form

a! x, with a 2 � and x 2 �

+

, jxj � 2, and � 2 � is the axiom. The OS system G generates

words in the usual way, as follows. One derivation step amounts to the substitution of a word

x for an occurrence of a letter a, where a ! x is a production in P . If a word v 2 �

+

is

obtained from w 2 �

+

by a �nite number of consecutive derivation steps, then we say that

v is derived from w. The words generated by the OS system G are then the words derived

from the axiom �. We use L

G

to denote fb 2 � j a ! by 2 P for some a 2 � and y 2 �

+

g,

M

G

to denote fb 2 � j a ! xby 2 P for some a 2 � and x; y 2 �

+

g, and R

G

to denote

fb 2 � j a! xb 2 P for some a 2 � and x 2 �

+

g.

A OS system G = (�; P; �) is backwards deterministic if a! x 2 P and a

0

! x 2 P imply

that a = a

0

. It is semi-deterministic if for each n � 2 and for each a 2 � there is exactly one

production a! x with jxj = n. If G is a semi-deterministic OS system, then each tree t is the

underlying tree of exactly one derivation tree of G; this derivation tree is denoted by t[G]. A

OS system G is unambiguous if for each w generated by G, there is a unique derivation tree

of w.

A code ' : T! �

+

is grammatical if there is a semi-deterministic OS system G = (�; P; �)

such that for each t 2 T, '(t) = yield (t[G]). Note that if such a OS system exists, then it

is unique { we say then that G determines '. In what follows we shall not distinguish a

grammatical code ' : T ! �

+

from the OS system G = (�; P; �) determining ', and we use

' for the mapping on T as well as for the OS system. Clearly (see [4]), a semi-deterministic

OS system ' determines a code in the above-mentioned way i� ' is unambiguous.

In [5] and [4], grammatical codes were investigated that had a property stronger than

unambiguity, the so-called \unique origin property". A OS system ' = (�; P; �) has the

unique origin property if for each x 2 �

+

there is a unique y 2 �

+

such that if x is derived

from some y

0

2 �

+

, then y

0

is derived from y, and the derivation forest of x from y is unique.

OS systems with the unique origin property were characterized in [4] using the notion of non-

overlapping right-hand sides (Proposition 2.1.1). In general, we say that words x; y 2 �

+

(where possibly x = y) are overlapping if there exist v 2 �

+

, u

1

; u

2

; w

1

; w

2

2 �

�

such that

x = u

1

vw

1

, y = u

2

vw

2

, u

1

w

1

u

2

w

2

6= �, and u

i

w

j

= � for some i; j 2 f1; 2g.

2.1. Grammatical codes of trees 49

Proposition 2.1.1 A semi-deterministic OS system ' has the unique origin property i� it is

backwards deterministic, and for all right-hand sides x; y of ', x and y are not overlapping.

Thus every semi-deterministic and backwards deterministicOS system with non-overlapping

right-hand sides is unambiguous, and hence a grammatical code. Such grammatical codes are

called \non-overlapping codes". We recall some types of grammatical codes introduced in [5]

and [4] which are subclasses of the non-overlapping codes.

De�nition 2.1.2

(1) A grammatical code ' = (�; P; �) is non-overlapping if it is backwards deterministic, and

for all productions a! x and b! y, x and y are not overlapping.

(2) A grammatical code ' = (�; P; �) ismarked if it is backwards deterministic and fL

'

;M

'

; R

'

g

is a partition of �.

(3) A grammatical code ' = (�; P; �) is strict if it is backwards deterministic and fL

'

;M

'

; R

'

g

is a partition of � such that #M

'

= 1, and either #L

'

= 2 and #R

'

= 3, or #L

'

= 3 and

#R

'

= 2.

Clearly, each strict code is marked, and each marked code is non-overlapping. It was shown

in [4] that non-overlapping and marked codes have an alphabet of at least 6 letters, and that

each marked code with 6 letters is strict. In [5, 4] it was assumed that the axiom was in M

'

,

but here we omit this restriction.

We have similar results in the case of binary codes. A binary OS system is a OS system

such that for each production a ! x, jxj = 2; it is deterministic if for each a 2 � there is

exactly one production a ! x in P . A binary code is grammatical if it is determined by a

deterministic binary OS system. Binary grammatical codes have the unique origin property if

they are backwards deterministic, and no right-hand sides are overlapping. In the binary case,

the fact that right-hand sides are not overlapping trivially implies that fL

'

; R

'

g is a partition

of �; hence, in the binary case the notions of marked code and non-overlapping code coincide.

De�nition 2.1.3

(1) A binary grammatical code ' = (�; P; �) is marked if it is backwards deterministic and

fL

'

; R

'

g is a partition of �.

(2) A binary grammatical code ' = (�; P; �) is strict if it is backwards deterministic and

fL

'

; R

'

g is a partition of � such that #L

'

= 2 and #R

'

= 2.

It was shown in [4] that each marked binary code has an alphabet of at least 4 letters, and

that a binary code is strict i� it is marked and has 4 letters. As a matter of fact there are 24

distinct non-isomorphic strict binary codes (see [4]). Strict codes can easily be decoded, see

[4] and [3].

Example 2.1.4

(1) Consider the OS system ' = (f`

1

; `

2

; `

3

;m; r

1

; r

2

g; P; `

1

), where P consists of the following

productions (for each k � 1):

`

1

! `

2

m

k

r

1

; m! `

3

m

k

r

1

;

`

2

! `

2

m

k

r

2

; r

1

! `

1

m

k

r

1

;

`

3

! `

3

m

k

r

2

; r

2

! `

1

m

k

r

2

:

' is a strict code.

50 Chapter 2. A Note on Binary Grammatical Codes of Trees

(2) Consider the binary OS system ' = (fa; b; c; dg; P; a) where P consists of the productions

a! bc, b! bd, c! ac, and d! ad. Then ' is a strict binary code. 2

2.2 Binary grammatical codes with 4 letters

To code binary trees (in a length-preserving manner) one needs at least 4 letters, since the

number of binary trees with n leaves is greater than 3

n

for su�ciently large n (see, e.g., [12]).

As shown in [4] minimal binary codes (i.e., binary codes with an alphabet of 4 letters) exist,

e.g., strict binary codes are such codes. Here we will show (Theorem 2.2.7) that strict codes

are the only binary codes that are minimal and grammatical.

It is well-known (see, e.g., [12]) that the number b

n

of binary trees with n leaves is \close

to 4

n

". More precisely,

b

n

=

4

n

p

�n

3=2

(1 +O(1=n)): (2:1)

We will use the following consequence of this fact.

Lemma 2.2.1 For each � with 0 < � < 4, there exists a natural number N

1

> 0 such that

for each n � N

1

, b

n

> �

n

.

Proof. Since � < 4, it follows that there exists a natural number N

1

> 0 such that for each

n � N

1

,

�

n

�

n

3=2

4

n

=

n

3=2

�

4

�

�

n

<

1

p

�

:

Combining this with (1) we obtain that for each n � N

1

,

b

n

>

4

n

p

�n

3=2

> �

n

:

2

Lemma 2.2.1 implies that, given a binary code with 4 letters, every word over its alphabet

occurs in some code-word { this is shown in the next lemma. In fact we prove something

stronger: every word occurs in some code-word at a position which is a multiple of its length

plus one.

For w; x 2 �

+

and 1 � k � jwj, we say that x is a k-segment of w if jxj = k and w = uxv

with juj a multiple of k.

Lemma 2.2.2 Let ' : T

b

! �

+

be a binary code with #� = 4. For each x 2 �

+

there exists

a t 2 T

b

such that x is a jxj-segment of '(t).

2.2. Binary grammatical codes with 4 letters 51

Proof. Let x 2 �

+

with jxj = k. Assume to the contrary that for all t 2 T

b

, x is not a

k-segment of '(t). Then

ran(') � (�

k

� fxg)

�

� (

k�1

[

j=0

�

j

):

In particular, if n is a multiple of k, then

#(ran(' j

T

b

(n)

)) � (4

k

� 1)

n=k

:

Since ' is injective, b

n

= #T

b

(n) = #(ran(' j

T

b

(n)

)). We conclude that b

n

� (4

k

� 1)

n=k

for

each n that is a multiple of k.

However, by Lemma 2.2.1 with � = (4

k

� 1)

1=k

, we have that for su�ciently large n,

b

n

> �

n

= (4

k

� 1)

n=k

; a contradiction.

Consequently, there is a t 2 T

b

such that x is a k-segment of '(t). 2

To prove the main theorem of this section (Theorem 2.2.7), we need a particular implication

of Lemma 2.2.2. Given two distinct words x and y of the same length, we wish to construct

a \context" for them, i.e., a pair of code-words which di�er only in the occurrences of x and

y. Lemma 2.2.4, which follows easily from Lemma 2.2.2, states that this is possible.

Let x; y 2 �

+

be such that jxj = jyj and x 6= y. We de�ne a mapping h

(x;y)

: �

+

! �

+

that replaces every jxj-segment x of w by y. Formally, if w = v

1

v

2

: : : v

n

u 2 �

+

, with n � 0,

jv

i

j = jxj for i = 1; : : : ; n, and juj < jxj, then h

(x;y)

(w) = v

0

1

: : : v

0

n

u, where for i = 1; : : : ; n,

v

0

i

= v

i

if v

i

6= x, and v

0

i

= y otherwise.

De�nition 2.2.3 Let ' : T

b

! �

+

be a binary code with #� = 4. For n � 1, binary

trees t

1

; t

2

2 T

b

(n), and x; y 2 �

+

with x 6= y and jxj = jyj, t

1

and t

2

are (x; y)-related if

h

(x;y)

('(t

1

)) = h

(x;y)

('(t

2

)).

Hence t

1

and t

2

are (x; y)-related if '(t

1

) and '(t

2

) di�er only in some k-segments which

equal x in one of these words and y in the other one.

Lemma 2.2.4 Let ' : T

b

! �

+

be a binary code with #� = 4.

For each pair x; y 2 �

+

with jxj = jyj and x 6= y, there exist n � 1 and t

1

; t

2

2 T

b

(n) with

t

1

6= t

2

such that t

1

and t

2

are (x; y)-related.

Proof. Let x; y 2 �

+

be such that jxj = jyj and x 6= y. Assume to the contrary that for every

n, and for all t

1

; t

2

2 T

b

(n), if t

1

6= t

2

, then t

1

and t

2

are not (x; y)-related. This implies that

the mapping h

(x;y)

� ' is injective (and hence a binary code). However, by the de�nition of

h

(x;y)

, for every t 2 T

b

, x is not a jxj-segment of h

(x;y)

('(t)), which contradicts Lemma 2.2.2.

2

The next two lemmas yield the proof of the main theorem.

Lemma 2.2.5 Each binary grammatical code ' = (�; P; �) with #� = 4 is backwards deter-

ministic.

52 Chapter 2. A Note on Binary Grammatical Codes of Trees

Proof. Let ' = (�; P; �) be a binary grammatical code with #� = 4, and assume to the

contrary that ' has productions a! pq and b! pq, with a 6= b. By Lemma 2.2.4 there exist

n � 1 and t

1

; t

2

2 T

b

(n) with t

1

6= t

2

such that t

1

and t

2

are (a; b)-related. Now for each j, if

the j'th letter of '(t

1

) di�ers from the j'th letter of '(t

2

) (which implies that these letters are

a and b), then add two direct descendants to the j'th leaf of t

1

and to the j'th leaf of t

2

. For

the so obtained trees t

0

1

and t

0

2

we have t

0

1

6= t

0

2

and, since a and b have the same right-hand

side in P , we have '(t

0

1

) = '(t

0

2

), which contradicts the injectivity of '. 2

Lemma 2.2.6 For each binary grammatical code ' = (�; P; �) with #� = 4, fL

'

; R

'

g is a

partition of �.

Proof. Let ' = (�; P; �) be a binary grammatical code with #� = 4. It is su�cient to

show that L

'

\ R

'

= ;. Assume to the contrary that there is a q 2 L

'

\ R

'

. Hence ' has

productions a! pq and b! qr. Consider the words ar and pb.

Suppose �rst that ar 6= pb. By Lemma 2.2.4, there exist n � 1 and t

1

; t

2

2 T

b

(n) with

t

1

6= t

2

such that t

1

and t

2

are (ar; pb)-related. Let w

1

= '(t

1

), and w

2

= '(t

2

). For every

odd j, 1 � j < n, do the following: if w

1

(j)w

1

(j +1) = ar and w

2

(j)w

2

(j + 1) = pb, then add

two direct descendants to the j'th leaf of t

1

, and add two direct descendants to the j + 1'st

leaf of t

2

; if w

1

(j)w

1

(j + 1) = pb and w

2

(j)w

2

(j + 1) = ar, then do the same with the roles of

t

1

and t

2

interchanged. Let t

0

1

be the tree obtained in this way from t

1

, and let t

0

2

be the tree

obtained in this way from t

2

. Since w

1

6= w

2

, there is a leaf of one of these trees, say the j'th

leaf, that has been added in the above construction as the right child of a node with label a.

But then in the other tree the j'th leaf is a left child, and thus t

0

1

6= t

0

2

. Also, since t

1

and t

2

are (ar; pb)-related, it follows that '(t

0

1

) = '(t

0

2

). This contradicts the injectivity of '.

In the case that ar = pb, we start with a tree t 2 T

b

such that ar occurs in '(t) (by

Lemma 2.2.2 such a tree exists), and construct two trees out of t. Let j be such that '(t) =

warz, with jwj = j�1. The �rst tree is obtained by adding two descendants to the j'th leaf of

t, and the second tree is obtained by adding two descendants to the j +1'st leaf of t. Clearly,

these trees are di�erent, but they get the same code-word. Hence also in this case we obtain

a contradiction with the injectivity of '.

Consequently, L

'

\ R

'

= ;. 2

Theorem 2.2.7 Each binary grammatical code with an alphabet of 4 letters is a strict binary

code.

Proof. By Lemmas 2.2.5 and 2.2.6 each binary grammatical code with 4 letters is marked,

and hence it is strict. 2

For binary grammatical codes with larger alphabets, Lemma 2.2.6 no longer holds, as will

be shown in Example 2.2.8. Note that if a left leaf is followed by a right leaf in the frontier of

a tree t 2 T

b

, then these leaves are the two children of one node; we call such a pair of leaves

a complete pair of t.

Example 2.2.8 Let ' be a binary OS system with productions a ! ae, b ! bd, c ! ac,

d ! ed, and e! bc, and some arbitrary axiom. Clearly this OS system is deterministic and

2.3. Extensions of binary codes 53

backwards deterministic, but not marked. Since the right-hand sides ae and ed overlap, ' does

not have the unique origin property. However, we will show that ' is unambiguous. Hence '

is a grammatical code.

Let n � 1, and let t

1

; t

2

2 T

b

(n) be such that '(t

1

) = '(t

2

). We will show by induction on

n that t

1

['] = t

2

['] (and hence t

1

= t

2

). If n = 1, then trivially t

1

= t

2

. Now suppose that the

claim holds for all n � k, for some k � 1. Let n = k + 1, and let t

1

; t

2

2 T

b

(n). We look for

a subword in '(t

1

) that labels a complete pair in t

1

['] as well as in t

2

[']. Then we can apply

the induction hypothesis after removing from each tree the complete pair, and conclude that

t

1

['] = t

2

['].

Note that in any code-word '(t), the letters a and b label left leaves in t['], and c and

d label right leaves. Hence if '(t

1

) contains a subword of the form ac, bc, or bd, then this

subword labels a complete pair in both t

1

['] and t

2

[']. We claim that if '(t

1

) contains a

subword ae, then this also labels a complete pair, because the corresponding occurrence of e

cannot label a left leaf.

To see this, assume to the contrary that e labels a left leaf in t[']. Then the parent v of

this leaf has label d. Let t

0

1

be the tree obtained from t

1

by removing all nodes below v. Then

the subword ad occurs in '(t

0

1

), and it labels a left and a right leaf, i.e., a complete pair in

t

0

1

[']. This contradicts the fact that ad is not a right-hand side of '.

A symmetric argument applies for every occurrence of ed: if e labels a right leaf, then its

parent has label a, contradicting the fact that ad cannot label a complete pair. 2

It follows from Theorem 2.2.7 and Proposition 2.1.1 that every binary OS system with 4

letters that is semi-deterministic and unambiguous has the unique origin property. It might

be interesting to see whether in coding arbitrary chain-free trees the situation is similar, i.e.,

whether the fact that a grammatical code is minimal (using 6 letters) implies that it has the

unique origin property, meaning that it is a non-overlapping code.

2.3 Extensions of binary codes

One way to obtain grammatical codes for arbitrary trees is to extend a given binary grammat-

ical code. The idea is based on the following translation of arbitrary trees into binary trees.

What happens is that each inner node together with its direct descendants is re�ned into a

binary subtree, where additionally a labeling of the inner nodes denotes whether a node comes

from the original tree or is constructed in the re�nement.

De�nition 2.3.1 Let t = (V;O) be a tree. Let v 2 in(t) with O(v) = (u

1

; : : : ; u

n

); n � 2.

De�ne a new set of nodes W

v

= fv

(2)

; : : : ; v

(n�1)

g, and corresponding ordering functions O

v

on fvg [W

v

as follows.

If n > 2, then

O

v

(v) = (u

1

; v

(2)

),

O

v

(v

(i)

) = (u

i

; v

(i+1)

) for i = 2; : : : ; n� 2, and

O

v

(v

(n�1)

) = (u

n�1

; u

n

).

If n = 2, then

O

v

(v) = O(v) = (u

1

; u

2

).

54 Chapter 2. A Note on Binary Grammatical Codes of Trees

r

Q

Q

Q

Q

Q

�

�

�

�

�

A

A

A

�

�

�r r r r

@

@

@

�

�

�r r r

@

@

@

�

�

�r r r

A

A

A

�

�

�r r

q

0

@

@

�

�q q

1

@

@

�

�q q

1

@

@

�

�q

0

q

@

@

�

�q

0

q

1

S

S

�

�q q

1

S

S

�

�qq

S

S

�

�q

0

q

S

S

�

�q q

Figure 2.1: a tree t and its binary re�nement bin(t)

Then the binary re�nement of t, denoted by bin(t), is the inner-labeled binary tree (V [

S

v2in(t)

W

v

;

S

v2in(t)

O

v

; �) where � is de�ned by �(v) = 1 if v 62 V and �(v) = 0 if v 2 V .

Example 2.3.2 Figure 2.1 gives an example of a tree t and its binary re�nement bin(t). 2

Note that the mapping bin that assigns to every t 2 T the binary re�nement bin(t) is

injective.

For a tree t of arbitrary degree, if bin(t) = (t

0

; �), then the binary tree t

0

can be coded by

means of a binary grammatical code '. Moreover, in order to mark which nodes have label 1

in bin(t), we adapt the node-labeling of t

0

['] as follows: if v is a node in bin(t) with label 1,

then for each node (other than v) on the path from v to the leaf that is the leftmost descendant

of v, its label a in t

0

['] is changed into â. The yield of this tree will be the code-word for t.

Since only right children can have label 1 in bin(t), bin(t) can be recovered from this yield as

follows: by removing the hats '(t

0

) is obtained, and hence t

0

; now if the i'th letter of the yield

has a hat, then the lowest ancestor of the i'th leaf of t

0

that is a right child gets label 1.

Since bin is injective, this construction indeed gives a code for T, in the sense that di�erent

trees get di�erent code-words. Moreover it can be de�ned by the following OS system, which

means that this code is grammatical.

De�nition 2.3.3 Let ' be a binary grammatical code. The extension of ' is the OS system

'

ext

= (�

ext

; P

ext

; �) where �

ext

= � [f

^

` j ` 2 L

'

g, and

P

ext

= fa! `

1

^

`

2

: : :

^

`

n

r

n

j n � 1; a! `

1

r

1

; r

1

! `

2

r

2

; : : : ; r

n�1

! `

n

r

n

2 Pg

[fâ!

^

`

1

^

`

2

: : :

^

`

n

r

n

j n � 1; a 2 L

'

; a! `

1

r

1

; r

1

! `

2

r

2

; : : : ; r

n�1

! `

n

r

n

2 Pg:

Theorem 2.3.4 For each binary grammatical code ', the extension '

ext

is a grammatical

code for the set of chain-free trees.

Proof. Let ' = (�; P; �) be a binary code, and let '

ext

= (�

ext

; P

ext

; �) be the extension of

'. By the construction of '

ext

, and since ' is deterministic, it follows that for each n � 2,

and each a 2 �

ext

, there is exactly one production a ! w in P with jwj = n. Hence '

ext

is

semi-deterministic.

2.3. Extensions of binary codes 55

Let t 2 T be a tree, and let bin(t) = (t

0

; �). Let � : nd(t

0

) ! �

ext

be the adapted

node-labeling as described above. It follows from the de�nitions of bin(t) and of '

ext

that

t['

ext

] = (t; �j

nd(t)

). This implies that bin(t), and hence the original tree t, can be uniquely

determined from yield(t['

ext

]). Hence '

ext

is unambiguous.

Consequently, '

ext

is a grammatical code for T. 2

Example 2.3.5 Consider the strict binary code ' = (fa; b; c; dg; P; a) from Example 2.1.4(2),

with production set a ! bc, b ! bd, c ! ac, d ! ad. Let '

ext

be the extension of '. Then

the productions of '

ext

are (for each k � 1)

a! bâ

k

c; d! aâ

k

d;

b! bâ

k

d; â!

^

bâ

k

c;

c! aâ

k

c;

^

b!

^

bâ

k

d:

Note that '

ext

is a strict code; in fact it is (a renaming of) the strict code given in Exam-

ple 2.1.4(1).

Figure 2.2 gives the adapted node-labeling � for the binary re�nement from Figure 2.1,

and t['

ext

]. 2

q

a

@

@

�

�q q

c

b

@

@

�

�q q

c

â

@

@

�

�q

â

c

q

@

@

�

�q

^

b

q

c

S

S

�

�q q

d

^

b

S

S

�

�q q

â
c

S

S

�

�q

d

q

â

S

S

�

�q q

a

d

r

a

Q

Q

Q

Q

Q

�

�

�

�

�

A

A

A

�

�

�r

b

r

â

r

â

r

c

@

@

@

�

�

�r

^

b

r

â

r

c

@

@

@

�

�

�r

^

b

r

â

r

d

A

A

A

�

�

�r

a

r

d

Figure 2.2: und(bin(t)) with adapted node-labeling and t['

ext

]

Remark 2.3.6 In De�nition 2.3.3, one could also re�ne the nodes of degree larger than 2 in

a \leftmost" way, as done in Figure 2.3 for the tree t of Figure 2.1. Then an extension code is

obtained where copies of right letters are added; symmetric results hold for these extensions.

2

Remark 2.3.7 In [4] a way of coding node-labeled trees was discussed where the underlying

tree is coded with a marked code, and the node-labels are stored in the leaves by use of a

so-called \direction function". Extension codes closely correspond to such a way of coding

the binary re�nements of T (which are inner-labeled binary trees), provided that we extend

marked binary codes. More precisely, let ' = (�; P; �) be a marked binary code, let : �!

fleft ; rightg be the direction function de�ned by (a) = left if a 2 R

'

and (a) = right if

a 2 L

'

, and consider the code-word w of bin(t) given by ' and (as described in [4]). Then

each label 1 ends up in a left leaf of bin(t), and for a 2 �, â and a in '

ext

(t) correspond to

letters (a; 1) and (a; 0) respectively in w. 2

56 Chapter 2. A Note on Binary Grammatical Codes of Trees

q

0

@

@

�

�q q

1

@

@

�

�q q

1 0

S

S

�

�q q

S

S

�

�q

1

q

S

S

�

�q

0

q

@

@

�

�q q

1 0

S

S

�

�q q

S

S

�

�q q

Figure 2.3: a symmetric way of re�ning t

So far, we have imposed no restrictions on the form of '. The following theorem states that

non-overlapping (i.e., marked) binary codes extend to non-overlapping codes for T. Moreover,

a condition is given that characterizes those binary codes that extend to marked codes. We

use LL

'

to denote fb 2 L

'

j there exists a 2 L

'

such that a! bc in 'g, and LR

'

to denote

fb 2 L

'

j there exists a 2 R

'

such that a! bc in 'g.

Theorem 2.3.8 Let ' be a binary grammatical code, and let '

ext

be the extension of '.

(1) ' is a marked binary code i� '

ext

is a non-overlapping code.

(2) ' is backwards deterministic and LL

'

\ LR

'

= ; i� '

ext

is a marked code.

Proof. Let ' = (�; P; �) be a binary code, and let '

ext

= (�

ext

; P

ext

; �) be the extension of

'.

(1) Firstly, assume that ' is marked. It follows from the backwards determinism of ' that

'

ext

is backwards deterministic. We show now that the right-hand sides of '

ext

do not overlap.

From the fact that L

'

and R

'

are disjoint and that every right-hand side of '

ext

is in (L

'

[L

ext

)�

L

�

ext

� R

'

, where L

ext

= f

^

` j ` 2 L

'

g we obtain that the only possibility for overlapping right-

hand sides is that one right-hand side is a su�x of another right-hand side. More precisely there

is a production of the form a ! `

1

^

`

2

: : :

^

`

n

r

n

or â !

^

`

1

^

`

2

: : :

^

`

n

r

n

, with a; `

1

; : : : ; `

n

; r

n

2 �,

and a production of the form

^

b !

^

`

j

: : :

^

`

n

r

n

, with 2 � j � n, and b 2 L

'

. This implies the

existence of productions a! `

1

r

1

; r

1

! `

2

r

2

; : : : ; r

n�2

! `

n�1

r

n�1

; r

n�1

! `

n

r

n

in P as well as

productions b! `

j

r

0

j

; r

0

j

! `

j+1

r

0

j+1

; : : : ; r

0

n�2

! `

n�1

r

0

n�1

; r

0

n�1

! `

n

r

n

. Since ' is backwards

deterministic, it follows that r

n�1

= r

0

n�1

, and hence also that r

n�2

= r

0

n�2

; : : : ; r

j

= r

0

j

, and

r

j�1

= b. However, r

j�1

= b contradicts the fact that b 2 L

'

. Hence no right-hand sides of

P

ext

overlap. Consequently, '

ext

is a non-overlapping code.

Conversely, if '

ext

is non-overlapping, then, since all productions of ' are also productions

of '

ext

, L

'

and R

'

are disjoint and ' is backwards deterministic { hence ' is marked.

(2) By the construction of '

ext

, L

'

ext

= L

'

[f

^

` j ` 2 LL

'

g, M

'

ext

= f

^

` j ` 2 LR

'

g, and

R

'

ext

= R

'

. Note that disjointness of LL

'

and LR

'

implies disjointness of L

'

and R

'

.

Consequently, L

'

ext

, M

'

ext

, and R

'

ext

are mutually disjoint i� LL

'

and LR

'

are disjoint. By

(1), if '

ext

is marked, then ' is backwards deterministic. Hence ' satis�es the given condition

i� '

ext

is marked. 2

Theorem 2.3.8 implies that ' is a strict binary code i� '

ext

is a non-overlapping code with

6 letters. These minimal non-overlapping codes obtained by extending strict codes are not

2.3. Extensions of binary codes 57

necessarily strict, see, e.g., the code from Example 2.3.9(1). Note that strict codes obtained

as extensions have 3 left letters; using the symmetric extension of Remark 2.3.6 one may

obtain strict codes with 3 right letters. It is impossible that both symmetric versions of the

extension of a strict code are strict. More precisely, of the 24 strict binary codes 16 codes have

extensions that are not strict; of the other 8 codes 4 codes yield so-called `insertive' (see [5])

strict extensions according to De�nition 2.3.3, and 4 codes yield `insertive' strict extensions

following a symmetric de�nition (see Remark 2.3.6). In fact the 4 binary codes giving strict

extensions according to De�nition 2.3.3 have the productions of Example 2.3.5 and one of the

4 letters as axiom. The production set of the obtained extensions gives, with the right choice

of the axiom, one of the two strongly recursive dependent codes with 3 left letters which were

discussed in [5].

Example 2.3.9

(1) Consider the strict binary code ' = (fa; b; c; dg; P; a) where P consists of the productions

a! ac, b! bd, c! bc, and d! ad, and let '

ext

be the extension of '. Then the productions

of '

ext

are (for each k � 1):

a! a

^

b

k

c; d! aâ

k

d;

b! bâ

k

d; â! â

^

b

k

c;

c! b

^

b

k

c;

^

b!

^

bâ

k

d:

Hence '

ext

is a non-overlapping code that is not strict.

(2) Consider the non-overlapping code (taken from [4]) ' = (f`

1

; `

2

; `

3

; r

1

; r

2

; r

3

g; P; `

1

) where

P consists of the productions, for k � 1,

`

1

! `

1

r

k

3

r

1

; r

1

! `

2

r

k

1

r

3

;

`

2

! `

1

r

k

3

r

2

; r

2

! `

3

r

k

2

r

1

;

`

3

! `

2

r

k

1

r

2

; r

3

! `

3

r

k

2

r

3

:

This code is an example of a non-overlapping code that is not an extension code. This is easily

seen by the fact that each (left- or right-) extension of a binary strict code introduces at most

two letters that can occur as \middle" letters.

(3) Consider the strict code ' = (f`

1

; `

2

; `

3

;m; r

2

; r

3

g; P; `

3

) where P consists of the produc-

tions, for k � 1,

m! `

1

m

k

r

1

; `

3

! `

1

m

k

r

2

;

`

1

! `

2

m

k

r

1

; r

1

! `

2

m

k

r

2

;

`

2

! `

3

m

k

r

1

; r

2

! `

3

m

k

r

2

:

This code is an example of a strict code that is not an extension code. Note that if it would

be an extension code, then it would be an extension introducing m and one of the `

j

as new

letters. By De�nition 2.3.3 this new letter `

j

would be `

1

, since m! `

1

r

1

is a production of '.

But then also `

2

would be a new letter, since `

1

! `

2

r

1

is a production of '; contradiction. 2

There is an easy way to construct codes that are not extensions, by choosing the axiom

in such a way that it must be a new letter. However, intuitively, the axiom is not crucial to

the nature of a grammatical code. Hence we prefer to give examples of codes that are not

extensions for more essential reasons.

Summarizing, we obtain the inclusion diagram of Figure 2.4 for grammatical codes of

chain-free trees. The question mark denotes that we do not know whether this area is empty

58 Chapter 2. A Note on Binary Grammatical Codes of Trees

or not (cf. the discussion at the end of Section 2.2). For the subclass of extension codes we do

have that every minimal code is non-overlapping: if '

ext

is an extension code with 6 letters,

then it is obtained from a binary code ' of 4 letters; by Theorem 2.2.7 ' is strict, and hence,

by Theorem 2.3.8, '

ext

is non-overlapping.

For the sake of completeness we give representative codes corresponding with the diagram:

- '

1

is the code '

ext

from Example 2.3.9(1),

- '

2

is the code '

ext

from Example 2.3.5,

- '

3

is the code ' from Example 2.3.9(3),

- '

4

is the code from Example 2.3.9(2),

- '

5

is the extension of the marked binary code with productions a ! ad, b ! bd, c ! ce,

d! ae, and e! be,

- '

6

is the extension of the marked binary code with productions a ! ad, b ! bd, c ! be,

d! cd, and e! ce,

- '

7

is the marked code with productions, for k � 0, a! ac

k

e, b! bc

k

e, c! ac

k

f , d! bc

k

f ,

e! ac

k

g, f ! bc

k

f , and g ! bc

k

d,

- '

8

is the non-overlapping code with productions, for k � 0, a! ad

k

e, b! bd

k

e, c! ad

k

f ,

d! ce

k

d, e! ce

k

f , f ! bd

k

g, g ! ad

k

g,

- '

9

is the extension of the binary code of Example 2.2.8,

- '

10

is the code with productions, for k � 0, a ! af

k

e, b ! bf

k

d, c ! af

k

c, d ! ef

k

d,

e! bf

k

c, f ! af

k

g, g ! bf

k

g.

nonoverlapping

minimal

marked

grammatical codes

extension

?

'

1

r

'

2

r

'

3

r

'

4

r

'

5

r

'

6

r

'

7

r

'

8

r

'

9

r

'

10

r

extensions of strict binary codes = minimal codes \ extension codes

extensions of marked binary codes = non-overl. codes \ extension codes

strict codes = marked codes \ minimal codes

Figure 2.4: inclusion diagram

2.3. Extensions of binary codes 59

The fact that '

7

; '

8

, and '

10

are not extensions can be shown by arguments similar to

the ones used in Example 2.3.9(2) and (3). The unambiguity of '

10

follows by reasoning as in

Example 2.2.8.

60 Chapter 2. A Note on Binary Grammatical Codes of Trees

Chapter 3

Grammatical Codes of Trees and

Terminally Coded Grammars

Abstract

We introduce terminally coded (TC) grammars, which generalize parenthesis gram-

mars in the sense that from each word w generated by a TC grammar we can recover

the unlabeled tree t underlying its derivation tree(s). More precisely, there is a length-

preserving homomorphism that maps w to an encoding of t. Basic properties of TC gram-

mars are established. For backwards deterministic TC grammars we give a shift-reduce

precedence parsing method without look-ahead, which implies that TC languages can be

recognized in linear time. The class of TC languages contains all parenthesis languages,

and is contained in the classes of simple precedence languages and NTS languages.

Introduction

We wish to investigate context-free grammars such that every word in the generated language

contains an encoding of the structure of the derivation tree for that word, where by "structure

of the derivation tree" we mean the derivation tree without its labels. In particular, we

require that the encoding can be obtained from the generated word by a length-preserving

homomorphism. The classical example of such grammars are the parenthesis grammars ([13]).

In a parenthesis grammar every production is of the formA!(�)where � does not contain the

(terminal) symbols \(" and \)". Clearly, from a given word in the language one can reconstruct

the unlabeled derivation tree for that word. In fact, an encoding of the unlabeled tree can

be obtained from the generated word by a length-preserving homomorphism that leaves the

parentheses as they are, and maps each other terminal letter to some �xed symbol. It should

be realized, however, that the derivation trees of a parenthesis grammar have a very special

structure: the �rst and last child of an internal node are always leaves, labeled by parentheses.

In this paper we generalize the parenthesis grammars to the so-called terminally coded (TC)

grammars, of which the derivation trees may have arbitrary structure. Note that, in order

that the generated word contains an encoding of the unlabeled derivation tree, the encoding

of the tree should have the same length as its yield. Such \length-preserving" codes were

shown to exist for arbitrary (chain-free) trees in [5, 4]; here we also allow chains (of bounded

61

62 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

length). Note that, of course, parenthesis expressions also encode arbitrary trees (because

there is a bijective correspondence between arbitrary trees and trees of the above-mentioned

special structure); however, that encoding is not length-preserving.

Intuitively, the most obvious way in which a context-free grammar G can generate words

that contain an encoding of the unlabeled derivation tree, is to keep track of the encoding

of the tree of each sentential form. This means that the application of a production should

simulate, in the encoding, the addition of children to a leaf of the tree. This \locality" of

the encoding of trees suggests that the encoding itself should also be de�ned by way of a

context-free grammar C, and that G simulates C. Such codes are called \grammatical" codes,

introduced and investigated in [5, 4]. In the TC grammars of this paper we allow in particular

the so-called marked codes of [4]. Note that for grammatical codes the decoding of the code-

word into the tree it represents, corresponds to the parsing of that word. The marked codes are

de�ned by grammars for which this decoding is \simple". The basic idea is to generalize the

parenthesis encoding by allowing arbitrary terminals and nonterminals to act as \parentheses"

that mark the beginning and end of the right-hand side of a production.

Due to the fact that each TC grammar \simulates" a marked code, for which we have a

simple parsing method, the recognition of TC languages is also fairly easy. In fact, TC gram-

mars are closely related to a natural subclass of the simple precedence grammars: the so-called

very simple precedence (VSP) grammars introduced in this paper. They are the simple prece-

dence grammars for which the handle can be detected without looking at symbols outside the

handle; thus, these grammmars are also of bounded context, with bound 0. More precisely,

the relationship between TC grammars and VSP grammars is as follows. Every backwards

deterministic TC grammar is a VSP grammar; this implies that every backwards determinis-

tic TC grammar can be parsed by a shift-reduce algorithm without look-ahead. Backwards

deterministic TC grammars and VSP grammars generate the same class of languages, which

is a proper subclass of the class of languages generated by arbitrary TC grammars. However,

allowing a VSP grammar to have several initial nonterminals rather than one, the class of

languages generated by TC grammars equals the class of languages generated by such VSP

grammars. Thus, TC languages can be recognized in linear time. We also show that the class

of TC languages is (e�ectively) contained in the class of NTS languages; this implies that TC

grammars have a decidable equivalence problem (see [15]). The class of parenthesis languages

is a proper subclass of the class of TC languages.

The structure of this paper is as follows. In Section 3.1, de�nitions and properties con-

cerning grammatical codes of trees are given. The notion of terminally coded grammar is

introduced in Section 3.2. Basic properties of these grammars are established. Some of them

are compared with properties of parenthesis grammars. Section 3.3 concerns VSP (very simple

precedence) grammars. In particular, a shift-reduce parsing algorithm for VSP grammars is

presented, and it is shown that backwards deterministic TC grammars are VSP. The language

classes corresponding with the above-mentioned grammar types are compared in Section 3.4.

Although this paper continues the research from [5] and [4], it is completely self-contained.

Preliminaries 63

Preliminaries

In this section we give some basic notations and terminology to be used in this paper, in

particular notations and terminology concerning trees and context-free grammars.

For a set Z, #Z denotes its cardinality; ; denotes the empty set. For sets Y and Z, Y � Z

denotes the inclusion of Y in Z, and Y � Z denotes the strict inclusion of Y in Z. The

cartesian product of sets X and Y is denoted by X � Y , and we use proj

1

and proj

2

to denote

the projections onto X and Y respectively.

For a relation � � X � Y , dom(�) denotes the domain of �, i.e., dom(�) = fx 2 X j

there is a y 2 Y such that (x; y) 2 �g, and ran(�) denotes the range of �, i.e., ran(�) = fy 2

Y j there is a x 2 X such that (x; y) 2 �g. In particular, these notations will be used with

respect to (partial) functions. For a (partial) function ' : X ! Y , and for Z � X, ' j

Z

denotes the restriction of ' to Z. For (partial) functions ' : X ! Y and : Y ! Z,

b

'

denotes the composition of and ', i.e.,

b

'(x) = ('(x)) for all x 2 X.

N

+

denotes the set of all positive natural numbers.

For a sequence x, jxj denotes its length, �rst(x) denotes the �rst element of x, and last (x)

denotes the last element of x. These notations carry over to words which are sequences of

letters.

By a projection from one alphabet into another we mean a length-preserving homomor-

phism.

In this paper, by a tree we mean a �nite nonempty rooted directed ordered tree.

Let t be a tree.

nd (t) denotes the set of all nodes of t, in(t) denotes the set of internal nodes of t, leaf (t)

denotes the set of leaves of t, hleaf i(t) denotes the sequence of all leaves of t ordered according

to the order of t, and root(t) denotes the root of t.

For v 2 nd(t), sub

t

(v) denotes the subtree of t rooted at v. For v 2 in(t), tnv denotes the

tree that results from t by removing sub

t

(v), except v, and making v into a leaf.

For v 2 in(t), ddes

t

(v) is the set of all direct descendants of v in t, and hddesi

t

(v) is the

sequence of all direct descendants of v in t (i.e., the elements of ddes

t

(v) ordered according to

the order of t).

A chain of t is an edge (v;w) such that ddes

t

(v) = fwg; t is chain-free if for each v 2 in(t),

#ddes

t

(v) � 2.

If x 2 nd(t), then

x is a leftmost child if there exists v 2 in(t) such that #ddes

t

(v) � 2 and x = �rst(hddesi

t

(v)),

x is a rightmost child if there exists v 2 in(t) such that #ddes

t

(v) � 2 and x = last (hddesi

t

(v)),

x is a middle child if there exists v 2 in(t) such that #ddes

t

(v) � 3, x 2 ddes

t

(v) and x is

neither a leftmost nor a rightmost child, and

x is a single child if there exists v 2 in(t) such that (v; x) is a chain of t.

A complete segment (of hleaf i(t)) is a sequence w of leaves of t such that w = hddesi

t

(v)

for some v 2 in(t).

Trees t and t

0

are isomorphic if there is a bijection � : nd(t)! nd(t

0

) such that �(root(t)) =

root(t

0

) and for each v 2 in(t), if hddesi

t

(v) = (v

1

; : : : ; v

n

), n � 1, then hddesi

t

0

(�(v)) =

(�(v

1

); : : : ; �(v

n

)). In this paper we deal with \abstract" trees, i.e., isomorphic trees are con-

sidered to be equal. Note that, in this way, there is a unique tree consisting of one node only.

64 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

As usual, we often use concrete trees to represent abstract trees.

A node-labeled tree t is a pair (t

0

; �), where t

0

is a tree and � : nd(t

0

) ! � is a mapping,

where � is an alphabet. For a node-labeled tree t = (t

0

; �), t

0

is the underlying tree of

t, denoted by und(t), and � is the node-labeling function of t, denoted by lb

t

. The above

notations concerning und(t) are carried over to t in the obvious way, e.g., we speak of in(t)

and ddes

t

(v). In particular, for a node-labeled tree t and v 2 nd(t), we mean by sub

t

(v)

the node-labeled subtree (sub

und(t)

(v); lb

t

j

nd(sub

und(t)

(v))

), and, for v 2 in(t), tnv denotes the

node-labeled tree that results from t by removing sub

t

(v), except v (and its label).

Let t be a node-labeled tree. The yield of t, denoted by yield(t), is the word

lb

t

(v

1

) : : : lb

t

(v

n

) 2 �

+

, where (v

1

; : : : ; v

n

) = hleaf i(t). With each v 2 in(t) we associate a

production prod

t

(v) = lb

t

(v) ! lb

t

(v

1

) : : : lb

t

(v

n

), where (v

1

; : : : ; v

n

) = hddesi

t

(v), and we

write prod(t) = fprod

t

(v) j v 2 in(t)g.

A context-free grammar (from now on abbreviated as cf grammar) is denoted by a 4-tuple

(�;�; P; S), where � is the set of all (terminal and nonterminal) symbols, � � � is the set

of terminals, P � (� � �) � �

+

is the set of productions, and S 2 � � � is the initial

nonterminal. For (A;�) 2 P we use the notation A! �. The cf grammars in this paper are

"-free; thus, we restrict ourselves to languages that do not contain the empty word ".

Let G = (�;�; P; S) be a cf grammar.

For words �; � 2 �

�

, �)

G

� means that � directly derives � (in G), �)

�

G

� means

that � derives � (in G), and �)

+

G

� means that � derives � (in G) in at least one step. �

directly derives � (in G) in a rightmost way, notation �

r

)

G

� , if � =
Aw and � =
�w,

where A! � 2 P ,
 2 �

�

and w 2 �

�

. A word � 2 �

+

is a sentential form if S)

�

G

�, and a

rightmost sentential form if S

r

)

�

G

�.

Whenever the cf grammar G is clear from the context, we write) ,)

�

,

r

) instead of

)

G

,)

�

G

,

r

)

G

.

For � 2 �

+

and A 2 ���, a derivation subtree of � from A (in G) is a node-labeled tree

t such that lb

t

(root(t)) = A, yield(t) = �, and prod(t) � P . If A = S, then we say that t is

a derivation tree of � (in G); t is a successful derivation tree if � 2 �

+

. As usual, for A 2 �

and � 2 �

+

, there is a derivation subtree of � from A in G i� A)

�

�.

A cf grammar is chain-free if it has no productions of the form A ! B with B a nonter-

minal. A cf grammar G = (�;�; P; S) is reduced if each symbol is useful and reachable, i.e.,

for each A 2 � there is a derivation S)

�

�

1

A�

2

)

�

�

1

��

2

2 L(G) in G, where �

1

; �

2

2 �

�

,

� 2 �

+

. Note that each cf grammar has an equivalent reduced chain-free grammar. Note

�nally that the derivation trees of a chain-free cf grammar are not necessarily chain-free : they

may contain chains that end in a leaf (corresponding to productions of the form A! a with

a 2 �).

3.1 Grammatical codes of trees

Codings of (chain-free) trees into words that have a \grammatical" nature, i.e., that can be

represented by cf grammars, were investigated in [5, 4]. The aim of this section is to present

some of the basic concepts from [5, 4], generalized to codes that are de�ned on a subset of

trees (which may have chains).

3.1. Grammatical codes of trees 65

Let T be the set of all abstract trees, as de�ned in the preliminaries.

De�nition 3.1.1 A tree function is a partial function ' : T ! �

�

, where � is a (�nite)

alphabet, and dom(') 6= ;.

For a tree function ' : T! �

�

, the alphabet � is denoted by alph('). A letter a 2 alph(')

is reachable if there exists t 2 dom(') such that a occurs in '(t). We now de�ne the main

notion of this section, viz. that of a grammatical tree-code.

De�nition 3.1.2 Let ' : T! �

�

be a tree function. ' is

(1) a tree-code if it is injective; it is then said to be a tree-code for dom(') � T,

(2) length-preserving if j'(t)j = #leaf (t) for every t 2 dom('),

(3) pre�x-closed if for each t 2 dom(') and for each v 2 in(t), tnv 2 dom('),

(4) local if there exists a partial function : � � N

+

! �

+

such that if '(t) = xay with

x; y 2 �

�

, a 2 � , jxj = i� 1, then

(i) '(t<i; n>) is de�ned i� (a; n) is de�ned, and

(ii) if '(t< i; n>) is de�ned, then '(t< i; n>) = x (a; n)y, where t< i; n> denotes the tree

that results from t by adding n direct descendants to the i'th leaf of t,

(5) grammatical if it is length-preserving, pre�x-closed, and local,

(6) a grammatical tree-code if it is both grammatical and a tree-code.

Note that for each pre�x-closed tree function ' the one node tree is in its domain; the

value of ' for the one node tree is denoted by one

'

.

Note also that if ' is a grammatical tree function with local function , then for each

reachable a 2 alph('), and for each n 2 N

+

, (a; n) is uniquely determined by '; if (a; n) is

de�ned, then j (a; n)j = n.

Obviously, the length-preserving property and the �niteness of � imply that there is no

grammatical tree-code ' for the set of all trees, i.e., with dom(') = T. In [5] the rather

surprising fact is shown that grammatical tree-codes do exist for the set of all chain-free trees,

even with #� = 6 (see Example 3.1.14). We �rst give some well-known examples of tree-codes,

through which the reader may appreciate the result of [5].

Example 3.1.3

(1) Consider the function '

par1

: T ! f(;);mg

�

de�ned as follows : for t 2 T, '

par1

(t) is the

word obtained by writing an m for each leaf of t, and putting the symbol \(" before each

leftmost child and the symbol \)" after each rightmost child. Figure 3.1 gives an example of

a tree t

1

and its code-word '

par1

(t

1

).

'

par1

is the usual parenthesis code for trees, with m standing for (); it is a tree-code that

is pre�x-closed (since dom('

par1

) = T) but not length-preserving.

(2) Consider the partial function '

par2

: T ! f(;);mg

�

de�ned as follows : for t 2 T such

that t is chain-free and each leftmost and each rightmost child is a leaf, '

par2

(t) is the word

obtained by writing m for each leaf that is a middle child, (for each leaf that is a leftmost

child, and) for each leaf that is a rightmost child. In Figure 3.2 a tree t

2

and its code-word

'

par2

(t

2

) is given. Note that '

par2

(t

2

) = '

par1

(t

1

).

66 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

ss

�

�

�

�

A

A

A

A

s s

�

�

�

�

A

A

A

A ss

�

�

�

�

A

A

A

A

sss#

#

#

#

#c

c

c

c

c

s

Figure 3.1: '

par1

(t

1

) = (m(mm)(m(mm)))

ssss

A

A

A

A�

�

�

�E

E

E

E

�

�

�

�

s s s s

A

A

A

A�

�

�

�E

E

E

E

�

�

�

�s s s s�

�

�

�

�

�

�

�E

E

E

E

A

A

A

A

s ssss�

�

�

�

�

�

�

�H

H

H

H

H

H

H

H#

#

#

#

#c

c

c

c

c

s

Figure 3.2: '

par2

(t

2

) = (m(mm)(m(mm)))

ss

�

�

�

�

A

A

A

A

sss

�

�

�

�

A

A

A

A

s s

�

�

�

�

A

A

A

Ass

�

�

�

�

A

A

A

A

sss#

#

#

#

#c

c

c

c

c

s

Figure 3.3: '

Dew

= (1 � 1)(1 � 2)(2 � 1)(2 � 2 � 1)(2 � 2 � 2 � 1)(2 � 2 � 2 � 2)(2 � 2 � 3)(3)

3.1. Grammatical codes of trees 67

'

par2

is a tree-code for the set of chain-free trees such that all leftmost and rightmost

children are leaves; it is length-preserving, pre�x-closed, and local with local function

par

de�ned by

par

(m;n) =(m

n�2

)for each n 2 N

+

� f1g.

Hence '

par2

is a grammatical tree-code.

(3) In this example we temporarily drop the restriction that � is �nite and take � = N

�

.

Consider the usual Dewey notation for trees '

Dew

: T ! (N

�

)

�

de�ned as follows. Let t 2 T

be a tree. For each v 2 in(t), label the edges from v to its direct descendants by 1; 2; ::; s,

where s = #ddes

t

(v), according to the order of t. Then '

Dew

(t) is the word obtained by

writing for each leaf u of t the word in � that labels the path from the root to u. In particular,

one

'

= ("). As an example, consider the tree t

3

and its Dewey code-word in Figure 3.3.

The Dewey code is injective, length-preserving, pre�x-closed, and local with local function

Dew

de�ned by

Dew

(w;n) = (w1)(w2) : : : (wn) for each w 2 N

�

and each n 2 N

+

. Its

domain is T, i.e., it codes all trees. However, '

Dew

is not a grammatical tree-code, since the

alphabet N

�

is not �nite. 2

In this paper (as in [5, 4]), we will consider grammatical tree-codes that are similar to '

par2

.

Since '

par2

has such a speci�c domain, we wish to have more general grammatical tree-codes

that still are easy to decode.

Grammatical tree functions are called \grammatical" because they can be represented by

context-free grammars, as will be shown in what follows. In this section (only) we assume

that context-free grammars are allowed to have in�nitely many productions. We are interested

in the sentential forms generated by a cf grammar instead of the terminal words. In fact,

terminals will not play an essential role, and one might even assume that there are none (or,

equivalently, that we work with OS systems (see, e.g., [5, 4]). Thus, we also do not assume cf

grammars to be reduced. Unless speci�ed otherwise, when we speak of a derivation tree we

mean a derivation tree of a sentential form from the initial nonterminal (cf. the Preliminaries).

De�nition 3.1.4 A cf grammar (�;�; P; S) is forwards deterministic if for every A 2 � and

every n 2 N

+

there is at most one production A! � in P with j�j = n.

In [5, 4] this notion is used for grammars of which all right-hand sides have length > 1;

there it is called \semi-deterministic".

We denote a forwards deterministic cf grammar by fd-cf grammar. Note that for an fd-cf

grammar, if t

1

and t

2

are derivation trees and und(t

1

) = und (t

2

), then t

1

= t

2

. In fact, a

reduced cf grammar is forwards deterministic if and only if the mapping und is injective on

derivation trees. Each fd-cf grammar de�nes a (grammatical) tree function in a natural way

as follows.

De�nition 3.1.5 Let G = (�;�; P; S) be an fd-cf grammar. The tree function of G is the

partial function '

G

: T! �

�

such that dom('

G

) = fund (t) j t is a derivation tree in Gg, and

for t 2 dom('

G

), '

G

(t) = yield (t[G]), where t[G] is the unique derivation tree in G such that

und (t[G]) = t.

Lemma 3.1.6 A tree function ' is grammatical i� there exists an fd-cf grammar G such that

' = '

G

.

68 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

Proof. Suppose that ' : T ! �

�

is a grammatical tree function with local function . Let

G = (�; ;; P; S) be the cf grammar such that

P = fa! x j a is reachable, (a; n) = x for some n 2 N

+

g

and S = one

'

. Clearly, G is forwards deterministic. Also, by Conditions 3 and 4(i) of

De�nition 3.1.2, dom(') = dom('

G

), and by Condition 4(ii) of De�nition 3.1.2, for each tree

t 2 dom('

G

), '

G

(t) = yield(t[G]) = '(t).

Suppose that ' is a tree function such that ' = '

G

for some fd-cf grammar G. Then, for

each tree t, j'(t)j = jyield(t[G])j = #leaf (t). Hence ' is length-preserving.

For each t 2 dom('), t[G] is a derivation tree in G, and hence for each v 2 in(t), t[G]nv is

a derivation tree in G. Since und (t[G]nv) = tnv, tnv 2 dom('). Hence ' is pre�x-closed.

Let be de�ned as follows : for a 2 � and n 2 N

+

, (a; n) = x such that jxj = n and

a ! x is a production in G. The partial function is well-de�ned, because G is forwards

deterministic. Clearly ' and satisfy Conditions 4(i) and 4(ii) from De�nition 3.1.2. Hence

' is local, and consequently ' is grammatical. 2

A cf grammar will be called unambiguous if the mapping yield is injective on derivation

trees, i.e., for all derivation trees t

1

and t

2

, if yield(t

1

) = yield (t

2

) then t

1

= t

2

. This de�nition

is non-standard, because it also concerns unsuccessful derivation trees for sentential forms;

however, for reduced cf grammars it is equivalent with the usual de�nition.

Lemma 3.1.7 For every fd-cf grammar G, '

G

is injective i� G is unambiguous.

Proof. Let G = (�;�; P; S) be an fd-cf grammar.

Suppose that '

G

is injective. Let t

1

and t

2

be derivation trees in G such that yield (t

1

) =

yield (t

2

). SinceG is forwards deterministic, t

1

= t

2

i� und (t

1

) = und(t

2

). From '

G

(und(t

1

)) =

yield (t

1

) = yield(t

2

) = '

G

(und (t

2

)) it follows that und(t

1

) = und (t

2

), since '

G

is injective.

Hence t

1

= t

2

. Consequently, G is unambiguous.

Suppose now that G is unambiguous. If t

1

; t

2

2 dom('

G

) are such that '

G

(t

1

) = '

G

(t

2

),

i.e., yield(t

1

[G]) = yield (t

2

[G]), then it follows by the unambiguity of G that t

1

[G] = t

2

[G].

Hence t

1

= t

2

, and '

G

is injective. 2

By Lemmas 3.1.6 and 3.1.7 we have the following result.

Proposition 3.1.8 A tree function ' is a grammatical tree-code i� there exists an unambigu-

ous fd-cf grammar G such that ' is the tree function of G.

Because of Proposition 3.1.8 we will also say that an unambiguous fd-cf grammar G is a

grammatical tree-code (and we will often use ' for both G and '

G

). Note that G is a tree-code

for fund(t) j t is a derivation tree in Gg.

Consequently, investigating grammatical tree-codes amounts to investigating unambiguity

(of fd-cf grammars). One well-known way of getting unambiguity is to require that the cf

grammar can be parsed deterministically (but note that we need a parsing method that works

for all sentential forms, not only for rightmost or leftmost ones). Such a parsing method is

then a way of decoding the code '

G

: T ! �

�

, i.e, given a word w 2 �

�

, to �nd a tree

3.1. Grammatical codes of trees 69

t 2 T such that '

G

(t) = w. We consider (as in [5, 4]) codes that can be parsed in a very easy

fashion, i.e., that have a simple decoding mechanism. For a cf grammar G = (�;�; P; S), we

use L

G

to denote the set fX 2 � j X = �rst(�) for some A ! � in Pg, and R

G

to denote

fX 2 � j X = last(�) for some A! � in Pg.

De�nition 3.1.9 A cf grammar G = (�;�; P; S) is bracketed if

(i) for every A! � in P , � 2 L

G

(�� L

G

)

�

\ (� �R

G

)

�

R

G

, and

(ii) there is no derivation S)

+

S in G.

For readers familiar with [7], we stress that the name \bracketed" is used here for a notion

that is related to but more general than the one in [7].

Intuitively, L

G

is the set of left-brackets and R

G

the set of right-brackets. Thus, tree

functions represented by bracketed cf grammars generalize the parenthesis code '

par2

(see

Example 3.1.13); note that L

G

and R

G

may contain both nonterminals and terminals.

Clearly, if a cf grammar is bracketed, one can easily detect the right-hand sides of produc-

tions in sentential forms. Thus, such grammars can be parsed bottom-up if one additionally

requires backwards determinism. Condition (ii) of De�nition 3.1.9 is used to determine when

the parsing should halt.

A cf grammar is backwards deterministic (and is called a bd-cf grammar) if distinct pro-

ductions have distinct right-hand sides. In the next lemma a property of bracketed bd-cf

grammars is given which implies the unambiguity of these grammars (Proposition 3.1.11; cf.

Lemma 1.1.24 and Theorem 1.1.26 of [4]). This property embodies the de�ning property of

the so-called cf grammars of bounded context(0,0) (abbreviated BC(0,0) grammars), see [6].

The lemma here is in fact a special case of the characterization of BC(0,0) grammars given in

[6].

Lemma 3.1.10 Let G = (�;�; P; S) be a bracketed bd-cf grammar.

If t is a derivation subtree of ��
 from A, and t

0

is a derivation subtree of � from B, with

� 2 �

+

, �;
 2 �

�

, and A;B 2 ��� such that there is no derivation B)

+

A, then there is

a v 2 nd(t) such that sub

t

(v) = t

0

and yield (tnv) = �B
.

Proof. We will prove the following claim using induction on #nd(t

0

).

If t is a derivation subtree of ��
 from A, and t

0

is a derivation subtree of � from B, then one

of the following cases holds :

(i) there is a v 2 nd(t) such that sub

t

(v) = t

0

and yield (tnv) = �B
, or

(ii) there is a v

0

2 nd(t

0

) such that sub

t

0

(v

0

) = t and yield (t

0

nv

0

) = A.

If #nd(t

0

) = 1, then (i) holds.

Suppose that for some n � 1, the claim holds for all derivation subtrees t

0

such that

#nd(t

0

) � n.

Let t be a derivation subtree of ��
 from A, and let t

0

be a derivation subtree of � from

B with n + 1 nodes. Let (w

1

; : : : ; w

k

) = hddesi

t

0

(root(t

0

)), k � 1, and let B

j

= lb

t

0
(w

j

) for

j = 1; : : : ; k. Hence B ! B

1

: : :B

k

2 P . By the inductive hypothesis we have for each of the

sub

t

0

(w

j

) that either (i) or (ii) holds.

Suppose �rst that case (ii) holds for one of these subtrees, say sub

t

0

(w

`

) with ` 2 f1; : : : ; kg,

i.e., there is a node w in sub

t

0

(w

`

) such that sub

t

0

(w) = t and yield (sub

t

0

(w

`

)nw) = A. Since

70 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

yield (t

0

) = � and yield (sub

t

0

(w

`

)) = yield (t) = ��
, it follows that k = 1 (and � =
 = "),

and hence t

0

satis�es (ii).

Suppose now that for all sub

t

0

(w

j

) case (i) holds. Hence there exist v

1

; : : : ; v

k

2 nd(t)

such that sub

t

(v

j

) = sub

t

0

(w

j

) for j = 1; : : : ; k and the tree t

00

= (: : : ((tnv

1

)nv

2

) : : :nv

k

) is a

derivation subtree from A with yield �B

1

B

2

: : : B

k

. If t

00

is the one node tree, then it must

be that k = 1 and t = sub

t

(v

1

) = sub

t

0

(w

1

). Hence in that case t

0

satis�es (ii). Assume now

that t

00

has more than one node.

Since G satis�es De�nition 3.1.9(i), for each derivation subtree s and for each u 2 nd (s),

u 6= root(s),

u is a leftmost child i� lb

s

(u) 2 L

G

�R

G

,

u is a middle child i� lb

s

(u) 2 �� (L

G

[R

G

),

u is a rightmost child i� lb

s

(u) 2 R

G

� L

G

, and

u is a single child i� lb

s

(u) 2 L

G

\ R

G

(the only-if-directions are obvious; the if-directions then follow from the fact that the four

mentioned sets form a partition of �).

By the above remark, if k = 1, then B

1

labels a single leaf of t

00

, which is a complete segment.

If k � 2, then B

1

2 L

G

� R

G

, B

j

2 � � (L

G

[R

G

) for j = 2; : : : ; k � 1, and B

k

2 R

G

� L

G

.

Hence B

1

: : : B

k

labels a complete segment of hleaf i(t

00

), which means that (v

1

; : : : ; v

k

) is a

complete segment.

Let v 2 in(t

00

) be the direct ancestor of (v

1

; : : : ; v

k

) in t

00

. Since G is backwards deter-

ministic, v is labeled by B. By the construction of t

00

, t is recovered from t

00

by adding

sub

t

(v

j

) = sub

t

0

(w

j

) to v

j

for j = 1; : : : ; k. It follows that tnv is a derivation subtree of �B

from A, and that sub

t

(v) = t

0

. Thus, case (i) holds, and the induction proof is completed.

Clearly, the lemma follows from the above claim. 2

Proposition 3.1.11 Every bracketed bd-cf grammar is unambiguous.

Proof. Let G = (�;�; P; S) be a bracketed bd-cf grammar. Assume that t

1

and t

2

are

derivation trees of � 2 �

+

. By De�nition 3.1.9(ii), there is no derivation S)

+

S. Then,

by Lemma 3.1.10, there is a v

1

2 nd(t

1

) such that sub

t

1

(v

1

) = t

2

, and, vice versa, there is a

v

2

2 nd(t

2

) such that sub

t

2

(v

2

) = t

1

. It follows that t

1

= t

2

. Consequently, G is unambiguous.

2

Thus, one (natural) way of obtaining a grammatical tree-code is to require that an fd-cf

grammar is bracketed and backwards deterministic.

De�nition 3.1.12 A marked tree-code is a cf grammar that is forwards deterministic, back-

wards deterministic, and bracketed.

Example 3.1.13 The parenthesis code '

par2

from Example 3.1.3(2) is represented by the cf

grammar (�; ;; P;m), with � = fm;(;)g and P = fm!(m

k

)j k � 0g. Clearly, this grammar

is backwards deterministic, forwards deterministic, and bracketed. Hence '

par2

is a marked

tree-code. 2

3.1. Grammatical codes of trees 71

The notion of marked tree-code given in De�nition 3.1.12 is closely related to the notion

of marked code from [4]. As a matter of fact, a marked code in the sense of [4] is a marked

tree-code ' such that dom(') is the set of all chain-free trees and one

'

62 L

'

[R

'

(the latter

condition is a stronger version of Condition (ii) of De�nition 3.1.9). The strict codes from [5]

are marked tree-codes for the set of all chain-free trees with an alphabet of precisely 6 letters,

where again the initial symbol is outside L

'

[R

'

.

Example 3.1.14 It is very easy to verify that the grammar '

1

= (�

1

; ;; P

1

;m) is a marked

tree-code for the chain-free trees, where �

1

= f`

1

; `

2

; `

3

; r

1

; r

2

;mg and P

1

consists of the

following productions, with k � 0 :

`

1

! `

1

m

k

r

2

; m! `

1

m

k

r

1

;

`

2

! `

2

m

k

r

1

; r

1

! `

3

m

k

r

1

;

`

3

! `

2

m

k

r

2

; r

2

! `

3

m

k

r

2

:

Hence '

1

is a strict code in the sense of [5].

Strict codes can easily be extended to marked tree-codes for the set of trees such that each

chain ends in a leaf. E.g., let '

1

= (�

1

; ;; P

1

;m) be the strict code de�ned above. De�ne

'

2

= (�

2

; ;; P

2

;m), where �

2

= �

1

[f`

0

1

; `

0

2

; `

0

3

; r

0

1

; r

0

2

;m

0

g, and P

2

= P

1

[fc! c

0

j c 2 �

1

g.

s s

C

C

C

C

�

�

�

�s s

s s

C

C

C

C

�

�

�

�s s s�

�

�

�A

A

A

As

s

s

s#

#

#

#

#c

c

c

c

cs

Figure 3.4: the tree t

r

1
`

3

C

C

C

�

�

�

m

0

`

0

1

r

1
`

3

C

C

C

�

�

�

r

1

m

`

1

A

A

A

�

�

�

`

0

1

r

1

m

`

1

#

#

#

#

c

c

c

c

m

Figure 3.5: the coded version t['

2

]

72 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

Clearly, '

2

is backwards deterministic, forwards deterministic, and bracketed. Hence '

2

is a marked tree-code, and dom('

2

) = ft 2 T j for each v 2 in(t), ddes

t

(v) = fwg implies

w 2 leaf (t)g.

The tree t of Figure 3.4 is in dom('

2

); t['

2

] is given in Figure 3.5 (recall that t['

2

] is a

derivation tree in the cf grammar '

2

, as in De�nition 3.1.5). Hence '

2

(t) = `

0

1

`

0

1

m

0

`

3

r

1

`

3

r

1

.

2

3.2 Terminally coded grammars

There are several methods to de�ne classes of cf grammars that can easily be analysed. One

of these is to include in some way information about the derivation tree in each word that

is generated. Parenthesis grammars are an example of such a class of cf grammars. Recall

that in a parenthesis grammar all productions have the form A !(�), see, e.g., [13] or [14,

Section VIII.3]. The parentheses can be seen as additional symbols that \code" the structure

of the derivation trees of the cf grammar with productions A ! � (cf. the code '

par1

from

Example 3.1.3(1)). Interpreting the parenthesis code as '

par2

(from Example 3.1.3(2)), one

might also say that each parenthesis expression generated by a parenthesis grammar codes

the structure of its own derivation tree (where the terminals that are not parentheses are

identi�ed, or, projected onto the codeletter m). However, the derivation trees of parenthesis

grammars are of a very speci�c form.

In this section, a class of grammars is de�ned in which the structure of derivation trees

is coded by marked tree-codes. We assume that given a derivation tree of a word w, the

code-word of its structure can be obtained from w by a projection from the terminals of

the grammar onto letters of the coding alphabet. This generalizes the notion of parenthesis

grammar in the sense that derivation trees may have any form, and still no additional symbols

are needed.

Due to the use of parentheses, parenthesis languages can be recognized very easily in

linear time. Also, the equivalence problem for parenthesis grammars is decidable. As for the

grammars introduced here, in Section 3.3 we will consider the parsing of these grammars, and

show that the corresponding languages can be recognized in linear time. In Section 3.4 we

obtain that their equivalence problem is decidable.

De�nition 3.2.1

(1) Let ' be a marked tree-code. A cf grammar G = (�;�; P; S) is terminally coded by ' if

there is a projection � : �! alph(') such that for each w 2 L(G) and each derivation tree t

of w in G, und (t) 2 dom(') and '(und(t)) = �(w).

(2) A cf grammar G is terminally coded (abbreviated TC) if there is a marked tree-code '

such that G is terminally coded by '.

(3) A cf language K is terminally coded (TC) if there is a terminally coded cf grammar G such

that K = L(G).

For a TC grammar G we will use ' to denote the code by which it is terminally coded

without always mentioning this explicitly.

3.2. Terminally coded grammars 73

Note that a cf grammarG is terminally coded by ' i� the reduced version of G is terminally

coded by '. In the remainder of the paper we assume all cf grammars to be reduced, except

of course the fd-cf grammars that are used to represent grammatical tree-codes.

Example 3.2.2

(1) Let G = (�;�; P; S) be the cf grammar with

� = fa; b; c; dg,

� = fS;A;Bg [�,

P = fS ! ASB; S ! d;A! a;B ! bcg.

The grammar G is terminally coded by the code '

2

from Example 3.1.14. This is easily seen

by taking � : �! alph('

2

) as follows :

�(a) = `

0

1

,

�(b) = `

3

,

�(c) = r

1

,

�(d) = m

0

.

E.g., consider the derivation tree of aadbcbc in Figure 3.6. The underlying tree is the tree t in

Figure 3.4. In Example 3.1.14 we saw that '

2

(t) = `

0

1

`

0

1

m

0

`

3

r

1

`

3

r

1

. Hence indeed, �(aadbcbc) =

'

2

(t).

c

b

C

C

C

�

�

�

d

a

c

b

C

C

C

�

�

�

BSA

A

A

A

�

�

�

a

BSA

#

#

#

#

c

c

c

c

S

Figure 3.6: a derivation tree of aadbcbc

(2) The language fa

n

d(bc)

n

j n � 1g is terminally coded, since it is generated by the grammar

G from (1). 2

Example 3.2.3 For each regular language L � �

�

the language #L$ is terminally coded,

where f#; $g \ � = ;. This is seen as follows. Let ' be the marked tree-code such that

one

'

= m, and m! `

1

r; r ! `

2

r are the productions of '. Now let L be a regular language,

and let G = (�;�; P; S) be a right-linear grammar for L. Then G can be transformed into a

cf grammar G = (�;� [f#; $g; P ; S) for #L$, where S 62 � and

P = fA! aB j A! aB 2 Pg [fA! a$ j A! a 2 Pg [fS ! #Sg.

De�ne the projection � : � [f#; $g ! alph(') by �(#) = `

1

, �($) = r, �(a) = `

2

for each

a 2 �. Then G is terminally coded by '. 2

74 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

v

t t’ t’’

v’ v’

Figure 3.7: the trees t,t

0

, and t

00

Examples of cf languages that are not TC will be given later. The following theorem says

that the productions of a terminally coded grammar implicitly contain productions of the

code.

Theorem 3.2.4 Let ' be a marked tree-code.

A cf grammar G = (�;�; P; S) is terminally coded by ' i� there is a projection � : � !

alph(') such that

(i) �(S) = one

'

,

(ii) if A! � 2 P , then �(A)! �(�) is a production of '.

Proof. Let G = (�;�; P; S) be a cf grammar.

Suppose �rst that G is terminally coded by '. Hence for each successful derivation tree

(t; �) in G, the underlying tree t is in dom('), and so t['] is de�ned and yield (t[']) =

�(yield(t; �)).

Claim 3.2.5 If (t; �) and (t

0

; �

0

) are successful derivation trees in G, and v 2 in(t),

v

0

2 in(t

0

) are such that �(v) = �

0

(v

0

), then lb

t[']

(v) = lb

t

0

[']

(v

0

).

Proof. Let (t; �), (t

0

; �

0

) be successful derivation trees in G, and let v 2 in(t), v

0

2

in(t

0

) be such that �(v) = �

0

(v

0

). Let (t

00

; �

00

) be the node-labeled tree constructed

from (t

0

; �

0

) by replacing sub

(t

0

;�

0

)

(v

0

) by sub

(t;�)

(v), where v and v

0

are identi�ed.

Since �(v) = �

0

(v

0

); (t

00

; �

00

) is well-de�ned; it is a successful derivation tree in G,

and hence t

00

2 dom('). The situation is sketched in Figure 3.7.

Since t

0

nv

0

= t

00

nv

0

, and ' is forwards deterministic, it follows that lb

t

0

[']

(v

0

) =

lb

t

00

[']

(v

0

).

Since G is terminally coded by ',

yield (sub

t

00

[']

(v

0

)) = �(yield(sub

(t

00

;�

00

)

(v

0

))

= �(yield(sub

(t;�)

(v)) = yield(sub

t[']

(v)).

3.2. Terminally coded grammars 75

Since sub

t

00

[']

(v

0

) and sub

t[']

(v) have the same yield and the same underlying

tree, backwards determinism of ' implies that they are the same. Hence, in par-

ticular, lb

t

00

[']

(v

0

) = lb

t[']

(v).

Consequently, lb

t[']

(v) = lb

t

00

[']

(v

0

) = lb

t

0

[']

(v

0

). 2

Now de�ne � : � ! alph(') as follows. � j

�

is the mapping � as in De�nition 3.2.1(1).

For A 2 � ��, �(A) = lb

t[']

(v), where (t; �) is a successful derivation tree and v 2 in(t) is

such that �(v) = A. By Claim 3.2.5 (and because G is reduced), � is well-de�ned. Clearly

�(S) = one

'

.

Let A

0

! A

1

: : : A

n

2 P with A

i

2 � for i = 0; : : : ; n. Let (t; �) be the derivation tree

of a derivation in which the production A

0

! A

1

: : :A

n

is applied. Let v

0

; : : : ; v

n

2 nd(t) be

such that �(v

i

) = A

i

for i = 0; : : : ; n and hddesi

t

(v

0

) = (v

1

; : : : ; v

n

). Then, by the de�nition

of �, lb

t[']

(v

i

) = �(A

i

) for i = 0; : : : ; n. Hence, since t['] is a derivation tree in ', �(A

0

) !

�(A

1

) : : : �(A

n

) is a production of '.

Hence one direction of Theorem 3.2.4 has been proved.

Assume now that there is a mapping � as described in the statement of the theorem. Then

we must prove that G is terminally coded by '. We claim that � j

�

satis�es the conditions in

De�nition 3.2.1(1).

Let w 2 L(G), and let (t; �) be a derivation tree of w.

Claim 3.2.6 The node-labeled tree (t; �

b

�) is a derivation tree of �(w) in '.

Proof. By Condition (i), �

b

�(root(t)) = �(S) = one

'

. Let v

0

2 in(t) with

hddesi

t

(v

0

) = (v

1

; : : : ; v

n

), n � 1, and let A

i

2 � be such that �(v

i

) = A

i

for

i = 0; : : : ; n. Since (t; �) is a derivation tree inG, A

0

! A

1

: : : A

n

2 P . It follows by

Condition (ii) that prod

(t;�

b

�)

(v) = �

b

�(v)! �

b

�(v

1

) : : : �

b

�(v

n

) = �(A

0

)!

�(A

1

) : : : �(A

n

) is a production of '. Clearly, yield(t; �

b

�) = �(yield(t; �)) =

�(w). Hence (t; �

b

�) is a derivation tree of �(w) in '. 2

By Claim 3.2.6, t 2 dom('), and (t; �

b

�) = t[']. Moreover, '(t) = yield(t[']) = yield (t; �

b

�) = �(w).

Consequently, G is terminally coded by '.

This concludes the proof of the theorem. 2

Example 3.2.7

(1) In Example 3.2.2 it was shown that the cf grammar G given there is terminally coded by

'

2

from Example 3.1.14. The following projection � (which extends the � of Example 3.2.2)

satis�es the conditions of Theorem 3.2.4 w.r.t. G and '

2

:

�(a) = `

0

1

, �(S) = m,

�(b) = `

3

, �(A) = `

1

,

�(c) = r

1

, �(B) = r

1

.

�(d) = m

0

,

76 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

(2) For each right-linear grammar G = (�;�; P; S), the cf grammar G constructed from G as

in Example 3.2.3 is terminally coded by the marked tree-code ' given in Example 3.2.3. The

projection � de�ned by �(#) = `

1

, �($) = r, �(a) = `

2

for each a 2 �, �(S) = m, �(A) = r

for each A 2 ��� satis�es the conditions of Theorem 3.2.4 w.r.t. G and '. 2

This result provides a way to extend the de�nition of terminally coded grammars to OS

systems (i.e., cf grammars that may have in�nitely many productions and no terminals). In

particular, each marked tree-code is then terminally coded by itself.

For a cf grammar G = (�;�; P; S) and a projection � : �! �, where � is some alphabet,

we de�ne �(G) as the cf grammar (�; ;; �(P); �(S)), where

�(P) = f�(A) ! �(�) j A ! � 2 Pg. Note that �(G) does not have terminals, although G

may have terminals.

Theorem 3.2.8 A cf grammar G = (�;�; P; S) is terminally coded i� there is a projection

� : �! � such that �(G) is a marked tree-code.

Proof. Let G = (�;�; P; S) be a cf grammar, and let � be a projection from � into itself

such that �(G) is a marked tree-code. Clearly, by the construction of �(G), the projection �

satis�es the conditions of Theorem 3.2.4 w.r.t. G and �(G). Hence G is terminally coded by

�(G).

Suppose now that G is terminally coded by some marked tree-code '. Then there is

a projection � from � to alph(') as in Theorem 3.2.4. Since the productions of �(G) are

productions of ' and the initial nonterminal of �(G) is one

'

, it follows that �(G) is backwards

deterministic, forwards deterministic, and bracketed, i.e., �(G) is a marked tree-code. Now

let � be an injective function from �(�) into �. It follows by the injectivity of � that �(�(G))

is also a marked tree-code. Hence �

b

� is a projection from � into � such that the image

�

b

�(G) of G is a marked tree-code. 2

If one does not distinguish between nonterminals and terminals, this theorem shows that

a TC grammar is a strict interpretation of a marked tree-code, in the sense of grammar form

theory (see [16]).

As a consequence of Theorem 3.2.8, the TC property is decidable.

Theorem 3.2.9 It is decidable whether or not a cf grammar is terminally coded.

Proof. Let G = (�;�; P; S) be a cf grammar. Check for each projection � from � to �

whether �(G) is backwards deterministic, forwards deterministic, and bracketed.

By Theorem 3.2.8, G is terminally coded if and only if these three conditions are satis�ed

for one of the projections. Since there are �nitely many such projections �, and since these

conditions can be checked in a �nite number of steps, it is decidable whether G is terminally

coded. 2

By their special form, backwards deterministic parenthesis grammars can be parsed deter-

ministically in a \trivial" way. In [13] (and [14]) it is shown that each parenthesis grammar has

an equivalent parenthesis grammar that is backwards deterministic, where it should be noted

3.2. Terminally coded grammars 77

that in parenthesis grammars more than one initial nonterminal is allowed. Consequently,

parenthesis languages can easily be recognized.

Using the result for parenthesis grammars, we will show that a similar result holds for ter-

minally coded grammars. More precisely, not each TC grammar has an equivalent backwards

deterministic TC grammar (as will be shown in Theorem 3.4.6), but it does have an equiva-

lent TC grammar that is backwards deterministic and has more than one initial nonterminal

(Theorem 3.2.13).

We use the abbreviation BD-TC grammar for a backwards deterministic TC grammar.

A grammar is a cf grammar in the wider sense, abbreviated cf-w grammar, if it is like a cf

grammar G = (�;�; P; S), but instead of one initial nonterminal it has a �nite set S of initial

nonterminals. The language generated by G is L(G) = fw 2 �

�

j Z)

�

w for some Z 2 Sg.

Most de�nitions concerning cf grammars carry over to cf-w grammars in a direct way.

De�nition 3.2.10

(1) A cf-w grammar G = (�;�; P; S) is a parenthesis (PAR) grammar if f(;)g � �, and each

production is of the form A!(�), where � 2 (�� f(;)g)

�

.

(2) A cf language K is a parenthesis (PAR) language if there is a parenthesis grammar G such

that K = L(G).

(3) Let G = (�;�; P; S) be a cf-w grammar such that � \ f(;)g = ;. The parenthesized

version of G, denoted (G), is the parenthesis grammar (� [f(;)g;� [f(;)g; P

0

; S) where

P

0

= fA!(�)j A! � 2 Pg.

(4) Two cf-w grammars are structurally equivalent if their parenthesized versions are equivalent.

Of course we might use other symbols than (and)to denote the \parentheses" of a paren-

thesis grammar, provided they have the same role in the grammar.

A well-known equivalent formulation of structural equivalence is as follows : cf-w grammars

G

1

and G

2

are structurally equivalent if for each successful derivation tree in G

1

there is a

successful derivation tree in G

2

with the same yield and the same underlying tree, and vice

versa. The next lemma is also well-known.

Lemma 3.2.11 Each cf grammar has a structurally equivalent cf-w grammar that is back-

wards deterministic.

Proof. Let G

1

= (�;�; P; S) be a cf grammar, and let (G

1

)be its parenthesized version.

By [13, Theorem 1], there is a parenthesis grammar

b

G that is equivalent with (G

1

)and

backwards deterministic. Let G

2

be the cf-w grammar such that (G

2

)=

b

G. It is easily seen

that G

2

is backwards deterministic. Furthermore, since (G

1

)and (G

2

)are equivalent, G

1

and

G

2

are structurally equivalent. 2

Now we get to the result for TC grammars. The de�nition of a terminally coded cf-w

grammar is as De�nition 3.2.1(1,2) with the interpretation that a derivation tree is a derivation

subtree from one of the initial symbols. Such a grammar will also be called a TC-W grammar,

and if it is backwards deterministic, a BD-TC-W grammar. A language generated by a

(BD-)TC(-W) grammar is called a (BD-)TC(-W) language.

Lemma 3.2.12 Let G

1

and G

2

be structurally equivalent cf-w grammars. Then G

1

is termi-

nally coded i� G

2

is terminally coded.

78 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

Proof. Suppose that one of the grammars is terminally coded, say G

1

. Let t be a suc-

cessful derivation tree of a word w in G

2

. There is a derivation tree t

0

of w in G

1

such that

und (t) = und(t

0

), because G

1

and G

2

are structurally equivalent (see the observation following

De�nition 3.2.10). Hence the projection � that is used for G

1

in De�nition 3.2.1(1) is also

appropriate for G

2

. Consequently G

2

is TC. 2

Theorem 3.2.13 For each TC grammar there is an equivalent TC-W grammar that is back-

wards deterministic.

Proof. Let G be a TC grammar. By Lemma 3.2.11, there is a backwards deterministic cf-w

grammar G

0

that is structurally equivalent with G. Then, by Lemma 3.2.12, G

0

is a TC-W

grammar. 2

Remark 3.2.14 Allowing TC grammars to be in the wider sense does not a�ect the class of

languages that they generate, as we will show now.

Let G = (�;�; P; S) be a TC-W grammar. Let G

0

= (� [fS

0

g;�; P

0

; S

0

g be the cf

grammar such that S

0

62 � and P

0

= P [fS

0

! � j Z ! � 2 P for some Z 2 Sg. It is easily

seen that G

0

is equivalent with G.

Note that for grammars in the wider sense, a result analogous with Theorem 3.2.4 holds,

i.e., a cf-w grammar G = (�;�; P; S) is terminally coded by a marked tree-code ' i� there

is a projection � : � ! alph(') such that Condition (ii) of Theorem 3.2.4 is satis�ed, and

�(Z) = one

'

for each Z 2 S. Now, if this projection � for G is extended to � [fS

0

g by

de�ning �(S

0

) = one

'

, then clearly � satis�es the conditions of Theorem 3.2.4 w.r.t. G

0

.

Hence G

0

is a TC grammar equivalent with G. Consequently, each TC-W grammar has an

equivalent TC grammar, and the class of TC-W languages equals the class of TC languages.

2

Remark 3.2.15 Parenthesis grammars are TC-W grammars. Let G = (� [f(;)g;� [

f(;)g; P; S) be a parenthesis grammar, and let � : � ! fm;(;)g be as follows : �(A) = m

for each A 2 �, �(() =(, and �()) =). Then � satis�es the conditions of Theorem 3.2.4

w.r.t. G and '

par2

from Example 3.1.3(2), and hence G is terminally coded by '

par2

. The

bracketed grammars in the sense of [7] are BD-TC grammars. In fact they are also terminally

coded by '

par2

. Another kind of cf grammars which are terminally coded by '

par2

are the cf

grammars obtained by interpreting regular tree grammars in normal form (see, e.g., [8]) as

string grammars. 2

Not all cf languages are TC; it will be shown (in Theorem 3.4.6) that there are even �nite

languages that are not TC, and that all TC languages are deterministic cf languages. Here we

will show that each cf language is a projection of a TC language. It is instructive to compare

this with the situation for parenthesis languages. Not each cf language is a projection of a

PAR language, e.g., the �nite language fab; acg can not be obtained from a PAR language by a

projection, since b and c must come from di�erent symbols of the original language. However,

each cf language is the homomorphic image of a parenthesis language; for each cf grammar G,

3.2. Terminally coded grammars 79

L(G) is obtained from the parenthesis language L((G)) by the homomorphism that simply

erases the parentheses. The same is true for bracketed languages in the sense of [7].

We now prove that each cf language is a projection of a TC language, and even of a BD-TC

language.

Theorem 3.2.16 Every cf language is a projection of a backwards deterministic TC language.

Proof. Let K be a cf language, and let G = (�;�; P; S) be a cf grammar in Greibach

normal form such that L(G) = K. First we show that L(G) is the projection of a backwards

deterministic cf language.

Let G

0

= (�

0

;�

0

; P

0

; S) be as follows :

�

0

= fa

p

j a 2 �; p 2 Pg,

�

0

= �

0

[(� ��),

P

0

= fA! a

p

� j p = A! a� 2 Pg.

Then obviously G

0

is a backwards deterministic cf grammar. Let � : �

0

! � be the projection

such that for each a

p

2 �

0

, �(a

p

) = a. Then �(L(G

0

)) = L(G).

Next we show that L(G

0

) is the projection of a BD-TC language. Let ' = '

2

be the

marked tree-code from Example 3.1.14. Since G

0

is chain-free, we have that und (t) 2 dom(')

for every derivation tree t in G

0

.

We index the cf grammarG

0

with ', which results in the cf grammar G

00

= (�

00

;�

00

; P

00

; S

00

)

de�ned by

�

00

= �

0

� alph('),

�

00

= �

0

� alph('),

S

00

= (S; one

'

),

P

00

= f(A; c)! (A

1

; c

1

) : : : (A

n

; c

n

) j n � 1; A! A

1

: : :A

n

2 P

0

;

c! c

1

: : : c

n

a production of 'g.

The cf grammar G

00

is still backwards deterministic, since ' itself is also backwards determin-

istic. From Theorem 3.2.4 it follows by taking � = proj

2

: �

0

� alph(')! alph(') that G

00

is

terminally coded by '. Hence L(G

00

) is a backwards deterministic TC language, and we have

for the projection proj

1

: �

0

� alph(')! �

0

that proj

1

(L(G

00

)) = L(G

0

).

Now the composition of � and proj

1

is a projection of L(G

00

) onto L(G).

Hence K = L(G) is a projection of a backwards deterministic TC language. 2

Instead of De�nition 3.2.1(1) one might consider the following alternative, more general,

de�nition of a terminally coded grammar : for a cf grammar G = (�;�; P; S), and a marked

tree-code ', G is terminally coded by ' if there is a projection � : � ! alph(') such that

for each w 2 L(G) there exists a derivation tree t of w in G such that und (t) 2 dom(') and

'(und (t)) = �(w). We will call a grammar that is terminally coded in the above sense a TC

9

grammar. Clearly, each TC grammar is a TC

9

grammar. Note that for TC

9

grammars we

no longer have the characterization of Theorem 3.2.4. Hence it is questionable whether the

TC

9

property is decidable (cf. Theorem 3.2.9). We conclude this section by showing that TC

9

grammars generate the same class of languages as TC grammars.

Theorem 3.2.17 Each TC

9

grammar is equivalent to a TC grammar.

80 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

Proof. Let G = (�;�; P; S) be a TC

9

grammar coded by the marked tree-code ', and let �

be the appropriate projection. De�ne the cf grammar G

0

= (�

0

;�; P

0

; S

0

) by

�

0

= � [((���)� alph(')),

S

0

= (S; one

'

), and

P

0

= fA

0

0

! A

0

1

: : :A

0

n

j n � 1; A

0

! A

1

: : : A

n

2 P , c

0

! c

1

: : : c

n

a production of ',

A

0

i

= A

i

and �(A

i

) = c

i

if A

i

2 �,

and A

0

i

= (A

i

; c

i

) if A

i

2 ���g.

Clearly, if w 2 L(G

0

), then w 2 L(G). Now let w 2 L(G), and let (t; �) be a derivation

tree of w in G such that '(t) = �(w). Hence t['] is de�ned. Let (t; �

0

) be the labeled tree

such that for each v 2 in(t), �

0

(v) = (�(v); lb

t[']

(v)), and for each v 2 leaf (t), �

0

(v) = �(v).

Since �(yield(t; �)) = �(w) = '(t) = yield (t[']), we have for each v 2 leaf (t) that �(�(v)) =

lb

t[']

(v). It follows that prod(t; �

0

) consists of productions of G

0

. Consequently (t; �

0

) is a

derivation tree of w in G

0

, and so w 2 L(G

0

). Hence G and G

0

are equivalent.

Clearly, the mapping �

0

de�ned on �

0

by �

0

j

�

= � and �

0

j

�

0

��

= proj

2

satis�es the

conditions of Theorem 3.2.4 w.r.t. G

0

and '. Thus, G

0

is a TC grammar. 2

3.3 VSP grammars

As one might expect, backwards deterministic terminally coded grammars can easily be parsed.

In this section we provide a formal proof of this fact. We will give a shift-reduce parsing

algorithm without look-ahead, which works in particular for BD-TC-W grammars. Then, by

Theorem 3.2.13, it follows that TC languages can be recognized in linear time.

First we recall some aspects of shift-reduce parsing for precedence grammars (see, e.g., [1,

Section 5.3]).

A shift-reduce parsing algorithm uses a left-to-right input scan and a pushdown list. It

�nds a rightmost parse in the following way : it shifts letters of the input to the pushdown

list until the handle is found; then it applies the appropriate reduction. For that purpose the

algorithm uses a shift-reduce function, which decides whether to shift the �rst letter of the

input list to the pushdown list, or to make a reduction. For precedence grammars, the right

and left end of the handle are detected by consulting (the table of) precedence relations that

hold between symbols of the grammar.

One of the classes of grammars that can be parsed in this way is the class of simple

precedence grammars (see [1, Section 5.3.2]).

De�nition 3.3.1

(1) The Wirth-Weber precedence relations l,

:

=, and m for a cf grammar G = (�;�; P; S) are

de�ned as follows. For X;Y 2 �,

(i) X l Y if there exists A! �XB� in P such that B)

+

Y
,

(ii) X

:

= Y if there exists A! �XY � in P , and

(iii) for a 2 � , X m a if A! �BY � is in P , B)
X, and Y) a�.

(2) A cf grammar G = (�;�; P; S) is a simple precedence (SP) grammar if G is backwards

deterministic, there is no derivation A)

+

A with A 2 � �� in G, and the Wirth-Weber

relations are disjoint.

3.3. VSP grammars 81

(3) A cf language K is a simple precedence (SP) language if there is a simple precedence

grammar G such that K = L(G).

The shift-reduce function for a simple precedence grammar compares the letter on top of

the pushdown list to the �rst letter of the remaining input. If the relation m holds, which

means that the right end of the handle is found, then a reduction is called for, otherwise a

shift is made. In case of a reduction, the letters on the pushdown list are compared until

the relation l holds, which gives the left end of the handle. Hence the algorithm examines

the handle and the �rst letter beyond the handle on the pushdown list. Note that by the

backwards determinism of the grammar, there is only one way to reduce the handle.

We will introduce a new class of grammars, called \very simple precedence grammars",

containing all backwards deterministic TC grammars. These grammars are called very simple

precedence grammars, since they are a special and natural kind of simple precedence grammars.

Let us explain this. One way to generalize SP grammars is to de�ne the Wirth-Weber relations

on words and to demand that these relations are disjoint. The so obtained grammars are

called extended precedence grammars (see also [1, Section 5.3.3]). The shift-reduce function

for extended precedence grammars decides on the basis of a pre�x of the input, rather than

on the basis of only the �rst letter, whether to shift or to reduce (i.e., whether the right end of

the handle is on top of the pushdown list); when a reduction is called for, it considers a (�xed)

number of letters, instead of only one, beyond the handle on the pushdown list in order to

locate the left end of the handle.

For the grammars that we are going to introduce now, there is a shift-reduce algorithm

which detects the right end of the handle without examining any letters of the remaining input,

and the left end without looking beyond the handle on the pushdown list (see De�nition 3.3.9).

The fact that the algorithm does not examine any letters of the input means that it does not

use look-ahead.

As usual in precedence parsing, we will use the symbol $ as a begin and endmarker.

In particular, for a cf grammar G = (�;�; P; S), we enlarge the Wirth-Weber precedence

relations by adding that $ l A for each A 2 � such that S)

+

Aw for some w 2 �

�

, and

that A m $ for each A 2 � such that S)

+

wA for some w 2 �

�

. From now on in this paper,

when we speak of the Wirth-Weber relations of a cf grammar, we mean the Wirth-Weber

precedence relations including the above additions.

De�nition 3.3.2

(1) a cf grammarG = (�;�; P; S) is a very simple precedence (VSP) grammar ifG is backwards

deterministic, there is no derivation A)

+

A with A 2 � ��, and dom(m) \ dom(

:

=) = ;,

ran(l) \ ran(

:

=) = ; for the Wirth-Weber precedence relations of G.

(2) a cf language K is a very simple precedence (VSP) language if there is a VSP grammar G

such that K = L(G).

First note that dom(l) � dom(

:

=). One may think of a shift-reduce algorithm for VSP

grammars as follows : it shifts while encountering symbols in dom(

:

=); when the �rst element in

dom(m) is found, it knows that this is the last letter of the handle because dom(m)\dom(

:

=) =

;; it then searches the pushdown list for the �rst element in ran(l), which is the �rst letter

82 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

of the handle because ran(l) \ ran(

:

=) = ;. Because of the marker $ it always �nds an input

letter in dom(m) and a pushdown element in ran(l).

We will show now that indeed VSP grammars form a subclass of SP grammars.

Theorem 3.3.3 Each VSP grammar is an SP grammar.

Proof. Let G = (�;�; P; S) be a VSP grammar. Since dom(m) \ dom(

:

=) = ;, and

ran(l)\ ran(

:

=) = ;, it follows that m and

:

= are disjoint, and that l and

:

= are disjoint. As

noticed before, dom(l) � dom(

:

=). Hence also l and m are disjoint. Hence G is a simple

precedence grammar. 2

Imposing the conditions of De�nition 3.3.2(1) on the Wirth-Weber relations of G is equiv-

alent to requiring G to be bracketed (De�nition 3.1.9), as shown in the next lemma.

Lemma 3.3.4 A cf grammar G is a VSP grammar i� G is bracketed and backwards deter-

ministic.

Proof. The crucial observation is that dom(m) = R

G

and ran(l) = L

G

for every grammar

G (due to the fact that G is reduced and that l and m are extended by means of the marker

$).

Suppose �rst that G is VSP. Let A ! A

1

A

2

: : : A

n

be a production of G. Then A

j

2

ran(

:

=) for j = 2; : : : ; n, and A

j

2 dom(

:

=) for j = 1; : : : ; n � 1. Since ran(l) = L

G

, and

ran(l)\ran(

:

=) = ;, it follows that A

2

: : : A

n

2 (��L

G

)

�

, and, similarly, since dom(m) = R

G

,

and dom(m) \ dom(

:

=) = ;, it follows that A

1

: : :A

n�1

2 (� � R

G

)

�

. Hence A

1

: : : A

n

2

L

G

(��L

G

)

�

\(��R

G

)

�

R

G

. By de�nition, there is no derivation S)

+

S, and G is backwards

deterministic. Consequently, G is bracketed and backwards deterministic.

Suppose now that G is a bracketed bd-cf grammar. Let X be an element of dom(

:

=).

Hence there is a production A ! �XY � in G with �; � 2 �

�

, Y 2 �. By Condition (i)

of De�nition 3.1.9, X 62 R

G

. Since R

G

= dom(m), it follows that dom(m) \ dom(

:

=) = ;.

Similarly, for each Y 2 ran(

:

=), we obtain that Y 62 L

G

, and hence ran(l) \ ran(

:

=) = ;.

Finally, since G is unambiguous by Proposition 3.1.11, there is no derivation A)

+

A with

A 2 � �� in G. Consequently, G is VSP. 2

In what follows we will use the above characterization of VSP grammars rather than De�ni-

tion 3.3.2(1). Note that, by Lemma 3.3.4, VSP grammars have the property of Lemma 3.1.10.

Hence, by Proposition 3.1.11, VSP grammars are unambiguous. From Lemma 3.1.10 we obtain

the following property of VSP languages.

Lemma 3.3.5 For each VSP grammar G, if xuy 2 L(G), u 2 L(G), and w 2 L(G), then

xwy 2 L(G).

Proof. Let S be the initial nonterminal of G. Let t be a derivation tree of xuy, let t

0

be a

derivation tree of u, and let t

00

be a derivation tree of w. Since there is no derivation S)

+

S,

t and t

0

satisfy the conditions of Lemma 3.1.10. Thus, by Lemma 3.1.10, there is a v 2 in(t)

such that tnv is a derivation tree of xSy. By adding t

00

to the leaf v in tnv, a derivation tree

of xwy is obtained. Hence xwy 2 L(G). 2

3.3. VSP grammars 83

Because of the results in Section 3.2, we will also consider \VSP grammars in the wider

sense". A cf-w grammar G = (�;�; P; S) is a very simple precedence grammar if it is back-

wards deterministic, there is no derivation A)

+

A with A 2 � ��, there is no derivation

Z)

+

Z

0

for Z;Z

0

2 S, and dom(m)\dom(

:

=) = ;, ran(l)\ran(

:

=) = ; for the Wirth-Weber

precedence relations of G (which include $ l A if Z)

+

Aw, and A m $ if Z)

+

wA, where

Z 2 S). Such a grammar is also called a VSP-W grammar, and a language generated by a

VSP-W grammar is called a VSP-W language. Analogously to Lemma 3.3.4, a cf-w grammar

G = (�;�; P; S) is VSP-W i� it is backwards deterministic and bracketed, where bracketed

for cf grammars in the wider sense means that Condition (i) of De�nition 3.1.9 is satis�ed,

and that there is no derivation Z)

+

Z

0

for Z;Z

0

2 S. It is easy to see that Lemma 3.1.10

and Proposition 3.1.11 also hold for VSP-W grammars.

We show now that the class of VSP grammars indeed contains the class of BD-TC gram-

mars.

Theorem 3.3.6 Each BD-TC grammar is a VSP grammar. Also, each BD-TC-W grammar

is a VSP-W grammar.

Proof. Let G = (�;�; P; S) be a backwards deterministic TC grammar. Let � be the

projection from Theorem 3.2.4.

Since ' is bracketed, for each A ! � 2 P , �(�) 2 L

'

(� � L

'

)

�

\ (� � R

'

)

�

R

'

. By

Theorem 3.2.4, for each B 2 �, �(B) 62 L

'

implies that B 62 L

G

, and �(B) 62 R

'

implies that

B 62 R

G

. Thus, for each A! � 2 P , � 2 L

G

(�� L

G

)

�

\ (��R

G

)

�

R

G

.

By Theorem 3.2.4, �(S) = one

'

. If there is a derivation S)

+

S in G, then Theorem 3.2.4

implies that there is a derivation �(S))

+

�(S) in ', which contradicts the fact that ' is

bracketed.

Hence G is bracketed. Consequently, G is a VSP grammar.

Moreover, ifG is in the wider sense, then, as observed in Remark 3.2.14, there is a projection

� : � ! alph(') such that Condition (ii) of Theorem 3.2.4 is sati�ed, and �(Z) = one

'

for

each Z 2 S. It follows that each BD-TC-W grammar is a VSP-W grammar. 2

Not each VSP grammar is a BD-TC grammar, as the following example shows.

Example 3.3.7 Let G be the cf grammar with nonterminals S;A;B, where S is the initial

nonterminal, terminals a; b; c; d, and productions S ! ac, S ! bc, S ! AB, A ! ad, and

B ! bd. Clearly, G is bracketed and backwards deterministic, and hence VSP. Suppose that

G is a BD-TC grammar. By Theorem 3.2.8, there is a projection � such that �(G) is a

marked tree-code. Since �(G) is forwards deterministic, it follows that �(a) = �(b). Hence

�(ad) = �(bd), which implies that �(A) = �(B), because �(G) is backwards deterministic.

But, since �(G) is bracketed, �(A) 2 L

�(G)

�R

�(G)

and �(B) 2 R

�(G)

�L

�(G)

, a contradiction.

Hence G is not a BD-TC grammar. 2

From Theorems 3.3.3 and 3.3.6, and Remark 3.2.15 we obtain an inclusion diagram for

classes of grammars as shown in Figure 3.8, where a straight line between two classes denotes

that the lower class is included in the upper class.

Now we present the description of an actual shift-reduce algorithm without look-ahead for

VSP-W grammars. First we give an elementary property of VSP-W grammars.

84 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

VSP-W

H

H

H

H

TC-W

�

�

�

�

BD-TC-W

VSP

H

H

H

H

TC

�

�

�

�

BD-TC

h

h

h

h

h

h

PAR

h

h

h

h

h

h

BD-PAR

�

�

�

�

SP

H

H
H

Figure 3.8: a hierarchy of grammar classes

Lemma 3.3.8 Let G = (�;�; P; S) be a VSP-W grammar. If Z

r

)

�

�Aw in G, where Z 2 S,

� 2 �

�

, A 2 ���, and w 2 �

�

, then � 2 (��R

G

)

�

.

Proof. By induction on the length ` of the rightmost derivation Z

r

)

�

�Aw.

For ` = 0 the claim holds.

Suppose now that for some ` � 0 the claim holds for all rightmost derivations of length

� `. Let �Aw be a rightmost sentential form such that the length of its rightmost derivation is

`+1. Let Z 2 S, �

0

2 �

�

, A

0

2 ���, and w

0

2 �

�

be such that Z

r

)

�

�

0

A

0

w

0

r

)�

0

�

0

w

0

= �Aw.

Recall that, by Lemma 3.3.4, G is bracketed.

By the inductive assumption �

0

2 (� � R

G

)

�

. Hence, since G is bracketed, last(�

0

) is the

�rst letter in �

0

�

0

w

0

that is in R

G

. From jw

0

j � jwj we obtain that j�j < j�

0

�

0

j. Consequently,

� 2 (� �R

G

)

�

, which completes the induction proof. 2

De�nition 3.3.9 Let G = (�;�; P; S) be a VSP-W grammar (where $ 62 �).

(1) The shift-reduce function of G, f : � [f$g ! fshift; reduceg is de�ned as follows : for

X 2 � [f$g,

f(X) = shift if X 62 R

G

,

f(X) = reduce if X 2 R

G

.

(2) A parsing con�guration of G is a triple (�;w; �), with � 2 $�

�

, w 2 �

�

, and � 2 P

�

.

(3) The step relation of G, denoted by ` , is a relation on parsing con�gurations of G de�ned

as follows. For X 2 � [f$g, a 2 �,

(i) (�X; aw; �) ` (�Xa;w; �) if f(X) = shift,

(ii) (��X;w; �) ` (�B;w; �p) if f(X) = reduce, and B ! �X is production p.

As usual, `

+

is the transitive closure of `, and `

�

is the re
exive and transitive closure of `.

(4) The parsing translation of G, denoted by T (G), is f(w; �) 2 �

�

� P

�

j ($; w; ") `

�

($Z; "; �) for some Z 2 Sg.

Intuitively, the algorithm (as described by the step relation `) �nds a rightmost parse of

the input word w, using a pushdown list.

The symbol $ is used as a bottom-marker of the pushdown list. It is needed to produce

the �rst shift.

3.3. VSP grammars 85

For a con�guration ($�;w; �), $� is the word on the pushdown list, w is the remaining

input, and � the string of those productions that give a rightmost parse of the original input

into �w.

The algorithm does not use look-ahead because it bases its choice of shifting or reducing on

the contents of the pushdown list only. The algorithm is deterministic because the relation `

is a partial function : f is a function, and in case 3(ii) of De�nition 3.3.9, only one right-hand

side can be found, since �X 2 L

G

(��L

G

)

�

. Because of this and because there is no derivation

Z)

+

Z

0

for Z;Z

0

2 S, T (G) is also a partial function.

The following theorem proves the correctness of the algorithm.

Theorem 3.3.10 For every w 2 �

�

and every � 2 P

�

, the pair (w; �) is in T (G) i� � is a

rightmost parse of w.

Proof. Let w 2 �

�

. The proof relies on the following two claims.

Claim 3.3.11 For each parsing con�guration ($�;w

0

; �

0

) such that

($; w; ") `

�

($�;w

0

; �

0

), �

0

is a rightmost parse of w into �w

0

.

Proof. This is easily seen by induction on the length of the computation ($; w; ") `

�

($�;w

0

; �

0

), as follows.

For the empty computation there is nothing to prove.

If the algorithm has made a shift in the last step of the computation, i.e.,

($�

0

; aw

0

; �

0

) ` ($�

0

a;w

0

; �

0

) = ($�;w

0

; �

0

), then, by the inductive assumption, �

0

is a rightmost parse of w into �

0

aw

0

= �w

0

.

If the algorithm has made a reduction in the last step, i.e., ($�

0

�;w

0

; �

00

) `

($�

0

B;w

0

; �

00

p) = ($�;w

0

; �

0

), where p = B ! �, then, by the inductive assump-

tion, �

00

is a rightmost parse of w into �

0

�w

0

, and hence �

0

= �

00

p is a rightmost

parse of w into �

0

Bw

0

= �w

0

. 2

Claim 3.3.12 For each rightmost parse �

0

of w into a rightmost sentential form

�w

0

, with � 2 f"g [�

�

(���) and w

0

2 �

�

, ($; w; ") `

�

($�;w

0

; �

0

).

Proof. We use induction on the length of �

0

.

The claim trivially holds for �

0

= ".

Let p = B ! � be the production last (�

0

), i.e., �w

0

= �

0

Bw

0

r

)�

0

�w

0

and

�

0

= �

00

p, where �

00

is a rightmost parse of w into the rightmost sentential form

�

00

w

00

= �

0

�w

0

. By the inductive assumption, ($; w; ") `

�

($�

00

; w

00

; �

00

).

Clearly, �

00

is a pre�x of �

0

�. By Lemma 3.3.8, �

0

� 2 (��R

G

)

�

R

G

, and hence

the algorithm �rst shifts all possibly remaining letters of �

0

�, i.e., ($; w; ") `

�

($�

00

; w

00

; �

00

) `

�

($�

0

�;w

0

; �

00

).

Since last(�) 2 R

G

, the algorithm then makes the reduction ($�

0

�;w

0

; �

00

) `

($�

0

B;w

0

; �

00

p). Hence ($; w; ") `

�

($�;w

0

; �

0

). 2

86 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

Now suppose that (w; �) 2 T (G) for � 2 P

�

. It follows by applying Claim 3.3.11 to the

con�guration ($Z; "; �), where Z 2 S, that � is a rightmost parse of w into Z.

On the other hand, if there is a rightmost parse � of w into some Z 2 S, then by

Claim 3.3.12, ($; w; ") `

�

($Z; "; �). Hence (w; �) 2 T (G). 2

Remark 3.3.13 By Lemma 3.3.4, every forward deterministic VSP grammar is a marked

tree-code. Not each marked tree-code is a VSP grammar, because marked tree-codes may be

in�nite, may have no terminals, and need not be reduced. However, we can still use the above

shift-reduce algorithm to decode marked tree-codes. This can be done as follows.

Let ' = (�; ;; P; S) be a marked tree-code such that each a 2 � is reachable. De�ne

the VSP grammar (possibly with in�nitely many productions!) G = (�

0

;�; P

0

; S) such that

�

0

= �[�, � = fc

0

j c 2 �g, and P

0

= fc! � j c!
 2 P; � 2 �(
)g, where � : �

�

! 2

(�

0

)

�

is the substitution given by �(c) = fc; c

0

g for each c 2 �. Note that G is reduced.

Let � : � ! � be the projection such that �(c) = c

0

for each c 2 �. It is not di�cult to

see that for each tree t and for each x 2 �

�

, except x = S, '

�1

(x) = t i� (�(x); �) 2 T (G)

and the derivation tree corresponding with � has underlying tree t. 2

Remark 3.3.14 As noticed in Section 3.1, bracketed bd-cf grammars are BC(0,0) grammars.

Hence VSP grammars are BC(0,0), and consequently they are BRC(0,0) (i.e., of bounded right

context (0,0)) as de�ned in [10] - this follows also directly from Lemma 3.3.8. Thus, according

to the de�nitions in [10], VSP grammars are LR(0). 2

It has now become evident that TC languages can easily be recognized.

Theorem 3.3.15 Every TC language can be recognized in linear time.

Proof. By Theorem 3.2.13 every TC language is generated by a BD-TC-W grammar. By The-

orem 3.3.6, such a grammar can be parsed using the shift-reduce algorithm of De�nition 3.3.9,

and clearly, it works in linear time. 2

We end this section by comparing VSP grammars with another class of known shift-reduce

parsable grammars, the so-called nonterminal separated (NTS) grammars (see [2]). These are

cf-w grammars for which the generated language remains unchanged if the productions are

used in both ways (i.e., either in generative or in reducing fashion). This property implies

that a shift-reduce parsing method very similar to the one in De�nition 3.3.9 may be used for

chain-free NTS grammars. However, NTS grammars need not be unambiguous; in fact, the

shift-reduce algorithm �nds at most one of the derivation trees of the input word.

De�nition 3.3.16

(1) A cf-w grammar G = (�;�; P; S) is an NTS grammar if for all A;B 2 � � � and all

�; �;
 2 �

�

, if A)

�

��
 and B)

�

�, then A)

�

�B
.

(2) A cf language K is an NTS language if there is an NTS grammar G such that K = L(G).

Theorem 3.3.17 Each chain-free VSP-W grammar is an NTS grammar.

3.4. Classes of languages 87

Proof. Let G = (�;�; P; S) be a chain-free VSP-W grammar. Let A;B 2 � � � and

�; �;
 2 �

�

be such that A)

�

��
 and B)

�

�. Since G is chain-free, there is no derivation

B)

+

A in G, and hence the derivation subtrees corresponding with the above derivations

satisfy the conditions of Lemma 3.1.10. Since Lemma 3.1.10 also holds for cf-w grammars, it

follows that A)

�

�B
. Consequently, G is an NTS grammar. 2

3.4 Classes of languages

In this section we compare the classes of languages corresponding to the grammar types

described in Sections 3.2 and 3.3 (see Figure 3.9). We repeat this for the case of chain-

free grammars (see Figure 3.10). In the �rst case, we immediately obtain inclusion relations

between the classes of languages from the inclusion diagram for classes of grammars given in

Figure 3.8. However, some of these classes collapse.

In Figure 3.9 and in what follows, we denote by L(X) the class of X languages, where X

stands for the name of any type of language, like TC, VSP, etc.

First we will show that L(VSP-W) � L(SP)\L(NTS). For this purpose we need the next

lemma.

Lemma 3.4.1 Each VSP grammar is equivalent to a chain-free VSP grammar. The same

holds for VSP-W grammars.

Proof. We will show that each VSP-W grammar has an equivalent chain-free VSP-W gram-

mar with the same set of initial nonterminals.

Let G = (�;�; P; S) be a VSP-W grammar. Note that (as in any bracketed grammar) for

each A 2 L

G

\ R

G

the only right-hand side in which A occurs is A itself. Moreover, since G

is backwards deterministic, there is a unique B such that B ! A is a production of G. Since

there is no derivation X)

+

X with X 2 � ��, it follows that for each A 2 ���, there is

a unique nonterminal Y

A

62 L

G

\R

G

such that Y

A

)

�

A (if A 62 L

G

\R

G

, then Y

A

= A).

Let be the substitution on � de�ned by (A) = fZ 2 S j Y

Z

= Ag [fAg, and let

�

0

= �[S [fA 2 ��� j A 62 L

G

\R

G

g. Consider the cf grammar G

0

= (�

0

;�; P

0

; S), where

P

0

= fA! �

0

j �

0

2 (�); � 62 ���; A 2 �

0

��; and for some A

1

; : : : ; A

n

2 � � S;

n � 0; A = A

0

) A

1

) : : :) A

n

) � in G g.

From the above-mentioned fact that the nonterminals in L

G

\R

G

occur only in chain-produc-

tions of G, we obtain that each right-hand side � of G such that � 62 ��� is in (�

0

)

�

. Thus

also (�) � (�

0

)

�

for such right-hand sides �, and hence G

0

is well-de�ned.

First we will prove that the constructed G

0

is equivalent with G.

Claim 3.4.2

(1) For all A 2 �

0

and all w 2 �

�

, if A)

�

w in G, then there exists an A

0

2 (A)

such that A

0

)

�

w in G

0

,

(2) For all A

0

2 �

0

and all w 2 �

�

, if A

0

)

�

w in G

0

, then A

0

)

�

w in G.

88 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

Proof.

(1) We use induction on the length ` of a derivation A)

�

w in G. If ` = 0, i.e.,

A = w, then A)

�

w in G

0

. Suppose that, for some ` � 0, the claim holds for

all A 2 �

0

, w 2 �

�

such that A)

�

w in at most ` steps. Consider a derivation

A = A

0

) A

1

) : : :) A

n

) �)

�

w in G of length ` + 1, where n � 0 is

such that A

j

2 � �� for j = 0; : : : ; n, and � 62 ���. As observed before, since

� 62 ���, we have that � 2 (�

0

)

�

. Hence the induction hypothesis can be applied

to the letters of � separately. As a result, there is an �

0

2 (�) such that �

0

)

�

w

in G

0

.

Note that at most one of the nonterminals A

0

; : : : ; A

n

is in S, because there is

no derivation Z)

+

Z

0

for Z;Z

0

2 S. If fA

1

; : : : ; A

n

g \ S = ;, then A ! �

0

is a

production of G

0

, and hence A) �

0

)

�

w in G

0

. If k 2 f1; : : : ; ng is such that

A

k

2 S, then A

k

! �

0

is a production of G

0

, and A

k

) �

0

)

�

w in G

0

; moreover,

since A 62 L

G

\ R

G

, A = Y

A

k

, which implies that A

k

2 (A). This completes the

inductive proof of (1).

(2) By induction on the length ` of a derivation A

0

)

�

w in G

0

. If A

0

= w,

then A

0

)

�

w in G. Suppose that, for some ` � 0, the claim holds for all A

0

2 �

0

,

w 2 �

�

such that A

0

)

�

w in at most ` steps. Consider a derivation A

0

) �

0

)

�

w

in G

0

of length ` + 1; hence in the �rst step the production A

0

! �

0

is applied.

By applying the induction hypothesis to each letter of �

0

we obtain that �

0

)

�

w

in G. The production A

0

! �

0

comes from a derivation A

0

)

�

� in G, where

� is such that �

0

2 (�). Clearly, �)

�

�

0

in G. Hence there is a derivation

A

0

)

�

�)

�

�

0

)

�

w in G. This completes the inductive proof of (2). 2

Since there is no derivation Z

0

)

+

Z for Z;Z

0

2 S, (Z) = fZg for all Z 2 S. Hence if

Z)

�

w in G for some Z 2 S, then, by Claim 3.4.2(1), Z)

�

w in G

0

. Conversely, if Z)

�

w

in G

0

for some Z 2 S, then by Claim 3.4.2(2), Z)

�

w in G. Thus, w 2 L(G) i� w 2 L(G

0

)

for every w 2 �

�

. Consequently, G and G

0

are equivalent.

Clearly, G

0

is chain-free. The right-hand sides of G

0

are like right-hand sides of G, except

that nonterminals of the type Y

Z

for Z 2 S \ L

G

\ R

G

may be altered to Z. Since G

0

does

not have productions of the form A ! Z, it follows that G

0

is still bracketed. Also, G

0

is

backwards deterministic, which is seen as follows.

Let A ! �

0

and B ! �

0

be productions of G

0

. These productions come from derivations

A)

+

� and B)

+

� in G, where � and � are such that �

0

2 (�) and �

0

2 (�). Note

that if Z 2 S occurs in �

0

, then the corresponding letter in � (as well as in �) is Z or Y

Z

; if

it is Z, then Z 62 L

G

\ R

G

, which implies that Z = Y

Z

. Hence for each A occurring in �

0

the

corresponding letter in � (and in �) is A if A 62 S, and Y

A

if A 2 S. It follows that � = �.

We will show now that A = B. Since derivations of the form X)

+

X with X 2 � ��

are forbidden, there is either no derivation B)

+

A or no derivation A)

+

B in G. Assume

without loss of generality that there is no derivation B)

+

A. Let A = A

0

) A

1

) : : :)

A

n

) � be a derivation in G causing the production A ! �

0

of G

0

. By the de�nition of

G

0

; fA

1

; : : : ; A

n

g \ S = ;. Since B)

+

�, and not B)

+

A, it follows by Lemma 3.1.10 that

B = A

j

for some j 2 f0; : : : ; ng. If B 6= A, then B 62 S and B 2 L

G

\ R

G

, which contradicts

the fact that B 2 �

0

��. Consequently, B = A.

3.4. Classes of languages 89

Hence G

0

is a chain-free VSP-W grammar equivalent with G, with the same set of initial

nonterminals. 2

By Theorem 3.3.17, each language generated by a chain-free VSP-W grammar is an NTS

language. Hence, by Lemma 3.4.1, we have that L(VSP-W) � L(NTS).

From Theorem 3.3.3 we know that L(VSP) � L(SP). We show now that even L(VSP-

W) � L(SP).

Lemma 3.4.3 Each VSP-W language is an SP language.

Proof. LetK be a VSP-W language, and letG = (�;�; P; S) be a VSP-W grammar such that

K = L(G). By Lemma 3.4.1 we may assume that G is chain-free. Let

b

G = (�[f

b

Sg;�;

b

P ;

b

S)

be the cf grammar such that

b

P = P [f

b

S ! Z j Z 2 Sg. Clearly,

b

G is equivalent with G.

We will prove that

b

G is SP. The Wirth Weber precedence relations of G are disjoint (as in

the proof of Theorem 3.3.3); the Wirth Weber relations of

b

G are obtained from those of G

by adding $ l Z and Z m $ for all Z 2 S, and hence they are disjoint (but note that

dom(m) \ dom(

:

=) and ran(l) \ ran(

:

=) may well become nonempty).

There is no production X ! Z in G with X 2 � and Z 2 S, because G is chain-free.

From this and the fact that G is backwards deterministic it follows that

b

G is backwards

deterministic. There is no derivation A)

+

A for A 2 � �� in G, and hence neither in

b

G.

Obviously, there is no derivation

b

S)

+
b

S in

b

G. Hence

b

G is an SP grammar. 2

By Theorem 3.3.6, L(BD-TC) � L(VSP). Although not each VSP grammar is a BD-TC

grammar (see Example 3.3.7), the opposite inclusion also holds.

Lemma 3.4.4 Each VSP grammar is equivalent to a BD-TC grammar. The same holds for

grammars in the wider sense.

Proof. Let G = (�;�; P; S) be a VSP grammar. By Lemma 3.4.1 we may assume that

G is chain-free. We construct a VSP grammar equivalent with G that is \almost" forwards

deterministic by reintroducing chain-productions. For each nonterminal A of G we do the

following : if A ! �

1

; : : : ; A ! �

n

2 P are all productions starting with A, then we add

new nonterminals A

2

; : : : ; A

n

to �, and replace the productions A ! �

1

; : : : ; A ! �

n

by the

productions A ! �

1

; A ! A

2

; A

2

! �

2

; : : : ; A

n�1

! A

n

; A

n

! �

n

. In this way we obtain a

grammar G

0

= (�

0

;�; P

0

; S) that is equivalent to G. It is easy to verify that G

0

is bracketed

and backwards deterministic. For each A 2 �

0

, and for each n > 1, there is at most one

production A! � with j�j = n. Moreover, if there is more than one production of the form

A ! � in P

0

with j�j = 1, then there are precisely two such productions : one is A ! a for

some a 2 � and the other A! B with B a 'new' nonterminal.

We claim that G

0

is a BD-TC grammar. We de�ne a projection � of �

0

as follows. Let

Y 2 �

0

. If Y 62 � \ L

G

\ R

G

, then we de�ne �(Y) = Y . If Y 2 � \ L

G

\ R

G

, then, since G

0

is backwards deterministic, there is precisely one A 2 �

0

such that A! Y 2 P

0

. Now if there

is a production A! B with B 2 �

0

��, then we de�ne �(Y) = B, otherwise �(Y) = Y .

Then �(G

0

) is almost equal to G

0

, except that productions of the form A ! a with

a 2 � may be removed. Clearly, �(G

0

) is forwards deterministic, backwards deterministic,

and bracketed. Hence �(G

0

) is a marked tree-code, and by Theorem 3.2.8, G

0

is TC. Since G

0

90 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

is backwards deterministic, G

0

is a BD-TC grammar equivalent to G. Clearly, this proof can

be easily extended to grammars in the wider sense. 2

Example 3.4.5 For the grammar G from Example 3.3.7, the equivalent BD-TC grammar G

0

that one gets by the above construction is itself a marked tree-code, with productions S ! ac,

S ! S

2

, S

2

! bc, S

2

! S

3

, S

3

! AB, A! ad, and B ! bd. 2

Thus, by Lemma 3.4.4 and Theorem 3.3.6, L(VSP) = L(BD-TC), and L(VSP-W) =

L(BD-TC-W). Furthermore, by Theorem 3.2.13 and Remark 3.2.14, L(BD-TC-W) = L(TC) =

L(TC-W). From Lemma 3.4.3, Theorem 3.3.17, and Lemma 3.4.1 it follows that L(VSP-

W) � L(SP) \ L(NTS). By Remark 3.2.15, L(PAR) � L(TC-W) and L(BD-PAR) � L(BD-

TC-W). By [13, Theorem 1], L(BD-PAR) = L(PAR).

These observations lead to the following result.

Theorem 3.4.6 The inclusions given in Figure 3.9 hold (where a straight line between two

classes denotes that the lower class is strictly included in the upper class). The classes L(VSP)

and L(PAR) are incomparable.

L(SP) \ L(NTS)

H

H

H

H

H

H

H

H

H

H

L(VSP-W) = L(BD-TC-W)

= L(TC) = L(TC-W)

H

H

H

H

H

H

H

H

H

H

L(VSP) = L(BD-TC) L(PAR) = L(BD-PAR)

Figure 3.9: a hierarchy of language classes

Proof. It remains to be proved that L(VSP-W) � L(SP) \ L(NTS), and that L(PAR) and

L(VSP) are incomparable.

First we give an example of a language that is a parenthesis language, but not a VSP

language.

Consider the language K = f(a(b)c); (b); (d)g. K is generated by the parenthesis grammar

with productions S ! (aBc), S ! (b), S ! (d), B ! (b), where S is the initial nonterminal.

Hence K is a parenthesis language.

Assume that there is a VSP grammar G

0

such that L(G

0

) = K. Since (a(b)c) 2 L(G

0

),

(b) 2 L(G

0

), and (d) 2 L(G

0

), it follows by Lemma 3.3.5 that (a(d)c) 2 L(G

0

), but (a(d)c) 62 K.

Thus there is no VSP grammar that generates K.

3.4. Classes of languages 91

Hence L(PAR) 6� L(VSP). Note that K is an example of a TC language that is not a

BD-TC language.

Obviously, fab; acg is an example of a language that is a VSP language (the cf grammar

with productions S ! ab, S ! ac is VSP), but not a parenthesis language, since we can not

distinguish the right parenthesis.

Hence L(VSP) 6� L(PAR).

Finally we prove that L(VSP-W) � L(SP) \ L(NTS). The language faag is obviously in

L(SP) \ L(NTS). We will show that it is not generated by a VSP-W grammar, by using the

following claim.

Claim 3.4.7 If G = (�;�; P; S) is a VSP-W grammar, and X�Y is a sentential

form with X;Y 2 �, � 2 �

�

, then X 6= Y .

Proof. Assume to the contrary that G has sentential forms of the form X�X. Let

d be a derivation with minimal length of a sentential form of this type, say d yields

X�X. Since X 2 L

G

\ R

G

and G is bracketed, each production with X in its

right-hand side is of the form A! X. Since G is backwards deterministic, there is

exactly one such production. Let t be the derivation tree of X�X corresponding

with d. If we cut o� the leftmost and the rightmost leaf of t, then we obtain a

derivation tree t

0

of A�A in G. But the derivation of A�A corresponding with t

0

is shorter than d. This contradicts the minimality of d. Consequently the claim

holds. 2

From Claim 3.4.7 it follows at once that faag 62 L(VSP-W). 2

Note that both L(NTS) and L(SP) are proper subclasses of the class of deterministic cf

languages (see [2] for NTS languages).

From Theorem 3.4.6 we obtain the following result on TC languages.

Theorem 3.4.8 The equivalence problem for TC grammars is decidable.

Proof. Given two TC grammars, we can, by Theorem 3.2.13, construct for each of them an

equivalent TC grammar in the wider sense that is backwards deterministic. By Theorem 3.3.6,

these grammars are VSP-W. By Lemma 3.4.1, we can construct for each of these grammars

an equivalent chain-free VSP-W grammar. By Theorem 3.3.17 these are NTS grammars. By

[15] their equivalence is decidable. 2

Remark 3.4.9 By Remark 3.3.14, VSP languages, and hence BD-TC languages are LR(0)

languages (in the sense of [10]). However TC languages (or, equivalently, VSP-W languages)

are in general not LR(0). Intuitively, one would think that they are, since we have presented

a parsing method for them without look-ahead (in De�nition 3.3.9), but this asks for an

extension of the LR(0) notion to grammars in the wider sense. The problem here is that

parsing \without look-ahead" is not really a well-de�ned notion, although intuitively clear.

The fact that not all TC languages are LR(0) can be shown using the following charac-

terization of LR(0) languages given in [10, Theorem 13.3.1]: a language K is LR(0) i� K

92 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

is deterministic context-free and for all words u; y; w, if uy 2 K, u 2 K, and w 2 K, then

wy 2 K. It follows that the language K = fa; abg is not LR(0), otherwise the fact that

ab(= uy), a(= u), and ab(= w) are in K would imply that abb(= wy) is also in K. The cf

grammar with productions S ! a, S ! Tb, T ! a generates K and is terminally coded

by the marked tree-code with productions S ! a, S ! Sb, and hence K is a chain-free TC

language.

Also, by the above characterization, a TC language is LR(0) if it is generated by a cf

grammar which is terminally coded by a marked tree-code ' such that one

'

62 L

'

; it can

be shown, using Theorems 3.2.13 and 3.2.4 and Lemma 3.1.10, that such a TC language is

pre�x-free. Note that all marked tree-codes from the examples in Sections 3.1 and 3.2 satisfy

the condition that one

'

62 L

'

. 2

From the viewpoint of coding, it is natural to restrict oneself to trees that have no chains.

Hence one might add to the de�nition of terminally coded grammars the condition that they

are chain-free. Note that derivation trees of chain-free grammars still may have chains, all of

them ending in a leaf. However, any code for chain-free trees can easily be adapted to trees

of this type, as suggested in Example 3.1.14.

It turns out that requiring chain-freeness for TC grammars does make a di�erence for the

class of generated languages. We will compare the classes of languages generated by chain-free

grammars of the types introduced in Sections 3.2 and 3.3. We use L

c

(X) to denote the class

of languages generated by chain-free X grammars.

It is easy to see that Theorem 3.2.13 and Remark 3.2.14 still hold for languages generated

by chain-free grammars. Hence again we obtain that L

c

(BD-TC-W) = L

c

(TC) = L

c

(TC-W).

Furthermore, all parenthesis grammars are chain-free, and hence L

c

(PAR) = L(PAR) and

L

c

(BD-PAR) = L(BD-PAR).

However, for chain-free grammars there is no result analogous with Lemma 3.4.4. Con-

sequently the inclusion diagram of classes of languages generated by chain-free grammars is

di�erent from Figure 3.9.

Theorem 3.4.10 The inclusions given in Figure 3.10 hold. The classes L

c

(VSP) and L

c

(TC),

the classes L

c

(PAR) and L

c

(VSP), and the classes L

c

(PAR) and L

c

(BD-TC) are incompara-

ble.

Proof. As observed before, the language fab; acg is not a parenthesis language. For the

cf grammar G with productions S ! ab and S ! ac, and initial nonterminal S, and the

projection � de�ned by �(a) = a, �(b) = �(c) = b, �(S) = S, the cf grammar �(G) is a

marked tree-code. Hence, by Theorem 3.2.8, fab; acg 2 L

c

(BD-TC)� L

c

(PAR).

In the proof of Theorem 3.4.6 it was shown that the language K = f(a(b)c); (b); (d)g is

a parenthesis language, but not a VSP language. It follows that K 2 L

c

(PAR) � L

c

(VSP).

Hence all that is left to prove is the existence of a language L 2 L

c

(VSP) �L

c

(TC).

Let L = fac; bc; adbdg. L is generated by the chain-free VSP grammar G from Exam-

ple 3.3.7. Hence L 2 L

c

(VSP).

We will prove that there is no chain-free BD-TC-W grammar that generates L. Assume

to the contrary that there exists such a grammar G = (�;�; P; S), which is terminally coded

3.4. Classes of languages 93

L

c

(VSP-W)

L

c

(VSP)

H

H

H

H

H

H

H

H

H

H

L

c

(TC-W) = L

c

(BD-TC-W) = L

c

(TC)

H

H

H

H

H

H

H

H

H

H

L

c

(BD-TC) L

c

(PAR) = L

c

(BD-PAR)

H

H

H

H

H

H

H

H

H

H

Figure 3.10: a hierarchy of chain-free language classes

by a marked tree-code '. Note that, by Theorem 3.3.6, G is bracketed. Let t

1

; t

2

; t

3

be

derivation trees of ac; bc; adbd, respectively. De�ne a 2 � as follows : if a 2 L

G

\ R

G

, then

a = A with A ! a 2 P , otherwise a = a. De�ne b; c; d 2 � analogously. Since G is

bracketed and backwards deterministic, a; b; c, and d are well-de�ned, and, since G is chain-

free, a; b; c; d 62 L

G

\R

G

.

For i = 1; 2; 3, let t

i

be the derivation tree that is obtained from t

i

by removing its

chains. Then yield (t

1

) = ac, yield(t

2

) = bc, and yield(t

3

) = adbd. Since a; b 2 L

G

� R

G

and

c; d 2 R

G

�L

G

, t

1

; t

2

, and t

3

are as in Figure 3.11, where T;U 2 � are such that T ! ad 2 P

and U ! bd 2 P , and Z

1

; Z

2

; Z

3

2 S.

t

1

Z

1

�

�

�

S

S

S

a c

t

2

Z

2

�

�

�

S

S

S

b

c

t

3

Z

1

�

�

�

S

S

S

T U

�

�

�

A

A

A

a

d

�

�

�

A

A

A

b d

Figure 3.11: the derivation trees t

1

, t

2

, and t

3

94 Chapter 3. Grammatical Codes of Trees and Terminally Coded Grammars

Since und(t

1

) = und(t

2

), '(und (t

1

)) = '(und (t

2

)). BecauseG is terminally coded by ', it

follows that �(a) = �(b). By the form of t

3

it follows that �(T) = �(U), since ' is backwards

deterministic, and, since ' is bracketed, that �(T) 2 L

'

�R

'

, �(U) 2 R

'

�L

'

; a contradiction.

Hence there is no chain-free BD-TC-W grammar that generates L. Consequently, since

L

c

(BD-TC-W) = L

c

(TC), L 2 L

c

(VSP)� L

c

(TC). 2

Note that Theorem 3.4.10 implies that in general TC grammars cannot be made chain-free.

In particular (as shown in the proof of Theorem 3.4.10 there is no chain-free TC grammar

equivalent with the BD-TC grammar of Example 3.4.5.

Finally, in Figure 3.12, the relations between language classes of both Figure 3.9 and

Figure 3.10 are combined. Note that L

c

(VSP) = L(VSP) and L

c

(VSP-W) = L(VSP-W) by

Lemma 3.4.1.

L

c

(VSP-W)

L

c

(VSP) = L(VSP)

= L(BD-TC)

H

H

H

H

H

H

H

H

H

H

H

H

L

c

(TC)

H

H

H

H

H

H

H

H

H

H

H

H

L

c

(BD-TC) L

c

(PAR) = L(PAR)

H

H

H

H

H

H

H

H

H

H

Figure 3.12: the combined hierarchy of language classes

Bibliography of Part I

[1] A.H. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, Prentice

Hall, New Jersey, 1972.

[2] L. Boasson and G. Senizergues, NTS languages are deterministic and congruential, Jour-

nal of Computer and System Sciences 31 (1985) 332{342.

[3] Chapter 3 of this thesis:

A. Ehrenfeucht, J. Engelfriet, P. ten Pas, and G. Rozenberg, Grammatical codes of trees

and terminally coded grammars, to appear in Fundamenta Informaticae.

[4] Chapter 1 of this thesis, published as:

A. Ehrenfeucht, P. ten Pas, and G. Rozenberg, Properties of grammatical codes of trees,

Theoretical Computer Science 125 (1994) 259{293.

[5] A. Ehrenfeucht and G. Rozenberg, Grammatical codes of trees, Discrete Applied Mathe-

matics 32 (1991) 103{129.

[6] R.W. Floyd, Bounded context syntactic analysis, Communications of the ACM 7 (1964)

62{67.

[7] S. Ginsburg and M.A. Harrison, Bracketed context-free languages, Journal of Computer

and System Sciences 1 (1967) 1{23.

[8] F. G�ecseg and M. Steinby, Tree Automata, Akad�emiai Kiad�o, Budapest, 1984.

[9] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.

[10] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, Mas-

sachusetts, 1978.

[11] G. Huet, Con
uent reductions: abstract properties and applications to term rewriting

systems, Journal of the ACM 27 (1980) 797{821.

[12] D. Knuth, The Art of Computer Programming, vol. 1 : Fundamental Algorithms, Addison-

Wesley, Reading, Massachusetts, 1973.

[13] R. McNaughton, Parenthesis grammars, Journal of the ACM 14 (1967) 490{500.

95

96 Bibliography of Part I

[14] A. Salomaa, Formal Languages, Academic Press, New York and London, 1973.

[15] G. Senizergues, The equivalence and inclusion problems for NTS languages, Journal of

Computer and System Sciences 31 (1985) 303{331.

[16] D. Wood, Grammar and L Forms : An Introduction, Lecture Notes in Computer Sci-

ence 91, Springer, Berlin, 1980.

Part II

Text Languages

Chapter 4

Context-free Text Grammars

Abstract

A text is a triple � = (�; �

1

; �

2

) such that � is a labeling function, and �

1

and �

2

are

linear orders on the domain of �; hence � may be seen as a word (�; �

1

) together with

an additional linear order �

2

on the domain of �. The order �

2

is used to give to the

word (�; �

1

) its individual hierarchical representation (syntactic structure) which may be

a tree but it may be also more general than a tree. In this paper we introduce context-

free grammars for texts and investigate their basic properties. Since each text has its

own individual structure, the role of such a grammar should be that of a de�nition of a

pattern common to all individual texts. This leads to the notion of a shapely context-free

text grammar also investigated in this paper.

Introduction

This paper continues the investigation of texts, initiated in [16] and [11]. A text is a triple

(�; �

1

; �

2

) such that � is a labeling function, and �

1

and �

2

are linear orders on the domain of

�. Hence a text may be seen as a generalization of a word, where we specify a word as a pair

(�; �) such that � is a labeling function, and � is a linear order on the domain of �.

The notion of text originates in the theory of 2-structures. The so-called (labeled) T -

structures form an important subclass of (labeled) 2-structures (see [15]). It turns out that

each T -structure may be speci�ed through a pair of linear orders. In this way one gets a very

exact correspondence between (speci�cally) labeled T -structures and pairs of linear orders.

This leads to the notion of a text which is then a speci�cation of a labeled T -structure on

the domain of the labeling function of the text. One of the main developments of the theory

of 2-structures is the theory of their hierarchical representations (see, e.g., [13] and [14]). In

particular, it is known that each 2-structure g has a unique hierarchical representation called

the shape of g. Since with each text � we may associate a unique labeled T-structure (viz., the

labeled T-structure g speci�ed by �), we get in this way for each text � a unique hierarchical

representation (viz., the shape of g).

In this way we may see a text (�; �

1

; �

2

) as a word (�; �

1

) together with a hierarchical

representation (syntactic structure) given by �

2

. Such a hierarchical representation may be

a tree but it also may be more general than a tree. Reasoning in this way one is lead to

99

100 Chapter 4. Context-free Text Grammars

a di�erent way of looking at the formal language theory. Each text has its own individual

structure - one does not need grammars in order to assign syntactic structures. Rather, one

can see a grammar as a de�nition of a certain \pattern" common to hierarchical structures of

a set of texts. This point of view is exploited in this paper. We introduce here context-free text

grammars (i.e., context-free grammars generating texts) and investigate their basic properties.

The paper is organized as follows.

In the �rst two sections we recall some basic notions and results concerning 2-structures,

T-structures, and texts; in this way the paper is self-contained. Context-free text grammars

are introduced in Section 4.3, and Section 4.4 establishes some \traditional" (in the sense of

formal language theory) normal forms. In Section 4.5 we consider a normal form speci�c for

texts rather than words; it has to do with the so-called primitive texts. Each text � generated

by a context-free grammar G gets a grammatical structure, viz. a derivation tree in G. On

the other hand � has its own individual structure, viz. its shape. In this setup one gets

immediately a criterion for a \good" context-free grammar G for a given set K of texts: G is

good if its derivation trees match the shapes of texts in K; such a grammar is called shapely.

Shapely context-free text grammars are investigated in Section 4.6. The traditional important

notions of ambiguity and pumping properties of context-free text grammars and languages are

investigated in Section 4.7. The discussion in Section 4.8 concludes the paper.

Preliminaries

In this section we establish notations and terminology used in this paper. We assume the reader

to be familiar with basic graph theoretical notions, in particular those concerning trees.

For a set Z, #Z denotes its cardinality; ; denotes the empty set. S

2

(Z) = ffx; yg j x; y 2

Z and x 6= yg, and E

2

(Z) = f(x; y) j x; y 2 Z and x 6= yg; each element of E

2

(Z) is a 2-edge

over Z. If e = (x; y) is a 2-edge, then the reverse of e, denoted rev (e), is the 2-edge (y; x). For

a set T of 2-edges, the reverse of T , denoted rev(T), is the set frev(e) j e 2 Tg. Sets X;Y

are overlapping if X � Y 6= ;, Y �X 6= ;, and X \ Y 6= ;. For sets X;Y we write X � Y if

X is included in Y , X � Y if X is strictly included in Y , and X � Y denotes the Cartesian

product of X;Y .

For sets X and Y , and a relation � � X � Y , dom(�) = fx 2 X j (x; y) 2 � for some y 2

Y g. In a partition of a set we assume that each partition class is nonempty.

For a sequence s, jsj denotes its length, and for 1 � i � jsj , s(i) denotes the i'th element

of s. By a function in this paper we understand a set of ordered pairs ' such that, for all

(x; y); (u; v) 2 ' , x = u implies y = v. We say that ' is a function on dom('). If Z � dom('),

then 'j

Z

denotes the restriction of ' to Z.

A (directed) graph is an ordered pair h = (D;T), where D is a (�nite) nonempty set of

nodes, denoted by nd(h), and T � D � D is the set of edges. h is antire
exive if, for each

x 2 D, (x; x) 62 T ; h is transitive if, for all x; y; z 2 D, (x; y) 2 T and (y; z) 2 T implies

(x; z) 2 T . h is a linear order if h is antire
exive, transitive, and for each (x; y) 2 E

2

(D),

either (x; y) 2 T or (y; x) 2 T . We carry over to T the terminology and notations concerning

h. Hence, T is a linear order i� h is a linear order.

Preliminaries 101

If h = (D;T) is a linear order such thatD = fx

1

; : : : ; x

n

g for some n � 2, and (x

j

; x

j+1

) 2 T

for all j 2 f1; : : : ; n � 1g, then we write T in the form (x

1

; : : : ; x

n

). Hence a linear order

(D;T) with #D � 2 can be speci�ed as a sequence of the elements of D. The terminology

and notations concerning sequences carry over to linear orders.

We extend this speci�cation of T as a sequence to the case where D consists of one element

x. Then according to the above de�nition T � E

2

(D) is the empty set, but for technical

convenience we specify T as the sequence (x) of length 1. If h = (D;T) is a linear order

and X � D, then X is a segment of h (or of T) if for all y; z 2 X, if u 2 D is such that

(y; u) 2 T and (u; z) 2 T , then u 2 X. We use seg(h) (or seg(T)) to denote all segments of

h. For X � D, hj

X

denotes the restriction of h to X, i.e., (X;T \ E

2

(X)), and T j

X

denotes

T \ E

2

(X). For x 2 dom(h), h

<x

(or T

<x

) denotes the restriction of h (or T) to the set

fy 2 dom(h) j (y; x) 2 Tg; similarly, h

>x

(or T

>x

) is the restriction of h (or T) to the set

fy 2 dom(h) j (x; y) 2 Tg.

Let (h

1

; h

2

) with h

1

= (D

1

; T

1

), h

2

= (D

2

; T

2

) be an ordered pair of disjoint linear orders

(i.e.,D

1

\D

2

= ;). The sum of h

1

and h

2

, denoted h

1

+h

2

, is the linear order h = (D

1

[D

2

; T),

such that T = T

1

[T

2

[f(x; y) j x 2 D

1

and y 2 D

2

g. Note that the sum operation is not

commutative.

Two graphs h

1

= (D

1

; T

1

), h

2

= (D

2

; T

2

) are isomorphic if there is a bijection ' : D

1

! D

2

such that, for all x; y 2 D

1

, (x; y) 2 T

1

i� ('(x); '(y)) 2 T

2

; ' is an isomorphism between h

1

and h

2

.

A graph t = (D;T) is a tree if h is acyclic and there exists a node v of t (the root of

t, denoted root(t)) such that each node of t is reachable from v by a unique path. We use

leaf (t) to denote the set of leaves of t, and in(t) to denote the set of inner nodes of t (i.e.,

in(t) = nd (t)� leaf (t)). For a node v 2 in(t), ddes

t

(v) denotes the set of direct descendants

of v (in t), i.e., nodes x such that (v; x) 2 T ; the contribution of v (in t), denoted by contr

t

(v)

is the set fw 2 leaf (t) j there is a path from v to wg. Furthermore, out-degree(t) denotes

maxf#ddes

t

(v) j v 2 in(t)g, and t is chain-free if each inner node has at least two direct

descendants. If t = (D;T) and t

0

= (D

0

; T

0

) are trees such that D

0

� D, and for each

v 2 in(t

0

), ddes

t

0

(v) = ddes

t

(v), then we say that t

0

is a subtree of t; t

0

is an elementary subtree

of t if there exists v 2 in(t) such that D

0

= fvg[ddes

t

(v). For v 2 in(t), if t

0

is a subtree of t

with root(t

0

) = v and leaf (t

0

) � leaf (t), then t

0

is denoted by sub

t

(v).

Mostly, the trees in this paper have one or more labeling functions on (a subset of) the

nodes. A node-labeled tree is a triple t = (D;T; �), where b = (D;T) is a tree, and � is a

function on nd (b). A (elementary) subtree of t is a node-labeled tree t

0

= (D

0

; T

0

; �

0

) such

that (D

0

; T

0

) is a (elementary) subtree of b, and �

0

= �j

D

0

. An inner-labeled tree is a triple

t = (D;T; �), where b = (D;T) is a tree, and � is a function on in(b). A (elementary) subtree

of t is an inner-labeled tree t

0

= (D

0

; T

0

; �

0

) such that b

0

= (D

0

; T

0

) is a (elementary) subtree

of b, and �

0

= � j

in(b

0

)

. In both cases, notations for the tree b carry over to the node-labeled

(inner-labeled) tree t, e.g., we may write in(t), ddes

t

(v) instead of in(b), ddes

b

(v).

Obviously, these de�nitions may be extended to trees with more than one labeling function.

Often for the inner-labeled trees considered in this paper the identity of the inner nodes

or even the identity of all nodes is not important. Hence in that case for an inner-labeled

tree (D;T; �), the tree (D;T) is considered modulo isomorphism (where in the �rst case the

isomorphism on the leaves is the identity).

102 Chapter 4. Context-free Text Grammars

4.1 Labeled 2-structures

In this section we recall some of the notions and results concerning labeled 2-structures from

[13, 14, 15].

De�nition 4.1.1 A labeled 2-structure (abbreviated `2s) is a 3-tuple g = (D;�; �), where D

is a �nite nonempty set, � is a �nite alphabet, and � is a function from E

2

(D) into �.

As usual, we assume that (labeled) 2-structures are \reversible", i.e., if g = (D;�; �) is a

`2s, and e

1

; e

2

2 E

2

(D), then �(e

1

) = �(e

2

) i� �(rev(e

1

)) = �(rev(e

2

)). It is demonstrated

in [13] that reversible 2-structures constitute a normal form for 2-structures in a well-de�ned

sense.

For formal reasons we also admit 2-structures of one element keeping in mind that this

is a \degenerate" special case (e.g., in order to avoid too many technicalities we will not be

adapting our de�nitions for the 1-element case).

Let g = (D;�; �) be a `2s. The domain D of g is denoted by dom(g). The labeling function

� induces an equivalence relation on the set of 2-edges of g as follows: for all e

1

; e

2

2 E

2

(D),

e

1

is equivalent with e

2

i� �(e

1

) = �(e

2

). This equivalence relation on E

2

(D) corresponds to a

partition of E

2

(D) into equivalence classes, which is denoted by part(g).

The set of labels occurring in g is denoted by ualph(g), i.e., ualph(g) = f�(e) j e 2

E

2

(D)g � �. For technical reasons we consider `2s's g = (D;�; �) and g

0

= (D;�

0

; �) with

ualph(g) = ualph(g

0

) as equal.

A 2-edge e of a `2s g = (D;�; �) is symmetric if �(e) = �(rev(e)); otherwise e is called

asymmetric. For each class P 2 part(g), rev(P) 2 part(g), and either P = rev (P) (hence

P consists of symmetric 2-edges only and is called symmetric), or P \ rev(P) = ; (hence P

consists of asymmetric 2-edges only and is called antisymmetric). Consequently, the classes

in part(g) can be grouped into sets fP; rev (P)g { such a set is called a feature of g. If P

is symmetric, then the corresponding feature has one class only; if P is antisymmetric the

feature consists of two classes. A `2s g is symmetric if all its 2-edges are symmetric and g is

antisymmetric if all its 2-edges are asymmetric.

To represent `2s's pictorially, we use the traditional graphical notation for edge-labeled

graphs, where arrows depict antisymmetric 2-edges, and lines depict symmetric 2-edges.

Example 4.1.2 Consider the `2s's g

1

and g

2

in Figure 4.1.

g

1

is symmetric and has two features. g

2

has one symmetric class f(1; 2); (2; 1); (2; 4);

(4; 2); (3; 4); (4; 3)g in part(g

2

) and two antisymmetric classes, f(1; 3); (1; 4); (2; 3)g and its

reverse f(3; 1); (4; 1); (3; 2)g. Hence g

2

has two features. 2

For a `2s g = (D;�; �) and X � D, the substructure of g determined by X, denoted

sub

g

(X), is the `2s (X;�; �j

X

).

The basic technical notion concerning labeled 2-structures is the notion of a \clan".

De�nition 4.1.3 Let g = (D;�; �) be a `2s, and let X � D. X is a clan (of g) if for all

x; y 2 X and all z 2 D �X, �(z; x) = �(z; y).

4.1. Labeled 2-structures 103

g

1

�

��

3

�

��

4

B

�

��

1

�

��

2

A

B A

�

�

�

�

�

�

�

�

�

�

�

A

@

@

@

@

@

@

@

@

@

@

@

B

g

2

�

��

3

�

��

4

A

�

��

1

�

��

2

A

?

6

B C A

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�	

B

C

@

@

@

@

@

@

@

@

@

@R

@

@

@

@

@

@

@

@

@

@I

B

C

Figure 4.1: `2s's g

1

and g

2

Hence a subset X of dom(g) is a clan if each element outside X \sees" all elements of X

\in the same way". We use C(g) to denote the set of all clans of g. Clearly, for each `2s

g = (D;�; �), ; 2 C(g), D 2 C(g), and for each x 2 D, fxg 2 C(g). These clans are called

the trivial clans of g, denoted by TC(g). A prime clan of g is a clan that is not overlapping

any other clan of g. The set of all prime clans of g is denoted by PC(g). Note that every

trivial clan is prime.

An important property of clans is the following one (see [13, Lemma 4.11]): if X and Y

are disjoint clans of a `2s g, then for all x

1

; x

2

2 X and all y

1

; y

2

2 Y , (x

1

; y

1

) is equivalent

with (x

2

; y

2

). This property allows one to form quotients as follows. If g = (D;�; �) is a `2s,

and M is a partition of D into clans of g, then g=M is the `2s (M;�; �

0

), where �

0

is such

that, for (X;Y) 2 E

2

(M), �

0

(X;Y) = �(x; y), where x 2 X and y 2 Y . Note that we recover

g from g=M if we \substitute", for each X 2M , sub

g

(X) for the node X in g=M . In this way

the operation of substitution is the inverse of the operation of forming quotients, where the

domains of the substituted `2s's become clans of the resulting `2s.

In this paper we consider the substitution of a single `2s into a `2s. Formally, for `2s's

g = (D; �;�) and g

0

= (D

0

; �

0

;�

0

) with disjoint domains, and for x 2 dom(g), we de�ne the

substitution of g

0

into g at x, denoted by sub(g; x; g

0

), as the `2s ((D � fxg) [D

0

; �

00

;� [�

0

),

where for each 2-edge (y; z),

�

00

(y; z) =

8

>

>

>

<

>

>

>

:

�(y; z) if y; z 2 D � fxg

�

0

(y; z) if y; z 2 D

0

�(y; x) if y 2 D � fxg, z 2 D

0

�(x; z) if y 2 D

0

, z 2 D � fxg

This de�nition of substitution of a single `2s is also given in [14, De�nition 7.9].

The following subclasses of the class of labeled 2-structures are both natural and important.

De�nition 4.1.4 Let g = (D;�; �) be a `2s.

(1) g is special if PC(g) = TC(g).

(2) g is primitive if C(g) = TC(g).

104 Chapter 4. Context-free Text Grammars

(3) g is complete if either #D = 1 or #part(g) = 1.

(4) g is linear if either #D = 1 or g is antisymmetric, part(g) = fP; rev (P)g and there exists

a linear order (x

1

; : : : ; x

n

), n � 2 of D such that, for all di�erent i; j 2 f1; : : : ; ng, (x

i

; x

j

) 2 P

i� i < j.

Example 4.1.5 Let g and h be as in Figure 4.2.

g

�

��

3

�

��

4

A

�

��

1

�

��

2

A

A

6

?

D E

�

�

�

�

�

�

�

�

�

�

�

C

@

@

@

@

@

@

@

@

@

@

@

B

h

�

��

3

�

��

4
-

�

B

A

�

��

1

�

��

2

-

�

B

A

?

6

A B

6

?

B A

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�	

B

A

@

@

@

@

@

@

@

@

@

@R

@

@

@

@

@

@

@

@

@

@I

A

B

Figure 4.2: `2s's g and h

C(g) = f;; f1g; f2g; f3g; f4g; f1; 2; 3; 4gg = TC(g), hence g is a primitive `2s. h is a linear

`2s (consider the linear order (1; 4; 3; 2) of its domain). 2

Let g = (D; �;�) and g

0

= (D

0

; �

0

;�) be `2s's. g and g

0

are isomorphic if there is a

bijection � from D onto D

0

such that for all (x; y) 2 E

2

(D), �(x; y) = �

0

(�(x); �(y)). Note that

the notion of isomorphism we use in this paper is label-preserving.

A basic technical result for labeled 2-structures is that a `2s g is special i� g is complete,

linear or primitive. The decomposition theory developed in [14] allows one to de�ne tree-

like \hierarchical representations" of labeled 2-structures using these three types of labeled

2-structures only. We recall now the basic notions of this theory.

A `2s-labeled tree is an inner-labeled tree t = (D;T; ') where ' is such that for each

v 2 in(t), '(v) is a `2s g with dom(g) = ddes

t

(v). The labeling function ' is denoted by `2s

t

.

Note that our de�nition of a `2s-labeled tree di�ers from the one in [14] in that we admit

chains. We do this because later (see, e.g., De�nition 2.3 and Theorem 3.1) we establish

relationships between derivation trees in \context-free text grammars" (which naturally have

chains) and `2s-labeled trees.

A `2s-labeled tree t is called locally special (primitive, linear) if for each v 2 in(t), `2s

t

(v)

is special (primitive, linear). A `2s-labeled tree t de�nes a `2s g = (D; �;�) as follows: D =

leaf (t), and for all v 2 in(t), u;w 2 ddes

t

(v), x 2 contr

t

(u), y 2 contr

t

(w), �(x; y) = �

0

(u;w),

where �

0

is the labeling function of `2s

t

(v). We say that t represents g, and g is denoted by

`2s(t). By the construction of `2s(t) we obtain the following lemma.

4.1. Labeled 2-structures 105

Lemma 4.1.6 Let g be a `2s, and let t be a `2s-labeled tree with dom(g) = leaf (t). Then t

represents g i� for each v 2 in(t), contr

t

(v) is a clan of g, and `2s

t

(v) is isomorphic to the

quotient-structure sub

g

(contr

t

(v))=fcontr

t

(u) j u 2 ddes

t

(v)g.

Note that for a `2s-labeled tree representing a `2s, the identity of the inner nodes is not

important. Hence `2s-labeled trees that di�er only in the identities of the inner nodes (i.e.,

there exists an isomorphism between the sets of inner nodes of the trees with corresponding

`2s-labels) may be identi�ed. This is implicitly used in the following notion.

De�nition 4.1.7 Let g be a `2s. The shape of g, denoted shape(g), is the chain-free `2s-

labeled tree t representing g such that fcontr

t

(v) j v 2 nd(t)g = PC(g)� f;g.

The requirement of chain-freeness is needed in order to ensure that the shape is unique.

The following proposition is the main theorem of the decomposition theory for labeled

2-structures.

Proposition 4.1.8 (cf. [14, Th. 4.2, Cor 6.18])

(1) For each `2s g, shape(g) is locally special.

(2) If g and h are `2s's, then shape(g) = shape(h) i� g = h.

Hence in a shape each of the `2s's corresponding to an inner node is either complete, linear

or primitive.

g

�

��

1

�

��

2

-

�

C

A

�

�

�

�

�

�

�

�

B

A

A

A

A

A

A

A

A

D

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

QQs

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

QQk

A

C

�

�

�

�

�

�

�

�

�

�

�
�3

�

�

�

�

�

�

�

�

�

�

��+

C

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

C

A

�

��

4

�

��

5

�

��

3

-

C

�

A

@

@

@

@

@

@

@

@

B

�

�

�

�

�

�

�	

C

�

�

�

�

�

�

��

A

Figure 4.3: `2s g

106 Chapter 4. Context-free Text Grammars

e

�

�

�

�

�

�

�

e

C

C

C

C

C

C

C

e

B

H

H

H

H

B

�

�

�

�

B

e

�

�

�

�

�

�

�

�

�

e

A

A

A

A

A

A

A

A

A

-

�

A

C

e

�

�

�

�

�

�

e

B

B

B

B

B

B

D

l

1

l

4

l

5

l

2

l

3

Figure 4.4: shape(g)

Example 4.1.9 Let g be the `2s in Figure 4.3.

Then shape(g) is as in Figure 4.4.

Here each rectangle is an inner node, and the `2s labeling the node is drawn inside.

Note that indeed `2s

shape(g)

(v) is special for each inner node v. 2

Remark 4.1.10 Substitution of `2s's can be described in terms of `2s-labeled trees. For `2s's

g and g

0

with disjoint domains, and x 2 dom(g), subst(g; x; g

0

) is precisely the `2s represented

by the `2s-labeled tree t with two inner nodes: root(t) labeled by g, and the inner node x

labeled by g

0

. 2

The primitive substructures of a `2s can be localized in its clans.

Proposition 4.1.11 (cf. [14, Th. 4.4]) Let g be a `2s, let t be a `2s-labeled tree representing

g, and let X � dom(g) be such that #X � 3 and sub

g

(X) is primitive. Then there exists

v 2 in(t) such that X � contr

t

(v) and sub

g

(X) is isomorphic with a primitive substructure of

`2s

t

(v).

Example 4.1.12 Consider the `2s g in Figure 4.5.

Note that sub

g

(f1; 2; 3g) is primitive. It is inside the node f1; 2; 3; 4g of the `2s-labeled

tree t in Figure 4.6 representing g. 2

Note that Proposition 4.1.11 does not hold for linear and complete substructures.

4.1. Labeled 2-structures 107

�

��

3

�

��

4

M

�

��

1

�

��

6

�

-

L

E

�

��

2

�

��

5

-

�

L

E

K

?

6

L E

�

�

�

�

�

�

�

�

�

�	

�

�

�

�

�

�

�

�

�

��

L

E

@

@

@

@

@

@

@

@

@

@I

@

@

@

@

@

@

@

@

@

@R

L

E

�

�

�

�

��

�

�

�

�

�	

E

L

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

L

E

@

@

@

@

@

M

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

K

@

@

@

@

@

B

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pi

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

L

E

�

�

�

�

�	

�

�

�

�

��

E

L

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�1

L

E

Figure 4.5: `2s g

e

�

�

�

�

�

�

�

�

�

e

D

D

D

D

D

D

D

D

D

e e

-

�

E

L

@

@

@

@R

@

@

@

@I

E

L

�

�

�

�

M

M

H

H

H

H

H

H

H

H
H

K

�

�

�

�

�

�

�

�
�

K

e

�

�

�

�

�

�

�

�

�

e

A

A

A

A

A

A

A

A

A

-

�

E

L

e

�

�

�

�

�

�

e

B

B

B

B

B

B

B

l

1

l

2

l

3

l

4

l

5

l

6

Figure 4.6: `2s-labeled tree t representing g

Example 4.1.13 Let g and t be the `2s and the `2s-labeled tree from Example 4.1.12. The

substructure sub

g

(f1; 4; 5g) is linear, but it does not occur as a substructure of a \local" `2s.

2

Those `2s-labeled trees that are shapes can be characterized as follows. Let t be a locally

special chain-free `2s-labeled tree. De�ne the relation �

t

on in(t) as follows: for u; v 2 in(t),

u �

t

v i� u 2 ddes

t

(v), either both `2s

t

(u) and `2s

t

(v) are linear or both `2s

t

(u) and `2s

t

(v) are

complete, and `2s

t

(u) and `2s

t

(v) use the same labels, i.e., ualph(`2s

t

(u)) = ualph(`2s

t

(v)).

A locally special chain-free `2s-labeled tree t is disjoint if for all u; v 2 in(t), u 6�

t

v.

108 Chapter 4. Context-free Text Grammars

v

1

e

�

�

�

�

�

�

�

�

e

A

A

A

A

A

A

A

A

e

j

5

-

�

A

E

Q

Q

Q

Qs

Q

Q

Q

Qk

E

A

�

�

�

�+

�

�

�

�3

E

A

v

3

e

�

�

�

�

�

�

e

C

C

C

C

C

C

C

e

B

Q

Q

Q

B

�

�

�

B

j

6

j

7

v

4

e

�

�

�

�

�

e

B

B

B

B

B

j

1

j

2

-

�

A

E

v

5

e

�

�

�

�

�

e

B

B

B

B

B

j

3

j

4

-

�

C

D

v

2

e

e

A

A

A

A

A

A

-

�

A

E

v

6

e

�

�

�

�

�

e

B

B

B

B

B

j

8

j

9

B

Figure 4.7: `2s-labeled tree t

e

�

�

�

�

�

�

�

�

e

C

C

C

C

C

C

C

e

j

5

j

v

3

-

�

A

E

Q

Q

Q

Qs

Q

Q

Q

Qk

E

A

�

�

�

�+

�

�

�

�3

E

A

e

�

�

�

�

�

e

B

B

B

B

B

j

1

j

2

-

�

A

E

e

�

�

�

�

�

�

e

B

B

B

B

B

j

v

5

-

�

A

E

e

�

�

�

�

�

e

B

B

B

B

B

j

3

j

4

-

�

C

D

e

�

�

�

�

�

�

e

C

C

C

C

C

C

C

e

B

Q

Q

Q

B

�

�

�

B

j

6

j

7

e

�

�

�

�

�

e

B

B

B

B

B

j

8

j

9

B

Figure 4.8: subtrees of equivalence classes

4.1. Labeled 2-structures 109

Proposition 4.1.14 (cf. [14, Cor. 6.20]) A `2s-labeled tree t representing a `2s g is the shape

of g i� t is chain-free, locally special, and disjoint.

Let �

�

t

be the symmetric, re
exive, and transitive closure of �

t

. The following result can

easily be veri�ed.

Lemma 4.1.15 Let t = (D;T; ') be a locally special chain-free `2s-labeled tree, and let E be

an equivalence class of �

�

t

. Let D

0

= (

S

v2E

ddes

t

(v))[E, let T

0

= T \E

2

(D

0

), and let '

0

= 'j

E

.

Then

(1) t

0

= (D

0

; T

0

; '

0

) is a subtree of t, and

(2) `2s(t

0

) is linear (complete, primitive) if t

0

is locally linear (complete, primitive); hence

`2s(t

0

) is special.

The `2s-labeled tree t

0

formed as above by an equivalence class E is denoted by tree

t

(E).

Note that, by Proposition 4.1.14, t is the shape of a `2s i� tree

t

(E) is an elementary subtree

of t for each equivalence class E of �

�

t

.

Example 4.1.16 Consider the `2s-labeled tree t in Figure 4.7.

The equivalence classes of �

�

t

are fv

1

; v

2

; v

4

g, fv

5

g, fv

3

; v

6

g. The corresponding subtrees

tree

t

(fv

1

; v

2

; v

4

g), tree

t

(fv

5

g), and tree

t

(fv

3

; v

6

g) are given in Figure 4.8.

Hence tree

t

(fv

1

; v

2

; v

4

g) and tree

t

(fv

5

g) are locally linear subtrees of t, tree

t

(fv

3

; v

6

g) is

a locally complete subtree of t. The linear `2s represented by tree

t

(fv

1

; v

2

; v

4

g) looks as in

Figure 4.9. 2

�

��

v

5

�

��

5

-

�

E

A

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

E A

A

A

A

A

A

A

A

A

A

AK

A

A

A

A

A

A

A

A

A

AU

EA

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Qs

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Qk

E

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�+

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�3

E

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CO

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CW

A

E

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

A

E

�

��

1

�

��

2

�

��

v

3

�

E

-

A

@

@

@

@

@

@

@

@

@

@I

@

@

@

@

@

@

@

@

@

@R

A

E

�

�

�

�

�

�

�

�

�

�	

A

E

�

�

�

�

�

�

�

�

�

��

Figure 4.9: `2s represented by tree

t

(fv

1

; v

2

; v

4

g)

110 Chapter 4. Context-free Text Grammars

Each `2s g has a \trivial" hierarchical representation: a tree consisting of a root labeled

by g and leaves which are direct descendants of the root. The `2s-labeled trees representing

g are \re�nements" of this trivial representation. In a (non-trivial) `2s-labeled tree t repre-

senting g, each inner node v together with its direct descendants is a \trivial" representation

of `2s

t

(v). If these local trivial representations are \re�ned" we again obtain a `2s-labeled

tree representing g. We now give a formal de�nition of this notion of \re�nement". In [14,

Def. 6.21], the de�nition of re�nement for chain-free `2s-labeled trees is given in a di�erent

(\non-operational") way.

De�nition 4.1.17 Let t be a `2s-labeled tree. A `2s-labeled tree t

0

= (D;T; ') is a re�nement

of t if for each v 2 in(t) there is a `2s-labeled tree t

v

= (D

v

; T

v

; '

v

) with root v and leaves

ddes

t

(v) representing `2s

t

(v) such that D =

S

v2in(t)

D

v

, T =

S

v2in(t)

T

v

, and ' =

S

v2in(t)

'

v

.

If t is re�ned into t

0

as above, and if v is an inner node of t, then we say that v is replaced

by t

v

. In particular, v may be replaced by the elementary subtree of t rooted at v, which

means that v is left unaltered; in this way a re�nement of t allows also for \real replacement"

of some of the nodes of t only.

Note that a re�nement of a `2s-labeled tree t again represents `2s(t).

Example 4.1.18 Consider the `2s-labeled trees t and t

0

in Figure 4.10.

t

c

�

�

�

�

�

�

c

A

A

A

A

A

A

c

l

5

-

�

C

A
Q

Q

Qs

Q

Q

Qk

D

B

�

�

�+

�

�

�3

C

A

c

�

�

�

�

c

B

B

B

B

l

6

l

7

-

�

T

S

c

�

�

�

�

�

�

c

D

D

D

D

D

D

c c

K

@

@

@

K

�

�

�

K

K

H

H

H

H

H

H

K

�

�

�

�

�

�

K

l

1

l

2

l

3

l

4

t

0

c

�

�

�

�

�

c

A

A

A

A

A

-

�

C

A

c

�

�

�

�

c

B

B

B

B

l

6

l

7

-

�

T

S

c

�

�

�

�

�

c

B

B

B

B

l

5

-

�

B

D

c

�

�

�

�

�

�

c

A

A

A

A

A

A

c

l

1

l

4

K

Q

Q

Q

K

�

�

�

K

c

�

�

�

�

c

B

B

B

B

l

2

l

3

K

Figure 4.10: `2s-labeled trees t and t

0

t

0

is a re�nement of t, e.g., the root of t is replaced by a tree with two inner nodes; the

inner node v of t is replaced by an elementary subtree, and is hence unaltered. 2

4.1. Labeled 2-structures 111

The following lemma has been proved (for chain-free `2s-labeled trees) in [14, Th. 6.22].

We give here its proof following the above de�nition of re�nement.

Lemma 4.1.19 If t is a locally special `2s-labeled tree representing a `2s g, then t is a re�ne-

ment of shape(g).

Proof. Let t be a locally special `2s-labeled tree representing a `2s g. We may assume that t is

chain-free, since each locally special `2s-labeled tree with chains is a re�nement of a chain-free

locally special `2s-labeled tree.

Now let t

0

be the `2s-labeled tree that results from t by replacing for each equivalence class

E of �

�

t

the subtree tree

t

(E) by an elementary subtree with root v

E

, where v

E

is labeled by the

`2s represented by tree

t

(E). More precisely, t

0

= (D;T; '), where

D = fv

E

j v

E

= root(tree

t

(E)) for an equivalence class E of �

�

t

g [leaf (t),

T = f(v

E

; w) j w 2 leaf (tree

t

(E)) for an equivalence class E of �

�

t

g,

and ' is such that for v

E

2 D, '(v

E

) = `2s(tree

t

(E)).

Since equivalence classes of �

�

t

are disjoint, t

0

is well-de�ned; from the de�nition of t

0

it

follows directly that t is a re�nement of t

0

.

On the other hand, by the construction of t

0

and by Lemma 4.1.15, t

0

is chain-free, locally

special, and disjoint { hence, by Proposition 4.1.14, t

0

is the shape of g. 2

e

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

J

J

J

J

J

Ĵ

A

J

J

J

J

J

J]

E

@

@

@

@

@

@

@

@R

A

@

@

@

@

@

@

@

@I

E

H

H

H

H

H

H

H

H

H

H

H

Hj

A

H

H

H

H

H

H

H

H

H

H

H

HY

E

-

A

�

E

e

L

L

L

L

L

L

L

L

L

L

L

L

L

�

A

�

E

�

�

�

�

�

�

�

��

A

�

�

�

�

�

�

�

�	

E

�

�

�

�

�

�

�

�

�

�

�

�*

A

�

�

�

�

�

�

�

�

�

�

�

��

E

e

�

�

�

�

�

�

�

�

-

A

�

E

H

H

H

Hj

A

H

H

H

HY

E

e

e

�

�

�

�

�

�

�

�

�

�

�*

A

�

�

�

��

E

l

1

l

2

l

5

e

�

�

�

�

�

�

e

B

B

B

B

B

B

l

3

l

4

-

�

C

D

e

�

�

�

�

�

�

�

�

�

e

D

D

D

D

D

D

D

D

D

e e

B

@

@

@

@

B

�

�

�

�

B

B

H

H

H

H

H

H

H

H
H

B

�

�

�

�

�

�

�

�
�

B

l

6

l

7

l

8

l

9

Figure 4.11: shape(`2s(t))

112 Chapter 4. Context-free Text Grammars

Example 4.1.20 The `2s-labeled tree t from Example 4.1.16 is a re�nement of the shape of

`2s(t), given in Figure 4.11. 2

4.2 Bi-orders and texts

In this section we consider speci�cations of labeled T-structures and of T-functions (which are

labeled T-structures with an additional valuation, or labeling, of the elements of its domain).

In the �rst part of the section (subsection 4.2.1) we consider bi-orders, which are speci�cations

of labeled T-structures, and in the second part (subsection 4.2.2) we consider texts which are

speci�cations of T-functions.

4.2.1 Labeled T-structures and bi-orders

A natural subclass of (labeled) 2-structures is the class of (labeled) 2-structures that are

antisymmetric and \angular". These so-called T-structures have been introduced in [15], and

are further investigated in [16].

Since in this paper we consider labeled 2-structures, we will deal with T-structures that

are labeled.

De�nition 4.2.1 A labeled T-structure (abbreviated `Ts) is a `2s g = (D; �;�) such that g is

antisymmetric, and for allX � D with #X = 3, there exists x 2 X such that �(x; y) = �(x; z),

where X = fx; y; zg.

Note that, by de�nition, a `Ts has only antisymmetric features.

Proposition 4.2.2 (cf. [16, Th. 2.11]) For each `Ts g, if g has exactly n features F

1

; : : : ; F

n

,

for n � 1; then for all P

1

; : : : ; P

n

� part(g) such that P

j

2 F

j

for j = 1; : : : ; n,

S

n

j=1

P

j

is a

linear order.

In this way, a `Ts can be seen as a generalization of a linear order. One may see a feature

F = fP;P

0

g as two \opposite orientations" for the involved 2-edges: one orientation given by

P and the other one by P

0

. Then Proposition 4.2.2 says that whichever choice of orientations

(arrows) is made for the 2-edges in an arbitrary `Ts, the resulting directed graph will be a

linear order.

It is shown in [16] that each `Ts is equivalent to a `Ts with two features in a well-de�ned

sense. This allows one to consider `Ts's with at most two features. It turns out that such a

`Ts has a representation by a pair of linear orders (we will use the term bi-order for an ordered

pair of linear orders with a common domain).

Proposition 4.2.3 (cf. [16, Th. 3.6]) Let g be a `Ts with at most two features. Then

there exists a bi-order � = (�

1

; �

2

) with domain dom(g) such that part(g) = f�

1

\ �

2

; �

1

\

rev(�

2

); rev(�

1

) \ �

2

; rev(�

1

) \ rev (�

2

)g � f;g.

4.2. Bi-orders and texts 113

By Proposition 4.2.3 a bi-order determines a `Ts (with one or two features) modulo the

labels of its partition classes. In order to obtain a more precise correspondence between bi-

orders and `Ts's we restrict our attention to `Ts's with a speci�c labeling alphabet, namely

fVH; VH; VH; VHg, such that each feature is labeled either by fVH; VHg or by fVH; VHg.

Such a `Ts is called a normal T-structure (abbreviated nTs) and the alphabet fVH; VH; VH; VHg

is denoted by �

VH

. The intuition behind the choice of the letters V and H, corresponding with

the �rst and the second order of a bi-order respectively, will be explained in Subsection 4.2.2

where the notion of a text is introduced.

From now on in this paper all `2s's we consider will be normal T-structures.

A nTs-labeled tree is a `2s-labeled tree such that each inner node is labeled by a normal

T-structure. It is easily seen that the `2s represented by a nTs-labeled tree is a nTs, and,

since a substructure of a nTs is a nTs, a tree that represents a nTs is a nTs-labeled tree. Note

that, by Proposition 4.1.8(1), the nodes of the shape of a nTs are either linear or primitive.

A bi-order determines a normal T-structure as follows.

De�nition 4.2.4 Let � = (�

1

; �

2

) be a bi-order with domain D. The normal T-structure

determined by �, denoted by nTs(�), is the nTs g = (D; �;�

VH

) such that

part(g) = f�

1

\ �

2

; �

1

\ rev(�

2

); rev(�

1

) \ �

2

; rev(�

1

) \ rev(�

2

)g � f;g

and � is such that

�(�

1

\ �

2

) = VH

�(�

1

\ rev(�

2

)) = VH ,

�(rev(�

1

) \ �

2

) = VH,

�(rev(�

1

) \ rev(�

2

)) = VH.

Example 4.2.5 For the bi-order � = (1; 4; 3; 5; 2; 6); (2; 5; 4; 3; 1; 6)) nTs(�) is given in Fig-

ure 4.12. 2

�

��

6

�

��

5

�

VH

�

��

2

�

��

3

�

VH

�

��

1

�

��

4

-

VH

?

VH

?

VH

�

�

�

�

�

�

�

�

�

�

�	

VH

@

@

@

@

@

@

@

@

@

@

@I

VH

�

�

�

�

��

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�1

VH

@

@

@

@

@R

VH

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

VH

@

@

@

@

@I

VH

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pi

VH

�

�

�

�

�	

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

VH

Figure 4.12: nTs(�)

Here and in what follows we adopt the notational convention to omit in pictures of nTs's

the partition classes labeled by VH and VH.

114 Chapter 4. Context-free Text Grammars

By Proposition 4.2.2, for a nTs each union of two partition classes that are not in the same

feature is a linear order. Moreover, it is easy to see that if g = (D; �;�

VH

) is a nTs, and

� = (�

1

; �

2

) is the bi-order representing g, then

S

fP 2 part(g) j �(P) 2 fVH; VHgg is exactly

the linear order �

1

, and

S

fP 2 part(g) j �(P) 2 fVH; VHgg is the linear order �

2

.

In this way, a nTs determines the bi-order by which it is represented.

Example 4.2.6 (Example 4.2.5 continued.) For the nTs of Figure 4.12 we have indeed that

�

�1

(VH) [�

�1

(VH) = f(1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (4; 2); (4; 3); (4; 5); (4; 6); (3; 2); (3; 5);

(3; 6); (5; 2); (5; 6); (2; 6)g = (1; 4; 3; 5; 2; 6) = �

1

, and �

�1

(VH)[�

�1

(VH) = f(2; 1); (2; 3); (2; 4);

(2; 5); (2; 6); (5; 1); (5; 3); (5; 4); (5; 6); (4; 1); (4; 3); (4; 6); (3; 1); (3; 6); (1; 6)g = (2; 5; 4; 3; 1; 6) =

�

2

, where � is the labeling function of nTs(�), and � = (�

1

; �

2

). 2

Hence there is a one-to-one correspondence between bi-orders and normal T-structures.

This correspondence is given by the bijectivemapping nTs which assigns to each bi-order � the

nTs it determines (see De�nition 4.2.4); for each nTs g, nTs

�1

(g) is the bi-order determining

g.

The clans of a nTs can be found in a natural way in its speci�cation by a bi-order.

Proposition 4.2.7 (cf. [16, Th. 3.10]) Let � = (�

1

; �

2

) be a bi-order with domain D. A

subset X � D is a clan of nTs(�) i� X 2 seg(�

1

) \ seg(�

2

).

Following Proposition 4.2.7, the subsets of the domain of a bi-order that are segments

in both linear orders are called clans of the bi-order. Also, other notions for nTs's can be

transferred to bi-orders: a bi-order � is primitive or linear i� nTs(�) is primitive or linear,

respectively.

The most obvious comparison of the two linear orders of a bi-order leads to the following

straightforward notions. A bi-order � = (�

1

; �

2

) is sequential if either �

1

= �

2

or �

1

= rev(�

2

).

In the former case � is called forward sequential, in the latter case � is called backward

sequential. The notion of sequentiality of a bi-order is directly related to the notion of linearity

of the nTs denoted by a given bi-order.

Lemma 4.2.8 A bi-order is linear i� it is sequential.

Proof. Let � = (�

1

; �

2

) be a bi-order. If nTs(�) is linear, then it contains precisely one feature

labeled either by fVH; VHg or by fVH; VHg. It follows that either �

1

= �

2

or �

1

= rev(�

2

),

respectively. Conversely, if �

1

= �

2

or �

1

= rev(�

2

), then part(nTs(�)) = f�

1

; rev(�

1

)g, and

hence nTs(�) is linear. 2

In the same way as nTs-labeled trees are hierarchical representations of nTs's, one can use

trees with inner nodes labeled by bi-orders as hierarchical representations of bi-orders.

De�nition 4.2.9 A bi-ordered tree is a 4-tuple (D;T; �; #), where (D;T) is a tree, and � and

are functions assigning linear orders to inner nodes of (D;T) such that for each inner node

v, both �(v) and #(v) are linear orders on the direct descendants of v.

4.2. Bi-orders and texts 115

For a bi-ordered tree t = (D;T; �; #), the labeling functions � and # are denoted by VO

t

and HO

t

, respectively. The linear orders on the nodes of t de�ned by VO

t

and HO

t

induce

in the usual way linear orders on leaf (t), denoted by VO(t) and HO (t) respectively. In other

words, the local bi-orders of t induce a bi-order (VO(t);HO(t)) with domain leaf (t), which

will be denoted by bo(t). This is similar to the way a `2s-labeled tree de�nes a labeled 2-

structure: a \local" `2s which labels an inner node de�nes a label for each pair (u;w) of direct

descendants of this node. This label is then inherited by each pair of leaves \below" the pair

(u;w).

Accordingly, as for `2s's, we say that a bi-ordered tree t represents a bi-order � if � = bo(t).

Example 4.2.10 Consider the bi-ordered tree t in Figure 4.13. Here the direct descendants

of a node are drawn from left to right according to the �rst order of the node, and the second

order is given explicitly by arrows.

v

2

s

�

�

�

�

A

A

A

A

l

1

l

2

�

v

1

s

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

�

v

3

s

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

B

�

-

�

l

3

l

4

l

7

v

4

s

�

�

�

�

A

A

A

A

-

l

5

l

6

Figure 4.13: bi-ordered tree t

HenceVO

t

(v

1

) = (v

2

; v

3

), HO

t

(v

1

) = (v

3

; v

2

)VO

t

(v

2

) = (1; 2), HO

t

(v

2

) = (2; 1), VO

t

(v

3

) =

(3; 4; v

4

; 7), HO

t

(v

3

) = (v

4

; 3; 7; 4), VO

t

(v

4

) = (5; 6), HO

t

(v

4

) = (5; 6).

This bi-ordered tree t represents the bi-order � = ((1; 2; 3; 4; 5; 6; 7); (5; 6; 3; 7; 4; 2; 1)), i.e.,

bo(t) = �.

To illustrate that the local second orders induce the second order of �, we redraw the bi-

ordered tree in Figure 4.14 in such a way that the left-to-right order of the direct descendants

of a node represents the second order of the node. 2

From now on we will draw all bi-ordered trees in such a way that for each inner node v

the �rst order is the left-to-right order of direct descendants of v, and the second order is

given explicitly by arrows. Using the correspondence between nTs's and bi-orders we obtain

a correspondence between nTs-labeled trees and bi-ordered trees by \locally" replacing the

nTs's labeling the inner nodes by equivalent bi-orders or the other way around.

More precisely, the bijective mapping nTs on bi-orders is extended to a mapping

d

nTs on

bi-ordered trees, de�ned as follows. For each bi-ordered tree t = (D;T; �; #),

d

nTs(t) is the

116 Chapter 4. Context-free Text Grammars

s

�

�

�

�

A

A

A

A

l

2

l

1

�

s

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

�

s

�

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

-

�

-

l

3

l

7

l

4

s

�

�

�

�

A

A

A

A

-

l

5

l

6

Figure 4.14: bi-ordered tree t redrawn

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LL

s

-

�

?

bo ()

bi-ordered

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LL

?

`2s ()

nTs-labeled

-

nTs ()

�

nTs

�1

()

-

d

nTs ()

�

d

nTs

�1

()

-

nTs ()

�

nTs

�1

()

Figure 4.15: `2s(

d

nTs(t)) = nTs(bo(t)) and nTs

�1

(`2s(t

0

)) = bo(

d

nTs

�1

(t))

4.2. Bi-orders and texts 117

nTs-labeled tree (D;T; �), where for each v 2 in(t), �(v) = nTs(�(v); #(v)). Clearly, this

makes

d

nTs a bijection between bi-ordered trees and nTs-labeled trees.

A bi-ordered tree t represents a bi-order bo(t), and a nTs-labeled tree t

0

represents a normal

T-structure `2s(t

0

). It is an immediate consequence of the constructions of bo(t) and `2s(t

0

)

that these representations are compatible.

Lemma 4.2.11 For each bi-ordered tree t, `2s(

d

nTs(t)) = nTs(bo(t)), and for each nTs-

labeled tree t

0

, nTs

�1

(`2s(t

0

)) = bo(

d

nTs

�1

(t)).

In other words the diagram given in Figure 4.15 commutes.

Example 4.2.12 The bi-ordered tree t from Example 4.2.10 corresponds to the nTs-labeled

tree

d

nTs(t) in Figure 4.16.

Indeed, this nTs-labeled tree represents nTs(�), which is given in Figure 4.17. 2

We de�ne substitution for bi-orders in the obvious way: for bi-orders � = (�; �) and

�

0

= (�

0

; �

0

) with disjoint domains, and for x in the domain of �, the substitution of �

0

into

� at x, denoted by subst(�; x; �

0

), is the bi-order (�

<x

+ �

0

+ �

>x

; �

<x

+ �

0

+ �

>x

). Note that

e

e

J

J

J

J

J

J

J

-

VH

e

�

�

�

�

�

�

e

B

B

B

B

B

B

l

1

l

2

-

VH

e

�

�

�

�

�

�

�

�

�

e

@

@

@

@

@

@

@

e e

L

L

L

L

L

L

-

VH

@

@

@

@R

VH

�

�

�

��

VH

-

VH

H

H

H

H

H

H

H

HHj

VH

�

�

�

�

�

�

�

��*

VH

l

3

l

4

l

7

e

�

�

�

�

�

�

e

B

B

B

B

B

B

l

5

l

6

-

VH

Figure 4.16:

d

nTs(t)

118 Chapter 4. Context-free Text Grammars

�

��

7

�

��

6

�

VH

�

��

2

�

��

3

-

VH

�

��

1

�

��

5

�

��

4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�:

VH

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

VH

?

VH

?

VH

?

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

VH

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AU

VH

�

�

�

�

�

�

�

�

�

�
��

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�3

VH

A

A

A

A

A

A

A

A

A

A
AU

VH

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Qs

VH

@

@

@

@

@R

VH

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	

VH

�

�

�

�

�	

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

VH

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BN

VH

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@R

VH

Figure 4.17: nTs(�)

subst(�; x; �

0

) is the bi-order represented by the bi-ordered tree with two inner nodes such that

the root is labeled by � and the inner node x is labeled by �

0

. This implies that substitution

of bi-orders is compatible with that of nTs's (by Remark 4.1.10, this compatibility amounts to

a special case of Lemma 4.2.11). However we still give a proof of Lemma 4.2.13 just to show

explicitly the relationship between the nTs induced by the substitution and the substitution

of nTs's.

Lemma 4.2.13 Let � and �

0

be bi-orders with disjoint domains, and let x an element of the

domain of �. Then nTs(subst(�; x; �

0

)) = subst(nTs(�); x;nTs(�

0

)).

Proof. Let nTs(subst(�; x; �

0

)) = (D

1

; �

1

;�

VH

), let nTs(�) = (D; �;�

VH

), let nTs(�

0

) =

(D

0

; �

0

;�

VH

), and let subst(nTs(�); x;nTs(�

0

)) = (D

2

; �

2

;�

VH

). Clearly, D

1

= D

2

. By De�-

nition 4.2.4, and by the above de�nition of substitution for bi-orders, for (y; z) 2 E

2

(D

1

),

�

1

(y; z) =

8

>

>

>

<

>

>

>

:

�(y; z) if y; z 2 D � fxg

�

0

(y; z) if y; z 2 D

0

�(y; x) if y 2 D � fxg, z 2 D

0

�(x; z) if y 2 D

0

, z 2 D � fxg

It follows immediately from the de�nition of substitution for `2s's that �

2

= �

1

. 2

4.2. Bi-orders and texts 119

s

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

B

�

- -

l

1

l

2

l

4

s

-

�

�

�

�

�

A

A

A

A

l

5

l

6

l

7

Figure 4.18: substitution of �

0

into � at 3

l

4

l

3

�

VH

l

1

l

2

-

VH

?

VH

?

VH

�

�

�

�

�

�

�

�	

VH

@

@

@

@

@

@

@

@R

VH

l

5

l

6

l

7

-

VH

S

S

S

Sw

VH

�

�

�

�/

VH

l

4

l

7

�

VH

l

2

l

5

-

VH

l

1

l

6

-

VH

?

VH

?

VH

�

�

�

�

�

�

�

�	

VH

@

@

@

@

@

@

@

@R

VH

�

�

�

��

VH

�

�

�

�

�

�

�

�

�

�

�

�1

VH

@

@

@

@R

VH

P

P

P

P

P

P

P

P

P

P

P

Pq

VH

@

@

@

@R

VH

P

P

P

P

P

P

P

P

P

P

P

Pq

VH

�

�

�

�	

VH

�

�

�

�

�

�

�

�

�

�

�

�)

VH

Figure 4.19: nTs(�), nTs(�

0

), nTs(subst(�; 3; �

0

))

Example 4.2.14 Let � be the bi-order ((1; 2; 3; 4); (4; 1; 2; 3)), and let �

0

be the bi-order

(5; 6; 7); (5; 7; 6)). Then subst(�; 3; �

0

) = ((1; 2; 5; 6; 7; 4); (4; 1; 2; 5; 7; 6)); it is represented by

the bi-ordered tree with two inner nodes given in Figure 4.18.

nTs(�), nTs(�

0

), and nTs(subst(�; 3; �

0

)) are given in Figure 4.19.

Hence indeed nTs(subst(�; 3; �

0

)) = subst(nTs(�); 3;nTs(�

0

)). 2

By Lemma 4.2.11, notions and results concerning the `2s-labeled tree representation of

nTs's carry over to the representation of bi-orders by bi-ordered trees. We sum up now some

of the so transferred notions.

A bi-ordered tree t is locally special if for each v 2 in(t), (VO

t

(v);HO

t

(v)) is primitive or

sequential; t is locally sequential if for each v 2 in(t), (VO

t

(v);HO

t

(v)) is sequential; t is locally

primitive if for each v 2 in(t), (VO

t

(v);HO

t

(v)) is primitive. For each chain-free locally special

bi-ordered tree t, one can de�ne a relation �

t

on in(t) such that for all u; v 2 in(t), u �

t

v if

u 2 ddes

t

(v) and either VO

t

(u) = HO

t

(u) and VO

t

(v) = HO

t

(v) or VO

t

(u) = rev (HO

t

(u))

and VO

t

(v) = rev(HO

t

(v)).

The shape of a bi-order � is a bi-ordered tree representing � that is chain-free, locally

special, and \disjoint" (no nodes of t are in the relation �

t

).

A re�nement of a bi-ordered tree t is a bi-ordered tree obtained from t by replacing each

inner node v of t by a bi-ordered tree representing (VO

t

(v);HO

t

(v)). Each locally special

120 Chapter 4. Context-free Text Grammars

bi-ordered tree t representing a bi-order � is a re�nement of shape(�), where each inner node

of the shape is replaced by a subtree corresponding to an equivalence class of �

�

t

.

4.2.2 T-functions and texts

A word over an alphabet � is usually de�ned as a sequence over �, i.e., a function on the

ordered domain (1; 2; : : : ; n), where n is the length of the word. Formally speaking, in this

way a word is an ordered pair (�; �), where � is a linear order, and � is a function from dom(�)

into �.

We introduce now the notion of a text which in this spirit can be seen as a common

generalization of a word and of a bi-order.

De�nition 4.2.15 A text is a 3-tuple � = (�; �

1

; �

2

), where � is a �nite function, and �

1

and

�

2

are linear orders on dom(�).

Hence a text is a function on a bi-ordered domain, or alternatively, a word with an addi-

tional order on its domain.

For a text � = (�; �

1

; �

2

), we use fun

�

, VO(�), HO(�) and dom(�) to denote � , �

1

, �

2

,

and dom(�) respectively. In those abbreviations VO stands for \the visible order" and HO

stands for \the hidden order". This corresponds to the basic intuition behind the notion of a

text (�; �

1

; �

2

) which consists of the word (�; �

1

) { which is the visible (or surface) structure

{ and the syntactic structure (or deep structure) of this word given by �

2

; �

2

is simply coding

the shape of the text.

Let � be a text. The length of � , denoted by j� j, equals #dom(�). The text-word of � ,

denoted word(�), is the word fun

�

(VO(�)), where fun

�

is extended to linear orders in the

natural way. We say that � is a text over �, where � is an alphabet, if word(�) 2 �

+

.

If �

0

is a text such that dom(�

0

) � dom(�), and fun

�

0

, VO(�

0

), and HO (�

0

) are the restric-

tions of fun

�

, VO(�), and HO(�) to dom(�

0

), then �

0

is a subtext of � .

In what follows, notions and results concerning texts may be obtained by viewing texts as

generalizations of words.

Of course, notions and results concerning bi-orders can (and will) be translated to texts.

E.g., the shape of a text � = (�; �

1

; �

2

), denoted by shape(�), is the shape of the bi-order

(�

1

; �

2

) where additionally the leaves are labeled by the function �.

Through the correspondence between bi-orders and nTs's, a text corresponds to a nTs the

nodes of which are additionally given values by �, hence they are labeled by �. This leads us

to the notion of a T-function.

De�nition 4.2.16

(1) A T-function is a pair (�; g), where � is a function, and g is a `Ts such that dom(g) =

dom(�).

(2) For a text � , the T-function of � is the T-function (�; g) where � = fun

�

and g =

nTs((VO(�);HO(�))).

Often in considering texts, we are dealing with the underlying nTs of the T-function of a

text rather than with the T-function itself; we call this nTs the structure of the text, i.e., for

4.2. Bi-orders and texts 121

a text � , the structure of � is the nTs nTs((VO(�);HO(�)). Through this connection we can

transfer back and forth the notions and notations concerning texts and nTs's. In particular,

also in this way we can de�ne the shape of � (viz. the shape of the structure of � together

with a labeling of its leaves).

Example 4.2.17 Let � = (�; (1; 6; 3; 4; 2; 5); (2; 4; 6; 3; 5; 1)), where �(1; 6; 3; 4; 2; 5) = aabaab.

Then shape(�) is as in Figure 4.20.

The T-function of � is given in Figure 4.21. 2

s

�

�

�

�

A

A

A

A

A

�

l

1

a

s

�

�

�

�

�

A

A

A

A

-

l

5

b

s

��

�

�

�

�

�

A

A

A

A

l

4

a

l

2

a

s

�

�

�

�

A

A

A

A

-

l

6

a

l

3

b

Figure 4.20: shape(�)

�

��

6

a

�

��

5

b

-

VH

�

��

2

a

�

��

3

a

�

VH

�

��

1

a

�

��

4

a

-

VH

6

VH

?

VH

�

�

�

�

�

�

�

�

�

�

��

VH

@

@

@

@

@

@

@

@

@

@

@R

VH

�

�

�

�

��

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�1

VH

@

@

@

@

@R

VH

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

VH

@

@

@

@

@R

VH

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pi

VH

�

�

�

�

�	

VH

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�1

VH

Figure 4.21: the T-function of � = (�; (1; 6; 3; 4; 2; 5); (2; 4; 6; 3; 5; 1))

Recall that the nodes of the shape of a text are sequential or primitive. If the shape contains

only sequential nodes (i.e., it is locally sequential), then, since the shape is disjoint, on each

122 Chapter 4. Context-free Text Grammars

path in the shape the nodes are alternately forward and backward sequential. Accordingly,

such texts, i.e., texts of which the shape is locally sequential, are called alternating.

A singleton text is a text � with j� j = 1. Hence (see Preliminaries) for a singleton text

�;VO(�) = HO (�) = (x), where dom(�) = fxg.

Note that a text is primitive and sequential i� it is either a singleton text or a text of

length 2. To distinguish primitive texts that are not sequential from texts of length 1 or 2, we

refer to them as strictly primitive texts.

Two texts � and �

0

are isomorphic if there is a bijection � : dom(�)! dom(�

0

) such that

�

0

= �(�), i.e., fun

�

0

= fun

�

� �

�1

, VO(�

0

) = �(VO(�)), and HO(�

0

) = �(HO(�)), where � is

extended to linear orders. Hence, two texts are isomorphic i� they have the same text-word

and their structures are isomorphic.

A standard text is a text � such that VO(�) = (1; : : : ; j� j). Clearly, each text is isomorphic

with a standard text.

In this paper we consider abstract texts, that is, isomorphism classes of texts. Hence, texts

are considered to be equal if they are isomorphic. In most cases we will use standard texts

as concrete representatives of abstract texts. Accordingly, we sometimes specify an abstract

text as an ordered pair (w;�), where w is a word of length n and � is a linear order on

f1; : : : ; ng; (w;�) denotes the isomorphism class of the standard text � with word(�) = w,

VO(�) = (1; : : : ; n), and HO(�) = �.

An abstract singleton text � is uniquely determined by its single letter; the singleton text

determined by the letter A is denoted by st(A).

Recall that bi-ordered trees that di�er only in the identity of the inner nodes are iden-

ti�ed. Hence, for a bi-ordered tree representing a text � , the inner nodes are de�ned up to

isomorphism while the leaves are the elements of dom(�). For a bi-ordered tree representing

an abstract text also the leaves are considered modulo isomorphism. Substitution of bi-orders

carries over to substitution of texts in the obvious way. Formally, for texts � = (�; �; �) and

�

0

= (�

0

; �

0

; �

0

) with disjoint domains, and for x 2 dom(�), the substitution of �

0

into � at x,

denoted by subst (�; x; �

0

), is the text (�j

dom(�)�fxg

[�

0

; �

<x

+ �

0

+ �

>x

; �

<x

+ �

0

+ �

>x

). Note

that this is also generalizing the \substitution" of a word w

0

into a word w at occurrence x.

Since we consider texts modulo isomorphism, this de�nition can be extended to texts that

are not disjoint, by just taking disjoint isomorphic copies.

Example 4.2.18 Let �

1

= (�

1

; (1; 2; 3; 4; 5; 6); (1; 3; 4; 2; 5; 6)), where �

1

(1) = �

1

(4) = �

1

(5) =

a, �

1

(2) = �

1

(6) = b, and �

1

(3) = c, and let �

2

= (�

2

; (1; 2; 3; 4); (4; 1; 3; 2)), where �

2

(1) =

�

2

(2) = c, and �

2

(3) = �

2

(4) = b. We construct subst(�

1

; 4; �

2

) by taking an isomorphic copy of

�

1

with domain f1; 2; 3; x; 8; 9g, and an isomorphic copy of �

2

with domain f4; 5; 6; 7g. Then for

� = subst (�

0

1

; x; �

0

2

), we have that VO(�) = (1; 2; 3; 4; 5; 6; 7; 8; 9), HO(�) = (1; 3; 7; 4; 6; 5; 2; 8; 9),

and fun

�

is such that word(�) = abcccbbab.

If we construct subst(�

2

; 2; �

1

) in a similar way, then we obtain the standard text �

0

such

that VO(�

0

) = (1; 2; 3; 4; 5; 6; 7; 8; 9), HO(�

0

) = (9; 1; 8; 2; 4; 5; 3; 6; 7), and fun

�

0

is such that

word(�

0

) = cabcaabbb. 2

By transforming texts into their T-functions, one might consider substitution of texts as

substitution of T-functions (which comes from the substitution of nTs's in the obvious way).

The compatibility of these two ways of substituting is guaranteed by Lemma 4.2.13.

4.3. Context-free text grammars 123

We would like to conclude this section by pointing out that the theory of texts can be seen

as a theory of permutations on labeled domains. Since each text is isomorphic with a standard

text, we may assume that for a text � = (�; �

1

; �

2

) of length n we have �

1

= (1; : : : ; n) and

consequently �

2

may be seen as a permutation on f1; : : : ; ng; this point of view is taken in

[11].

4.3 Context-free text grammars

In this section, we will introduce grammars that generate texts in a context-free way: this is

done by generalizing context-free string grammars.

De�nition 4.3.1 A context-free text grammar, abbreviated cft grammar, is a 4-tuple

(�;�;�; S), where � and � are alphabets such that � � �, � is a �nite set of ordered

pairs of the form (A; �), where A 2 � �� and � is a text over �, and S is a singleton text

over ���.

Let G = (�;�;�; S) be a cft grammar.

An element (A; �) of � is called a text-production; in the sequel we write A! � instead of

(A; �). The letters of � are called terminal letters, the letters of ��� are called nonterminal,

S is called the axiom of G, and � is denoted by prod(G); maxrh(G) denotes maxf j� j j A!

� 2 � for some A 2 ���g.

Let � and �

0

be texts over �. � directly derives �

0

(in G), denoted �)

G

�

0

, if there is

a production A ! � 2 � and x 2 dom(�) with fun

�

(x) = A such that �

0

= subst (�; x; �).

The re
exive and transitive closure of)

G

is denoted by)

�

G

; if �)

�

G

�

0

, then we say that

� derives �

0

(in G). We write) and)

�

rather than)

G

and)

�

G

whenever the grammar

G is clear from the context. For a text � over �, a derivation of � is a sequence of texts

(�

0

; �

1

; : : : ; �

n

) such that �

0

= S, �

n

= � , and �

i

) �

i+1

for i = 0; : : : ; n � 1. A derivation of a

text � is successful if � is a text over �.

For a cft grammarG = (�;�;�; S), TxL(G) denotes the text language generated by G, i.e.,

TxL(G) = f� over � j S)

�

G

�g. In general, by a text language (over �) we mean a family of

abstract texts (over �), where � is some alphabet. A text language K is a context-free text

language (abbreviated cft language) if there exists a cft grammar G such that K = TxL(G).

If we \project" texts onto their text-words, we obtain the corresponding notions for string

languages. For a text-production � = A ! � , the corresponding string-production A !

word(�) is denoted by word(�). The cf (string) grammar (�;�;word(�);word(S)), where

word(�) = fword(�) j � 2 �g, is denoted by word(G). The string language generated by

G, denoted by WL(G), is the language L(word(G)), which is the same as word(TxL(G)) =

fword(�) j � 2 TxL(G)g.

Example 4.3.2

(1) Let G = (�;�;�; st(S)) be the cft grammar such that � = fS;A;Bg, � = fa; bg,

and � consists of the productions S ! (AB; (1; 2)), A ! (aA; (2; 1)), A ! (a; (1)), B !

(bBb; (3; 2; 1)), B ! (b; (1)).

124 Chapter 4. Context-free Text Grammars

Then � = (aaabbb; (3; 2; 1; 6; 5; 4)) 2 TxL(G), and a derivation of � in G is (st(S),

(AB; (1; 2)), (aAB; (2; 1; 3)), (aaAB; (3; 2; 1; 4)), (aaaB; (3; 2; 1; 4)), (aaabBb; (3; 2; 1; 6; 5; 4)),

(aaabbb; (3; 2; 1; 6; 5; 4))). E.g., (aAB; (2; 1; 3)))

G

(aaAB; (3; 2; 1; 4)) by application of the

production A! (aA; (2; 1)), since (aaAB; (3; 2; 1; 4)) = subst((aAB; (2; 1; 3)); 2; (aA; (2; 1))).

It is easy to verify that

TxL(G) = f(a

m

b

2n + 1

; (m;m� 1; : : : ; 1;m+ 2n + 1;m+ 2n; : : : ;m+ 1)) j m � 1; n � 0g:

(2) Let G = (fS;A; a; b; cg; fa; b; cg;�; st(S)) be the cft grammar such that � consists of the

following productions: S ! (ASc; (1; 2; 3)), S ! (ab; (2; 1)), A! (ab; (2; 1)).

Then TxL(G) = f((ab)

n+1

c

n

; �

n

) j n � 0g, where �

0

= (2; 1), and for n � 1, �

n

=

(2; 1; 4; 3; : : : ; 2n+ 2; 2n + 1; 2n + 3; : : : ; 3n + 2). 2

In the case of a cf string grammar, we associate with a derivation of a word its derivation

tree, which is a node-labeled ordered tree yielding the derived word. For texts, we will use

a node-labeled bi-ordered tree as the derivation tree of a context-free derivation, where this

bi-ordered tree \yields" (i.e., represents) the generated text. We give now a formal description

of such a derivation tree.

Let t be a node-labeled bi-ordered tree, i.e., t = (D;T; �; #; �), where (D;T; �; #) is a

bi-ordered tree, and � is a function on nd(t), which is denoted by lb

t

. For each node

v 2 in(t), the text-production associated to v, denoted by prod

t

(v), is the text production

lb

t

(v)! (�

t

;VO

t

(v);HO

t

(v)), where �

t

is the labeling function lb

t

of t restricted to the direct

descendants of v. We use prod(t) to denote the set fprod

t

(v) j v 2 in(t)g.

Let G = (�;�;�; S) be a cft grammar.

For a text � over �, a node-labeled bi-ordered tree t is a derivation tree of � (in G) if

lb

t

j

leaf (t)

= fun

�

, VO(t) = VO(�), HO(t) = HO(�), prod(t) � �, and lb

t

(root(t)) = word(S).

A derivation tree of � (in G) is successful if � is a text over �.

Note that a derivation tree is de�ned here as a concrete tree for a concrete text. However,

isomorphic (as to the identity of nodes) derivation trees yield isomorphic texts. Consequently,

from now on we will not distinguish between derivation trees that only di�er in the identity

of their nodes.

Now with each derivation D in G of a text � we can associate a derivation tree t of � in G

by the usual inductive construction.

If D = (S), then t is the node-labeled tree with one node v, and lb

t

(v) = word(S).

Let D = (S = �

0

; �

1

; : : : ; �

n

= �), for n � 1, and let t

0

be the derivation tree of �

n�1

associated with the derivation (S = �

0

; �

1

; : : : ; �

n�1

). Let � = A ! �

0

be the production

that is applied in the last step of D, i.e., � = subst (�

n�1

; x; �

0

), where x 2 dom(�

n�1

) is such

that fun

�

n�1

(x) = A. Now t is constructed from t

0

as follows: add the nodes in dom(�

0

) as

direct descendants of x, and de�ne lb

t

= lb

t

0

[fun

�

0

, VO

t

j

in(t

0

)

= VO

t

0

, VO

t

(x) = VO(�

0

),

HO

t

j

in(t

0

)

= HO

t

0

, HO

t

(x) = HO(�

0

). Then t is a derivation tree of � (note that prod

t

(x) = �).

Example 4.3.3 Consider the cft grammar G = (fS;A;B; a; b; cg; fa; b; cg;�; st(S)), where

� consists of the productions S ! (AaBb; (2; 4; 1; 3)), A ! (Aa; (1; 2)), A ! (ac; (2; 1)),

B ! (bBc; (3; 1; 2)), B ! (b; (1)).

4.3. Context-free text grammars 125

A

s

�

�

�

�

A

A

A

A

l

1

a

l

2

c

�

A

s

�

�

�

�

�

A

A

A

A

l

3

c

-

A

s

�

�

�

�

�

A

A

A

A

l

4

c

-

S

s

�

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

B

-

�

-

l

5

a

l

9

b

B

s

�

-

�

�

�

�

A

A

A

A

l

6

b

l

8

c

B

s

l

7

b

Figure 4.22: derivation tree of �

Consider the following successful derivation in G: (st(S) = (S; (1)); (AaBb; (2; 4; 1; 3)),

(AaaBb; (3; 5; 1; 2; 4)), (AaabBcb; (3; 7; 1; 2; 6; 4; 5)), (AaaabBcb; (4; 8; 1; 2; 3; 7; 5; 6)),

(Aaaabbcb; (4; 8; 1; 2; 3; 7; 5; 6)), (acaaabbcb; (5; 9; 2; 1; 3; 4; 8; 6; 7)) = �).

The derivation tree of � that corresponds with this derivation is given in Figure 4.22. 2

Given a derivation tree t of � , we can associate with t a derivation D of � as follows: if

(v

1

; : : : ; v

n

) is the order of in(t) induced by a preorder traversal of t, then D = (�

0

; �

1

; : : : ; �

n

)

where �

0

= S, and �

i

) �

i+1

by application of prod

t

(v

i+1

). This way of associating a derivation

with a derivation tree is based on a particular (viz. the preorder) traversal of nodes of a tree.

Clearly, taking any other �xed traversal of nodes will give a di�erent way of associating a

derivation with a derivation tree.

Example 4.3.4 Let G be the cft grammar from Example 4.3.3. Consider the derivation tree

t in G in Figure 4.23.

The derivation associated with t as above is (st(S),(AaBb; (2; 4; 1; 3)),(AaaBb; (3; 5; 1; 2; 4)),

(acaaBb; (4; 6; 2; 1; 3; 5)),(acaabBcb; (4; 8; 2; 1; 3; 7; 5; 6)),(acaabbBccb; (4; 10; 2; 1; 3; 9; 5; 8; 6; 7)),

(acaabbbccb; (4; 10; 2; 1; 3; 9; 5; 8; 6; 7))).

Also the following derivation corresponds to the same derivation tree t:

(st(S),(AaBb; (2; 4; 1; 3)),(AabBcb; (2; 6; 1; 5; 3; 4)),(AaabBcb; (3; 7; 1; 2; 6; 4; 5)),(AaabbBccb;

(3; 9; 1; 2; 8; 4; 7; 5; 6)),(Aaabbbccb; (3; 9; 1; 2; 8; 4; 7; 5; 6)),(acaabbbccb; (4; 10; 2; 1; 3; 9; 5; 8; 6; 7))).

2

Let t be a derivation tree of a text � in some cft grammar G. The leaf-labeled bi-ordered

tree that results from t by deleting the nonterminal labels (i.e. labels assigned by lb

t

) from

the inner nodes is denoted by di(t). The following theorem is an immediate consequence of

the de�nition of a derivation tree.

126 Chapter 4. Context-free Text Grammars

A

s

�

�

�

�

A

A

A

A

l

1

a

l

2

c

�

A

s

�

�

�

�

�

A

A

A

A

l

3

c

-

S

s

�

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

B

-

�

-

l

4

a

l

10

b

B

s

�

-

�

�

�

�

A

A

A

A

l

5

b

l

9

c

B

s

�

-

�

�

�

�

A

A

A

A

l

6

b

l

8

c

B

s

l

7

b

Figure 4.23: derivation tree t

Theorem 4.3.5 For each derivation tree of a text � , di(t) represents � .

By Theorem 4.3.5, the diagram in Figure 4.24 commutes.

The following corollary of Theorem 4.3.5 is a consequence of the fact that the contributions

of a bi-ordered tree are clans of the bi-order it represents (cf. Lemma 4.1.6).

Corollary 4.3.6 Let t be a derivation tree of a text � . For each v 2 in(t), contr

t

(v) is a clan

of � .

Example 4.3.7 Consider the grammar G from Example 4.3.3 and the derivation tree of � in

Figure 4.23. f1; 2; 3g and f5; 6; 7; 8; 9g are clans of � . 2

Example 4.3.8 Let G = (fS; a; bg; fa; bg;�; st(S)) be the cft grammar such that � con-

sists of the productions S ! (SS; (1; 2)), S ! (SS; (2; 1)), S ! (a; (1)), S ! (b; (1)).

Then TxL(G) = f� j word(�) 2 fa; bg

�

; � alternating g. This is seen as follows. By Theo-

rem 4.3.5, G generates texts with a locally sequential hierarchical representation. It follows

that TxL(G) � f� j word(�) 2 fa; bg

�

; � alternating g. Now consider an alternating text �

with word(�) 2 fa; bg

�

. It is possible (see also Section 4.5, Example 4.5.1) to re�ne the shape

of � into a locally sequential bi-ordered tree representing � such that each inner node has at

most two direct descendants. By labeling each inner node with S, we obtain a derivation tree

of � in G. This proves that TxL(G) � f� j word(�) 2 fa; bg

�

; � alternating g. 2

Remark 4.3.9 Turning from texts to T-functions, we obtain from a cft grammar a kind of

graph grammar (see, e.g., [17]), which generates T-functions of texts. One step in the deriva-

tion of a T-function in such a grammar is given by the substitution of T-functions. Clearly, by

the compatibility of the substitution operations, see Lemma 4.2.13, a text is generated by a cft

grammar i� its T-function is generated by the corresponding graph grammar. Thus from the

4.4. Traditional normal forms 127

derivation tree

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

derivation

st(S)) � � �) �

S

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

represents

�

6

?

-

di ()

-

Figure 4.24: di(t) represents �

point of view of graph grammars we get here a rather interesting situation. Since T-functions

(which are node-labeled oriented graphs of a certain kind) have a \linear notation" in the

form of a text one can reduce the problem of the generation of T-functions to the problem of

the generation of texts. More speci�cally, the rewriting of texts by context-free productions is

equivalent to the rewriting of T-functions by NLC-like grammars where the right-hand sides of

productions are also T-functions and the connection relation is total. Clearly, the above com-

ments only indicate the connection between context-free text grammars and graph grammars;

this relationship certainly deserves an in-depth investigation. 2

Let G

1

and G

2

be cft grammars. G

1

and G

2

are equivalent if they generate the same text

language; they are 1-equivalent if they generate the same text language modulo singletons,

i.e., if f� 2 TxL(G

1

) j j� j > 1g = f� 2 TxL(G

2

) j j� j > 1g.

4.4 Traditional normal forms

In this section we investigate the existence of a number of \traditional" (i.e., traditionally

considered in formal language theory, cf. [28]) normal forms for cft grammars, such as chain-

128 Chapter 4. Context-free Text Grammars

free, Chomsky, and Greibach normal form. We prove that chain-freeness is a normal form for

cft grammars, while Chomsky and Greibach form of grammars is not a normal form for cft

grammars. We would like to stress here that our proofs of the non-existence of the Chomsky

and Greibach normal form are based on the properties of shapes of texts.

Let G = (�;�;�; S) be a cft grammar. A production A! � 2 � with � a singleton text

is called a chain-production. A cft grammar that has no chain-productions is called chain-free.

Lemma 4.4.1 Each cft grammar has a 1-equivalent chain-free grammar.

Proof. The proof is a standard construction. Let G = (�;�;�; S) be a cft grammar. De�ne

for each A 2 � � �, Z

A

= fC 2 � � � j st(A))

�

st(C)g, and �

A

= fA ! (w;�) j C !

(w;�) 2 �; C 2 Z

A

; jwj � 2g. Let G

0

be the grammar (�;�;�

0

; S), where �

0

=

S

A2���

�

A

.

Clearly, G

0

is equivalent to G, and G

0

has no chain-productions of the form A ! st(B) with

A;B 2 ���.

Now de�ne for each A 2 �, Y

A

= fa 2 � j A! st(a) 2 �

0

g. Let ' be the substitution on

�

�

such that for each A 2 �, '(A) = Y

A

[fAg.

Let G

00

be the grammar (�;�;�

00

; S), where �

00

= fC ! (v; �) j C ! (w;�) 2 �

0

; jwj >

2; v 2 '(w)g. Then G

00

is 1-equivalent to G

0

(and hence to G), and G

00

is chain-free. 2

Let K be a text language. A text � is a subtext of K if it is a subtext of an element of K.

The set of primitive subtexts of K is denoted by prims(K). The set of sequential subtexts of

K is denoted by seqs(K); by Lemma 4.2.8, seqs(K) is precisely the subclass of those subtexts

of K that are linear.

Lemma 4.4.2 Let G = (�;�;�; S) be a cft grammar. Then for each � 2 prims(TxL(G)),

j� j � maxrh(G).

Proof. Let �

0

2 TxL(G) and let � be a primitive subtext of �

0

. Let t be a derivation tree of �

0

in G. By Theorem 4.3.5, di(t) represents �

0

. Hence, by Proposition 4.1.11, and Lemma 4.2.11,

there exists v 2 in(t) such that the structure of � , i.e., nTs(VO(�);HO(�)), is isomorphic to

a substructure of nTs(VO

t

(v);HO

t

(v)). It follows that j� j � #ddes

t

(v).

Hence for each � 2 prims(TxL(G)); j� j � maxrh(G). 2

As an immediate consequence of Lemma 4.4.2 we have the following result.

Theorem 4.4.3 For each cft language K, prims(K) is �nite.

Note that Theorem 4.4.3 is sharp: for any �nite set F of primitive texts there exists a

�nite cft language K such that F � prims(K).

For sequential subtexts we do not have a result similar to Theorem 4.4.3. This is related to

the fact that Proposition 4.1.11 does not hold for linear substructures (see Example 4.1.13).

We prove now that any text language with �nitely many sequential subtexts is �nite. For this

we use the Theorem of Ramsey (see, e.g., [22]) in the following form:

Proposition 4.4.4 (Ramsey) Let k; n

0

2 N

+

. There exists a constant r(k; n

0

) 2 N

+

such

that if D is a set with #D � r(k; n

0

) and fP

1

; : : : ; P

k

g is a partition of S

2

(D), then there

exists X � D such that #X � n

0

and S

2

(X) � P

i

for some 1 � i � k.

Theorem 4.4.5 Let K be an arbitrary text language. If seqs(K) is �nite, then K is �nite.

4.4. Traditional normal forms 129

Proof. Assume to the contrary that there exists a text language K such that seqs(K) is �nite

and K is in�nite. Let M

0

= maxfj� j j � 2 seqs(K)g. Let � 2 K be such that j� j � r(2;M

0

).

We divide S

2

(dom(�)) in P

1

and P

2

as follows. P

1

= ffx; yg 2 S

2

(dom(�)) j (x; y) 2 VO(�)

i� (x; y) 2 HO(�)g, P

2

= ffx; yg 2 S

2

(dom(�)) j (x; y) 2 VO(�) i� (x; y) 2 rev(HO (�))g.

Hence, fx; yg 2 P

1

i� (x; y) is labeled VH or VH in the structure of � , and fx; yg 2 P

2

i�

(x; y) is labeled VH or VH in the structure of � .

By the Theorem of Ramsey, there exists X � dom(�) such that #X � M

0

, and either

S

2

(X) � P

1

or S

2

(X) � P

2

.

Consider now � j

X

. Then either VO(� j

X

) = HO (� j

X

), if S

2

(X) � P

1

, or VO(� j

X

) =

rev(HO (� j

X

)), if S

2

(X) � P

2

. Hence � j

X

is sequential, while #X �M

0

; a contradiction. 2

A cft grammar G is in Chomsky (Greibach) form if the corresponding cf string grammar

word(G) is in Chomsky (Greibach) normal form. Neither Chomsky form nor Greibach form

are normal forms for cft grammars, as we will show now.

Theorem 4.4.6 There exists a cft language K such that no cft grammar generating K is in

Chomsky form.

Proof. Let G be a cft grammar in Chomsky form. By Lemma 4.4.2, for each � 2

prims(TxL(G)), j� j � maxrh(G) � 2. But obviously there are cft languages that contain

strictly primitive texts. Hence these languages can not be generated by a cft grammar in

Chomsky form. 2

Example 4.4.7 Let G be the following cft grammar: G = (fA; ag; fag; fA ! (A

5

;

(2; 5; 3; 1; 4)); A ! (a; (1))g; st(A)g. Then, for every context-free text grammar G

0

equiva-

lent with G, maxrh(G

0

) � 5. Hence there is no cft grammar in Chomsky form that generates

TxL(G). 2

Lemma 4.4.8 If G is a cft grammar in Chomsky form, then TxL(G) consists of alternating

texts.

Proof. Let G be a cft grammar in Chomsky form. Let � 2 TxL(G), and let t be a derivation

tree of � in G. Then t is a locally sequential bi-ordered tree representing � . By Lemma 4.1.19,

t is a re�nement of shape(�). Hence shape(�) is locally sequential, and consequently, � is

alternating. 2

Example 4.4.9

(1) The cft grammar G from Example 4.3.7(2), which generates the language of all alternating

texts over fa; bg, is in Chomsky form.

(2) Let G = (fS;A; a; bg; fa; bg;�; st(S)), where � = fS ! (AS; (1; 2)); S ! (AS; (2; 1));

S ! (b; (1)); A ! (a; (1))g. Then, e.g., �

0

= (aaaab; (1; 2; 5; 4; 3)) 2 TxL(G). The node-

labeled bi-ordered tree of Figure 4.25 is a derivation tree of �

0

in G.

The shape of �

0

is given in Figure 4.26.

As a matter of fact, for � 2 TxL(G), shape(�) is as in Figure 4.27. 2

Lemma 4.4.10 Let G be a cft grammar in Greibach form. There exists a constant C

0

such

that for each � 2 TxL(G) there is a partition P of dom(�) into clans of � with fVO(�)(1)g 2 P

and #P � C

0

.

130 Chapter 4. Context-free Text Grammars

S

s

�

�

�

�

�

@

@

@

@

@

-

A

s

l

1

a

S

s

�

�

�

�

�

@

@

@

@

@

-

A

s

l

2

a

S

s

�

�

�

�

�

@

@

@

@

@

�

A

s

l

3

a

S

s

�

�

�

�

�

A

A

A

A

A

�

A

s

l

4

a

S

s

l

5

b

Figure 4.25: derivation tree of �

0

s

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

- -

l

1

a

l

2

a

s

�

�

�

�

@

@

@

@

��

l

3

a

l

4

a

l

5

b

Figure 4.26: shape(�

0

)

Proof. Take C

0

= maxrh(G). Let � 2 K, and let t be a derivation tree of � . Let v

1

; : : : ; v

s

be the direct descendants of the root of t, and let X

i

= contr

t

(v

i

) for i = 1; : : : ; s. By

Corollary 4.3.6, X

1

; : : : ;X

s

is a partition of dom(�) into clans of � , and, clearly, s � C

0

.

Furthermore, since G is in Greibach form, X

j

= fVO(�)(1)g where v

j

is the �rst node in

VO

t

(root(t)). 2

Theorem 4.4.11 There exists a cft language K such that no cft grammar generating K is in

Greibach form.

Proof. Consider the cft grammar G, with G = (fA;B; a; bg; fa; bg;�; st(A)), with � = fA!

(Ba; (1; 2)); B ! (Aa; (2; 1)); A ! (bb; (1; 2)); B ! (bb; (2; 1))g. We will show that K is not

generated by a grammar in Greibach form by proving that there is not a C

0

as in the statement

of Lemma 4.4.10.

4.4. Traditional normal forms 131

s

�

�

�

�

%

%

%

%

e

e

e

e

@

@

@

@

@

-

aaa � � � � � � � � � a

s

�

�

�

�

%

%

%

%

e

e

e

e

@

@

@

@

@

�

aaa � � � � � � � � � a

s

�

�

�

�

%

%

%

%

e

e

e

e

@

@

@

@

@

�

�

�

�

-

aaa � � � � � � � � � a

s

�

�

�

�

%

%

%

%

e

e

e

e

@

@

@

@

�

aaa
� � � � � � � � �

a

b

Figure 4.27: shape(�)

Assume to the contrary that there exists C

0

meeting the conditions of Lemma 4.4.10. Let

� 2 TxL(G) be such that j� j > C

0

(note that such a � exists), and let t be a derivation tree

of � in G. As usual, we assume that � is standard. It should be clear that di(t) is chain-free,

locally special, and disjoint, which implies that di(t) = shape(�).

E.g., the derivation tree of (bbaaa; (4; 2; 1; 3; 5)) 2 TxL(G) is given in Figure 4.28.

By the form of t, it follows that the non-trivial prime clans of � are ff1; : : : ; ig j i =

2; : : : ; j� jg.

A

s

�

�

�

�

�

A

A

A

A

-

l

5

a

B

s

�

�

�

�

�

A

A

A

A

�

l

4

a

A

s

�

�

�

�

�

A

A

A

A

-

l

3

a

B

s

�

�

�

�

A

A

A

A

�

l

1

b

l

2

b

Figure 4.28: derivation tree of (bbaaa; (4; 2; 1; 3; 5))

132 Chapter 4. Context-free Text Grammars

Now let P be a partition of dom(�) into clans of � such that f1g 2 P . Let Z be a clan

in P , Z 6= f1g. Let j = min(Z). Then Z and the prime clan f1; : : : ; jg are overlapping

unless Z = fjg. Hence P = ffxg j x 2 dom(�)g. But then #P > C

0

, which contradicts the

assumption.

Hence there is no cft grammar in Greibach form that generates TxL(G). 2

4.5 The primitive normal form

It is quite natural to consider primitive bi-orders as the basic building blocks for bi-orders.

Given a shape of a bi-order �, all its nodes are either primitive or sequential { if we re�ne

the sequential nodes by using only sequential nodes with two direct descendants, then we

obtain a representation (hence a \construction tree") for � with primitive nodes only. In

this section we prove that such representation trees (consisting of primitive nodes only) are

grammatical in the sense that each cft language can be generated by a cft grammar where

each production A! � is such that � is primitive. This allows us to prove the following result

(see Theorem 4.5.6) which is the converse of Lemma 4.4.8: each context-free text language

that consists of alternating texts is generated by a grammar in Chomsky form.

To start with, we consider a restricted kind of re�nement of bi-ordered trees. Let t be a

bi-ordered tree, and consider a re�nement t

0

of t. Then t

0

is a primitive re�nement of t if t

0

is

a locally primitive bi-ordered tree. Thus, by Lemma 4.1.19, each locally primitive bi-ordered

tree representing a bi-order � is a primitive re�nement of shape(�).

t

s

�

�

�

�

�

@

@

@

@

��

l

12

l

13

s

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

B

-

�

-

l

1

l

2

l

11

s

--- -

�

�

�

�

�

�

�

A

A

A

A

A

A

A

@

@

@

@

@

@

�

�

�

�

�

�

l

3

l

6

l

10

s

�

�

�

�

A

A

A

A

l

4

l

5

�

s

--

�

�

�

�

A

A

A

A

l

7

l

8

l

9

Figure 4.29: locally special bi-ordered tree t

4.5. The primitive normal form 133

For each locally special bi-ordered tree t it is possible to construct a primitive re�nement

of t by replacing each sequential node with more than two children, i.e., each sequential node

that is not primitive, by a tree consisting of primitive nodes.

Example 4.5.1 Consider the locally special bi-ordered tree t in Figure 4.29.

Then t

0

and t

00

in Figure 4.30 are both primitive re�nements of t. 2

Now we are ready to prove our normal form result.

Theorem 4.5.2 For each cft language K there exists a cft grammarG such that K = TxL(G),

and for each A! � 2 prod(G), � is primitive.

t

0
s

�

�

�

�

�

A

A

A

A

�

l

13

s

�

�

�

�

�

A

A

A

A

�

l

12

s

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

B

-

�

-

l

1

l

2

l

11

s

�

�

�

�

A

A

A

A

A

-

l

3

s

�

�

�

�

�

@

@

@

@

@

-

s

�

�

�

�

A

A

A

A

l

4

l

5

�

s

�

�

�

�

A

A

A

A

A

-

l

6

s

�

�

�

�

�

A

A

A

A

-

l

10

s

�

�

�

�

A

A

A

A

A

-

l

7

s

�

�

�

�

A

A

A

A

-

l

8

l

9

t

00
s

�

�

�

�

�

A

A

A

A

A

�

s s

�

�

�

�

A

A

A

A

�

l

12

l

13

s

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

B

-

�

-

l

1

l

2

l

11

s

�

�

�

�

�

@

@

@

@

@

-

s

�

�

�

�

�

A

A

A

A

-

l

6

s

�

�

�

�

A

A

A

A

A

-

l

3

s

�

�

�

�

A

A

A

A

l

4

l

5

�

s

�

�

�

�

�

A

A

A

A

-

l

10

s

�

�

�

�

A

A

A

A

A

-

l

7

s

�

�

�

�

A

A

A

A

-

l

8

l

9

Figure 4.30: primitive re�nements t

0

and t

00

134 Chapter 4. Context-free Text Grammars

Proof. Let K be a cft language, and let H = (�;�;�; S) be a cft grammar generating K.

Let �

0

be the set of chain-productions in �. Note that these productions already have the

desired form.

Let � = A! � be a production in ���

0

. Let d

�

be a primitive re�nement of shape(�).

It can be made into a node-labeled bi-ordered tree, denoted by t

�

, by labeling the inner nodes

of d

�

as follows: for each v 2 in(d

�

), v 6= root(d

�

), lb

t

�

(v) = (�; v), and lb

t

�

(root(d

�

)) = A.

Consider the cft grammar G = (�

0

;�;�

0

; S) with �

0

= fprod(t

�

) j � 2 ���

0

g [�

0

, and

�

0

= � [f(�; v) j � 2 ���

0

; v 2 in(t

�

)g.

Note that if � 6= �

0

, then the sets of \new" nonterminals in t

�

and in t

�

0

are disjoint. It

follows directly from our construction that for each A! � in �

0

, � is primitive.

Clearly, for each successful derivation of a text � in H there exists a successful derivation

of � in G, and vice versa.

Hence TxL(G) = K, and G has the desired form. 2

Hence the grammars satisfying the property from Theorem 4.5.2 are a normal form for cft

languages, denoted by primitive normal form (PNF).

Example 4.5.3 Consider the cft grammar G = (�;�;�; st(S)), where � = fa; b; cg, � =

� [fS;Ag, and � consists of the productions S ! (ASSbc; (2; 4; 1; 3; 5)), S ! (A; (1)),

A! (aAb; (1; 3; 2)), A! (a; (1)).

G is not in primitive normal form, since e.g., � = (aAb; (1; 3; 2)) is not primitive (f2; 3g 2

seg(VO(�) \ seg(HO (�)), and A! � 2 �.

As in Theorem 4.5.2, we construct G

0

= (�

0

;�;�

0

; st(S)). Let �

1

= (S ! (ASSbc;

(2; 4; 1; 3; 5))), and let �

2

= (A! (aAb; (1; 3; 2))). Then t

�

1

and t

�

2

are as in Figure 4.31.

t

�

1

S

s

�

�

�

�

�

@

@

@

@

-

l

5

c

(�

1

; v)

s

�

�

�

�

�

�

@

@

@

@

@

@

�

�

�

�

�

�

B

B

B

B

B

B

-

�

-

l

1

A

l

2

S

l

3

S

l

4

b

t

�

2

A

s

�

�

�

�

@

@

@

@

@

-

l

1

a

(�

2

; w)

s

�

�

�

�

@

@

@

@

�

l

2

A

l

3

b

Figure 4.31: t

�

1

and t

�

2

Now �

0

= � [f(�

1

; v); (�

2

; w)g, and �

0

contains the productions S ! ((�

1

; v)c; (1; 2)),

(�

1

; v) ! (ASSb; (2; 4; 1; 3)), S ! (A; (1)), A ! (a(�

2

; w); (1; 2)), (�

2

; w) ! (Ab; (2; 1)),

A! (a; (1)).

Clearly, G

0

is equivalent with G and in primitive normal form. 2

4.6. Shapely cft grammars 135

Note that for a cft grammar in PNF, if a 1-equivalent chain-free cft grammar is constructed

as in Lemma 4.4.1, then this chain-free cft grammar again is in PNF. Also, if we carry out

only the �rst part of this construction, we obtain an equivalent grammar in PNF in which the

only chain-productions are of the form A! st(a) where a is a terminal. Using this fact, it is

easily veri�ed that the primitive normal form can be strengthened by additionally requiring

the following \Chomsky-like" restriction on the form of the productions.

Corollary 4.5.4 For each cft language K over � there exists a cft grammar G = (�;�;�; S)

in PNF such that K = TxL(G) and for each production A ! � 2 �, either j� j > 1 and

word(�) 2 (���)

�

, or j� j = 1 and word(�) 2 �.

Example 4.5.5 (Example 5.2 continued) Let G

0

be the cft grammar in PNF from Exam-

ple 4.5.3. We can change G

0

into an equivalent \Chomsky-like" cft grammar G

00

= (� [

f(�

1

; v); (�

2

; w); B;Cg;�;�

00

; st(S)), where �

00

contains the productions S ! ((�

1

; v)C; (1; 2)),

(�

1

; v) ! (ASSB; (2; 4; 1; 3)), S ! (A(�

2

; w); (1; 2)), S ! (a; (1)), A ! (A(�

2

; w); (1; 2)),

(�

2

; w)! (AB; (2; 1)), A! (a; (1)), B ! (b; (1)), C ! (c; (1)). 2

Using Corollary 4.5.4, we can characterize those cft languages that are generated by cft

grammars in Chomsky form.

Theorem 4.5.6 Let K be a cft language. K is generated by a cft grammar in Chomsky form

i� K consists of alternating texts.

Proof. By Lemma 4.4.8, the only-if part of the claim holds.

Suppose that K is a cft language consisting of alternating texts. Let G = (�;�;�; S) be a

cft grammar in the form as in the statement of Corollary 4.5.4 generating K. We may assume

that for each production � in �, there is a successful derivation in G using �. We claim that

G is in Chomsky form.

Assume to the contrary that G has a production of the form A ! � with j� j > 2. Let

�

0

2 K be such that this production is applied in a derivation of �

0

in G. Hence the derivation

tree corresponding with this derivation contains a primitive node which is not sequential. But

then, by Theorem 4.3.5 and Lemma 4.1.19, the shape of �

0

is not locally sequential, which

contradicts the fact that �

0

is alternating.

Hence the productions in � are of the form A ! � with either j� j = 1 and word(�) 2 �

or j� j = 2 and word(�) 2 �

+

; in other words G is in Chomsky form. 2

4.6 Shapely cft grammars

A cft grammar G generates a set of texts and it provides each text � that it generates with a

derivation tree t, and hence with a representation di(t). However, independently of G, � has

its own unique representation, viz. shape(�). Hence naturally one considers G \faithful" (in

its generation of TxL(G)) if whenever G generates a text � with a derivation tree t, then di(t)

is the shape of � ; such a faithful grammar G is called shapely. In this section we investigate

the existence of shapely grammars.

136 Chapter 4. Context-free Text Grammars

De�nition 4.6.1 Let G be a cft grammar. G is shapely if for each derivation tree t of a text

� in G, di(t) is the shape of � .

Example 4.6.2

(1) Consider the cft grammar G

1

= (fS; a; bg; fa; bg;�

1

; st(S)), where �

1

consists of the

productions S ! (aSb; (1; 2; 3)) and S ! (ab; (1; 2)). Then TxL(G

1

) = f� j word(�) =

a

n

b

n

; n � 1; and VO(�) = HO (�) = f(a

n

b

n

; (1; 2; : : : ; 2n)) j n � 1g.

Hence the shape of a text � in TxL(G

1

) is as in Figure 4.32.

u

�

�

�

�

�

�

�

�

�

�

�

�

,

,

,

,

,

,

,

,

,

,

�

�

�

�

�

�

�

�

%

%

%

%

%

%

%

%

�

�

�

�

�

�

�

�

E

E

E

E

E

E

E

E

L

L

L

L

L

L

L

L

J

J

J

J

J

J

J

J

e

e

e

e

e

e

e

e

@

@

@

@

@

@

@

@

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

-

�

��

1

a

�

��

2

a

� � � � � � � � �

�

��

n

a

�

��

n+1

b

� � � � � � � � �

�

��

n+2

b

�

��

2n

b

Figure 4.32: shape(�)

Clearly, G

1

is not shapely.

(2) Consider the cft grammar G

2

= (fS; a; bg; fa; bg;�

2

; st(S)), where �

2

consists of the

productions S ! (aSb; (1; 3; 2)) and S ! (ab; (1; 2)). Note that WL(G

2

) = fa

n

b

n

j n � 1g =

WL(G

1

).

The text � = (a

3

b

3

; (1; 6; 2; 5; 3; 4)) is in TxL(G

2

), and the tree t of Figure 4.33 is a

derivation tree of � in G

2

.

S

s

�

-

�

�

�

�

@

@

@

@

l

1

a

l

6

b

S

s

�

-

�

�

�

�

@

@

@

@

l

2

a

l

5

b

S

s

�

�

�

�

A

A

A

A

l

3

a

l

4

b

-

Figure 4.33: derivation tree t

The shape of � is given in Figure 4.34.

Hence G

2

is not shapely. In fact, (aSb; (1; 3; 2)) is neither sequential nor primitive, and

hence for each derivation tree t of a text � 2 TxL(G) with j� j > 2, di(t) 6= shape(�).

4.6. Shapely cft grammars 137

s

-

�

�

�

�

@

@

@

@

@l

2

a

s

�

�

�

�

�

�

@

@

@

@

l

6

b

s

-

�

�

�

�

@

@

@

@

@l

2

a

s

�

�

�

�

�

�

@

@

@

@

l

5

b

s

�

�

�

�

A

A

A

A

l

3

a

l

4

b

-

Figure 4.34: shape(�)

(3) Consider the cft grammar G

3

= (fS; T; a; bg; fa; bg;�

3

; st(S)), where �

3

consists of the

productions S ! (aT; (1; 2)), T ! (Sb; (2; 1)), and S ! (ab; (1; 2)). Note that, since S)

�

G

3

(aSb; (1; 3; 2)), G

3

is equivalent to G

2

. Each derivation tree of a text � 2 TxL(G

3

) is chain-

free, locally special, and disjoint. E.g., the derivation tree of (a

3

b

3

; (1; 6; 2; 5; 3; 4)) is given in

Figure 4.35.

Hence G

3

is shapely. 2

De�nition 4.6.3 Let K be a text language. K is limited if there exists C

0

2 N such that,

for each � 2 K, out-degree(shape(�)) < C

0

.

The requirement that a text language is limited is a restriction: by Proposition 4.1.11,

if K is a limited text language, then prims(K) is �nite. Also, there are context-free text

languages that are not limited. E.g., the language TxL(G

1

) from Example 4.6.2 is not limited.

It was argued in Example 4.6.2 that the grammar G

1

is not shapely. As a matter of fact, the

following result holds.

Theorem 4.6.4 For each cft language K, K is limited i� there is a shapely cft grammar H

such that K = TxL(H) modulo singletons.

Proof. Suppose that there is a shapely cft grammar H that generates K modulo singletons.

Let � 2 K, with j� j > 1. Then shape(�) = di(t), where t is a derivation tree of � . Hence

out-degree(shape(�)) � maxrh(H). Consequently, K is limited.

138 Chapter 4. Context-free Text Grammars

S

s

-

�

�

�

�

@

@

@

@

@l

2

a

T

s

�

�

�

�

�

�

@

@

@

@

l

6

b

S

s

-

�

�

�

�

@

@

@

@

@l

2

a

T

s

�

�

�

�

�

�

@

@

@

@

l

5

b

S

s

�

�

�

�

A

A

A

A

l

3

a

l

4

b

-

Figure 4.35: derivation tree of (a

3

b

3

; (1; 6; 2; 5; 3; 4))

Suppose that K is limited. Let G = (�;�;�; st(S)) be a chain-free cft grammar in PNF

generating K modulo singletons. By Lemma 4.1.19, for each derivation tree t of a text � in

K, di(t) is a primitive re�nement of shape(�). More precisely, di(t) is obtained from shape(�)

by replacing each inner node by a subtree of the form tree

t

(E), where E is an equivalence class

of �

�

t

(as in the proof of Lemma 4.1.19).

Let D = ftree

t

(E) j t a derivation tree in G; E an equivalence class of �

�

t

g.

Here the nodes of each tree

t

(E) keep their nonterminal labels from t. Hence D consists of

node-labeled bi-ordered trees.

Claim 4.6.5 D is �nite.

Proof. Let t be a derivation tree of a text � , and let E be an equivalence class

of �

�

t

. By the above mentioned correspondence between tree

t

(E) and an inner

node of shape(�), it follows that #leaf (tree

t

(E)) � out-degree(shape(�)). Since K

is limited and G is chain-free, the number of nodes of the trees in D is bounded.

Consequently, D is �nite. 2

We will construct a new cft grammar for K by introducing single productions for each

t 2 D. In a derivation tree of the new grammar one of these productions will replace the

subtree t. In order to make this grammar shapely, we must additionally ensure that its

derivation trees are disjoint. We will do this by marking the nonterminals according to the

three types of texts we consider: forward and backward sequential, and strictly primitive texts.

Let

^

� be the alphabet fSg [� [fA

x

j A 2 � ��; x 2 ff; b; pgg. For x 2 ff; b; pg, let

�

x

be the homomorphism from � to

^

� de�ned by �

x

(A) = A, for A 2 �, and �

x

(A) = A

b

,

4.6. Shapely cft grammars 139

for A 2 � � �. Let t 2 D, with A = lb

t

(root(t)), representing the text � = (w;�). De�ne

�

t

such that if � is forward sequential, then �

t

= fA

x

! (�

f

(w); �) j x 2 fb; pgg; if � is

backward sequential, then �

t

= fA

x

! (�

b

(w); �) j x 2 ff; pgg; if � is strictly primitive, then

�

t

= fA

x

! (�

p

(w); �) j x 2 ff; b; pgg; Let �

D

=

S

t2D

�

t

, and let �

S

= fS ! � j S

x

! � 2

�

D

; x 2 ff; b; pgg.

Let

^

� = �

D

[�

S

, and let H be the grammar (

^

�;�;

^

�; �

S

). Then H is a shapely grammar

equivalent with G, as we will show now.

Let � 2 TxL(H), and let t be a derivation tree of � . By the construction ofH, a nonterminal

that was introduced by a forward sequential production cannot be rewritten using such a

production, and similarly for the backward sequential productions. This means that t (and so

di(t)) is disjoint. Hence, di(t), being chain-free, locally special, and disjoint, equals shape(�).

Consequently, H is a shapely grammar.

For each derivation tree t of a text � in G, a derivation tree of � in H can be found

according to the above construction, i.e., by replacing each subtree tree

t

(E) by a single node

and adding suitable markings to the nonterminals, according to the type of production that

was used to introduce them.

Conversely, each derivation tree t of a text � in H can be made into a derivation tree of

� in G, by replacing each node v in t by a bi-ordered tree t

0

from D such that �

t

0

contains

prod

t

(v), and removing the markings of the nonterminals.

Hence G and H are equivalent. 2

Example 4.6.6 Let G

1

; G

2

, and G

3

be the cft grammars from Example 4.6.2. The language

TxL(G

1

) is not limited, since for each n � 1, we have � = (a

n

b

n

; (1; : : : ; 2n)) 2 TxL(G

1

) with

out-degree(shape(�)) = 2n. Hence TxL(G

1

) is not limited, and consequently there exists no

shapely grammar for TxL(G

1

).

The language TxL(G

2

) is limited; in fact, for each � 2 TxL(G

2

), out-degree(shape(�)) � 2.

Hence there exists a shapely grammar generating TxL(G

2

), and in fact G

3

is such a grammar.

2

It is not di�cult to see that it is decidable for a context-free text grammar G whether or

not TxL(G) is limited. This follows from the simple observation that, if G is reduced and in

PNF, then TxL(G) is not limited i� there exists a nonterminal A such that A)

+

(uAv; �)

where � is sequential.

We have seen that not each context-free text language has a shapely grammar. The follow-

ing lemma says that it is possible to construct for each context-free string language a shapely

text grammar generating the string language (modulo words of length 1).

Theorem 4.6.7 For each cf language L there is a shapely cft grammar G such that WL(G) =

fw 2 L j jwj > 1g.

Proof. Let L be a cf language, and let H = (�;�; P; S) be a cf grammar in Chomsky normal

form such that L = L(H). For each A in � � �, let W

A

� �

+

be such that � 2 W

A

i�

either � 2 �

+

or j�j = 4; and � is derived from A in a leftmost way in a minimal number of

steps. Let H

0

= (�;�; P

0

; S) be the cf grammar such that P

0

= fA! � j A 2 � ��, and

� 2 W

A

g. Clearly, H and H

0

are equivalent.

140 Chapter 4. Context-free Text Grammars

For each p = A! � in P

0

, de�ne a linear order �

p

as follows:

�

p

=

(

(1; : : : ; j�j) if j�j < 4

(2; 4; 1; 3) if j�j = 4

:

Now letG

0

be the cft grammar (�;�;�; st(S)), with � = fA! (�; �

p

) j p = A! � 2 P

0

g.

Hence H

0

= word(G

0

), and so L =WL(G

0

). Let G be the 1-equivalent chain-free cft grammar

obtained from G

0

as in Lemma 4.4.1. Let t be a derivation tree of a text � in G. By the

form of the productions of G, it follows that each v 2 in(t) is primitive or sequential, and v

is sequential implies that ddes

t

(v) � leaf (t). Hence di(t) is a chain-free, locally special, and

disjoint bi-ordered tree. Consequently, di(t) is the shape of � .

Hence G is shapely, and, since G and G

0

are 1-equivalent, WL(G) = fw 2 L j jwj > 1g.

2

4.7 Ambiguity and pumping

In this section we investigate two traditional language theoretic topics {ambiguity and pumping{

in the setting of cft grammars. The importance of these two topics stems from the facts that

the (word-)ambiguity for text languages, in the way we de�ne it, is a notion intrinsic for text

languages, and having a pumping lemma for cft languages gives us a much needed tool to

prove that some text languages cannot be generated by cft grammars.

In cf string languages, unambiguitymeans that we can assign to each word of the language a

unique structure, namely its derivation tree in an unambiguous cf grammar. In (not necessarily

context-free) text languages, we have the situation that each word already has a structure,

given by (the shape of) a text of which it is the text-word. The requirement that this structure

is unique leads to the notion of (word-)unambiguity intrinsic to text languages.

De�nition 4.7.1

(1) A text language K is word-unambiguous if for all �

1

; �

2

2 K, word(�

1

) = word(�

2

) implies

that �

1

= �

2

.

(2) A cft grammar G is word-unambiguous if TxL(G) is word-unambiguous.

For a cft grammar G, G being word-unambiguous is not the same as word(G) being

unambiguous. The following theorem relates these notions. By a weakly unambiguous cf

string grammar we mean a cf grammar such that each word has a unique naked derivation

tree (i.e., the tree resulting from a derivation tree by removing nonterminal labels).

Theorem 4.7.2 Let G be a cft grammar.

(1) If G is word-unambiguous and shapely, then word(G) is weakly unambiguous.

(2) If word(G) is weakly unambiguous and if word is a bijection on prod(G), then G is word-

unambiguous.

4.7. Ambiguity and pumping 141

Proof.

(1) Each word w generated by word(G) is the text-word of a unique text � in TxL(G), since

G is word-unambiguous. The derivation tree of � in G is shape(�), since G is shapely. Hence

each word w in L(word(G)) has a unique naked derivation tree, viz. the underlying ordered

tree of shape(�).

(2) Since word is a bijection on prod(G), each derivation tree of w in word(G) has a unique

extension to a derivation tree of a text � in G with word(�) = w. Since word(G) is weakly

unambiguous, it follows that all texts with text-word w have the same naked derivation tree,

say t, in G. Hence for each text � with word(�) = w, the bi-order (VO(�);HO(�)) is repre-

sented by this bi-ordered tree t. Consequently, there is exactly one text � with word(�) = w,

and thus G is word-unambiguous. 2

Theorem 4.7.3 It is not decidable whether a given context-free text grammar is word-

unambiguous.

Proof. We will show that the problem whether a given cft grammar is word-unambiguous is

undecidable by reducing the Post Correspondence Problem (PCP) to this problem.

Let (x

1

; : : : ; x

n

); (y

1

; : : : ; y

n

) be an instance of the PCP.

Consider the cft grammar G = (�;�;�; st(S)), with � = fS; S

1

; S

2

; a; b; c; dg, � =

fa; b; c; dg, and � = fS ! st(S

1

); S ! st(S

2

)g [�

1

[�

2

, where �

1

consists of the pro-

ductions, for i = 1; : : : ; n,

S

1

! (x

i

dc

i

; (1; 2; : : : ; n

i

)),

S

1

! (x

i

S

1

c

i

; (1; 2; : : : ; n

i

)), with n

i

= jx

i

j+ i+ 1,

and �

2

consists of the productions, for i = 1; : : : ; n,

S

2

! (y

i

dc

i

; (m

i

;m

i

� 1; : : : ; 1)),

S

2

! (y

i

S

2

c

i

; (m

i

;m

i

� 1; : : : ; 1)), with m

i

= jy

i

j+ i+ 1.

Let G

1

be the cft grammar (�;�;�

1

; st(S

1

)), and letG

2

be the cft grammar (�;�;�

2

; st(S

2

)).

Clearly, TxL(G) = TxL(G

1

) [TxL(G

2

), and WL(G

1

) = fx

i

1

: : : x

i

k

dc

i

1

: : : dc

i

k

j fi

1

; : : : ; i

k

g �

f1; : : : ; ng; 1 � k � ng, and the texts in TxL(G

1

) are all forward sequential; similarly,

WL(G

2

) = fy

i

1

: : : y

i

k

dc

i

1

: : : dc

i

k

j fi

1

; : : : ; i

k

g � f1; : : : ; ng; 1 � k � ng, and the texts in

TxL(G

2

) are all backward sequential.

Moreover, G is word-unambiguous i� WL(G

1

)\WL(G

2

) 6= ;, and WL(G

1

)\WL(G

2

) 6= ;

i� the PCP has a solution.

Hence word-unambiguity for cft grammars is not decidable. 2

We move now to a pumping lemma for cft languages. For reasons of readability we in-

troduce the notation subst

k

(�; x; �

0

) for k � 0 the meaning of which is inductively de�ned by

subst

0

(�; x; �

0

) = �

0

, and subst

k

(�; x; �

0

) = subst(�; x; subst

k�1

(�; x; �

0

)) for k > 0.

142 Chapter 4. Context-free Text Grammars

Theorem 4.7.4 Let K be a cft language. There exist constants p and q such that for each

� 2 K with j� j > p, there exist texts �

1

; �

2

; �

3

; x 2 dom(�

1

); y 2 dom(�

2

) such that

� � = subst (�

1

; x; subst(�

2

; y; �

3

)),

� j�

2

j > 1,

� jsubst(�

2

; y; �

3

)j � q,

� for each k � 0, subst(�

1

; x; subst

k

(�

2

; y; �

3

)) 2 K.

Proof. Our proof of the theorem is rather standard, however we would like to point out that

the substitution on texts is a more subtle notion than the substitution on words.

Let G = (�;�;�; S) be a cft grammar in PNF as in Corollary 4.5.4 that generates K.

Note that for each successful derivation tree t in G, if each path contains at most n edges,

then #leaf (t) � maxrh(G)

n�1

.

Now let n = #(���), p = maxrh(G)

n�1

, and q = maxrh(G)

n

.

Let � 2 K be such that j� j > p, and let t be a derivation tree of � in G. Since j� j =

#leaf (t) > p, there is a path consisting of at least n + 1 edges in t. Consider the lowermost

n + 1 internal nodes on the longest path of t. By the choice of n, there are nodes x and

y amongst these nodes such that lb

t

(x) = lb

t

(y). Let �

1

be the text represented by the

tree that results from t when sub

t

(x) is removed with the exception of its root x, let �

2

be

the text represented by the tree that results from sub

t

(x) when sub

t

(y) is removed with the

exception of its root y, and let �

3

be the text represented by sub

t

(y). Then t represents

subst(�

1

; x; subst(�

2

; y; �

3

)), and hence � = subst (�

1

; x; subst(�

2

; y; �

3

)). By the form of G, it

follows that j�

2

j > 1. In sub

t

(x) all paths consist of at most n+ 1 edges, because x and y are

amongst the lowermost n+ 1 internal nodes. Since sub

t

(x) represents subst (�

2

; y; �

3

), and by

the form of sub

t

(x), it follows that jsubst(�

2

; y; �

3

)j � q.

For each k � 1, a derivation tree for subst (�

1

; x; subst

k

(�

2

; y; �

3

)) is obtained by substituting

k � 1 copies of the subtree of t that represents �

2

into t. For k = 0, a derivation tree of

subst(�

1

; x; �

3

) is obtained by removing the subtree representing �

2

from t, and by making x

the root of sub

t

(y).

Hence for each k � 0, subst(�

1

; x; subst

k

(�

2

; y; �

3

) 2 K. 2

As in the theory of context-free string grammars, one can use the above pumping lemma

to provide examples of text languages that are not context-free.

Example 4.7.5 Consider the text language K = f(a

n

; �

n

) j n � 1g, where

�

n

=

(

(1; : : : ; n) if n = 2

j

for some j � 1

(n; : : : ; 1) otherwise

.

Assume that K is context-free. Let p and q be constants as in Theorem 4.7.4. Let j � 1

be such that p < 2

j

. Consider (a

2

j

; �

2

j) 2 K. By Theorem 4.7.4 there exist �

1

; �

2

; �

3

, and

x 2 dom(�

1

), y 2 dom(�

2

) such that (a

2

j

; �

2

j
) = subst(�

1

; x; subst(�

2

; y; �

3

)) and for each i � 0,

subst(�

1

; x; subst

i

(�

2

; y; �

3

)) 2 K.

Hence �

1

= (a

k

xa

`

; (1; : : : ; k+ `+1)) for some k; ` � 0; �

2

= (a

r

ya

s

; (1; : : : ; r+s+1)), with

r+s � 1; �

3

= (a

m

; (1; : : : ;m)) with m = 2

j

� (k+ `+r+s), and it follows that for each i � 0,

4.8. Discussion 143

(a

n(i)

; (1; : : : ; n(i))) 2 K, where n(i) = 2

j

+(i�1)(r+s). By the de�nition of K, for each i � 0,

n(i) is a power of 2. Let n(0) = 2

j(0)

, n(2) = 2

j(2)

. Note that n(0) + n(2) = 2n(1) = 2

j+1

.

Then it follows that j(0) = j = j(2), which contradicts the fact that r + s � 1.

Hence K is not a context-free text language. Note that the corresponding string language

fa

n

j n � 1g is context-free. 2

4.8 Discussion

In this paper we have introduced the notion of a context-free text grammar and investigated

some of its basic properties.

Although the notion of a context-free grammar is well-known, it gets a rather non-standard

interpretation in the case of texts. Since a text has its own individual syntactic structure

(viz. its shape), the basic role of a grammar to assign syntactic structures to the objects it

generates disappears. Rather one would like to see a context-free text grammar as a de�nition

of a pattern common to all individual syntactic structures of the texts it generates.

The special set-up for context-free grammars which generate texts is re
ected e.g. in the

basic de�nitions of a context-free text grammar, some normal forms and in speci�c notions

such as that of a shapely grammar.

As indicated in the paper, the notion of a context-free text grammar can be viewed as a

special sort of graph grammar. It also has some similarities with the notion of a context-free

tree grammar. Clearly, both relationships should be thoroughly investigated.

Another topic certainly worth investigation is the nature of the context-free sets of texts.

One can think here of either a characterization of a combinatorial type (using e.g., notions

from [11]), or of a characterization of algebraic style (such as Nerode-type theorems).

Acknowledgements

We would like to thank T. Harju for useful comments on the �rst draft of this paper, and we are

very indebted to H.J. Hoogeboom for being such a useful and engaged partner in discussions

concerning this paper; his comments have certainly in
uenced the current form of the paper.

144 Chapter 4. Context-free Text Grammars

Chapter 5

Text Languages in an Algebraic

Framework

Abstract

A text can be de�ned as a word w together with a (second) linear order on its domain

f1; :::; jwjg. This second order may be used to de�ne a hierarchical, tree-like, structure

representing the text. The family of context-free sets of texts is investigated, i.e., sets of

texts de�ned by context-free text grammars. In particular, those sets of texts are studied

in the framework of universal algebra. This allows to compare the classical notions of

equational and recognizable families in an algebra with context-free sets in the \algebra

of texts". Within this algebra the notion of equational sets coincides with the context-

free sets. A grammatical characterization of the family of recognizable sets is given as a

subfamily of the context-free sets of texts.

Introduction

This paper further investigates the class of context-free texts, that was introduced in [12]

generalizing context-free word grammars to the setting of texts.

The notion of a text itself generalizes the notion of a word. A text is a triple � = (�; �

1

; �

2

)

such that � is a labeling function from a domain D to some alphabet, and �

1

and �

2

are

linear orders on the domain D of �. Usually, D = f1; 2; : : : ; ng and �

1

is of the standard form

(1; 2; : : : ; n). Hence � may be seen as a word �(1)�(2) � � � �(n) (referred to as the word of �)

together with an additional linear order �

2

on the domain f1; : : : ; ng of �.

The traditional role of a context-free word grammar is to de�ne a language as a set of

words (generated by the grammar) and to provide each word in the language with its syn-

tactic structure (given by a derivation tree of the grammar). In the case of texts, each text

already has an intrinsic tree-like structure, called its shape, a notion which originates from

the decomposition theory of 2-structures (see [13, 14]). Hence, rather than providing each

text with a syntactic structure, the role of a context-free text grammar is limited to that of

de�ning a set of texts.

The tree-like structure used to represent a text hierarchically is a so-called leaf-labeled

bi-ordered tree, which generalizes the concept of a leaf-labeled ordered tree giving a structure

145

146 Chapter 5. Text Languages in an Algebraic Framework

to a word. A tree is bi-ordered if with each inner node two linear orderings of its children are

associated. These local orderings then determine two orderings on the leaves of the tree.

If the second order of a text equals the �rst order or the reverse of the �rst order, then such

a forward or backward sequential text is very much like a word: the text does not impose any

structure on the bi-ordered tree representation. On the other hand, very unlike the case of

words, there is an important class of texts that have only one (rather trivial) representation,

where the leaves of the tree are children of the root, and the associated orderings of the root

are the orderings of the text itself. These text are called primitive.

A bi-ordered tree representation for a text describes a modular decomposition of the text.

This way of decomposing texts is in complete accordance with the decomposition theory for

2-structures (see [16]), due to a close correspondence between texts and a certain subclass of

2-structures. Primitive texts, being undecomposable, play the role of primes in this theory.

It is natural to look for a \maximal" decomposition of a text, i.e., a tree representation

where all nodes have a primitive structure. Such a maximal decomposition may not be unique,

as in the case of sequential texts where many binary bi-ordered tree representations for each

text exist.

However, it turns out that maximal decompositions of a text di�er only in their binary

subtrees representing sequential parts of the text. Now the shape of a text is the unique bi-

ordered tree representing the text such that each inner node is either primitive or sequential,

and for each forward (backward) sequential node, none of its children is forward (backward,

respectively) sequential. Thus, the shape indicates how the text is built up with words (the

sequential nodes) and primitive building blocks. Every maximal decomposition of a text can

be obtained from its shape by decomposing each sequential node into a binary (bi-ordered)

subtree.

Context-free text grammars are direct generalizations of context-free word grammars. In

[12] this class of grammars and their text languages were studied.

A text on the one hand can be seen as a word with an additional ordering, on the other

hand it has an intrinsic tree-like structure (as, e.g., given by its shape). The main motivation

of this paper is to explore this apparent duality. In particular we want to compare and relate

the families of context-free word languages, context-free text languages, and tree languages

generated by \regular" tree grammars.

The natural framework to relate these three di�erent structures is that of universal algebra.

An algebra is a set A together with a collection � of operations on A. If A is the set of words

over a given alphabet, then � contains only concatenation. Choosing A to be a family of

(ranked, ordered) trees, then an operation of rank n in � builds a tree out of n given subtrees.

For texts one may take operations corresponding to the primitive (de-)compositions of texts.

In this algebra of texts we study the well-established notion of equational languages, that

formalizes (in an algebraic setting) the notion of a language speci�ed by a set of recursive

equations (a context-free grammar can be interpreted as such). Using elementary techniques

we show that the equational text languages coincide with the context-free text languages.

Additionally we consider the recognizable sets, which extends the idea of languages accepted

by a �nite state device.

Preliminaries 147

For text languages, as for word languages, the recognizable sets are strictly included in the

equational sets. For tree languages the two notions coincide.

We isolate a class of context-free grammars that precisely generate the recognizable text

languages. We call a context-free text grammar right-linear if its (bi-ordered) derivation

trees are \rightmost" maximal decompositions of the derived texts. (Such a rightmost max-

imal decomposition is obtained from the shape by decomposing each sequential node into a

\rightmost" binary subtree; thus in this way each text has a unique rightmost maximal de-

composition.) Hence, derivation trees are allowed to be \regular tree-like" where the shape

has primitive nodes, but they are restricted to \right-linear" sequential parts. This class of

right-linear grammars is more powerful than the shapely grammars from [12], which allow only

shapes as derivation trees.

The paper is organized as follows. We start by giving some preliminaries. In Section 5.1

we present the framework of universal algebra with the classical de�nitions of recognizable

and equational subsets of an algebra. Additionally, in Section 5.2 we recall the basic notions

and results on texts and their hierarchical representations.

In Section 5.3 we provide an algebraic framework for texts, and start considering the recog-

nizable and equational text languages. The equational text languages are then the context-free

text languages from [12].

In Section 5.4, we give characterizations of recognizable text languages. In particular we

prove that the recognizable text languages are precisely those text languages generated by

the so-called right-linear text grammars (Theorem 5.4.9). In Section 5.5 we consider how the

notions of recognizability and equationality for text languages are related to those for word

languages and tree languages. Finally, in Section 5.6 we consider some closure properties of

families of text languages.

Preliminaries

For a (�nite) sequence s = (x

1

; : : : ; x

n

), jsj denotes its length n, and for 1 � i � jsj, s(i)

denotes the i'th element x

i

of s. In particular, we view a word w over an alphabet � as a

sequence of letters of �, but as usual we write w = a

1

� � � a

n

if w(i) = a

i

2 � for i = 1; : : : ; n.

For a nonempty �nite set D, a linear order (on D) is a relation � on D such that � is

antire
exive, transitive, and total, i.e., for all x; y 2 D with x 6= y, either (x; y) 2 � or

(y; x) 2 �. For each linear order � on D there is a unique ordering x

1

; : : : ; x

n

of the elements

in D such that (x

i

; x

j

) 2 � i� i < j. Hence a linear order � on D can be speci�ed as a sequence

of the elements (x

1

; : : : ; x

n

) of D. The terminology and notations concerning sequences carry

over to linear orders.

For a linear order � = (x

1

; : : : ; x

n

), we use dom(�) to denote the set fx

1

; : : : ; x

n

g. A subset

X � dom(�) is a segment of � if there exist i; j 2 f1; : : : ; ng such that X = fx

`

j i � ` � jg

(this includes X = ;).

For linear orders �

1

= (x

1

; : : : ; x

n

) and �

2

= (y

1

; : : : ; y

m

) with disjoint domains, the sum of

�

1

and �

2

, denoted �

1

+�

2

, is the linear order speci�ed by the sequence (x

1

; : : : ; x

n

; y

1

; : : : ; y

m

).

Note that this sum operation is not commutative.

148 Chapter 5. Text Languages in an Algebraic Framework

If a function f on a set D is given, then we shall extend f in the usual way to a subset X

of D, yielding the set f(X), or to a sequence � on D, yielding the sequence f(�).

By a tree t we mean a directed graph with one designated node, the root of t, such that

each node is connected with the root by a unique directed path from the root. The nodes

without outgoing edges are the leaves of t, the other nodes are the inner nodes of t. A tree

is chain-free if it has no nodes with precisely one outgoing edge. The out-degree of t is the

maximum number of outgoing edges per node. A node-labeled (or inner-, leaf-labeled) tree is

a tree where in addition each node (or each inner node or each leaf) has a label.

An ordered tree is a tree together with a function ord that associates to each inner node

v a linear order ord(v) on the children of v. These local linear orders induce a linear order �

on the leaves of the tree. The yield of a leaf-labeled ordered tree is the word formed by the

labels of the leaves according to the induced ordering of the leaves.

For our purposes, the identity of the nodes of trees and ordered trees is not important.

Hence we will consider (ordered) trees modulo the identity of their nodes.

A context-free grammar G is denoted by a 4-tuple (N;�; P; S), where N is the alphabet of

nonterminals, � is the alphabet of terminals, P is the set of productions of the form A! w

with A 2 N and w 2 (N [�)

�

, and S 2 N is the axiom. To emphasize the fact that G is

used to generate words we call it a context-free word grammar.

5.1 Sigma-algebras

We recall here some notions concerning universal algebra { see, e.g., [2]. A ranked alphabet

� is a �nite alphabet of operator symbols, where each operator symbol � 2 � has a rank

r(�) 2 N; for m 2 N, �

m

denotes f� 2 � j r(�) = mg. A �-algebra A is a pair (A;�), where

A is a set and � a ranked alphabet, and each operator � 2 �

m

, m � 0, de�nes a mapping

�

A

: A

m

! A.

Let � be a �xed ranked alphabet.

Let A = (A;�) and B = (B;�) be �-algebras. A homomorphism h from A to B is a

mapping h : A ! B such that for each � 2 �

m

, h(�

A

(a

1

; : : : ; a

m

)) = �

B

(h(a

1

); : : : ; h(a

m

))

for all a

1

; : : : ; a

m

2 A. A congruence of A is a relation on A that is invariant under every

operator, i.e.,

�

=

is a congruence if, for all � 2 �

m

, and all a

1

; : : : ; a

m

; a

0

1

; : : : ; a

0

m

2 A, a

i

�

=

a

0

i

for 1 � i � m implies �

A

(a

1

; : : : ; a

m

)

�

=

�

A

(a

0

1

; : : : ; a

0

m

). An elementary translation of A is

a mapping ' : A ! A de�ned by '(v) = �

A

(a

1

; : : : ; a

j�1

; v; a

j+1

; : : : ; a

m

), where � 2 �

m

,

1 � j � m, and a

1

; : : : ; a

j�1

; a

j+1

; : : : ; a

m

2 A. A translation of A is the composition of

elementary translations of A. A relation on A is a congruence of A i� it is invariant under

the (elementary) translations of A.

Given a congruence

�

=

of A, the corresponding quotient algebra, denoted by A=

�

=

, is

the �-algebra (C;�), where C consists of the congruence classes of

�

=

, and for � 2 �

m

,

�

A=

�

=

(c

1

; :::; c

m

) is the class of �

A

(a

1

; :::; a

m

), where a

i

is a representative of c

i

for i = 1; : : : ;m.

Homomorphisms and congruences are related as follows : the kernel of a homomorphism

h from A to B, denoted by ker(h), is the congruence such that a; a

0

2 A are congruent i�

5.1. Sigma-algebras 149

h(a) = h(a

0

) 2 B, and each congruence

�

=

of A is the kernel of the homomorphism from A to

A=

�

=

which assigns to each element of A its congruence class.

Let V be a set of variables. The set of �V -terms, denoted by F

�

(V), is the smallest set of

words over � [V [fh; ig that contains V [�

0

, and such that if m � 1, t

1

; : : : ; t

m

2 F

�

(V),

� 2 �

m

, then �ht

1

� � � t

m

i 2 F

�

(V). For V = ;, we denote F

�

(;) by F

�

. Note that F

�

= ;

i� �

0

= ;. By considering the variables in V as nullary symbols in � we identify F

�

(V) with

F

�[V

.

The �-algebra of (ground) terms F

�

= (F

�

;�) is the �-algebra such that �

F

�

(t

1

; : : : ; t

m

) =

�ht

1

� � � t

m

i, for � 2 �

m

with m � 1, t

1

; : : : ; t

m

2 F

�

, and �

F

�

= � for � 2 �

0

. F

�

is initial

in the class of all �-algebras, i.e., for each �-algebra A there is a unique homomorphism from

F

�

to A; if this homomorphism is surjective we say that A is generated by �.

Let A = (A;�) be a �-algebra, and let fv

1

; : : : ; v

n

g be an (ordered) set of variables. With

each term t 2 F

�

(fv

1

; : : : ; v

n

g) we associate a mapping t

A

: A

n

! A, which is de�ned by

v

A

i

(a

1

; : : : ; a

n

) = a

i

, and �ht

1

� � � t

m

i

A

(a

1

; : : : ; a

n

) = �

A

(t

A

1

(a

1

; : : : ; a

n

)); : : : : : : ; t

A

m

(a

1

; : : : ; a

n

));

t

A

is a so-called derived operator.

A theory T is a pair (�; E) where � is a ranked alphabet, and E is a set of equations of the

form t = t

0

where t; t

0

2 F

�

(V) for a set of variables V . The �-algebra A = (A;�) is called a

T -algebra if it satis�es the equations of T : t

A

= t

0A

for each (t = t

0

) 2 E. In particular, the

quotient term algebra F

�

=

�

=

, where

�

=

is the congruence on A generated by the equations in

E, is a T -algebra; moreover it is initial in the class of T -algebras.

5.1.1 Recognizable and equational sets

We recall the basic notions of recognizable and equational sets, in the setting of �-algebras

(as introduced in [25], see also, e.g., [3], [5], [29]). Let � be an arbitrary, but �xed ranked

alphabet, and let A = (A;�) and B = (B;�) be �-algebras.

The notion of word languages recognizable by �nite state automata can be generalized to

subsets of an algebra. Finite algebras take the role of (deterministic) �nite state acceptors, and

the mapping that assigns to each word the state reached is in this setting a homomorphism

of algebras.

De�nition 5.1.1 A subset K � A is recognizable if there is a �nite �-algebra Q = (Q;�), a

homomorphism h : A! Q, and a subset F � Q such that h

�1

(F) = K.

In view of the natural correspondence of homomorphisms and congruences, one might

alternatively de�ne that K � A is recognizable if there is a �nite congruence of A that

saturates K (i.e., there are �nitely many congruence classes and K is the union of some of

them). It is well-known that the greatest congruence saturating a set K, called the N�erode

congruence of K and denoted by

�

=

K

, can be characterized as follows: a

�

=

K

a

0

i� for every

translation ' of A, '(a) 2 K i� '(a

0

) 2 K.

Proposition 5.1.2 K � A is recognizable i�

�

=

K

is �nite.

150 Chapter 5. Text Languages in an Algebraic Framework

Context-free word grammars may be seen as a recursive mechanism for specifying lan-

guages. In the framework of universal algebra this generalizes to systems of equations and

equational sets.

A polynomial system S is a set of equations fv

i

= t

i1

+ � � � t

ik

i

j i = 1; : : : ; ng, where

fv

1

; : : : ; v

n

g is a �xed set of variables, and each t

ij

is a term in F

�

(fv

1

; : : : ; v

n

g). With

such a polynomial system S one associates a system function S

A

: (2

A

)

n

! (2

A

)

n

satisfying

S

A

(W

1

; : : : ;W

n

) = (W

0

1

; : : : ;W

0

n

), where W

0

i

=

S

k

i

j=1

t

A

ij

(W

1

; : : : ;W

n

), for W

1

; : : : ;W

n

� A.

Being a continuous mapping, the system function S has a least �xed point, denoted by [S

A

].

De�nition 5.1.3 A subset K � A is equational if there is a polynomial system S such that

K is a component of the least solution [S

A

].

The next theorem collects some facts concerning the behaviour of homomorphisms with

respect to recognizability and equationality.

Theorem 5.1.4 Let h : A! B be a homomorphism.

(1) If L � A is equational, then h(L) � B is equational.

(2) If K � B is recognizable, then h

�1

(K) � A is recognizable.

(3) If h is surjective, and if h

�1

(K) � A is recognizable (equational), then K � B is recogniz-

able (equational).

(4) If h is injective, and if h(L) � B is recognizable (equational), then L � A is recognizable

(equational).

(5) If K � B is equational, then there exists an equational set L � A such that K = h(L).

Proof. The results for equational sets rely on the general fact (see [25]) that each homomor-

phism preserves the least �xed point of a polynomial system S, i.e., h[S

A

] = [S

B

], where h is

extended to sequences of subsets of A. E.g., claim (5) follows from the fact that if K is the

i'th component of [S

B

] for some i, S being a polynomial system, then the i'th component of

[S

A

] is an equational subset of A and its image under h is K.

For recognizable sets, (2) and (4) follow immediately from the fact that if K = j

�1

(F) for

some homomorphism j, then h

�1

(K) = (j � h)

�1

(F).

The proof of (3) is as follows. Due to the surjectivity of h, for each (elementary) translation

 of B there exists an (elementary) translation ' of A such that h('(a)) = (h(a)) for each

a 2 A. Assuming that a

�

=

h

�1

(K)

a

0

for some a; a

0

2 A, then also h(a)

�

=

K

h(a

0

) by the

characterization of the N�erode congruence in terms of translations. Using again the surjectivity

of h we may infer that the index of

�

=

K

is not larger than the index of

�

=

h

�1

(K)

. Consequently,

K is recognizable whenever h

�1

(K) is. 2

Note that in particular it follows from this theorem that isomorphisms preserve recogniz-

ability and equationality.

In the case of the term �-algebra F

�

, we have the following result from [25].

Proposition 5.1.5 For each T � F

�

, T is equational i� T is recognizable.

For arbitrary �-algebras that are generated by � this result holds in only one direction.

Corollary 5.1.6 Let A = (A;�) be a �-algebra generated by �. If K � A is recognizable,

then K is equational.

5.1. Sigma-algebras 151

Proof. Let h be the unique homomorphism from F

�

to A. Since A is generated by �,

h is surjective. By Theorem 5.1.4(2), h

�1

(K) � F

�

is recognizable. By Proposition 5.1.5,

h

�1

(K) is equational. By Theorem 5.1.4(1), h(h

�1

(K)) is equational. Since h is surjective,

K = h(h

�1

(K)). 2

The general concepts given above can again be specialized to word languages and tree

languages.

The word languages in this paper are all "-free, and hence we work in the semi-group

�

+

rather than in the monoid �

�

. Any semi-group can be viewed as a �-algebra, where �

consists of one operation of rank 2. In the case of the free semi-group �

+

, we may extend �

by adding the elements of � as nullary operators, which makes �

+

an algebra generated by

its ranked alphabet. More precisely, �

+

is a �-algebra, with � = � [f�g such that � is an

operator of rank 2 that is interpreted as word concatenation, and every nullary operator a 2 �

is interpreted as the word a of length 1. Moreover, the associativity of concatenation can be

expressed by stating that �

+

satis�es the equation e : �hu�hvwii = �h�huviwi, i.e., �

+

is a

T -algebra for the theory T = (�; feg); the freeness of �

+

is expressed by stating that it is

an initial T -algebra. As is well-known (see,e.g., [25]) the recognizable subsets of �

+

are then

precisely the ("-free) word languages recognized by �nite state automata, and the equational

subsets of �

+

are precisely the ("-free) context-free word languages.

For any ranked alphabet �, the terms in F

�

describe node-labeled ordered trees (modulo

the identity of their nodes). Accordingly, the subsets of F

�

are known as tree languages (for an

overview on tree languages, see, e.g., the book [21]). Recognizable tree languages are usually

de�ned as tree languages accepted by so-called deterministic bottom-up tree recognizers. This

de�nition is equivalent with De�nition 5.1.1.

By Proposition 5.1.5 a tree language is recognizable i� it is equational. A polynomial

system for an equational tree language corresponds closely with the notion of regular tree

grammar, which is a 4-tuple (N;�; P; S), where � = �

0

, N is the set of nonterminals disjoint

from �, S 2 N , and P consists of productions of the form A ! t, where A 2 N and

t 2 F

�

(N). A tree t

0

2 F

�

(N) is derived from a tree t 2 F

�

(N), denoted t)

G

t

0

, if there

is a production A ! u in P such that t

0

is obtained from t by substituting the tree u for an

occurrence of A. As usual)

�

G

denotes the transitive and re
exive closure of)

G

. The tree

language generated by the regular tree grammar G = (N;�; P; S), denoted by TrL(G), is the

set of trees ft 2 F

�

j S)

�

G

tg. A regular tree grammar is in normal form if each production

is of the form A! �hA

1

� � �A

m

i with � 2 �

m

, m � 0, and A

1

; : : : ; A

m

2 N .

A regular tree grammar H = (N;�; P;A

k

), where N = fA

1

; : : : ; A

n

g, corresponds with

a polynomial system S with equations A

i

= t

i1

+ � � � + t

ik

i

, for i = 1; : : : ; n, where A

i

!

t

i1

; : : : ; A

i

! t

ik

i

are the productions in P with A

i

as left-hand side. The k'th component of

[S

F

] equals TrL(H).

Let us note here that also the notion of \context-free tree grammar" exists (see [27]). In

such a grammar nonterminals may have nonzero rank. The class of tree languages generated

by these context-free tree grammars strictly contains the class of equational tree languages

occurring in this paper.

152 Chapter 5. Text Languages in an Algebraic Framework

5.2 Texts and text languages

All notions and results given in this section are from [13, 14, 16, 12]. We have tried to keep this

overview as brief as possible. For additional technical details we refer to the above-mentioned

papers.

5.2.1 Texts and bi-orders

Let � be an alphabet.

De�nition 5.2.1 A text � (over �) is a triple (�; �

1

; �

2

), where �

1

and �

2

are linear orders

such that dom(�

1

) = dom(�

2

), and � is a function from dom(�

1

) to �.

For a text � = (�; �

1

; �

2

), the domain of � , denoted by dom(�), is dom(�

1

); the word of � ,

denoted by word(�), is the word �(�

1

) 2 �

+

.

The pair (�

1

; �

2

) determines the structural properties of the text � . A pair of linear orders

� = (�

1

; �

2

) such that dom(�

1

) = dom(�

2

) is called a bi-order; the common domain of �

1

and

�

2

is denoted by dom(�).

Bi-orders (and hence texts) correspond with a speci�c kind of labeled 2-structures ([16, 12]).

As a consequence the decomposition theory of 2-structures has a translation to bi-orders. We

give here only the result of this translation, and not the details concerning 2-structures.

For a bi-order � = (�

1

; �

2

), a subset X � dom(�) is a clan of � if X is a segment of both �

1

and �

2

. Note that for each bi-order �, the subsets ;, dom(�), and the singletons in dom(�) are

all clans of �, the so-called trivial clans. A bi-order is primitive if it has no non-trivial clans; it

is sequential if all segments of both of its linear orders are clans. There are two possible forms

for a sequential bi-order � = (�

1

; �

2

): either �

1

equals �

2

(then � is called forward sequential)

or �

1

and �

2

are reverses of each other (then � is called backward sequential). These notions

carry over to texts.

In this paper, we will work with abstract bi-orders and texts, i.e., isomorphism classes of

bi-orders and texts. Formally, bi-orders � = (�

1

; �

2

) and �

0

= (�

0

1

; �

0

2

) are isomorphic if there

is a bijection : dom(�) ! dom(�

0

) such that (�

1

) = �

0

1

and (�

2

) = �

0

2

. The length of an

(abstract) bi-order �, denoted by j�j, is #dom(�

0

) for some representative �

0

of �.

Texts � = (�; �

1

; �

2

) and �

0

= (�

0

; �

0

1

; �

0

2

) are isomorphic if (�

1

; �

2

) and (�

0

1

; �

0

2

) are iso-

morphic and for the corresponding bijection : dom(�) ! dom(�

0

), �

0

= � �

�1

. Hence

isomorphic texts have the same word; this allows us to say that an (abstract) text is a pair

(w; �) where � is an (abstract) bi-order, and w is a word of length j�j. The length of � = (w; �),

denoted by j� j, is j�j.

Note that isomorphism of texts or bi-orders respects clans and hence also the above de�ned

properties based on clans.

Sometimes, e.g., in examples, we have to give an abstract bi-order a concrete representation.

We then write for a bi-order � of length n simply the order (i

1

; : : : ; i

n

) which comes from the

representative ((1; 2; : : : ; n); (i

1

; : : : ; i

n

)) with domain f1; 2; : : : ; ng. Accordingly, � = (w; �) is

written as (w; (i

1

; : : : ; i

n

)). This notation is called the standard form of a bi-order (or of a

text).

5.2. Texts and text languages 153

Note that the only bi-orders that are both primitive and sequential are the forward sequen-

tial bi-order of length 2, which will be denoted by �

f

in the sequel, the backward sequential

bi-order of length 2, denoted by �

b

, and the bi-order of length 1. The set of primitive bi-

orders of length > 1 is denoted by PRIM. The bi-orders in PRIM�f�

f

; �

b

g are called strictly

primitive. There are in�nitely many strictly primitive texts.

A text of length 1 is called a singleton text. A singleton text � represented by (�; (x); (x))

with �(x) = a 2 � is shortly denoted by a.

5.2.2 Hierarchical representation of texts

In the theory of 2-structures, the notion of a clan underlies the decomposition of 2-structures

by forming quotients. By repeatedly applying this quotient decomposition one obtains a

decomposition tree which is a hierarchical representation of a 2-structure.

In the case of bi-orders, bi-ordered trees serve as hierarchical representations. This notion

generalizes an ordered tree in that it is a tree t together with two orderings ord

1

(v) and ord

2

(v)

associated to its inner nodes such that for each inner node v, (ord

1

(v); ord

2

(v)) is a bi-order

on the children of v.

Remark 5.2.2 Note that equivalently, one can imagine a bi-ordered tree as an ordered tree

where each inner node is labeled by an (abstract) bi-order. Then for an inner node v, its

bi-order should be matched with its children in such a way that the �rst order is precisely the

order ord(v) from the tree. 2

Given a bi-ordered tree t, t represents a bi-order as follows. Similar to the situation for

ordered trees, the local linear orders ord

1

(v) and ord

2

(v) each induce a linear order on the

leaves of t. The bi-order represented by t is (�

1

; �

2

), where �

1

and �

2

are the respective induced

leave orderings.

Just as an ordered tree which is leaf-labeled hierarchically represents a word, viz. its

yield, a leaf-labeled bi-ordered tree t represents the text (w; �), where w is the yield of the

leaf-labeled ordered tree obtained from t by forgetting the second ordering function ord

2

, and

� is the bi-order represented by the underlying bi-ordered tree. The text represented by a

leaf-labeled bi-ordered tree t is denoted by txt(t).

Thus, a leaf-labeled bi-ordered tree is a hierarchical representation of a text. It corresponds

with a decomposition of the text by repeatedly forming quotients into clans (analogous to the

decomposition theory of 2-structures). Conversely, given a text � , each decomposition tree of

� , obtained by repeatedly dividing into clans, is a leaf-labeled bi-ordered tree which represents

� as described above. All this is best illustrated by an example.

Example 5.2.3 Consider the leaf-labeled bi-ordered tree t from Figure 5.1.

For each inner node, the �rst associated order on the children is the left-to-right order, and

the given label determines the second order (cf. Remark 5.2.2 { this label is the standard form

of the bi-order associated with the node). E.g., the second order on the children of the root is

�rst the middle child, then the rightmost child, and then the leftmost child. By naming the

leaves 1 to 8 from left to right, and reading from the tree the order on the leaves induced by

the second orders, we obtain the standard form of txt(t) : � = (abaccbaa; (5; 6; 7; 8; 3; 1; 4; 2)).

154 Chapter 5. Text Languages in an Algebraic Framework

s

(2,3,1)

@

@

@

@s

(3,1,4,2)

s

c

C

C

C

C

�

�

�

�

S

S

S

S

�

�

�

�s

a

s

b

s

a

s

c

s

b

s

a

s

a

s

A

A

A

A

�

�

�

�

(1,2,3)

�

�

�

�

Figure 5.1: bi-ordered tree representing � = (abaccbaa; (5; 6; 7; 8; 3; 1; 4; 2))

The tree t corresponds with the decomposition of � into f1; 2; 3; 4g, f5g, f6; 7; 8g at the

root level, followed by decomposing into singletons. Note that these subsets are indeed clans

of � , i.e., segments in both (

z }| {

1; 2; 3; 4;

z}|{

5 ;

z }| {

6; 7; 8) and (

z}|{

5 ;

z }| {

6; 7; 8;

z }| {

3; 1; 4; 2).

The node corresponding with f6; 7; 8g can be further re�ned into f6g and f7; 8g, and

thus we obtain the decomposition tree t

1

, depicted as the leftmost tree in Figure 5.2. By

additionally re�ning the root of the tree we obtain t

2

, the middle tree in the �gure. Note that

the node with associated bi-order (3; 1; 4; 2) allows no further re�nement. The rightmost tree

t

3

gives another decomposition of � , but t

3

is not obtained by re�ning t. Note that t

1

; t

2

; t

3

are indeed representing the text � . 2

Obviously, adding nodes with a single outgoing edge (i.e., chains) to a leaf-labeled bi-

ordered tree does not change the represented text. Throughout this paper, bi-ordered trees

are assumed not to have chains, unless they serve as \derivation trees" (see subsection 5.2.3).

For a (leaf-labeled) bi-ordered tree we write simply that an inner node is primitive (or

sequential) if the node is labeled by a primitive (or sequential) bi-order.

A primitive representation of a text � is a leaf-labeled bi-ordered tree representing � such

that each inner node is primitive. A primitive representation of a text � corresponds with a

\maximal" decomposition of � in the sense that further decomposing is impossible. In general

a text may have more than one primitive representation.

s

S

S

S

S

�

�

�

�s s

c

s

C

C

C

C

�

�

�

�

S

S

S

S

�

�

�

�s

a

s

b

s

a

s

c

C

C

C

C

�

�

�

�s

a

s

a

C

C

C

C

�

�

�

�s

b

s

(3,1,4,2)

(2,3,1)

(1,2)

(1,2)

s

(2,1)

�

�

�

�S

S

S

Ss

(3,1,4,2)

C

C

C

C

�

�

�

�

S

S

S

S

�

�

�

�s

a

s

b

s

a

s

c

s

(1,2)

C

C

C

C

�

�

�

�s

c

s

(1,2)

C

C

C

C

�

�

�

�s

b

s

(1,2)

C

C

C

C

�

�

�

�s

a

s

a

s

(2,1)

�

�

�

�

@

@

@

@s

(3,1,4,2)

C

C

C

C

�

�

�

�

S

S

S

S

�

�

�

�s

a

s

b

s

a

s

c

s

(1,2)

A

A

A

A

�

�

�

�s

(1,2)

C

C

C

C

�

�

�

�s

c

s

b

s

(1,2)

C

C

C

C

�

�

�

�s

a

s

a

Figure 5.2: three more representations for � = (abaccbaa; (5; 6; 7; 8; 3; 1; 4; 2))

5.2. Texts and text languages 155

s

C

C

C

C

�

�

�

�

S

S

S

S

�

�

�

�s

a

s

b

s

a

s

c

(3,1,4,2)

s

C

C

C

C

�

�

�

�

S

S

S

S

�

�

�

�s

c

s

b

s

a

s

a

(1,2,3,4)

s

�

�

�

�@

@

@

@

(2,1)

Figure 5.3: the shape of � = (abaccbaa; (5; 6; 7; 8; 3; 1; 4; 2))

The shape of a text � , denoted by shape(�), is the unique leaf-labeled bi-ordered tree

representing � such that each inner node is primitive or sequential and, for each forward

(backward) sequential node, none of its children is forward (backward, respectively) sequential.

The notion of a shape comes from the theory of 2-structures. The shape is obtained by

repeatedly decomposing into clans of maximal size that do not overlap other clans. This way

of partitioning forces the quotients to be primitive or sequential; the uniqueness of the shape

follows from the fact that such partitions are uniquely determined for each bi-order.

Example 5.2.4 In Example 5.2.3 neither t nor t

1

is a primitive representation or the shape of

� , since the root is neither primitive nor sequential. t

2

and t

3

are both primitive representations

of the text � . Neither of them is the shape of � , since the second child of the root is forward

sequential, and has a child which is also forward sequential. The shape of � is given in

Figure 5.3; its root is backward sequential, the second child of the root is forward sequential.

2

Given a primitive representation of � , the shape of � can be obtained by contracting

subsequent nodes with label �

f

into one forward sequential node, and contracting similarly

nodes with label �

b

. This entails the following result, shown in [12] (see also [11]).

Proposition 5.2.5 Each primitive representation of a text � can be obtained from shape(�)

by re�ning the sequential nodes into subtrees the nodes of which have associated bi-orders �

f

or �

b

.

We denote by op(�) the set of bi-orders occurring in a primitive representation of � . By

the above proposition this set is well-de�ned.

A leaf-labeled bi-ordered tree t representing a text � can be obtained by step-wise decom-

posing � . Conversely, one can view the recovering of � from t as a step-wise composition of � .

Then one step amounts to applying the operation of simultaneous substitution. For a bi-order

� of length m � 1, and texts �

1

= (w

1

; �

1

); : : : ; �

m

= (w

m

; �

m

), the text [� (�

1

; : : : ; �

m

)] is

de�ned as follows: let (�

1

; �

2

); (�

(1)

1

; �

(1)

2

); : : : ; (�

(m)

1

; �

(m)

2

) be representatives of �; �

1

; : : : �

m

with

mutually disjoint domains, then [� (�

1

; : : : ; �

m

)] is the text (w

1

� � �w

m

; �

0

) where �

0

is the

bi-order with representative (�

(�

1

(1))

1

+�

(�

1

(2))

1

+ � � �+�

(�

1

(m))

1

; �

(�

2

(1))

2

+�

(�

2

(2))

2

+ � � �+�

(�

2

(m))

2

).

For a leaf-labeled bi-ordered tree t, txt (t) can be obtained from t by repeatedly substituting

texts corresponding with subtrees into the bi-order associated with the parent of these subtrees.

156 Chapter 5. Text Languages in an Algebraic Framework

More precisely, if t is a leaf-labeled bi-ordered tree where the root has associated bi-order �,

and the direct subtrees of the root are t

1

; : : : ; t

m

, then txt(t) = [� (txt (t

1

); : : : ; txt (t

m

))].

The following proposition gives a reformulation of the fact that for each text one can

construct a primitive representation (see also [11]), and a consequence of the fact that such a

primitive representation is a re�nement of the shape (Proposition 5.2.5).

Proposition 5.2.6

(1) Each text can be obtained from singleton texts by repeated substitution into primitive bi-

orders.

(2) If � = [� (�

1

; : : : ; �

m

)] with � 2 PRIM, then for each primitive representation of � the

root has bi-order �; if � is strictly primitive, then the direct subtrees of its root are primitive

representations of �

1

; : : : ; �

m

, respectively.

We will also use the notion of singular substitution of texts, which is a special case of

simultaneous substitution. For a text � of length m with word(�) = a

1

� � � a

m

, a text �

0

,

and 1 � i � m, the substitution of �

0

into � at i, denoted by subst(�; i; �

0

), is the text

[� (a

1

; : : : ; a

i�1

; �

0

; a

i+1

; : : : ; a

m

)]. (Recall that here a

j

denotes the singleton text with

word a

j

). Singular substitution underlies the notion of a derivation step in a text grammar.

5.2.3 Text grammars

A set of texts K is called a text language. For an alphabet �, TXT(�) denotes the set of all

texts over �. Also, for a �nite subset � of PRIM, we use TXT

�

(�) to denote the set of texts

over � that have a primitive representation using only bi-orders from �, i.e., TXT

�

(�) is the

set of texts � over � for which op(�) � �.

A context-free text grammar is a 4-tuple G = (N;�; P; �

0

), where N and � are disjoint

alphabets, P is a �nite set of productions A! � , where A 2 N and � 2 TXT(N [�), and �

0

is a singleton text over N . As usual, we say that the letters of � are the terminals, and that

the letters of N are the nonterminals of the grammar.

Let G = (N;�; P; �

0

) be a text grammar.

Let � = (w; �) and �

0

be texts in TXT(N [�). � (directly) derives �

0

(in G), denoted

�)

G

�

0

, if there is a production A ! � 2 P and 1 � i � j� j with w(i) = A such that

�

0

= subst(�; i; �).

The transitive closure of)

G

is denoted by)

+

G

, and the re
exive and transitive closure by

)

�

G

. We omit the subscript G whenever the grammar G is clear from the context.

TxL(G) denotes the text language generated by G, i.e., TxL(G) = f� 2 TXT(�) j

�

0

)

�

G

�g.

Next we de�ne derivation trees in the text grammar G. First recall that in a bi-ordered

tree, with each inner node v a bi-order (ord

1

(v); ord

2

(v)) on its children is associated. Now in

a node-labeled bi-ordered tree, we can associate with each inner node v a text on its children,

where the word of the text is formed by the labels of the children according to the �rst ordering

ord

1

(v). For a node-labeled bi-ordered tree t, we denote by di(t) the leaf-labeled bi-ordered

tree that is obtained from t by removing the labels of the inner nodes, and, if occurring, its

chains.

5.2. Texts and text languages 157

Now for a text � 2 TXT(N [�) and A 2 N , a derivation tree of � from A in G is a

node-labeled bi-ordered tree t such that the root has label A, di(t) represents � , and for each

inner node v of t, the production B ! � is a production of P , where B is the label of v and

� is the text associated to v as described above. As usual, for A 2 N , and � 2 TXT(N [�),

A)

�

� i� there is a derivation tree of � from A. By a derivation tree we mean a derivation

tree of some � 2 TXT(�) from S, where S is the nonterminal specifying �

0

. We denote by

Di(G) the set fdi(t) j t is a derivation tree in Gg.

A text language K is a context-free text language if there exists a context-free text grammar

G such that K = TxL(G). In [12] it was shown that every context-free text language has

�nitely many primitive subtexts. Consequently, we have the following result, where op(K) =

fop(�) j � 2 Kg.

Proposition 5.2.7 For each context-free text language K, op(K) is �nite.

Hence for every context-free text language K, there exists a �nite subset � � PRIM and

an alphabet � such that K � TXT

�

(�).

By a standard construction productions of the form A ! B with A;B nonterminals can

be eliminated, i.e., each context-free text grammar has an equivalent chain-free grammar.

Therefore, in what follows we assume that each context-free text grammar is chain-free. Hence

the only possible chains in derivation trees are ending in a leaf. Also, obviously, we may assume

that text grammars are reduced, i.e., for each nonterminal A there is a derivation of a text of

the generated language that uses A.

By decomposing the right-hand sides one obtains for each context-free grammar an equiv-

alent text grammar in so-called primitive normal form. A context-free text grammar G =

(N;�; P; �

0

) is in primitive normal form, abbreviated PNF, if for each production A ! � in

P , � is a primitive text. G is in Chomsky-like primitive normal form, abbreviated CPNF, if

G is in PNF and for each production A! � , either word(�) 2 �, or word(�) 2 N

+

.

Note that for each derivation tree t of a context-free text grammar in PNF di(t) is a

primitive representation of the generated text. For the following class of text grammars the

derivation trees are the shapes of the generated texts.

De�nition 5.2.8

(1) A context-free text grammar G is shapely if Di(G) = fshape(�) j � 2 TxL(G)g.

(2) A text language K is shapely if there is a shapely grammar generating K.

A text language K is limited i� there exists a constant C such that, for each � 2 K, the

outdegree of the nodes in the shape of � is bounded by C. By Proposition 5.2.7, for a context-

free text language the outdegree of primitive nodes in the shapes is bounded. However, the

sequential nodes in the shapes may in general be of unbounded outdegree. The requirement

that these too are bounded forms a necessary and also su�cient condition for the language to

be shapely.

Proposition 5.2.9 ([12, Theorem 4.6.4]) A text language K is shapely i� K is context-free

and limited.

158 Chapter 5. Text Languages in an Algebraic Framework

To show the non-context-freeness of text languages, we may use the following pumping

lemma, where the meaning of the notation subst

k

(�; i; �

0

) is inductively de�ned as �

0

if k = 0,

and as subst(�; i; subst

k�1

(�; i; �

0

)) for k > 0.

Proposition 5.2.10 ([12, Theorem 4.7.4]) Let K be a context-free text language. There exist

constants p and q such that for each � 2 K with j� j > p, there exist texts �

1

; �

2

; �

3

, 1 � i � j�

1

j,

1 � j � j�

2

j such that

(1) � = subst(�

1

; i; subst(�

2

; j; �

3

)),

(2) j�

2

j > 1,

(3) jsubst(�

2

; j; �

3

)j � q,

(4) for each k � 0, subst (�

1

; i; subst

k

(�

2

; j; �

3

)) 2 K.

5.3 An algebra of texts

We give an algebraic structure to the set of texts TXT

�

(�), where � is a �nite subset of

PRIM, and � is a (�nite) alphabet. Each of the primitive bi-orders � 2 � will act as an

operator on TXT

�

(�); its associated mapping is the simultaneous substitution in �.

Let � = � [� be the ranked alphabet such that the rank of each � 2 � is j�j and the

rank of each a 2 � is 0. Then T

�

= (TXT

�

(�);�) is the �-algebra de�ned by �

T

�

(�

1

; : : : ; �

m

)

= [� (�

1

; : : : ; �

m

)] for � 2 �

m

, m � 2, �

1

; : : : ; �

m

2 TXT

�

(�), and a

T

�

= a for a 2 �

0

.

Let F

�

= (F

�

;�) be the term �-algebra. As mentioned in subsection 5.1.1 we think of

the elements of F

�

as trees; for this speci�c choice of � as � [�, the trees in F

�

are, by

Remark 5.2.2, primitive bi-ordered trees which are hierarchical representations of texts over

�. Hence the notion of a primitive representation of a text is in this setting an algebraic

expression of a text.

The mapping txt : F

�

! TXT

�

(�) which assigns to each t 2 F

�

the text txt(t) repre-

sented by t is a homomorphism of �-algebras. First of all, it should be noted that txt(F

�

) �

TXT

�

(�), because, for each tree t 2 F

�

, op(txt(t)) consists of bi-orders labeling inner nodes

of t, and so op(txt (t)) � �. Also, txt is indeed a homomorphism, since for each a 2 �,

txt (a) = a = a

T

�

, and for each � 2 �

m

, m � 2, and all t

1

; : : : ; t

m

2 F

�

, txt(�ht

1

� � � t

m

i) =

[� (txt(t

1

); : : : ; txt(t

m

))], as explained in subsection 5.2.2.

Hence txt is the unique homomorphism from the initial term �-algebra F

�

to T

�

. By

Proposition 5.2.6(1), txt is surjective. We conclude that T

�

is generated by � and that T

�

is

isomorphic with the quotient algebra F

�

= ker(txt).

Consider the congruence given by the kernel of txt . Two primitive bi-ordered trees are

in the same congruence class i� they represent the same text. By Proposition 5.2.5, such

trees di�er only in the way the sequential nodes of the shape are re�ned. It follows that

ker(txt) is precisely the congruence generated by the equations �

f

hu�

f

hvwii = �

f

h�

f

huviwi,

�

b

hu�

b

hvwii = �

b

h�

b

huviwi, where u; v; w are variables. Hence T

�

is a T -algebra, where T is

the theory (�; E) such that E is the set consisting of the above two equations expressing the

associativity of �

f

and �

b

. Moreover, T

�

, being isomorphic with the quotient term algebra

F

�

= ker(txt), is initial in the class of T -algebras. Of course, if some of the operations �

f

; �

b

are

not in �, then we restrict E to a subset of these equations. In particular, if � \ f�

f

; �

b

g = ;,

then E = ; , and T

�

is isomorphic with the term �-algebra F

�

.

5.3. An algebra of texts 159

Note also that if � = f�

x

g, with x 2 ff; bg, then the corresponding �-algebra of sequential

texts T

�

= (TXT

f�

x

g

(�);�), with � = f�

x

g [�, is isomorphic with the semi-group �

+

seen

as a �-algebra (see subsection 5.1.1).

Remark 5.3.1

One could add the (primitive) bi-order of length 1 as a unary operation to the ranked alphabet

�. Its interpretation in T

�

is the identity, and the terms in F

�

describe then also trees with

chains. If the equation `�

1

(v) = v', where �

1

stands for the bi-order of length 1 is added to E,

then again T

�

is a T -algebra, with T = (�; E). Including �

1

in this way would not a�ect any

of the results in this paper, but for technical simplicity we have chosen to leave it out. 2

We consider recognizability and equationality of text languages, interpreting De�nit-

ions 5.1.1 and 5.1.3 in a �-algebra T

�

of texts as described above. Note that if K is a

recognizable (or equational) text language in this sense, then for every choice of � and �

such that K � TXT

�

(�), K is recognizable (or equational) w.r.t. the corresponding ranked

alphabet � = � [�.

In particular, for a forward sequential text language K, K is recognizable or equational

i� K is a recognizable or equational subset of TXT

f�

f

g

(�) i� the underlying word language

is recognizable or equational w.r.t. the isomorphic f�

f

g [�-algebra �

+

. This immediately

provides easy examples of text languages that are equational but not recognizable, e.g., the

text language f(a

n

b

n

; (1; : : : ; 2n)) j n � 1g.

We will show that the equational languages are precisely the context-free text languages.

Recall that every context-free language, as every equational language, is a subset of TXT

�

(�)

for some �nite � � PRIM and �.

Remark 5.3.2 There is a close correspondence between context-free text grammars for text

languages in TXT

�

(�), and regular tree grammars generating tree languages in F

�

.

For a regular tree grammar H = (N;�; P; S), we denote by txt (H) the text grammar

(N;�; P

0

; S), where P

0

= fA ! txt (t) j A ! t 2 Pg. Then TxL(txt(H)) = txt (TrL(H)). If

H is in normal form, then txt(H) is in CPNF, and Di(txt(H)) = TrL(H).

Conversely, let G = (N;�; P; S) be a context-free text grammar. Let H = (N;�; P

0

; S)

be a regular tree grammar such that P

0

contains for each A ! � 2 P one production A ! t

where t 2 F

�

is such that txt (t) = � . Then txt(TrL(H)) = TxL(G). If G is in CPNF, then H

is in normal form, and Di(G) = TrL(H). 2

Example 5.3.3 Let G = (N;�; P; S) be the context-free text grammar such that N =

fS;A;Cg;� = fa; cg, and P consists of the productions

S ! (AS; (1; 2)); A! (aC; (2; 1)); C ! (cCac; (3; 1; 4; 2)); S ! a;C ! c;A! a.

Then the regular tree grammar H = (N;�; P

0

; S) generates Di(G), where P

0

consists of

the productions S ! �

f

hASi, A! �

b

haCi, C ! �hcCaci, S ! a, C ! c, A! a, where � is

the abstract bi-order with standard form (3; 1; 4; 2). 2

Lemma 5.3.4 A text language is equational i� it is context-free.

160 Chapter 5. Text Languages in an Algebraic Framework

Proof. Let K be a text language. It follows from Remark 5.3.2 that K is context-free i�

there exists a tree language T , generated by a regular tree grammar, such that txt(T) = K.

By Theorem 5.1.4(1) and (5) and the fact that a tree language is generated by a regular tree

grammar i� it is equational (see subsection 5.1.1), it follows that K is context-free i� K is

equational. 2

Through this connection between polynomial systems and text grammars, the construction

in [25, Lemma 3.1] which yields a \normal form" for polynomial systems is related to the result

(in [12]) that each context-free text language has a context-free text grammar in CPNF. Also,

this connection is a special case of the situation described in [5], see also [4], where it is shown

that given a �-algebra A = (A;�), one can de�ne a well-behaved substitution device in A

such that the equational subsets of A given by a polynomial system are precisely the sets

generated (using this substitution) by an \abstract" context-free grammar.

We end this section by formulating the consequences for text languages following from

subsection 5.1.1 and this section.

Theorem 5.3.5 Let K � TXT

�

(�) be a text language.

(1) K is context-free i� it equals txt (T) for some recognizable tree language T .

(2) K is recognizable i� txt

�1

(K) is a recognizable tree language.

(3) If K is recognizable, then K is context-free. 2

5.4 Recognizable text languages

We have seen that equational text languages coincide with the text languages generated by

context-free text grammars, which were investigated in [12].

We now consider the family of recognizable text languages. Like for generated algebras in

general, in the case of texts the class of recognizable sets is included in the class of equational

sets. Hence, each recognizable text language is generated by a context-free text grammar

(Theorem 5.3.5(3)). Like for words, but unlike trees, this inclusion of recognizable sets in

equational sets is strict. As the main result of this section we give a grammatical character-

ization of the recognizable text languages by restricting the context-free text grammars to a

natural subclass. This generalizes to texts the well-known characterization of regular word

languages by right-linear grammars.

Previously we have de�ned recognizability of text languages using �nite algebras. Refor-

mulating Proposition 5.1.2, which characterizes the recognizable subsets of an algebra in terms

of their N�erode congruences, we obtain the following result.

Lemma 5.4.1 A text language K � TXT

�

(�) is recognizable i� the congruence

�

=

K

is �nite,

where for �

1

; �

2

2 TXT

�

(�), �

1

�

=

K

�

2

i� for all � 2 TXT

�

(�), and for all i with 1 � i � j� j,

subst(�; i; �

1

) 2 K i� subst (�; i; �

2

) 2 K. 2

Each text has a natural structure, its shape. As we have discussed, all primitive hierarchical

representations of a text di�er from the shape only by the re�nement of sequential nodes into

binary subtrees. This implies that if the root of the shape is strictly primitive, then this is the

5.4. Recognizable text languages 161

root of every primitive representation of the text (see Proposition 5.2.6(2)). As a derivation

tree for a context-free text grammar gives a representation for the derived text we can translate

this observation to derivations in text grammars.

Lemma 5.4.2 Let G = (N;�; P; �

0

) be a context-free text grammar in PNF. Let � 2 PRIM

with j�j = m > 2, and let � = [� (�

1

; : : : ; �

m

)], where �

1

; : : : ; �

m

2 TXT(N [�). Then

A)

�

� i� there exist A

1

; : : : ; A

m

2 N [� such that A ! (A

1

� � �A

m

; �) and A

j

)

�

�

j

for

j = 1; : : : ;m. 2

More generally, in a derivation tree of a text the subtrees consisting of strictly primitive

nodes are determined by the text itself (i.e., by its shape). The only structural freedom in

deriving a text lies in the possible decompositions for the sequential nodes of the shape. A

natural restriction to context-free text grammars is to force the grammar to choose right-

linear derivations for these sequential (word-like) substructures. In other words, we forbid

left-recursion in derivation trees: subtrees of the form �

x

h�

x

ht

1

t

2

it

3

i where x 2 ff; bg. Note

that each text � has a unique primitive representation that has no left recursion; we denote

this tree by nlr (�).

We formulate this requirement in terms of productions, rather than in terms of derivation

trees.

De�nition 5.4.3 A context-free text grammarG = (N;�; P; �

0

) is right-linear if G is in PNF

and for each production A ! (BC; �

x

) 2 P , with A;B 2 N;C 2 N [�, and x 2 fb; fg, if

B ! (w; �) 2 P , then � 6= �

x

.

Example 5.4.4 Let G = (N;�; P; S) be the context-free text grammar such that N =

fS;A;B;Cg;� = fa; b; cg, and P consists of the productions S ! (AS; (1; 2)), S ! b,

A! (aB; (2; 1)), B ! (AB; (1; 2)), B ! b, A! (cB; (1; 2)). Then G is not right-linear, since

S ! (AS; (1; 2)) 2 P , and A! (cB; (1; 2)) 2 P . 2

Lemma 5.4.5 A context-free text grammar G is right-linear i� Di(G) = nlr (TxL(G)). 2

The following observation turns out to be crucial in our considerations on right-linear

grammars. It is a reformulation of the intuition that sequential substructures of a text are

generated by the grammar in a right-linear way. We say that a text � is of type x 2 ff; bg if

the root of a primitive representation of � has label �

x

(cf. Proposition 5.2.6(2)).

Lemma 5.4.6 Let G = (N;�; P; �

0

) be a right-linear text grammar.

A)

�

[�

x

 (�

1

; �

2

)] for x 2 ff; bg, A 2 N , and texts �

1

and �

2

over N [�, i� there exists a

B 2 N such that A)

�

[�

x

 (�

1

; B)] and B)

�

�

2

. Additionally, if �

1

is not of type x, then

A)

�

[�

x

 (�

1

; �

2

)] i� there exists a production A ! (CB; �

x

), where C 2 N is such that

C)

�

�

1

. 2

It is perhaps instructive to notice that in the case of words this lemma says that in a

right-linear grammar A)

�

w

1

w

2

i� there is a B such that A)

�

w

1

B and B)

�

w

2

.

162 Chapter 5. Text Languages in an Algebraic Framework

In the de�nition of right-linearity we have forced the context-free grammar to generate

texts according to a speci�c structure on the derivation trees. We will now de�ne a dual class

of grammars. Rather than choosing one normal form for the derivation trees we will impose

on the grammar that if it generates a text in any way, then it can also do so according to all

primitive representations of the text. This notion generalizes the property of Lemma 5.4.2 to

the case where j�j = 2.

De�nition 5.4.7 A context-free text grammar G = (N;�; P; �

0

) is complete if G is in PNF

and for each A 2 N , and for each � = [�

x

 (�

1

; �

2

)], where x 2 ff; bg and �

1

; �

2

2 TXT(�),

if A)

�

� , then there exist A

1

; A

2

2 N [� such that A! (A

1

A

2

; �

x

) 2 P and A

j

)

�

�

j

for

j = 1; 2.

Note that every complete text grammar has an equivalent complete text grammar in CPNF.

The completeness property is perhaps more intuitive when stated in terms of derivation

trees of the grammar.

Lemma 5.4.8 A context-free text grammar G is complete i� Di(G) = txt

�1

(TxL(G)). 2

It turns out that complete grammars and right-linear grammars characterize recognizable

text languages.

Theorem 5.4.9 Let K be a text language. The following statements are equivalent.

(1) K is recognizable.

(2) There is a complete context-free text grammar G such that K = TxL(G).

(3) There is a right-linear context-free text grammar G such that K = TxL(G).

Proof. Note that (in each of the three cases) we can assume that � and � are given such

that K � TXT

�

(�); let � = � [� be the corresponding ranked alphabet.

(1)) (2). If K is recognizable, then by Theorem 2.4(2), txt

�1

(K) � F

�

is recognizable, and

hence there is a regular tree grammar H for txt

�1

(K). We may assume that H is in normal

form. Since K = txt(txt

�1

(K)), the context-free text grammar G = txt(H) generates K, and

Di(G) = txt

�1

(K) (see Remark 2.1). Hence, by Lemma 5.4.8, G is complete.

(2)) (3). Let G = (N;�; P; �

0

) be a complete context-free text grammar in CPNF such

that TxL(G) = K. We transform G into a right-linear text grammar by forcing it to choose

right-linear derivation trees.

Formally, let G

0

= (N

0

;�; P

0

; �

0

) be the context-free text grammar with

N

0

= N [fA

f

; A

b

j A 2 Ng, and

P

0

= fA

0

! (w; �) j A! (w; �) 2 P;A

0

2 fA;A

f

; A

b

g; � 62 f�

b

; �

f

gg

[fA

0

! (B

x

C; �

x

) j A! (BC; �

x

) 2 P;A

0

2 fA;A

y

g with y 6= x; x 2 ff; bgg:

It is not di�cult to see that G

0

is a right-linear context-free text grammar, and that TxL(G

0

) �

TxL(G). Since G is complete, by Lemma 5.4.8, for each text � 2 TxL(G) there is a derivation

tree in G without left recursion. This derivation tree can be made into a derivation tree of

5.4. Recognizable text languages 163

� in G

0

by adding superscripts f and b to some of the nonterminal labels. Hence TxL(G) =

TxL(G

0

).

(3)) (1). Let G = (N;�; P; S) be a right-linear grammar in CPNF such that TxL(G) = K.

Based on G, we will de�ne a �nite �-algebra Q = (Q;�), and a homomorphism h : T

�

! Q

such that K = h

�1

(F) for some F � Q.

Let W be the set N � ff; bg � N . Let Q = 2

N[W

, and let Q = (Q;�) be the �-algebra

de�ned as follows :

(i) For a 2 �

0

, let V = fA 2 N j A! a 2 Pg. Then

a

Q

= V [f(A;x;C) 2 W j A! (BC; �

x

) 2 P;B 2 V g:

(ii) For � 2 �

m

, m > 2, V

1

; : : : ; V

m

2 Q, let

V = fA 2 N j A! (A

1

� � �A

m

; �) 2 P;A

i

2 V

i

for i = 1; : : : ;mg:

Then

�

Q

(V

1

; : : : ; V

m

) = V [f(A;x;C) 2 W j A! (BC; �

x

) 2 P;B 2 V g:

(iii) For x 2 ff; bg, V

1

; V

2

2 Q, let

V = fA 2 N j (A;x;C) 2 V

1

; C 2 V

2

g:

Then

�

Q

x

(V

1

; V

2

) = V

[f(A;x;C) 2 W j (A;x;B) 2 V

1

; (B;x;C) 2 V

2

g

[f(A; y;C) 2 W j A! (BC; �

y

) 2 P;B 2 V g, where y 6= x:

For notational convenience, we will use � �

x

B as shorthand for [�

x

 (�;B)], where

x 2 ff; bg, B 2 N , and � 2 TXT

�

(�).

Let h : TXT

�

(�)! Q be the mapping such that

h(�) = fA 2 N j A)

�

�g [f(A;x;C) 2 W j A)

�

� �

x

Cg:

Claim 5.4.10 h is a homomorphism from T

�

to Q.

Proof.

(i) Let a 2 �. Since G is in CPNF, A)

�

a i� A ! a 2 P , and A)

�

a�

x

C i�

there is a B 2 N such that A ! (BC; �

x

) 2 P and B ! a 2 P . It follows that

h(a

T

�

) = h(a) = a

Q

.

(ii) Let � 2 �

m

, m > 2, let �

1

; : : : ; �

m

2 TXT

�

(�), and let � = �

T

�

(�

1

; : : : ; �

m

) =

[� (�

1

; : : : ; �

m

)]. By Lemma 5.4.2, and since G is in CPNF, A)

�

� i� there

exist A

1

; : : : ; A

m

2 N such that A! (A

1

� � �A

m

; �) and A

j

)

�

�

j

for j = 1; : : :m.

Using Lemma 5.4.6, we see that A)

�

� �

x

C i� there is a B 2 N such

that A ! (BC; �

x

) 2 P and B)

�

� . Hence, A 2 h(�) i� there exists A !

164 Chapter 5. Text Languages in an Algebraic Framework

(A

1

� � �A

m

; �) 2 P such that A

j

2 h(�

j

) for j = 1; : : : ;m, and (A;x;C) 2 h(�) i�

there exists A! (BC; �

x

) 2 P such that B 2 h(�).

Consequently h(�) = h(�

T

�

(�

1

; : : : ; �

m

)) = �

Q

(h(�

1

); : : : ; h(�

m

)).

(iii) Let x 2 ff; bg, let �

1

; �

2

2 TXT

�

(�), and let � = �

T

�

x

(�

1

; �

2

) = [�

x

 (�

1

; �

2

)].

By Lemma 5.4.6, A)

�

� i� there exists a C 2 N such that A)

�

�

1

�

x

C and

C)

�

�

2

. Hence A 2 h(�) i� (A;x;C) 2 h(�

1

) and C 2 h(�

2

) for some C 2 N .

Since � = �

T

�

x

(�

1

; �

2

), we may write � �

x

C = [�

x

 (�

1

; �

2

�

x

C)] due to the

associativity of �

x

. As before, A)

�

� �

x

C i� there exists a B 2 N such that

A)

�

�

1

�

x

B and B)

�

�

2

�

x

C. Hence (A;x;C) 2 h(�) i� (A;x;B) 2 h(�

1

) and

(B;x;C) 2 h(�

2

) for some B 2 N .

Using once more Lemma 5.4.6, observe that A)

�

� �

y

C i� there is a B 2 N

such that A ! (BC; �

y

) 2 P and B)

�

� . Hence for y 6= x, (A; y;C) 2 h(�) i�

A! (BC; �

y

) 2 P and B 2 h(�) for some B 2 N .

By combining the above three cases it follows that h(�) = �

Q

x

(h(�

1

); h(�

2

)). 2

Note that the above homomorphism h from T

�

to Q is unique, by the fact that T

�

is an

initial T -algebra over the theory T given in the previous section. Also Q itself is a T -algebra,

since �

f

and �

b

are associative in Q.

Now let F � Q be the set fV 2 Q j S 2 V g. Then h

�1

(F) = f� 2 TXT

�

(�) j h(�) 2 Fg =

f� 2 TXT

�

(�) j S 2 h(�)g = f� 2 TXT

�

(�) j S)

�

�g = K. Hence K is recognizable. 2

Theorem 5.4.9 can be understood as follows. Each context-free text language TxL(G) is

of the form txt(Di(G)), where Di(G) is a recognizable tree language. By requiring that G is

complete, it is ensured that Di(G) is a so-called \saturated" subset of trees; right-linearity of G

ensures that Di(G) is a subset of \well-formed representatives". For both types of recognizable

tree languages we have that the corresponding text languages are recognizable.

The next theorem says that shapely text languages form a proper subclass of the class of

recognizable text languages.

Theorem 5.4.11 Let K be a text language. The following statements are equivalent.

(1) K is shapely.

(2) K is recognizable and limited.

(3) K is context-free and limited.

Proof.

(1) , (3) This is Proposition 5.2.9.

(1)) (2) Let G be a reduced shapely grammar for K. By Proposition 5.2.9, K is limited.

We continue by showing that K is recognizable. G can be transformed into an equivalent text

grammar by replacing each sequential production A! (B

1

� � �B

m

; �) by the set of productions

A ! (B

1

A

1

; �

x

), A

1

! (B

2

A

2

; �

x

); : : : ; A

m�2

! (B

m�1

B

m

; �

x

), where A

1

; : : : ; A

m�2

are new

nonterminals, and x = f or x = b when � is forward or backward sequential, respectively.

Note that from the shapeliness of G it follows that there are no sequential productions (of

the same type as �) applicable to any of the nonterminals B

1

; : : : ; B

m

. Hence the resulting

grammar is right-linear, and, by Theorem 5.4.9, K is recognizable.

(2)) (3) Follows immediately from Theorem 5.3.5(3). 2

5.5. Comparing text, word, tree languages 165

'

&

$

%

'

&

$

%

'

&

$

%

CFT

RECT

SHAP

LIM

Figure 5.4: families of text languages

The diagram in Figure 5.4 represents the situation. Here CFT, RECT, SHAP, and LIM

denote the families of all context-free, recognizable, shapely, and limited text languages, re-

spectively.

5.5 Comparing text, word, tree languages

In comparing texts with words and trees, we take two approaches. First, more or less on

the surface, one may view them as three types of objects, ordered by decreasing structure:

(bi-ordered) trees can be projected onto texts, and texts can be projected onto words. The

other point of view is that words and trees are \inside" a text: they compose the internal

structure of a text, in the form of sequential nodes and strictly primitive subtrees of its shape.

We start by taking the �rst point of view. For given � and � with corresponding ranked

alphabet � = � [�, the projections involved are the mappings txt : F

�

! TXT

�

(�), and

word : TXT

�

(�)! �

+

.

The question addressed here is then: how do these mappings behave with respect to the

notions of recognizability and equationality?

For txt we obtained some results by applying Theorem 5.1.4 (see Theorem 5.3.5). For

word we can do the same: one may view it as a homomorphism of �-algebras, where every

operation of � of rank m � 2 is interpreted in �

+

as the concatenation of m words.

If �

2

6= ;, which is the case i� word is surjective, then the notions of recognizability and

equationality are stable under this extension of the semi-group �

+

to a �-algebra. Hence in

that case Theorem 5.1.4 can be applied directly. Table 5.1 presents the results, where we have

added the projection from trees to words, yield : F

�

! �

+

(which is de�ned for an arbitrary

ranked alphabet � with �

0

= �, see also [21]). Here we say that a mapping re
ects a property

of languages if, given that the image of a language has the property, it follows that the original

language has the property. Recall that for tree languages, equationality and recognizability

coincide.

In the case that �

2

= ;, then at the places where \(if)" is added the claim is not immediate

for the mappings word and yield ; a su�cient condition is that word(word

�1

(L)) = L and that

yield (yield

�1

(L)) = L, respectively.

166 Chapter 5. Text Languages in an Algebraic Framework

Table 5.1: behaviour with respect to equationality and recognizability

preserves re
ects

word , txt , equat. yes no

yield recogn. no no

word

�1

, txt

�1

, equat. no yes (if)

yield

�1

recogn. yes yes (if)

We now illustrate the no's in the table by giving some examples. First note that the

fact that recognizability is not preserved is a consequence of Theorem 5.1.4(5) and Proposi-

tion 5.1.5, and that by claim (3) of Theorem 5.1.4 it can be shown that txt

�1

and yield

�1

do

not preserve equationality.

The �rst example in Example 5.5.1 con�rms that txt and yield do not re
ect recognizability

(nor equationality). The second example shows that also word does not re
ect recognizability

or equationality: a non-context-free text language with a recognizable underlying word lan-

guage is given. Even if we restrict ourselves a priori to context-free text languages, then still

word does not re
ect recognizability, as is shown in the third example. This example also

illustrates that, as opposed to the case of word languages, not all context-free text languages

over a one-letter alphabet are recognizable.

Then the only claim left in the above table is that word

�1

does not preserve equationality,

which is shown by the fourth example.

Example 5.5.1

(1) Let T be the tree language f�

f

ht

(n)

`

t

(n)

r

i j n � 1g, where t

(n)

`

and t

(n)

r

are trees inductively

de�ned by t

(1)

`

= t

(1)

r

= a and for n > 1, t

(n)

`

= �

f

ht

(n�1)

`

ai and t

(n)

r

= �

f

hat

(n�1)

r

i. The tree

language T is not recognizable, whereas txt (T) and yield (T) are.

(2) Let � be a primitive bi-order such that j�j = 4. Let K be the text language that consists

of all texts with a shape as sketched in Figure 5.5.

Then word(K) = fa

6n+4

j n � 0g is a recognizable word language. Using Proposition 5.2.10

it can be shown that K is not context-free.

(3) Let G = (N;�; P; S) be a context-free text grammar such that N = fS;A;Bg, � = fag,

and P consists of the productions S ! (ASB; (1; 2; 3)), S ! (AB; (1; 2)), A! (a

4

; (2; 4; 1; 3)),

B ! (a

5

; (2; 5; 3; 1; 4)).

Let K = TxL(G). Then word(K) = fa

9n

j n � 1g. Clearly, word(K) is a recognizable

word language. However, K is not a recognizable text language. We will show this using

Lemma 5.4.1. For j � 1, we de�ne �

j

and �

j

as follows. Let (�

1

; �

2

; �

3

; �

4

) = (2; 4; 1; 3), and

(�

1

; �

2

; �

3

; �

4

; �

5

) = (2; 5; 3; 1; 4). If j = 4k + m with m 2 f1; 2; 3; 4g, then �

j

= 4k + �

m

; if

j = 5k +m with m 2 f1; 2; 3; 4; 5g, then �

j

= 5k + �

m

. Then we can write K as

f(a

9n

; (�

1

; : : : ; �

4n

; 4n + �

1

; : : : ; 4n+ �

5n

) j n � 1g:

For i � 1, let �

(i)

be the text represented by (a

5i

; (�

1

; : : : ; �

5i

)). Then for all i; j � 1 with i 6= j,

there exists a text � such that j� j = 4i+1, subst(�; 4i+1; �

(i)

) 2 K and subst(�; 4i+1; �

(j)

) 62 K.

5.5. Comparing text, word, tree languages 167

s

ss�

�

�B

B

B

�

a a

s

s sss

p

p

p

p

p

�

�

�@

@

@�

�

�B

B

B

�

a a

�

�

�

�

Z

Z

Z

Zs

s sss�

�

�@

@

@�

�

�B

B

B

a a

�

aa

a

s

s sss�

�

�@

@

@�

�

�B

B

B

a a

�

aa

s

p

p

p

p

p

s sss�

�

�@

@

@�

�

�B

B

B

�

a a a

��

Figure 5.5: the shapes of a non-context-free text language

Hence for all i; j with i 6= j, �

(i)

6

�

=

K

�

(j)

, which implies that 6

�

=

K

is not �nite. By Lemma 5.4.1,

K is not recognizable.

(4) Let L be the context-free word language fa

3n+2

b

3n+2

j n � 0g. Let � be a ranked alphabet

containing the bi-order � from (2). Then the texts with a shape as in Figure 5.5 but with

underlying word a

3n+2

b

3n+2

are in word

�1

(L). It follows that word

�1

(L) is not a context-free

text language, otherwise we could infer from Proposition 5.2.10 that word

�1

(L) contains a

text � with word(�) = a

i

b

j

with i 6= j. 2

In the case of word, claim (5) of Theorem 5.1.4 says that each context-free word language

is the projection of a context-free text language. This was noticed in [12], where moreover it

was shown that each context-free word language is the projection of a shapely language.

We now take the second point of view, i.e., seeing words and trees as blocks comprising

a text. Intuitively, since recognizability and equationality coincide for tree languages, rec-

ognizability of context-free text languages depends only on the word parts. To make this

observation explicit, we in some way \extract" word languages from a context-free text gram-

mar. Then a text language is context-free, recognizable, shapely i� these \extracted word

languages" are context-free, recognizable, �nite (Theorem 5.5.2). This characterization is in

particular helpful in the next section, where we consider closure properties.

Formally, we proceed as follows. Let G = (N;�; P; �

0

) be a context-free text grammar in

PNF. De�ne V

p;G

; V

f;G

; V

b;G

� N as follows:

V

p;G

= fA 2 N j there exists A! � 2 P with � strictly primitiveg,

V

f;G

= fA 2 N j there exists A! (w; �

f

) 2 Pg,

V

b;G

= fA 2 N j there exists A! (w; �

b

) 2 Pg.

Let i

f

and i

b

denote the two embeddings from �

+

to TXT(�) de�ned by, for w 2 �

+

with

jwj = n, i

f

(w) = (w; (1; 2; : : : ; n)), and i

b

(w) = (w; (n; : : : ; 2; 1)).

For x 2 ff; bg, de�ne �

x;G

= V

p;G

[V

y;G

[�, where y 2 ff; bg is such that y 6= x, and for

A 2 N , let

L

x;G

(A) = fw 2 �

+

x;G

j A)

+

i

x

(w)g:

168 Chapter 5. Text Languages in an Algebraic Framework

Note that if A 62 V

x;G

, then L

x;G

(A) is empty or a set of singletons. Finally, let

L

G

= fL

x;G

(A) j A 2 N;x 2 ff; bgg:

Theorem 5.5.2 Let K be a text language.

(1) K is context-free i� there exists a context-free text grammar G in PNF generating K such

that each L 2 L

G

is a context-free word language.

(2) K is recognizable i� there exists a context-free text grammar G in PNF generating K such

that each L 2 L

G

is a recognizable word language.

(3) K is shapely i� there exists a context-free text grammar G in PNF generating K such that

each L 2 L

G

is a �nite word language.

Proof. We will use the notations given above, where we omit the subscript G if the context-

free text grammar G is clear from the context. Note that for the proof it su�ces to consider

the languages L 2 L

G

of the form L

x

(A) with A 2 V

x

.

(1) The if-part is, of course, trivial. Let K be a context-free text language, and let G =

(N;�; P; �

0

) be a context-free text grammar in PNF for K. Consider L 2 L

G

. Suppose that

L = L

f

(A) for some A 2 V

f

. We show that L is a context-free word language by giving a

context-free word grammar for L. The set of nonterminals is N

f

= fA

f

j A 2 V

f

g and the set

of productions is

P

f;A

= fA

f

! w j A! i

f

(w

0

) 2 P;w 2 '(w

0

)g;

where ' is the substitution such that for B 2 N [�,

'(B) =

8

>

<

>

:

fB

f

g B 2 V

f

� (V

p

[V

b

)

fB

f

; Bg if B 2 V

f

\ (V

p

[V

b

)

fBg otherwise

:

Then for the context-free word grammar G

0

= (N

f

;�

f

; P

f;A

; A

f

), L(G

0

) = L

f

(A) = L.

Similarly, if L = L

b

(A) for some A 2 V

b

, then L is a context-free word language.

(2) Let K be a recognizable text language, and let G be a right-linear context-free text

grammar for K. Then the context-free grammar G

0

constructed for L 2 L

G

as in (1) is a

right-linear word grammar. Hence L = L(G

0

) is a recognizable word language.

Suppose that G is a context-free text grammar forK such that each L 2 L

G

is recognizable.

For each L 2 L

G

, let G

L

be a right-linear context-free word grammar in Chomsky normal form

with production-set P

L

. These grammars G

L

can be chosen in such a way that the following

conditions are satis�ed:

- the axiom of G

L

is A if L = L

x

(A), x 2 fb; fg,

- A does not occur in any right-hand side of P

L

, and

- the remaining nonterminals of G

L

are disjoint from those of G

L

0

for all L

0

2 L

G

, and disjoint

from N .

We remove all sequential productions from G, and add the productions

fX ! i

f

(w) j X ! w 2 P

L

; L = L

f

(A) for some Ag and

fX ! i

b

(w) j X ! w 2 P

L

; L = L

b

(A) for some Ag.

5.6. Closure properties 169

The thus obtained context-free text grammar is right-linear and equivalent to G. Hence, by

Theorem 5.4.9, K is recognizable.

(3) Let K be a text language, and let G be a context-free text grammar in PNF for K. Let

� 2 K, and let t be a derivation tree of � in G. By Proposition 5.2.5, di(t) is a re�nement of

the shape of � . It follows that for each sequential node of the shape of � , say with n children,

there is a corresponding derivation A)

+

i

x

(w) in G such that jwj = n and w 2 L

x

(A).

Conversely, if w is a word of length n in some L

x

(A) 2 L

G

, then there is a derivation tree t

in G of a text � 2 K with the following property: there is a subtree of t which is a derivation

tree of i

x

(w) from A and moreover this subtree corresponds with a sequential node with n

children in the shape of � .

Hence the outdegrees of the sequential nodes in the shapes of K are precisely the lengths

of the words occurring in the languages L 2 L

G

. It follows that K is limited i� every L 2 L

G

is �nite. By Proposition 5.2.9, this proves (3). 2

In (1) and (3) of the proof it is in fact shown that K is context-free (shapely) i� for each

context-free text grammar G in PNF generating K each L 2 L

G

is a context-free (�nite)

word language. Concerning (2), it is shown that K is recognizable i� for each right-linear

grammar G generating K each L 2 L

G

is a recognizable word language; here we can not

replace \right-linear" by \in PNF" as Example 5.5.3 will show.

Example 5.5.3 Let G = (N;�; P; (S; �

1

)) be a context-free text grammar such that P con-

sists of the productions S ! (ASB; (1; 2; 3)), S ! (AB; (1; 2)), A ! (a

4

; (2; 4; 1; 3)), and

B ! (a

4

; (2; 4; 1; 3)).

Then TxL(G) is recognizable. However, L

f

(S) = fA

n

B

n

j n � 1g is a non-recognizable

word language. 2

5.6 Closure properties

Most operations on text languages given in this section are de�ned for arbitrary text languages,

i.e., with possibly in�nite set of operations op(K), except for the \algebraic closure", which

must be de�ned w.r.t. a �xed text algebra T

�

.

First we introduce the operations which will provide an operational characterization of the

context-free text languages (Theorem 5.6.4). These operations are the natural extensions of

substitution and substitution closure on word languages.

De�nition 5.6.1 A mapping j : TXT(�) ! 2

TXT(�)

is an alphabetic (text) substitution (on

�) if there is a mapping j

0

: �! 2

TXT(�)

such that for � = (a

1

� � � a

m

; �),

j(�) = f[� (�

1

; : : : ; �

m

)] j �

i

2 j

0

(a

i

) for i = 1; : : : ;mgg:

j is a unary alphabetic substitution at a if j

0

(x) = fxg for every x 2 � with x 6= a.

We will use j to denote both the mapping j and the mapping j

0

. The adjective alphabetic is

used to distinguish this notion of substitution from the singular and simultaneous substitutions

on texts as de�ned in Section 5.2.

170 Chapter 5. Text Languages in an Algebraic Framework

De�nition 5.6.2 Let a 2 � and let K � TXT(�). The alphabetic substitution closure of K

at a is de�ned to be

S

1

n=0

j

n

(fag), where j is the unary alphabetic substitution at a such that

j(a) = K [fag.

Alphabetic text substitution and alphabetic text substitution closure are the counterparts

of the regular operations on tree languages: tree concatenation and tree concatenation closure

(called \forest products" in [21]). We now give the counterparts of the regular operations on

word languages.

The operations given by the bi-orders of PRIM generalize concatenation of word languages

(and correspond with so-called \top-concatenation" of tree languages). Let � 2 PRIM with

rank m � 2. For text languages K

1

; : : : ;K

m

� TXT(�), [� (K

1

; : : : ;K

m

)] is the text

language f[� (�

1

; : : : ; �

m

)] j �

i

2 K

i

for i = 1; : : : ;mg.

By the algebraic closure (w.r.t. � = � [�) of a text language K � TXT

�

(�) we

mean the language f[� (�

1

; : : : ; �

m

)] j (w; �) 2 TXT

�

(�) for some w 2 �

+

with jwj =

m; �

1

; : : : ; �

m

2 Kg, i.e., the sub-algebra of T

�

generated by K. Algebraic closure generalizes

Kleene closure of word languages.

Theorem 5.6.3

(1) CFT is closed under union, the operations of PRIM, algebraic closure, alphabetic substi-

tution, alphabetic substitution closure, and intersection with recognizable text languages.

(2) CFT is not closed under intersection and complement.

Proof. (1) By standard constructions as in [21, Ch. II-4], and [28, Ch. I-3]. See also [5],

where in particular it is shown that the intersection of an equational and a recognizable set is

again equational (w.r.t. to an arbitrary �-algebra).

As an example we will give the proof for the operations of PRIM and for the alphabetic

substitution operation.

Let � 2 PRIM with j�j = m, and let K

1

; : : : ;K

m

2 CFT be such that K

i

= TxL(G

i

)

with G

i

= (N

i

;�

i

; P

i

; S

i

) for i = 1; : : : ;m. Let K = [� (K

1

; : : : ;K

m

)]. K is generated by

the context-free text grammar G = (N;�; P; S), where S 62

S

m

i=1

N

i

, N = (

S

m

i=1

N

i

) [fSg,

� =

S

m

i=1

�

i

, and P = (

S

m

i=1

P

i

) [fS ! (S

1

: : : S

m

; �)g. Hence K = TxL(G) 2 CFT.

Let K 2 CFT be a text language over �, and let j be an alphabetic substitution on �.

For a 2 �, let G

a

= (N

a

;�; P

a

; S

a

) be a context-free text grammar in PNF for j(a) such that

if a 6= b, then N

a

\N

b

= ;. Let G = (N;�; P; S) be a context-free grammar in CPNF for K

such that N is disjoint from each N

a

. Now G

0

= (

S

a2�

N

a

[N;�; P

0

; S) is a context-free text

grammar generating j(K), where P

0

= (

S

a2�

P

a

) [fA ! � 2 P j j� j � 2g [fA ! � j A !

a 2 P; S

a

! � 2 P

a

g.

Hence TxL(G

0

) = j(K) is a context-free text language, i.e. j(K) 2 CFT.

(2) Let L

1

; L

2

be context-free word languages such that L

1

\L

2

is not context-free. Consider

the corresponding forward sequential text languages, i.e.,K

1

= i

f

(L

1

) and K

2

= i

f

(L

2

). Then

K

1

and K

2

are context-free text languages, and word(K

1

\K

2

) = word(K

1

)\word(K

2

) (note

that this is not generally true for arbitrary context-free text languages K

1

,K

2

). Then K

1

\K

2

is a text language which is not context-free, otherwise word(K

1

\K

2

) = L

1

\ L

2

would be a

context-free word language. For the complement a similar argument applies. 2

5.6. Closure properties 171

The following theorem gives an operational characterization of context-free text languages.

It is a consequence of Theorem 5.6.3 and the fact that each context-free text language can

be obtained from �nite text languages by union, alphabetic substitution, and alphabetic sub-

stitution closure, which can be shown by Theorem 5.3.5(1) and the analogous result for tree

languages (Theorem 5.8 in [21], where tree languages obtained from �nite tree languages using

the analogous operations are called \regular"), or by directly performing a similar construction

as in the proof given there in terms of texts.

Theorem 5.6.4 CFT is the smallest family of text languages containing the �nite text lan-

guages that is closed under union, alphabetic substitution, and alphabetic substitution closure.

2

It is well-known (and easy to prove) that recognizable subsets (w.r.t. to any �-algebra)

are closed under union, intersection, and complement.

In [5] closure properties of recognizable subsets of algebras over a theory are investigated,

depending on the form of the equations in the theory. From this we obtain that for each

so-called \relabeling" r : � ! �, if K � TXT(�) is recognizable, then r(K) � TXT(�) is

recognizable. Note that a relabeling is a special case of alphabetic substitution. We will show

that in our speci�c case of texts, RECT is closed under the operations of PRIM, algebraic

closure, and alphabetic substitution. This is a consequence of the fact that recognizable

word languages are closed under (word) concatenation, Kleene plus, and (word) substitution,

respectively.

Theorem 5.6.5

(1) RECT is closed under union, intersection, complement, the operations of PRIM, algebraic

closure, and alphabetic substitution.

(2) RECT is not closed under alphabetic substitution closure.

Proof. (1) Let � 2 PRIM with j�j = m � 2. Let K

1

; : : : ;K

m

be recognizable text languages,

and let K = [� (K

1

; : : : ;K

m

)]. By Theorem 5.5.2, for each i 2 f1; : : : ;mg, there is a

context-free text grammar G

i

= (N

i

;�

i

; P

i

; S

i

) in PNF generating K

i

such that each L 2 L

G

i

is a recognizable word language.

Let G be the text grammar from the proof of Theorem 5.6.3 that generates K. We will

use the notations from Section 5.5 used in Theorem 5.5.2. Let A 2 V

f;G

. If A 2 V

f;G

i

for

some i 2 f1; : : : ;mg, then L

f;G

(A) = L

f;G

i

(A), which is a recognizable word language by

Theorem 5.5.2. The case that A 62 V

f;G

i

for each i 2 f1; : : : ;mg occurs i� � = �

f

and A = S;

then L

f;G

(S) = L

f;G

1

(S

1

) � L

f;G

2

(S

2

). Since L

f;G

1

(S

1

) and L

f;G

2

(S

2

) are recognizable word

languages by Theorem 5.5.2, and recognizable word languages are closed under concatenation,

it follows that L

f;G

(S) is recognizable.

Similarly, we show that the word languages, L

b;G

(A), A 2 V

b;G

, are recognizable.

Consequently, each L 2 L

G

is recognizable, and it follows by Theorem 5.5.2 that TxL(G) =

K is a recognizable text language.

This proves that RECT is closed under the operations of PRIM.

Let K be a recognizable text language, generated by the grammar G = (N;�; P; S). Let

� = � [� be a ranked alphabet such that K � TXT

�

(�). Let G

0

= (N;�; P

0

; S), where

172 Chapter 5. Text Languages in an Algebraic Framework

P

0

= P [fS ! (S

m

; �) j � 2 �; j�j = mg. Then TxL(G

0

) is the algebraic closure of K w.r.t.

�. For x 2 ff; bg, L

x;G

0

(A) = L

x;G

(A) for all A 6= S, and L

x;G

0

(S) = L

x;G

(S) if �

x

62 �,

L

x;G

0

(S) = (L

x;G

(S))

+

otherwise. Hence L

G

0

consists of recognizable word languages, which

implies that TxL(G

0

) is a recognizable text language. Hence RECT is closed under algebraic

closure.

Now let j be an alphabetic substitution. Let G

0

be the text grammar in PNF from the

proof of Theorem 5.6.3 that generates j(K). Let x 2 ff; bg, and let A 2 V

x;G

0

. If A 2 N

a

for some a 2 �, then A 2 V

x;G

a

, and L

x;G

0

(A) = L

x;G

a

(A) is a recognizable word language. If

A 2 N , then L

x;G

0

(A) = j

x

(L

x;G

(A)), where j

x

is the word substitution on N [� de�ned by

j

x

(A) = A for each A 2 N and j

x

(a) = L

x;G

a

(S

a

) for each a 2 �. Since, by Theorem 5.5.2,

the word languages of the form L

x;G

a

(S

a

) are recognizable and recognizable word languages

are closed under substitution, it follows that L

x;G

0

(A) is recognizable.

Hence each L 2 L

G

0

is recognizable, and K = TxL(G

0

) is a recognizable text language.

Consequently, RECT is closed under alphabetic substitution.

(2) This follows immediately from the fact that RECT � CFT combined with (1) and

Theorem 5.6.4. 2

One could also prove (2) using the fact that recognizable word languages are not closed

under substitution closure.

For recognizable text language we do not have a characterization as in Theorem 5.6.4.

The operations derived from regular word operations do not characterize the recognizable text

languages, but the rational text languages. In [29], rational subsets of arbitrary �-algebras are

de�ned as those subsets built from �nite languages by union, the operations of � and algebraic

closure w.r.t. �. A general property of rational sets in an arbitrary algebra (cf. Theorem 5.1.4)

is that the homomorphic image of a rational set is rational. It may happen that the class of

recognizable sets is strictly contained in the class of rational sets (e.g., in arbitrary monoids),

or that the class of rational sets is strictly contained in the class of recognizable sets (as shown

for tree languages in [29]). By Kleene's Theorem, the rational word languages are precisely

the recognizable word languages.

For text languages we have by Theorem 5.6.5 that RAT � RECT, where RAT is the

class of rational text languages. Considering the homomorphism word as in Section 5.5, we

obtain, by Kleene's Theorem, that the underlying word languages of rational text languages

'

&

$

%

'

&

$

%

CFT

RECT

SHAP

LIM

'

&

$

%

�

�

�

�

RAT

@

@

@

@R

Figure 5.6: families of text languages

5.6. Closure properties 173

are recognizable (cf. the case of recognizable text languages, where the underlying word

languages are context-free). This shows that RAT � RECT.

Summarizing, we can extend Figure 5.4 yielding the inclusion diagram in Figure 5.6.

Acknowledgements

The authors are indebted to A. Ehrenfeucht and G. Rozenberg for encouraging the research

that led to this paper, and to an anonymous referee for making helpful comments.

174 Chapter 5. Text Languages in an Algebraic Framework

Chapter 6

Monadic Second-Order De�nable

Text Languages

Abstract

A text is a word together with an (additional) linear ordering. Each text has a generic

tree representation, called its shape. We consider texts in a logical and an algebraic

framework, and we prove that the classes of monadic second-order de�nable and of

recognizable text languages coincide. In particular we demonstrate that the construction

of the shape of a text can be formalized in terms of our monadic second-order logic. We

brie
y consider right-linear grammars for texts.

Introduction

The theory of 2-structures, introduced in [13, 14], studies modular decompositions of graph-

like structures. In this framework texts appear as representations for a certain subclass of

2-structures, see [16].

A text is a triple � = (�; �

1

; �

2

) where �

1

and �

2

are linear orderings on a common domain

D, and � is a labeling function from this domain D into an alphabet. Usually one takes for

D the set f1; 2; : : : ; ng and for �

1

the standard ordering (1; 2; : : : ; n). In this way a text is in

essence a word �(1)�(2) � � � �(n) extended with an (additional) linear ordering �

2

on the set of

positions (the domain).

Words can be represented by ordered trees, e.g., to give a syntactic structure to the word.

The labels of the leaves spell out the word, where the ordering of the leaves is inherited from

the relative orderings of the children of inner nodes. In a similar way one can give hierarchical

representations for texts. As a text has two orderings on its domain, the tree representation

for a text is bi-ordered, i.e., each inner node of the tree has two orderings on its children. Both

these orderings are then inherited by the leaves. A bi-ordered tree gives a hierarchical way

to build the text from trivial texts (consisting of a single letter) as represented by the leaves,

using as operations the bi-orders associated with the inner nodes of the tree, see [12].

In the case of words, the tree representing the word may be re�ned into a binary tree in an

arbitrary fashion; this is the basic step in constructing Chomsky normal form for context-free

175

176 Chapter 6. Monadic Second-Order De�nable Text Languages

grammars. Quite unlike words however, the tree representations for texts are much restricted

by the two orderings of the text. There are certain texts (or bi-orders) that can not be

decomposed, these are called primitive. On the other hand, texts for which the second order

equals the �rst order (or its reverse) are very much like words: there are no restrictions on

their (binary) representations, and in each node of the representation the second order equals

the �rst order (or its reverse). Such texts are called sequential.

Based on this hierarchical representation of texts, in [24] an algebraic framework for texts

is proposed. The operations of a text algebra are given by (a �nite set of) primitive bi-orders,

that are used as basic building blocks to form texts. It is straightforward to verify that

the usual notion of equational sets in this algebra coincides with the notion of sets of texts

generated by context-free text grammars as introduced in [12].

It was shown in [24] that recognizable subsets of the algebra can be characterized by a

subclass of the context-free text grammars called right-linear text grammars. These right-

linear grammars are much like regular tree grammars when looking at primitive bi-orders and

similar to right-linear string grammars when looking at sequential bi-orders.

In this paper we give a characterization of the recognizable text languages in terms of a

monadic second-order logic for texts. Let K be a language of texts that are built using a given

�nite set of bi-orders. We prove that K is de�nable in our logic if and only if K is recognizable

if and only if K is generated by a right-linear text grammar (Theorem 6.3.7).

For recognizable (or regular) word languages and tree languages there exist analogous

results, see [1, 9, 25, 30]. Since every word is a speci�c (sequential) text, our result generalizes

the analogous result for word languages. The generalization from words to texts is non-trivial:

the underlying words of a recognizable text language do not necessarily form a regular word

language (in fact they form a context-free language). Our proof, however, is based on the

corresponding result for tree languages. In fact, we show that a text language is mso de�nable,

recognizable or right-linear i� an associated tree language is mso de�nable, recognizable or

regular, respectively. We then use the equivalence of these notions for tree languages to deduce

the result for text languages.

As explained above, texts are close to both words and trees. On the other hand, one may

view texts as speci�c graphs, obtained by combining two linear orders. For graph languages

in general there does not seem to be such a stable notion of recognizability; e.g., stable in

the sense that it has an equivalent grammatical or logical characterization. These matters

are discussed extensively by Courcelle in [6], where he conjectures that mso de�nability and

recognizability are equivalent for graph languages of bounded tree-width. In support of this

conjecture it is shown that recognizability and mso de�nability are equivalent within certain

\parsable" sets of graphs ([6, Theorem 4.8]), i.e., graph languages where for each graph a tree

representing the graph can be constructed { a construction that should be formulated within

the logical framework. Examples are given of sets of graphs for which this property holds,

in particular the set of graphs of tree-width at most two. Using this terminology, we show

that a set of texts built from a �nite set of primitive bi-orders is still another example of a

parsable set (Theorem 6.2.5). We cannot apply the cited result to obtain equivalence of mso

de�nability and recognizability, as our respective algebraic frameworks di�er.

The paper is organized as follows. In Section 6.1 we de�ne texts, and trees representing

texts. The notions and results given there rely heavily on the theory of 2-structures. We con�ne

6.1. Texts and trees 177

ourselves to presenting the results on texts needed for this paper and refer to [13, 14, 16, 11]

for more background.

Crucial for this paper will be the decomposition of texts into bi-ordered trees representing

them. In general this representation is not unique. There exists however a generic tree

representation, called the shape, that can be constructed from the text. By associating to

each text language K the tree language sh(K) of corresponding shapes, and the tree language

txt

�1

(K) of all trees representing texts from K, we obtain a strong connection between text

languages and tree languages.

Next, in Section 6.2, we view both texts and their shapes as labeled graphs, and consider

a basic monadic second-order logic for graphs (see [18]) to obtain the notion of mso de�nable

text languages. We show that a text language K is mso de�nable i� the corresponding tree

languages sh(K) and txt

�1

(K) are mso de�nable. To this aim we demonstrate that the

construction of the shape of a given text can be formulated in terms of the logic.

In Section 6.3 we de�ne recognizability for text languages (see also [24]) and prove the

equivalence of mso de�nability and this notion, using the results of the previous section.

Additionally, we reconsider the notions of context-free and right-linear text grammar [12, 24].

Observing the close similarity of text grammars and regular tree grammars, the equivalence

of right-linear text languages and those that are mso de�nable is then an easy consequence.

We close our paper with a discussion, in which we sketch how our methods can be used to

extend the result to a larger class of graphs than those that represent texts.

An extended abstract of this paper was presented at MFCS'94, see [23].

6.1 Texts and trees

In this preliminary section we present results on texts, and trees representing them, that are

needed for this paper. We refer to [16, 11, 12] for more details.

We view a linear order as a nonempty sequence of distinct elements, which form the

domain of the linear order. For a linear order � = (x

1

; : : : ; x

n

), n � 1, a segment of � is a set

fx

j

; x

j+1

; : : : ; x

k

g with j � k. A su�x of � is a segment containing x

n

. If i < j then we say

that x

i

precedes x

j

in �.

De�nition 6.1.1 Let � be an alphabet. A text � (over �) is a triple (�; �

1

; �

2

), where �

1

and

�

2

are linear orders such that the domain of �

1

equals the domain of �

2

, and � is a labeling

function from this common domain to �.

For a text � = (�; �

1

; �

2

), the pair (�

1

; �

2

) determines its structural properties; such a pair

(�

1

; �

2

) of linear orders with a common domain is called a bi-order. The common domain of

�

1

and �

2

is the domain of the text � , denoted by dom(�). If �

1

= (x

1

; : : : ; x

n

), then the word

of � is the word �(x

1

) � � � �(x

n

).

By the length of a text (or bi-order) we mean the number of elements in its domain. For

our purposes the identities of these elements are not important. Therefore, we usually assume

that the domain of a text (or bi-order) of length n equals f1; : : : ; ng, and that the �rst order is

(1; : : : ; n); we refer to this as the standard form of a text or bi-order. We may then represent

178 Chapter 6. Monadic Second-Order De�nable Text Languages

a bi-order by its second order (i

1

; : : : ; i

n

) and a text by the pair (w; (i

1

; : : : ; i

n

)), where w is

the word of the text.

For a bi-order � of length m and texts �

1

; : : : ; �

m

, the substitution of �

1

; : : : ; �

m

into �,

denoted by [� (�

1

; : : : ; �

m

)], is the text constructed as follows: let � be in standard form, take

copies of �

1

; : : : ; �

m

with mutually disjoint domains X

1

; : : : ;X

m

, and de�ne the substitution

text on the domain

S

m

i=1

X

i

such that the label of x from X

i

is the label of x in �

i

, and for

k 2 f1; 2g, x 2 X

i

precedes y 2 X

j

in the k-th order if either i precedes j in the k-th order of

�, or i = j and x precedes y in the k-th order of �

i

.

Note that the above X

i

's become segments of both the �rst and the second order of the

constructed text. For an arbitrary text � , a nonempty set X � dom(�) that is a segment in

both the �rst and the second order of � is called a clan of � . Clearly, for each text � , dom(�)

is a clan of � and fxg is a clan of � for each x 2 dom(�). These clans are called the trivial

clans. If the only clans of a text are the trivial clans, then the text is called primitive. We

also speak of primitive bi-orders. Note that the two bi-orders of length 2, in standard form

given by (1; 2) and (2; 1), respectively, are both primitive; they will be denoted by �

f

(f for

\forward") and �

b

(b for \backward").

One might say that a text � is \decomposable" if it can be obtained as the substitution

of some (proper) subtexts into a bi-order �, or, equivalently, if the domains of these subtexts

are clans forming a partition of the domain (� giving their relative �rst and second order-

ing). Clearly, primitive texts only allow such decomposition into singletons. By exhaustively

decomposing subtexts, we obtain a tree-structure for a given text, called a primitive repre-

sentation of the text, which indicates how it is built up from singletons and primitive (i.e.,

indecomposable) bi-orders.

Example 6.1.2 Let � be the text (acabaacbc; (5; 2; 4; 1; 3; 6; 7; 8; 9)). In Fig. 6.1 two primi-

tive representations of � are given, where � is the primitive bi-order given by (2; 4; 1; 3) in

standard form. Consider the left tree t. At the root � is decomposed into the subtexts cor-

responding with the clans f1; 2; 3; 4; 5g and f6; 7; 8; 9g, in standard form (acaba; (5; 2; 4; 1; 3))

and (acbc; (1; 2; 3; 4)), respectively; note that � is reobtained by substituting these subtexts

into the root label �

f

which gives the relative orderings of the two clans. At the left child of

the root the subtext (acaba; (5; 2; 4; 1; 3)) is decomposed into the subtexts corresponding with

clans f1; 2; 3; 4g and f5g relatively ordered by �

b

; the subtext corresponding with f1; 2; 3; 4g

is primitive with underlying bi-order �.

For each inner node of a primitive representation t its label provides two orderings on its

children, where the �rst order is assumed to be the left-to-right order. In this way t is a

\doubly" ordered tree, and we can recover the standard form of � from t as follows: the word

of � is the yield of t, and the (second) order on the positions of this word is the ordering on

the leaves induced by the local second orders in the obvious way, assuming that the leaves are

named 1; : : : ; 9 from left to right. 2

The trees used in this paper are directed ordered trees with node-labels. Therefore, they

can be represented as terms over a ranked alphabet (cf. the de�nition of trees in [21]). A

ranked alphabet � is a �nite alphabet of operator symbols, where each operator symbol � 2 �

has a rank, which is a natural number. The set of �-terms, denoted by F

�

, is the smallest

6.1. Texts and trees 179

set of words over � and the auxiliary symbols h and i such that � 2 F

�

for every � 2 � of

rank 0, and �ht

1

� � � t

m

i 2 F

�

for all � 2 � of rank m > 0 and t

1

; : : : ; t

m

2 F

�

. For primitive

representations we use ranked alphabets of the following speci�c form. For a �nite set � of

primitive bi-orders of length � 2, and an alphabet �, let � be the ranked alphabet �[� such

that the rank of each � 2 � is its length and the rank of each a 2 � is 0. Each tree t in F

�

is

then a primitive representation; the text represented by t is denoted by txt (t) and is recursively

de�ned by txt (a) = (a; (1)) for a 2 �, and txt(�ht

1

� � � t

n

i) = [� (txt(t

1

); : : : ; txt (t

n

))] for

� 2 � of length n � 2, and t

1

; : : : ; t

n

2 F

�

.

Note that trees of the form �

x

h�

x

ht

1

t

2

it

3

i and �

x

ht

1

�

x

ht

2

t

3

ii, with x 2 ff; bg, t

1

; t

2

; t

3

2 F

�

represent the same texts. The di�erence between primitive representations of one text is

limited to this kind of associativity in binary subtrees. This is a consequence of general results

from the decomposition theory for 2-structures, see [14, Theorem 6.22], [12, Lemma 4.1.19].

Proposition 6.1.3 Two primitive representations of the same text di�er only in subtrees over

�

f

and subtrees over �

b

.

We �x one speci�c primitive representation for each text � , called the r-shape of � , denoted

by sh(�), by demanding that each binary subtree is in a rightmost form, i.e., the r-shape of a

text is the primitive representation such that it has no subtree of the form �

f

h�

f

ht

1

t

2

it

3

i or

�

b

h�

b

ht

1

t

2

it

3

i. E.g., the r-shape of the text � from Example 6.1.2 is the right tree in Figure 6.1.

(Note that the r-shape slightly di�ers from the usual shape in [14].)

The r-shape of a text can be characterized in terms of clans. First observe that the nodes

of a given primitive representation t correspond with clans of txt (t), viz., the clans used in

the decomposition re
ected by t. A clan of a text � is a prime clan if it is not overlapping

with any other clan of � , where sets X and Y are overlapping if X \ Y 6= ;, X � Y 6= ;, and

Y �X 6= ;.

Proposition 6.1.4 A primitive representation t is the r-shape of a text � i� the clans of �

corresponding with the nodes of t are precisely all clans of � that are su�xes (w.r.t. the �rst

order) of prime clans of � .

Example 6.1.5 For the text � of Example 6.1.2, the non-trivial prime clans are f1; 2; 3; 4; 5g

and f1; 2; 3; 4g, and, e.g., f6; 7; 8; 9g is a clan that is a su�x of the trivial prime clan f1; 2; : : : ; 9g.

�

f

@

@

�

�

�

b

A

A

�

�

� a

�

f

C

C

�

�

S

S

�

�

a c a

b

S

S

�

�

�

f

�

f

A

A

�

�

a c

A

A

�

�

b

c

�

f

@

@

�

�

�

b

A

A

�

�

� a

�

f

C

C

�

�

S

S

�

�

a c a

b

A

A

�

�

�

fa

A

A

�

�

c

�

f

A

A

�

�

b

c

Figure 6.1: two primitive representations of �

180 Chapter 6. Monadic Second-Order De�nable Text Languages

f1; 2; 3; : : :; 8; 9g

@

@

@

�

�

�

f1; 2; 3; 4; 5g

A

A

A

�

�

�

f1; 2; 3; 4g f5g

f6; 7; 8; 9g

C

C

C

�

�

�

S

S

S

�

�

�

f1g f2g f3g f4g

A

A

A

�

�

�

f7; 8; 9gf6g

A

A

A

�

�

�

f7g f8; 9g

A

A

A

�

�

�

f8g f9g

Figure 6.2: the su�xes of prime clans corresponding with the r-shape

In Figure 6.2 the su�xes of prime clans corresponding with the nodes of the r-shape of � (the

right tree in Figure 6.1) are indicated. 2

For a ranked alphabet � = � [� as described above, we use TXT

�

(�) to denote the

set of texts over � that have a primitive representation in F

�

; the subset of F

�

consisting

of the r-shapes of these texts is denoted by SH

�

(�); TXT(�) denotes the set of all texts

over �. It is instructive to note that, for a subset K � TXT

�

(�) , K = txt (sh(K)), and

sh(K) = txt

�1

(K) \ SH

�

(�).

6.2 Mso de�nable text languages

In this section we view texts, and trees representing them, as graphs. We use monadic second-

order logic on graphs to de�ne the class of mso de�nable text languages, rather than introduc-

ing a separate logic for texts. We have chosen this (perhaps indirect) approach since it allows

us to perform our constructions within one �xed logical framework, rather than switching

between a logic for texts and one for trees representing them.

Let
 and � be alphabets. A graph over
 and � is a triple g = (V;E; �), where V is the

set of nodes, E � V � � � V the set of edges, and � : V !
 the node-labeling. The set of

all graphs over
 and � is denoted by GR(
;�).

The monadic second-order logic MSO(
;�) expresses properties of graphs over
 and �.

The logic allows both �rst order variables x; y; : : : ranging over nodes, and (monadic) second-

order variables X;Y; : : : ranging over sets of nodes. There are four types of atomic formulas:

x = y, expressing that nodes x and y are equal; x 2 X, expressing x is an element of X;

lab

a

(x), expressing node x has label a (with a 2
); and edge

(x; y); expressing there is an

edge from x to y with label
 (with
 2 �).

Formulas are built from atomic formulas with the propositional connectives :;^;_;!,

using the quanti�ers 8 and 9 both for node-variables and node set-variables. For better

readability we use abbreviations like X � Y and X \ Y = ;.

6.2. Mso de�nable text languages 181

Example 6.2.1

(1) The binary predicate x � y claiming the existence of a (directed) path from x to y is

expressible in MSO(
;�):

x � y � 8X[x 2 X ^ 8u8v(u 2 X ^ edge(u; v)! v 2 X)! y 2 X]

where edge(u; v) �

W

2�

edge

(u; v). This example is from [30].

(2) The structural graph property of being a (directed) tree is expressed by requiring (a) the

existence of a node (the root) that has no incoming edges, and from which all other nodes are

reachable, and (b) that all nodes have at most one incoming edge. 2

Given a closed formula ' of MSO(
;�), and a graph g from GR(
;�) we write g j= ' if

g satis�es ', i.e., if ' is true when interpreted over g. Now ' de�nes the graph language of

all graphs satisfying ': L(') = fg 2 GR(
;�) j g j= 'g. Such a graph language is said to be

mso de�nable.

Examples of mso de�nable graph languages are L(8x8y[x � y]): the set of all strongly

connected graphs, and the set of all (unordered) trees.

Trees have the usual representation as graphs; however, as we are dealing with ordered

trees, we need edge-labels to explicitly determine the relative ordering of the children of each

node in the tree. We use the natural numbers 1; : : : ;m to label the outgoing edges of a node

of arity m in the tree. Thus more speci�cally, for the ranked alphabet �, trees in F

�

are

identi�ed with speci�c graphs in GR(�; f1; : : : ;Mg), where M is the maximal rank of symbols

in �.

Note that the set F

�

is mso de�nable as a subset of GR(�; f1; : : : ;Mg). Apart from

imposing the graph to have the structural graph property of Example 6.2.1(2), we additionally

require that the outgoing edges of each node are properly labeled by labels 1; : : : ;m, where

m is the arity associated with the label of the node. Let us remark here that it is customary,

when de�ning subsets of F

�

by mso formulas, to interprete these formulas directly in F

�

rather

than in GR(�; f1; : : : ;Mg). As the property of belonging to F

�

itself is mso de�nable, this

makes no di�erence in the expressive power.

Also texts have natural representations as graphs. We use edges to represent the two linear

orders of the text, with edge-labels to identify the ordering. Formally, a text � = (�; �

1

; �

2

)

over � is identi�ed with the graph g = (V;E; �) over � and f1; 2g, where V = dom(�), and

E = f(x; i; y) j x; y 2 V; x precedes y in �

i

; i 2 f1; 2gg. Thus, a text language is mso de�nable

if it is mso de�nable as set of graphs over GR(�; f1; 2g).

The set of texts TXT(�) in GR(�; f1; 2g) is easily seen to be mso de�nable, as we only

have to specify the fact that the edges with each label form a linear ordering. Unfortunately,

the de�nability of TXT

�

(�) within GR(�; f1; 2g) is less transparent. We solve this problem

in the proof of Theorem 6.2.5. On the other hand, both F

�

and the set SH

�

(�) of r-shapes

in F

�

, where � = �[� is a ranked alphabet for primitive representations, are mso de�nable.

An mso de�nable function f , see [8, 18], speci�es the construction of a new graph g

0

from

a graph g using mso formulas specifying nodes, edges and labels of the image g

0

in terms of

the original graph g. The construction starts by taking k copies of the nodes of g (k is �xed

182 Chapter 6. Monadic Second-Order De�nable Text Languages

by f). Then for each copy, and each label a of g

0

, a formula '

i

a

(x) determines whether the

i-th copy x

i

of node x of g is present in g

0

and has label a. Similarly, for each pair of copies

and each edge-label
 of g

0

, a formula '

i;j

(x; y) determines whether an edge with label
 is

leading from the i-th copy x

i

of x to the j-th copy y

j

of y.

De�nition 6.2.2 An mso de�nable function f : GR(
;�) ! GR(

0

;�

0

) is speci�ed by

- a domain formula '

dom

,

- a constant k � 1, node formulas '

i

a

(x),

- for every a 2

0

and every i 2 f1; : : : ; kg, and edge formulas '

i;j

(x; y)

- for every
 2 �

0

and all i; j 2 f1; : : : ; kg;

all formulas are in MSO(
;�).

For g 2 L('

dom

) with node set V

g

, the image f(g) is (

S

i2f1;:::;kg

V

i

; E; �),

where for i 2 f1; : : : ; kg,

- V

i

= fx

i

j x 2 V

g

; there is exactly one a 2

0

such that g j= '

i

a

(x)g,

- E = f(x

i

;
; y

j

) j x

i

2 V

i

; y

j

2 V

j

; i; j 2 f1; : : : ; kg; g j= '

i;j

(x; y)g, and

- �(x

i

) = a if g j= '

i

a

(x), for x

i

2 V

i

, i 2 f1; : : : ; kg.

Proposition 6.2.3 ([8]) Let f : GR(
;�) ! GR(

0

;�

0

) be an mso de�nable function. If

L � GR(

0

;�

0

) is mso de�nable, then f

�1

(L) = fg 2 GR(
;�) j f(g) 2 Lg is mso de�nable.

Proof. Given a formula ' of MSO(

0

;�

0

) we show how to construct a formula '

�1

of

MSO(
;�) such that a graph g 2 GR(
;�) satis�es '

�1

if and only if f(g) 2 GR(

0

;�

0

)

satis�es '. From this the proposition follows easily.

For our own convenience we split the construction of '

�1

into two steps. We assume

(without loss of generality) that ' does not contain universal quanti�ers.

�rst step. In this step we construct a \hybrid" formula in which quanti�cations range

over nodes in g rather than f(g). The properties, however, are still expressed in terms of

the images of the nodes in f(g). A subformula of the form 9x (x) in the original formula

' asserts the existence of a node x in f(g) satisfying . In terms of g this means that

it contains a node for which some i-th copy is present in f(g), and satis�es . Similarly

a set X of nodes in f(g) can be translated back to k sets of nodes X

1

; : : : ;X

k

in g, such

that X =

S

i2f1;:::;kg

fx

i

j x 2 X

i

g. Now inductively replace in ' any subformula 9x (x) by

the formula

W

i2f1;:::;kg

9x(copy

i

(x) ^ [x

i

=x]), and any subformula 9X (X) by the formula

9X

1

� � � 9X

k

 (X). Here \copy

i

(x)" is the formula expressing that the i-th copy of x is de�ned

(i.e., exactly one label predicate '

i

a

(x) is true), and [y=x] is the formula obtained from by

replacing every occurrence of x by y.

second step. The properties of variables are still expressed in terms of the labels and the

edge relations of the image f(g). We obtain the required formula '

�1

by changing the atomic

formulas as follows. Replace the formula x

i

= y

j

by x = y if i = j, and by false otherwise;

replace x

i

2 X by x 2 X

i

; replace lab

a

(x

i

) by '

i

a

(x); and replace edge

(x

i

; y

j

) by '

i;j

(x; y).

2

The function txt is mso de�nable, like the translation from shape to 2-structure, as dis-

cussed in [20, Section 4.3].

6.2. Mso de�nable text languages 183

Lemma 6.2.4 The mapping txt : GR(�; f1; : : : ;Mg) ! GR(�; f1; 2g), that assigns to each

tree in F

�

the text it represents, is an mso de�nable function.

Proof. The text is built starting with a single copy of each node of the tree. Inner nodes are

removed (selecting only nodes with labels in �) and the edges between a pair of nodes in the

text are determined using the label associated to the least common ancestor of these nodes in

the tree.

As an mso de�nable function txt is �xed by the domain formula de�ning F

�

, constant

k = 1, node formulas '

a

(x) � lab

a

(x), for a 2 �, and, for m 2 f1; 2g, edge formulas

'

m

(x; y) �

_

�2�

_

i<

�

m

j

[9z9x

1

9y

1

(lab

�

(z) ^ edge

i

(z; x

1

) ^ edge

j

(z; y

1

) ^ x

1

� x ^ y

1

� y)]

where x � y expresses that there is a path from x to y (cf. Example 6.2.1), and i <

�

m

j

abbreviates \i precedes j in the m-th order of �". By our choice of ordering children when

viewing the r-shape as a tree, the ordering <

�

1

equals the usual ordering < on the integers.

Note that i; j 2 f1; : : : ;Mg, hence the second disjunction is �nite. Additionally we need the

�niteness of � for the �rst disjunction. 2

We now deal with the reverse direction: the construction of a tree representation from a

given text. We show that the mapping sh that assigns the r-shape to a text is an mso de�nable

function. This basically means, in the terminology of Courcelle [6], that the set of texts is

\monadic second-order parsable". Thus we are in a situation like Theorem 4.8 of [6] (although

in a somewhat di�erent framework), and we show that mso de�nability and recognizability

are equivalent notions for texts.

To prove our result we have to solve two technical problems. First we have to formulate

the structure of the r-shape in terms of mso formulas; this can be done by identifying the

nodes of the r-shape with clans of the text. By Proposition 6.1.4, the nodes then are exactly

the su�xes of prime clans. Second, we have to translate this into an mso de�nable function.

In particular we need to know which positions in the text have to be duplicated to become

the inner nodes of the r-shape.

We start by giving formulas that de�ne the structure of the r-shape of a text.

nodes. A set X is a clan of a text i� it is a segment in both orderings, which can easily be

expressed as an mso formula clan(X). Prime clans are by de�nition those clans that do not

overlap other clans. We obtain the formulas:

prim(X) � clan(X) ^ 8Y [clan(Y)! (X \ Y = ; _X � Y _ Y � X)]

node(X) � clan(X) ^ 9Z(prim(Z) ^ su�

1

(X;Z))

where su�

1

(X;Z) expresses that X is a su�x of Z as segments in the �rst order.

The usual child-parent relation can be expressed using set inclusion:

child(X;Y) � node(X) ^ node(Y) ^X � Y ^ :9Z[node(Z) ^X � Z � Y]

184 Chapter 6. Monadic Second-Order De�nable Text Languages

node-labels. The label of the (inner) node X in the r-shape is determined by the quotient

bi-order of X with respect to its children, i.e. by the relative ordering of the children of

X in the �rst and second ordering of the text. Thus, X has the associated bi-order � =

((1; : : : ; n); (i

1

; : : : ; i

n

)) if the following predicate, denoted quot

�

(X), is satis�ed:

9X

1

: : :9X

n

[(X =

n

[

j=1

X

j

) ^

n

^

j=1

child(X

j

;X) ^ (X

1

<

1

: : :<

1

X

n

) ^ (X

i

1

<

2

: : :<

2

X

i

n

)]

where X <

i

Y abbreviates 8x8y(x 2 X ^ y 2 Y ! edge

i

(x; y)), meaning that X precedes Y

as a segment in the i-th order.

edges. The r-shape has edges connecting nodes to their children as usual in a tree. To order the

children of a node, the predicate child(X;Y) has to be extended to a predicate child

k

(X;Y)

meaning that X is the k-th child of Y , which can be done quite similar to the previous

predicate quot

�

:

child

k

(X;Y) � 9X

1

: : :9X

k+1

[(Y =

k+1

[

j=1

X

j

) ^

k

^

j=1

child(X

j

;X)

^(X

1

<

1

: : : <

1

X

k+1

) ^ (X = X

k

)]

Here X

k+1

represents all children after the k-th; this makes this predicate independent of

the arity of the node X.

We are now ready to complete the proof.

Theorem 6.2.5 The mapping sh : GR(�; f1; 2g)! GR(�; f1; : : : ;Mg), that assigns to each

text in TXT

�

(�) its r-shape, is an mso de�nable function.

Proof. We avoid an unelegant duplication in our constructions by �rst approximating the

mapping sh by an extension of the domain to the set of all texts over the alphabet �. In a

second step we show that a proper domain formula, de�ning TXT

�

(�), exists.

de�ning the mapping. In the above discussion we have translated the structure of the r-shape

into formulas of MSO(�; f1; 2g). Using these formulas we formalize the construction of the

r-shape as an mso de�nable function. To this end we show how to obtain the nodes of the

r-shape (the output graph) by duplicating the positions of the text (i.e., the nodes of the input

graph). Each position in the text will be used (at most) twice: one copy will serve as a leaf,

the other copy will serve as an inner node of the r-shape.

We associate with each inner node of the r-shape a position in the text or, equivalently,

we associate with each inner node a leaf (see also [26]). (Leaves are the singleton clans of the

text.) If position x in the text is associated to the inner node X of the r-shape, then the copy

x

2

represents X, the �rst copy x

1

represents the leaf x.

The association we use is known (for binary trees) as the inorder successor of the node: it

is the leaf that is found by �rst moving to the last child, and then repeatedly moving to the

6.2. Mso de�nable text languages 185

f1; 2; 3; : : :; 8; 9g

@

@

@

�

�

�

f1; 2; 3; 4; 5g

A

A

A

�

�

�

f1; 2; 3; 4g f5g

f1; : : : ; 5g

f6; 7; 8; 9g

C

C

C

�

�

�

S

S

S

�

�

�

f1g f2g f3g f4g

f1;2;3;4g

A

A

A

�

�

�

f7; 8; 9gf6g

f1; : : : ; 9g

A

A

A

�

�

�

f7g

f6;7; 8;9g

f8; 9g

A

A

A

�

�

�

f8g

f7;8;9g

f9g

f8;9g

Figure 6.3: associating leaves with inner nodes

�rst child of the node visited. This gives an injective mapping of inner nodes to leaves of the

tree. Moreover, this is important for our result, it can be expressed in an mso formula:

assoc(x;X) � 9Y [frst

1

(x; Y) ^ child(Y;X) ^ su�

1

(Y;X)]

where frst

1

(x; Y) expresses that x is the �rst element of Y , and su�

1

(Y;X) expresses that Y

is a su�x of X (w.r.t. the �rst ordering of the text).

As an example, consider the r-shape represented in Figure 6.2 (without node-labels). In

Figure 6.3 we have given every inner node below the leaf with which it is associated.

The mapping sh

0

is speci�ed as an mso de�nable function as follows:

the domain function '

dom

de�ning TXT(�), the constant k = 2,

for a 2 �, and � 2 �, the node formulas '

1

a

(x) � lab

a

(x), '

1

�

(x) � '

2

a

(x) � false, and

'

2

�

(x) � 9X[assoc(x;X) ^ quot

�

(X)],

for k 2 f1; : : : ;Mg, the edge formulas '

1;1

k

(x; y) � '

1;2

k

(x; y) � false,

'

2;1

k

(x; y) � 9X9Y [assoc(x;X) ^ (Y = fyg) ^ child

k

(Y;X)], and

'

2;2

k

(x; y) � 9X9Y [assoc(x;X) ^ assoc(y; Y) ^ child

k

(Y;X)]

de�ning the domain. The mso de�nable function sh

0

constructed above does not have the

proper domain. For texts in TXT

�

(�) it satis�es our needs. For other texts in TXT(�),

i.e. those that have quotients not in �, the labeling formulas are unde�ned for inner nodes

of the r-shape that are labeled by such \illegal" operations. According to the de�nition of

mso de�nable functions, these nodes are then removed from the constructed graph, leaving an

unconnected graph. Hence, sh

0

constructs a tree if and only if the input graph is an element

of TXT

�

(�). Consequently, TXT

�

(�) = sh

0�1

(F

�

), which, by Proposition 6.2.3, is an mso

de�nable subset of GR(�; f1; 2g). 2

The �nal conclusion made in the above proof is interesting in its own right.

Corollary 6.2.6 TXT

�

(�) is an mso de�nable subset of GR(�; f1; 2g).

186 Chapter 6. Monadic Second-Order De�nable Text Languages

We are ready to prove the main result of this section. It connects the mso de�nability of a

text language with the mso de�nability of two tree languages representing these texts.

Theorem 6.2.7 Let K � TXT

�

(�) be a text language. The following statements are equiv-

alent:

(i) K is mso de�nable.

(ii) txt

�1

(K) is mso de�nable.

(iii) sh(K) is mso de�nable.

Proof.

(i)) (ii). By Lemma 6.2.4, the function txt is mso de�nable, and thus, by Proposition 6.2.3,

if K is mso de�nable, then txt

�1

(K) is mso de�nable.

(ii)) (iii). The mso de�nable sets are closed under the Boolean operations. This implication

follows from the equality sh(K) = txt

�1

(K) \ SH

�

(�), and the observation that SH

�

(�) is

mso de�nable.

(iii)) (i). As sh is injective, K = sh

�1

(sh(K)). The implication follows from Theorem 6.2.5

and Proposition 6.2.3. 2

The structure of a text interpreted as graph does only depend on properties of the edges,

and is independent of node-labels. Using [19, Theorem 6.1] one obtains an operational char-

acterization of the family of mso de�nable subsets of TXT

�

(�): it is the smallest family

containing certain elementary text languages that is closed under intersection, di�erence, and

(node) relabelings. The elementary text languages referred to are TXT

�

(�) itself, as well as

each of the languages of texts satisfying a formula of the form

'

a;
;b

� 9x9y[lab

a

(x) ^ lab

b

(y) ^ edge

(x; y)]

Such a text language consists of all texts in which an a labeled position precedes a b labeled

position in the �rst or second ordering (depending on whether
 = 1 or
 = 2).

6.3 Recognizable and right-linear text languages

From the result in Theorem 6.2.7 from the previous section, connecting mso de�nable text

languages with mso de�nable tree languages, it is only a few steps to obtain a characterization

of mso de�nable text languages in terms of universal algebra and in terms of grammars, which

is presented in this section. We �rst de�ne the algebraic and grammatical notions involved.

We make use of the general de�nition of recognizability of subsets in a �-algebra. For a

ranked alphabet �, a �-algebra A is a pair (A;�), where A is a set and each operator � 2 �

of rank m � 0 de�nes a mapping �

A

: A

m

! A (see, e.g., [2]). The term algebra formed by

the set of �-terms is denoted by F

�

= (F

�

;�).

For a �-algebra A = (A;�), a subset K � A is recognizable if there is a �nite �-algebra

Q = (Q;�), a homomorphism h : A ! Q, and a subset F � Q such that h

�1

(F) = K.

This de�nition applies to tree languages in F

�

, being subsets of the �-algebra of terms F

�

;

the �nite algebra Q corresponds with a so-called (deterministic) bottom-up tree recognizer

(see [21]).

6.3. Recognizable and right-linear text languages 187

To obtain an algebraic structure on texts we let � = �[� be a ranked alphabet as before:

the �-algebra T

�

= (TXT

�

(�);�) is de�ned by a

T

�

= (a; (1)) for a 2 �, and for � 2 �

of rank m, �

1

; : : : ; �

m

2 TXT

�

(�), �

T

�

(�

1

; : : : ; �

m

) = [� (�

1

; : : : ; �

m

)]. This leads to the

following de�nition of recognizability for text languages.

De�nition 6.3.1 A text language K � TXT

�

(�) is recognizable if there is a �nite �-algebra

Q = (Q;�) (where � = �[�), a homomorphism h : T

�

! Q, and a subset F � Q such that

h

�1

(F) = K.

Note that the mapping txt : F

�

! TXT

�

(�) which assigns to each t 2 F

�

the text txt (t)

is precisely the homomorphism evaluating terms of F

�

in T

�

. As txt is surjective we may

apply the more general result [2, Theorem 3.4] to the algebra T

�

.

Proposition 6.3.2 Let K � TXT

�

(�) be a text language. K is recognizable in T

�

i�

txt

�1

(K) is recognizable in F

�

.

Now we turn to grammars de�ning tree and text languages. The notion of (singular)

substitution of trees and texts forms the basis for the derivation in tree grammars and text

grammars.

Let � be an arbitrary ranked alphabet, and let t; u 2 F

�

be trees. By substituting u for

the k-th leaf of t, we again obtain a tree t

0

in F

�

. Writing trees as words over � [fh; ig, t

0

is

the word obtained from t by replacing the label of the k-th leaf in t by the word u. We denote

the tree t

0

by t[k u].

Similarly we consider text substitution. Let �; � 2 TXT

�

(�), and let k be a natural

number not greater than the length of � . Then � [k �] is the text where the k-th element

of the domain of � is replaced by the text �, and the orderings and labels are inherited in the

obvious way (cf. simultaneous substitution as de�ned before: if � has underlying bi-order �

and word a

1

� � � a

m

, then � [k �] may be de�ned as [� (�

1

; : : : ; �

m

)], where �

k

= � and for

j 6= k, �

j

is the singleton text with word a

j

).

In particular, if � = � [� is a ranked alphabet for primitive representations, then the

substitutions in F

�

and TXT

�

(�) are compatible in the sense that txt(t[k u]) = txt(t)[k

txt (u)] (this is a consequence of the fact that txt is the homomorphism evaluating terms in

T

�

).

A regular tree grammar is a 4-tuple G = (N;�; P; S), where N is a set of nonterminal

symbols, � is a ranked alphabet, P consists of productions of the form A ! t, where A 2 N

and t 2 F

�[N

(interpreting the nonterminals as operators of rank 0), and S 2 N . A tree

t

0

2 F

�[N

is derived from a tree t 2 F

�[N

, denoted t)

G

t

0

, if there is a production A! u in

P , and a natural number k such that the k-th leaf of t has label A, and t

0

= t[k u]. The

tree language generated by G is the set of trees ft 2 F

�

j S)

+

G

tg; such a tree language is

called regular. Each regular tree language is generated by a regular tree grammar in normal

form, i.e., a grammar such that every production is of the form A! �hB

1

� � �B

m

i with � 2 �

of rank m � 0, and B

1

; : : : ; B

m

nonterminals.

For texts we have the notion of context-free text grammar (see [12]), which is a 4-tuple

G = (N;�; P; �

0

), where N is the alphabet of nonterminals, � is the alphabet of terminals,

188 Chapter 6. Monadic Second-Order De�nable Text Languages

P is a �nite set of productions A ! � , where A 2 N and � is a text over N [�, and �

0

is a

text of length 1 over N .

For � , �

0

2 TXT(N [�), � derives �

0

(in G), denoted �)

G

�

0

, if there is a production

A! � 2 P such that the k-th letter of the word of � is A, and �

0

= � [k �].

Example 6.3.3 Consider the text grammar G = (fS;Ag; fa; b; cg; P; (S; (1))) such that P

consists of the productions S ! (Ab; (1; 2)), A ! (AA; (2; 1)), and A ! (abc; (1; 3; 2)).

Here is an example of a derivation in G : (S; (1)))

G

(Ab; (1; 2)))

G

(AAb; (2; 1; 3)))

G

(Aabcb; (2; 4; 3; 1; 5)))

G

(abcabcb; (4; 6; 5; 1; 3; 2; 7)). 2

For a context-free text grammar G = (N;�; P; �

0

), the text language generated by G is

f� 2 TXT(�) j �

0

)

�

G

�g; such a text language is called context-free. Since G has �nitely

many productions, there is a �nite set � of primitive bi-orders such that all right-hand sides

are in TXT

�

(� [N); then also the generated language is included in TXT

�

(�).

The notion of a context-free text grammar is too powerful for our purpose of characterizing

recognizable text languages. E.g., the text language K = f(a

n

b

n

; (1; 2; : : : ; 2n)) j n � 1g is a

context-free text language (just as the corresponding word language), but sh(K) is not regular.

Decomposing right-hand sides of productions into primitive texts, one obtains for each

context-free text grammar an equivalent grammar in primitive normal form, i.e., for every

production A ! � , � is primitive, and the word of � either is a terminal or it is of length

� 2 and consists of nonterminals. Such a text grammar can be translated to a regular tree

grammar in normal form, which generates primitive representations. We now de�ne text

grammars such that the corresponding tree grammar generates precisely r-shapes.

De�nition 6.3.4

(1) A context-free text grammar G = (N;�; P; �

0

) is right-linear if G is in primitive normal

form and for each production A! (BC; (i

1

; i

2

)) 2 P , with A;B;C 2 N , and fi

1

; i

2

g = f1; 2g,

if B ! (w; (j

1

; j

2

)) 2 P , then (j

1

; j

2

) 6= (i

1

; i

2

).

(2) A text language is right-linear if it is generated by a right-linear grammar.

From the compatibility of substitution for texts and for trees, and from the observation

that a right-linear text grammar corresponds with a regular tree grammar in normal form that

generates r-shapes, we obtain the desired result.

Theorem 6.3.5 Let K � TXT

�

(�) be a text language. K is right-linear i� sh(K) is regular.

Note that if both �

f

; �

b

62 �, then every context-free text grammar in primitive normal

form is right-linear. Hence in that case the families of context-free text languages and of

right-linear text languages over TXT

�

(�) coincide.

The well-known equivalences for tree languages given in the next proposition yield similar

equivalences for the case of texts.

Proposition 6.3.6 ([9, 25, 30]) Let T � F

�

be a tree language. T is mso de�nable i� T is

recognizable i� T is regular.

6.4. Discussion 189

Theorem 6.3.7 Let K � TXT

�

(�) be a text language. The following statements are equiv-

alent:

(i) K is mso de�nable.

(ii) K is recognizable.

(iii) K is right-linear.

Proof. By Proposition 6.3.6, txt

�1

(K) is mso-de�nable i� it is recognizable, and sh(K) is

mso-de�nable i� it is regular. Hence, the equivalence of (i) and (ii) follows from Theorem 6.2.7

and Proposition 6.3.2, and the equivalence of (ii) and (iii) follows from Theorem 6.2.7 and

Theorem 6.3.5. 2

An independent proof of the latter equivalence is given in [24], where for a right-linear text

grammar a �nite �-algebra recognizing its language is directly constructed.

6.4 Discussion

Finally, we discuss how the main result (more precisely the equivalence of (i) and (ii) in

Theorem 6.2.7) can be extended to a larger class of graphs than our speci�c texts. (A similar

approach has been taken in [7]). In particular we will sketch how the main equivalences from

Section 6.2 can be generalized.

For our constructions we �rst assume that we are dealing with graphs having the property

that for every pair x; y of nodes there is precisely one edge from x to y. These graphs are

also known as 2-structures, see [13]. Every loop-free graph in GR(�;�) can be translated

to a 2-structure, by replacing all edges from x to y, say with labels

1

; : : : ;

k

, by one edge

with label f

1

; : : : ;

k

g which yields a graph in GR(�; 2

�

) which is a 2-structure. Since this

translation is mso de�nable (in both directions) we can then extend the result obtained for

2-structures to loop-free graphs with multiple edges.

Like for texts, for 2-structures we have modular decomposition based on clans. In fact the

decomposition results for texts that we have used in this paper stem from the translation of

a text (in its interpretation as a graph) into a 2-structure. (For readers familiar with [16], in

that paper the labels V H, V H, V H, V H of a particular 2-structure represent the set labels

f1; 2g, f1g, f2g, and ;, respectively, in our 2-structure interpretation of a text.)

A clan of a 2-structure is a subset of nodes X such that for every node z outside X, all

edges from z into X have the same label, and all edges from X to z have the same label.

Example 6.4.1 Consider the graph g in Figure 6.4. The undirected edges with label A stand

for directed edges in two directions, both with label A. Hence g is a 2-structure. The non-

trivial clans of g are : f1; 4; 5g, f1; 5g, f4; 5g, f1; 2; 4; 5g, f1; 3; 4; 5g, f2; 3g. E.g., f1; 4g is not

a clan, since the edge from 5 to 1 has label C, and the edge from 5 to 4 has label B. 2

Each 2-structure can be decomposed into primitive substructures (i.e., substructures with-

out non-trivial clans) yielding a primitive representation. The 2-structure represented by a

primitive representation is obtained by bottom up substitution into the primitive 2-structures

at its inner nodes.

190 Chapter 6. Monadic Second-Order De�nable Text Languages

h

2

a

h

3

b

A

�

�

�

�

�

A

A

A

A

A

A

A

Q

Q

Q

Q

Q

Q

Q

Q

A

�

�

�

�

�

�

�

�

A

C

C

C

C

C

C

C

C

C

C

C

A

�

�

�

�

�

�

�

�

�

�

�

A

h

5

b

h

1a

h

4

b

-

B

�

C

@

@

@

@

@

@R

B

@

@

@

@

@I

C

�

�

�

�

�

�	

C

�

�

�

�

�

��

B

Figure 6.4: a 2-structure g

Example 6.4.2 In Figure 6.5 two primitive representations for the 2-structure g from Exam-

ple 6.4.1 are given. 2

Primitive representations of texts are ordered (node-labeled) trees in a natural way { the

ordering is induced by the �rst order of the text. Although for 2-structures this does not

come so naturally, we also wish to view primitive representations as ordered trees, to let them

correspond with terms over a ranked alphabet.

c c

A

�

�

�

�

�

A

A

A

A

A

h

3

b

c c

A

�

�

�

�

�

A

A

A

A

A

h

2

a

c c

-

B

�

C

�

�

�

�

�

A

A

A

A

A

h

4

b

c c

-

C

�

B

�

�

�

�

�

h

5

b

A

A

A

A

A

h

1

a

c c

A

�

�

�

�

�

A

A

A

A

A

c c

A

�

�

�

�

�

A

A

A

A

A

h

2

a

h

3

b

c c

-

B

�

C

�

�

�

�

�

h

1

a

A

A

A

A

A

c c

-

B

�

C

�

�

�

�

�

h

5

b

A

A

A

A

A

h

4

b

Figure 6.5: two primitive representations for g

6.4. Discussion 191

The operator symbols in such a ranked alphabet � are node-labels de�ning constants,

and primitive 2-structures the rank of which equals their number of nodes. A �-algebra of

2-structures is de�ned by associating with an operator symbol � of rank m > 1 the operation

which substitutes an m-tuple of 2-structures into the m nodes of �. Therefore, we assume

that the nodes of the operator symbol � are ordered by numbering them f1; : : : ;mg. We use

�

A;B

to denote the primitive 2-structure of rank 2 such that the edge from node 1 to node 2

has label A and the reverse edge has label B.

Example 6.4.3 Consider the primitive representations of Figure 6.5. Let the ordering in

these trees be the left-to-right ordering. Consequently, one should give to the left node of

each 2-structure in the tree number 1, and to the right node number 2. Hence the left tree

corresponds with the term �

A;A

hb�

A;A

h�

B;C

h�

C;B

hbaibiaii, and the right tree corresponds with

the term �

A;A

h�

B;C

ha�

B;C

hbbii�

A;A

habii. 2

6.4.1 The r-shape of a 2-structure

Essential in the considerations of Section 6.2 is the existence of a natural tree representation

of a text, the r-shape, that can be constructed from the text itself. For a generalization to

2-structures we have to choose an r-shape among the possible primitive representations of a

2-structure.

For 2-structures there are more variations in the form of their primitive representations

than in the case of texts (Proposition 6.1.3). However, following from decomposition results

for 2-structures (cf. [12, Lemma 4.1.19]), this form is still restricted. The �rst freedom in

choosing a primitive representation is caused by the associativity of operations of rank 2 in

the �-algebra of 2-structures. Additionally, we may permute the children of a given node

in the tree representation if we permute the nodes of the associated primitive 2-structure

accordingly.

We discuss these two cases.

associativity. Like in the case of texts any binary operator is associative. This means that a 2-

structure built by using the operator �

A;B

several consecutive times, has many di�erent binary

decompositions. This can be solved as before: we choose a rightmost tree representation.

permutations and symmetries. The terms �

A;B

habi and �

B;A

hbai represent the same 2-structure.

More generally, if � is an operator of rank m > 1, and � is a permutation of 1; : : : ;m, then

f

3

f

4

-

�

A

B

f

1

f

2

-

�

A

B

C C

�

�

�

�

�

�

D

@

@

@

@

@

@

D

Figure 6.6: Primitive 2-structure with symmetries

192 Chapter 6. Monadic Second-Order De�nable Text Languages

�ht

1

; : : : ; t

m

i and �(�)ht

�

�1

(1)

; : : : ; t

�

�1

(m)

i represent the same 2-structure, where �(�) is ob-

tained from � by renumbering the nodes of the graph associated with � according to the

permutation �.

It is important to note that it is not possible to �x the r-shape by allowing for each primitive

2-structure precisely one numbering of its nodes. This is due to possible internal symmetries

of the primitive 2-structures, i.e., situations when � = �(�). For an operator �

A;B

of rank

2 this is the case when A = B: �

A;A

is commutative. Similar (but less obvious) symmetries

may occur in primitive 2-structures of higher rank, such as in Figure 6.6. For this operator

� of rank 4, terms �ht

1

t

2

t

3

t

4

i and �ht

3

t

4

t

1

t

2

i represent the same 2-structure for any choice of

t

1

; t

2

; t

3

; t

4

.

In [14] the shape of a 2-structure is an unordered tree. Choosing one of the permutations

of the nodes of an operator in the r-shape corresponds to �xing the order of the children of a

node in the original shape.

To choose an ordering we will assume that we deal with 2-structures the nodes of which

can be linearly ordered. This \external" linear ordering on the nodes will then be used to

determine the \internal" linear ordering on the children of nodes in the shape.

More precisely, we let '

lin

(x; y) be some �xed mso formula with two free variables x and

y, and consider 2-structures for which '

lin

determines a linear order on the nodes. (This

generalizes the case of texts, where '

lin

is the formula edge

1

which de�nes the �rst ordering of

the text.) There is however one important exception to this: for operators �

A;B

, with A 6= B,

we choose the ordering beforehand, by preferring one of �

A;B

and �

B;A

above the other. (The

reason is that we will then be able to give a neat characterization of the nodes in the r-shape.)

These matters necessitate the following two requirements of the ranked alphabet �:

� for every pair A;B (with A 6= B) at most one of the operators �

A;B

and �

B;A

is an

element of �,

� if � is a primitive 2-structure of rank > 2 in �, then every operator obtained by permuting

the nodes of � is also in �.

Then, formally, the r-shape of a 2-structure is the primitive representation such that

� it has no subtrees of the form �

A;B

h�

A;B

ht

1

t

2

it

3

i for any edge-labels A;B (where possibly

A = B),

� for every inner node corresponding to an operator that is not of the form �

A;B

with

A 6= B, if a x is the i-th child and y is the j-th child, with i < j, then there is a leaf x

0

descending from x such that for every leaf y

0

descending from y, '

lin

(x

0

; y

0

) holds.

Example 6.4.4 Consider once more the 2-structure g from Example 6.4.1. Suppose that the

ranked alphabet contains �

B;C

(hence not �

C;B

), and that '

lin

determines the linear order

(1; 2; 3; 4; 5) on the nodes of g (e.g., '

lin

(x; y) may specify that nodes with label a precede

nodes with label b, and that nodes with label b with adjacent C-edges are ordered according

to these edges; �nally the two nodes with only adjacent A-edges are placed in the ordering).

The right tree in Figure 6.5 is the r-shape of g. The substructure of g on the nodes

f1; 4; 5g is built using the operator �

B;C

. Note that its nodes are ordered (1; 5; 4), following

6.4. Discussion 193

the decomposition using this operator, whereas with respect to the \external" ordering '

lin

these nodes are ordered (1; 4; 5). 2

We �rst indicate how to generalize the proof of Theorem 6.2.5.

With our de�nition above, the nodes of the r-shape of a 2-structure correspond with clans

X of the 2-structure that are characterized as follows:

� either X is a prime clan,

� or X is a clan such that there exists a prime clan Z � X, and an operator �

A;B

in

the ranked alphabet � such that for all y in Z � X and all x in X, edge

A

(y; x) and

edge

B

(x; y) hold, and if A = B, then there exists y 2 Z � X such that '

lin

(y; x) for

every x 2 X,

Example 6.4.5 For the 2-structure g from Example 6.4.1, f1; 4; 5g is the only non-trivial

prime clan, and f4; 5g and f2; 3g satisfy the second condition above, where the role of Z is

played by f1; 4; 5g and f1; 2; 3; 4; 5g, respectively. 2

By this characterization there is an mso formula node(X) expressing that the clan X is a

node in the r-shape. Also, there are mso formulas giving the 2-structure label of each node

X in the r-shape, and expressing whether X is the k-th child of Y (where in both formulas

'

lin

occurs). Hence, as for texts, the r-shape of a 2-structure can be speci�ed in terms of the

2-structure itself (and '

lin

). Using this, and the association of leaves and inner nodes as in

the proof of Theorem 6.2.5 it can be shown that the function that assigns to each 2-structure

its r-shape is mso de�nable, analogously to the case of texts.

In the other direction, cf. Lemma 6.2.4, the function 2s that assigns to each primitive

representation the 2-structure it represents is mso de�nable just as txt was, see [20].

Finally, in order to complete the proof of Theorem 6.2.7 for 2-structures, it remains to

be shown that the property of being a r-shape is expressible in MSO(�; f1; : : : ;Mg). The

exclusion of certain binary, non-rightmost, subtrees is expressible in an mso formula (as it

was for texts). Moreover, we have to check for certain leaves x; y whether '

lin

(x; y) holds.

For this we need to express this property in terms of the tree, i.e., in MSO(�; f1; : : : ;Mg)

(where M is the maximal number of nodes of a 2-structure in �). Since the function 2s is mso

de�nable, it follows analogously to the proof of Theorem 6.2.3 that there exists a formula '

�1

lin

in MSO(�; f1; : : : ;Mg) such that '

�1

lin

(x; y) holds for leaves of t i� '

lin

(x; y) holds for nodes of

2s(t). (Note that in order to obtain '

�1

lin

(x; y) from '

lin

(x; y) one has to replace occurrences

of the atomic formula edge

A

(u; v) by a formula that refers to the least common ancestor of u

and v).

Summarizing, we have the following proposition, generalizing Theorem 6.2.7.

For a setK of 2-structures, all linearly ordered by '

lin

and built from �, K is mso de�nable

i� the set of all primitive representations 2s

�1

(K) is mso de�nable i� the set of r-shapes of K

is mso de�nable.

194 Chapter 6. Monadic Second-Order De�nable Text Languages

We turn from the logical viewpoint to the algebraic one. With respect to the �-algebra of

2-structures, the mapping 2s is the homomorphism evaluating terms into 2-structures. Hence

K is recognizable i� 2s

�1

(K) is a recognizable tree language (cf. Proposition 6.3.2). This

implies that K is mso de�nable if and only if it is recognizable.

We can extend this result to graphs with multiple edges in an obvious way. We start with a

ranked alphabet � consisting of primitive 2-structures with edge-labels in 2

�

. Then the terms

over this ranked alphabet represent 2-structures with edge-labels in 2

�

which stand for graphs

in GR(�;�) with multiple edges. In this way we can de�ne a �-algebra on such graphs. The

mapping graph which gives for each primitive representation the graph it represents is the

homomorphism evaluating terms into graphs. Also, graph can be obtained as the composition

of mso de�nable functions, and hence is mso de�nable. Analogously, the function that that

assigns to each graph its r-shape is mso de�nable.

Consequently, a set of (loop-free) graphs in GR(�;�) linearly ordered by some '

lin

and

built from a �xed ranked alphabet � of primitive 2-structures is mso de�nable i� it is recog-

nizable.

We end by stressing the two limitations of this generalization to graphs. First we restrict

ourselves to graphs that can be linearly ordered. Second, we have a �nite alphabet of graph

operators, and consequently we look only at graph languages that have such a �nite number

of primitive building blocks.

Acknowledgement

We thank Joost Engelfriet for many stimulating discussions.

Bibliography of Part II

[1] J.R. B�uchi, Weak second-order arithmetic and �nite automata, Zeitschrift f�ur Mathe-

matik, Logik und Grundlagen der Mathematik 6 (1960) 66{92.

[2] P.M. Cohn, Universal Algebra, Harper & Row, New York, 1965.

[3] B. Courcelle, Equivalences and transformations of regular systems; applications to recur-

sive program schemes and grammars, Theoretical Computer Science 42 (1986) 1{122.

[4] B. Courcelle, An axiomatic de�nition of context-free rewriting and its application to NLC

graph grammars, Theoretical Computer Science 55 (1988) 141{181.

[5] B. Courcelle, On recognizable sets and tree automata, in Resolution of Equations in

Algebraic Structures, Vol 1, H. Ait-Kaci and M. Nivat, eds., Academic Press, New York,

1989.

[6] B. Courcelle, The monadic second-order logic of graphs V: on closing the gap between

de�nability and recognizability, Theoretical Computer Science 80 (1991) 153{202.

[7] B. Courcelle, The monadic second-order logic of graphs X: linear orderings, Technical

Report, Bordeaux, 1994.

[8] B. Courcelle, Monadic second-order de�nable graph transductions, Lecture Notes in Com-

puter Science 581 (1992) 124{144.

[9] J. Doner, Tree acceptors and some of their applications, Journal of Computer and System

Sciences 4 (1970) 406{451.

[10] A. Ehrenfeucht, H.J. Hoogeboom, P. ten Pas, and G. Rozenberg, An introduction to

context-free text grammars, in Developments in Language Theory, G. Rozenberg and A.

Salomaa, eds., World Scienti�c Publishing, 1994.

[11] A. Ehrenfeucht, P. ten Pas, and G. Rozenberg, Combinatorial properties of texts, RAIRO,

Theoretical Informatics and Applications 27 (1993) 433{464.

[12] Chapter 4 of this thesis, published as:

A. Ehrenfeucht, P. ten Pas, and G. Rozenberg, Context-free text grammars, Acta Infor-

matica 31 (1994) 161{206.

195

196 Bibliography of Part II

[13] A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures, Part I: clans, basic subclasses,

and morphisms, Theoretical Computer Science 70 (1990) 277{303.

[14] A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures, Part II: representation through

labeled tree families, Theoretical Computer Science 70 (1990) 305{342.

[15] A. Ehrenfeucht and G. Rozenberg, Angular 2-structures, Theoretical Computer Science

92 (1992) 227{248.

[16] A. Ehrenfeucht and G. Rozenberg, T-structures, T-functions, and texts, Theoretical Com-

puter Science 116 (1993) 227{290.

[17] H. Ehrig, H.-J. Kreowski, and G. Rozenberg, eds., Graph Grammars and their Application

to Computer Science, Lecture Notes in Computer Science 532, Springer, Berlin, 1990.

[18] J. Engelfriet, A characterization of context-free NCE graph languages by monadic second-

order logic on trees, Lecture Notes in Computer Science 532 (1991) 311{327.

[19] J. Engelfriet, A regular characterization of graph languages de�nable in monadic second-

order, Theoretical Computer Science 88 (1991) 139{150.

[20] J. Engelfriet, T. Harju, A. Proskurowski, and G. Rozenberg, Characterization and com-

plexity of uniformly non-primitive labeled 2-structures, Technical Report 94-31 (1994),

Leiden University.

[21] F. G�ecseg and M. Steinby, Tree Automata, Akad�emiai Kiad�o, Budapest, 1984.

[22] R.L. Graham, B.L. Rothschild, and J.H. Spencer, Ramsey Theory, Wiley, New York,

1980.

[23] H.J. Hoogeboom and P. ten Pas, MSO de�nable text languages, Lecture Notes in Com-

puter Science 841 (1994) 413{422.

[24] Chapter 5 of this thesis:

H.J. Hoogeboom and P. ten Pas, Text languages in an algebraic framework, to appear in

Fundamenta Informaticae.

[25] J. Mezei and J.B. Wright, Algebraic automata and context-free sets, Information and

Control 11 (1967) 3{29

[26] A. Pottho� and W. Thomas, Regular tree languages without unary symbols are star-free,

Lecture Notes in Computer Science 710 (1993) 396{405.

[27] W.C. Rounds, Context free grammars on trees, Proceedings ACM STOC 1969 (1969)

143{148.

[28] A. Salomaa, Formal Languages, Academic Press, New York and London, 1973.

Bibliography of Part II 197

[29] M. Steinby, Some algebraic aspects of recognizability and rationality, Lecture Notes in

Computer Science 117 (1981) 360{372.

[30] J.W. Thatcher, J.B. Wright, Generalized �nite automata theory with an application to a

decision problem of second-order logic, Mathematical Systems Theory 2 (1968) 57{82.

198 Bibliography of Part II

Samenvatting

Deze samenvatting is met name bedoeld voor lezers zonder achtergrond in de informatica.

Eerst worden enkele elementaire begrippen die een belangrijke rol spelen in dit proefschrift

verduidelijkt. Vervolgens worden de resultaten uit het proefschrift kort weergegeven.

De twee onderwerpen die in dit proefschrift behandeld worden hebben beide betrekking

op boomstructuren. Een boomstructuur, of kortweg `boom', geeft een hi�erarchische orde-

ning van informatie. Een bekend alledaags voorbeeld is een familie-stamboom. Het belang

van bomen binnen de informatica is heel algemeen gesteld dat een boom kan weergeven hoe

een probleem is opgebouwd uit deelproblemen. Het oplossen van het probleem gebeurt dan

door stapsgewijs oplossingen van deelproblemen te combineren. Een heel eenvoudig voorbeeld

hiervan is de berekening die in de volgende boom is weergegeven (volgens gebruik is de boom

\ondersteboven" getekend).

2

+

@

@

�

�

�

3

�

�

�

@

@

4 4

�

�

A

A

Deze berekening kan ook in een meer \platte" vorm weergegeven worden: (3+(4�4))�2.

Zo'n expressie is een voorbeeld van de meest gebruikte manier om informatie te noteren:

informatie-eenheden worden door symbolen weergegeven (bijvoorbeeld haakjes, cijfers, letters,

etc.) en deze symbolen worden in een rij gerangschikt. Zo'n rijtje symbolen wordt een `woord'

genoemd. Dus ook `bytes' (rijtjes van nullen en �enen), of instructies van een programmeertaal

zijn `woorden'.

Ook in het gebruik van een natuurlijke taal zoals het Nederlands is de informatie op

deze manier gerepresenteerd: een Nederlands woord is een rijtje van letters uit het alfabet.

Bovendien kunnen ook Nederlandse woorden zelf als symbolen opgevat worden en dan heeft

een zin ook de vorm van een `woord'.

In het algemeen heeft niet iedere rij van symbolen een zinvolle betekenis. Bijvoorbeeld niet

ieder rijtje van haakjes, cijfers, en +, �, � stelt een rekenkundige expressie voor en slechts

bij hoge uitzondering vormt een willekeurige rij Nederlandse woorden een correcte Neder-

landse zin. Kortom, alleen woorden met een bepaalde onderliggende structuur representeren

informatie.

199

200 Samenvatting

Een eerste stap in het \begrijpen" van informatie die gegeven is door een woord is daarom

het aanbrengen van structuur in het woord. In het bovenstaande voorbeeld van een rekenkun-

dige expressie geeft de getekende boom de structuur van de expressie. Onder het \begrijpen"

van zo'n expressie kan men het uitrekenen van de eindwaarde verstaan.

In een zin uit een natuurlijke taal vindt men structuur door te ontleden. Bijvoorbeeld de

zin \De fraaie wilg staat in Winterswijk" heeft de volgende grammaticale structuur:

zin

Q

Q

Q

Q

�

�

�

�

naamwoordelijk deel

�

�

@

@

lidw.

bijv.

nw.

zelfst.

nw.

werkwoordelijk deel

�

�

@

@

werkw.

bijw. bep.

van plaats

�

�

@

@

voorz.

zelfst. nw.

\De fraaie wilg staat in Winterswijk"

Deze structuur is dus weer een boomstructuur.

Bij het vinden van de (boom)structuur bij deze voorbeelden wordt gebruik gemaakt van

bekende algemene regels over de vorm van een rekenkundige expressie danwel een Nederlandse

zin, bijvoorbeeld de regel dat een zin bestaat uit een naamwoordelijk en een werkwoordelijk

deel. Dit idee is geformaliseerd in �e�en van de gangbare modellen om verzamelingen van

woorden te de�ni�eren: de zogeheten `context-vrije grammatica'. Een context-vrije grammatica

bestaat uit een (eindige) verzameling van symbolen en een stelsel van regels. Met behulp

van die regels kunnen woorden, d.w.z. rijtjes van de gegeven symbolen, worden afgeleid.

Omgekeerd kunnen ook woorden met behulp van de regels worden herkend, net zoals de zin

\De fraaie wilg staat in Winterswijk" herkend wordt als Nederlandse zin met behulp van

grammaticale regels. Bij het herkennen van een woord met behulp van de regels van een

context-vrije grammatica ontstaat een boom. Zo'n boom heet een `ontledingsboom'.

In dit proefschrift ligt de nadruk op situaties waarbij een ontledingsboom bij een gegeven

woord geconstrueerd kan worden met behulp van andere middelen dan de regels van de gram-

matica. In Deel I wordt hierbij gebruik gemaakt van een systeem om bomen te coderen.

De benadering in Deel II is anders: hier worden objecten bekeken die van zichzelf al meer

structuur hebben dan woorden.

Coderen van bomen houdt in dat aan iedere boom precies �e�en woord toegekend wordt.

Bijvoorbeeld het woord (3+(4�4))�2 is op te vatten als de eerstgetekende boom in gecodeerde

vorm.

Een goede codering moet aan de volgende eisen voldoen: uit een woord dat aan een gegeven

boom is toegekend kan de oorspronkelijke boom eenvoudig teruggevonden worden (m.a.w.,

er is een eenvoudige manier om te `decoderen') en aan twee verschillende bomen mag niet

eenzelfde woord toegekend worden (m.a.w., de codering is `�e�en-op-�e�en'). Bovendien hebben

de coderingen in dit proefschrift de volgende bijzondere eigenschap: het aantal symbolen van

het woord waarin een boom gecodeerd wordt is gelijk aan het aantal bladeren van die boom.

Samenvatting 201

Bladeren zijn de plaatsen in de boom zonder vertakking naar beneden (want bomen worden

ondersteboven getekend). Merk op dat het eerder gegeven voorbeeld van de rekenkundige

expressie hier niet aan voldoet: het aantal symbolen in het woord (3+(4�4))�2 is 11 (beide

voorkomens van het cijfer 4 tellen mee), en het aantal bladeren in de boom is 4.

In het eerste hoofdstuk worden voorwaarden aan coderingen opgesteld die voldoende zijn

om te bewerkstelligen dat er een eenvoudige decoderingsmethode bestaat �en dat de code-

ring `�e�en-op-�e�en' is. In eerste instantie worden coderingen gezocht voor \kale" bomen, dat

wil zeggen, bomen zonder extra informatie op de vertakkingspunten. Het is een tamelijk

verrassend feit dat er goede coderingen bestaan waarvoor slechts zes verschillende symbolen

nodig zijn. Dus bijvoorbeeld de letters a; b; c; d; e; f volstaan: iedere (kale) boom kan gecodeerd

worden als een rijtje van deze letters.

Soortgelijke coderingen bestaan voor bomen waarvan iedere vertakking een vertakking in

precies twee takken is (zoals ook in de eerste hierboven getekende boom het geval is). Deze

worden in een deel van het eerste en in het tweede hoofdstuk onderzocht. In dit geval zijn vier

symbolen genoeg.

In het derde hoofdstuk worden de gevonden coderingen gebruikt om een speciale klasse van

context-vrije grammatica's te de�ni�eren. Uit een woord dat door zo'n grammatica gegenereerd

wordt kan heel makkelijk een bijbehorende ontledingsboom geconstrueerd worden met behulp

van de decoderingsmethode. Daardoor zijn de context-vrije grammatica's van deze klasse

eenvoudig en snel ontleedbaar.

De objecten die in Deel II onderzocht worden hebben de naam `tekst' gekregen, om ze te

onderscheiden van woorden (het is niet de opzet om een de�nitie van het algemene begrip

tekst voor te stellen).

Een `tekst' bestaat uit een woord, dus een rij symbolen, uitgebreid met een extra ordening

op de posities van die symbolen. Bijvoorbeeld het woord abac heeft 4 posities met op de eerste

en derde positie een a, op de tweede positie een b en op de vierde positie een c. Een andere

ordening van deze posities is 1243, waarmee aangegeven wordt dat de laatste twee posities

verwisseld zijn. Nu is (abac; 1243) een voorbeeld van een tekst. De toegevoegde ordening van

een tekst kan gebruikt worden om de in het woord gegeven informatie zodanig te herschikken

dat deze informatie doorzichtiger wordt.

Wat vooral van belang is in het kader van dit proefschrift is het feit dat uit de toegevoegde

ordening een boom afgeleid kan worden. Elke tekst heeft dus een individueel bepaalde boom.

Deze boom geeft de hi�erarchische structuur van de tekst weer. Er zijn enkele variaties mogelijk

in de gekozen vorm van die individuele boom.

In hoofdstuk 4 worden context-vrije grammatica's gegeneraliseerd van woorden naar tek-

sten. Deze grammatica's worden zodanig beperkt dat de ontledingsbomen overeenkomen met

de bovengenoemde individueel bepaalde bomen. Afhankelijk van het gekozen type individuele

boom ontstaan zo verschillende klassen van verzamelingen van teksten. Deze klassen worden

met bekende klassen van woordverzamelingen vergeleken.

In hoofdstuk 5 wordt deze vergelijking toegespitst op de klasse van zogeheten `reguliere'

verzamelingen. Voor deze klasse wordt een grammaticale en een algebra��sche karakterisatie

gegeven. Zo'n karakterisatie is bekend in het geval van woorden. Bovendien bestaat er in dat

geval ook een karakterisatie in termen van logica, om precies te zijn in monadische tweede orde

202 Samenvatting

logica. In hoofdstuk 6 wordt een analoog resultaat voor teksten bewezen. Tenslotte wordt

de mogelijkheid besproken om dit resultaat uit te breiden naar objecten met een minder

eenvoudige structuur dan teksten.

Curriculum Vitae

Paulien ten Pas heeft dit proefschrift geschreven in de periode van 1990 tot 1994 toen zij als

assistent-in-opleiding werkzaam was bij de afdeling wiskunde en informatica aan de Rijksuni-

versiteit Leiden. De begeleiding van haar promotie-onderzoek was in handen van prof. dr.

G. Rozenberg en dr. H.J. Hoogeboom.

Van 1985 tot 1990 heeft zij wiskunde gestudeerd, eveneens aan de Rijksuniversiteit Leiden,

waarbij zij de laatste drie jaar student-assistent was. Zij is afgestudeerd in de specialistische

richting discrete wiskunde op een getaltheorie-project bij prof. dr. R. Tijdeman.

Paulien is geboren op 1 november 1966 te Vlissingen en heeft haar V.W.O.-diploma in

1985 behaald op de Stedelijke Scholengemeenschap Middelburg.

203

