A Content-based Image Search Engine
in Cyberspace

a Master’s Thesis

O A mwn

"o O

[z vlla-for Sanil V]

Application-Oriented Computer Science
Leiden Imaging and Multimedia Group
Department of Computer Science

Leiden University

Yuri Lausberg

August 19, 1996

Preface

This thesis represents the final part of my computer science studies here at Lei-
den University. The reason for a thesis is to explore a certain aspect of a field
within the computer science education. After a great number of courses I ob-
tained a clear perspective of which field I would like to complete my education
in. I ended up with the LIM (Leiden Imaging and Multimedia) group a sub-
group of the HPC (High Performance Computing) group of application-oriented
computer science with Dr. Nies Huijsmans and Dr. Michael Lew. They gave me
the possibility for my thesis work. As I got the greatest interest in the Internet I
started working on a project within the LIM (Leiden Imaging and Multimedia)
group. This project lies within the Digital Image Databases and Internet.

Therefore I would like to thank Dr. D.P.(Nies) Huijsmans and Dr. Michael
Lew for giving me the possibility to do my thesis under their supervision. I also
would like to thank them for the care and patience they had for guiding me
through the whole project.

As T am Dutch and T am studying here in Holland I chose to do all my thesis
work in the English language. The reason for this was simply because one of
my associate teachers (Dr. Michael Lew) is an US citizen. Another reason for
me to do this thesis in english is because my wife is an US citizen too and after
my graduation I am planning to immigrate to the USA.

I would also like to thank my wife Summer for always giving me the love and
support I needed. Finally I would like to thank my parents for their patience
to finally see me graduate.

Introduction

An important limitation of the information society of today is the dependency
of textual information representation. This situation tends to continue despite
the main influence of image information representation which is very common
to the day to day routine in human society. We use our visual ability to see and
understand visual information more than any other medium to communicate
and collect information.

The World Wide Web which is actually a part of the Internet contains the
four basic elements of hypermedia: text, images, audio and video. A big part of
the World Wide Web contains visual information representation, simply because
of this old saying: “a picture says more than a 1000 words”.

Because of this amount of information selective searching has become more
and more important. Nowadays meta-information services are offered also called
“search engines” which are based upon text pattern matching methods.

Image searching therefore is most interesting because it is almost not available
on the World Wide Web. It would be very nice if you have your own photo-
studio to see if your photos already exist elsewhere on the Web. This type of
search engines are not (or almost not) available not because nobody is interested
but simply because the problem of image understanding by computers has not
yet been solved. However a growing number of researchers have been trying
to find image query equivalents for the successful text-pattern matching and
text-indexing techniques.

To obtain a clear view of the image understanding problem the reader should
know that we will need to transform the digital image representation to other
forms which have actual meaning or human oriented content. The main idea
of achieving this is the concept of content-based retrieval and storage of image
based information for digital libraries.

ii

iii

My project is divided into two parts. In the first part I've created a CGI
program; a so called “search engine”, usable for any WWW-browser on the
World Wide Web. This search engine makes querying based on image content
possible within the 19th Century Portrait Database. The search algorithms and
feature extraction techniques for this content-based image retrieval have been
implemented by other persons. The main idea was to see if we could make
the results of the search methods available for anyone connected to the World
Wide Web. Another motivation was to understand and overcome the problems
involving Web programming.

In the second part of this project we tried to turn this concept of connecting
this search engine to the World Wide Web around. Instead of connecting our
private database to the World Wide Web I have created a database based on the
images found on the World Wide Web. With this database a new search engine
was born. This concept is rather interesting because public data is involved (not
just some private collection of photos).

In order to collect these images we had to come up with a program, this is
what we like to call a Web spider which is nothing more than an autonomous
agent that searches the World Wide Web. Of course like any other database
you would like to perform queries. This querying is based on image content,
like color and shape, (but also text-pattern querying) of an example image. All
by all I ended up with a search engine based on querying by example on image
content and text-patterns.

In this report we would like to give the reader a detailed outline of the way
we’'ve been working on this project, the techniques involved and most of all
the programming itself. It will also give a nice introduction to Web program-
ming and all the basics involved. This report can be used for the experienced
programmer as a reference manual for any future work for this project.

Contents

Preface
Introduction

1 The World Wide Web
1.1 Introduction
1.2 Howitworks
1.3 Webuclient e
1.4 The Hypertext Transfer Protocol
1.5 HTML o
1.6 Search Engines

2 The Common Gateway Interface
2.1 Introduction.
2.2 Dynamic behaviour Lo
2.3 HTML-based interfaces
2.3.1 What needs to be done?
2.3.2 Why not just writea GUI?
24 Getting started o
2.5 Choice of programming language?
2.5.1 Compiled CGI Programming Languages
2.5.2 Interpreted CGI Programming Languages
2.5.3 Compiled/Interpreted CGI Programming Languages . . .
2.5.4 The selection of the CGI programming language
26 Perl
2.7 CGlLpm - a Perl5 CGI Library
2.8 HTTP Daemon

3 Leiden 19th Century Portrait Database
3.1 Content-based Image Retrieval
3.2 Imntroduction of LCPD
3.3 Implementation

CONTENTS

3.4 Demofeatures.
3.4.1 Changing the number of images displayed
3.4.2 The Similarity Methods
3.4.3 Changing the photo view of images displayed
3.4.4 New Random-set selection
3.4.5 Test-set selection L.
3.4.6 Helpbuttons Lo

3.5 Conclusion

WWW Robots, Spiders and Webcrawlers

4.1 Introduction
4.1.1 Whatisa Robot?
4.2 Robotreuse e e
4.3 MOMSspider oL e
431 Design e
4.3.2 Functionality
4.3.3 Efficient use of network resources
4.3.4 Being friendly to service providers

The Image Database

5.1 Introduction.
5.2 Searching for images
5.3 Thumbnails
5.4 Database population o0 0.

54.1 Adding images
5.5 Future Worko

5.5.1 Removing and updating images

The Similarity Methods

6.1 Introduction
6.2 Keyword matching
6.2.1 Keyword Database
6.3 Color histogram matching
6.3.1 Introduction
6.3.2 Thecolorspace
6.3.3 Color Histograms
6.3.4 The indexing algorithm
6.3.0 Indexingo
6.4 Edge oriented matching o0
6.4.1 Intensity space
6.4.2 Gradient space
6.4.3 Horizontal and Vertical Projections
6.5 Evaluation. 00 .

6.5.1 Color histogram matching

CONTENTS

6.5.2 Edge oriented matching
6.5.3 Test-set testing oL Lo

7 Image Search Engine
7.1 Introduction
7.2 UserInterface
7.2.1 The Query Result and Selection Window
7.2.2 The Query Control Panel Window
7.3 Conclusion

8 Conclusion
81 Future Work
81.1 Color e
8.1.2 Edgeso
813 Keywords
81.4 User Interface
81.5 Database e

Bibliography

Appendix A HTML
Appendix B Perl

Appendix C CGL.pm
Appendix D MOMspider
Appendix E Libwww-Perl
Appendix F Important Links

Appendix G Setup of a HTTP Server

54
o4
o4
35
96
99

60
60
60
60
61
61
61

63

64

67

69

79

81

83

86

Chapter 1

The World Wide Web

1.1 Introduction

In the 1960s, researchers began experimenting with linking computers to each
other and to people through telephone hook-ups, using funds from the U.S
Defense Department’s Advanced Research Projects Agency (ARPA).

ARPA wanted to see if computers in different locations could be linked using
a new technology known as packet switching, which had the promise of letting
several users share just one communications line. Previous computer networking
efforts had required a line between each computer on the network, sort of like
a train track on which only one train can travel at a time. The packet system
allowed for creation of a data highway, in which large numbers of vehicles could
essentially share the same lane. Each packet was given the computer equivalent
of a map and a time stamp, so that it could be sent to the right destination,
where it would then be reassembled into a message the computer or a human
could use.

This system allowed computers to share data and the researchers to exchange
electronic mail, or e-mail. In itself, e-mail was something of a revolution, offering
the ability to send detailed letters at the speed of a phone call.

As this system, known as ARPANet, grew, some enterprising college students
(and one in high school) developed a way to use it to conduct online conferences.
These started as science-oriented discussions, but they soon branched out into
virtually every other field, as people realized the power of being able to “talk”
to hundreds, or even thousands, of people around the country.

CHAPTER 1. THE WORLD WIDE WEB

“This map may be obtained via anonymous ftp
from fi du. connectivity table directory

INTERNATIONAL CONNECTIVITY
Version 14 - 6/15/95
B internet
. Bitnet but not Internet
B Email only (UUCP, FidoNet)

D No Connectivity

Copyright © 1995
Larry Landweber

and the Internet Society.
Unlimited permission to

copy or use is hereby granted
subject to inclusion of

this copyright notice.

Figure 1.1: Statistics available by FTP from nic.merit.edu.

“This map may be obtained via anonymous ftp
from fi du, connecivity table directon

INTERNATIONAL CONNECTIVITY

Version 15 - 6/15/96
. Internet

. Bitnet but not Internet
B Email only (UUCP, FidoNet)
D No Connectivity

Copyright © 1996

Larry Landweber

and the Internet Society.
Unlimited permission to

cugy or use is hereby granted
subject to inclusion of

this copyright notice.

Figure 1.2: Statistics available by FTP from nic.merit.edu.

CHAPTER 1. THE WORLD WIDE WEB 6

In the 1970s, ARPA helped support the development of rules, or protocols, for
transferring data between different types of computer networks. These “inter-
net” (from “internetworking”) protocols made it possible to develop the world-
wide Net we have today. By the close of the 1970s, links developed between
ARPANet and counterparts in other countries. The world was now tied together
in a computer web.

In the 1980s, this network of networks, which became known collectively as
the Internet, expanded at a phenomenal rate. Hundreds, then thousands, of
colleges, research companies and government agencies began to connect their
computers to this worldwide Net (see figure 1.1 and 1.2). Some enterprising
hobbyists and companies unwilling to pay the high costs of Internet access (or
unable to meet stringent government regulations for access) learned how to
link their own systems to the Internet, even if only for e-mail and conferences.
Some of these systems began offering access to the public. Now anybody with
a computer and modem - and persistence - could tap into the world.

In the 1990s, the Net grows at exponential rates. Some estimates are that
the volume of messages transferred through the Net grows 20 percent a month
(see figure 1.1 and 1.2). In response, government and other users have tried in
recent years to expand the Net itself.

1.2 How it works

The worldwide Net is actually a complex web of smaller regional networks. To
understand it, picture a modern road network of trans-continental superhigh-
ways connecting large cities. From these large cities come smaller freeways and
parkways to link together small towns, whose residents travel on slower, narrow
residential ways.

The Net superhighway is the high-speed Internet. Connected to this are
computers that uses a particular system of transferring data at high speeds. In
the U.S., the major Internet ”backbone” theoretically can move data at rates of
45 million bits per second (compare this to the average home modem, which has
a top speed of roughly 28k8 bits per second). This internetworking “protocol”
lets network users connect to computers around the world.

Connected to the backbone computers are smaller networks serving particular
geographic regions, which generally move data at speeds around 1.5 million bits
per second. Feeding off these in turn are even smaller networks or individual
computers.

CHAPTER 1. THE WORLD WIDE WEB 7

Nobody really knows how many computers and networks actually make up
this Net. Some estimates say there are now as many as 5,000 networks con-
necting nearly 2 million computers and more than 15 million people around
the world. Whatever the actual numbers, however, it is clear they are only
increasing.

There is no one central computer or even group of computers running the
Internet - its resources are to be found among thousands of individual computers.
This is both its greatest strength and its greatest weakness. The approach means
it is unlikely for the entire Net to crash at once - even if one computer shuts
down, the rest of the network stays up. But thousands of connected computers
can also make it difficult to navigate the Net and find what you want. It is only
recently that Net users have begun to develop the sorts of navigational tools
and “maps” that will let neophytes get around without getting lost.

The vast number of computers and links between them ensure that the net-
work as a whole will likely never crash and means that network users have ready
access to vast amounts of information. But because resources are split among
so many different sites, finding that information can prove to be a difficult task,
especially because each computer might have its own unique set of commands
for bringing up that information.

If you choose to go forward, to use and contribute, you will become a “citizen
of Cyberspace.” If you're reading these words for the first time, this may seem
like an amusing but unlikely notion — that one could “inhabit” a place without
physical space. But put a mark beside these words. Join the Net and actively
participate for a year. Then re-read this passage. It will no longer seem so
strange to be a “citizen of Cyberspace”. It will seem like the most natural thing
in the world.

So how do we define the World Wide Web exactly? The World Wide Web
is officially described as a “wide-area hypermedia information retrieval initia-
tive aiming to give universal access to a large universe of documents”. The
WWW (World Wide Web) is basically a part of the Internet. When we speak
of hypermedia, we're talking about the four basic document components:

1. text
2. images
3. audio
4. video

The WWW supports all off these one way or another.

CHAPTER 1. THE WORLD WIDE WEB 8

The World Wide Web exists virtually - there is no standard way of viewing
it or navigating around it. However, many software interfaces to the Web have
similar functions and generally work the same way no matter what computer or
type of display is used.

1.3 Web client

Web software is designed around a distributed client-server architecture. A Web
client (called a Web browser if it is intended for interactive use) is a program
which can send requests for documents to any Web server. A Web server is a
program that, upon receipt of a request, sends the document requested (or an
error message if appropriate) back to the requesting client.

File Edit VYiew Go Bookmarks Options Directory Wincdow Help |
al @lal sz | afa| »

Home Fieload Images Qpen Print Find SHop

o

Back Fapizil

Go To: I http: //www.netscape.con

Netscape Navigator ™ A
Version 2.0
Copyright @ 19941995 Netscape
Communications Corporation, All rights
reserved,

This seftwrare is subject to the license agreement set
forth in the license. Please read and agree to all
terms before using this software.

N E T S C A P E Report any problems through the feedback page.
Netscape Comrnunications, Netscape, Netscape
Nawvigator and the Netscape Comrmunicadons logo
are trademarks of Netscape Comrmunicatons
Corporadon. A

i) [=2

Figure 1.3: Netscape Web browser

The language that Web clients and servers use to communicate with each
other is called the HyperText Transfer Protocol (HTTP). All Web clients and
servers must be able to speak HTTP in order to send and receive hypermedia
documents. For this reason, Web servers are often called HTTP servers.

CHAPTER 1. THE WORLD WIDE WEB 9

1.4 The Hypertext Transfer Protocol

The Hypertext Transfer Protocol [HTTP] has been in use by the World-Wide
Web global information initiative since 1990. HTTP is an application-level
protocol with the lightness and speed necessary for distributed, collaborative,
hyper-media information systems. It is a generic, stateless, object-oriented pro-
tocol which can be used for many tasks, such as name servers and distributed
object management systems, through extension of its request methods (com-
mands). A feature of HTTP is the typing and negotiation of data representation,
allowing systems to be built independently of the data being transferred.

The Hypertext Transfer Protocol [HTTP] is a network protocol built for the
WWW. Certain operations, called methods, are associated with the object ori-
ented HTTP protocol. These methods define extensions to the HTTP com-
mands and can be associated with particular types of network objects such as
documents, files, or associated services.

The purpose of HTTP was to make available many sources of related, net-
worked information via the Internet. It is possible to browse these information
stores, to rapidly follow references from any source of information to other per-
tinent sources which may themselves be located at multiple remote locations.
HTTP’s functionality includes search and retrieval, front-end updates, and doc-
ument annotation. HTTP allows an extensible set of methods to be designed
and deployed. It builds on the discipline of reference provided by the Uniform
Resource Identifier (URI), a well-thought-out scheme that originated with the
Internet Engineering Task Force (IETF). There are two types of URIs, the Uni-
form Resource Name (URN) and the Uniform Resource Locator [URL1996].

HTTP also features dynamic data representation through client/server nego-
tiation. This allows WWW information systems to be built independent of the
development of new information representations. The way information is rep-
resented can be worked out as part of the process of shipping data from servers
to clients, and vice versa.

On the Internet, network communications occur via TCP /TP connections. Oc-
casionally, certain situations may arise where this protocol suite is implemented
atop another network protocol. In this case, HTTP objects may be mapped
onto foreign transport mechanisms or networks. This is a simple, straightfor-
ward process, one that usually goes unnoticed by WWW users.

The HTTP protocol is stateless - that is, neither the client nor the server stores
information about the state of the other side of an ongoing connection. Each
minds its own business and manages state information for itself. This supports

CHAPTER 1. THE WORLD WIDE WEB 10

the simplest kinds of client and server applications, and helps to account for
the broad reach and platform support found in the Web community. Most
networking protocols depend on the notion of a transaction, which consists of
the following elements:

e the establishment of a connection between a client and a server, to permit
communications to occur

e a request from a client to a server, for specific services, resources, or other
known topics of communication

e a response from the server to the client’s request, supplying the requested
resource or an explanation as to why it can’t be delivered, and

e the termination of the connection, at the close of request/response com-
munication

This rhythm (connection, request, response, close) describes the basic form
of interchange between clients and servers the world over, both on and off the
Web.

1.5 HTML

The HyperText Markup Language [HTML](see Appendix A at page 64) is a sim-
ple markup system used to create hypertext documents that are portable from
one platform to another. HTML documents are SGML (Standard Generalized
Markup Language) documents with generic semantics that are appropriate for
representing information from a wide range of applications. HTML markup
can represent hypertext news, mail, documentation, and hypermedia; menus
of options; database query results; simple structured documents with in-lined
graphics; and hypertext views of existing bodies of information.

HTML’s evolution continues to be a fascinating story. Starting with a sim-
ple set of basic markup and text elements, HTML is evolving into a complex
hypermedia markup language. Along with this evolution from simple to com-
plex, there have been some digressions from the original basic markup model
to today’s complex collection of table definitions, mathematical notations, and
complex markup requirements. For instance, HTML+ is one branch of the
HTML tree that reached a dead end (but not before exerting a major influence
on level 3 development). In fact, many artifacts from HTML+ have been in-
tegrated into the level 3 DTD (Data Type Definition), while numerous others
met their demise.

CHAPTER 1. THE WORLD WIDE WEB 11

1.6 Search Engines

To extract information of the Internet is quite a difficult task since the Internet
became a huge hay stack of information.

Using the right tools makes researching the Web much simpler. There is a
class of software tools called search engines that can examine huge amounts of
information to help you locate Web sites of potential interest.

Here’s how most of them work: Somewhere in the background, laboring in
patient anonymity, you’ll find automated Web-traversing programs, often called
robots or spiders (see chapter 4 at page 33), that do nothing but follow link
after link around the Web, ad infinitum. Each time they get to a new Web
document, they peruse and catalog its contents, storing the information for
transmission to a database elsewhere on the Web. At regular intervals these
automated information gatherers transmit their recent acquisitions to a parent
database, where the information is sifted, categorized, and stored.

When you run a search engine, you’re actually searching the database that’s
been compiled and managed through the initial efforts of the robots and spiders,
but which is handled by a fully functional database management system that
communicates with the CGI (see chapter 2 at page 12) program for your search
form. Using the keywords or search terms you provide to the form, the database
locates “hits” (exact matches) and also “near-hits” (matches with less than the
full set of terms supplied, or based on educated guesses about what you’re really
trying to locate).

The hits are returned to the CGI program by the database, where they are
transformed into a Web document to return the results of the search for your
perusal.

If you’re lucky, all this activity will produce references to some materials that
you can actually use! The term search-engine will be used throughout this thesis
to represent a user-interface with which you can define queries.

Chapter 2

The Common (Gateway
Interface

2.1 Introduction

Since Web servers can generate custom built Web documents on-the-fly in re-
sponse to interaction with end users, this makes online WWW publishing much
more responsive and open-ended than traditional publishing. The need for this
interaction with end users started a new development as an extension of HTTP
called CGI, the Common Gateway Interface [CGI].

The Common Gateway Interface [CGI] is a standard for interfacing external
applications with information servers, such as HT'TP or Web servers. A plain
HTML document that the Web daemon (see section 2.8 at page 22) retrieves is
static, which means it exists in a constant state: a text file that doesn’t change.
A CGI program, on the other hand, is executed in real-time, so that it can
output dynamic information.

2.2 Dynamic behaviour

Quick response to change and dynamic behaviour are the underpinnings of the
power behind the WWW. Dynamic behaviour is a vital aspect of the Web that
is sometimes hard to identify or appreciate. This is particularly true when
documents are created on-the-fly, usually in response to some event on the
WWW. Although what appears to a user in response to a query may look like
“just another Web page”, it might actually be an evanescent document created
for one-time use in direct response to that query. This technology is called the
Common Gateway Interface [CGI].

12

CHAPTER 2. THE COMMON GATEWAY INTERFACE 13

For example, let’s say that you wanted to “hook up” your Unix database
to the World Wide Web, to allow people from all over the world to query it.
Basically, you need to create a CGI program that the Web daemon (see section
2.8 at page 22) will execute to transmit information to the database engine, and
receive the results back again and display them to the client. This is an example
of a gateway, and this is where CGI, currently version 1.1, got its origins.

The database example is a simple idea, but most of the time rather difficult
to implement. There really is no limit as to what you can hook up to the Web.
The only thing you need to remember is that whatever your CGI program does,
it should not take too long to process. Otherwise, the user will just be staring
at their browser waiting for something to happen.

2.3 HTML-based interfaces

Today, we are living in a multi-platform world in which everyone wants to create
applications that are platform independent. This can be done with expensive
cross-compilers and expensive GUI generating software packages. But why not
take advantage of other people’s hard work and make things easy for yourself
by using HTML. There is no reason why you and everyone else has to keep
writing the“same” (more or less) code for generating windows, buttons, boxes,
pictures, etc. You would like to be able to make an input field as easily as
writing <input name="“input” > , which can be done in HTML. You should not
have to write code to handle selecting text in the window, or code to make the
input “clickable”. Your web browser will take care of all of that for you. Thus,
ultimately, when you use HTML forms you only have to describe the way that
you want the interface to look and you leave the work of generating it to the
web browser.

2.3.1 What needs to be done?

Your interface will contain two main parts: a form which will obtain some type of
useful information, and a program that will perform some type of computation
on that information ultimately writing its results into yet another HTML doc-
ument. Basically our main goal is to learn how to write these programs. They
will be written to take CGI style input from our forms and generate output as
HTML documents which can be accessed through your favorite web browser.

2.3.2 Why not just write a GUI?

The main reason for using HTML as a front end for your programming projects
is that by doing so you are taking advantage of the fact that there exist Web
browsers for virtually every platform that you might be interested in having

CHAPTER 2. THE COMMON GATEWAY INTERFACE 14

your software running on. So as long as you have a compiler that can create
executable code for the target machine which can “run from the command line”
and there exists a web browser for that platform and presentation environment,
the modifications to use HTML are minimal. In fact these modifications do not
necessarily require the re-compiling of the executables, scripting languages like
Perl (see section 2.6 at page 20) can be used as a “wrapper” for the existing
code.

2.4 Getting started

What will I need to get started?
e First you will need a Web browser (see section 1.3 at page 8).

e You will need the facilities to generate the executable code: a compiler
if you are writing in a compiled language(C, C++, PASCAL, etc.), or a
script parser if you are writing in a language like Perl (see section 2.6 at
page 20) or Tecl.

e Libraries to make extracting information from CGI style documents easier
(see section 2.7 at page 21 for more details).

e Last but not least you will need a computer running a web server (see
section 2.8 at page 22), and the server does have to allow the running of
CGI programs. If you are not sure about this you should check with your
local system administrator, or local computer expert.

2.5 Choice of programming language?

Programming languages come in many different flavors: procedural (e.g., C,
Basic, and FORTRAN), object-oriented (e.g., C++, Smalltalk, and Java), logic
languages like Prolog, and functional languages like Lisp. There are more pro-
gramming languages out there than most of us could ever learn, even in several
lifetimes!

Every programming language has its own solution domain and its own phi-
losophy; that is, each one best solves specific types of problems, and an applica-
tion’s design is influenced by the language’s philosophy. For example, Lisp isn’t
practical for number crunching, nor is FORTRAN the best choice for heavy-
duty string manipulation. Languages taken from the same paradigm, like C
and Pascal, have different syntaxes but you can translate between them with
relative ease. Both are procedural languages with similar constructs and design
principles.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 15

Choosing the right programming language should be the result of a thorough
and painstaking problem analysis. In some cases, a language might be selected
simply because the programmer understands the language and can use its con-
structs and syntax to their best advantage. In other cases, languages are chosen
because they have proved to be more understandable, more reliable, more ef-
ficient, or more extensible than others. When coming to writing code, there
is seldom much sense in reinventing the wheel. Working from public domain,
freeware, or shareware source code is usually a great way to learn a new lan-
guage because of the variety of algorithms implemented and examples available.
In any case, once a programming language is chosen, there is no going back
without considerable work, pain, and suffering.

There are five primary considerations when choosing a language for CGI pro-
gramming:

1. the amount of public source code in easily accessible repositories

2. the availability of support and infrastructure tools like debuggers, compil-
ers, interpreters, tutorials, books, classes and language aware editors

3. your own level of knowledge of a particular language or class of languages
4. the desired throughput of data, compared to support for special operations

5. the ilities of the language: extensibility, modularity, usability, and
reusability

All of these characteristics play an important role in your selection, but typically
the first two or three outweigh the rest. One main distinction can be made
involving the choice of a CGI programming language:

e Compiled CGI Programming Languages:
-C
— C++

o Interpreted CGI Programming Languages:

— Perl
— Tecl
— Python

e Compiled/Interpreted CGI Programming Languages:

— Java

CHAPTER 2. THE COMMON GATEWAY INTERFACE 16

2.5.1 Compiled CGI Programming Languages

Compiled languages create binary objects that are loaded and executed in the
computer’s main memory. These objects are the result of a compiler assembling
ASCII source code into binary information (0s and 1s).

A compiler is typically native to a particular computer architecture and you
can assume that binary objects from one architecture will not execute on another
architecture. For example, don’t expect Pascal code compiled into a binary
object and run on a PC to execute successfully on a UNIX machine. Instead,
the original Pascal source code must be compiled with a native UNIX Pascal
compiler into an UNIX-compatible binary object.

C

The C language was first implemented in 1972 on an old dead and forgotten
machine (a DEC PDP-9) that lay dormant in a hallway at Bell Labs. Brian
Kernighan and Dennis Ritchie created C as a language for their own use and
amusement. Over 20 years later, it’s still one of the most popular languages in
use.

C is a procedural program that describes the steps of an algorithm, like a
procedure on how to install a water pump on a Chevy. You complete each
successive step until you have a new and functional water pump installed, or
your sorting algorithm assembles a list in ascending alphabetical order.

There are two primary advantages in choosing C as a CGI programming
language. First, it can be compiled into a tight binary object that takes up
minimal space compared to interpreted languages. Some C compilers include
command-line options that instruct it to create an optimized binary object. This
results in an even smaller binary object. Second, binary objects typically execute
faster than interpreted languages. If speed of execution is a major concern,
you should definitely pick a compiled programming language. The primary
disadvantage to using C for CGI programming is that it is difficult to manipulate
strings with C language constructs. Nearly 90% of all CGI applications involve
heavy string manipulation. This means that character and string data must be
massaged, transformed, converted, or translated from one to another.

By contrast, integer and floating-point math CGI applications are few and far
between. Most CGI applications take string and character data such as <FORM>
data or query data and return other string and character data based on some
embedded heuristics. For example, a typical CGI application gathers <FORM>
data from a “Comments and Suggestions Form” interface. The CGI application
then assembles the <FORM> data into a MIME mail message and mails it to the

CHAPTER 2. THE COMMON GATEWAY INTERFACE 17

designated address. It can also record <FORM> data to a log file. “Heavy string
manipulation” describes a day in the life of a typical CGI applications engineer.

C++

C++, a successor to C, is a member of the object-oriented (OO) paradigm
of programming languages. Object-oriented languages like C++ offer many
advantages. They provide superior reusability of classes, which reduces the cost
of development for similar applications. They also allow extensibility of core
classes by allowing programmers to add functionality.

They also support modularity, which is the methodology of breaking a prob-
lem down into its smallest understandable units, where each module acts as a
separate functional unit.

Finally, OO languages stress the reusability of classes across many different
problem domains. Reusability of source code is a popular research topic because
it reduces the cost of development. It can also increase the quality of source
code but this depends heavily on the quality of the software engineering of the
component classes in use. As yet, reusability is talked about far more than it’s
practiced, so its benefits remain more theoretical than actual.

The main disadvantage of using C++ is that it belongs to the OO para-
digm. OO development of source code is a completely different beast, requiring
substantial training and street smarts. Designing classes for reusability, under-
standing the polymorphism of functions within a class, and providing effective
management of classes within and across applications are new concepts for many
application engineers.

Another disadvantage to using C++ is that there is only limited public do-
main CGI source code available. This is probably because CGI is a relatively
new area, and few OO CGI applications have been released for public consump-
tion. But this should begin to change once software engineers begin to develop
OO Web solutions.

2.5.2 Interpreted CGI Programming Languages

In this section we look at some of the common interpreted languages you can
use to create CGI applications — namely, Perl, Tcl and Python.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 18

Perl

Perl (see also section 2.6) provides a lucid and succinct way to solve many
programming problems typical in the CGI realm. Perl is not yet a standard
part of UNIX, but is widespread.

The Perl language is intended to be easy to use, but also to be complete and
efficient, rather than tiny, elegant, and minimal. Perl combines some of the best
features of C, sed, awk, and sh. Programmers familiar with these languages
should have little difficulty learning and applying Perl.

Today, most, CGI applications use Perl because of its many positive character-
istics. You will notice that in many of the public CGI source code repositories,
more than half the code is written in Perl.

Tecl

The Tool Command Language (Tcl, pronounced “tickle”) is a simple scripting
language for extending and controlling applications. Tcl can be embedded into
C applications because its interpreter is implemented as a C library of proce-
dures. Each application can extend the basic Tcl functions by creating new Tcl
commands that are specific to a particular programming task.

Accompanying Tcl is a very popular extension called Tk (pronounced “tee-
kay”). It is a toolkit for the X Window System found on many UNIX machines.
Tk extends the basic Tcl functionality with commands to rapidly build Motif
or X Windows user interfaces. Tk is also implemented as a C library of pro-
cedures, allowing it to be used in many disparate applications. Like Tcl, Tk
can be extended, typically by constructing new interface widgets and geometry
managers in C.

Since Tcl is interpreted, Tcl applications typically will not execute as fast
as their C counterparts. For a small class of applications this may become a
disadvantage but with the blinding speed of today’s computer systems, Tcl/Tk
represents an adequate application system. If the speed of execution is critical in
your application, don’t fret. Tcl can be compiled or heavy-duty processing can
be written in a compiled language such as C and C++, and the user interface
programmed in Tcl/Tk. If this is unacceptable, create a throwaway prototype
of the user interface using Tcl/Tk and get feedback from your target users to
build a faster final implementation.

Because of its extensibility and depth, Tcl/Tk is adequate for all but the
most processor-intensive applications. It is particularly well suited for those
that require complex graphical displays or sophisticated user interfaces.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 19

Python

Python is an interpreted, interactive, object-oriented programming language.
It combines an understandable and readable syntax with note-worthy power
compared to other interpreted languages. It has modules, classes, exceptions,
and dynamic data types and typing. Python also provides interfaces to many
system calls and libraries, and to various windowing systems like X11, Motif, Tk,
and Mac. Python can even be used as an “extension language” for applications
that require a programmable interface. Finally, new built-in Python modules
can be implemented in either C or C++.

Python executes on many platforms, including UNIX, Mac, OS/2, MS-DOS,
Windows 3.1, and NT. Python is copyrighted but freely usable and distributable
to individuals as well as commercial institutions.

Python has been used to implement a few WWW modules. Currently these
modules include a CGI module, a library of URL modules, and a few modules
dealing with Electronic Commerce.

2.5.3 Compiled/Interpreted CGI Programming Languages
Java

Java is a new object-oriented programming language and environment from Sun
Microsystems. Along with C and C++, Java is compiled into an architecture-
neutral binary object and then interpreted like Perl or Tcl for a specific archi-
tecture. So, it’s a dessert topping and a floor wax!

With Java, you can create either standalone “applications” or “applets” to
be used within CGI applications.

Java is a strictly-typed object-oriented language, similar to C++ without
many of that language’s shortcomings. For instance, Java will not let you cast
an integer type to a pointer.

Java applications can execute anywhere on a network, making it highly suit-
able for CGI applications. Another really interesting aspect of the language is
that the Java compiler creates an “architecture-neutral” binary object. This ob-
ject is executable on any platform that has a Java runtime system installed. You

can write one Java program that can execute on all other supported platforms
including Mac, UNIX, NT, and Windows.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 20

Netscape Communications Corporation has licensed the Java language to im-
plement within their Netscape Navigator browser. Their main motivation is to
increase the extensibility of Navigator and to enable the creation of a new class
of client/server networked applications.

Java and HotJava — the WWW browser from Sun written in Java — are freely
available in binary form to individuals. Java can also be licensed to commercial
institutions.

2.5.4 The selection of the CGI programming language

extensibility,
modularity,
Programming | Available | data-handling usability,
Language source-code abilities and reusability
C +- + -
C++ +- ++ ++
Perl ++ ++ ++
Tel - +- +=
Python +- +- +
Java +- ++ ++

Table 2.1: advantages vs disadvantages

Considering all these choices (see table 2.1) we chose Perl as the CGI program-
ming language for this project, not only because Perl is an interpreted language,
but because there is a big load of Perl source-code available for CGI program-
ming on the Net. Java is a good runner-up, but in this case unsuitable since
we do want to stay in charge of the applications execution, since Java only
executes when a Java runtime system is installed. Since Perl can be used in
combination with the C++ language it meets all our requirements, like integer
and floating-point math CGI applications (see also section 2.6 at page 20).

2.6 Perl

Perl, the Practical Extraction and Report Language [Perl], is an interpreted
language optimized for easy manipulation of files, text, and processes. Perl is
typically used when scanning text files, extracting text strings, and printing
reports based on the information that’s extracted. Perl was created by Larry
Wall in the early 1980’s. Perl provides the best of several worlds. For instance:

e Perl has the power and flexibility of a high-level programming language
such as C. In fact many of these features of the language are borrowed

CHAPTER 2. THE COMMON GATEWAY INTERFACE 21

from C.

o Like shell script languages, Perl does not require a special compiler and
linker to turn the programs you write into working code. Instead, all you
have to do is write the program and tell Perl to run it. This means that
Perl is ideal for producing quick solutions to programming problems.

e Perl provides all of the best features of the script languages sed and awk,
plus features not found in either of these two languages. Perl also supports
a sed-to-Perl translator and a awk-to-Perl translator.

The Perl language is intended to be easy to use, but also to be complete and
efficient, rather than tiny, elegant, and minimal.

Perl’s syntax and structure is very similar to C. Many of the constructs in
Perl like if, for, and while correspond to their counterparts in C. With Perl,
you can manipulate and match regular expressions with great ease. Today, most
CGI applications use Perl because of its many positive characteristics. You will
notice that in many of the public CGI source code repositories, more than half
the code is written in Perl (see also Appendix B at page 67).

2.7 CGIL.pm - a Perl5 CGI Library

HTML documents can specify interactive fill-out forms — with input elements in-
cluding text entry areas, toggle buttons, selection lists, popup menus, etc. (and
your Web browser will instantiate such fill-out forms as sets of Motif widgets
embedded inside the documents). This provides a way to provide arbitrarily
sophisticated front-end interfaces to databases and search engines, as well as
other network services (e.g., ordering pizzas).

As you now know, there are two methods which can be used to access your
forms. These methods are GET and POST. Depending on which method you
used, you will receive the encoded results of the form in a different way.

e The GET method

If your form has METHOD=“GET” in its FORM tag, your CGI pro-
gram will receive the encoded form input in the environment variable
QUERY _STRING.

e The POST method

If your form has METHOD=“POST” in its FORM tag, your CGI program
will receive the encoded form input on stdin. The server will NOT send you
an EOF on the end of the data, instead you should use the environment,
variable CONTENT_LENGTH to determine how much data you should
read from stdin.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 22

When you write a form, each of your input items has a NAME tag. When
the user places data in these items in the form, that information is encoded into
the form data. The value each of the input items is given by the user is called
the value.

Form data is a stream of name=value pairs separated by the & character.
Each name=value pair is URL encoded, i.e. spaces are changed into plusses
and some characters are encoded into hexadecimal. The basic procedure is to
split the data by the ampersands. Then, for each name=value pair you get for
this, you should URL decode the name, and then the value, and then do what
you like with them. Because others have been presented with this problem as
well, there are already a number of libraries which will do this decoding for you.

One of these libraries is “CGIL.pm” a Perl5 library for handling forms in CGI
scripts. With just a handful of calls, you can parse CGI queries. However, it also
offers a rich set of functions for creating fill-out forms. Instead of remembering
the syntax for HTML form elements, you just make a series of Perl function
calls. An important fringe benefit of this is that the value of the previous query
is used to initialize the form, so that the state of the form is preserved from
invocation to invocation.

Everything is done through a “CGI” object. When you create one of these
objects it examines the environment for a query string, parses it, and stores
the results. You can then ask the CGI object to return or modify the query
values. CGI objects handle POST and GET methods correctly, and correctly
distinguish between scripts called from <ISINDEX> documents and form-based
documents. In fact you can debug your script from the command line without
worrying about setting up environment variables. For more detailed information
about “CGI.pm” see Appendix C at page 69.

2.8 HTTP Daemon

After doing almost everything on our little list (see section 2.4 at page 14) we
now only need to take care of a computer running the web server. In our case
we were able to set up a web server at one of the Indy machines. I chose to
use the NCSA web daemon which is easy to install and most of all it’s public
domain software.

NCSA HTTPd

Figure 2.1: NCSA HTTPd an HTTP/1.0 server

CHAPTER 2. THE COMMON GATEWAY INTERFACE 23

NCSA HTTPd is a program to serve information, much in the same way that
Netscape is a program to browse information in the World Wide Web. From
the Client-Server viewpoint, NCSA HTTPd is the Server to the Browser Client.
Currently I'm using the NCSA HTTPd version 1.5.1 which is an HTTP/1.0
compatible server. For more detailed information about setting up your own
HTTP server please see Appendix G at page 86.

Chapter 3

Leiden 19th Century
Portrait Database

3.1 Content-based Image Retrieval

One of the tools that will be essential for future electronic publishing is a pow-
erful image retrieval system. The author should be able to search an image
database for images that convey the desired information or mood; a reader
should be able to search a corpus of published work for images that are rele-
vant to his or her needs. Most commercial image retrieval systems associate
keywords or text with each image and require the user to enter a keyword or
textual description of the desired image. This text-based approach has numer-
ous drawbacks - associating keywords or text with each image is a tedious task;
some image features may not be mentioned in the textual description; some
features are “nearly impossible to describe with text”; and some features can
by described in widely different ways. In an effort to overcome these problems
and improve retrieval performance, researchers have focused more and more on
content-based image retrieval in which retrieval is accomplished by comparing
image features directly rather than textual descriptions of the image features.
Features that are commonly used in content-based retrieval include color, shape,
texture and edges.

It is hoped that content-based techniques can provide the basis for powerful
“query by example” retrieval systems. For example the user might provide a
sample picture and request similar pictures, a picture of an object and request
pictures that contain the object, a set of colors and request images that contain
those colors, and so on.

24

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 25

3.2

Introduction of LCPD

The problem area is locating copies and former copies in a large picture data-

base.

As objects [Huijsmans] choose pictures within a scanner window; the

pictorial objects are 19th-century B/W studio portraits, whose front and back
sides provide a testbed for graylevel and nearly binary images.
Copy location in this area is a realistic user query because:

the playcard sized portraits mounted on carton were usually printed from
a glass negative and sold to the customer a dozen copies at a time.

the former set of obtained copies found their way into the private photo
albums of family members and friends.

at present more and more of the remaining portraits are found in private
and institutional collections: both the Print Room of Leiden University
and the Icongraphic Office in The Hague have about 10,000 so-called carte
de visite portraits.

for genealogists and art historians tracing copies of family photographs
may give important clues to the name of the person(s) depicted, date of
production and the relations of the person(s) depicted.

known archives in the Netherlands contain over 50,000 of such portraits,
distributed over more than 15 collections and either sorted on different
keys or inaccessible in albums, making non-computerized copy retrieval
close to impossible.

an estimated 50 million of such portraits have been produced in the
Netherlands between 1860 and 1914; about 5 million of these still reside in
family archives. There is a growing interest within genealogical societies
to date these portraits and to determine which persons are depicted.

The following similarity methods were implemented [Huijsmans]:

pixel to pixel difference in intensity space
pixel to pixel difference in gradient space
pixel to pixel difference in thresholded gradient space

row and column line integrals: the horizontal and vertical projections in
intensity space

row and column line integrals: the horizontal and vertical projections in
gradient space

row and column line integrals: the horizontal and vertical projections in
thresholded gradient space

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 26

e 3x3 B/W spatial pattern statistics vector (on binarized gradient magni-
tudes only)

With this photo-database and precalculated results of the similarity methods
we started the project with building a WWW user-interface that allows query-
ing the database by looking up the corresponding precalculated results of the
similarity methods (i.e. a search engine, see section 1.6 at page 11).

3.3 Implementation

Starting off with my own WWW-server and the right CGI/Perl libraries (see
section 2.4 at page 14) we had to design the user-interface first. First off all we
wanted to display multiple images on the screen, therefore we decided to use
thumbnail sized images. One big advantage of using thumbnail sized images is
that the user gets a better overview with more than just one image, also no
information is lost because the user is still capable of understanding the image’s
contents. Another advantage is digital storage and retrieval which is essential
to WWW programs.

The user-interface has to meet the following primary requirements:

e the interface must present a certain number of images (from the database)
on the browser’s screen, the number of rows and the number of columns
must be variable to select a 2-D presentation space.

e the interface must be able to select images by clicking with the mouse on
the according image.

e by selecting an image a new set of images (according to method, selected
image, and selected 2-D representation space) must be presented on the
screen.

So the first thing was to create some sort of a display which could show
multiple thumbnail sized images, before a real user interface was born (see figure
3.1). The way of representing these thumbnail sized images to the user was to
use a table-like layout. This way we could use rows and columns to display
the thumbnail sized images. These thumbnail sized images are presented as so-
called clickable image-maps, that means that the images are shown as buttons,
so the user can select an image (or a location within that image) by a mouse
click.

The images were also provided with an URL to offer the user the possibility
to see the original image in its full size. This way the user is able to actually
see if the chosen picture is really the correct one, because of it’s thumbnail size.

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 27

Image Demo test

5 I 5%

F 4 f

viewr full size viewr full size

% I 5%

F 4 f

viewr full gize viewr full gize viewr full gize wviews full gize

First option. — I First option. . | First option. |

Figure 3.1: First layout http://ind156b.wi.leidenuniv.nl:8086/image.html

Next thing to try out was to see if it is easy to create buttons. In figure 3.1
you can see three so-called “popup-menu” buttons. With such a button the user
can select an option (e.g. method) from a popup-menu.

The main problem to tackle was the problem of maintaining state information
from invocation to invocation. To build a user interface as a HTML page you
must preserve the parameters from the previous page in order to present a
new one with respect to these parameters. But because multiple users can
actually request this page at the same time a solution had to be found. With
the “CGILpm”(see section 2.7 at page 21) library we were able to tackle this
problem.

After setting up a test-user-interface we could now start using the images
from the Leiden 19th Century Portrait Database[Huijsmans]. The images had
to be converted to an image format suitable for WWW-browsers, we chose the
JPEG format, because we wanted to keep the size (in bytes) per image as small
as possible, due to WWW-speed. Image quality of JPEG images are somewhat
poor, but because we are dealing with just a demo the storage requirements
were given the higher priority (see figure 3.2).

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 28

Next we made the user-interface operational; the user is able to select an
image by a mouse click, the selected image is than swapped with the image in
the left upper corner. So we chose the left upper corner to be the spot for the
search image.

Note: underneath every shown thumbnail-sized image, the corresponding
(front & back) URL is given, selecting this link will present the user the (zoomed-
in) front- and back side of the corresponding photo.

fest—data 4 : tesi—datn fest—dain 6
i

test—datal : Pest—datal test—data 3

-0

B L g

Front & back fromt & back front & back Front & fro-nt Az back

front & back

el i test—dnta 3 _desr—datad resi—dminy fest—dara b

fremt & back Erlont & ﬁack front & back i frontSz back front & back front & back

Figure 3.2: Layout of the thumbnail sized image area of the LCPD

3.4 Demo features
Now it was time to actually implement some extra options:
e Changing the number of images displayed
e The Similarity Methods

Changing the photo view of images displayed

New Random-set selection

Test-set selection

Help buttons

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 29

3.4.1 Changing the number of images displayed

The advantage of using a table view of the thumbnail sized images is that it is
easy to change the size of it by adjusting the number of rows and the number of
columns. By implementing two popup-menu buttons, one representing the num-
ber of rows displayed, and one representing the number of columns displayed,
the user can select any size ranging from 1x1 to 25x25 images by selecting an
appropriate display size from the corresponding popup menus (see figure 3.3).

Number of Columns: 6 —i | Number of Rows: 2 _||

Figure 3.3: Changing the number of images displayed

3.4.2 The Similarity Methods

The result files of the similarity methods were used as lookup tables for the
demo. The format of these result files were not all in the same format. To
speed up searching within those result files we have made an index file for each
result file which contains for every entry the number of bytes of that entry in the
corresponding result file. With this index file we could make a fair estimation of
where the desired results could be found, because some entries were skipped (no
image available). The user interface just had to be added with another popup-
menu button containing the different similarity methods (note: The similarity
methods were already mentioned in section 3.2). See figure 3.4.

Method: Intensity image H/V projections =

Figure 3.4: Selecting a similarity method

3.4.3 Changing the photo view of images displayed

As mentioned before [Huijsmans] both front and back sides of the LCPD were
scanned and used for the similarity methods. This implies that for every image
two result sets are present; one for the front-side of the corresponding portrait
photo, and one for the back-side of that same portrait photo. To provide the
user with this option we implemented two radio buttons representing the front-
and backside of the photo view (note: radio buttons only allow one selection).
See figure 3.5.

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 30

Photo view: < Front—side ~/Back-side

Figure 3.5: Changing the photo view of images displayed

3.4.4 New Random-set selection

To offer a greater functionality the user must be able to browse through the
database to find his or her favorite image to start a new query with. To meet
this requirement a randomizer option seemed to be the right solution. This way
the user can select a new random set of thumbnail sized images to be displayed
and hopefully find the right image to start his or her query. This option is
implemented as a submit-button, after clicking this button a new random-set
of images will be presented, see figure 3.6.

Display: | new Random—setl ‘ Test—setl

Figure 3.6: Selecting a new random set

3.4.5 Test-set selection

For first time users the functionality of this demo can be somewhat unclear. To
explain how the results of certain similarity methods with certain photos should
look like we added two testsets, one for the front-side thumbnail sized images,
and one for the back-side thumbnail sized images. As a default setup this testset
will be presented to the user. This option is implemented as a submit-button
also, after clicking this button the corresponding test-set (see section 3.4.3) will
be presented, see figure 3.6.

3.4.6 Help buttons

To create a more user-friendly atmosphere some help-pages were necessary.
Within these pages the user can find information about usage and backgrounds
of this demo. These helpbuttons are merely links to other static HTML-documents,
and are implemented as clickable image-maps (see figure 3.7).

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 31

p Number of Columns: 6 _|| Number of Rows: 2 _||
2 Control

Method: Spatial Pattern Statistics = |

? Testset

Photo view: *Front-side s/Back-side

“Z Method

Display: | new Random—setl | Test—setI

Flease Add to My Guestbook Visitor nr: 1358

Figure 3.7: The control panel

Finally we grouped all these options to one control panel (see figure 3.7).
Some extra features are also included (at the bottom of the control panel):

e Guestbook; extra user statistics, you can leave your email address and
remarks about the demo here. These statistics are gathered and listed in
a HTML document (http://ind156b.wi.leidenuniv.nl/questbook.html).

e Visitor counter; keeps track of the total number of visitors that actually
visited the demo, these statistics are also massaged, inspected and stored
in a HTML document (http://ind156b.wi.leidenuniv.nl/demostat.html).

3.5 Conclusion

With the thumbnail-sized image table and the control panel, the user is now
able to define his or her queries by adjusting the options and selecting an image
or a submit-button (e.g. random-set or test-set). This search-engine is set up
to be easily extended with extra features and new methods.

Some enhancements can be made:

e One thing that could be improved is using a uniform standardized format
for storing the result files of the similarity methods. Currently we have to
maintain several index files, which will only increase overhead and decrease
delivery speed.

e The images shown as thumbnail sized images are actually zoomed-out
images, however the full size presentation of the front- and back side are
zoomed-in. To increase delivery speed of the thumbnail-sized images we

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 32

could store a separate thumbnail-size image copy of every image, to speed
up retrieval, instead of scaling the original image.

Chapter 4

WWW Robots, Spiders and
Webcrawlers

4.1 Introduction

In the previous chapter we discussed the concept of a search engine based upon
a certain class of digital images from a local database. Now we would like to
see if it is possible to create a search engine that can perform queries based on
image content. This time we don’t want to use a local database, instead we
would like to create a digital image database. This database should contain a
large variety of digital images which would be interesting enough to perform
certain queries. The answer was clear, we wanted to use the World Wide Web
as a resource for our database entries. To perform this task of collecting images
from the Web we needed a robot.

4.1.1 What is a Robot?

The useful information returned by search engines on the Web doesn’t just come
out of nowhere. Rather, it is laboriously gathered by software automaton that
cruise the Web, with either broadly or narrowly defined objectives and read
through all the HTML documents they encounter, harvesting or calculating all
information that meets their programming criteria.

Figure 4.1: Typical Spider.

33

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 34

These programs are called Web Robots, or simply robots. Sometimes, you’ll
hear them referred to as spiders or WebCrawlers (see figure 4.1). No matter
what they are called, these programs all perform similar tasks: they pick up
selected pieces of information from the Web documents they find - at least the
URL and the title, and if not more - and report their findings back to a logging
program on the originator’s server. This log is massaged, inspected and digested
to create the database from which search engines pluck their responses to your
queries.

In reality, a robot is nothing more than a browser-like program that uses
ordinary HTTP protocols to request access to Web resources and documents.
Robots typically understands links, URLs, and other selected HTML tags and
information. They know how to catalog these tags or how to abstract statistics
based on what they encounter. Since they don’t actually display anything, you
could think of them as a kind of “headless browser,” that chew their way around
the Net with an inexhaustible appetite for any new links that might come their
way.

4.2 Robot reuse

Given that robots are good at gathering information, why might you hesitate
before adding another one to the collection available on the Internet? For one
thing, there are already 90-odd robots running somewhere on the Net as you’re
reading this (http://info.webcrawler.com/mak/projects/robots/active.html).

Unfortunately robots can put a considerable strain on network resources and
tax the very servers whose contents they may be cataloging or measuring.
Whereas a human might try to read and comprehend some of each document
that he or she examines, robots can zip from one link to the next at dizzying
rates.

Given the sizable number of robots already in existence, you might want to
consider whether one of them could perform the kinds of tasks you're after,
rather than creating a new one. Likewise, you might want to investigate one or
more of the publicly available search engines.

To reuse an already available robot doesn’t only mean that we don’t have to
reinvent the wheel, but we also don’t have to worry about specific guidelines for
robot writers and not to mention the robot exclusion standard [Koster94]. To
avoid all these problems it was the best choice to seek for an existing robot we
could reuse.

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 35

4.3 MODMspider

After a certain study of publicly available robots on the Web we have decided to
use the Multi-Owner Maintenance spider [MOMspider] for my project. Actu-
ally no other public robots were available at the time of study, and fortunately
MOMspider could perform our tasks. This robot is written in Perl and docu-
mentation for this robot is widely available. In this section a rough outline of
the design and functionality of the [MOMSspider] is described.

4.3.1 Design

Most documents made available on the World-Wide Web can be considered
part of an infostructure — an information resource database with a specifically
designed structure. Infostructures often contain a wide variety of information
sources, in the form of interlinked documents at distributed sites, which are
maintained by a number of different document owners (usually, but not nec-
essarily, the original document authors). Individual documents may also be
shared by multiple infostructures. Since it is rarely static, the content of an
infostructure is likely to change over time and may deviate from the intended
structure. Documents may be moved or deleted, referenced information may
change, and hypertext links may be broken (dangling links).

As it grows, an infostructure becomes complex and difficult to maintain. Such
maintenance currently relies upon the error logs of each server (often never
relayed to the document owners), the complaints of users (often not seen by the
actual document maintainers), and periodic manual traversals by each owner of
all the webs for which they are responsible. Since thorough manual traversal of a
web can be time-consuming and boring, maintenance is rarely or inconsistently
performed and the infostructure eventually becomes corrupted. What is needed
is an automated means for traversing a web of documents and checking for
changes which may require the attention of the human maintainers (owners) of
that web.

The Multi-Owner Maintenance spider [MOMspider] has been developed to
at least partially solve this maintenance problem. MOMspider can periodically
traverse a list of webs (by owner, site, or document tree), check each web for
any changes which may require its owner’s attention, and build a special index
document that lists out the attributes and connections of the web in a form that
can itself be traversed as a hypertext document.

4.3.2 Functionality

MOMspider gets its instructions by reading a text file that contains a list of
options and tasks to be performed (an example instruction file is provided in

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 36

Appendix D at page 79). Each task is intended to describe a specific infostruc-
ture so that it can be encompassed by the traversal process. A task instruc-
tion includes the traversal type, an infostructure name (for later reference), the
”Top” URL at which to start traversing, the location for placing the indexed
output, an e-mail address that corresponds to the owner of that infostructure,
and a set of options that determine what identified maintenance issues justify
sending an e-mail message.

For each task, MOMspider traverses the Web, in breadth-first order, from
the specified top document down to each leaf node. A leaf node is defined
to be any information object which is not of document-type HTML (and thus
cannot contain any further links) or which is outside the given infostructure.
MODMspider determines the boundaries of an infostructure according to the
task’s traversal type: Site, Tree, or Owner. Site traversal specifies that any
URL which points to a site (the pairing of hostname/IP address and port) other
than that of the top document is considered to be a leaf node. Tree traversal
specifies that any document not at or below the “level” of the top document is
considered a leaf node, where level is determined by the pathname in the URL.
Owner traversal specifies that any document beyond the top which does not
contain an “Owner:” metainformation header equal to the infostructure name
is considered a leaf node.

The Maintenance information produced by each task is formatted as an
HTML index and output to the file specified in the task instructions. The
index contains the following maintenance information:

¢ Information regarding how and when the index was generated (i.e. pro-
gram options and execution time);

e A hypertext link to the one prior version of the index document;
e The following for each non-leaf document accessible via the ”top”;

— An anchor which links to the actual document;
— Document header info (Title, Modification Date, Expires Date, etc);

— A list of all unique hypertext references made by the document, with
each reference including;:
x The type of reference made (i.e. link, query, img, etc.);
* An anchor which duplicates the reference;
* Document header info if available (Title and Modification Date);

x If the referenced object is within the current infostructure (i.e.
not a leaf), then an additional anchor is provided to cross-reference
jump to its own entry in the index document..

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 37

e A list of cross-reference anchors which point to interesting changes as
reflected in the index entries.

MOMspider looks for four types of document change which may be of interest
of the owner:

1. referenced objects which have redirected URLs (moved documents);
2. referenced objects which cannot be accessed (broken links);
3. referenced objects with recent modification dates; and,

4. owned objects with expiration dates close to the current date.

4.3.3 Efficient use of network resources

A key design constraint of MOMspider is that of efficiency — particularly in
regards to network bandwidth usage. It would be irresponsible to develop a
maintenance robot which overly taxed the limited resources of networks like the
Internet. Therefore, MOMspider minimizes the load on network bandwidth by
using the HEAD request (see Appendix E at page 81) for testing links, keeping
track of nodes that have already been tested, grouping multiple tasks within a
single execution, and allowing the user to restrict the traversal of certain URLs.

Aside from the restrictions described above regarding the task’s traversal
type, MOMspider also enables the user to specify any URL prefixes which must
always be avoided or leafed. These URL prefixes are listed in the systemwide
or user avoid files. Each entry in the file includes the action (Avoid or Leaf),
the URL prefix on which to apply that action, and an optional expiration date
for the entry. This allows the user to completely avoid documents for which
maintenance is not a concern or which could trap an unsuspecting spider (some
forms of computational hypertext can have that effect).

4.3.4 Being friendly to service providers

A second design constraint for MOMspider is that it minimize its impact on
information providers (destination servers) while at the same time maximizing
the indirect benefits they receive from the traversal process. All HTTP requests
are similar to:

HEAD /path HTTP/1.0

User-Agent: MOMspider/0.1

From: wuser@machine.sub.dom.ain

Referer: http://www.site.edu/current/document.html

This allows server maintainers to properly recognize the source of the request

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 38

and, if necessary, place restrictions upon a particular spider. It also provides
them useful information, including how to contact the person running the spider
and what document contains the reference being tested.

As an additional precaution, MOMspider periodically looks for and obeys any
restrictions found in a site’s /robots.txt document as per the standard proposed
by Martijn Koster [Koster94]. Before any link is tested, the destination site
is looked-up in a table of recently accessed sites (the definition of “recently”
can be set by the user). If it is not found, that site’s /robot.txt document
is requested and parsed for restrictions to be placed on MOMspider robots.
Any such restrictions are added to the user’s avoid list and the site is added
to the site table, both with expiration dates indicating when the site must
be checked again. Although this opens the possibility for a discrepancy to
exist between the restrictions applied and the contents of a recently changed
/robots.txt document, it is necessary to avoid a condition where the site checks
cause a greater load on the server than would the maintenance requests alone.

Chapter 5

The Image Database

5.1 Introduction

In the previous chapter we’ve discussed the concept of setting up a digital im-
age database using a spider. This spider traverses selected pieces of the Web
determined by its instruction file. These instruction files just don’t come out of
the blue.

5.2 Searching for images

First we assumed that we could just start the spider at one location and it would
work its way through the whole Web. This seems to be an endless task as there
are so many sites, of which you have no clue what information the spider will
find. So we have decided to use multiple instruction files which only causes the
spider to do a Tree traversal (see section 4.3.2 at page 35).

The first problem we encountered was how to determine which sites most
likely contains digital images. For this answer we used an existing search engine
“WebCrawler” (see figure 5.1). The reason for this particular search engine is
that it was the only search engine that returned URLs of sites which most likely
contains huge numbers of digital images.

With this information the creation of the instruction files for the spider could
now start. This way we created 6,000 instruction files for the spider to traverse.
However this spider retrieves more information than we actually need, therefore
some alterations had to be made. It was also needed to write a program that
can convert the data returned from the spider into a list containing the URLs
of all the images found. But before we can start downloading these images we
had to figure out how we want to store and index the images into the database.

39

CHAPTER 5. THE IMAGE DATABASE 40

File Edit VYiew Go Bookmarks Options Directory Window Help|

Location: I http: //indl56b: 8086 /webcrawl. html

Enter some words and start your search:

SearchI

Find pages with all —i | of these words and return 23 —l| results.

e T =]

Figure 5.1: WebCrawler ntip://www.weberawler.com

5.3 Thumbnails

Given the fact that digital images can be of any size and type we had to find
a standard to store the images. So the amount of storage space per image
had to be reduced in some way. The reduction of the storage space per image
can be achieved by image compression and image scaling. The answer is the
usage of thumbnail sized images as we’'ve seen in Chapter 3. Of every image
we would create a reduced 80x60 “thumbnail”. This reduced image should fit
(corresponding to its aspect ratio) within the 80x60 size (see figure 5.2). Small
to medium databases, or even large ones can be manually viewed with a good
fast browse of these “thumbnail” images (where 10 - 50 can be simultaneously
displayed on a screen) and this is sufficient in many cases.

After determining the image size of a thumbnail image we also wanted to
reduce the image storage space by using an image compression method. As we
wanted to set up a large image database, this reduction should be significant,
so we decided to use JPEG compression. JPEG compression also reduces image
information, but this is slightly insignificant since the thumbnail images are just
copies of the originals somewhere on the Web.

With the JPEG compression and the scaling techniques the average storage
size in bytes per image is about 2Kbyte.

CHAPTER 5. THE IMAGE DATABASE 41

Figure 5.2: Example: left: the original image, middle: the 80x60 thumbnail
image, right: the rescaled thumbnail image nttp://ind156b.wi.lcidenuniv.nl:8086/summer.html

5.4 Database population

The database now created is just a projection of images found on the Web by our
spider. The thumbnail images are copies of originally stored images somewhere
on the Web. This brings us to another aspect concerning the database entries.
Every database entry should contain at least the URL information of where the
original image can be retrieved. Also information about the size of the image.
Image size is needed to reproduce the image shown on your browser’s screen.
This is a sample of the database index:

image_tr 05#IMGINFO:76x78 #http://www.adventuresports.com/asap/norba/races/buffante.gif
image_tr 06 #IMGINFO:167x252 #http://www.adventuresports.com/asap/norba/races/buff_002.gif
image_tr 07#IMGINFO:43x33 #http://www.adventuresports.com/asap/norba/races/norba_s.gif
image_tr 08 #IMGINFO:32x32 #http://www.adventuresports.com/asap/norba/races/7Thome.gif
image_tr_09#BUILTIN:ERROR

For now we used three fields to store the image:

1. the entry field with the local filename of the thumbnail image; the format
of the filename was chosen this way to be short and clear (e.g. image_aa_00
is the first image and image_ab_00 is the successor of image_aa_99). With
this current format the storage of 100¥26*26=67,600 images is possible.

2. the second field contains image information there are two possibilities:

(a) the image information field denoted by “IMGINFO”; With this info
an image can be displayed on the browser’s screen at any scale, this
was needed because showing an 80x60 thumbnail is simply too small.

(b) the image information field denoted by “BUILTIN:ERROR”; This
means an error has occurred during the downloading process, this is

CHAPTER 5. THE IMAGE DATABASE 42

caused by several reasons, but we keep this entry in the database,
because it corresponds with the same entry within the main URL
list.

3. the URL; this is the location of the original image at that time (note:
image URLs are subject to change over time).

A fourth field, the annotation field could easily be added to preserve descriptive
keywords. At the moment the spider is unable to collect useful descriptional
information about the localized image. The ultimate solution would be that the
spider can collect significant textual descriptors localized near the image within
the found HTML document.

The search speed within text files is rather low, because nothing can be said
about the byte length per entry. Therefore we had to create an additional
overlay index file. This file simply contains per entry the byte offset of that
entry in the index file, by using a fixed size per entry in this overlay index file
searching becomes unnecessary (by knowing the image identifier you can retrieve
the byte offset immediately and thus the entry from the index file).

5.4.1 Adding images
To add an image to the database the following steps are performed:

e The spider must traverse a selected piece of the Web given by the instruc-
tion file

e The returned result file has to be examined and a temporary URL file is
created

e The temporary URL file is then compared to the main URL file to see if
there are multiple copies (e.g. identical URLS)

e The remaining unique URLs are then added to the main URL file from
which the image retrieval (see Appendix E at page 81) will take place

e Finally when an image is successfully retrieved, scaled and compressed the
entry will be added to the index file.

5.5 Future Work

To maintain a database of this size some aspects are easily overlooked. The
main bottleneck is the expiration of URLs.

CHAPTER 5. THE IMAGE DATABASE 43

5.5.1 Removing and updating images

Sometimes downloading an image will fail, due to several reasons like, a time-
out error occurred or no connection could be made to the server. This means
that an error entry is made in the database indexfile. This downloading process
for these error-like entries should be repeated in time.

Because URLs are subject to change — e.g. images are created, moved, or
deleted by users, it would be handy if we could keep our local database up to
date (e.g. thumbnail images should represent original images given its URL).
This is quite an intensive task, since we have to rerun the spider to see if there
are any changes made on the Web. Because this project is meant to be a demo,
we didn’t explore these problems. However future improvements can include
making the database up to date every once in a while, making sure that images
are present as claimed or new images are added.

Chapter 6

The Similarity Methods

6.1 Introduction

Now that we’ve created a large image database, some similarity methods had
to be examined and implemented. Since we will use queries by example, some
similarity methods based on color and shape are needed. We also used text
matching to allow keyword searches on images. This section will specify the
following three methods:

e Keyword matching
e Color histogram matching

e Edge oriented matching

6.2 Keyword matching

Fortunately searching text need not require understanding the text’s meaning
(Lycos simply extracts keywords using an algorithm that considers characteris-
tics like word placement, word frequencies, etc). With this advantage it is easy
to retrieve similar images based on descriptive keywords. In this project we’ve
used the main URL list as a basis for our keyword database.

6.2.1 Keyword Database

From the URLs provided with every image keywords can easily be extracted.
The only problem here is what is to be considered an useful keyword:

e the filename, this is the amount of text after the last “/” and before the
last “.”.

44

CHAPTER 6. THE SIMILARITY METHODS 45

e several pathnames, this is the amount of text between two “/”.

These pieces of text are not yet considered a keyword, because it can contain
delimiters like “_” or numbers. So every piece of text is split up by these
delimiters (any character which is not a letter). What is left can be considered

a keyword if it has at least a length of 3 characters.

These keywords are then sorted and put in a keyword file which have the
following layout:

base 9 46715
baseballtr 1 46783
basher 1 46791
basiccontrolbar 1 46799
basicinfo 1 46806
basin 2 46814

basket 83 46828

Every entry is divided by three fields:

1. The first field denotes the unique keyword, found within the URL as de-
scribed before.

2. The second field contains the number of occurrences of this keyword as a
whole.

3. The third field denotes an offset within the keyword index file.

The keyword index file contains offsets for every occurrence of the used key-
words. The third field of the keyword file denotes the offset where the first
occurrence of this particular keyword can be found in the keyword index file:

2224747
10406
117123
725493
738394

These offsets points to the corresponding positions in the main image index file
where the image can be found containing that keyword. If this keyword has
more occurrences then every successive offset points the the successive entry in
the main image index file (see figure 6.1).

CHAPTER 6. THE SIMILARITY METHODS 46

base 946715
image_xx_00
image_yy_99
2605672
3456841
9
4315507 —
[- image zz 55
keyword file keyword index image index file

Figure 6.1: The keyword method

6.3 Color histogram matching

6.3.1 Introduction

A retrieval will fail if the query uses keywords which are not stored in the key-
word database, even though the image is present. For example, an image with
a woman strolling on a sunset beach will be referenced differently by differ-
ent users. Some may use keywords such as “sunset”, others may use “beach”,
“sand”, “lonely woman”, etc. In fact, it is rather difficult to accomplish flex-
ible image retrieval using descriptive keyword approach. On the other hand,
researchers on machine vision have yet to provide a solution on general object
recognition from images. There is no way for us to automatically generate de-
scriptive keywords from the images, thus text description of images all depends
on human operators, which is an arduous task.

The labour involved with cataloging images by hand, and the difficulty of
anticipating every user’s needs when assigning keywords to images, has led to
the development of algorithms for retrieving images by their content. The goal
of these algorithms is to quickly retrieve the images that are similar to a given
image (example). The description of a color histogram matching method will
be given in the next section.

6.3.2 The color space

Before we could start studying the algorithm we first had to determine which
color space to use. The purpose of a color space is to facilitate the specification
of colors in some standard, generally accepted way. In essence, a color model is
a specification of a 3-D coordinate system and a subspace within that system
where each color is represented by a single point. The color models most often
used for image processing are the RGB (red, green, blue), and the HSI (hue,

CHAPTER 6. THE SIMILARITY METHODS 47

saturation, intensity) models. The RGB model was chosen in our case, since it
can represent color and gray levels without problems and most image formats
are based on the RGB model. One disadvantage of the RGB model is that we
are dealing with a 3 dimensional color space.

6.3.3 Color Histograms

Given our discrete color space defined by the color axes (e.g. red, green and
blue), the color histogram is obtained by discretizing the image colors and count-
ing the number of times each discrete color occurs in the image array. One fac-
tor to be considered when creating the histogram is how finely the color space
should be discretized. Various researchers have proven that human eyes are not
as sensitive to colors as to brightness. Thus it might not be the case that the
more finely we discretize the color space, the better histogram we have; while
finer histograms require more memory space and more computation. Qur exper-
imental results have shown that color distribution of an image is well preserved
when the image is discreted by 8x8x8 thus we choose to discretize the RGB
color space into 512 equally sized cubes (see figure 6.2).

600

"histogram" —

500

400

300

200

100

Figure 6.2: Sample of a RGB color histogram

Color histograms holds information on color distribution, but it lacks infor-
mation on color locations. This may lead to the situation in which an image
with a red balloon on top is matched to an image with a red car in the bottom.
In addition, a histogram for the entire image tends to miss small image regions
that will not produce strong peaks in the histogram.

6.3.4 The indexing algorithm

For this project we chose to define the color histogram to be an one dimensional
vector. However the color space we use (RGB), is three dimensional. The

CHAPTER 6. THE SIMILARITY METHODS 48

problem that arises here is the correlation of color shades. In our model different
shades of one color will not be correlated as in the 3-D model. By discretizing
the color space from 256x256x256 colors to 8x8x8 colors we eliminate fine shades,
and only the most significant colors will be preserved. A discrete color is defined
as:

3
color; = ;8 z€1,8],7 €1,512] (6.1)
i=1

where z represents the corresponding RGB color component. In this case the
R-color component represents the least significant component, and the B-color
component represents the most significant component.

The histogram matching algorithm we analyze in this section is essentially
the same as those presented in [Swain and Ballard 1991].

The color histogram H(M) is defined as a vector (hy,hs,...,h,) in a n-dimensional
vector space, where each element h; represents the percentage (of the total num-
ber of pixels in the image M) used of color jin the image M. These histograms
are the feature vectors to be stored as the index of the database.

To measure the distance d between two histograms H and I one can use the
metric included by the Li-norm (6.2) as in [Swain and Ballard 1991] or a metric
which is similar to the one induced by the Ly-norm (6.3) (see [Niblack et al.. 1993]).

dr, (I, H) = [T = Hl|z, = it — h| (6.2)
=1

dp,(I,H) = ||l = H||L, = (6.3)

The L,-distance between two histograms is always less than 2 and the Lo-
distance is less than /2.

6.3.5 Indexing

Given these norms we chose to use the L;-distance (6.2), due to performance
reasons and the size of the database. To implement this method we used a
testset of 30,000 images as part of the total image database. The difference
measures are stored in a distance matrix (6.4).

CHAPTER 6. THE SIMILARITY METHODS 49

d’L'StLl di5t172 d’L'StLg d’L'St174 diSth
di8t271 di8t272 di8t273 di5t274
di8t371 di8t372 di8t373 di8t374

di8t4’1 di8t4’2 di8t4’3 di8t4’4 (64)

disty, 1 - dist,, p

To speed up the calculations we made use of the fact that distances posi-
tioned on the diagonal of the matrix are not to be calculated since there is no
use of measuring a distance with itself. We also used the fact that the distance
matrix is symmetric (see 6.5).

Tr T T Tr T Tr
dists; TX TX Tx TX Tx
distz distss TX TT TX TX
))
disty1 distys distsz zT TT TT (6.5)
: T Tr
disty, 1 - dist, n—1 xz

Instead of storing the whole matrix we sorted every column and stored 10 of
the smallest distances per column. This way of storing the distances not only
reduces space but also makes it easily extendable for new entries.

6.4 Edge oriented matching

In this project we tried to develop successful edge oriented matching techniques
in two ways. In the first edge oriented matching techniques was based on in-
tensity space and the second was based on gradient space. There is no way
telling which method gives the best results, therefore those two techniques were
implemented and evaluated.

6.4.1 Intensity space

For every pixel of an image in RGB format we calculated the Intensity. For
any three R, G, and B color components, each in the range [0, 1], the intensity
component in the HST model is defined as:

I=(R+G+B) (6.6)

Wl

which yields values in the range [0, 1].

CHAPTER 6. THE SIMILARITY METHODS 50

6.4.2 Gradient space

The most common method of differentiation in image processing in applications
is the gradient. For a function f(z, y), the gradient [Gonzalez and Woods] of f
at coordinates (z, y) is defined as the vector:

)
G, 8
vf = = (6.7)
§
G, i

It is well known from vector analysis that the gradient vector points in the
direction of maximum rate of change of fat (z,). In edge direction an important
quantity is the magnitude of this vector, generally referred to simply as the
gradient and denoted Vf. Common practice is to approximate the gradient
with absolute values:

Vf=|G| + |Gyl (6.8)

which is much simpler to implement, particularly with dedicated hardware.

Note from Egs. (6.7) and (6.8) that computation of the gradient of an image is
based on obtaining the partial derivatives §f/dz and 6f/dy at every pixel location.
Derivatives may be implemented in digital form in several ways. However,
the Sobel operators have the advantage of providing both a differencing and
a smoothing effect. Because derivatives enhance noise, the smoothing effect
is a particularly attractive feature of the Sobel operators. From Figure 6.3,
derivatives based on the Sobel operator masks are

Gy = (27 4+ 228 + 29) — (21 + 222 + 23) (6.9)

and
Gy = (23 + 226 + 29) — (21 + 224 + 27) (6.10)

where, as before, the z’s are the gray levels of the pixels overlapped by the masks
at any location in an image.

Computation of the gradient at the location of the center of the masks then
utilizes Eq. 6.8, which gives one value of the gradient. To get the next value,
the masks are moved to the next pixel location and the procedure is repeated.
Thus, after the procedure has been completed for all possible locations, the
result is a gradient image of the same size as the original image. As usual, mask
operations on the border of an image are implemented by using the appropriate
partial neighborhoods.

CHAPTER 6. THE SIMILARITY METHODS o1

z1 z2 z3

z4 z5 z6

z7 z8 z9

(@
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1
(b) (©

Figure 6.3: (a) 3x3 image region; (b) mask used to compute G, at center point
of the 3x3 region; (c) mask used to compute G, at that point. These masks are
often referred to as the Sobel operators.

6.4.3 Horizontal and Vertical Projections

Now as we have discussed the two edge detection algorithms we need to find
a way to create a feature vector. First step is to scale all the images to con-
tain the same number of pixels (e.g. 80x60 pixels), only for comparison pur-
poses. This way we can easily use the Lij-norm (see (6.2)). Matching with
projections is particularly handy in this case because it makes the size of the
feature vector only 80460 instead of 80*60 elements. We map the elements
into discrete values in the range of [0,255]. The HV projection P(M) is a vector

(pm Doy 3Pxeo »Py1 sPys a---apygo) where

Pa; = Y _V(k,j) j €Lyl (6.11)

k=1

and y
Py = V(i) i €[1,7] (6.12)

=1

Here is V the appropriate value of one of the two edge detection algorithms per
pixel. As discussed in section 6.3.5 the indexing algorithm stores its results the
same way as discussed before (see Eq. 6.5).

CHAPTER 6. THE SIMILARITY METHODS 52

6.5 Evaluation

A preliminary evaluation suggests several problems with the retrieval techniques.
The system was evaluated with a database testset of 30,000 images of any kind
(as discussed in chapter 5).

6.5.1 Color histogram matching

The color histogram method, which is based on averaging of color distribution,
returns satisfactory results for the database population. However, this means
that this method lacks information on color locations as we have discussed be-
fore. We can overcome this problem by dividing the image into several subareas.
Then for each subarea compute a color histogram. The similarity score will be
determined by the weighted average of the subarea similarity scores.

(a) the original image

(b) the intensity image (c) the (inverted)gradient image

Figure 6.4: Intensity space vs Gradient space

6.5.2 Edge oriented matching

The main disadvantage of using the intensity method for detecting edges is
shown in figure 6.4. The intensity method may miss color differences. In this

CHAPTER 6. THE SIMILARITY METHODS 53

example we used a simple testimage where two blocks are adjacent and differ-
ent of color (see figure 6.4(a)). The intensity method just analyzes the color
intensities and detects no difference in intensity when passing from one block to
another (see figure 6.4(b)). However if we use the gradient method these kinds
of edges will be detected (see figure 6.4(c)).

However the intensity method seems to work better than the gradient method
in most cases.

6.5.3 Test-set testing

To obtain a more constructive evaluation of the methods a test-set approach
should be considered. In this case a test-set can be constructed by using a
keyword query. The results of this query could be used as a test-set (e.g. using
the keyword “glass” or “lion” will return usable results). With this test-set the
results of the applied methods can be compared and evaluated. (an example is
given in figure 7.1 at page 55 with keyword “glass” and substring matching)

Chapter 7

Image Search Engine

7.1 Introduction

Web image search engines could be applied profitably in many areas; for in-
stance, in searching on-line catalogs of consumer goods and services, or for en-
forcing image copyrights by sniffing out unauthorized copies on the Web. Such
a Web crawler would also be useful to researchers studying image databases,
serving as a very large testbed for image database indexing methods.

Picture yourself as a fashion designer needing images of fabrics with particular
mixture of colors, a museum cataloger looking for artifacts of a particular shape
or a photostudio artist needing a picture of a red car-like object. How do you
find these images?

In this chapter the reader will get a description of an content-based image
search engine that allows queries to be performed based on example images (as
we’ve discussed earlier in chapter 3). The similarity methods involved are based
on keyword matching, color histogram matching, and edge oriented matching
(see chapter 6).

7.2 User Interface

Now that we have the database and the similarity results the user interface can
be implemented. As querying is based on selecting example images, we chose
the following approach. A query specification can include a keyword, and an
example image selection. The user interface to support such queries has two
main parts: The Query Result and Selection Window, and The Query Control
Panel Window to display the results.

54

CHAPTER 7. IMAGE SEARCH ENGINE 95

7.2.1 The Query Result and Selection Window

This is the area where all the query results are displayed. This area is also
used for selecting a new image for the new query. This area is divided into four
different areas:

The search image; The left column is reserved to display the search image.
This is the image selected by the user, a default image, or the first image
from the returned result set of a keyword search.

The search row; The top row displays the images returned by the returned
result set of a keyword search, or just a sequence of images from the
database. Note that the first (left) image is the same as the search image.

The color row; The middle row displays the images as a result of color
histogram matching. Note that the left image implies to be the best
(or exact) match. All the images presented are results of color matching
regarding the search image. The matching percentages are also given
(100% means an exact match).

The Shape row; The bottom row displays the images as a result of edge
oriented matching (depends which shape method is chosen).

Every image displayed in the area (except for the search image) is a poten-
tial member for a new query. Also the original URL is given for every image
displayed, so the user can retrieve the original image (normal size) (See figure

7.1).

maApPmn

AOC- o0

e e

Figure 7.1: The image selection area

To start a new query by example the user simply can select one of the given
images displayed, by clicking with the mouse. Also the number of matching hits,

CHAPTER 7. IMAGE SEARCH ENGINE 56

with respect to keyword matching is given on top of the result and selection area.
If no keyword match was specified than the current total number of images in
the database is given (See figure 7.2).

Total matching hits with keywords porsche : 8

Figure 7.2: The number of matching hits

7.2.2 The Query Control Panel Window

Within the control panel the user can modify a certain number of parameters
regarding the image similarity methods and display settings.

Changing the number of columns

With this option the user can specify the number of columns being displayed
by selecting one of the given values from the popup menu. The range of this
selection lies within 0 and 10 (See figure 7.3).

Murnber of Colomns: 4 |

Figure 7.3: The number of columns field

The Keyword matching field
This field is divided into two parts:

1. The first part contains a small text field in which the user can type in the
desired keyword.

2. The second part contains a popup-menu from which the user can select
what type of matching should be performed, there are two kinds of match-
ing:

(a) Normal matching; the keyword matching algorithm will try to find
the specified keyword as a whole word.

(b) Substring matching; the keyword matching algorithm will try to find
the specified keyword as part of a string,.

(See figure 7.4)

CHAPTER 7. IMAGE SEARCH ENGINE o7

Keywnrd porsche match: normal —

Figure 7.4: The keyword matching field

The Shape method field

With this field the user can select the desired shape similarity method (see
section 6.4 at page 49). This is also presented as a popup menu with the two
methods as options (See figure 7.5).

shape method: intensity |

Figure 7.5: The Shape method field

The start search field

This is simply a submit button with which the user can start his or her query
specified by the selected parameters. Note that starting a query can be done in
three different ways:

1. By clicking the start search button.
2. By pressing enter after typing in a keyword.

3. By selecting an example image from the displayed images within the dis-
play area.

(See figure 7.6)

Figure 7.6: The start search field

Additional fields
Some additional fields are created for future purposes:

e Guestbook option; with this option the user can fill out an electronic form
in which the user can leave its comments about the demo, this message is
then added to the guestbook which is viewable for everyone.

CHAPTER 7. IMAGE SEARCH ENGINE 58

e Visitor counter; this will display the number of different users that have

visited this page (for statistical purposes).

Add your own image option; with this option the user can fill out an
electronic form with which the user can specify his or her own image which
will be added to the database. The interface has already been build but
images submitted are not yet processed and added to the main database.

This option is still under construction.

(See figure 7.7)

Please Add to My Guesthook visifor ar: 0182

Add your own Image/URL to the Database

Figure 7.7: Additional fields

The control panel

Finally we grouped all these options to one control panel (See figure 7.8).

Woalar) i £
Keyword: _?pors"che _ match: nurma]" = |
: shape method: intensity —i |
Search|

Please Add to My Guesthook wisifor nr: 0182

Add own Image/lJRL to the Database

Figure 7.8: The control panel

The user interface layout

Combining the query result and selection window and the query control panel

window the user interface was given the following layout (see figure 7.9):

CHAPTER 7. IMAGE SEARCH ENGINE 59

File Edit Yiew Go Bookmarks Options Directory Window Help |
Total metching hite; 20493 ‘|
5 data]
E i
A]
R i
C i
H Ctiginal
#2.035%
©
@]
L
0
R
S
H
A
P
E
Number of Columns: 3 - |
Keyword: match: wl
shape method: intensity —i |
Searchl
Please Add to My Guestbook visifor nr: 0184 ~
Add your own Imagé/URL to the Database i
7 — (]

Figure 7.9: The layout of the user interface

7.3 Conclusion

With the query result and selection window and the query control panel window,
the user is now able to define his or her queries by adjusting the parameters and
selecting an image or the search-button. This search-engine is also set up to be
easily extendable with extra features and new future methods.

Chapter 8

Conclusion

As we have discussed before (see sections 3.5 and 7.3), these demos work prop-
erly. Although some improvements can be made. Extra features can easily be
implemented and result files of new methods can be added.

8.1 Future Work

8.1.1 Color
Subarea division

The color retrieval technique has several weaknesses that were discussed in the
evaluation (see section 6.5 at page 52. First the color method deals with the
image as a whole rather than dividing the image into subareas. This way the
color histogram is then determined for each subarea and the the color similarity
score is just a weighted average of the subarea similarity scores.

Exact color match

The second problem with the color retrieval is that histogram intersection per-
forms an exact color match. It must be modified to allow inexact color match
so that one shade of green will match similar shades of green. This is relatively
simple in the case of histogram intersection.

8.1.2 Edges
Edge detection

The edge detection algorithm does not construct good edge maps for every
image as discussed in implementation and evaluation sections. There are two
main problems with edge maps. First the edge maps for some images contain

60

CHAPTER 8. CONCLUSION 61

“extraneous” edges that carry no useful information for retrieval purposes even
though they are perceptually prominent in the image. Some of these extraneous
edges arise due to “color noise” (i.e. a small group of pixels whose color is
sharply different than all their neighbors. More aggressive median filtering and
a thinning procedure to strip out the shortest edges will eliminate some of
these extraneous edges. In addition we should experiment with the gradient
threshold to see if a threshold will give better results (e.g. keep only those edge
pixels whose gradient strength is greater than the average plus two standard
deviations). However preliminary experimentation suggests that increasing the
threshold will eliminate not only some of the extraneous edges but portions of
good edges as well.

8.1.3 Keywords
Keyword matching
The keyword matching method can be improved and extended:
e Usage of associative arrays, so searching will become unnecessary.

e Usage of the Data Base Management (DBM) library. Especially when the
database significantly increases.

o Usage of a thesaurus, to locate alternative matches.

e Usage of user provided annotation fields to extend the keyword database.

8.1.4 User Interface

The user interface can be modified easily to the needs of new applications.
Actually the user interface created for the first demo (LCPD) is designed to
create general user interfaces within this application field.

8.1.5 Database

An incremental approach is used for database population growth. Also the
actual comparison procedures made use of this incremental approach. Previous
results are stored and used for newer calculations. Some aspects that can be
improved:

e Usage of associative arrays, for the index files.

e Usage of the Data Base Management (DBM) library, for the index files.

Bibliography

[URL1996] Tim Berners-Lee, Uniform Resource Locators, Internet working
draft, 1996/05/24, Published on the WWW at
http://www.w3.org/pub/WWW /Addressing/URL/Overview.html

[SGML] ISO 8879, Information Processing - Text and Office systems - Standard
Generalized Markup Language (SGML), 1986.
http://www.iso.ch/cate/d16387.html

[HTML] Tim Berners-Lee and Daniel Connolly, Hypertext Markup Language,
Internet working draft, 13 jul 1993. Published on the WWW at
http://www.w3.org/pub/WWW /MarkUp/HTML.html

[HTTP] Tim Berners-Lee, Hypertext Transfer Protocol, Internet working draft,
5 nov 1993, published on the WWW at
http://www.w3.org/pub/WWW /Protocols/HTTP/HTTP2.html

[Perl] David Till, Teach Yourself PERL in 21 days, 1995 by Sams Publishing,
ISBN 0-672-30586-0

[CGI] Ed Tittel, Mark Gaither, Sebastian Hassinger, Mike Erwin, World Wide
Web Programming with HTML and CGI, 1995 by IDG Books Worldwide,
Inc., ISBN 1-56884-703-3

[Koster94] Martijn Koster, A Standard for Robot Exclusion, published on the
WWW at http://info.webcrawler.com/mak/projects/robots/norobots.html

[MOMspider] Roy T.Fielding, Maintaining Distributed Hypertext Info-
structures: Welcome to MOMspider’s Web, June 17, 1994, published on
the WWW at
http://www.ics.uci.edu/WebSoft/MOMspider/ WWW94 /paper.html

[Huijsmans] D.P.Huijsmans, M.S.Lew, Efficient Content-based Image Retrieval
in Digital Picture Collections using projections: (Near)-Copy location, Jan-
uari 11 1996, Technical Report 96-07

62

BIBLIOGRAPHY 63

[Gonzalez and Woods] Rafael C. Gonzalez, Richard E. Woods, Digital Image
Processing, 1992 Addison Wesley, ISBN 0-201-50803-6

[Swain and Ballard 1991] M.J. Swain and D.H. Ballard, Color indexing, Intern.
Journal of Computer Vision, 7(1):11-32, 1991

[Niblack et al.. 1993] W. Niblack, R. Barber, et al. The QBIC project: Query-
ing images by content using color, texture and shape, In Proc. of SPIE

Electronic Imaging: Storage and Retrieval for Image and Video Databases,
Feb. 1993

Appendix A HTML

As HTML is an application of SGML (Standard Generalized Markup Language),
this specification assumes a working knowledge of [SGML].

Tags delimit elements such as headings, lists, character highlighting, and links.
Most HTML elements are identified in a document as a start-tag, which gives
the element name and attributes, followed by the content, followed by the end
tag. Start-tags are delimited by < and >; end tags are delimited by </ and >.
An example is:

<H1>This is a Heading</H1>

Some elements only have a start-tag without an end-tag. For example, to
create a line break, use the
 tag. Additionally, the end tags of some
other elements, such as Paragraph (</P>), List Item (), Definition Term
(</DT>), and Definition Description (</DD>) elements, may be omitted.

The content of an element is a sequence of data character strings and nested
elements. Some elements, such as anchors (i.e. one of two ends of a hyperlink),
cannot be nested. Anchors and character highlighting may be put inside other
constructs. The basic HTML document has the following structure:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML>

<HEAD>

<TITLE>Introduction to HTML</TITLE>

</HEAD>

<BODY>

<H1>Important Stuff</H1>

<P>Explanation about important stuff

</BODY>

</HTML>

64

Appendix A 65

How to deal with images? The IMG element allows an image file to be
inserted within an HTML document along with the text. The ALT attribute
defines parsed character data that will be displayed if the image is not or cannot
be displayed by the browser. The SRC attribute identifies an URL for retriev-
ing the image. If a single A element spans both an image and text, the CGI
program will receive the HREF input values, if any, if the text is selected, or
the x,y cursor pixel coordinates relative to 0,0 as the the upper-left corner of
the image if the image is selected. Here is a simple example:

This will display an image on the Browser’s screen! To make an image clickable
you just have to anchor a link to it:

This will create a clickable image on the Browser’s screen. After selecting the
image by clicking on it the corresponding link will be followed, and in this case
a soundsample will be played.

Using Tables. For making the result documents for the search engine the
way they are I used new HTML 3.0 elements such as Tables. Here are some
simple table guidelines, lifted from the HTML 3.0 specification:

e Table cells may include nested tables
e Missing cells are considered to be empty.

e Missing rows should be ignored; that is, if all cells spans a row and there
are no further <TR> elements, then the implied row should be ignored.

e Cells cannot overlap.
What kind of data can a table contain? Some examples:
o lists
e paragraphs
e forms

e figures

Appendix A 66

e headers
e other tables
e preformatted text

Let’s take a look at an example of an HTML 3.0 table instance:

<TABLE BORDER>

<CAPTION>Engine Dynometer Test for 1970 Chevy 454 LS-5</CAPTION>
<TR><TH ROWSPAN=2>Engine RPM<TH COLSPAN=2>Corrected Data

<TH ROWSPAN=2>

<TH ROWSPAN=2>Exhaust Temperature (Fahr.)
<TR><TH>Torque<TH>Horsepower

<TR><TH ALIGN="LEFT">3250<TD>465<TD>314<TD><TD>1160
<TR><TH ALIGN="LEFT">3750<TD>496<TD>371<TD><TD>1208
<TR><TH ALIGN="LEFT">5000<TD>435<TD>412<TD><TD>1254
</TABLE>

Figure 8.1: Netscape’s rendering of a sample HTML 3.0 table

For Forms creation and details see Appendix C at page 69.

Appendix B Perl

I assume that Perl is installed on your system, if not see Appendix F at page
83 for URL information.

A Sample Perl Program:

Assuming that Perl is located in /usr/local/bin #!/usr/local/bin/perl
$inputline = <STDIN>;
print ("$inputline");

Line 1 is the header comment. Line 2 reads a line of input. Line 3 writes the
line of input back to your screen.

Running a Perl program. To run the program shown in the previous listing,
do the following:

1. Using your favorite editor, type the previous program and save it in a file
called “foo.pl”.

2. Tell the system that this file contains executable statements. To do this
in the UNIX environment, enter the following command:
chmod +x foo.pl

3. Run the program by entering the command:
foo.pl

What is a Scalar Value?

Basically, a scalar value is one unit of data. This unit of data can be either a
number or a chunk of text. There are several types of scalar values that Perl
understands:

o Integers

e Floating-point numbers

67

Appendix B 68

e Character strings

These scalar values are interchangeable, that is, you can use a scalar variable
that was assigned as a character string also as an integer and vice versa:

||43||;
28;
$result = $string + $number;

$string
$number

The value of $string is converted to an integer and added to the value of $num-
ber. The result of the addition, 71, is assigned to $result.

See [Perl] for more detailed information about Perl programming.

Appendix C CGIL.pm

“CGLpm” is a Perl5 library for handling forms in CGI scripts. With just
a handful of calls, you can parse CGI queries. However, it also offers a rich
set of functions for creating fill-out forms. Instead of remembering the syntax
for HTML form elements, you just make a series of Perl function calls. An
important fringe benefit of this is that the value of the previous query is used
to initialize the form, so that the state of the form is preserved from invocation
to invocation.

Everything is done through a “CGI” object. When you create one of these
objects it examines the environment for a query string, parses it, and stores the
results. You can then ask the CGI object to return or modify the query values.
CGI objects handle POST and GET methods correctly, and distinguish between
scripts called from <ISINDEX> documents and form-based documents. In fact
you can debug your script from the command line without worrying about
setting up environment variables.

If you want to install CGIL.pm yourself please see Appendix F at page 83 for
URL information.

Creating a new CGI object The most basic use of CGIL.pm is to get at the
query parameters submitted to your script. To create a new CGI object that
contains the parameters passed to your script, put the following at the top of
your perl CGI programs:

use CGI;
$query = new CGI;

In the object-oriented world of Perl 5, this code calls the new() method of the
CGI class and stores a new CGI object into the variable named $query. The
new() method does all the dirty work of parsing the script parameters and
environment variables and stores its results in the new object. You’ll now make
method calls with this object to get at the parameters, generate form elements,
and do other useful things.

69

Appendix C 70

An alternative form of the new() method allows you to read script parameters
from a previously-opened file handle:

$query = new CGI(FILEHANDLE)

The filehandle can contain a URL-encoded query string, or can be a series
of newline delimited TAG=VALUE pairs. This is compatible with the save()
method. This lets you save the state of a CGI script to a file and reload it later.
It’s also possible to save the contents of several query objects to the same file,
either within a single script or over a period of time. You can then reload the
multiple records into an array of query objects with something like this:

open (IN,"test.out") || die;
while ('eof (IN))
{
my $q = new CGI(IN);
push(Qqueries, $q) ;

}

Fetching The Names Of All The Parameters Passed To Your Script
@names = $query->param

If the script was invoked with a parameter list (e.g. “namel=valuel &
name2=value2 & name3=value3”), the param() method will return the para-
meter names as a list. For backwards compatibility, this method will work even
if the script was invoked as an <ISINDEX> script: in this case there will be a
single parameter name returned named “keywords”.

Fetching The Value(s) Of A Named Parameter

@values = $query->param(’foo’);
—or-
$value = $query->param(’foo’);

Pass the param() method a single argument to fetch the value of the named
parameter. If the parameter is multivalued (e.g. from multiple selections in a
scrolling list), you can ask to receive an array. Otherwise the method will return
a single value.

As of version 1.50 of this library, the array of parameter names returned
will be in the same order in which the browser sent them. Although this is not
guaranteed to be identical to the order in which the parameters were defined in

Appendix C 71

the fill-out form, this is usually the case.
Setting The Value(s) Of A Named Parameter

$query->param(’foo’,’an’,’array’,’of’,’values’);
—or-
$query->param(-name=>’foo’ ,~-values=>[’an’,’array’,’of’,’values’]);

This sets the value for the named parameter foo’ to one or more values. These
values will be used to initialize form elements, if you so desire. Note that this is
the one way to forcibly change the value of a form field after it has previously
been set.

Appending a Parameter
$query->append (-name=>’foo’ ,~-values=>[’yet’, ’more’,’values’]);

This adds a value or list of values to the named parameter. The values are ap-
pended to the end of the parameter if it already exists. Otherwise the parameter
is created.

Deleting a Named Parameter Entirely
$query->delete(’foo’);

This deletes all the parameters and leaves you with an empty CGI object. This
may be useful to restore all the defaults produced by the form element generating
methods.

Importing parameters into a namespace

$query->import names (’R’);
print "Your name is $R::name\n"
print "Your favorite colors are QR::colors\n";

This imports all parameters into the given name space. For example, if there
were parameters named ’fool’; ’foo2’ and ’foo3’, after executing
$query->import names (’R’), the variables QR: : fool, $R::fool, QR::fo02,
$R: :foo2, etc. would conveniently spring into existence. Since CGI has no way
of knowing whether you expect a multi- or single-valued parameter, it creates
two variables for each parameter. One is an array, and contains all the values,

Appendix C 72

and the other is a scalar containing the first member of the array. Use whichever
one is appropriate. For keyword (a+b-+c+d) lists, the variable @R::keywords
will be created.

If you don’t specify a name space, this method assumes namespace “Q”.

Warning: do not import into namespace “main”. This represents a major se-
curity risk, as evil people could then use this feature to redefine central variables
such as @QINC. CGLpm will exit with an error if you try to do this.

Note: this method used to be called import(). As of version 2.20 import()
has been changed to be consistent with other Perl modules. Please change all
occurrences of import() to import_names().

Creating the HTTP Header

Creating the Standard Header for a Virtual Document
print $query->header (’ image/gif’);

This prints out the required HTTP Content-type: header and the requisite
blank line beneath it. If no parameter is specified, it will default to ’text/html’.

An extended form of this method allows you to specify a status code and a
message to pass back to the browser:

print $query->header(-type=>’image/gif’, -status=>’204 No Response’);

This presents the browser with a status code of 204 (No response). Properly-
behaved browsers will take no action, simply remaining on the current page.
(This is appropriate for a script that does some processing but doesn’t need to
display any results, or for a script called when a user clicks on an empty part of
a clickable image map.)

Several other named parameters are recognized. Here’s a contrived example
that uses them all:

print $query->header(-type=>’image/gif’,
-status=>’402 Payment Required’,
-expires=>’+3d’,
-cookie=>$my_cookie,
-Cost=>7$0.02");

Appendix C 73

HTML Shortcuts

Creating an HTML Header

print $query->start html(-title=>’Secrets of the Pyramids’,

-author=>’fred@Qcapricorn.org’,

-base=>’true’,

-meta=>{’keywords’=>’pharoah secret mummy’,
’copyright’=>’copyright 1996 King Tut’},

-BGCOLOR=>’blue’);

This will return a canned HTML header and the opening <BODY> tag. All
parameters are optional:

The title (-title)

The author’s e-mail address (will create a <LINK REV="MADE” > tag
if present (-author)

A true flag if you want to include a <BASE> tag in the header (-base).
This helps resolve relative addresses to absolute ones when the document
is moved, but makes the document hierarchy non-portable. Use with care!

A -xbase parameter, if you want to include a <BASE> tag that points
to some external location. Example:

print $query->start_html(-title=>’Secrets of the Pyramids’,
-xbase=>’http://www.nile.eg/pyramid.html’);

A -meta parameter to define one or more <META> tags. Pass this
parameter a reference to an associative array containing key/value pairs.
Each pair becomes a <META> tag in a format similar to this one.

<META NAME="keywords" CONTENT="pharoah secret mummy">
<META NAME="description" CONTENT="copyright 1996 King Tut'">

There is no support for the HTTP-EQUIV type of <META> tag. This
is because you can modify the HTTP header directly with the header
method.

A -script parameter to define Netscape JavaScript functions to incorpo-
rate into the HTML page. This is the preferred way to define a library of
JavaScript functions that will be called from elsewhere within the page.
CGIL.pm will attempt to format the JavaScript code in such a way that

Appendix C 74

non-Netscape browsers won’t try to display the JavaScript code. Unfor-
tunately some browsers get confused nevertheless. Here’s an example of
how to create a JavaScript library and incorporating it into the HTML
code header:

$query = new CGI;
print $query->header;

$JSCRIPT=<<END;
// Ask a silly question
function riddleme_this() {
var r = prompt("What walks on four legs in the morning, " +
"two legs in the afternoon, " +
"and three legs in the evening?");
response(r);
}
// Get a silly answer
function response(answer) {
if (answer == "man")
alert ("Right you are!");
else
alert ("Wrong! Guess again.");

}

END

print $query->start html(-title=>’The Riddle of the Sphinx’,
-script=>$JSCRIPT) ;

¢ -onLoad and -onUnload parameters to register JavaScript event han-
dlers to be executed when the page generated by your script is opened
and closed respectively. Example:

print $query->start html(-title=>’The Riddle of the Sphinx’,
-script=>$JSCRIPT,
-onLoad=>’riddleme_this()’);

See JavaScripting for more details.

e Any additional attributes you want to incorporate into the <BODY> tag
(as many as you like). This is a good way to incorporate other Netscape
extensions, such as background color and wallpaper pattern. (The example
above sets the page background to a vibrant blue.) You can use this feature
to take advantage of new HTML features without waiting for a CGL.pm
release.

Appendix C 75

Ending an HTML Document

print $query->end html

This ends an HTML document by printing the </BODY></HTML> tags.
Creating Forms

General note 1. The various form-creating methods all return strings to the
caller. These strings will contain the HTML code that will create the requested
form element. You are responsible for actually printing out these strings. It’s
set up this way so that you can place formatting tags around the form elements.

General note 2. The default values that you specify for the forms are only used
the first time the script is invoked. If there are already values present in the
query string, they are used, even if blank.

If you want to change the value of a field from its previous value, you have two
choices:

1. call the param() method to set it.

2. use the -override (alias -force) parameter. (This is a new feature in 2.15)
This forces the default value to be used, regardless of the previous value
of the field:

print $query->textfield(-name=>’favorite color’,
-default=>’red’,
-override=>1);

If you want to reset all fields to their defaults, you can:
1. Create a special defaults button using the defaults() method.
2. Create a hypertext link that calls your script without any parameters.

General note 3. You can put multiple forms on the same page if you wish.
However, be warned that it isn’t always easy to preserve state information for
more than one form at a time. See advanced techniques for some hints.

General note 4. By popular demand, the text and labels that you provide for
form elements are escaped according to HTML rules. This means that you
can safely use ”<CLICK ME>" as the label for a button. However, this be-
havior may interfere with your ability to incorporate special HTML character
sequences, such as Á (A) into your fields. If you wish to turn off auto-
matic escaping, call the autoEscape () method with a false value immediately

Appendix C 76

after creating the CGI object:

$query = new CGI;
$query->autoEscape (undef) ;

You can turn autoescaping back on at any time with $query->autoEscape (’yes’)

Form Elements

e Starting and Ending a form
print $query->startform($method,$action,$encoding);
...various form stuff...
print $query->endform;

e Text entry fields
print $query->textfield(-name=>’field name’,
-default=>’starting value’,
-size=>50,
-maxlength=>80) ;

e Big text entry fields
print $query->textarea(-name=>’foo’,
-default=>’starting value’,
-rows=>10,
-columns=>50) ;

o Password fields
print $query->password field(-name=>’secret’,
-value=>’starting value’,
-size=>50,
-maxlength=>80) ;

e File upload fields
print $query->filefield(-name=>’uploaded file’,
-default=>’starting value’,
-size=>50,
-maxlength=>80);

e Popup menus
print $query->popup.menu(-name=>’menu name’,
-values=>[’eenie’, ’meenie’,’minie’],
-default=>’meenie’,
—labels=>{’eenie’=>’one’,’meenie’=>’two’,
'minie’=>’three’});

Appendix C 77

e Scrolling lists
print $query->scrolling list(-name=>’list name’,
-values=>[’eenie’, ’meenie’,’minie’, ’moe’],
-default=>[’eenie’,’moe’],
-size=>b,
-multiple=>’true’,
-labels=>%1labels);

e Checkbox groups
print $query->checkbox group(-name=>’groupname’,
-values=>[’eenie’, ’meenie’,’minie’,’moe’],
-default=>[’eenie’,’moe’],
-linebreak=>’true’,
-labels=>%1labels);

e Individual checkboxes
print $query->checkbox(-name=>’checkbox name’,
-checked=>’checked’,
-value=>’TURNED ON’,
-label=>’Turn me on’);

e Radio button groups
print $query->radio_group(-name=>’group name’,
-values=>[’eenie’, ’meenie’,’minie’],
-default=>’meenie’,
-linebreak=>’true’,
-labels=>%1labels);

e Submission buttons
print $query->submit(-name=>’button name’,
-value=>’value’);

o Reset buttons
print $query->reset

o Reset to defaults button
print $query->defaults(’button label’)

o Hidden fields
print $query->hidden(-name=>’hidden name’,
-default=>[’valuel’,’value2’...]);

e Clickable Images
print $query->image button(-name=>’button name’,
-src=>’/images/NYNY.gif’,
-align=>’MIDDLE’);

Appendix C 78

When the image is clicked, the results are passed to your script in two
parameters named ”button_name.x” and ”button_name.y”, where ”but-
ton_name” is the name of the image button.

$x = $query->param(’button name.x’);
$y = $query->param(’button name.y’);

e JavaScript Buttons
print $query->button(-name=>’buttonl’,
-value=>’Click Me’,
-onClick=>’doButton(this)’);

e Autoescaping HTML
$query->autoEscape (undef) ;

Appendix D MOMspider

The Multi-Owner Maintenance spider. For URL information please see Appen-
dix F at page 83.
The layout of a MOMspider instruction file as used for this project:

This is a sample instruction file

SystemAvoid /home/ylausber/robot/MOMspider-1.00/avoid.mom
SystemSites /home/ylausber/robot/MOMspider-1.00/sites.mom
AvoidFile /home/ylausber/robot/MOMspider-1.00/.momspider-avoid
SitesFile /home/ylausber/robot/M0OMspider-1.00/.momspider-sites
ReplyTo ylausber@cs.leidenuniv.nl

<Tree

Name Animated GIFs Animation Images

TopURL http://www.shore.net/%7Estraub/animated gifs.htm

IndexURL http://ind156b.wi.leidenuniv.nl:8086/spider/spiderl.html
IndexFile /home/ylausber/www/httpd/htdocs/spider/spiderl.html
EmailAddress ylausber

EmailBroken

EmailRedirected

Exclude http://www.wi.leidenuniv.nl/

79

Appendix D 80

MODMspider’s usage:

usage: momspider [-h] [-e errorfile] [-o outfile] [-i instructfile]
[-d maxdepth] [-a avoidfile] [-s sitesfile]
[-A system_avoidfile] [-S system_sitesfilel
WWW Spider for multi-owner maintenance of distributed hypertext
infostructures.

Options: [DEFAULT]

e -h Help -- just display this message and quit.
e —e Append error history to the following file. [STDERR]
e -0 Append output history to the following file. [STDOUT]

e -i Get your instructions from the following file.
[/home/ylausber/robot/M0Mspider-1.00/instruct/.instruct0.0]

e —d Maximum traversal depth. [20]

e -a Read/write the user’s URLs to avoid into the following file.
[/home/ylausber/.momspider-avoid]

e -s Read/write the user’s sites visited into the following file.
[/home/ylausber/.momspider-sites]

e —A Read the systemwide URLs to avoid from the following file.
[/home/ylausber/robot/M0OMspider-1.00/system-avoid]

e —-S Read the systemwide sites visited from the following file.
[/home/ylausber/robot/M0OMspider-1.00/system-sites]

Appendix E Libwww-Perl

The libwww-perl] distribution is a collection of Perl modules which provides
a simple and consistent programming interface (API) to the World-Wide Web.
The main focus of the library is to provide classes and functions that allow you
to write WWW clients, thus libwww-perl said to be a WWW client library. The
library also contain modules that are of more general use.

The latest version of the library is libwww-perl-5.00.tar.gz (163 KB) which was
released May 26, 1996. You will need perl5.002 or better to use this version. (For
perl5.001m you should continue to use the old libwww-perl-5b6.tar.gz (98 KB)
which was released Nov 6, 1995.) For URL information please see Appendix F
at page 83.

Libwww-perl for perl4 is used for the MOMspider (see Appendix D at page 79).
Specific Libwww requests are: HEAD, GET, and POST.

I used libwww-perl-5b6 for the image retriever functions. The only function
from libwww-perl-5b6 T used was the GET command:

Usage: GET [-options] <url>...
e -m <method> use method for the request (default is 'GET’)
o -f make request even if GET believes method is illegal
e -b <base> Use the specified URL as base
o -t <timeout> Set timeout value
e -i <time> Set the If-Modified-Since header on the request
e -c <conttype> use this content-type for POST, PUT, CHECKIN
e -p <proxyurl> use this as a proxy
e -P don’t load proxy settings from environment

e -u Display method and URL before any response

81

Appendix E

-U Display request headers (implies -u)

-s Display response status code

-S Display response status chain

-e Display response headers

-d Do not display content

e -0 <format> Process HTML content in various ways

-v Show program version

-h Print this message

-x Extra debugging output

82

Appendix F
Important Links

HTML Links

e HyperText Markup Language (HTML)
http://union.ncsa.uiuc.edu/HyperNews/get/www/html.html

e HTML Reference Manual
http://www.sandia.gov/sci_compute/html ref.html

e HTML Forms
http://www.hpl.hp.co.uk/people/dsr/html/forms.html

e HyperText Markup Language (HTML): Working and Background Mate-
rials
http://www.w3.org/pub/WWW/MarkUp/

CGI Links

e The Common Gateway Interface
http://hoohoo.ncsa.uiuc.edu/cgi/

Perl Links

e UF/NA Perl Archive
http://wwwl.cis.ufl.edu/perl/

e The Perl Programming Language
http://pubweb.nexor.co.uk/public/perl/perl.html

CGI/Perl Libraries & Archives Links

o Perl WWW Documentation
http://www.perl.com/perl/wuwman/

83

Appendix F 84

e cgic: an ANSI C library for CGI Programming
http://wuw.boutell.com/cgic/

e Matt’s Script Archive
http://www.worldwidemart.com/scripts/

e CGIL.pm - a Perl5 CGI Library
http://wwu-genome.wi.mit.edu/ftp/pub/software/WWW/cgi docs.html

o libwww-perl-5
http://www.sn.no/libwww-perl/

e libwww-perl: Distribution Information
http://www.ics.uci.edu/pub/websoft/libwww-perl/

e Web Developer’s Virtual Library: Perl
http://www.charm.net/ web/V1ib/Providers/Perl.html
Robots, Spiders, and Webcrawlers

e World Wide Web Robots, Wanderers, and Spiders
http://info.webcrawler.com/mak/projects/robots/robots.html

o Guidelines for Robot Writers
http://info.webcrawler.com/mak/projects/robots/guidelines.html

e Perl code to implement Robot Exclusion Standard
http://fuzine.mt.cs.cmu.edu/mlm/rnw.html

e MOMspider — Distribution Information
http://www.ics.uci.edu/WebSoft/M0OMspider/

e Robot Mailing List:
http://info.webcrawler.com/mailing-lists/robots/info.html

HTTP Daemon Links
e the NCSA HTTPd Home Page
http://hoohoo.ncsa.uiuc.edu/
Project Links

e My bookmarks
http://ind156b.wi.leidenuniv.nl:8086/bookmarks.html

e The Leiden 19th Century Portrait Database
http://ind156b.wi.leidenuniv.nl:8086/intro.html

Appendix F

e Server statistics
http://ind156b.wi.leidenuniv.nl:8086/results.html

e Demo statistics
http://ind156b.wi.leidenuniv.nl:8086/demostat.html

¢ YurImage; a Content-based Image Search Engine
http://ind156b.wi.leidenuniv.nl:8086/cgi-bin/yurimage.cgi

85

Appendix G
Setup of a HTTP Server

In this appendix we will explain the common procedure of how to setup your own
HTTP server (The NCSA HTTPd, see Appendix F at page 83). NCSA HTTPd
is an HTTP/1.0 compatible server for making hypertext and other documents
available to Web browsers. The current version is 1.5.2.

Installation Instructions

Installing NCSA HTTPd can be broken down into these basic steps:
e Downloading the NCSA HTTPd Server
e Finding HTTPd a Good Home
e Configuring HTTPd
o Selecting Scripts
e Starting NCSA HTTPd

Downloading the NCSA HTTPd Server

If you already have a copy of the current release of NCSA HTTPd 1.5, you
may skip to the next step. NCSA HTTPd is available as precompiled distribu-
tions and binaries for systems we have access to. There is also a new OneStep
Download and Configure for easy access to NCSA HTTPd. If you already have
NCSA HTTPd 1.4 running, you may update the HTTPd binary without the
new support files.

Note: There are several new support files for the new authorization types, as
well as examples of many of the other new features in the configuration files, so
you might want to retrieve the support files anyways. A step-by-step guide on
how to update the old server is available.

86

Appendix G

87

If your system is not on this list, or if you feel more comfortable doing so, you
must compile a binary:

AIX 4.1.4 - IBM RS/6000 Model 550

BSD/OS 2.1 - Pentium 120

IRIX 4.0.5 - SGI Indigo

IRIX 5.3 - SGI Indy

HP-UX 9.05 - HP 9000 model 715

Linux 2.0.0 - Pentium 120

OSF/1 3.0 - Dec Alpha

SCO OpenServer 5.0 - Pentium 90

SunOS 4.1.3 / Solaris 1.x - SPARCserver 690MP
SunOS 5.4 / Solaris 2.4 x86 - Pentium 90 - Machine Unavailable
SunOS 5.4 / Solaris 2.4 SPARC - SPARCstation 20
SunOS 5.3 / Solaris 2.3 SPARC - SPARCstation 20
Ultrix 4.3 - Dec Mips 3100

Finding HTTPd a Good Home

At this stage, you should move HTTPd’s control files from the directory you
have been working in to the directory you intend to use as ServerRoot in the
server configuration file.

Unless you have redefined their locations in the server configuration file, you
will have to move the following files and directories into ServerRoot;:

e httpd : The server itself

conf : Configuration files
logs : Access log and error log
support : Support programs

cgi-bin : Server scripts

The logs directory should not be writable by the User your server is running as.

Appendix G 88

Configuring HTTPd

The NCSA HTTPd Server is a versatile piece of software, the result of hours
and hours of blood, sweat, and tears by the NCSA HTTPd Development team
and Beta testers the world over. Its versatility does come at a price, however,
as you the webmaster must configure the server to fit your needs. There are 3
types of configuration that can be done.

Compile Time

The NCSA HTTPd server has several compile time flags. These are contained
in the files src/Makefile and src/config.h of the distribution. These files are
fairly well documented.

Startup Configuration Files

There are 3 files the server parses at start up (or after receiving a SIGHUP
signal). There is some General information available on the configuration file
format.

There are three configuration files which control Server Configuration, Re-
source Configuration, and Access Control. You should look at and modify the
files conf/httpd.conf-dist, conf/srm.conf-dist and conf/access.conf-dist
which come with the distribution so that they are correct for your server.

Run Time Configuration

The server also supports per directory configuration files, mostly for access
control. The name of this file is set with the AccessFileName directive in the
Resource Configuration file. See the Access Configuration documents for more
information.

Selecting Scripts

NCSA HTTPd 1.5 comes with many CGI scripts, both useful and informative.
NCSA HTTPd 1.5 does not support the former NCSA htbin scripts, and these
scripts should be removed from the document tree. It is not necessary to install
all of the scripts at your site (and we don’t recommend it). Peruse the list of
CGI scripts, and move those you want into the cgi-bin/ directory you defined
in your Server Resource Configuration File.

Starting NCSA HTTPd

Once you have completed the above steps, and you are using standalone you can
start the server by typing httpd at the command line. Note: You must be root

Appendix G 89

in order to use a port less than 1024. You may need to use one of the command
line options to override the compile time paths to the configuration files. The
flags are:

Usage: httpd [-d directory] [-f file] [-v]

-d directory : specify an alternate initial ServerRoot
-f file : specify an alternate ServerConfigFile

-v : version information (this screen)

If you are installing the server as root, you will probably want to automatically
start HT'TPd when the machine boots. This can be done through modifications
to various /etc/rc* or /etc/init.d/* files, depending on your system.

If you are running the server from inetd, you need to edit the OS system
files.

