
A Content-based Image Search Enginein Cyberspacea Master's Thesis

Application-Oriented Computer ScienceLeiden Imaging and Multimedia GroupDepartment of Computer ScienceLeiden UniversityYuri LausbergAugust 19, 1996

PrefaceThis thesis represents the �nal part of my computer science studies here at Lei-den University. The reason for a thesis is to explore a certain aspect of a �eldwithin the computer science education. After a great number of courses I ob-tained a clear perspective of which �eld I would like to complete my educationin. I ended up with the LIM (Leiden Imaging and Multimedia) group a sub-group of the HPC (High Performance Computing) group of application-orientedcomputer science with Dr. Nies Huijsmans and Dr. Michael Lew. They gave methe possibility for my thesis work. As I got the greatest interest in the Internet Istarted working on a project within the LIM (Leiden Imaging and Multimedia)group. This project lies within the Digital Image Databases and Internet.Therefore I would like to thank Dr. D.P.(Nies) Huijsmans and Dr. MichaelLew for giving me the possibility to do my thesis under their supervision. I alsowould like to thank them for the care and patience they had for guiding methrough the whole project.As I am Dutch and I am studying here in Holland I chose to do all my thesiswork in the English language. The reason for this was simply because one ofmy associate teachers (Dr. Michael Lew) is an US citizen. Another reason forme to do this thesis in english is because my wife is an US citizen too and aftermy graduation I am planning to immigrate to the USA.I would also like to thank my wife Summer for always giving me the love andsupport I needed. Finally I would like to thank my parents for their patienceto �nally see me graduate.
i

IntroductionAn important limitation of the information society of today is the dependencyof textual information representation. This situation tends to continue despitethe main in
uence of image information representation which is very commonto the day to day routine in human society. We use our visual ability to see andunderstand visual information more than any other medium to communicateand collect information.The World Wide Web which is actually a part of the Internet contains thefour basic elements of hypermedia: text, images, audio and video. A big part ofthe World Wide Web contains visual information representation, simply becauseof this old saying: \a picture says more than a 1000 words".Because of this amount of information selective searching has become moreand more important. Nowadays meta-information services are o�ered also called\search engines" which are based upon text pattern matching methods.Image searching therefore is most interesting because it is almost not availableon the World Wide Web. It would be very nice if you have your own photo-studio to see if your photos already exist elsewhere on the Web. This type ofsearch engines are not (or almost not) available not because nobody is interestedbut simply because the problem of image understanding by computers has notyet been solved. However a growing number of researchers have been tryingto �nd image query equivalents for the successful text-pattern matching andtext-indexing techniques.To obtain a clear view of the image understanding problem the reader shouldknow that we will need to transform the digital image representation to otherforms which have actual meaning or human oriented content. The main ideaof achieving this is the concept of content-based retrieval and storage of imagebased information for digital libraries. ii

iiiMy project is divided into two parts. In the �rst part I've created a CGIprogram; a so called \search engine", usable for any WWW-browser on theWorld Wide Web. This search engine makes querying based on image contentpossible within the 19th Century Portrait Database. The search algorithms andfeature extraction techniques for this content-based image retrieval have beenimplemented by other persons. The main idea was to see if we could makethe results of the search methods available for anyone connected to the WorldWide Web. Another motivation was to understand and overcome the problemsinvolving Web programming.In the second part of this project we tried to turn this concept of connectingthis search engine to the World Wide Web around. Instead of connecting ourprivate database to the World Wide Web I have created a database based on theimages found on the World Wide Web. With this database a new search enginewas born. This concept is rather interesting because public data is involved (notjust some private collection of photos).In order to collect these images we had to come up with a program, this iswhat we like to call a Web spider which is nothing more than an autonomousagent that searches the World Wide Web. Of course like any other databaseyou would like to perform queries. This querying is based on image content,like color and shape, (but also text-pattern querying) of an example image. Allby all I ended up with a search engine based on querying by example on imagecontent and text-patterns.In this report we would like to give the reader a detailed outline of the waywe've been working on this project, the techniques involved and most of allthe programming itself. It will also give a nice introduction to Web program-ming and all the basics involved. This report can be used for the experiencedprogrammer as a reference manual for any future work for this project.

Contents
Preface iIntroduction ii1 The World Wide Web 41.1 Introduction : 41.2 How it works : 61.3 Web client : 81.4 The Hypertext Transfer Protocol : : : : : : : : : : : : : : : : : : 91.5 HTML : 101.6 Search Engines : 112 The Common Gateway Interface 122.1 Introduction : 122.2 Dynamic behaviour : 122.3 HTML-based interfaces : 132.3.1 What needs to be done? : : : : : : : : : : : : : : : : : : : 132.3.2 Why not just write a GUI? : : : : : : : : : : : : : : : : : 132.4 Getting started : 142.5 Choice of programming language? : : : : : : : : : : : : : : : : : 142.5.1 Compiled CGI Programming Languages : : : : : : : : : : 162.5.2 Interpreted CGI Programming Languages : : : : : : : : : 172.5.3 Compiled/Interpreted CGI Programming Languages : : : 192.5.4 The selection of the CGI programming language : : : : : 202.6 Perl : 202.7 CGI.pm - a Perl5 CGI Library : : : : : : : : : : : : : : : : : : : 212.8 HTTP Daemon : 223 Leiden 19th Century Portrait Database 243.1 Content-based Image Retrieval : : : : : : : : : : : : : : : : : : : 243.2 Introduction of LCPD : 253.3 Implementation : 261

CONTENTS 23.4 Demo features : 283.4.1 Changing the number of images displayed : : : : : : : : : 293.4.2 The Similarity Methods : : : : : : : : : : : : : : : : : : : 293.4.3 Changing the photo view of images displayed : : : : : : : 293.4.4 New Random-set selection : : : : : : : : : : : : : : : : : : 303.4.5 Test-set selection : 303.4.6 Help buttons : 303.5 Conclusion : 314 WWW Robots, Spiders and Webcrawlers 334.1 Introduction : 334.1.1 What is a Robot? : 334.2 Robot reuse : 344.3 MOMspider : 354.3.1 Design : 354.3.2 Functionality : 354.3.3 E�cient use of network resources : : : : : : : : : : : : : : 374.3.4 Being friendly to service providers : : : : : : : : : : : : : 375 The Image Database 395.1 Introduction : 395.2 Searching for images : 395.3 Thumbnails : 405.4 Database population : 415.4.1 Adding images : 425.5 Future Work : 425.5.1 Removing and updating images : : : : : : : : : : : : : : : 436 The Similarity Methods 446.1 Introduction : 446.2 Keyword matching : 446.2.1 Keyword Database : 446.3 Color histogram matching : 466.3.1 Introduction : 466.3.2 The color space : 466.3.3 Color Histograms : 476.3.4 The indexing algorithm : : : : : : : : : : : : : : : : : : : 476.3.5 Indexing : 486.4 Edge oriented matching : 496.4.1 Intensity space : 496.4.2 Gradient space : 506.4.3 Horizontal and Vertical Projections : : : : : : : : : : : : : 516.5 Evaluation : 526.5.1 Color histogram matching : : : : : : : : : : : : : : : : : : 52

CONTENTS 36.5.2 Edge oriented matching : : : : : : : : : : : : : : : : : : : 526.5.3 Test-set testing : 537 Image Search Engine 547.1 Introduction : 547.2 User Interface : 547.2.1 The Query Result and Selection Window : : : : : : : : : 557.2.2 The Query Control Panel Window : : : : : : : : : : : : : 567.3 Conclusion : 598 Conclusion 608.1 Future Work : 608.1.1 Color : 608.1.2 Edges : 608.1.3 Keywords : 618.1.4 User Interface : 618.1.5 Database : 61Bibliography 63Appendix A HTML 64Appendix B Perl 67Appendix C CGI.pm 69Appendix D MOMspider 79Appendix E Libwww-Perl 81Appendix F Important Links 83Appendix G Setup of a HTTP Server 86

Chapter 1The World Wide Web1.1 IntroductionIn the 1960s, researchers began experimenting with linking computers to eachother and to people through telephone hook-ups, using funds from the U.SDefense Department's Advanced Research Projects Agency (ARPA).ARPA wanted to see if computers in di�erent locations could be linked usinga new technology known as packet switching, which had the promise of lettingseveral users share just one communications line. Previous computer networkinge�orts had required a line between each computer on the network, sort of likea train track on which only one train can travel at a time. The packet systemallowed for creation of a data highway, in which large numbers of vehicles couldessentially share the same lane. Each packet was given the computer equivalentof a map and a time stamp, so that it could be sent to the right destination,where it would then be reassembled into a message the computer or a humancould use.This system allowed computers to share data and the researchers to exchangeelectronic mail, or e-mail. In itself, e-mail was something of a revolution, o�eringthe ability to send detailed letters at the speed of a phone call.As this system, known as ARPANet, grew, some enterprising college students(and one in high school) developed a way to use it to conduct online conferences.These started as science-oriented discussions, but they soon branched out intovirtually every other �eld, as people realized the power of being able to \talk"to hundreds, or even thousands, of people around the country.4

CHAPTER 1. THE WORLD WIDE WEB 5

Copyright © 1995

Larry Landweber

and the Internet Society.

Unlimited permission to
copy or use is hereby granted
subject to inclusion of
this copyright notice.

INTERNATIONAL CONNECTIVITY
 Version 14 - 6/15/95

Internet

Bitnet but not Internet

EMail Only (UUCP, FidoNet)

No Connectivity
This map may be obtained via anonymous ftp
from ftp.cs.wisc.edu, connectivity_table directoryFigure 1.1: Statistics available by FTP from nic.merit.edu.

Copyright © 1996

Larry Landweber

and the Internet Society.

Unlimited permission to
copy or use is hereby granted
subject to inclusion of
this copyright notice.

INTERNATIONAL CONNECTIVITY
 Version 15 - 6/15/96

Internet

Bitnet but not Internet

EMail Only (UUCP, FidoNet)

No Connectivity
This map may be obtained via anonymous ftp
from ftp.cs.wisc.edu, connectivity_table directoryFigure 1.2: Statistics available by FTP from nic.merit.edu.

CHAPTER 1. THE WORLD WIDE WEB 6In the 1970s, ARPA helped support the development of rules, or protocols, fortransferring data between di�erent types of computer networks. These \inter-net" (from \internetworking") protocols made it possible to develop the world-wide Net we have today. By the close of the 1970s, links developed betweenARPANet and counterparts in other countries. The world was now tied togetherin a computer web.In the 1980s, this network of networks, which became known collectively asthe Internet, expanded at a phenomenal rate. Hundreds, then thousands, ofcolleges, research companies and government agencies began to connect theircomputers to this worldwide Net (see �gure 1.1 and 1.2). Some enterprisinghobbyists and companies unwilling to pay the high costs of Internet access (orunable to meet stringent government regulations for access) learned how tolink their own systems to the Internet, even if only for e-mail and conferences.Some of these systems began o�ering access to the public. Now anybody witha computer and modem - and persistence - could tap into the world.In the 1990s, the Net grows at exponential rates. Some estimates are thatthe volume of messages transferred through the Net grows 20 percent a month(see �gure 1.1 and 1.2). In response, government and other users have tried inrecent years to expand the Net itself.1.2 How it worksThe worldwide Net is actually a complex web of smaller regional networks. Tounderstand it, picture a modern road network of trans-continental superhigh-ways connecting large cities. From these large cities come smaller freeways andparkways to link together small towns, whose residents travel on slower, narrowresidential ways.The Net superhighway is the high-speed Internet. Connected to this arecomputers that uses a particular system of transferring data at high speeds. Inthe U.S., the major Internet "backbone" theoretically can move data at rates of45 million bits per second (compare this to the average home modem, which hasa top speed of roughly 28k8 bits per second). This internetworking \protocol"lets network users connect to computers around the world.Connected to the backbone computers are smaller networks serving particulargeographic regions, which generally move data at speeds around 1.5 million bitsper second. Feeding o� these in turn are even smaller networks or individualcomputers.

CHAPTER 1. THE WORLD WIDE WEB 7Nobody really knows how many computers and networks actually make upthis Net. Some estimates say there are now as many as 5,000 networks con-necting nearly 2 million computers and more than 15 million people aroundthe world. Whatever the actual numbers, however, it is clear they are onlyincreasing.There is no one central computer or even group of computers running theInternet - its resources are to be found among thousands of individual computers.This is both its greatest strength and its greatest weakness. The approach meansit is unlikely for the entire Net to crash at once - even if one computer shutsdown, the rest of the network stays up. But thousands of connected computerscan also make it di�cult to navigate the Net and �nd what you want. It is onlyrecently that Net users have begun to develop the sorts of navigational toolsand \maps" that will let neophytes get around without getting lost.The vast number of computers and links between them ensure that the net-work as a whole will likely never crash and means that network users have readyaccess to vast amounts of information. But because resources are split amongso many di�erent sites, �nding that information can prove to be a di�cult task,especially because each computer might have its own unique set of commandsfor bringing up that information.If you choose to go forward, to use and contribute, you will become a \citizenof Cyberspace." If you're reading these words for the �rst time, this may seemlike an amusing but unlikely notion { that one could \inhabit" a place withoutphysical space. But put a mark beside these words. Join the Net and activelyparticipate for a year. Then re-read this passage. It will no longer seem sostrange to be a \citizen of Cyberspace". It will seem like the most natural thingin the world.So how do we de�ne the World Wide Web exactly? The World Wide Webis o�cially described as a \wide-area hypermedia information retrieval initia-tive aiming to give universal access to a large universe of documents". TheWWW (World Wide Web) is basically a part of the Internet. When we speakof hypermedia, we're talking about the four basic document components:1. text2. images3. audio4. videoThe WWW supports all o� these one way or another.

CHAPTER 1. THE WORLD WIDE WEB 8The World Wide Web exists virtually - there is no standard way of viewingit or navigating around it. However, many software interfaces to the Web havesimilar functions and generally work the same way no matter what computer ortype of display is used.1.3 Web clientWeb software is designed around a distributed client-server architecture. AWebclient (called a Web browser if it is intended for interactive use) is a programwhich can send requests for documents to any Web server. A Web server is aprogram that, upon receipt of a request, sends the document requested (or anerror message if appropriate) back to the requesting client.

Figure 1.3: Netscape Web browserThe language that Web clients and servers use to communicate with eachother is called the HyperText Transfer Protocol (HTTP). All Web clients andservers must be able to speak HTTP in order to send and receive hypermediadocuments. For this reason, Web servers are often called HTTP servers.

CHAPTER 1. THE WORLD WIDE WEB 91.4 The Hypertext Transfer ProtocolThe Hypertext Transfer Protocol [HTTP] has been in use by the World-WideWeb global information initiative since 1990. HTTP is an application-levelprotocol with the lightness and speed necessary for distributed, collaborative,hyper-media information systems. It is a generic, stateless, object-oriented pro-tocol which can be used for many tasks, such as name servers and distributedobject management systems, through extension of its request methods (com-mands). A feature of HTTP is the typing and negotiation of data representation,allowing systems to be built independently of the data being transferred.The Hypertext Transfer Protocol [HTTP] is a network protocol built for theWWW. Certain operations, called methods, are associated with the object ori-ented HTTP protocol. These methods de�ne extensions to the HTTP com-mands and can be associated with particular types of network objects such asdocuments, �les, or associated services.The purpose of HTTP was to make available many sources of related, net-worked information via the Internet. It is possible to browse these informationstores, to rapidly follow references from any source of information to other per-tinent sources which may themselves be located at multiple remote locations.HTTP's functionality includes search and retrieval, front-end updates, and doc-ument annotation. HTTP allows an extensible set of methods to be designedand deployed. It builds on the discipline of reference provided by the UniformResource Identi�er (URI), a well-thought-out scheme that originated with theInternet Engineering Task Force (IETF). There are two types of URIs, the Uni-form Resource Name (URN) and the Uniform Resource Locator [URL1996].HTTP also features dynamic data representation through client/server nego-tiation. This allows WWW information systems to be built independent of thedevelopment of new information representations. The way information is rep-resented can be worked out as part of the process of shipping data from serversto clients, and vice versa.On the Internet, network communications occur via TCP/IP connections. Oc-casionally, certain situations may arise where this protocol suite is implementedatop another network protocol. In this case, HTTP objects may be mappedonto foreign transport mechanisms or networks. This is a simple, straightfor-ward process, one that usually goes unnoticed by WWW users.The HTTP protocol is stateless - that is, neither the client nor the server storesinformation about the state of the other side of an ongoing connection. Eachminds its own business and manages state information for itself. This supports

CHAPTER 1. THE WORLD WIDE WEB 10the simplest kinds of client and server applications, and helps to account forthe broad reach and platform support found in the Web community. Mostnetworking protocols depend on the notion of a transaction, which consists ofthe following elements:� the establishment of a connection between a client and a server, to permitcommunications to occur� a request from a client to a server, for speci�c services, resources, or otherknown topics of communication� a response from the server to the client's request, supplying the requestedresource or an explanation as to why it can't be delivered, and� the termination of the connection, at the close of request/response com-municationThis rhythm (connection, request, response, close) describes the basic formof interchange between clients and servers the world over, both on and o� theWeb.1.5 HTMLThe HyperText Markup Language [HTML](see Appendix A at page 64) is a sim-ple markup system used to create hypertext documents that are portable fromone platform to another. HTML documents are SGML (Standard GeneralizedMarkup Language) documents with generic semantics that are appropriate forrepresenting information from a wide range of applications. HTML markupcan represent hypertext news, mail, documentation, and hypermedia; menusof options; database query results; simple structured documents with in-linedgraphics; and hypertext views of existing bodies of information.HTML's evolution continues to be a fascinating story. Starting with a sim-ple set of basic markup and text elements, HTML is evolving into a complexhypermedia markup language. Along with this evolution from simple to com-plex, there have been some digressions from the original basic markup modelto today's complex collection of table de�nitions, mathematical notations, andcomplex markup requirements. For instance, HTML+ is one branch of theHTML tree that reached a dead end (but not before exerting a major in
uenceon level 3 development). In fact, many artifacts from HTML+ have been in-tegrated into the level 3 DTD (Data Type De�nition), while numerous othersmet their demise.

CHAPTER 1. THE WORLD WIDE WEB 111.6 Search EnginesTo extract information of the Internet is quite a di�cult task since the Internetbecame a huge hay stack of information.Using the right tools makes researching the Web much simpler. There is aclass of software tools called search engines that can examine huge amounts ofinformation to help you locate Web sites of potential interest.Here's how most of them work: Somewhere in the background, laboring inpatient anonymity, you'll �nd automated Web-traversing programs, often calledrobots or spiders (see chapter 4 at page 33), that do nothing but follow linkafter link around the Web, ad in�nitum. Each time they get to a new Webdocument, they peruse and catalog its contents, storing the information fortransmission to a database elsewhere on the Web. At regular intervals theseautomated information gatherers transmit their recent acquisitions to a parentdatabase, where the information is sifted, categorized, and stored.When you run a search engine, you're actually searching the database that'sbeen compiled and managed through the initial e�orts of the robots and spiders,but which is handled by a fully functional database management system thatcommunicates with the CGI (see chapter 2 at page 12) program for your searchform. Using the keywords or search terms you provide to the form, the databaselocates \hits" (exact matches) and also \near-hits" (matches with less than thefull set of terms supplied, or based on educated guesses about what you're reallytrying to locate).The hits are returned to the CGI program by the database, where they aretransformed into a Web document to return the results of the search for yourperusal.If you're lucky, all this activity will produce references to some materials thatyou can actually use! The term search-engine will be used throughout this thesisto represent a user-interface with which you can de�ne queries.

Chapter 2The Common GatewayInterface2.1 IntroductionSince Web servers can generate custom built Web documents on-the-
y in re-sponse to interaction with end users, this makes online WWW publishing muchmore responsive and open-ended than traditional publishing. The need for thisinteraction with end users started a new development as an extension of HTTPcalled CGI, the Common Gateway Interface [CGI].The Common Gateway Interface [CGI] is a standard for interfacing externalapplications with information servers, such as HTTP or Web servers. A plainHTML document that the Web daemon (see section 2.8 at page 22) retrieves isstatic, which means it exists in a constant state: a text �le that doesn't change.A CGI program, on the other hand, is executed in real-time, so that it canoutput dynamic information.2.2 Dynamic behaviourQuick response to change and dynamic behaviour are the underpinnings of thepower behind the WWW. Dynamic behaviour is a vital aspect of the Web thatis sometimes hard to identify or appreciate. This is particularly true whendocuments are created on-the-
y, usually in response to some event on theWWW. Although what appears to a user in response to a query may look like\just another Web page", it might actually be an evanescent document createdfor one-time use in direct response to that query. This technology is called theCommon Gateway Interface [CGI]. 12

CHAPTER 2. THE COMMON GATEWAY INTERFACE 13For example, let's say that you wanted to \hook up" your Unix databaseto the World Wide Web, to allow people from all over the world to query it.Basically, you need to create a CGI program that the Web daemon (see section2.8 at page 22) will execute to transmit information to the database engine, andreceive the results back again and display them to the client. This is an exampleof a gateway, and this is where CGI, currently version 1.1, got its origins.The database example is a simple idea, but most of the time rather di�cultto implement. There really is no limit as to what you can hook up to the Web.The only thing you need to remember is that whatever your CGI program does,it should not take too long to process. Otherwise, the user will just be staringat their browser waiting for something to happen.2.3 HTML-based interfacesToday, we are living in a multi-platform world in which everyone wants to createapplications that are platform independent. This can be done with expensivecross-compilers and expensive GUI generating software packages. But why nottake advantage of other people's hard work and make things easy for yourselfby using HTML. There is no reason why you and everyone else has to keepwriting the\same" (more or less) code for generating windows, buttons, boxes,pictures, etc. You would like to be able to make an input �eld as easily aswriting <input name=\input"> , which can be done in HTML. You should nothave to write code to handle selecting text in the window, or code to make theinput \clickable". Your web browser will take care of all of that for you. Thus,ultimately, when you use HTML forms you only have to describe the way thatyou want the interface to look and you leave the work of generating it to theweb browser.2.3.1 What needs to be done?Your interface will contain two main parts: a form which will obtain some type ofuseful information, and a program that will perform some type of computationon that information ultimately writing its results into yet another HTML doc-ument. Basically our main goal is to learn how to write these programs. Theywill be written to take CGI style input from our forms and generate output asHTML documents which can be accessed through your favorite web browser.2.3.2 Why not just write a GUI?The main reason for using HTML as a front end for your programming projectsis that by doing so you are taking advantage of the fact that there exist Webbrowsers for virtually every platform that you might be interested in having

CHAPTER 2. THE COMMON GATEWAY INTERFACE 14your software running on. So as long as you have a compiler that can createexecutable code for the target machine which can \run from the command line"and there exists a web browser for that platform and presentation environment,the modi�cations to use HTML are minimal. In fact these modi�cations do notnecessarily require the re-compiling of the executables, scripting languages likePerl (see section 2.6 at page 20) can be used as a \wrapper" for the existingcode.2.4 Getting startedWhat will I need to get started?� First you will need a Web browser (see section 1.3 at page 8).� You will need the facilities to generate the executable code: a compilerif you are writing in a compiled language(C, C++, PASCAL, etc.), or ascript parser if you are writing in a language like Perl (see section 2.6 atpage 20) or Tcl.� Libraries to make extracting information from CGI style documents easier(see section 2.7 at page 21 for more details).� Last but not least you will need a computer running a web server (seesection 2.8 at page 22), and the server does have to allow the running ofCGI programs. If you are not sure about this you should check with yourlocal system administrator, or local computer expert.2.5 Choice of programming language?Programming languages come in many di�erent
avors: procedural (e.g., C,Basic, and FORTRAN), object-oriented (e.g., C++, Smalltalk, and Java), logiclanguages like Prolog, and functional languages like Lisp. There are more pro-gramming languages out there than most of us could ever learn, even in severallifetimes!Every programming language has its own solution domain and its own phi-losophy; that is, each one best solves speci�c types of problems, and an applica-tion's design is in
uenced by the language's philosophy. For example, Lisp isn'tpractical for number crunching, nor is FORTRAN the best choice for heavy-duty string manipulation. Languages taken from the same paradigm, like Cand Pascal, have di�erent syntaxes but you can translate between them withrelative ease. Both are procedural languages with similar constructs and designprinciples.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 15Choosing the right programming language should be the result of a thoroughand painstaking problem analysis. In some cases, a language might be selectedsimply because the programmer understands the language and can use its con-structs and syntax to their best advantage. In other cases, languages are chosenbecause they have proved to be more understandable, more reliable, more ef-�cient, or more extensible than others. When coming to writing code, thereis seldom much sense in reinventing the wheel. Working from public domain,freeware, or shareware source code is usually a great way to learn a new lan-guage because of the variety of algorithms implemented and examples available.In any case, once a programming language is chosen, there is no going backwithout considerable work, pain, and su�ering.There are �ve primary considerations when choosing a language for CGI pro-gramming:1. the amount of public source code in easily accessible repositories2. the availability of support and infrastructure tools like debuggers, compil-ers, interpreters, tutorials, books, classes and language aware editors3. your own level of knowledge of a particular language or class of languages4. the desired throughput of data, compared to support for special operations5. the ilities of the language: extensibility, modularity, usability, andreusabilityAll of these characteristics play an important role in your selection, but typicallythe �rst two or three outweigh the rest. One main distinction can be madeinvolving the choice of a CGI programming language:� Compiled CGI Programming Languages:{ C{ C++� Interpreted CGI Programming Languages:{ Perl{ Tcl{ Python� Compiled/Interpreted CGI Programming Languages:{ Java

CHAPTER 2. THE COMMON GATEWAY INTERFACE 162.5.1 Compiled CGI Programming LanguagesCompiled languages create binary objects that are loaded and executed in thecomputer's main memory. These objects are the result of a compiler assemblingASCII source code into binary information (0s and 1s).A compiler is typically native to a particular computer architecture and youcan assume that binary objects from one architecture will not execute on anotherarchitecture. For example, don't expect Pascal code compiled into a binaryobject and run on a PC to execute successfully on a UNIX machine. Instead,the original Pascal source code must be compiled with a native UNIX Pascalcompiler into an UNIX-compatible binary object.CThe C language was �rst implemented in 1972 on an old dead and forgottenmachine (a DEC PDP-9) that lay dormant in a hallway at Bell Labs. BrianKernighan and Dennis Ritchie created C as a language for their own use andamusement. Over 20 years later, it's still one of the most popular languages inuse.C is a procedural program that describes the steps of an algorithm, like aprocedure on how to install a water pump on a Chevy. You complete eachsuccessive step until you have a new and functional water pump installed, oryour sorting algorithm assembles a list in ascending alphabetical order.There are two primary advantages in choosing C as a CGI programminglanguage. First, it can be compiled into a tight binary object that takes upminimal space compared to interpreted languages. Some C compilers includecommand-line options that instruct it to create an optimized binary object. Thisresults in an even smaller binary object. Second, binary objects typically executefaster than interpreted languages. If speed of execution is a major concern,you should de�nitely pick a compiled programming language. The primarydisadvantage to using C for CGI programming is that it is di�cult to manipulatestrings with C language constructs. Nearly 90% of all CGI applications involveheavy string manipulation. This means that character and string data must bemassaged, transformed, converted, or translated from one to another.By contrast, integer and
oating-point math CGI applications are few and farbetween. Most CGI applications take string and character data such as <FORM>data or query data and return other string and character data based on someembedded heuristics. For example, a typical CGI application gathers <FORM>data from a \Comments and Suggestions Form" interface. The CGI applicationthen assembles the <FORM> data into a MIME mail message and mails it to the

CHAPTER 2. THE COMMON GATEWAY INTERFACE 17designated address. It can also record <FORM> data to a log �le. \Heavy stringmanipulation" describes a day in the life of a typical CGI applications engineer.C++C++, a successor to C, is a member of the object-oriented (OO) paradigmof programming languages. Object-oriented languages like C++ o�er manyadvantages. They provide superior reusability of classes, which reduces the costof development for similar applications. They also allow extensibility of coreclasses by allowing programmers to add functionality.They also support modularity, which is the methodology of breaking a prob-lem down into its smallest understandable units, where each module acts as aseparate functional unit.Finally, OO languages stress the reusability of classes across many di�erentproblem domains. Reusability of source code is a popular research topic becauseit reduces the cost of development. It can also increase the quality of sourcecode but this depends heavily on the quality of the software engineering of thecomponent classes in use. As yet, reusability is talked about far more than it'spracticed, so its bene�ts remain more theoretical than actual.The main disadvantage of using C++ is that it belongs to the OO para-digm. OO development of source code is a completely di�erent beast, requiringsubstantial training and street smarts. Designing classes for reusability, under-standing the polymorphism of functions within a class, and providing e�ectivemanagement of classes within and across applications are new concepts for manyapplication engineers.Another disadvantage to using C++ is that there is only limited public do-main CGI source code available. This is probably because CGI is a relativelynew area, and few OO CGI applications have been released for public consump-tion. But this should begin to change once software engineers begin to developOO Web solutions.2.5.2 Interpreted CGI Programming LanguagesIn this section we look at some of the common interpreted languages you canuse to create CGI applications { namely, Perl, Tcl and Python.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 18PerlPerl (see also section 2.6) provides a lucid and succinct way to solve manyprogramming problems typical in the CGI realm. Perl is not yet a standardpart of UNIX, but is widespread.The Perl language is intended to be easy to use, but also to be complete ande�cient, rather than tiny, elegant, and minimal. Perl combines some of the bestfeatures of C, sed, awk, and sh. Programmers familiar with these languagesshould have little di�culty learning and applying Perl.Today, most CGI applications use Perl because of its many positive character-istics. You will notice that in many of the public CGI source code repositories,more than half the code is written in Perl.TclThe Tool Command Language (Tcl, pronounced \tickle") is a simple scriptinglanguage for extending and controlling applications. Tcl can be embedded intoC applications because its interpreter is implemented as a C library of proce-dures. Each application can extend the basic Tcl functions by creating new Tclcommands that are speci�c to a particular programming task.Accompanying Tcl is a very popular extension called Tk (pronounced \tee-kay"). It is a toolkit for the X Window System found on many UNIX machines.Tk extends the basic Tcl functionality with commands to rapidly build Motifor X Windows user interfaces. Tk is also implemented as a C library of pro-cedures, allowing it to be used in many disparate applications. Like Tcl, Tkcan be extended, typically by constructing new interface widgets and geometrymanagers in C.Since Tcl is interpreted, Tcl applications typically will not execute as fastas their C counterparts. For a small class of applications this may become adisadvantage but with the blinding speed of today's computer systems, Tcl/Tkrepresents an adequate application system. If the speed of execution is critical inyour application, don't fret. Tcl can be compiled or heavy-duty processing canbe written in a compiled language such as C and C++, and the user interfaceprogrammed in Tcl/Tk. If this is unacceptable, create a throwaway prototypeof the user interface using Tcl/Tk and get feedback from your target users tobuild a faster �nal implementation.Because of its extensibility and depth, Tcl/Tk is adequate for all but themost processor-intensive applications. It is particularly well suited for thosethat require complex graphical displays or sophisticated user interfaces.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 19PythonPython is an interpreted, interactive, object-oriented programming language.It combines an understandable and readable syntax with note-worthy powercompared to other interpreted languages. It has modules, classes, exceptions,and dynamic data types and typing. Python also provides interfaces to manysystem calls and libraries, and to various windowing systems like X11, Motif, Tk,and Mac. Python can even be used as an \extension language" for applicationsthat require a programmable interface. Finally, new built-in Python modulescan be implemented in either C or C++.Python executes on many platforms, including UNIX, Mac, OS/2, MS-DOS,Windows 3.1, and NT. Python is copyrighted but freely usable and distributableto individuals as well as commercial institutions.Python has been used to implement a few WWW modules. Currently thesemodules include a CGI module, a library of URL modules, and a few modulesdealing with Electronic Commerce.2.5.3 Compiled/Interpreted CGI Programming LanguagesJavaJava is a new object-oriented programming language and environment from SunMicrosystems. Along with C and C++, Java is compiled into an architecture-neutral binary object and then interpreted like Perl or Tcl for a speci�c archi-tecture. So, it's a dessert topping and a
oor wax!With Java, you can create either standalone \applications" or \applets" tobe used within CGI applications.Java is a strictly-typed object-oriented language, similar to C++ withoutmany of that language's shortcomings. For instance, Java will not let you castan integer type to a pointer.Java applications can execute anywhere on a network, making it highly suit-able for CGI applications. Another really interesting aspect of the language isthat the Java compiler creates an \architecture-neutral" binary object. This ob-ject is executable on any platform that has a Java runtime system installed. Youcan write one Java program that can execute on all other supported platformsincluding Mac, UNIX, NT, and Windows.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 20Netscape Communications Corporation has licensed the Java language to im-plement within their Netscape Navigator browser. Their main motivation is toincrease the extensibility of Navigator and to enable the creation of a new classof client/server networked applications.Java and HotJava { the WWW browser from Sun written in Java { are freelyavailable in binary form to individuals. Java can also be licensed to commercialinstitutions.2.5.4 The selection of the CGI programming languageextensibility,modularity,Programming Available data-handling usability,Language source-code abilities and reusabilityC +- + -C++ +- ++ ++Perl ++ ++ ++Tcl - +- +-Python +- +- +Java +- ++ ++Table 2.1: advantages vs disadvantagesConsidering all these choices (see table 2.1) we chose Perl as the CGI program-ming language for this project, not only because Perl is an interpreted language,but because there is a big load of Perl source-code available for CGI program-ming on the Net. Java is a good runner-up, but in this case unsuitable sincewe do want to stay in charge of the applications execution, since Java onlyexecutes when a Java runtime system is installed. Since Perl can be used incombination with the C++ language it meets all our requirements, like integerand
oating-point math CGI applications (see also section 2.6 at page 20).2.6 PerlPerl, the Practical Extraction and Report Language [Perl], is an interpretedlanguage optimized for easy manipulation of �les, text, and processes. Perl istypically used when scanning text �les, extracting text strings, and printingreports based on the information that's extracted. Perl was created by LarryWall in the early 1980's. Perl provides the best of several worlds. For instance:� Perl has the power and
exibility of a high-level programming languagesuch as C. In fact many of these features of the language are borrowed

CHAPTER 2. THE COMMON GATEWAY INTERFACE 21from C.� Like shell script languages, Perl does not require a special compiler andlinker to turn the programs you write into working code. Instead, all youhave to do is write the program and tell Perl to run it. This means thatPerl is ideal for producing quick solutions to programming problems.� Perl provides all of the best features of the script languages sed and awk,plus features not found in either of these two languages. Perl also supportsa sed-to-Perl translator and a awk-to-Perl translator.The Perl language is intended to be easy to use, but also to be complete ande�cient, rather than tiny, elegant, and minimal.Perl's syntax and structure is very similar to C. Many of the constructs inPerl like if, for, and while correspond to their counterparts in C. With Perl,you can manipulate and match regular expressions with great ease. Today, mostCGI applications use Perl because of its many positive characteristics. You willnotice that in many of the public CGI source code repositories, more than halfthe code is written in Perl (see also Appendix B at page 67).2.7 CGI.pm - a Perl5 CGI LibraryHTML documents can specify interactive �ll-out forms { with input elements in-cluding text entry areas, toggle buttons, selection lists, popup menus, etc. (andyour Web browser will instantiate such �ll-out forms as sets of Motif widgetsembedded inside the documents). This provides a way to provide arbitrarilysophisticated front-end interfaces to databases and search engines, as well asother network services (e.g., ordering pizzas).As you now know, there are two methods which can be used to access yourforms. These methods are GET and POST. Depending on which method youused, you will receive the encoded results of the form in a di�erent way.� The GET methodIf your form has METHOD=\GET" in its FORM tag, your CGI pro-gram will receive the encoded form input in the environment variableQUERY STRING.� The POST methodIf your form has METHOD=\POST" in its FORM tag, your CGI programwill receive the encoded form input on stdin. The server will NOT send youan EOF on the end of the data, instead you should use the environmentvariable CONTENT LENGTH to determine how much data you shouldread from stdin.

CHAPTER 2. THE COMMON GATEWAY INTERFACE 22When you write a form, each of your input items has a NAME tag. Whenthe user places data in these items in the form, that information is encoded intothe form data. The value each of the input items is given by the user is calledthe value.Form data is a stream of name=value pairs separated by the & character.Each name=value pair is URL encoded, i.e. spaces are changed into plussesand some characters are encoded into hexadecimal. The basic procedure is tosplit the data by the ampersands. Then, for each name=value pair you get forthis, you should URL decode the name, and then the value, and then do whatyou like with them. Because others have been presented with this problem aswell, there are already a number of libraries which will do this decoding for you.One of these libraries is \CGI.pm" a Perl5 library for handling forms in CGIscripts. With just a handful of calls, you can parse CGI queries. However, it alsoo�ers a rich set of functions for creating �ll-out forms. Instead of rememberingthe syntax for HTML form elements, you just make a series of Perl functioncalls. An important fringe bene�t of this is that the value of the previous queryis used to initialize the form, so that the state of the form is preserved frominvocation to invocation.Everything is done through a \CGI" object. When you create one of theseobjects it examines the environment for a query string, parses it, and storesthe results. You can then ask the CGI object to return or modify the queryvalues. CGI objects handle POST and GET methods correctly, and correctlydistinguish between scripts called from <ISINDEX> documents and form-baseddocuments. In fact you can debug your script from the command line withoutworrying about setting up environment variables. For more detailed informationabout \CGI.pm" see Appendix C at page 69.2.8 HTTP DaemonAfter doing almost everything on our little list (see section 2.4 at page 14) wenow only need to take care of a computer running the web server. In our casewe were able to set up a web server at one of the Indy machines. I chose touse the NCSA web daemon which is easy to install and most of all it's publicdomain software.
Figure 2.1: NCSA HTTPd an HTTP/1.0 server

CHAPTER 2. THE COMMON GATEWAY INTERFACE 23NCSA HTTPd is a program to serve information, much in the same way thatNetscape is a program to browse information in the World Wide Web. Fromthe Client-Server viewpoint, NCSA HTTPd is the Server to the Browser Client.Currently I'm using the NCSA HTTPd version 1.5.1 which is an HTTP/1.0compatible server. For more detailed information about setting up your ownHTTP server please see Appendix G at page 86.

Chapter 3Leiden 19th CenturyPortrait Database3.1 Content-based Image RetrievalOne of the tools that will be essential for future electronic publishing is a pow-erful image retrieval system. The author should be able to search an imagedatabase for images that convey the desired information or mood; a readershould be able to search a corpus of published work for images that are rele-vant to his or her needs. Most commercial image retrieval systems associatekeywords or text with each image and require the user to enter a keyword ortextual description of the desired image. This text-based approach has numer-ous drawbacks - associating keywords or text with each image is a tedious task;some image features may not be mentioned in the textual description; somefeatures are \nearly impossible to describe with text"; and some features canby described in widely di�erent ways. In an e�ort to overcome these problemsand improve retrieval performance, researchers have focused more and more oncontent-based image retrieval in which retrieval is accomplished by comparingimage features directly rather than textual descriptions of the image features.Features that are commonly used in content-based retrieval include color, shape,texture and edges.It is hoped that content-based techniques can provide the basis for powerful\query by example" retrieval systems. For example the user might provide asample picture and request similar pictures, a picture of an object and requestpictures that contain the object, a set of colors and request images that containthose colors, and so on. 24

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 253.2 Introduction of LCPDThe problem area is locating copies and former copies in a large picture data-base. As objects [Huijsmans] choose pictures within a scanner window; thepictorial objects are 19th-century B/W studio portraits, whose front and backsides provide a testbed for graylevel and nearly binary images.Copy location in this area is a realistic user query because:� the playcard sized portraits mounted on carton were usually printed froma glass negative and sold to the customer a dozen copies at a time.� the former set of obtained copies found their way into the private photoalbums of family members and friends.� at present more and more of the remaining portraits are found in privateand institutional collections: both the Print Room of Leiden Universityand the Icongraphic O�ce in The Hague have about 10,000 so-called cartede visite portraits.� for genealogists and art historians tracing copies of family photographsmay give important clues to the name of the person(s) depicted, date ofproduction and the relations of the person(s) depicted.� known archives in the Netherlands contain over 50,000 of such portraits,distributed over more than 15 collections and either sorted on di�erentkeys or inaccessible in albums, making non-computerized copy retrievalclose to impossible.� an estimated 50 million of such portraits have been produced in theNetherlands between 1860 and 1914; about 5 million of these still reside infamily archives. There is a growing interest within genealogical societiesto date these portraits and to determine which persons are depicted.The following similarity methods were implemented [Huijsmans]:� pixel to pixel di�erence in intensity space� pixel to pixel di�erence in gradient space� pixel to pixel di�erence in thresholded gradient space� row and column line integrals: the horizontal and vertical projections inintensity space� row and column line integrals: the horizontal and vertical projections ingradient space� row and column line integrals: the horizontal and vertical projections inthresholded gradient space

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 26� 3x3 B/W spatial pattern statistics vector (on binarized gradient magni-tudes only)With this photo-database and precalculated results of the similarity methodswe started the project with building a WWW user-interface that allows query-ing the database by looking up the corresponding precalculated results of thesimilarity methods (i.e. a search engine, see section 1.6 at page 11).3.3 ImplementationStarting o� with my own WWW-server and the right CGI/Perl libraries (seesection 2.4 at page 14) we had to design the user-interface �rst. First o� all wewanted to display multiple images on the screen, therefore we decided to usethumbnail sized images. One big advantage of using thumbnail sized images isthat the user gets a better overview with more than just one image, also noinformation is lost because the user is still capable of understanding the image'scontents. Another advantage is digital storage and retrieval which is essentialto WWW programs.The user-interface has to meet the following primary requirements:� the interface must present a certain number of images (from the database)on the browser's screen, the number of rows and the number of columnsmust be variable to select a 2-D presentation space.� the interface must be able to select images by clicking with the mouse onthe according image.� by selecting an image a new set of images (according to method, selectedimage, and selected 2-D representation space) must be presented on thescreen.So the �rst thing was to create some sort of a display which could showmultiple thumbnail sized images, before a real user interface was born (see �gure3.1). The way of representing these thumbnail sized images to the user was touse a table-like layout. This way we could use rows and columns to displaythe thumbnail sized images. These thumbnail sized images are presented as so-called clickable image-maps, that means that the images are shown as buttons,so the user can select an image (or a location within that image) by a mouseclick.The images were also provided with an URL to o�er the user the possibilityto see the original image in its full size. This way the user is able to actuallysee if the chosen picture is really the correct one, because of it's thumbnail size.

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 27

Figure 3.1: First layout http://ind156b.wi.leidenuniv.nl:8086/image.htmlNext thing to try out was to see if it is easy to create buttons. In �gure 3.1you can see three so-called \popup-menu" buttons. With such a button the usercan select an option (e.g. method) from a popup-menu.The main problem to tackle was the problem of maintaining state informationfrom invocation to invocation. To build a user interface as a HTML page youmust preserve the parameters from the previous page in order to present anew one with respect to these parameters. But because multiple users canactually request this page at the same time a solution had to be found. Withthe \CGI.pm"(see section 2.7 at page 21) library we were able to tackle thisproblem.After setting up a test-user-interface we could now start using the imagesfrom the Leiden 19th Century Portrait Database[Huijsmans]. The images hadto be converted to an image format suitable for WWW-browsers, we chose theJPEG format, because we wanted to keep the size (in bytes) per image as smallas possible, due to WWW-speed. Image quality of JPEG images are somewhatpoor, but because we are dealing with just a demo the storage requirementswere given the higher priority (see �gure 3.2).

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 28Next we made the user-interface operational; the user is able to select animage by a mouse click, the selected image is than swapped with the image inthe left upper corner. So we chose the left upper corner to be the spot for thesearch image.Note: underneath every shown thumbnail-sized image, the corresponding(front & back) URL is given, selecting this link will present the user the (zoomed-in) front- and back side of the corresponding photo.

Figure 3.2: Layout of the thumbnail sized image area of the LCPD3.4 Demo featuresNow it was time to actually implement some extra options:� Changing the number of images displayed� The Similarity Methods� Changing the photo view of images displayed� New Random-set selection� Test-set selection� Help buttons

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 293.4.1 Changing the number of images displayedThe advantage of using a table view of the thumbnail sized images is that it iseasy to change the size of it by adjusting the number of rows and the number ofcolumns. By implementing two popup-menu buttons, one representing the num-ber of rows displayed, and one representing the number of columns displayed,the user can select any size ranging from 1x1 to 25x25 images by selecting anappropriate display size from the corresponding popup menus (see �gure 3.3).
Figure 3.3: Changing the number of images displayed3.4.2 The Similarity MethodsThe result �les of the similarity methods were used as lookup tables for thedemo. The format of these result �les were not all in the same format. Tospeed up searching within those result �les we have made an index �le for eachresult �le which contains for every entry the number of bytes of that entry in thecorresponding result �le. With this index �le we could make a fair estimation ofwhere the desired results could be found, because some entries were skipped (noimage available). The user interface just had to be added with another popup-menu button containing the di�erent similarity methods (note: The similaritymethods were already mentioned in section 3.2). See �gure 3.4.

Figure 3.4: Selecting a similarity method3.4.3 Changing the photo view of images displayedAs mentioned before [Huijsmans] both front and back sides of the LCPD werescanned and used for the similarity methods. This implies that for every imagetwo result sets are present; one for the front-side of the corresponding portraitphoto, and one for the back-side of that same portrait photo. To provide theuser with this option we implemented two radio buttons representing the front-and backside of the photo view (note: radio buttons only allow one selection).See �gure 3.5.

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 30
Figure 3.5: Changing the photo view of images displayed3.4.4 New Random-set selectionTo o�er a greater functionality the user must be able to browse through thedatabase to �nd his or her favorite image to start a new query with. To meetthis requirement a randomizer option seemed to be the right solution. This waythe user can select a new random set of thumbnail sized images to be displayedand hopefully �nd the right image to start his or her query. This option isimplemented as a submit-button, after clicking this button a new random-setof images will be presented, see �gure 3.6.

Figure 3.6: Selecting a new random set3.4.5 Test-set selectionFor �rst time users the functionality of this demo can be somewhat unclear. Toexplain how the results of certain similarity methods with certain photos shouldlook like we added two testsets, one for the front-side thumbnail sized images,and one for the back-side thumbnail sized images. As a default setup this testsetwill be presented to the user. This option is implemented as a submit-buttonalso, after clicking this button the corresponding test-set (see section 3.4.3) willbe presented, see �gure 3.6.3.4.6 Help buttonsTo create a more user-friendly atmosphere some help-pages were necessary.Within these pages the user can �nd information about usage and backgroundsof this demo. These helpbuttons are merely links to other static HTML-documents,and are implemented as clickable image-maps (see �gure 3.7).

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 31

Figure 3.7: The control panelFinally we grouped all these options to one control panel (see �gure 3.7).Some extra features are also included (at the bottom of the control panel):� Guestbook; extra user statistics, you can leave your email address andremarks about the demo here. These statistics are gathered and listed ina HTML document (http://ind156b.wi.leidenuniv.nl/guestbook.html).� Visitor counter; keeps track of the total number of visitors that actuallyvisited the demo, these statistics are also massaged, inspected and storedin a HTML document (http://ind156b.wi.leidenuniv.nl/demostat.html).3.5 ConclusionWith the thumbnail-sized image table and the control panel, the user is nowable to de�ne his or her queries by adjusting the options and selecting an imageor a submit-button (e.g. random-set or test-set). This search-engine is set upto be easily extended with extra features and new methods.Some enhancements can be made:� One thing that could be improved is using a uniform standardized formatfor storing the result �les of the similarity methods. Currently we have tomaintain several index �les, which will only increase overhead and decreasedelivery speed.� The images shown as thumbnail sized images are actually zoomed-outimages, however the full size presentation of the front- and back side arezoomed-in. To increase delivery speed of the thumbnail-sized images we

CHAPTER 3. LEIDEN 19TH CENTURY PORTRAIT DATABASE 32could store a separate thumbnail-size image copy of every image, to speedup retrieval, instead of scaling the original image.

Chapter 4WWW Robots, Spiders andWebcrawlers4.1 IntroductionIn the previous chapter we discussed the concept of a search engine based upona certain class of digital images from a local database. Now we would like tosee if it is possible to create a search engine that can perform queries based onimage content. This time we don't want to use a local database, instead wewould like to create a digital image database. This database should contain alarge variety of digital images which would be interesting enough to performcertain queries. The answer was clear, we wanted to use the World Wide Webas a resource for our database entries. To perform this task of collecting imagesfrom the Web we needed a robot.4.1.1 What is a Robot?The useful information returned by search engines on the Web doesn't just comeout of nowhere. Rather, it is laboriously gathered by software automaton thatcruise the Web, with either broadly or narrowly de�ned objectives and readthrough all the HTML documents they encounter, harvesting or calculating allinformation that meets their programming criteria.
Figure 4.1: Typical Spider.33

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 34These programs are called Web Robots, or simply robots. Sometimes, you'llhear them referred to as spiders or WebCrawlers (see �gure 4.1). No matterwhat they are called, these programs all perform similar tasks: they pick upselected pieces of information from the Web documents they �nd - at least theURL and the title, and if not more - and report their �ndings back to a loggingprogram on the originator's server. This log is massaged, inspected and digestedto create the database from which search engines pluck their responses to yourqueries.In reality, a robot is nothing more than a browser-like program that usesordinary HTTP protocols to request access to Web resources and documents.Robots typically understands links, URLs, and other selected HTML tags andinformation. They know how to catalog these tags or how to abstract statisticsbased on what they encounter. Since they don't actually display anything, youcould think of them as a kind of \headless browser," that chew their way aroundthe Net with an inexhaustible appetite for any new links that might come theirway.4.2 Robot reuseGiven that robots are good at gathering information, why might you hesitatebefore adding another one to the collection available on the Internet? For onething, there are already 90-odd robots running somewhere on the Net as you'rereading this (http://info.webcrawler.com/mak/projects/robots/active.html).Unfortunately robots can put a considerable strain on network resources andtax the very servers whose contents they may be cataloging or measuring.Whereas a human might try to read and comprehend some of each documentthat he or she examines, robots can zip from one link to the next at dizzyingrates.Given the sizable number of robots already in existence, you might want toconsider whether one of them could perform the kinds of tasks you're after,rather than creating a new one. Likewise, you might want to investigate one ormore of the publicly available search engines.To reuse an already available robot doesn't only mean that we don't have toreinvent the wheel, but we also don't have to worry about speci�c guidelines forrobot writers and not to mention the robot exclusion standard [Koster94]. Toavoid all these problems it was the best choice to seek for an existing robot wecould reuse.

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 354.3 MOMspiderAfter a certain study of publicly available robots on the Web we have decided touse the Multi-Owner Maintenance spider [MOMspider] for my project. Actu-ally no other public robots were available at the time of study, and fortunatelyMOMspider could perform our tasks. This robot is written in Perl and docu-mentation for this robot is widely available. In this section a rough outline ofthe design and functionality of the [MOMspider] is described.4.3.1 DesignMost documents made available on the World-Wide Web can be consideredpart of an infostructure { an information resource database with a speci�callydesigned structure. Infostructures often contain a wide variety of informationsources, in the form of interlinked documents at distributed sites, which aremaintained by a number of di�erent document owners (usually, but not nec-essarily, the original document authors). Individual documents may also beshared by multiple infostructures. Since it is rarely static, the content of aninfostructure is likely to change over time and may deviate from the intendedstructure. Documents may be moved or deleted, referenced information maychange, and hypertext links may be broken (dangling links).As it grows, an infostructure becomes complex and di�cult to maintain. Suchmaintenance currently relies upon the error logs of each server (often neverrelayed to the document owners), the complaints of users (often not seen by theactual document maintainers), and periodic manual traversals by each owner ofall the webs for which they are responsible. Since thorough manual traversal of aweb can be time-consuming and boring, maintenance is rarely or inconsistentlyperformed and the infostructure eventually becomes corrupted. What is neededis an automated means for traversing a web of documents and checking forchanges which may require the attention of the human maintainers (owners) ofthat web.The Multi-Owner Maintenance spider [MOMspider] has been developed toat least partially solve this maintenance problem. MOMspider can periodicallytraverse a list of webs (by owner, site, or document tree), check each web forany changes which may require its owner's attention, and build a special indexdocument that lists out the attributes and connections of the web in a form thatcan itself be traversed as a hypertext document.4.3.2 FunctionalityMOMspider gets its instructions by reading a text �le that contains a list ofoptions and tasks to be performed (an example instruction �le is provided in

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 36Appendix D at page 79). Each task is intended to describe a speci�c infostruc-ture so that it can be encompassed by the traversal process. A task instruc-tion includes the traversal type, an infostructure name (for later reference), the"Top" URL at which to start traversing, the location for placing the indexedoutput, an e-mail address that corresponds to the owner of that infostructure,and a set of options that determine what identi�ed maintenance issues justifysending an e-mail message.For each task, MOMspider traverses the Web, in breadth-�rst order, fromthe speci�ed top document down to each leaf node. A leaf node is de�nedto be any information object which is not of document-type HTML (and thuscannot contain any further links) or which is outside the given infostructure.MOMspider determines the boundaries of an infostructure according to thetask's traversal type: Site, Tree, or Owner. Site traversal speci�es that anyURL which points to a site (the pairing of hostname/IP address and port) otherthan that of the top document is considered to be a leaf node. Tree traversalspeci�es that any document not at or below the \level" of the top document isconsidered a leaf node, where level is determined by the pathname in the URL.Owner traversal speci�es that any document beyond the top which does notcontain an \Owner:" metainformation header equal to the infostructure nameis considered a leaf node.The Maintenance information produced by each task is formatted as anHTML index and output to the �le speci�ed in the task instructions. Theindex contains the following maintenance information:� Information regarding how and when the index was generated (i.e. pro-gram options and execution time);� A hypertext link to the one prior version of the index document;� The following for each non-leaf document accessible via the "top";{ An anchor which links to the actual document;{ Document header info (Title, Modi�cation Date, Expires Date, etc);{ A list of all unique hypertext references made by the document, witheach reference including:� The type of reference made (i.e. link, query, img, etc.);� An anchor which duplicates the reference;� Document header info if available (Title and Modi�cation Date);� If the referenced object is within the current infostructure (i.e.not a leaf), then an additional anchor is provided to cross-referencejump to its own entry in the index document..

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 37� A list of cross-reference anchors which point to interesting changes asre
ected in the index entries.MOMspider looks for four types of document change which may be of interestof the owner:1. referenced objects which have redirected URLs (moved documents);2. referenced objects which cannot be accessed (broken links);3. referenced objects with recent modi�cation dates; and,4. owned objects with expiration dates close to the current date.4.3.3 E�cient use of network resourcesA key design constraint of MOMspider is that of e�ciency { particularly inregards to network bandwidth usage. It would be irresponsible to develop amaintenance robot which overly taxed the limited resources of networks like theInternet. Therefore, MOMspider minimizes the load on network bandwidth byusing the HEAD request (see Appendix E at page 81) for testing links, keepingtrack of nodes that have already been tested, grouping multiple tasks within asingle execution, and allowing the user to restrict the traversal of certain URLs.Aside from the restrictions described above regarding the task's traversaltype, MOMspider also enables the user to specify any URL pre�xes which mustalways be avoided or leafed. These URL pre�xes are listed in the systemwideor user avoid �les. Each entry in the �le includes the action (Avoid or Leaf),the URL pre�x on which to apply that action, and an optional expiration datefor the entry. This allows the user to completely avoid documents for whichmaintenance is not a concern or which could trap an unsuspecting spider (someforms of computational hypertext can have that e�ect).4.3.4 Being friendly to service providersA second design constraint for MOMspider is that it minimize its impact oninformation providers (destination servers) while at the same time maximizingthe indirect bene�ts they receive from the traversal process. All HTTP requestsare similar to:HEAD /path HTTP/1.0User-Agent: MOMspider/0.1From: user@machine.sub.dom.ainReferer: http://www.site.edu/current/document.htmlThis allows server maintainers to properly recognize the source of the request

CHAPTER 4. WWW ROBOTS, SPIDERS AND WEBCRAWLERS 38and, if necessary, place restrictions upon a particular spider. It also providesthem useful information, including how to contact the person running the spiderand what document contains the reference being tested.As an additional precaution, MOMspider periodically looks for and obeys anyrestrictions found in a site's /robots.txt document as per the standard proposedby Martijn Koster [Koster94]. Before any link is tested, the destination siteis looked-up in a table of recently accessed sites (the de�nition of \recently"can be set by the user). If it is not found, that site's /robot.txt documentis requested and parsed for restrictions to be placed on MOMspider robots.Any such restrictions are added to the user's avoid list and the site is addedto the site table, both with expiration dates indicating when the site mustbe checked again. Although this opens the possibility for a discrepancy toexist between the restrictions applied and the contents of a recently changed/robots.txt document, it is necessary to avoid a condition where the site checkscause a greater load on the server than would the maintenance requests alone.

Chapter 5The Image Database5.1 IntroductionIn the previous chapter we've discussed the concept of setting up a digital im-age database using a spider. This spider traverses selected pieces of the Webdetermined by its instruction �le. These instruction �les just don't come out ofthe blue.5.2 Searching for imagesFirst we assumed that we could just start the spider at one location and it wouldwork its way through the whole Web. This seems to be an endless task as thereare so many sites, of which you have no clue what information the spider will�nd. So we have decided to use multiple instruction �les which only causes thespider to do a Tree traversal (see section 4.3.2 at page 35).The �rst problem we encountered was how to determine which sites mostlikely contains digital images. For this answer we used an existing search engine\WebCrawler" (see �gure 5.1). The reason for this particular search engine isthat it was the only search engine that returned URLs of sites which most likelycontains huge numbers of digital images.With this information the creation of the instruction �les for the spider couldnow start. This way we created 6,000 instruction �les for the spider to traverse.However this spider retrieves more information than we actually need, thereforesome alterations had to be made. It was also needed to write a program thatcan convert the data returned from the spider into a list containing the URLsof all the images found. But before we can start downloading these images wehad to �gure out how we want to store and index the images into the database.39

CHAPTER 5. THE IMAGE DATABASE 40

Figure 5.1: WebCrawler http://www.webcrawler.com5.3 ThumbnailsGiven the fact that digital images can be of any size and type we had to �nda standard to store the images. So the amount of storage space per imagehad to be reduced in some way. The reduction of the storage space per imagecan be achieved by image compression and image scaling. The answer is theusage of thumbnail sized images as we've seen in Chapter 3. Of every imagewe would create a reduced 80x60 \thumbnail". This reduced image should �t(corresponding to its aspect ratio) within the 80x60 size (see �gure 5.2). Smallto medium databases, or even large ones can be manually viewed with a goodfast browse of these \thumbnail" images (where 10 - 50 can be simultaneouslydisplayed on a screen) and this is su�cient in many cases.After determining the image size of a thumbnail image we also wanted toreduce the image storage space by using an image compression method. As wewanted to set up a large image database, this reduction should be signi�cant,so we decided to use JPEG compression. JPEG compression also reduces imageinformation, but this is slightly insigni�cant since the thumbnail images are justcopies of the originals somewhere on the Web.With the JPEG compression and the scaling techniques the average storagesize in bytes per image is about 2Kbyte.

CHAPTER 5. THE IMAGE DATABASE 41

Figure 5.2: Example: left: the original image, middle: the 80x60 thumbnailimage, right: the rescaled thumbnail image http://ind156b.wi.leidenuniv.nl:8086/summer.html5.4 Database populationThe database now created is just a projection of images found on the Web by ourspider. The thumbnail images are copies of originally stored images somewhereon the Web. This brings us to another aspect concerning the database entries.Every database entry should contain at least the URL information of where theoriginal image can be retrieved. Also information about the size of the image.Image size is needed to reproduce the image shown on your browser's screen.This is a sample of the database index:image tr 05#IMGINFO:76x78 #http://www.adventuresports.com/asap/norba/races/bu�ante.gifimage tr 06#IMGINFO:167x252 #http://www.adventuresports.com/asap/norba/races/bu� 002.gifimage tr 07#IMGINFO:43x33 #http://www.adventuresports.com/asap/norba/races/norba s.gifimage tr 08#IMGINFO:32x32 #http://www.adventuresports.com/asap/norba/races/7home.gifimage tr 09#BUILTIN:ERRORFor now we used three �elds to store the image:1. the entry �eld with the local �lename of the thumbnail image; the formatof the �lename was chosen this way to be short and clear (e.g. image aa 00is the �rst image and image ab 00 is the successor of image aa 99). Withthis current format the storage of 100*26*26=67,600 images is possible.2. the second �eld contains image information there are two possibilities:(a) the image information �eld denoted by \IMGINFO"; With this infoan image can be displayed on the browser's screen at any scale, thiswas needed because showing an 80x60 thumbnail is simply too small.(b) the image information �eld denoted by \BUILTIN:ERROR"; Thismeans an error has occurred during the downloading process, this is

CHAPTER 5. THE IMAGE DATABASE 42caused by several reasons, but we keep this entry in the database,because it corresponds with the same entry within the main URLlist.3. the URL; this is the location of the original image at that time (note:image URLs are subject to change over time).A fourth �eld, the annotation �eld could easily be added to preserve descriptivekeywords. At the moment the spider is unable to collect useful descriptionalinformation about the localized image. The ultimate solution would be that thespider can collect signi�cant textual descriptors localized near the image withinthe found HTML document.The search speed within text �les is rather low, because nothing can be saidabout the byte length per entry. Therefore we had to create an additionaloverlay index �le. This �le simply contains per entry the byte o�set of thatentry in the index �le, by using a �xed size per entry in this overlay index �lesearching becomes unnecessary (by knowing the image identi�er you can retrievethe byte o�set immediately and thus the entry from the index �le).5.4.1 Adding imagesTo add an image to the database the following steps are performed:� The spider must traverse a selected piece of the Web given by the instruc-tion �le� The returned result �le has to be examined and a temporary URL �le iscreated� The temporary URL �le is then compared to the main URL �le to see ifthere are multiple copies (e.g. identical URLs)� The remaining unique URLs are then added to the main URL �le fromwhich the image retrieval (see Appendix E at page 81) will take place� Finally when an image is successfully retrieved, scaled and compressed theentry will be added to the index �le.5.5 Future WorkTo maintain a database of this size some aspects are easily overlooked. Themain bottleneck is the expiration of URLs.

CHAPTER 5. THE IMAGE DATABASE 435.5.1 Removing and updating imagesSometimes downloading an image will fail, due to several reasons like, a time-out error occurred or no connection could be made to the server. This meansthat an error entry is made in the database index�le. This downloading processfor these error-like entries should be repeated in time.Because URLs are subject to change { e.g. images are created, moved, ordeleted by users, it would be handy if we could keep our local database up todate (e.g. thumbnail images should represent original images given its URL).This is quite an intensive task, since we have to rerun the spider to see if thereare any changes made on the Web. Because this project is meant to be a demo,we didn't explore these problems. However future improvements can includemaking the database up to date every once in a while, making sure that imagesare present as claimed or new images are added.

Chapter 6The Similarity Methods6.1 IntroductionNow that we've created a large image database, some similarity methods hadto be examined and implemented. Since we will use queries by example, somesimilarity methods based on color and shape are needed. We also used textmatching to allow keyword searches on images. This section will specify thefollowing three methods:� Keyword matching� Color histogram matching� Edge oriented matching6.2 Keyword matchingFortunately searching text need not require understanding the text's meaning(Lycos simply extracts keywords using an algorithm that considers characteris-tics like word placement, word frequencies, etc). With this advantage it is easyto retrieve similar images based on descriptive keywords. In this project we'veused the main URL list as a basis for our keyword database.6.2.1 Keyword DatabaseFrom the URLs provided with every image keywords can easily be extracted.The only problem here is what is to be considered an useful keyword:� the �lename, this is the amount of text after the last \/" and before thelast \.". 44

CHAPTER 6. THE SIMILARITY METHODS 45� several pathnames, this is the amount of text between two \/".These pieces of text are not yet considered a keyword, because it can containdelimiters like \ " or numbers. So every piece of text is split up by thesedelimiters (any character which is not a letter). What is left can be considereda keyword if it has at least a length of 3 characters.These keywords are then sorted and put in a keyword �le which have thefollowing layout:base 9 46715baseballtr 1 46783basher 1 46791basiccontrolbar 1 46799basicinfo 1 46806basin 2 46814basket 83 46828Every entry is divided by three �elds:1. The �rst �eld denotes the unique keyword, found within the URL as de-scribed before.2. The second �eld contains the number of occurrences of this keyword as awhole.3. The third �eld denotes an o�set within the keyword index �le.The keyword index �le contains o�sets for every occurrence of the used key-words. The third �eld of the keyword �le denotes the o�set where the �rstoccurrence of this particular keyword can be found in the keyword index �le:222474710406117123725493738394These o�sets points to the corresponding positions in the main image index �lewhere the image can be found containing that keyword. If this keyword hasmore occurrences then every successive o�set points the the successive entry inthe main image index �le (see �gure 6.1).

CHAPTER 6. THE SIMILARITY METHODS 46
image_xx_00

2605672

 9 46715base

image_yy_99

4315507

3456841

image_zz_55

9

image index filekeyword indexkeyword file Figure 6.1: The keyword method6.3 Color histogram matching6.3.1 IntroductionA retrieval will fail if the query uses keywords which are not stored in the key-word database, even though the image is present. For example, an image witha woman strolling on a sunset beach will be referenced di�erently by di�er-ent users. Some may use keywords such as \sunset", others may use \beach",\sand", \lonely woman", etc. In fact, it is rather di�cult to accomplish
ex-ible image retrieval using descriptive keyword approach. On the other hand,researchers on machine vision have yet to provide a solution on general objectrecognition from images. There is no way for us to automatically generate de-scriptive keywords from the images, thus text description of images all dependson human operators, which is an arduous task.The labour involved with cataloging images by hand, and the di�culty ofanticipating every user's needs when assigning keywords to images, has led tothe development of algorithms for retrieving images by their content. The goalof these algorithms is to quickly retrieve the images that are similar to a givenimage (example). The description of a color histogram matching method willbe given in the next section.6.3.2 The color spaceBefore we could start studying the algorithm we �rst had to determine whichcolor space to use. The purpose of a color space is to facilitate the speci�cationof colors in some standard, generally accepted way. In essence, a color model isa speci�cation of a 3-D coordinate system and a subspace within that systemwhere each color is represented by a single point. The color models most oftenused for image processing are the RGB (red, green, blue), and the HSI (hue,

CHAPTER 6. THE SIMILARITY METHODS 47saturation, intensity) models. The RGB model was chosen in our case, since itcan represent color and gray levels without problems and most image formatsare based on the RGB model. One disadvantage of the RGB model is that weare dealing with a 3 dimensional color space.6.3.3 Color HistogramsGiven our discrete color space de�ned by the color axes (e.g. red, green andblue), the color histogram is obtained by discretizing the image colors and count-ing the number of times each discrete color occurs in the image array. One fac-tor to be considered when creating the histogram is how �nely the color spaceshould be discretized. Various researchers have proven that human eyes are notas sensitive to colors as to brightness. Thus it might not be the case that themore �nely we discretize the color space, the better histogram we have; while�ner histograms require more memory space and more computation. Our exper-imental results have shown that color distribution of an image is well preservedwhen the image is discreted by 8x8x8 thus we choose to discretize the RGBcolor space into 512 equally sized cubes (see �gure 6.2).

Figure 6.2: Sample of a RGB color histogramColor histograms holds information on color distribution, but it lacks infor-mation on color locations. This may lead to the situation in which an imagewith a red balloon on top is matched to an image with a red car in the bottom.In addition, a histogram for the entire image tends to miss small image regionsthat will not produce strong peaks in the histogram.6.3.4 The indexing algorithmFor this project we chose to de�ne the color histogram to be an one dimensionalvector. However the color space we use (RGB), is three dimensional. The

CHAPTER 6. THE SIMILARITY METHODS 48problem that arises here is the correlation of color shades. In our model di�erentshades of one color will not be correlated as in the 3-D model. By discretizingthe color space from 256x256x256 colors to 8x8x8 colors we eliminate �ne shades,and only the most signi�cant colors will be preserved. A discrete color is de�nedas: colorj = 3Xi=1xi8i x 2 [1; 8]; j 2 [1; 512] (6.1)where x represents the corresponding RGB color component. In this case theR-color component represents the least signi�cant component, and the B-colorcomponent represents the most signi�cant component.The histogram matching algorithm we analyze in this section is essentiallythe same as those presented in [Swain and Ballard 1991].The color histogramH(M) is de�ned as a vector (h1,h2,...,hn) in a n-dimensionalvector space, where each element hj represents the percentage (of the total num-ber of pixels in the image M) used of color j in the image M. These histogramsare the feature vectors to be stored as the index of the database.To measure the distance d between two histograms H and I one can use themetric included by the L1-norm (6.2) as in [Swain and Ballard 1991] or a metricwhich is similar to the one induced by the L2-norm (6.3) (see [Niblack et al.. 1993]).dL1(I;H) = kI �HkL1 = nXl=1 jil � hlj (6.2)dL2(I;H) = kI �HkL2 =vuut nXl=1(il � hl)2 (6.3)The L1-distance between two histograms is always less than 2 and the L2-distance is less than p2.6.3.5 IndexingGiven these norms we chose to use the L1-distance (6.2), due to performancereasons and the size of the database. To implement this method we used atestset of 30,000 images as part of the total image database. The di�erencemeasures are stored in a distance matrix (6.4).

CHAPTER 6. THE SIMILARITY METHODS 490BBBBBBBB@ dist1;1 dist1;2 dist1;3 dist1;4 � � � dist1;ndist2;1 dist2;2 dist2;3 dist2;4dist3;1 dist3;2 dist3;3 dist3;4dist4;1 dist4;2 dist4;3 dist4;4distn;1 � � � distn;n
1CCCCCCCCA (6.4)To speed up the calculations we made use of the fact that distances posi-tioned on the diagonal of the matrix are not to be calculated since there is nouse of measuring a distance with itself. We also used the fact that the distancematrix is symmetric (see 6.5).0BBBBBBB@ xx xx xx xx xx xxdist2;1 xx xx xx xx xxdist3;1 dist3;2 xx xx xx xxdist4;1 dist4;2 dist4;3 xx xx xx... . . . xx xxdistn;1 � � � distn;n�1 xx
1CCCCCCCA (6.5)Instead of storing the whole matrix we sorted every column and stored 10 ofthe smallest distances per column. This way of storing the distances not onlyreduces space but also makes it easily extendable for new entries.6.4 Edge oriented matchingIn this project we tried to develop successful edge oriented matching techniquesin two ways. In the �rst edge oriented matching techniques was based on in-tensity space and the second was based on gradient space. There is no waytelling which method gives the best results, therefore those two techniques wereimplemented and evaluated.6.4.1 Intensity spaceFor every pixel of an image in RGB format we calculated the Intensity. Forany three R, G, and B color components, each in the range [0, 1], the intensitycomponent in the HSI model is de�ned as:I = 13(R+G+B) (6.6)which yields values in the range [0, 1].

CHAPTER 6. THE SIMILARITY METHODS 506.4.2 Gradient spaceThe most common method of di�erentiation in image processing in applicationsis the gradient. For a function f(x, y), the gradient [Gonzalez and Woods] of fat coordinates (x, y) is de�ned as the vector:rf = 24 GxGy 35 = 24 �f�x�f�y 35 (6.7)It is well known from vector analysis that the gradient vector points in thedirection of maximum rate of change of f at (x, y). In edge direction an importantquantity is the magnitude of this vector, generally referred to simply as thegradient and denoted rf. Common practice is to approximate the gradientwith absolute values: rf � jGxj+ jGyj (6.8)which is much simpler to implement, particularly with dedicated hardware.Note from Eqs. (6.7) and (6.8) that computation of the gradient of an image isbased on obtaining the partial derivatives �f/�x and �f/�y at every pixel location.Derivatives may be implemented in digital form in several ways. However,the Sobel operators have the advantage of providing both a di�erencing anda smoothing e�ect. Because derivatives enhance noise, the smoothing e�ectis a particularly attractive feature of the Sobel operators. From Figure 6.3,derivatives based on the Sobel operator masks areGx = (z7 + 2z8 + z9)� (z1 + 2z2 + z3) (6.9)and Gy = (z3 + 2z6 + z9)� (z1 + 2z4 + z7) (6.10)where, as before, the z's are the gray levels of the pixels overlapped by the masksat any location in an image.Computation of the gradient at the location of the center of the masks thenutilizes Eq. 6.8, which gives one value of the gradient. To get the next value,the masks are moved to the next pixel location and the procedure is repeated.Thus, after the procedure has been completed for all possible locations, theresult is a gradient image of the same size as the original image. As usual, maskoperations on the border of an image are implemented by using the appropriatepartial neighborhoods.

CHAPTER 6. THE SIMILARITY METHODS 51

- 1 - 1

- 2

- 1

- 2

z 4

z 7 z 8 z 9

- 1

 0 0

 0

 1

 2

 1

 0

 0 0

 1 2 1

z 5

(c)

z 1 z 2 z 3

z 6

(b)

(a)

Figure 6.3: (a) 3x3 image region; (b) mask used to compute Gx at center pointof the 3x3 region; (c) mask used to compute Gy at that point. These masks areoften referred to as the Sobel operators.6.4.3 Horizontal and Vertical ProjectionsNow as we have discussed the two edge detection algorithms we need to �nda way to create a feature vector. First step is to scale all the images to con-tain the same number of pixels (e.g. 80x60 pixels), only for comparison pur-poses. This way we can easily use the L1-norm (see (6.2)). Matching withprojections is particularly handy in this case because it makes the size of thefeature vector only 80+60 instead of 80*60 elements. We map the elementsinto discrete values in the range of [0,255]. The HV projection P(M) is a vector(px1 ,px2 ,...,px60 ,py1 ,py2 ,...,py80) wherepxj = xXk=1V(k; j) j 2 [1; y] (6.11)and pyi = yXl=1V(i; l) i 2 [1; x] (6.12)Here is V the appropriate value of one of the two edge detection algorithms perpixel. As discussed in section 6.3.5 the indexing algorithm stores its results thesame way as discussed before (see Eq. 6.5).

CHAPTER 6. THE SIMILARITY METHODS 526.5 EvaluationA preliminary evaluation suggests several problems with the retrieval techniques.The system was evaluated with a database testset of 30,000 images of any kind(as discussed in chapter 5).6.5.1 Color histogram matchingThe color histogram method, which is based on averaging of color distribution,returns satisfactory results for the database population. However, this meansthat this method lacks information on color locations as we have discussed be-fore. We can overcome this problem by dividing the image into several subareas.Then for each subarea compute a color histogram. The similarity score will bedetermined by the weighted average of the subarea similarity scores.
(a) the original image

(b) the intensity image (c) the (inverted)gradient imageFigure 6.4: Intensity space vs Gradient space6.5.2 Edge oriented matchingThe main disadvantage of using the intensity method for detecting edges isshown in �gure 6.4. The intensity method may miss color di�erences. In this

CHAPTER 6. THE SIMILARITY METHODS 53example we used a simple testimage where two blocks are adjacent and di�er-ent of color (see �gure 6.4(a)). The intensity method just analyzes the colorintensities and detects no di�erence in intensity when passing from one block toanother (see �gure 6.4(b)). However if we use the gradient method these kindsof edges will be detected (see �gure 6.4(c)).However the intensity method seems to work better than the gradient methodin most cases.6.5.3 Test-set testingTo obtain a more constructive evaluation of the methods a test-set approachshould be considered. In this case a test-set can be constructed by using akeyword query. The results of this query could be used as a test-set (e.g. usingthe keyword \glass" or \lion" will return usable results). With this test-set theresults of the applied methods can be compared and evaluated. (an example isgiven in �gure 7.1 at page 55 with keyword \glass" and substring matching)

Chapter 7Image Search Engine7.1 IntroductionWeb image search engines could be applied pro�tably in many areas; for in-stance, in searching on-line catalogs of consumer goods and services, or for en-forcing image copyrights by sni�ng out unauthorized copies on the Web. Sucha Web crawler would also be useful to researchers studying image databases,serving as a very large testbed for image database indexing methods.Picture yourself as a fashion designer needing images of fabrics with particularmixture of colors, a museum cataloger looking for artifacts of a particular shapeor a photostudio artist needing a picture of a red car-like object. How do you�nd these images?In this chapter the reader will get a description of an content-based imagesearch engine that allows queries to be performed based on example images (aswe've discussed earlier in chapter 3). The similarity methods involved are basedon keyword matching, color histogram matching, and edge oriented matching(see chapter 6).7.2 User InterfaceNow that we have the database and the similarity results the user interface canbe implemented. As querying is based on selecting example images, we chosethe following approach. A query speci�cation can include a keyword, and anexample image selection. The user interface to support such queries has twomain parts: The Query Result and Selection Window, and The Query ControlPanel Window to display the results. 54

CHAPTER 7. IMAGE SEARCH ENGINE 557.2.1 The Query Result and Selection WindowThis is the area where all the query results are displayed. This area is alsoused for selecting a new image for the new query. This area is divided into fourdi�erent areas:� The search image; The left column is reserved to display the search image.This is the image selected by the user, a default image, or the �rst imagefrom the returned result set of a keyword search.� The search row; The top row displays the images returned by the returnedresult set of a keyword search, or just a sequence of images from thedatabase. Note that the �rst (left) image is the same as the search image.� The color row; The middle row displays the images as a result of colorhistogram matching. Note that the left image implies to be the best(or exact) match. All the images presented are results of color matchingregarding the search image. The matching percentages are also given(100% means an exact match).� The Shape row; The bottom row displays the images as a result of edgeoriented matching (depends which shape method is chosen).Every image displayed in the area (except for the search image) is a poten-tial member for a new query. Also the original URL is given for every imagedisplayed, so the user can retrieve the original image (normal size) (See �gure7.1).

Figure 7.1: The image selection areaTo start a new query by example the user simply can select one of the givenimages displayed, by clicking with the mouse. Also the number of matching hits,

CHAPTER 7. IMAGE SEARCH ENGINE 56with respect to keyword matching is given on top of the result and selection area.If no keyword match was speci�ed than the current total number of images inthe database is given (See �gure 7.2).
Figure 7.2: The number of matching hits7.2.2 The Query Control Panel WindowWithin the control panel the user can modify a certain number of parametersregarding the image similarity methods and display settings.Changing the number of columnsWith this option the user can specify the number of columns being displayedby selecting one of the given values from the popup menu. The range of thisselection lies within 0 and 10 (See �gure 7.3).
Figure 7.3: The number of columns �eldThe Keyword matching �eldThis �eld is divided into two parts:1. The �rst part contains a small text �eld in which the user can type in thedesired keyword.2. The second part contains a popup-menu from which the user can selectwhat type of matching should be performed, there are two kinds of match-ing:(a) Normal matching; the keyword matching algorithm will try to �ndthe speci�ed keyword as a whole word.(b) Substring matching; the keyword matching algorithm will try to �ndthe speci�ed keyword as part of a string.(See �gure 7.4)

CHAPTER 7. IMAGE SEARCH ENGINE 57
Figure 7.4: The keyword matching �eldThe Shape method �eldWith this �eld the user can select the desired shape similarity method (seesection 6.4 at page 49). This is also presented as a popup menu with the twomethods as options (See �gure 7.5).
Figure 7.5: The Shape method �eldThe start search �eldThis is simply a submit button with which the user can start his or her queryspeci�ed by the selected parameters. Note that starting a query can be done inthree di�erent ways:1. By clicking the start search button.2. By pressing enter after typing in a keyword.3. By selecting an example image from the displayed images within the dis-play area.(See �gure 7.6)
Figure 7.6: The start search �eldAdditional �eldsSome additional �elds are created for future purposes:� Guestbook option; with this option the user can �ll out an electronic formin which the user can leave its comments about the demo, this message isthen added to the guestbook which is viewable for everyone.

CHAPTER 7. IMAGE SEARCH ENGINE 58� Visitor counter; this will display the number of di�erent users that havevisited this page (for statistical purposes).� Add your own image option; with this option the user can �ll out anelectronic form with which the user can specify his or her own image whichwill be added to the database. The interface has already been build butimages submitted are not yet processed and added to the main database.This option is still under construction.(See �gure 7.7)
Figure 7.7: Additional �eldsThe control panelFinally we grouped all these options to one control panel (See �gure 7.8).

Figure 7.8: The control panelThe user interface layoutCombining the query result and selection window and the query control panelwindow the user interface was given the following layout (see �gure 7.9):

CHAPTER 7. IMAGE SEARCH ENGINE 59

Figure 7.9: The layout of the user interface7.3 ConclusionWith the query result and selection window and the query control panel window,the user is now able to de�ne his or her queries by adjusting the parameters andselecting an image or the search-button. This search-engine is also set up to beeasily extendable with extra features and new future methods.

Chapter 8ConclusionAs we have discussed before (see sections 3.5 and 7.3), these demos work prop-erly. Although some improvements can be made. Extra features can easily beimplemented and result �les of new methods can be added.8.1 Future Work8.1.1 ColorSubarea divisionThe color retrieval technique has several weaknesses that were discussed in theevaluation (see section 6.5 at page 52. First the color method deals with theimage as a whole rather than dividing the image into subareas. This way thecolor histogram is then determined for each subarea and the the color similarityscore is just a weighted average of the subarea similarity scores.Exact color matchThe second problem with the color retrieval is that histogram intersection per-forms an exact color match. It must be modi�ed to allow inexact color matchso that one shade of green will match similar shades of green. This is relativelysimple in the case of histogram intersection.8.1.2 EdgesEdge detectionThe edge detection algorithm does not construct good edge maps for everyimage as discussed in implementation and evaluation sections. There are twomain problems with edge maps. First the edge maps for some images contain60

CHAPTER 8. CONCLUSION 61\extraneous" edges that carry no useful information for retrieval purposes eventhough they are perceptually prominent in the image. Some of these extraneousedges arise due to \color noise" (i.e. a small group of pixels whose color issharply di�erent than all their neighbors. More aggressive median �ltering anda thinning procedure to strip out the shortest edges will eliminate some ofthese extraneous edges. In addition we should experiment with the gradientthreshold to see if a threshold will give better results (e.g. keep only those edgepixels whose gradient strength is greater than the average plus two standarddeviations). However preliminary experimentation suggests that increasing thethreshold will eliminate not only some of the extraneous edges but portions ofgood edges as well.8.1.3 KeywordsKeyword matchingThe keyword matching method can be improved and extended:� Usage of associative arrays, so searching will become unnecessary.� Usage of the Data Base Management (DBM) library. Especially when thedatabase signi�cantly increases.� Usage of a thesaurus, to locate alternative matches.� Usage of user provided annotation �elds to extend the keyword database.8.1.4 User InterfaceThe user interface can be modi�ed easily to the needs of new applications.Actually the user interface created for the �rst demo (LCPD) is designed tocreate general user interfaces within this application �eld.8.1.5 DatabaseAn incremental approach is used for database population growth. Also theactual comparison procedures made use of this incremental approach. Previousresults are stored and used for newer calculations. Some aspects that can beimproved:� Usage of associative arrays, for the index �les.� Usage of the Data Base Management (DBM) library, for the index �les.

Bibliography[URL1996] Tim Berners-Lee, Uniform Resource Locators, Internet workingdraft, 1996/05/24, Published on the WWW athttp://www.w3.org/pub/WWW/Addressing/URL/Overview.html[SGML] ISO 8879, Information Processing - Text and O�ce systems - StandardGeneralized Markup Language (SGML), 1986.http://www.iso.ch/cate/d16387.html[HTML] Tim Berners-Lee and Daniel Connolly, Hypertext Markup Language,Internet working draft, 13 jul 1993. Published on the WWW athttp://www.w3.org/pub/WWW/MarkUp/HTML.html[HTTP] Tim Berners-Lee, Hypertext Transfer Protocol, Internet working draft,5 nov 1993, published on the WWW athttp://www.w3.org/pub/WWW/Protocols/HTTP/HTTP2.html[Perl] David Till, Teach Yourself PERL in 21 days, 1995 by Sams Publishing,ISBN 0-672-30586-0[CGI] Ed Tittel, Mark Gaither, Sebastian Hassinger, Mike Erwin, World WideWeb Programming with HTML and CGI, 1995 by IDG Books Worldwide,Inc., ISBN 1-56884-703-3[Koster94] Martijn Koster, A Standard for Robot Exclusion, published on theWWW at http://info.webcrawler.com/mak/projects/robots/norobots.html[MOMspider] Roy T.Fielding, Maintaining Distributed Hypertext Info-structures: Welcome to MOMspider's Web, June 17, 1994, published onthe WWW athttp://www.ics.uci.edu/WebSoft/MOMspider/WWW94/paper.html[Huijsmans] D.P.Huijsmans, M.S.Lew, E�cient Content-based Image Retrievalin Digital Picture Collections using projections: (Near)-Copy location, Jan-uari 11 1996, Technical Report 96-0762

BIBLIOGRAPHY 63[Gonzalez and Woods] Rafael C. Gonzalez, Richard E. Woods, Digital ImageProcessing, 1992 Addison Wesley, ISBN 0-201-50803-6[Swain and Ballard 1991] M.J. Swain and D.H. Ballard, Color indexing, Intern.Journal of Computer Vision, 7(1):11-32, 1991[Niblack et al.. 1993] W. Niblack, R. Barber, et al. The QBIC project: Query-ing images by content using color, texture and shape, In Proc. of SPIEElectronic Imaging: Storage and Retrieval for Image and Video Databases,Feb. 1993

Appendix A HTMLAs HTML is an application of SGML (Standard Generalized Markup Language),this speci�cation assumes a working knowledge of [SGML].Tags delimit elements such as headings, lists, character highlighting, and links.Most HTML elements are identi�ed in a document as a start-tag, which givesthe element name and attributes, followed by the content, followed by the endtag. Start-tags are delimited by < and >; end tags are delimited by </ and >.An example is:<H1>This is a Heading</H1>Some elements only have a start-tag without an end-tag. For example, tocreate a line break, use the
 tag. Additionally, the end tags of someother elements, such as Paragraph (</P>), List Item (), De�nition Term(</DT>), and De�nition Description (</DD>) elements, may be omitted.The content of an element is a sequence of data character strings and nestedelements. Some elements, such as anchors (i.e. one of two ends of a hyperlink),cannot be nested. Anchors and character highlighting may be put inside otherconstructs. The basic HTML document has the following structure:<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"><HTML><HEAD><TITLE>Introduction to HTML</TITLE></HEAD><BODY><H1>Important Stuff</H1><P>Explanation about important stuff</BODY></HTML> 64

Appendix A 65
How to deal with images? The IMG element allows an image �le to beinserted within an HTML document along with the text. The ALT attributede�nes parsed character data that will be displayed if the image is not or cannotbe displayed by the browser. The SRC attribute identi�es an URL for retriev-ing the image. If a single A element spans both an image and text, the CGIprogram will receive the HREF input values, if any, if the text is selected, orthe x,y cursor pixel coordinates relative to 0,0 as the the upper-left corner ofthe image if the image is selected. Here is a simple example:This will display an image on the Browser's screen! To make an image clickableyou just have to anchor a link to it:This will create a clickable image on the Browser's screen. After selecting theimage by clicking on it the corresponding link will be followed, and in this casea soundsample will be played.Using Tables. For making the result documents for the search engine theway they are I used new HTML 3.0 elements such as Tables. Here are somesimple table guidelines, lifted from the HTML 3.0 speci�cation:� Table cells may include nested tables� Missing cells are considered to be empty.� Missing rows should be ignored; that is, if all cells spans a row and thereare no further <TR> elements, then the implied row should be ignored.� Cells cannot overlap.What kind of data can a table contain? Some examples:� lists� paragraphs� forms� �gures

Appendix A 66� headers� other tables� preformatted textLet's take a look at an example of an HTML 3.0 table instance:<TABLE BORDER><CAPTION>Engine Dynometer Test for 1970 Chevy 454 LS-5</CAPTION><TR><TH ROWSPAN=2>Engine RPM<TH COLSPAN=2>Corrected Data<TH ROWSPAN=2><TH ROWSPAN=2>Exhaust Temperature (Fahr.)<TR><TH>Torque<TH>Horsepower<TR><TH ALIGN="LEFT">3250<TD>465<TD>314<TD><TD>1160<TR><TH ALIGN="LEFT">3750<TD>496<TD>371<TD><TD>1208<TR><TH ALIGN="LEFT">5000<TD>435<TD>412<TD><TD>1254</TABLE>

Figure 8.1: Netscape's rendering of a sample HTML 3.0 tableFor Forms creation and details see Appendix C at page 69.

Appendix B PerlI assume that Perl is installed on your system, if not see Appendix F at page83 for URL information.A Sample Perl Program:Assuming that Perl is located in /usr/local/bin #!/usr/local/bin/perl$inputline = <STDIN>;print ("$inputline");Line 1 is the header comment. Line 2 reads a line of input. Line 3 writes theline of input back to your screen.Running a Perl program. To run the program shown in the previous listing,do the following:1. Using your favorite editor, type the previous program and save it in a �lecalled \foo.pl".2. Tell the system that this �le contains executable statements. To do thisin the UNIX environment, enter the following command:chmod +x foo.pl3. Run the program by entering the command:foo.plWhat is a Scalar Value?Basically, a scalar value is one unit of data. This unit of data can be either anumber or a chunk of text. There are several types of scalar values that Perlunderstands:� Integers� Floating-point numbers 67

Appendix B 68� Character stringsThese scalar values are interchangeable, that is, you can use a scalar variablethat was assigned as a character string also as an integer and vice versa:$string = "43";$number = 28;$result = $string + $number;The value of $string is converted to an integer and added to the value of $num-ber. The result of the addition, 71, is assigned to $result.See [Perl] for more detailed information about Perl programming.

Appendix C CGI.pm\CGI.pm" is a Perl5 library for handling forms in CGI scripts. With justa handful of calls, you can parse CGI queries. However, it also o�ers a richset of functions for creating �ll-out forms. Instead of remembering the syntaxfor HTML form elements, you just make a series of Perl function calls. Animportant fringe bene�t of this is that the value of the previous query is usedto initialize the form, so that the state of the form is preserved from invocationto invocation.Everything is done through a \CGI" object. When you create one of theseobjects it examines the environment for a query string, parses it, and stores theresults. You can then ask the CGI object to return or modify the query values.CGI objects handle POST and GET methods correctly, and distinguish betweenscripts called from <ISINDEX> documents and form-based documents. In factyou can debug your script from the command line without worrying aboutsetting up environment variables.If you want to install CGI.pm yourself please see Appendix F at page 83 forURL information.Creating a new CGI object The most basic use of CGI.pm is to get at thequery parameters submitted to your script. To create a new CGI object thatcontains the parameters passed to your script, put the following at the top ofyour perl CGI programs:use CGI;$query = new CGI;In the object-oriented world of Perl 5, this code calls the new() method of theCGI class and stores a new CGI object into the variable named $query. Thenew() method does all the dirty work of parsing the script parameters andenvironment variables and stores its results in the new object. You'll now makemethod calls with this object to get at the parameters, generate form elements,and do other useful things. 69

Appendix C 70An alternative form of the new() method allows you to read script parametersfrom a previously-opened �le handle:$query = new CGI(FILEHANDLE)The �lehandle can contain a URL-encoded query string, or can be a seriesof newline delimited TAG=VALUE pairs. This is compatible with the save()method. This lets you save the state of a CGI script to a �le and reload it later.It's also possible to save the contents of several query objects to the same �le,either within a single script or over a period of time. You can then reload themultiple records into an array of query objects with something like this:open (IN,"test.out") || die;while (!eof(IN))f my $q = new CGI(IN);push(@queries,$q);gFetching The Names Of All The Parameters Passed To Your Script@names = $query->paramIf the script was invoked with a parameter list (e.g. \name1=value1 &name2=value2 & name3=value3"), the param() method will return the para-meter names as a list. For backwards compatibility, this method will work evenif the script was invoked as an <ISINDEX> script: in this case there will be asingle parameter name returned named \keywords".Fetching The Value(s) Of A Named Parameter@values = $query->param('foo');-or-$value = $query->param('foo');Pass the param() method a single argument to fetch the value of the namedparameter. If the parameter is multivalued (e.g. from multiple selections in ascrolling list), you can ask to receive an array. Otherwise the method will returna single value.As of version 1.50 of this library, the array of parameter names returnedwill be in the same order in which the browser sent them. Although this is notguaranteed to be identical to the order in which the parameters were de�ned in

Appendix C 71the �ll-out form, this is usually the case.Setting The Value(s) Of A Named Parameter$query->param('foo','an','array','of','values');-or-$query->param(-name=>'foo',-values=>['an','array','of','values']);This sets the value for the named parameter 'foo' to one or more values. Thesevalues will be used to initialize form elements, if you so desire. Note that this isthe one way to forcibly change the value of a form �eld after it has previouslybeen set.Appending a Parameter$query->append(-name=>'foo',-values=>['yet','more','values']);This adds a value or list of values to the named parameter. The values are ap-pended to the end of the parameter if it already exists. Otherwise the parameteris created.Deleting a Named Parameter Entirely$query->delete('foo');This deletes all the parameters and leaves you with an empty CGI object. Thismay be useful to restore all the defaults produced by the form element generatingmethods.Importing parameters into a namespace$query->import names('R');print "Your name is $R::namenn"print "Your favorite colors are @R::colorsnn";This imports all parameters into the given name space. For example, if therewere parameters named 'foo1', 'foo2' and 'foo3', after executing$query->import names('R'), the variables @R::foo1, $R::foo1, @R::foo2,$R::foo2, etc. would conveniently spring into existence. Since CGI has no wayof knowing whether you expect a multi- or single-valued parameter, it createstwo variables for each parameter. One is an array, and contains all the values,

Appendix C 72and the other is a scalar containing the �rst member of the array. Use whicheverone is appropriate. For keyword (a+b+c+d) lists, the variable @R::keywordswill be created.If you don't specify a name space, this method assumes namespace \Q".Warning: do not import into namespace \main". This represents a major se-curity risk, as evil people could then use this feature to rede�ne central variablessuch as @INC. CGI.pm will exit with an error if you try to do this.Note: this method used to be called import(). As of version 2.20 import()has been changed to be consistent with other Perl modules. Please change alloccurrences of import() to import names().Creating the HTTP HeaderCreating the Standard Header for a Virtual Documentprint $query->header('image/gif');This prints out the required HTTP Content-type: header and the requisiteblank line beneath it. If no parameter is speci�ed, it will default to 'text/html'.An extended form of this method allows you to specify a status code and amessage to pass back to the browser:print $query->header(-type=>'image/gif', -status=>'204 No Response');This presents the browser with a status code of 204 (No response). Properly-behaved browsers will take no action, simply remaining on the current page.(This is appropriate for a script that does some processing but doesn't need todisplay any results, or for a script called when a user clicks on an empty part ofa clickable image map.)Several other named parameters are recognized. Here's a contrived examplethat uses them all:print $query->header(-type=>'image/gif',-status=>'402 Payment Required',-expires=>'+3d',-cookie=>$my cookie,-Cost=>'$0.02');

Appendix C 73HTML ShortcutsCreating an HTML Headerprint $query->start html(-title=>'Secrets of the Pyramids',-author=>'fred@capricorn.org',-base=>'true',-meta=>f'keywords'=>'pharoah secret mummy','copyright'=>'copyright 1996 King Tut'g,-BGCOLOR=>'blue');This will return a canned HTML header and the opening <BODY> tag. Allparameters are optional:� The title (-title)� The author's e-mail address (will create a <LINK REV="MADE"> tagif present (-author)� A true
ag if you want to include a <BASE> tag in the header (-base).This helps resolve relative addresses to absolute ones when the documentis moved, but makes the document hierarchy non-portable. Use with care!� A -xbase parameter, if you want to include a <BASE> tag that pointsto some external location. Example:print $query->start html(-title=>'Secrets of the Pyramids',-xbase=>'http://www.nile.eg/pyramid.html');� A -meta parameter to de�ne one or more <META> tags. Pass thisparameter a reference to an associative array containing key/value pairs.Each pair becomes a <META> tag in a format similar to this one.<META NAME="keywords" CONTENT="pharoah secret mummy"><META NAME="description" CONTENT="copyright 1996 King Tut">There is no support for the HTTP-EQUIV type of <META> tag. Thisis because you can modify the HTTP header directly with the headermethod.� A -script parameter to de�ne Netscape JavaScript functions to incorpo-rate into the HTML page. This is the preferred way to de�ne a library ofJavaScript functions that will be called from elsewhere within the page.CGI.pm will attempt to format the JavaScript code in such a way that

Appendix C 74non-Netscape browsers won't try to display the JavaScript code. Unfor-tunately some browsers get confused nevertheless. Here's an example ofhow to create a JavaScript library and incorporating it into the HTMLcode header:$query = new CGI;print $query->header;$JSCRIPT=<<END;// Ask a silly questionfunction riddle me this() fvar r = prompt("What walks on four legs in the morning, " +"two legs in the afternoon, " +"and three legs in the evening?");response(r);g// Get a silly answerfunction response(answer) fif (answer == "man")alert("Right you are!");else alert("Wrong! Guess again.");gENDprint $query->start html(-title=>'The Riddle of the Sphinx',-script=>$JSCRIPT);� -onLoad and -onUnload parameters to register JavaScript event han-dlers to be executed when the page generated by your script is openedand closed respectively. Example:print $query->start html(-title=>'The Riddle of the Sphinx',-script=>$JSCRIPT,-onLoad=>'riddle me this()');See JavaScripting for more details.� Any additional attributes you want to incorporate into the <BODY> tag(as many as you like). This is a good way to incorporate other Netscapeextensions, such as background color and wallpaper pattern. (The exampleabove sets the page background to a vibrant blue.) You can use this featureto take advantage of new HTML features without waiting for a CGI.pmrelease.

Appendix C 75Ending an HTML Documentprint $query->end htmlThis ends an HTML document by printing the </BODY></HTML> tags.Creating FormsGeneral note 1. The various form-creating methods all return strings to thecaller. These strings will contain the HTML code that will create the requestedform element. You are responsible for actually printing out these strings. It'sset up this way so that you can place formatting tags around the form elements.General note 2. The default values that you specify for the forms are only usedthe �rst time the script is invoked. If there are already values present in thequery string, they are used, even if blank.If you want to change the value of a �eld from its previous value, you have twochoices:1. call the param() method to set it.2. use the -override (alias -force) parameter. (This is a new feature in 2.15)This forces the default value to be used, regardless of the previous valueof the �eld:print $query->textfield(-name=>'favorite color',-default=>'red',-override=>1);If you want to reset all �elds to their defaults, you can:1. Create a special defaults button using the defaults() method.2. Create a hypertext link that calls your script without any parameters.General note 3. You can put multiple forms on the same page if you wish.However, be warned that it isn't always easy to preserve state information formore than one form at a time. See advanced techniques for some hints.General note 4. By popular demand, the text and labels that you provide forform elements are escaped according to HTML rules. This means that youcan safely use "<CLICK ME>" as the label for a button. However, this be-havior may interfere with your ability to incorporate special HTML charactersequences, such as Á (�A) into your �elds. If you wish to turn o� auto-matic escaping, call the autoEscape() method with a false value immediately

Appendix C 76after creating the CGI object:$query = new CGI;$query->autoEscape(undef);You can turn autoescaping back on at any time with $query->autoEscape('yes')Form Elements� Starting and Ending a formprint $query->startform($method,$action,$encoding);...various form stuff...print $query->endform;� Text entry �eldsprint $query->textfield(-name=>'field name',-default=>'starting value',-size=>50,-maxlength=>80);� Big text entry �eldsprint $query->textarea(-name=>'foo',-default=>'starting value',-rows=>10,-columns=>50);� Password �eldsprint $query->password field(-name=>'secret',-value=>'starting value',-size=>50,-maxlength=>80);� File upload �eldsprint $query->filefield(-name=>'uploaded file',-default=>'starting value',-size=>50,-maxlength=>80);� Popup menusprint $query->popup menu(-name=>'menu name',-values=>['eenie','meenie','minie'],-default=>'meenie',-labels=>f'eenie'=>'one','meenie'=>'two','minie'=>'three'g);

Appendix C 77� Scrolling listsprint $query->scrolling list(-name=>'list name',-values=>['eenie','meenie','minie','moe'],-default=>['eenie','moe'],-size=>5,-multiple=>'true',-labels=>%labels);� Checkbox groupsprint $query->checkbox group(-name=>'group name',-values=>['eenie','meenie','minie','moe'],-default=>['eenie','moe'],-linebreak=>'true',-labels=>%labels);� Individual checkboxesprint $query->checkbox(-name=>'checkbox name',-checked=>'checked',-value=>'TURNED ON',-label=>'Turn me on');� Radio button groupsprint $query->radio group(-name=>'group name',-values=>['eenie','meenie','minie'],-default=>'meenie',-linebreak=>'true',-labels=>%labels);� Submission buttonsprint $query->submit(-name=>'button name',-value=>'value');� Reset buttonsprint $query->reset� Reset to defaults buttonprint $query->defaults('button label')� Hidden �eldsprint $query->hidden(-name=>'hidden name',-default=>['value1','value2'...]);� Clickable Imagesprint $query->image button(-name=>'button name',-src=>'/images/NYNY.gif',-align=>'MIDDLE');

Appendix C 78When the image is clicked, the results are passed to your script in twoparameters named "button name.x" and "button name.y", where "but-ton name" is the name of the image button.$x = $query->param('button name.x');$y = $query->param('button name.y');� JavaScript Buttonsprint $query->button(-name=>'button1',-value=>'Click Me',-onClick=>'doButton(this)');� Autoescaping HTML$query->autoEscape(undef);

Appendix D MOMspiderThe Multi-Owner Maintenance spider. For URL information please see Appen-dix F at page 83.The layout of a MOMspider instruction �le as used for this project:# This is a sample instruction fileSystemAvoid /home/ylausber/robot/MOMspider-1.00/avoid.momSystemSites /home/ylausber/robot/MOMspider-1.00/sites.momAvoidFile /home/ylausber/robot/MOMspider-1.00/.momspider-avoidSitesFile /home/ylausber/robot/MOMspider-1.00/.momspider-sitesReplyTo ylausber@cs.leidenuniv.nl<Tree Name Animated GIFs Animation ImagesTopURL http://www.shore.net/%7Estraub/animated gifs.htmIndexURL http://ind156b.wi.leidenuniv.nl:8086/spider/spider1.htmlIndexFile /home/ylausber/www/httpd/htdocs/spider/spider1.htmlEmailAddress ylausberEmailBrokenEmailRedirectedExclude http://www.wi.leidenuniv.nl/>

79

Appendix D 80MOMspider's usage:usage: momspider [-h] [-e errorfile] [-o outfile] [-i instructfile][-d maxdepth] [-a avoidfile] [-s sitesfile][-A system avoidfile] [-S system sitesfile]WWW Spider for multi-owner maintenance of distributed hypertextinfostructures.Options: [DEFAULT]� -h Help -- just display this message and quit.� -e Append error history to the following file. [STDERR]� -o Append output history to the following file. [STDOUT]� -i Get your instructions from the following file.[/home/ylausber/robot/MOMspider-1.00/instruct/.instruct0 0]� -d Maximum traversal depth. [20]� -a Read/write the user's URLs to avoid into the following file.[/home/ylausber/.momspider-avoid]� -s Read/write the user's sites visited into the following file.[/home/ylausber/.momspider-sites]� -A Read the systemwide URLs to avoid from the following file.[/home/ylausber/robot/MOMspider-1.00/system-avoid]� -S Read the systemwide sites visited from the following file.[/home/ylausber/robot/MOMspider-1.00/system-sites]

Appendix E Libwww-PerlThe libwww-perl distribution is a collection of Perl modules which providesa simple and consistent programming interface (API) to the World-Wide Web.The main focus of the library is to provide classes and functions that allow youto write WWW clients, thus libwww-perl said to be a WWW client library. Thelibrary also contain modules that are of more general use.The latest version of the library is libwww-perl-5.00.tar.gz (163 KB) which wasreleased May 26, 1996. You will need perl5.002 or better to use this version. (Forperl5.001m you should continue to use the old libwww-perl-5b6.tar.gz (98 KB)which was released Nov 6, 1995.) For URL information please see Appendix Fat page 83.Libwww-perl for perl4 is used for the MOMspider (see Appendix D at page 79).Speci�c Libwww requests are: HEAD, GET, and POST.I used libwww-perl-5b6 for the image retriever functions. The only functionfrom libwww-perl-5b6 I used was the GET command:Usage: GET [-options] <url>...� -m <method> use method for the request (default is 'GET')� -f make request even if GET believes method is illegal� -b <base> Use the speci�ed URL as base� -t <timeout> Set timeout value� -i <time> Set the If-Modi�ed-Since header on the request� -c <conttype> use this content-type for POST, PUT, CHECKIN� -p <proxyurl> use this as a proxy� -P don't load proxy settings from environment� -u Display method and URL before any response81

Appendix E 82� -U Display request headers (implies -u)� -s Display response status code� -S Display response status chain� -e Display response headers� -d Do not display content� -o <format> Process HTML content in various ways� -v Show program version� -h Print this message� -x Extra debugging output

Appendix FImportant LinksHTML Links� HyperText Markup Language (HTML)http://union.ncsa.uiuc.edu/HyperNews/get/www/html.html� HTML Reference Manualhttp://www.sandia.gov/sci compute/html ref.html� HTML Formshttp://www.hpl.hp.co.uk/people/dsr/html/forms.html� HyperText Markup Language (HTML): Working and Background Mate-rialshttp://www.w3.org/pub/WWW/MarkUp/CGI Links� The Common Gateway Interfacehttp://hoohoo.ncsa.uiuc.edu/cgi/Perl Links� UF/NA Perl Archivehttp://www1.cis.ufl.edu/perl/� The Perl Programming Languagehttp://pubweb.nexor.co.uk/public/perl/perl.htmlCGI/Perl Libraries & Archives Links� Perl WWW Documentationhttp://www.perl.com/perl/wwwman/83

Appendix F 84� cgic: an ANSI C library for CGI Programminghttp://www.boutell.com/cgic/� Matt's Script Archivehttp://www.worldwidemart.com/scripts/� CGI.pm - a Perl5 CGI Libraryhttp://www-genome.wi.mit.edu/ftp/pub/software/WWW/cgi docs.html� libwww-perl-5http://www.sn.no/libwww-perl/� libwww-perl: Distribution Informationhttp://www.ics.uci.edu/pub/websoft/libwww-perl/� Web Developer's Virtual Library: Perlhttp://www.charm.net/ web/Vlib/Providers/Perl.htmlRobots, Spiders, and Webcrawlers� World Wide Web Robots, Wanderers, and Spidershttp://info.webcrawler.com/mak/projects/robots/robots.html� Guidelines for Robot Writershttp://info.webcrawler.com/mak/projects/robots/guidelines.html� Perl code to implement Robot Exclusion Standardhttp://fuzine.mt.cs.cmu.edu/mlm/rnw.html� MOMspider { Distribution Informationhttp://www.ics.uci.edu/WebSoft/MOMspider/� Robot Mailing List:http://info.webcrawler.com/mailing-lists/robots/info.htmlHTTP Daemon Links� the NCSA HTTPd Home Pagehttp://hoohoo.ncsa.uiuc.edu/Project Links� My bookmarkshttp://ind156b.wi.leidenuniv.nl:8086/bookmarks.html� The Leiden 19th Century Portrait Databasehttp://ind156b.wi.leidenuniv.nl:8086/intro.html

Appendix F 85� Server statisticshttp://ind156b.wi.leidenuniv.nl:8086/results.html� Demo statisticshttp://ind156b.wi.leidenuniv.nl:8086/demostat.html� YurImage; a Content-based Image Search Enginehttp://ind156b.wi.leidenuniv.nl:8086/cgi-bin/yurimage.cgi

Appendix GSetup of a HTTP ServerIn this appendix we will explain the common procedure of how to setup your ownHTTP server (The NCSA HTTPd, see Appendix F at page 83). NCSA HTTPdis an HTTP/1.0 compatible server for making hypertext and other documentsavailable to Web browsers. The current version is 1.5.2.Installation InstructionsInstalling NCSA HTTPd can be broken down into these basic steps:� Downloading the NCSA HTTPd Server� Finding HTTPd a Good Home� Con�guring HTTPd� Selecting Scripts� Starting NCSA HTTPdDownloading the NCSA HTTPd ServerIf you already have a copy of the current release of NCSA HTTPd 1.5, youmay skip to the next step. NCSA HTTPd is available as precompiled distribu-tions and binaries for systems we have access to. There is also a new OneStepDownload and Con�gure for easy access to NCSA HTTPd. If you already haveNCSA HTTPd 1.4 running, you may update the HTTPd binary without thenew support �les.Note: There are several new support �les for the new authorization types, aswell as examples of many of the other new features in the con�guration �les, soyou might want to retrieve the support �les anyways. A step-by-step guide onhow to update the old server is available.86

Appendix G 87If your system is not on this list, or if you feel more comfortable doing so, youmust compile a binary:� AIX 4.1.4 - IBM RS/6000 Model 550� BSD/OS 2.1 - Pentium 120� IRIX 4.0.5 - SGI Indigo� IRIX 5.3 - SGI Indy� HP-UX 9.05 - HP 9000 model 715� Linux 2.0.0 - Pentium 120� OSF/1 3.0 - Dec Alpha� SCO OpenServer 5.0 - Pentium 90� SunOS 4.1.3 / Solaris 1.x - SPARCserver 690MP� SunOS 5.4 / Solaris 2.4 x86 - Pentium 90 - Machine Unavailable� SunOS 5.4 / Solaris 2.4 SPARC - SPARCstation 20� SunOS 5.3 / Solaris 2.3 SPARC - SPARCstation 20� Ultrix 4.3 - Dec Mips 3100Finding HTTPd a Good HomeAt this stage, you should move HTTPd's control �les from the directory youhave been working in to the directory you intend to use as ServerRoot in theserver con�guration �le.Unless you have rede�ned their locations in the server con�guration �le, youwill have to move the following �les and directories into ServerRoot:� httpd : The server itself� conf : Con�guration �les� logs : Access log and error log� support : Support programs� cgi-bin : Server scriptsThe logs directory should not be writable by the User your server is running as.

Appendix G 88Con�guring HTTPdThe NCSA HTTPd Server is a versatile piece of software, the result of hoursand hours of blood, sweat, and tears by the NCSA HTTPd Development teamand Beta testers the world over. Its versatility does come at a price, however,as you the webmaster must con�gure the server to �t your needs. There are 3types of con�guration that can be done.Compile TimeThe NCSA HTTPd server has several compile time
ags. These are containedin the �les src/Makefile and src/config.h of the distribution. These �les arefairly well documented.Startup Con�guration FilesThere are 3 �les the server parses at start up (or after receiving a SIGHUPsignal). There is some General information available on the con�guration �leformat.There are three con�guration �les which control Server Con�guration, Re-source Con�guration, and Access Control. You should look at and modify the�les conf/httpd.conf-dist, conf/srm.conf-distand conf/access.conf-distwhich come with the distribution so that they are correct for your server.Run Time Con�gurationThe server also supports per directory con�guration �les, mostly for accesscontrol. The name of this �le is set with the AccessFileName directive in theResource Con�guration �le. See the Access Con�guration documents for moreinformation.Selecting ScriptsNCSA HTTPd 1.5 comes with many CGI scripts, both useful and informative.NCSA HTTPd 1.5 does not support the former NCSA htbin scripts, and thesescripts should be removed from the document tree. It is not necessary to installall of the scripts at your site (and we don't recommend it). Peruse the list ofCGI scripts, and move those you want into the cgi-bin/ directory you de�nedin your Server Resource Con�guration File.Starting NCSA HTTPdOnce you have completed the above steps, and you are using standalone you canstart the server by typing httpd at the command line. Note: You must be root

Appendix G 89in order to use a port less than 1024. You may need to use one of the commandline options to override the compile time paths to the con�guration �les. The
ags are:Usage: httpd [-d directory] [-f file] [-v]-d directory : specify an alternate initial ServerRoot-f file : specify an alternate ServerConfigFile-v : version information (this screen)If you are installing the server as root, you will probably want to automaticallystart HTTPd when the machine boots. This can be done through modi�cationsto various /etc/rc* or /etc/init.d/* �les, depending on your system.If you are running the server from inetd, you need to edit the OS system�les.

