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Abstract

CALM (Categorization And Learning Module) is a rather recent [Murr 92] neural
network paradigm, developed at the Leiden University Department of Experimental
Psychology, which is said to be more powerful than older paradigms, like Back Prop-
agation Networks (BPN) and Hopfield Networks. Instead of loose nodes, a CALM-
network consists of a number of modules, each consisting of a number of nodes of four
different types, each with its own function. This thesis shows some research into how
well CALM can do on different types of problems using different types of methods to
develop architectures and parameters.

This was first done by using the method Boers and Kuiper ([Boer 92]) used in
their research, followed by some manual methods and use of evolutionary strategies.
This change of direction was mainly taken because the first direction did not result
in any useful network architectures. Unfortunately CALM-networks do not appear
to score as well on smaller problems with strict categorizations of input patterns, as
might be expected from results on, for instance, digit recognition.






Contents

Introduction

1.1 Genetic Algorithms . . . . . . .. ... . L L
1.2 L-systems . . . . . . . . . e e e e
1.3 Neural Networks . . . . . . . . . .. . . . . . .. ..
1.4 Research Goals . . . . . . . . . . .. . . . . . ...

Genetic Algorithms

2.1 OVerview . . . . . . e e e e e e
2.2 Selection . . . . . L e e
2.3 CroSSOVET . . . . . v i i e e e e e e e
2.4 Inversion . . . . . . . ... e e e e e e e
2.5 Mutation . . . . . . e e
2.6 Implementation . . . . . . . ... .. L
2.7 Evolutionary Strategies . . . . ... . ... ... ... . ... ..
L-systems

3.1 Biological Development . . . . . ... ... ... ... .. ... ....
3.2 Simple L-systems . . . . . . . .. ... .. .. ..
3.3 Bracketed L-systems . . . . ... ... ... . ... ..
3.4 Context Sensitive L-systems . . . . . . ... .. ... ..o
3.5 Implementation . . . . . . . .. . .. L e

Neural Networks

4.1 The Human Brain . . . . . ... ... ... .. .. ... ... . ....
4.2 Artificial Intelligence . . . . . . . .. .. L
4.3 TheNeuron . . . . .. . . . . . . .. . e
4.4 The Connected Neurons: a Brain . . . . .. ... ... .. .......
4.5 Artificial Neurons . . . . . . . . . .. e e
4.6 Artificial Neural Networks . . . . . . . . .. ... ... .. .......
4.7 The Training Set . . . . . . . . . . . L
4.8 Back Propagation Networks . . . . . . . .. . ... ... ...

© 00 00 I

11
12
13
14
14
14
15

17
17
17
18
19
21



CONTENTS

4.9 Problems with Back Propagation . . . . ... ... ... ........ 30
4.10 Modular Back Propagation . . .. ... ... ... ... ..., 32
CALM 37
5.1 The Maths behind CALM . . . . ... ... ... ... ... ..... 37
52 TheNodes. . . . . . . . . . e 38
5.3 The Internal Connections . . . . . . . ... ... ... ... ...... 41
5.4 The External Connections: Learning . . . . . .. ... ... .. .... 42
5.5 CALM’s Functioning . . . . . . . . .. ... ... ... 44
5.6 Categorization and Learning . . . . . . ... ... ... .. ... .. 46
5.7 Supervised Learning . . . . . . ... ... oo 46
5.8 Convergence in CALM-networks . . . . .. ... ... ......... 49
5.9 Bias-nodes. . . . . ... e e e e 49
Biological Plausibility 51
6.1 Modularity in Nature: the Modularized Brain . . . . . . . . ... ... o1
6.2 Modularity in Genes . . . . .. ... 52
6.3 Artificial Modularity . . . . . . ... ..o 53
6.4 CALM . . . . . e 54
Implementing Genetic CALM Structuring 57
7.1 The Grammar . . . . . . . . . o vttt e e o7

7.1.1 ProductionRules . . . . . . .. .. ... ... L. 58

7.1.2 Coding of Production Rules . . . . . ... ... ... ...... 61

7.1.3 Repair mechanism . . .. ... ... .. ... ... ... 63
7.2 CALMLib . . . . . o o e e e e e e e 63
7.3 Extended CALMGenLib . . . . . . . . . .. . . i 64
74 Lesystems . . . . . . .. 66
7.5 CalmFunc . . . . . . i v e e e e e 66

7.5.1 Creating the Network . . . . . ... ... ... ... ...... 66

7.5.2 Input Problems . . . . .. ... ... ... ... .. .. .. ... 67

7.5.3 TheFitness . . . . . . . . . . 67
7.6 Using the Software . . . . . . . . . .. ... .. 68

7.6.1 GA generated, L-system Assisted Architecture Creation . . . . 68

7.6.2 testxrand . .. .. ... ... 69
Parameters and Architecture 71
8.1 Architecture . . . . . . . . L 71
8.2 Parameters . . . . . .. . ... 72

8.2.1 Determining Parameters . . . . . .. ... ... ... .. 72



CONTENTS 5

9 Experiments 75
9.1 The Problems . . . . . . . . . . . e 75
9.1.1 The XOR Problem . . . . . . . ... . ... . ... . ...... 75

9.1.2 The Mapping Problem . . . . . ... ... .. ... ....... 75

9.1.3 The Spiral Problem . . . . .. ... ... ... ... ... .. 76

9.2 GAs, L-Systems and CALM-networks . . . . .. ... .. ....... 78
9.3 Categorizing Random Input . . . . . . ... ... ... .. ....... 79
9.4 Visualizing learning . . . . . . ... .. oo o o 80
9.4.1 Mapping Problem Tests with Evolutionary Strategies . . . . . 86

9.4.2 Connections . . . . . . . v v v v i e e e e 92

9.5 Handwritten Digit Recognition . . . . . .. ... ... ... ...... 93

10 Conclusion and Recommendations 95
10.1 Conclusions . . . . . . v v v v s 96
10.2 Comparison of CALM and BPN . . . .. . ... ... ... ...... 97
10.3 Recommendations For Further Research . . . . . ... ... ... ... 98
10.4 The genetic algorithm . . . . . .. ... ... ... ... ... 98
10.4.1 CALM . . . . . . . e 100
Acknowledgements 103
A The Default Parameters Of CALM 105
B An Example Of Categorization In A CALM-network 109

Bibliography 119



CONTENTS



Chapter 1

Introduction

The main idea behind this research was to do some experiments on the relatively new
artificial neural network paradigm CALM. This, of course, is a rather vague descrip-
tion of a research project, but this seems inherent in research. It more or less started
out as a sequel to Boers and Kuiper’s research ([Boer 92]). They determined the
architecture of Back Propagation Networks using genetic algorithms and interpret-
ing the thus created strings as an L-system ([Lind 68]). The L-system thus created
generates the architecture of a neural network. Since this did not appear to work as
well with CALM as it did with Back Propagation Networks, a somewhat different
approach was chosen. The main reason for the lack of success with CALM appeared
to be the fact that the parameters did not receive any attention. If these are evalu-
ated at the same time as the architecture, the process of finding a network becomes
to time assuming, at least with the current state of technological art. Therefore a
couple of network architectures were chosen and a genetic method was used to de-
termine the values of the parameters. Besides this, some side steps were taken, such
as categorizing of random input and writing an interface that visualizes learning of
CALM-networks.

This chapter gives a brief introduction of the main pilars for this research. The
following chapters will give more in depth information about these, although they still
remain introductory. For further information on these paradigms and/or methods,
the cited references can be used.

1.1 Genetic Algorithms

Genetic algorithms are based on the ideas as laid out in the theory of Darwinian
evolution. Darwinian evolution [Darw 1859] states that the fitter a certain member
of a population is, the greater the chance the member will reproduce, and in that, will
live on in his offspring. According to Darwin evolution was unintentional (as opposed
to Lamarckian evolution ([Bem 89]).
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In genetic algorithms a population of strings is used, where each of the members of
the population can be seen as a chromosome, consisting of a number of genes. These
genes are interpreted as parameters for the problem to be solved: the total of genes
of one member creates one “creature” which will be used in attempting to tackle the
given problem. According to how well this creature does at tackling the problem,
a fitness is awarded. If the creature does well it receives a high fitness, if it does
poorly it gets a low fitness. The fitness determines how large the chance is for the
particular creature to survive and reproduce when a new generation of the population
is being created. In creating a new generation, the most commonly used operators
are selection, crossover, inversion and mutation. Genetic algorithms are described in
more detail in chapter 2. One of the pioneers of GAs (genetic algorithms) was John
Holland: [Holl 75].

1.2 L-systems

Living beings develop by the grace of genes. Each being has its own genetic infor-
mation to start with (genotype), which determines the way it will look in the end
(phenotype). This genetic information does not completely determine how the being
will look, but is more a kind of recipe [Dawk 86]. All cells contain the same set of gene
coded information, which they use during development, but their final form does not
only depend on this genetic information, it also depends on its cellular environment
and on the information from genes which were read in the past. All this renders the
development of the cell a local matter.

As the biologist Aristid Lindenmayer wanted to model this development in plants,
he developed L-systems [Lind 68]. By using rewriting rules with an L-system, a string
can be rewritten into another string by rewriting all characters in the string in parallel
into other characters. It should be noted that rewriting in parallel results in a different
kind of formal language than rewriting just one occurrence at a time. L-systems will
be described in more detail in chapter 3.

1.3 Neural Networks

...or maybe one should say artificial neural networks.

For a long time humans have tried to create computer programs exhibiting in-
telligent behaviour. For quite some time they thought that intelligently behaving
computers were just a couple of years away. And then to think that we are not even
certain we know what intelligence is...

In the early days of computers, limited attempts were made to create intelligence
by deterministic programs, programs which behaviour can be predicted. A popular
approach was formed by rule based systems, but these never have been able to live
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up to expectations. A different approach was chosen, reverse engineering, which had
proved to be successful in many other areas. The human brain consists of many,
seemingly computationally rather simple, units, called neurons. After taking a closer
look at these units, however, it becomes clear that neurons are far from simple. It is
possible to make more or less accurate simulations of these, by abstracting from most
of the more complicated mechanisms at work in a neuron, which is exactly what is
done in artificial neural networks. Even so; it is at the moment impossible to imitate
the brain as a whole, partly because of lack of insight in the interaction between
the neurons and partly because current computers are far too slow to simulate the
complexity and the number of the connections. Therefore the aforementioned large
simplifications are made in artificial neural networks (ANN).

The neurons in the human brain are represented by so called nodes in an ANN.
Each of these nodes receives input from other nodes and, based on this input, creates
output, which is passed on to other nodes. Part of the nodes are input nodes and part
of the nodes are output nodes. These nodes take care of the communication with the
outside world. Because of their lack of communication with the outside world, the
remaining nodes are often referred to as hidden nodes.

When we learn an ANN to solve a problem, we say it is being trained. Training
can happen in two ways: supervised and unsupervised. In supervised training we offer
the network so called input/output pairs. Each pair specifies an input and the desired
output for that input. The network is repeatedly offered these input/output pairs,
until the network has learned the problem (or until its creator has gotten fed up with
it). Back Propagation Networks are typically trained with supervised training. CALM
can be used both with supervised and unsupervised training. In this research both
paradigms were used with supervised training. In unsupervised training the network
is only offered the input, to which it will have to generate output by itself. The tasks
performed this way are typically categorizing tasks. One of the older and more known
paradigms that is often used in unsupervised learning is the Hopfield network.

Further treatises on BPN and CALM can be found in chapter 4 and 5, respectively.
Finally, chapter 6 describes some methods that do not fall into any particular category,
but which are of importance.

1.4 Research Goals

In their master’s thesis Egbert Boers and Herman Kuiper [Boer 92] describe a method
for determining the architecture of a Back Propagation Network by interpreting ge-
netically manipulated strings as an L-system, which in itself describes the architecture
of the network. Part of the work they did was developing a software package which
contained, among other things, functions implementing the genetic operators and the
building, running and evaluation of the Back Propagation Networks.

In this work an adaptation of their work is described that genetically determines
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the architecture of a CALM network, as well as the learning parameters of the net-
work. Since the understanding of CALM is even less—due to the extra complexity—
than the understanding of BPNs, it is even more difficult to determine an optimal
architecture for a CALM network than it is to determine one for a BPN.

In order to do this, several adaptations had to be made to the original functions.
First of all, the Back Propagation part had to be replaced by a CALM library (written
by Bart Happel). Apart from that, the genetic functions had to be adapted to not
only generate strings representing the architecture of the network, but also the values
of the thirty learning associated parameters CALM has.

Along the line, though, several other directions of research were taken, for instance,
categorizing random input (to see what kind of problem space divisions CALM can
handle), determining the parameters by adding noise (this to optimize the parame-
ters, which clearly enhances learning), as well as visualizing the learning of CALM
networks.



Chapter 2

Genetic Algorithms

One of the greater problems of using ANNSs, is to determine a suitable topology. So if
it poses us with problems, why not let a computer solve it? A rather brute way would
of course be to simply sum up and evaluate all possible networks in an effective way.
This, however, would be rather inefficient. So we need a way that takes us through
the world of possible topologies in a better way. One way to do this is by using genetic
algorithms.

Genetic algorithms (GAs) are a biological metaphor of evolution, as laid down by
Darwin (evolution, that is) and were introduced by John Holland [Holl 75].

2.1 Overview

Goldberg [Gold 89] mentions the following differences between GAs and more tradi-
tional search algorithms:

1. GAs work with a coding of the parameter set, not the parameters themselves.
2. GAs search from a population of points, not from a single point.

3. GAs use pay-off (objective function) information, not derivatives or other aux-
iliary knowledge

4. GAs use probabilistic transition rules, not deterministic rules.

The parameters of the problem are usually coded in binary strings (analogous to
chromosomes in biology). The coding of the parameters as well as the evaluation of
chromosomes created by the GA are done outside of the GA’s view. All the GA does
is creating one population from another, generation after generation. Normally each
of the parameters of the coded problem is represented by one gene in the chromosome.

11
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During reproduction a new population of strings, possible solutions to the problem,
is created by selecting and recombining strings already in the population according
to their fitness, which is externally awarded and states how well the string does at
solving the problem. This can be compared with natural selection, as described by
Darwin: the fitter the organism, the greater the chance it will survive and therefore
the greater the chance it will reproduce.

A fitness can be awarded in many different ways. If we for instance want the
genetic algorithm to find the maximum of a function, we can simply take the function
value as the fitness: the maximum of the function corresponds with the optimal
attainable fitness. If the GA has to find the best neural network for a certain solution,
the criterion used could, for instance, be the number of inputs associated with the
desired output: the more inputs that are correctly associated with an output, the
higher the fitness of the string. Again, the GA is unaware of the meaning or the
origin of the fitness, it is merely a criterion to be used in selecting individuals from
the population for reproduction.

The population starts out as a collection of random strings, each of which is
evaluated (has its fitness calculated). As new populations are created from this,
generation by generation, the overall fitness will go up, thus creating better solutions
for the problem.

The four most commonly used genetic operators are selection, crossover, inversion
and mutation. Each of these operations constitutes of only random bit flipping, string
copying and random number generating. Crossover, mutation and inversion are all
applied to a limited portion of the population. Since selection alone is not enough in
the general case (some simple cases excepted), some of the other operators have to
be included.

2.2 Selection

Selection is used to choose strings from the population for reproduction. The higher
the member’s fitness, the greater the chance of being picked for reproduction. There
are two important selection methods, of which only the latter was used in this research.

The first method is roulette wheel selection: strings are selected with a probability
proportional to their fitness. A drawback of this method is that an early highly fit
member can get to dominate the population, due to its high selection chance. The
second is rank based selection where the chance of being selected is determined as a
linear function of the member’s position in the population sorted by fitness [Whit 89].
For this method to work the population has to be sorted by fitness. One advantage
of this method is that there is less dominance by an early good solution that is not
optimal and which could lead the system into a non-global optimum. However, one
does have to be cautious on choosing a fitness criterion: in roulette wheel selection
it doesn’t really matter exactly what the order of the members is, since more or less
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the same fitness leads to more or less the same chance, with rank based selection,
however, the order is important. This can become a problem when all the members
have fitnesses that are close together. This typically happens when fitnesses are chosen
to have a too high nominal value, resulting in the differences between individuals being
dwarfed by the value. This can be solved by chosing a fitness function that makes
optimal use of the [0...MaxFitness| interval, with MaxFitness being the maximum
possible fitness.

2.3 Crossover

The crossover operator creates a new member for the new population by combining
different parts from two members of the previous population. A number of crossover
points is chosen at random. The new string is made from alternating parts of the
two originating strings: the bits from the first string are copied till the first crossover
point is reached, than we switch to the second string, at the first bit following the
crossover point. This string is copied till we reach the next crossover point, where we
switch back to the first. If more crossover points are used —which was not done in
this research— the crossing over between strings goes similarly. An example is shown
in figure 2.1(a).

101010101

100101001 100>11<0100 101011010

0101010}10 101011000 101011000

(a) (b) (c)

Figure 2.1: Examples of Crossover, Inversion and Mutation
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2.4 Inversion

Inversion is an operator that swaps around parts of the originating strings. Two
inversion points are chosen at random. The genes between these two points are
swapped, the first becoming the last, the second the penultimate, the penultimate
becoming the second and the last becoming the first, etcetera. An example is shown
in figure 2.1(b).

As mentioned before, a member consists of several genes, each coding part of the
recipe for the eventual organism. It would be both unwanted and biologically strange
to simply intermingle two genes coding distinct information. Therefore steps have to
be taken to prevent this from happening.

2.5 Mutation

Mutation is as simple as you can get in genetic operators. All it does is flip one or
more bits in the string from 0 to 1 or from 1 to 0.

The purpose of mutation is to introduce new solutions in the population that are
close to solutions that are known to do well already (since just one bit is flipped,
the string stays largely the same). Mutation can also reintroduce genes that were
lost by unfortunate cross-overs. To prevent mutation from messing the population up
(by flipping too many bits, thus making the population more or less random noise),
the mutation rate has to be kept low. There are applications where selection and
mutation as operators are enough to solve a problem (see for instance [Gari 90]).
Figure 2.1(c) shows an example.

2.6 Implementation

In his program GENITOR Whitley [Whit 89] uses a one-at-a-time selection and re-
placement schedule: a new member of the population replaces the member with the
lowest fitness, thus making sure of a monotonically increasing total fitness. This re-
sults in the member with the highest fitness always staying in the population. This
model is known as the static population model. One-at-a-time replacement is always
better than creating a whole new population when it can be guaranteed that a global
maximum can be reached from a good string in the population without passing a
local maximum on the way.

At the Department of Experimental and Theoretical Psychology at the Leiden
University, a C-library was written to create and manipulate binary strings either
using roulette wheel selection or rank-based selection and replacement ([Happ 92]
and [Murr 92]). The functions in this library were first adapted by Boers and Kuiper
for their research, and later by me for my research. Boers and Kuiper’s functions were
meant to genetically determine the architecture (topology) of the network. Since not
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only the architecture, but also the learning parameters were determined genetically
for this research, the genetic operators, as well as the members, had to be adapted to
include these.

2.7 Evolutionary Strategies

Genetic Algorithms are not the only genetic metaphor used in computation, there
are others. One is Evolutionary Strategies. The variation used in this research works
with a kind of random noise (as can be found in the undirected evolution as de-
scribed by Darwin). In this case it was used to generate values for the parameters of
CALM-networks. All parameters are multiplied by a random real value in the range
[0.50...1.50], thus repeatedly generating new members. The size of the population is
arbitrary, but the search tends to get to directed for small populations (in the same
way as with GAs).
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Chapter 3

L-systems

3.1 Biological Development

The development of living organisms is governed by genes. Each cell contains genetic
information (genotype) which determines the way the organism will look (phenotype).
The genetic information is not a blueprint, but more a recipe of the final form. This
recipe is not followed by the whole organism, but by each cell separately. The shape
and behaviour of a cell depend on the genes from which information is extracted,
which in itself depends on from which genes information was read in the past as well
as the environment of the gene. This leaves the development a solely local matter.

3.2 Simple L-systems

L-systems were introduced in 1968 by Aristid Lindenmayer [Lind 68] in an attempt
to model the biological growth of plants. An L-system is a parallel string rewriting
mechanism, a kind of grammar.

A grammar consists of a starting string and a set of production rules. A production
rule consists of two parts; the part before the —, the left side, and the part after the
—, the right side. The following production rule rewrites an A into AB. Repeated
application will result in the string AB™, with n the number of times the rule was
applied.

A —- AB

The starting string, also known as the aziom, is rewritten by applying the pro-
duction rules: each production rule describes how a certain character or string of
characters should be rewritten into other characters. For a production rule to be ap-
plied, it must first match: the left side of the rule has to be the same as a part that is
to be rewritten. Whereas in other grammars production rules are applied one-by-one

17
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a. The initiator (aziom)

b. The generator (production rule)

c. The generator rewritten

Figure 3.1: Example of a Koch fractal

sequentially, in an L-system all characters in a string are rewritten in parallel to form
a new string.

This creates the opportunity to draw approximations of certain types of fractals,
by using a special interpretation of a string generated by an L-system. We do this by
using a LOGO-style turtle [Szil 79].

Consider the following L-system:

Axiom F
Productionrule F - F-F ++F-F

If we interpret F as a step forward, - as a 45 degree turn left and + as a 45 degree
turn right, we could visualize this production rule as shown in figure 3.1.

3.3 Bracketed L-systems

A disadvantage of the turtle symbols from the previous paragraph, is that they can
only make so called single line drawings, in contrast to what is observed in natural life
branching, as seen in for instance plants. To give the turtle the freedom of movement
to create this more natural branching, two new symbols are added:

[ Remember the current position and direction of the turtle (push).
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Figure 3.2: 30 rewriting steps, § = 16°, axiom F1F1F1. See the text for the production
rules used.

] Restore the last stored position and direction (pop).

With these two new symbols, far more realistic drawings can be made, as can be
seen in figure 3.2.

3.4 Context Sensitive L-systems

Another way of making more complex, more natural looking drawings of plants, is
implemented by using context. Context models the exchange of information between
neighbouring cells, it can be left, right or both for a certain string. An L-system
without context is called a OL-system, an L-system with one-sided context a 1L-
system, and one with context on both sides a 2L-system. A production rule is of the
following form:

L<P>R—S
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Where P (the predecessor) models the left side in the earlier production rule
without context, and S (the successor) the right side. L and R are the left-context
and right-context respectively.

If in a rule P has context on both sides, it can only be replaced by S if it has
its left context directly on the left in the string and its right context directly on the
right. If two production rules qualify for application, the one with context is chosen.

If we take the following production rules:

A—-X
B—-Y
C—7Z

the string ABC would be rewritten to XYZ, after which neither of the rules applies.
If we were to take these production rules:

A - X
B — Y
Y < C — 7Z

the string ABC would be rewritten to XYC in one step. The C is not rewritten
because the left context is not Y at the moment of writing (remember, rewriting goes
in parallel, so C’s left context still is B). However, if we were to rewrite XYC we
would find one rule that applies: since C’s left context now has been changed to Y,
the third rule does apply. This results in XYC being rewritten to XYZ.
Determining what the context is, is a little more tricky with bracketed 2L-systems.
Since the left and right context is not always direct left or right from the string or
character that is to be replaced, but can be distanced by a bracketed pattern (these
bracketed patterns would represent branches if we were to plot the string as a tree)
([Prus 89]). If we, for instance, had a production rule with the following left side:

BC <S> G[H|M

It could be applied on the § in:

ABC[DE|[SGIHI[JK]|L]MNO)]

skipping DE on the left side and I[JK]L on the right side in the process, since these
represent (parts of) branches that are of no importance to the rule to be applied.

The following example was generated by Hogeweg and Hesper [Hoge 74] and pro-
duces a quite natural looking drawing of a plant. See figure 3.2 for a picture.
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Figure 3.3: Both plants were created with the rules ' — F[+F|f[—F]F,
F — F[+F]F and F — F[-F|F, each with a 33% probability.

0O < 0 > 0 — 0
0 < 0 > 1 — 1-FIF1]
0o <1 > 0 — 1
0 <1 > 1 — 1
1 < 0 > 0 — 0
1 < 0 > 1 — 1FIF
1 <1 > 0 = 1
1 <1 > 1 = 0
+ - -
- - +

3.5 Implementation

Przemyslaw Prusinkiewicz and James Hanan [Prus 89] present a small L-system pro-
gram for the Macintosh (in C). To experiment with L-systems Boers and Kuiper
ported this to PCs. Besides fixing some“irregularitie” the program was rewritten in
order to accept less rigid input files. Two features were added: probabilistic production
rules and production rule ranges (both from [Prus 89]).

With probabilistic rules more than one production rule for the same L, P and R
can be given, each with a certain probability. When rewriting a string, one of the
rules is selected proportional to its probability. This results in more natural looking
plants, without them losing their characteristic appearance. Figure 3.3 shows a plant
that was created with one set of probabilistic rules.

Production rule ranges introduce a temporal aspect to the L-system and tell which
rules should be looked at during a certain rewriting step. This can be used for exam-
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ple, to generate twigs first and then the leaves and flowers at the end of those twigs.
All the examples shown were generated using software by Egbert Boers. See section
7.1 for an extension of L-systems producing Artificial Neural Network architectures.



Chapter 4

Neural Networks

4.1 The Human Brain

The human brain consists of a large number of interconnected neurons. Fach of these
neurons shows rather complex bio-electrical and bio-chemical behaviour, although it
does not appear to do more than determine whether there is enough stimulation for it
to fire. What happens is that the neuron gets electrically charged substances, which
are collected in the cell body. If the potential of the substances in the cell exceeds a
certain threshold the neuron fires and the cell is neutralized again. When the neuron is
not stimulated enough to fire, the electrically charged substances also float out of the
cell body. Even though all the units perform such in principle simple actions, the total
creates behaviour more complicated than we can fully understand at the moment (or
ever...). Since the units do not appear to be the ones performing complex behaviour, it
can only be the interaction between them that does. Even though neurons are rather
slow compared to modern day computers, their large number gives them such a great
advantage, that computers haven’t managed in coming close to the human brains in
their achievements. It is this larger number of the neurons that is believed to be the
basis of intelligence, even though we do not even know what exactly intelligence is.
And if we ever find out what intelligence is, it will probably be done by intelligence...

4.2 Artificial Intelligence

Those working in the field of Artificial Intelligence are mainly concerned with trying
to create intelligent behaviour in machines. This task is a task into the unknown
for more than one reason, the first being that we are not even that sure we know
what intelligence is. Webster’s Dictionary alone gives four definitions of Artificial
Intelligence:

23



24 CHAPTER 4. NEURAL NETWORKS

1. An area of study in the field of computer science. Artificial Intelligence is
concerned with the development of computers able to engage in human-like
thought processes, such as learning, reasoning, and self-correction.

2. The concept that machines can be improved to assume some capabilities nor-
mally thought be like human intelligence such as learning, adapting, self-cor-
rection, etc.

3. The extension of human intelligence through the use of computers, as in times
past physical power was extended through the use of mechanical tools.

4. In a restricted sense, the study of techniques to use computers more effectively
by improved programming techniques.

Alan Turing [Turi 63] has proposed a test that should be satisfied in order to speak
of intelligence, the Turing test. A person is placed in a room with two terminals, each
of which he can ask questions. On one of the terminals the answers are given by a
human, on the other one by a computer. If the person fails to determine which of
the two is manned by the computer, the computer is said to have passed the test.
Of course the set up has to be made in a way that makes it impossible to determine
which is which by factors not of importance, such as the speed of answer (a computer
is unlikely to make typing errors, humans however...).

Traditionally researchers tried to create intelligent behaviour by using things like
rule based systems, but these never could give the desired behaviour. So far no one
came up with a set of rules that created intelligent behaviour, although there are some
rule based systems that perform pretty well in a very small field—so called expert
systems—but don’t ask one of these how much a carton of milk costs... It should
be noted that ANNs can also be seen as rule-based systems, however, as opposed to
“traditional” rule-based systems, ANNs work sub-symbolically.

Another problem in these rule based systems is that the programmer has to supply
all the knowledge. However, it turns out that the real life expert often doesn’t know
exactly why he came up with a certain solution for a presented problem. Part of being
an expert is “feeling” the solution. This method of problem solving is, of course, hard
to formalize. Therefore a new area of research, knowledge engineering, has arisen
which purpose it is to find methods for acquiring knowledge.

The lack of success in the search for intelligence with traditional methods, has
made researchers look for other options. They found one in reverse engineering, a
method that worked well on a lot of other occasions. The idea is to look at something
that works and try to imitate that. In this case that means trying to make something
that works like a human brain.
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4.3 The Neuron

The main actors in our brains are neurons. Therefore artificial neural networks are
based mainly on the workings of neurons. The neuron shown in figure 4.1 can be
separated in the three functional parts: azon, cell body and dendrites. The dendrites
receive information from other neurons and transmit those signals by electro-chemical
means to the cell body. The body collects all these signals, sums them and if this sum
exceeds the threshold for that neuron, the axon is activated: the neuron fires. The
axon transmits this activation to the dendrites of other cells. The communication
from one neuron to another takes place at the synaptic junction, or synapse. The
synapse is a small gap between the axon of one neuron and a dendrite of the next.
The axon releases neurotransmitters which are absorbed by the dendrite. These chem-
ical substances influence the potential inside the receiving cell body. When learning
takes place, the amount of released neurotransmitters changes (for a more elaborate
coverage of these concepts see [Free 91| and [Bloo 88]).

4.4 The Connected Neurons: a Brain

The brain consists of about 10'' neurons. Because of this number it is virtually
impossible to simply connect every neuron to every other neuron. To prevent from
having to fully connect, the brain got split in several regions, most of which are split
in several regions again. The smallest neuron structures found in the brains are the so
called mini-columns ([Bloo 88]), consisting of some 100 neurons each. The simplest
division of the brain is in the left and the right hemisphere. These two hemispheres
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are connected by the corpus callosum. Apart from this, there is also a division into
smaller functional areas, such as the visual area or the auditory area. Usually there
are relatively few connections between areas with different functions. This strong
modularity is partly suggested by patient studies, see for instance [Gazz 89]. Despite
this strong modularization the brain still has some 10'® connections. This number
immediately indicates one of the reasons researchers have as yet not run complete
simulations of human brains—apart from the fact that they are not that sure that
our current ANNs are a fair copy of our brains—it would be too big a simulation to
fit into a computer’s memory (apart from the fact that it takes too much time).

From these numbers we can give an estimate of the brains computing power. Every
axon is able to transmit one pulse every 10 milliseconds, and since a neuron fires or
not, we can say that one neuron transmits 100 bits per second, which results in the
complete brain transmitting 10'3 bits per second. Jacob Schwartz [Schw 88] estimates
the total number of arithmetic operations even higher, at 10'® per second, needing
10'® bytes of memory. This is a lot faster than the best of current supercomputers
does; the best we can do so far is the CM-5. This machine is developed to entail
16,384 processors, giving 0.7 * 10'? floating point operations, with a transport of
1.6 % 101! ([Hill 93]), leaving us still about a factor 10° short. Tt should be noted that
the largest version sold so far had “only” 1,024 processors. This gap between current
and needed possibilities is a definite motivation to do a lot of research in massive
parallel computing

4.5 Artificial Neurons

As a consequence of the huge complexity of the human brain and the state of current
hardware, it is impossible to build an artificial brain that imitates the natural brain
in all its detail. So in order to make use of its functional principles, we are forced to
make very large simplifications regarding the computations performed by the neurons
and their connectivity.

The most obvious function of neurons is taking their real-valued inputs and de-
termining their activation from that. This activation determines whether the neuron
will fire or not. Normally the stimulation is simply the (weighted) sum of all the
inputs. Usually a bias is added, which shifts the activation relative to the origin:

n
stim = Zwixi +0.
i=1

The analogy with the real life neuron is obvious: where the neurons in the brain
get charged chemicals in their cell bodies, where reaching a charge above a certain
threshold makes the neuron fire, the artificial neuron simply sums the input values and
determines whether it will fire by comparing it to a threshold value. The amount of
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neurotransmitters transmitted by the axon are a metaphor for the weights in artificial
neurons. The connections in artificial neural networks are not specifically excitatory
or inhibitory, like they are in the brain, but the weights can be either negative or
positive, and can be changed during the learning process. It should be noted that the
stimulation is not necessarily the same as the activation of the neuron:

act = f(stim).
Sometimes it is implemented as a function of the stimulation and the previous
activation:
act(t) = f(act(t — 1), stim(t)).

Although f is determined for a large part by the type of ANN being used, the
basic functioning of neurons is globally the same, since all ANNs are in one way or
another based on the original brain.

4.6 Artificial Neural Networks

In artificial neural networks we take the next step: the connection of a number of
neurons into a network. One of the main problems to be tackled in artificial neural
networks is that we are modeling things we do not fully understand. So we don’t
really know whether the neural network we create is even remotely similar to its
original. What we do know is that one of the larger advantages of ANNs is that we
do not have to present to a network how we came to a certain solution: we simply
present the network with a lot of problems and their solutions, and the ANN finds
the regularities in the associations of input/output pairs itself.

Some areas where neural networks have been successfully used are ([Hech 90] gives
a more extensive overview):

e handwritten character recognition,
e image compression,

e noise filtering,

e broomstick balancing,

e automobile autopilot,

e nuclear power-plant control,

e loan application scoring,

e speech processing,
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e medical diagnoses .

4.7 The Training Set

Since it is normally impossible to present a network with all possible inputs, we only
present it with part of it, the training set. This set has to be chosen in such a way
that the network also gives correct output for an input that was not in the training
set. If the network also responds well to inputs that were not in the training set, it is
said to generalize well. If the training set wasn’t a good representation of all possible
inputs, the network probably will not perform too well on inputs not in the training
set. Generalization is quite similar to interpolation in mathematics.

4.8 Back Propagation Networks

Probably the best known artificial neural network learning paradigm is Back Prop-
agation. It was first formalized by Werbos [Werb 74] and later by Parker [Park 85]
and Rumelhart and McClelland [Rume 86]. It is a multi-layer feed forward network
that is trained with supervised learning. Normally a BPN has an input and an out-
put layer, and a certain amount of hidden layers. The input and output layers are
mandatory, the number of hidden layers is free, but often a single layer is chosen.
Nodes in a certain layer only get input from other lower layers, which means that
the input layer does not get any input from within the net, and only give output to
nodes in higher layers, which means that nodes in the output layer do not give output
to other nodes. This constitutes the feed forward principle: input only comes from
lower layers and output only goes to higher layers. Their is no recurrence in a feed
forward network, although there are some adaptations of the BPN paradigm that
allow a limited amount of recurrence. It should be noted that the lack of recurrence
is a huge simplification of the real brain. Figure 4.2 shows an example of a BPN with
one hidden layer. The subsequent layers are fully connected.

During supervised learning the network is repeatedly presented input/output pairs
(I, O) by a supervisor, where O is the desired output of input I. The input/output
pairs specify the activation patterns of the input and output layers of the network
respectively. The network has to find an internal representation that associates the
input with the desired output. To achieve this, Back Propagation uses a two-phase
propagate-adapt cycle.

In the first phase the network is presented with the input and the activation of
each of the nodes is propagated through the net to the first hidden layer (or the output
layer, if no hidden layers are present), where each node sums its input and decides
whether it should fire to the modules in the next layer. This process repeats itself
until the activations have reached the output layer.
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Figure 4.2: A Back Propagation Network

In the second phase the output of the network is compared to the desired output
and the error is calculated for each of the nodes in the output layer with this formula:

67 = 0;(1 — 0;)(y; — 0;)

where 0; is the output the network gave on node 7, and y; is the desired output for
node i. These error values are transmitted to the last of the hidden layers—hence
the name Back Propagation—where for each node its total contribution to the error
is calculated:

h 0, .0
7j=1

where wy; is the weight of the connection from hidden node j to output node 7. The

calculations for possible other hidden layers are done in a similar way. Based on these
contributions to the errors, the connection weights are adapted:

wl(t + 1) = w(t) + adlh; + BAWY(t — 1)
with Awf;(t — 1) = wy;(t) — wi;(t — 1), for the weights to the output layer and

wli(t+1) = wls + adlz; + BAw(E - 1)

for the hidden layer(s). This makes the overall error:
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1 r
E = 3 > (yi — 0i)?

=1

(for this input/output pair) smaller, with the overall objective being to reach its
minimum.

When we take a (n+1)-space, with n the number of weights in the network, we can
plot the total error of the net for all inputs as a function of all the weights. This space
is called the error space. Since we want the network to perform as well as possible,
we want to find the minimum in this error space. The function drawn in this space
can be seen as a surface across which we let a marble roll during learning with Back
Propagation: it always follows the steepest gradient, or the direction that goes down
as fast as possible. However, it is possible that the error surface not only has the
wanted global minimum, but also some local minima. The fact that a certain point
on the error surface is a minimum, means that the surface goes up on all surrounding
sides. This means that when the marble hits a minimum, it will stay there. This
is—of course—rather unfortunate when the found minimum is not a global, but a
local minimum: the network gets stuck in the local minimum.

4.9 Problems with Back Propagation

As mentioned in the previous paragraph, one of the problems of Back Propagation
is that it can get stuck in a local minimum. This isn’t too bad if the local minimum
turns out to be close to the global minimum, but there is no guarantee of that.
This problem can be partially solved by using a momentum term. The momentum
term uses the speed the marble already has, so when it hits the minimum it will not
immediately remain there, it will first go up again. This works because the edges
around a local minimum are lower than those around a global minimum most of the
time (the global minimum is the deepest point of the problems space, so speaking
on the average, it must be harder to get out of a global minimum, than it us to get
out of a local minimum). So if the momentum term is chosen right, it can push the
marble out of the ditch created by the local minimum, but it will remain in the ditch
created by the global minimum. This momentum term also enhances learning, since
it uses the steepness of the slope the “marble” is on, instead of simply using steps of
fixed size when moving through the error space.

Another problem associated with Back Propagation is that the place at which
one starts on the error surface — which is determined by the initial weight settings,
which are often random — determines whether or not a good or the best solution is
found. When a solution is found that performs well on the training set, the network
might still perform badly on the overall set of input, if the training set was not a good
representation. One danger in Back Propagation is for the network to get overtrained.
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This means that the net did not look at similarities over the input, but simply learned
all associations by heart. If presented with output not in the training set, the network
will likely respond with other output than the desired. This problem only occurs when
the network is still further trained, even though it already gives correct output. The
network has learned to detect global features at first, but is trained longer and reaches
such a specialization in the given training set, that it loses its ability to generalize:
there is no need for generalization, it already knows every input/output pairing. This
will have resulted in perfect scores on the training set. Overtraining can only happen
if the network is large relative to the training set. In this case training is better
stopped before full conversion on the training set is reached. Other ways to prevent
overtraining is using a smaller network or adding noise to the input. Both methods
will result in poorer performance on the training set, but will lead to better overall
results.

Unfortunately Back Propagation does not do well on extrapolation. If it is trained
in a certain area, it does not perform well in other areas, even if these are close to
the trained area. This stresses the importance of choosing a proper training set.
Back Propagation can be used, however, to make predictions when historic data is
available.

A last problem is the occurrence of interference. This occurs when a network is
supposed to learn similar tasks at the same time. Apart from the fact that smaller
networks are unable to learn too many associations—they simply are full after a
certain amount of learned associations—there is also the danger of input patterns
being so hard to separate, that the network can’t find a way to do it. When we
look at the problem we can take its input and divide that into categories. If we
plot this, we would get a problem space. The network has to fill this space with
figures of such a form that all inputs from the same category are included in the
same figure. This means that the network has to encode these forms in some way.
The more complex these forms—or the more precise they have to be—the harder it
is for the network to learn it. This means that inputs that are close together, with
little room left for a line separating the categories of the problems, and figures with
strange forms (the more concave, the worse) are hard to learn. An example of such
interference between more classifications is the recognition of both position and shape
of an input pattern [Ruec 89]. Rueckle et al. conducted a number of simulations in
which they trained a three layer Back Propagation Network with 25 input nodes, 18
hidden nodes and 18 output nodes to simultaneously process form and place of the
input pattern. They used nine, 3x3 binary input patterns at 9 different positions on
a bxb input grid, resulting in 81 different combinations of shape and position. The
network had to encode both form and place of a presented stimulus in the output layer.
It appeared that the network learned faster and made less mistakes when the tasks
were processed in separated parts of the network, while the total amount of nodes
stayed the same. The number of hidden nodes allocated to both sub-networks was
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of importance. When both networks had 9 hidden nodes the combined performance
was even worse than that of the single network with 18 hidden nodes. Optimal
performance was obtained when 4 hidden nodes were dedicated to the place of the
pattern and 14 to the apparently more complex task of the shape of the pattern.
It should be emphasized that Rueckle et al. tried to explain why form and place
are processed separately in the brain. The actual experiment they did, showed that
processing the two tasks in one unsplit hidden layer caused interference. What they
failed to describe, however, is that removing the hidden layer altogether, connecting
input and output directly, leads to an even better network than the optimum they
found using 20 hidden nodes in separate sub-networks, as described in [Boer 92].
However, more recent research has been unable to reproduce this (see Lawrence Pit’s
Master’s thesis, which will appear around September 1995). Another example of
the difficulty Back Propagation has in separating a task in modules can be found in
Norris’ article about an idiot savant date calculator [Norr 90].

The problems mentioned, however, do not occur solely with Back Propagation,
a lot of other network paradigms suffer from it. This brought on the search for
modularity, which we already find in the brain, and which we also find in CALM, to
which I will turn in the next chapter.

4.10 Modular Back Propagation

Until now we have discussed only simple networks, where every layer is fully connected
to the next. However, this is not due to a limitation in the Back Propagation’s learning
rules. More complicated networks are created by, for instance, adding hidden layers.
This doesn’t really add to the computational power of the network—in fact, it has
been proven that all continuous functions that can be implemented by a network with
more than one hidden layer can also be implemented by a network with one hidden
layer, although we would need an infinite number of nodes in the hidden layer for the
error to approach 0—but it does enhance the speed with which the network learns,
especially for highly nonlinear inputs, inputs that are hard to differentiate.

When more hidden layers are used, all layers are still fully connected to the next.
This means that all modularity in the net has to be propagated to the nodes through
the connections. Another way is to not simply create full connectivity between layers,
but leave specific connections out. So by adding hidden layers without full connectiv-
ity, we can greatly enhance the amount of modularity in the network, without raising
the number of weights to astronomical numbers. See for instance the accompanying
figure 4.3(a) , which can be separated in two parts.

Since there are no connections between the two parts of the network, the number of
weights is reduced by 10 compared to a fully connected network with the same number
of nodes in each of the layers. Apart from a speed up caused by less connections,
there might also be a speed up due to the greater modularity of the network.
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(a) (b)

Figure 4.3: A modular Back Propagation Network and its modularized counterpart.

To further enhance this idea of modularity, we define a module to be a group of
mutually unconnected nodes with as well the same set of input as of output nodes
[Boer 92]. This means that a fully connected network has the same number of modules
as it has layers. The network from figure 4.3(a) has 6 modules. Every node in a Back
Propagation Network is in exactly one of these modules. In figure 4.3(b) the network
of figure 4.3(a) is remodeled to this standard, and is, as you will see, a lot simpler
than its original counterpart.

This idea of modules is much more elaborated on in CALM, to which we will turn
in the next chapter. It should be noted that there are connections with a CALM,
but that they are not between the CALM-counterparts of BPNs nodes, but between
nodes of different types.

To test whether this modularization worked, Boers and Kuiper [Boer 92] imple-
mented a Back Propagation Network for the XOR-problem with a different topology
than the network used by Rumelhart and McClelland [Rume 86]. The two networks
are shown in figure 4.4. Rumelhart and McClelland’s network got stuck in a local
minimum a couple of times during their experiments. Boers and Kuiper found that
their network not only always learned to solve the problem, but it also learned faster
than Rumelhart and McClelland’s network did. On plotting the number of training
steps required by the net as a function of the two learning parameters Boers and
Kuiper found a much more regular dependence for their network than they found
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(a) (b)

Figure 4.4: “The McClelland and Rumelhart” and “The Boers and Kuiper” networks

for Rumelhart and McClelland’s network. Apart from that, they found that for the
best combination for the learning parameters the Rumelhart and McClelland network
needed 1650 training cycles, while the Boers and Kuiper network needed only 30 cy-
cles. McClelland and Rumelhart also found a net with a different architecture, which
did work with all experiments, although it still tended to be slow in learning.

The intuitive idea behind imposing modularity on a network is modeling the
weight space in such a way that all local minima disappear, making the surface a
lot smoother along the way. This greatly enhances learning. But if modularity is
imposed by simply changing the structure of the network, we get our network in a
highly unnatural way. What we’re trying to do, is to imitate nature by creating an
artificial neural network, but since neural networks aren’t structured by some divine
hand, but develop naturally, this is not biologically plausible: it is not similar to the
way things happen in a more natural context. So we need a different method if we
want to preserve biological plausibility.

Another problem modularity poses us with, is that of finding a suitable topology
for a given problem (in determining whether a network is good, we also need to know
what problem it is supposed to solve, since different problems have different suitable
topologies). This was already a problem with classic networks, but with the extra
complexity of the network connections, this problem gets even more difficult to solve,
especially by hand.

The simplest method is of course to choose something for ourselves, however, this
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is—as mentioned before—hardly biologically plausible and is difficult to do, since we
often do not know what would be a good topology for a network.

Since BPNs were of secondary importance to this research, only a limited overview
was given here. More complete treatises on them can be found in [Boer 92] and for
instance [Free 91] and [Hech 90].
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Chapter 5

CALM

A relatively recent approach to artificial neural networks, CALM, was developed at
the Department of Experimental Psychology at the University of Leiden [Murr 92].
CALM stands for Categorizing And Learning Module. A CALM is a building block
for a network of CALMs, but is far more complicated than the building blocks in for
instance Back Propagation or Hopfield networks. A CALM consists of several types
of nodes (these can be compared to the nodes in other types of neural networks)
connected to each other by connections with fixed weights, that is the weights stay
constant during learning.

The idea of a CALM is, as its name already suggest, to categorize input. Therefore
the chosen convergence criterion is often for exactly one node to remain active, the
node that represents the category in which the input is put.

5.1 The Maths behind CALM

The effective input to node i—the excitation e;—is the weighted sum of the individual
activations of all nodes connected to the input side of node i. Each input is either
excitatory or inhibitory (this is a feature of a connection, not of a node). It should be
noted that this is highly biologically plausible, since the neurons in the human brain
also only have connections which are either positive or negative. The activation of
node 7 at time (¢ + 1), a;(t + 1), is a function of a;(t), the activation at time ¢, and
its input excitation e;, expressed in the following formula:

€;

ai(t + 1) = (1 - k)ai(t) + [1 - (1 - k)ai(t)],Ei >0

1+4e;

for excitatory input, and:

ait+1) = (1 = k)ai(t) + —

(1 — k)ai(t),ei <0

37
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Figure 5.1: The labeling of nodes

for inhibitory input, where
e = Zwijaj(t)
J

with w;; denoting the weight of a connection from node j to node i (see figure 5.1).
The difference in time between ¢t and ¢ 4+ 1 is called the iteration time. k, the decay
factor, is a constant between zero and one. It should be noted that the summation
for e; takes both inhibitory and excitatory input into account.

The activation rule can be split into three important parts. The first, (1 —&)a;(¢),
represents the decay of the activation of the node. When no new input arrives, the
activation of the node gradually decays to zero (asymptotically). Since k is supposed
to be a decay parameter, it should be chosen between 0 and 1; if it is smaller than
0 the activation will rise with time, if it is chosen larger than one, the activation
will flip signs every iteration (which is something we do not want to happen). The
second part, %, for e; > 0, squashes the input excitation to a number between
one and zero. The third part [(1 — k)a;(¢)], makes sure the increase of the excitation
decreases with growing excitation, thus making the activation grow asymptotically
towards the maximum activation. Something equivalent holds for the part for e; < 0:
T-4- squashes the negative excitation between minus one and zero, the (1 — k)a;(?)
component ensures the asymptotic approach of the minimum activation.

5.2 The Nodes

There are four types of nodes in a CALM. This categorization is made on both the
type of connections of the nodes to other nodes, and the function each type of node
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has within—or, as we shall see, outside—a CALM.

The first type is comprised of nodes which have modifiable connections to sim-
ilar nodes in other modules. All the outgoing connections from R-nodes, short for
Representation nodes—both inside and outside the CALM—are excitatory. Since
the activation of these nodes represents the given input or the resulting output of the
CALM, these nodes are called R-nodes. R-nodes are the only nodes that communicate
with the nodes outside of the CALM.

The nodes in the second category are the V-nodes, or Veto-nodes. V-nodes have
only inhibitory outgoing connections. A V-node inhibits all the other nodes within
the CALM: they inhibit all their fellow V-nodes, as well as all R-nodes. Every V-
node receives excitatory input from exactly one R-node, and every R-node receives
inhibitory input from all V-nodes, but a little less from the V-node to which it is
paired. This means that each R-node forms a pair with a V-node. Since such a
pairing is mandatory, there is always the same number of R-nodes and V-nodes.

There is always exactly one node of the third category in a CALM, the A-node,
or Arousal-node. The A-node is excited by all R-nodes and inhibited by all V-nodes.
Because of the weights on the connections within the CALM the excitation of the
A-node designates the amount of competition within the module. In a CALM com-
petition will be most prevalent for inputs that weren’t offered before, new input which
hasn’t been learned by the network or CALM yet.

The fourth and final node category is the E-node, or External-node. It is a node
that differs from the other types of nodes in that it isn’t exactly in the CALM, even
though it does belong with the CALM. It is meant to model a certain part of an
arousal center outside the model. This is a metaphor to certain sub-cortical centers
in the nervous system that seem to diffusely activate large parts of the cortex. Several
E-nodes may be connected to form such a center, but in most simulations just one E-
node per CALM is used. So generally an E-node has connections to just one CALM.
The E-node receives input only from the A-node of the CALM to which it is attached
and sends random activations to all the R-nodes of the CALM. These random pulses
fall within the range [0,ag(t)], where ag(t) stands for the activation of the E-node
at the time . What the E-node does by this construction is basically rattling the
R-nodes. If several R-nodes within the CALM are highly active—when the CALM
is not able to find the right category for the input—this E-node activation gives all
the R-nodes a different random stimulation. Since these stimulations vary, one of the
competing nodes will probably get a larger extra stimulation than the other ones,
which results in its activation going up further than the activation of the other nodes.
This solves the competition within the CALM (not immediately, but in the long run
the advantage given by the stronger stimulation will leave the node on top). Due to
the continuous activation of the A-node, this external stimulation process will go on
until the competition within the CALM is resolved. Figure 5.2 shows a CALM with
3 R-nodes (resulting in three V-nodes).
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R-nodes
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Figure 5.2: A schematic drawing of a CALM, with three R-nodes. It also contains all
types of connections, numbered for type. For clarity’s sake not all connections were

numbered. The meaning of the numbers is:
1. Up-weight 3. Cross-weight 5. Low-weight 7. AE-weight
2. Down-weight 4. Flat-weight 6. High-weight 8. Strange-weight
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5.3 The Internal Connections

Like the nodes, all the different types of connections have received different names.
The weights of all these connections remain fixed at a freely chosen value during
learning (the are determined before actually using the network, in fact, determin-
ing the parameter is closely related to determing the architecture of the network).
The values of the weights connecting different CALMs all remain within the interval
[1, K|. These weights will change during learning. Figure 5.2 also shows the types of
connections possible in a CALM.
The different types of internal weights are:

e Up-weight (excitatory): connection from an R-node to its corresponding V-
node.

e Down-weight (inhibitory): this is the counterpart of the up-weight connec-
tion. The up- and down-weights together cause an R-V-node pair to exhibit
differentiating characteristics with respect to changes in activation input to the
R-node.

e Cross-weight (inhibitory): control recurrent lateral inhibition from V-nodes to
R-nodes. Normally these weights are significantly larger than the down-weights,
to enhance the performance of their own paired R-node.

e Flat-weight (inhibitory): control the competition between the V-nodes, and
thus between the R-V-node pairs.

e Low-weight (excitatory): control excitation of the A-node by the R-nodes.
If a lot of competition occurs between the R-nodes, these connections get the
activation of the A-node up, as to later resolve the competition between the
R-nodes through the E-node.

e High-weight (inhibitory): control inhibition of the A-node by the V-nodes.
These weights are relatively low compared to the low-weights, this to make sure
the A-node does get activated if to much competition occurs, and to keep its
activation relatively low when the competition is within boundaries.

e AE-weight (excitatory): regulates the activation of the E-node if the compe-
tition within the CALM can’t be resolved.

e Strange-weight (excitatory): regulates the random activations used to resolve
activation. In contrast to the other connections, the weights of the strange-
weight connections differ within a module.
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Appendix A sums up the initial values of the CALM parameters, including those
of the weights.

As already suggested, all weights of the same type—strange-weights excepted—
within one module are set to the same value. These weight values are parameters to
a certain CALM, and do not change during learning. Since we want the connections
to perform certain functions within a CALM, we can say something about the values
of certain weights relative to others. The cross-weights for instance are meant to
increase the chances of the R-V-node pair, from whose V-node the cross-weights
leave. Therefore the value of these weights has to be far higher than that of the
down-weight. In this way the activation of the other R-nodes is pushed down far
more strongly than the R-node of the R-V-node pair, thus increasing its chance of
winning the competition. Another example is the ratio of high- and low-weights.
The A-node has to be activated if the competition can’t be resolved, but it should
not be activated if there is little competition. In fact, it is important for the correct
functioning of the module that the activation of the A-node decreases to zero as soon
the competition is resolved. To make sure this happens, the high-weight has to be
higher than the low-weight.

5.4 The External Connections: Learning

There is just one kind of weight between interconnected CALMs: the inter-weight.
Connected CALMs are always fully connected, that is if CALM 1 receives input from
CALM 2, every R-node in CALM 1 receives input from every R-node in CALM 2.
Connections between CALMs are normally directed, but can be chosen to be recip-
rocal. All inter-weights fall within the interval [0, K], with K one of the learning
parameters of the learning rule. The weights are adjusted using an adaptation of
Grossberg’s learning rule, which is related to the Hebb-rule during learning. In the
Hebb-rule the weight depends on the correlation of the activations of the two con-
nected nodes: if they have similar activations the weight is increased, if they differ
the weight is decreased. It should be noted that changes in weight only appear when
at least one node is active (during learning only external weights, that is, weights
of connections between CALMs, not within CALMs, change). Grossberg [Gros 76]
modified this by also taking the total background excitation into account. This back-
ground excitation is caused by the neighbouring R-nodes which give activation to the
corresponding R-node in the other module (since two connected CALMs are always
fully connected). Another adaptation is that the weights can only asymptotically
approach their minimum and maximum values.

Two adaptations were made to Grossberg’s scheme: the learning parameter y was
made dependent on the novelty of the presented input pattern. Secondly instead of
using the unweighted background activation, - ar, the weighted sum, Y- w;r(t)ay, is
used. The w;; are the weights between node 7 and all the nodes f it is connected to.
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This immediately takes care of the awkward question of how a node can get its back-
ground activation without going through the weighted connection. This adaptation
thus enhances biological plausibility.

All this results in the following learning rule:

Aw;j(t + 1) = pai[ (K — wij(t))aj — Lwii(t) Y wif(H)ay)
f#i

where af, a; and a; stand for ay(t), a;(t) and a;(t), respectively. w;;(t) is the inter-
weight from R-node j to 7 (where i and j are R-nodes in two different, connected
CALMs), and the w;¢(t) denote the factor representing the aforementioned back-
ground activation. Aw;;(t + 1) denotes the change in value of the weight of the
connection from R-node j to R-node 7. L and K are positive constants, f, < and j are
node numbers. The K —w;; term is always positive, since K is the upper boundary of
wjj, it also helps inflicting the upper boundary K. The second term within brackets
lets the Aw;;(t + 1) go down further proportional to the amount of background exci-
tation. A high background excitation combined with a high w;;(t) might even make
the weight go down, even though a; and a; are correlated. In this manner an overall
down scaling of the weights occurs, thus preventing the weights from suffering from
ceiling effects. The importance of preventing these ceiling effects have been discussed
by Carpenter and Grossberg [Carp 87| within the framework of their “Weber Law
rule”. It should be noted that the nodes adding to the background activation do not
lie in the same module as node j.

If node j is inactive, the weight will decrease, since only the second part of the
formula between brackets is significant. p; represents the Hebb-parameter, controlling
the learning rate of the module, and is defined as:

pe =d+wypagp

where d is a low valued constant, and ap is the activation of the E-node. To make
sure wj;(t 4 1) stays within the interval [0, K] it is calculated in the following way:

w;j(t + 1) = max{min[w;;(t) + Aw;;(t + 1), K],0}.

It should be noted that this adaptation is only made for safety reasons, since the
values of w;; will stay within the interval for normal—that is low enough—values for
t¢. This implies that all connections between CALMs are excitatory.

Due to the changes of the inter-weights, each of the input nodes get has certain
R-nodes with which it is connected stronger than to others, which is exactly what
induces the CALM to categorize one input to one R-node and another to a different
R-node.
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5.5 CALM’s Functioning

There are three basic processes that determine the working of CALM: excitatory,
inhibitory and arousal processes.

The excitatory stimulation comes from other modules (within the network), the
E-node or receptor nodes (in this case represented by input patterns). Initially all
modifiable connections have the same weight (since an input pattern in the used im-
plementation is a special case of a CALM, this simply means all connections between
CALMs), resulting in all R-nodes within a single CALM being activated equally. Af-
ter this all V-nodes get activated. The total process results in a lot of competition,
causing the A-node to be activated, which triggers the random activation process by
activating the E-node. In short this means that the excitatory processes trigger the
total working of the CALM system.

The inhibitory process starts as soon as the V-nodes get activated and start to
inhibit R-nodes, A-node and the remaining V-nodes. The process of mutual inhibition
creates competition between the V-nodes (through the flat-weight connections) and
starts, because of the ongoing activation of the R-nodes, an oscillating process in
the activation of the V-nodes. It should be noted that this oscillation only occurs
when there is real competition and not when the input is easily categorized, in fact
the oscillations can be seen as an indicator of competition. The inhibition of the R-
nodes can be split in two kinds: the inhibition of the R-node with which the V-node is
paired up (through the down-weight connections), which is merely to keep activations
within certain boundaries (it can even be kept at zero for networks consisting of a
single CALM), and the lateral (horizontal cross) inhibition of the R-nodes (through
the cross-weight connections), which is far more strong than the inhibition of the
paired R-node. The intensity of the competition is regulated by the flat-weight and
cross-weight connections. The higher these connections are, the stronger activations of
other nodes are vetoed. This results in faster categorization if one R-node repeatedly
receives more input than the others. If there are bidirectional connections between
CALMSs, the down-weight connections can be used to prevent reverberative action
between the winning R-nodes in the CALMs by giving them a small value, after that,
they also take care of the decay of activations of previous inputs.

The function of the arousal process is twofold. First it is meant to resolve com-
petition between several similarly highly activated R-nodes. Since high competition
results in an activated A-node which triggers the E-node, the E-node starts to give
of random activations to the R-nodes, which will give one R-node the advantage that
makes it win the competition (eventually). The second function is to enhance learn-
ing. When we learn the network a certain pattern, we want it to recognize the pattern
not only when it is exactly the same as the one it originally learned, but also when
it is slightly damaged (one of the strengths of neural networks is this kind of gener-
alization. This feature is also found in humans). When we add some random noise
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(which is what we do through the E-nodes), only a categorization that can survive
slight adaptations in the pattern will be able to survive. Due to the functioning of
the E-node, this random noise is much stronger for novel patterns—since they cause
a higher amount of competition—than it is for known patterns. This causes the net-
work to learn more when it is still unfamiliar with the pattern, than it does when it
has already been offered the pattern before. Since we want the A-node to stay quiet
when just one R-V-node pair is active, the low-weight connection has to be higher
than the high-weight connection. However, when several R-nodes are activated, we
want the A-node to become active. This is caused by the flat-weight connections:
when just one V-node is active, these have no function, it only inhibits nodes that
are inactive anyway; when several V-nodes are active, though, it takes down the total
activation of the V-nodes, thus making the influence of the R-nodes greater. This
results in the A-node only being activated when several R-nodes are active. Due to
the initial activation of the V-nodes the activations of the R-nodes are pushed down,
causing the activation of the R-nodes to go up again, etcetera. This oscillatory process
occurs, as mentioned before, when there’s a lot of competition in the module, but will
eventually cease due to the advantage one of the R-nodes—the ultimate winner—gets
through the random activation from the E-node. As the competition decreases, the
activation of the winning R-V-node-pair increases, until it finally reaches a stable sit-
uation, with all the other R~ and V-nodes unactivated. When this state occurs we say
the CALM converged. Convergence is most often used as criterion to stop presenting
the pattern, at least for the output CALM: it is possible for the output CALM to
reach convergence without all CALMs in the network having converged. The winning
R-node will remain activated as long as the input pattern is offered, but its activation
will deteriorate when the pattern is taken away. The coding of the pattern, however,
will remain in the changed inter-weights.

On the average one can say that there’s a trade off between strong oscillation and
changes in the inter-weights. When all the weights are still at initialization value,
changes will be most strong: all R-nodes will receive the same activation. Since not
all of the input patterns nodes are activated, the learning rule will strongly diminish
the values of the weights between those input pattern nodes that are not activated,
and the R-nodes of the CALM '. This change in weights, however, is not the real
learning yet, since all input pattern’s nodes weights receive the same value. The real
learning starts when the CALM starts to categorize the input to one of the R-nodes
of the CALM: the weights between this particular R-node and the activated nodes of
the input pattern will become stronger than other weights. The more input patterns
have been coded in a CALM, the more the weights will have changed, thus resulting
in less oscillation in the CALM, after all, the most important cause of the strong

Tt should be noted that the input pattern can be external, a real input pattern, as well as the
R-nodes of a different CALM. Which of these is the case is of no consequence for the CALM, since
the input pattern is implemented as a stripped CALM
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oscillation is the fact that any R-node could be the R-node to which a certain input
pattern is categorized early on, which is not the case anymore when the CALM has
done a fair share of learning. Re-offering a CALM an input pattern it has already
learned, generally leads to quicker convergence of the module, and firmer coding of
the pattern.

5.6 Categorization and Learning

One of the features of CALMs is that they can learn without assistance: they are very
suitable for unsupervised learning. This feature emerges from the fact that CALM
is a categorizing system, as opposed to associative systems, such as BPN (which can
only be used with supervised learning). When a CALM has learned to categorize
a certain pattern, it has converged to one node, which is then said to represent the
input pattern in the node. Figure 5.3 (adapted from [Murr 92]) shows an example
of learning in a two R-node CALM. Early on all the inter-weight connections are
equal, since the CALM has not learned anything yet. Since all inter-weights are
the same, both R-nodes get activated equally (iteration 2), which gets the A-node
activated (iteration 3), and in itself activated the E-node (iteration 4). In iteration 5
one can see that the right R-node got the advantage of the random activations that
both R-nodes got because of the arousal of the E-node, resulting in a strengthening
of the inter-weight from the left pattern node (the one that is activated), and the
right R-node (the R-node that has become the category of the offered pattern). The
weights of the inter-weight connection from the second pattern node to the second
R-node drop significantly, since the R-node is activated, while the pattern node is not.
At iteration 21 the activation of the left R-node has dropped to nil, while the right
R-node is still strongly active, as is the right V-node. Note that when both R-V-node
pairs are activated the lateral inhibition of the V-nodes makes sure that the A-node is
activated (we want this to happen, since there is strong competition between nodes),
while it has lost its activation when competition has been resolved. In iteration 21,
when the pattern has already been learned, the E-node is still activated, exposing the
CALM to noise, thus enhancing a more stable coding of the input.

5.7 Supervised Learning

As mentioned in the previous section, CALM is a network paradigm that normally
learns with unsupervised learning. However, unsupervised learning only works for
a certain class of problems: those where the input patterns have emergent features,
features that separate them from the other cases, that the network can pick up on.
If, however, we want a CALM to learn the categorization of patterns into categories
defined by us, we need to be able to tell CALM which category the pattern should
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Figure 5.3: An example of learning in a CALM with 2 R-nodes, the numbers at the
upper left of each module indicate the number of the iteration, the size of the dot in
the nodes gives the amount of activation, the thickness of the arrows the size of the
weight. For clarity, the connections other than the inter- and AE-weight connections
were omitted, since these are of no importance to learning.
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be put in.

There are basically three methods to achieve this CALM variation on supervised
learning (that is what we are doing). The first method is to give the V-node paired up
with the R-node to which we want the CALM to converge a starting activation. This
starting activation works as a strong impairment on the other R-nodes, thus giving
the desired R-node such a strong advantage over the other R-nodes, that the CALM
converges to this R-node (assuming we chose the starting activation in the right
interval, of course). Giving the R-node an initial activation would be less effective,
since all R-nodes are immediately activated by the input nodes, which results in the
pre-activated node soon losing it’s advantage. Activating the V-node, however, means
that the activations of all R-nodes to which the V-node is not coupled are kept down.

The second way is to present the CALM with two input patterns: one the original
input pattern, the second the desired output pattern. This second pattern exists of
exactly as many nodes as the output CALM of the network does, with one activated
R-node, representing the category of the input offered on the input pattern. This
hints the network which inputs are to be put in the same category, and which are to
be put in different categories. The network, however, is free to choose on which of
the output nodes it represents the category, that is the output CALM not necessarily
converges to the node activated in the supervise pattern, but there is a one-on-one
correspondence between one node in the supervise pattern and one node in the output
CALM (assuming the network has properly categorized the inputs. This is not some-
thing that always happens: when the parameters are too far off “good” values for the
network, the network will perform poorly, not only resulting in bad categorizations,
but also in ambiguous categorizations). After learning the network a problem, we
have to find what nodes in the output CALM the categories have been mapped upon.
To achieve this we offer the network the supervise pattern only, the input pattern is
left unactivated. This way the output CALM converges upon the supervise pattern
only, thus indicating on which output CALM node the category is mapped. This
second method is far more biologically plausible than the first: when we learn we do
not have one neuron, or group of neurons, previously activated to enhance learning,
we simply get offered the problem and the solution: two inputs, one the problem,
the other the way to learn it. This is very similar to the second supervised learning
method described.

A third method is an adaptation from the second method. In stead of the normal
full connection between patterns and/or modules, a one-to-one connection is chosen
between the supervise pattern and the output CALM. This means that there is a one-
to-one connection between a node in the supervise pattern and the output CALM.
Unfortunately, the implementation of this method is rather cumbersome within the
environment used for this research: all functions are built to work with fully connected
patterns and/or modules, thus making it necessary to change a lot of functions. This
is caused by the node connections being implemented as module connections. Since
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all patterns are implemented as special cases of modules, pattern-module connections
are full connections automatically.
The third method was not used in this research.

5.8 Convergence in CALM-networks

The normal convergence criterion for a CALM-network is, as mentioned before, a
unique categorization for the offered pattern. This strategy, however, limits a CALM-
network in its “expressive” capabilities: systems of coarse coding (the spreading of
information over various nodes, which generally means a potentially far larger chunk
of information can be coded with a certain number of nodes) are excluded by it. In
this research, as most often, this unique categorization criterium is used solely for
the output-CALM, thus making is possible for the internal modules to still use coarse
coding. It might be interesting to do some research in the future after coarse coding
in the output module, even though this makes the interpretation of the output as well
as the learning of the network theoretically more complex.

Normally, a module is said to have converged when one node is above the high
cenvergence criterium, while all the others are below. See Appendix A for default
values.

5.9 Bias-nodes

A common flaw of Artificial Neural Networks is that they are hardly able to categorize
low input, that is, input patterns that hardly bring any activation to the network,
yet we may want this kind of input categorized anyway. A common, and effective,
way to solve this problem is by adding a so-called bias node to the input pattern.
This bias node has the same activation for all patterns, it therefore does not give
any information, it does, however, result in a certain activation. This way we get the
network activated, whether the input pattern itself brings activation, or not.

A further advantage of this method is that the network seems to gain in calculative
power: when using n nodes for an n-wide pattern, the hyperplanes always go through
the origin of the problem space, when using an n 4+ 1-wide pattern, the hyper planes
gain freedom, thus making for wider possibilities in categorizations. Examples of this
can be seen in some of the pictures in chapter 10.
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Chapter 6

Biological Plausibility

6.1 Modularity in Nature: the Modularized Brain

One of the simplest definitions of modularity is a subdivision in identifiable parts, each
with its own purpose or function [Boer 92]. Using this definition almost everything
has some kind of modularity, no matter how rudimentary it is.

Just like almost everything else, a being, be it human or not, can be split into
modules. One of the most obvious is a decomposition in organs, which can be de-
composed in cells, which can be split in the organelles that are in the nucleus and the
cytoplasm. The different organelles have different functions within in their cells, as
do the cells in their organs, as do the organs in the total organism.

As all organs, the brain can be decomposed in structures, which make the brain
into a strongly modularized whole, each module consisting of a number of neurons.

Two of the most prominent structural characteristics of the brain will be referred
to as horizontal and vertical structure [Bloo 88]. Horizontal structure is found where
processing in the brain is carried out by subsequent hierarchical neuron layers. Such
multi stage information processing can for example be identified in the primary visual
system, where simple features of visual images as line and arcs are represented in layers
of simple neurons which are combined and represented by neurons in subsequent layers
that possess increasingly complex representational properties (e.g. [Hube 62]). The
vertical structure of the brain allows for separate processing of different kinds of
information. An example for this, too, can be found in the visual system: form,
colour, motion and place are processed in parallel by anatomically separate neural
systems. This information is integrated at higher levels by convergent structures.
The presence of horizontal and vertical structures makes the organization of the brain
modular, as does the subdivision of the brain into two hemispheres. This subdivision
does constitute a hemispheric specialization. Striking examples of this can be seen in
so called split brain patients, patients who had their corpus callosum, a large structure
that connects the two hemispheres, severed. These patients can function normally

ol
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up to a high degree, since the communication between the two hemispheres can go
through the outside world. Experiments with such patients show that there is a large
modularization, of even the most complex functions [Kand 85].

More evidence for this functional modularization stems from psychological inter-
ference experiments. Subjects offered totally different tasks at the same time are very
capable of completing these without problems. When we, for instance, walk through
the woods, we have to do a lot of things at the same time: listen to the birds, stay
on the path, watch nature and make sure we don’t trip over a root or walk into a
protruding branch. Apart from that, subjects also do rather poorly in tasks that are
very similar, for instance listening to different auditive inputs, on each ear ([Allp 80]).

The localization of functions in the brain and its modular structure speak in favour
of the functionality of the modularization: the modularization of the brain enhances
its functioning.

The question is when this modularity arises. The anatomical location of certain
functional centers and the fact that they are in the same place in most persons, speaks
in favour of a certain predefinition, which would have to be genetic. Another argument
is the fact that development of most children, for instance linguistic development,
follows the same way, no matter where they develop. Since the genes do not have
enough informational capacity to code every single connection of neurons, the coding
of the connections has to be modular.

6.2 Modularity in Genes

The genetic coding of all life forms on earth is also modular. All genetic information is
stored in genes, which are contained in long double stranded helical strings, DNA, of
which each cell in an organism has a copy. This genetic information is a digital coding
with four different bases: adenine, guanine, thymine and cytosine. The information
stored in the DNA helix is transcribed into strings of RNA, which is an inverse copy
of a part of the DNA. RNA is built from the same bases as DNA, except thymine
which is replaced by wuracil. Each triplet of bases in the RNA forms a coding for one
of 20 amino acids, or a marker. The RNA is translated into proteins by a ribosome
that reads the RNA, and connects the amino acids in the order coded in the RNA.
Markers tell where to start and where to stop reading the RNA string.

Amino acids are the building blocks of which all proteins are built. Most of the
proteins are enzymes that catalyze the different chemical reactions in the cells. Each
protein consists of a sometimes very large number of amino acids put together in a
specific order. It is this order that determines the shape, and through that shape the
functioning of the protein. For each protein, of which about 30,000 exist in humans,
the order of the amino acids is written in the DNA, where each protein is coded by one
gene. In this way, the DNA determines what kind of proteins are built and therefore
how differentiation takes place. This differentiation is caused by the forming of certain
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proteins that generate a positive feedback on the genes in the DNA that produced
these proteins. These proteins will also repress another group of genes which will
never be active again. Embryo-logic experiments show also that certain cells in an
embryo control the differentiation of adjacent cells [Guyt 86], hereby implementing
the idea of context. Most mature cells in humans only produce about 8,000 to 10,000
proteins rather than the total amount of 30,000. It is this process of cell differentiation
that determines the final shape of the organism in all its details.

At birth the brain is supposed to have an initial structure. It is the process of
cell differentiation that forms the shape of the brain in a way that is still unknown.
But somehow the initial structure has to be coded in the genes (genetic modules of
information, or building blocks).

6.3 Artificial Modularity

After reaching the conclusion that modularity might play an important role in the
functioning of our brain, we might wonder if modularity would work well in ANNs
as well. So far results appear to be pointing that way ([Murr 92], [Happ 92] and
[Norr 90]), but since managing large ANNs is still a problem, only research on smaller
networks has been done. Another problem is that even for networks with just a couple
of layers, the mathematical equations become already so complex that is practically
impossible to still know what happens within the network: since it is impossible to
calculate what kind of network topology works well, we have to come up with one and
then test whether it works. From the testing point of view this scheme is certainly
feasible, so all we need now is an attractive, and preferably effective, way to move
through the space of possible topologies. As we used reverse engineering to move
away from the not so well working algorithmic solutions we turned to ANNs, so why
not try this scheme again: use a metaphor for the natural development of neural
networks. This leads to the use of genetic algorithms (GAs). Since we know how to
test a network, and have a good idea of what we want in the network, we can use
these ideas in developing a good fitness criterion, with which the GA can be provided,
in that evolving to a better, hopefully optimal, solution.

Now that we have come this far though, we still have not solved all problems: a gap
remains between the GA and the ANN. Even though we know how to communicate
from the ANN to the GA how well we consider a network to be, we still do not
have a method for the ANN to understand what network the GA has coded: an
interpretation of the string is missing.

An ANN can be seen as a graph, so what we could use is a method to generate
graphs. Artistid Lindenmayer provided us with one with his L-systems ([Lind 68]), a
method he used to describe the development of multicellular organisms. A good side
of L-systems is, that they are, as ANNs and GAs, biological metaphors, which made
them very suitable for this type of research (the original idea stems from [Happ 92]).
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Another advantage of L-systems is that they are suitable for both the development
of vertically and horizontally organized networks, apart from the fact that they can
use context as well (which-—as mentioned before—can also be found in the develop-
ment of brain structures). It should be noted that L-systems are suitable for graph
development, but were not specifically developed for it. The biological plausibility
of L-systems in this context is disputable. As mentioned before, it is not completely
clear yet how exactly the human brain is guided in its development by the genes.
However, since L-systems are a biological metaphor, we stay as close to nature as is
possible with current knowledge.

The method used in [Boer 92] can be summarized as follows:

1. A genetic algorithm generates a bit string, which is the chromosome of a member
of its population. The search of the genetic algorithm is directed towards a
member with a high fitness, a measure resulting from step 3.

2. An L-system implements the growth of the neural network that results from the
recipe coded in the chromosome. The chromosome is decoded and transformed
into a set of production rules. These are applied to an axiom for a number of
iterations and the resulting string is transformed into a structural specification
for a network.

3. A neural network simulator (for instance BPN or CALM) trains the resulting
network structure for the specified problem. The performance of the network
is in some way expressed in a fitness, a measure for the networks performance,
which is returned to the genetic algorithm.

In this research several methods were used, of which the previous is one.

6.4 CALM

At first sight one would say that CALM is far more biologically plausible than for
instance BPNs are.

CALM uses a Hebb-type learning method, which is quite similar to the way learn-
ing takes place in the human brain: weights are changed based on the correlations
between the activations of the two nodes connected by the connection. This is far
more biologically plausible than the Back Propagation of an error through a network,
like Back Propagation uses.

Besides this, a lot of network paradigms use connections that can simply change
sign, with the connection simply changing between excitatory and inhibitory be-
haviour, while in the human brain a neuron either inhibits or excites another neuron,
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without ever changing. All connections within a CALM are either excitatory or in-
hibitory, and remain so, while the connections between CALMs always are positive.
This makes CALM highly biologically plausible as to connections.

A third argument for CALMs biological plausibility is the fact that CALMs are
already structured of themselves. Networks like BPNs simply exist of a number of
loose nodes that are interconnected; even though structure can be imposed on them,
they are basically unstructured. CALM networks, on the other side, have a twofold
structure: the tight organization of the CALMs, which could in a way be compared
to the mini column as found in our brains [Murr 92], within a network upon which,
like on a BPN, a structure can be imposed.

At second sight, however, it appears that the CALM-mini column analogy doesn’t
fully hold. One of the types of cells in a mini column are the pyramidal cells, which
appear to have a functional resemblance with the R-nodes of a CALM ([Murr 92]).
However, a mini column has some 60% pyramidal cells, which, beside the fact that
this fraction is significantly higher than the fraction of R-nodes within a CALM, seems
to contradict the strict pairing of R- and V-nodes. To overcome this deficiency, some
changes to the CALM paradigm have been proposed ([Murr 92]).

The first is to let the number of V-nodes in a CALM be a lot smaller than the
number of R-nodes, with it dropping the strict pairing of V-nodes to just one R-node.
In fact, every R-node is connected to several V-nodes. Using this construction, the
flat-weight connections become superfluous, since the concept of lateral inhibition has
lost its meaning with every V-node receiving input from several R-nodes. The con-
necting of an R-node to several V-nodes also results in a change of the cross-weight
connections: since there are less V-nodes than there are R-nodes, a V-node receives
input from more than one R-node. Only the R-nodes from which a V-node does not
receive input are connected to it with a cross-weight connection. Despite this change
to the internal wiring of a CALM, the functioning of the network (that is, the com-
petition and the arousal systems) remains the same, due to the indirect competition
triggered by the cross-weight connections. To make sure indirect competition will
result in the network to converge, two different R-nodes can never be connected to
the same set of V-nodes. If this constraint weren’t inflicted, the possibility would
exist that competition could not always be resolved: if the set of V-nodes to which
a particular R-node is connected is the same as that of another R-node (all R-nodes
are connected to the same number of V-nodes), competition would not be resolved,
since the nodes would receive equal inhibition. Indirect inhibition does not result
in every R-node inhibiting the other R-nodes equally, but so far tests have shown
similar categorization results for this adapted CALM and the original, although the
fact that the interconnection of R- and V-nodes is constrained, has some influence
on the initial categorization of patterns (that is, the node chosen for the first pattern
of a certain category). If for instance the patterns (0,1) and (1,0) were offered, they
would be mapped to nodes that are in maximal indirect competition (that is, have
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the smallest intersection of connected V-nodes possible). This however, is merely an
internal change, but has no relevance for the outside: if patterns were in the same
category before, they still are. For a more elaborate treatment of this adaptation see
[Murr 92].

Another adaptation that enhances biological plausibility is to put all the E-nodes
of all the CALMs within a network together in one structure. Global excitation
could in this way stimulate elaboration learning (the deeper learning of previously
encountered patterns) through the whole system. Studies have shown ([Murr 92])
that lesioning the E-node structure (damaging it), results in the system losing its
ability for elaborate learning. The same kind of behaviour is shown in sufferers of
anterogade amnesia, loss of memories from before the occurrence of a lesion [Warr 70].
Since this kind of behaviour often occurs in patients with lesions to the hippocampus
and amygdala, there is some reason to suspect the functioning of CALMs being similar
to the functioning of these structures.

A final, and somewhat discouraging, thing on CALM’s biological plausibility (as
well as other ANN’s, but to a lesser degree, since they are less complicated) is that we
really do not know what happens inside a CALM network, just like we do not know
what happens inside the human brain. In this aspect ANNs have failed: we have not
been able, so far, to build an ANN which is a simplification of the brain and that we
do understand, with it giving us more insight in the working of the brain. Of course,
from a more computational point of view, ANNs have proved to be very succesful:
they are at the moment use in a wide variety of fields, often working on problems on
which traditional algorithmic programs performed rather poorly.



Chapter 7

Implementing Genetic CALM
Structuring

The software written and used in this research consists of several more or less indepen-
dent libraries and programs. The CALM part is represented by CALMIib, a library of
CALM and CALM-associated functions mainly written by Bart Happel, Jaap Murre
and Nico Mulder, more complete treatises than the one given here can be found in
their work ([Happ 92] and [Murr 92]). The genetic part is represented by CalmGenalg
and CalmExtGen, adaptations from GenAlg and ExtGen (a genetic library) which were
developed for coding BPN architectures, to the CALM paradigm. GenAlg and ExtGen
were taken from the software used by Boers and Kuiper on their research ([Boer 92]).
The production rules are rewritten using the program CalmLSystem, adapted from
LSystem (again, a BPN predecessor from Boers’ and Kuiper’s work). The LSystem
program transforms the axiom to the final string by using the production rules re-
sulting from the genetic manipulating (this process will be explained in the following
section). Tt finally writes a matrix which represents the architecture of the network,
which is read and interpreted by CalmFunc, the module that creates the CALM-
network and tests it. All the software is written in C.

7.1 The Grammar

In this research a context sensitive grammar is used to create CALM networks. The
strings used in this research are composed of letters from the alphabet {A-Z, 1-9, [, |}
U{,} !. An R-node is represented by a letter. If two letters are separated by a comma,
no connection between them is made (this means that they will end up in different

Tt should be noted that this system is the one originally used in the research by Boers and Kuiper
([Boer 92]). Since then Boers has adapted this scheme. In this new notation all skips numbers are
upped one, and the , is replaced by 1 ([Boer 95]).

o7
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CALMs, since no R-nodes within a CALM are connected), if they are adjoining no
connection is made. Modules are created by grouping a number of characters by using
the [ and |. All output nodes, nodes that have no output to other nodes in the module,
of a module are connected to the input nodes, nodes that receive no input from other
nodes in the module, of any module it is connected to. These modules can be seen
as networks connected to form one greater network. Like with characters, adjoining
modules are connected, while those separated by a comma are not connected. This
type of connection only provides a rather feed forward oriented type of networks.
To enhance more complex types of networks, skips were introduced. Every single
number in a string denotes a skip. A digit z means that the next z node units should
be skipped, where a node unit can be a single node or a full module. This means that,
for instance, in the string A1BC' A is connected to C and that in the string A1[{BC|D
A is connected to D, and not to C. If a skip exceeds a module, it is continued after
the end of the module as can be seen in the example in figure 7.1. This figure shows
the Back Propagation network that would be generated by the string [A2[B,C]|D]E,
using the interpretation that was used by Boers and Kuiper ([Boer 92]). It should be
noted that all connections were chosen to be forward. Figure 7.2 shows the CALM
network generated by the same string. The lowest level of modules in the net (nodes
with the same input and output are put in one module) form one CALM. However,
since these modules can often contain just one node (as can be seen in the network of
figure 7.1), and categorization by one category is rather useless, the number of nodes
is increased with one, by this making sure each CALM has at least two R-nodes.
Apart from that, all connections are chosen to be reciprocative.

7.1.1 Production Rules

As mentioned in chapter 3, the production rules of the context sensitive grammar are
of the form:

L<P>R—S

with the characters taken from {A-Z, 1-9, [, ]} U {.}.

Predecessor

The predessor (P) may only contain complete modules and nodes. Therefore the
number of left and right brackets must be equal in a correct order. Each module must
be complete. This means that the string A|BD[D (for example) will be discarded.
The predecessor may not contain empty modules ([]) and should contain at least one
letter (node).
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(a) (b)

Figure 7.1: The network generated by [A2[B,C]|D]E (a) and a simplified version of
its CALM counterpart (b) (only R-nodes were drawn). Note that each module from
(a) has received an extra node, this to prevent categorization with just one possible
category. All connections between CALMs are chosen to be reciprocative.
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Successor

The successor (S) has the same constraints as the predecessor. The successor may
be absent, in which case the predecessor is removed from the original string when
applying the production rule.

Context

If a context is present, the same constraints as for the successor and predecessor apply.
In addition, no loose digits are allowed: each digit must follow a node or module. For
example, the string 1A[B] is not allowed because of the leading 1.

A deviation from the L-systems described in chapter 3 is the handling of context.
Whereas in those L-systems the context is matched against the characters adjoining
the predecessor (left and right of the predecessor for the left and right context) in
these L-systems the context is formed by the nodes that give input (left context) and
those that receive input (right context).

Because of this special interpretation of context, the context string should be
seen as an enumeration of a number of nodes and/or modules, all of which should
be connected to the predecessor at the time of context matching. The context must
be a subset of all nodes connected to the predecessor (left context) or all nodes the
predecessor is connected to (right context) in order to match.

Let us look at an example with the following rules:

1: A — BBB
2: B > B — [CD]
3: B - C

4: C < D - C

5: D > D — C(C1

We take A (see figure 7.2a) as axiom, which means that in the first step only rule
1 applies, resulting in the string BBB (7.2b). In the second rewriting step rule 2
matches the first B in the string, which is rewritten to CD. During the same step the
second B is also rewritten using this rule (7.2d), as the third B is rewritten using rule
3 (7.2e). For the first and the second B, both rule 2 and rule 3 match, however rule 2
is chosen because it poses a greater constraint on the structure. All this results in the
string [C,D][C,D]C after the second rewriting step. It should be noted that the string
BBB is rewritten to the string [C,D][C,D]C in one step, the intermediate strings, of
which the networks the present are shown in 7.3c and 7.3d, do not exist at any time,
they are just added to enhance clarity. In the third rewriting step, rule 5 matches on
the first D of the string. As already explained, this match isn’t a textual one (the
two Ds are not adjoining in the string), but a connectionwise match: the two Ds are
connected in the network. The second D matches rule 4. This all results in the final
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Figure 7.2: The rewriting of a network with one node A in it.

string [C,C1][C,C]C, which is shown in figure 7.2g. The 1 after the second C in the
string denotes a skip of one node. As can be seen in the figure, it skips the complete
second module ([C,C]), and not simply the first C in this module.

7.1.2 Coding of Production Rules

As described earlier, GAs work with coded parameters of a problem, and with the
problem itself. This means that we will have to code the production rules we use in
some way. Each production rule consists of four, possibly empty, parts. Each of these
parts is a string over the alphabet {A-7,1-9,[,]} U {,}. This alphabet implies using
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00 01 10 11
0|3 3 * *|* * * *[2 2 2 4], ., .,
o[ | | [|1 1 1 1|A A A A|B B B B
0]D D 2 2|E E F F|G G H H|* * [ |
ny}) ]2 51 1 ] ]y [ ] JJ]¢ € C C

00 01 10 11|00 01 10 11|00 OI 10 11|00 01 10 11

Figure 7.3: The coding of the symbols. To find a symbol, first find the correct row by
using the first two bits, then the right quarter by using the bits on top, and finally
the symbol by using the bits below.

26 letters, all representing nodes in the resulting network, however, any number of
symbols representing nodes can be chosen. The same goes for the digits representing
skips. In this research eight symbols for nodes (A-H) were used, and 5 symbols for
skips (1-5). This results in an alphabet with 16 symbols (8 letters, 5 digits, 2 brackets
and the comma). Each of the characters was represented by a bitstring of fixed
length (I). As can be read from [Guyt 86], genetic coding is done in triplets of four
possible different bases. Following this we would let each string exist of three triplets
of two bits each (to code which of the four bases it is), giving us a stringlength of
[ = 6. The choice of this [ leaves us with 64 possible bitstrings, each coding one of 17
symbols: the 16 symbols mentioned before and an extra symbol, the *, to denote the
end of each string (this can be compared to the start and stop markers used for the
transformation from RNA to protein ([Guyt 86]). The 17 possible characters have
to spread in some way over the 64 possible codes. The table used can be seen in
figure 7.3. Since connections were chosen to be reciprocative, there is no need for
negative skips to be able to implement recursion.

The table is read as follows: to determine the character corresponding to a bit-
string (of length 6), determine which of the four rows at the left corresponds with the
first two bits of the string, then choose the right column from the second pairs of bits
at the top of the table, and finally choose the right character using the pairs of bits at
the end of the lines in the found 16th of the table. For instance 111000 corresponds
to *: choose the lowest of the four 4x4 blocks, choose the third column and in that
the first row.

In picking a production rule form a chromosome, the following method is used.
Pick a starting point anywhere in the bitstring (chromosome). Start reading the L
part (left context) of the production rule. This is done by reading six bits in a row,
looking up its coding, and considering the left context read when six bits coding an
* are found (since * is the separator). Start reading the P (predecessor), R (right
context) and S (successor) parts in the same way. When all parts have been read, the
reading of the next production rule starts, continuing until the string is exhausted. If
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the end of the string is encountered before the production rule is finished, the partial
production rule is discarded.

With real DNA, the strands are “read” by choosing a starting point within the
bases on the strand and then reading triplets of bases until a punctuation mark is read
(which can be compared with the asterisk), at which time the building of the current
protein is “finished”, and the building of a new protein starts. Research indicates
that different proteins can be coded using the same genetic information, simply by
using a different starting point and using different reading directions. Adapting this
principle to our strings, we obtain twelve different ways of reading the strings: six
different starting off-sets (starting six bits further down the string gives the same
bases (characters) and two directions, starting on each of the Oth through the 5th bit
from the start or the end, depending on the reading direction). Due to this high level
of information in one string, the level of implicit parallelism might be significantly
higher in this way than it is when reading a string just once.

Using chromosomes of length & results in 2-6-((k—1)div6)+ (k—1)mod6 characters.
For chromosomes of 1024 bits long this results in a string of 2040 characters. The
total number of possible valid production rules for strings of this length usually is
about 250: the 64-characters translation table contains 8 asterisks, so a string of 2040
characters contains roughly 6% - 2040 =~ 255 markers. Almost each marker can be
used for a production rule (the last four markers placed at the end can not be used).
If we discard all production rules that contain invalid character combinations (those
described earlier), we are left with much less rules, of course.

7.1.3 Repair mechanism

With real DNA, in the few hours between DNA replication and mitosis (the actual
process of a cell splitting into two new cells, [Bloo 88]), a period of very active repair
and “proofreading” takes place. Special enzymes cut out defective areas and replace
them with appropriate nucleotides. Because of this, mistakes in the process of cell
replication are seldom made (these mistakes are called mutation). The software also
contains functions to repair faulty strings. The functions remove spare brackets,
commas, digits, etcetera in order for the string to meet the restrictions mentioned
before. The number of production rules left after this process, is about 50.

7.2 CALMlib

CALMIib is a library of functions especially made for CALMs and CALM-networks.
It includes functions for network creation, maintenance, input handling, showing the
network and of course for calculating the activations of the nodes. In contrast with the
most other software used for this research, the CALMIib was not adapted especially
for it.
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The most important functions in this library are:

e calc_act: calculates the activations in the next step and stores them in an

intermediate variable.

calc_wt: calculates the new learning weights, recursively if necessary.
swap_act: swaps the new activations calculated with calc_act into the network.
net_def: allocates memory for a network and creates the required structures.
net_free: frees the memory used by a network.

mdl_def: allocates memory for and creates a single CALM. Also connects the
CALM to a network, as defined using net_def.

mdl_free: frees the memory used by a single CALM.

ptn_def: allocates memory for an input pattern. An input pattern is a stripped
version of a CALM.

sall act: sets all activations in a module to a given value.

mdl_reset: resets all activations to starting value. Used directly before offering
a pattern.

mdl_con: connects two modules.

mdl_tree: shows a tree representation of a CALM or network.

More elaborate information on the CALMIib can be found in [Happ 92] and

[Murr 92].

7.3 Extended CALMGenLib

The original extended GenLib only saw to the genetic creation of the structure of the
network. For CALM, however, not only the architecture, but also the learning pa-
rameters were determined genetically. To provide for this, the definition of a member
of the population was adapted to the following;:

typedef struct

{

float fitness; /* fitness of the member */
unsigned *genPos; /* pointer to array of gen positions */
unsigned char **genValue;
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/* pointer to array of architecture chromosomes (strings) */
unsigned char **parValue;
/* pointer to array of parameter chromosomes */
} MEMBER;

The pointer to the parValue array was added. This array contains 30 genetically
coded parameters (as used by the CALM1ib). The total population remains defined

as:

typedef struct

{
unsigned popSize, /* number of members in this population */
nrGenes, /* number of genes in each member */
genSize; /* size of gene in bits (multiple of 8) */

MEMBER *member ;
} POPULATION;

The genSize is limited to sizes multiples of 8, this to prevent the code from
becoming unnecessarily complicated.

To allow for this change in the genes, most of the functions in the extended GenLib
had to adapted:

e The creating functions (DefinePopulation and DefineMember) had to be adap-
ted to also create an initial parameter population (this can be done by either
using starting random values or by using the standard parameters).

e The disposing functions (FreePopulation and FreeMember) also had to dispose
the structures created for the parameter chromosomes.

e The disk IO functions (SavePopulation and LoadPopulation also had to write
respectively load the parameter chromosomes.

e The genetic operators had to be adapted, to also code the parameters. This
formed the bulk of the adaptations to the GenAlg. At the moment the chance
of each genetic operator is the same for parameters and architecture, this can
be easily adapted, though.

The genetic operators used for this research are in the functions BitCrossover,
BitInvert, BitRankselect and Mutate. The original extended GenLib contained
a couple of more genetic operators, but these were intended for use with roulette
wheel selection, which was not used in this research (in fact, these functions were not
adapted to manipulate the population contain parameter genes).
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7.4 L-systems

The main adaptation that had to be made to Boers’ and Kuiper’s L-systems, was the
writing of the connection matrix. Their system uses simple nodes, so the matrix that
was written as a nxn-matrix, where a one at position (4,7) denotes a connection from
node j to node 7. The modules in this system would form by themselves. However,
for the CALMSs not the lowest level nodes are connected, but the CALMs themselves
are (as explained in an earlier chapter). This means that the matrix that is to be
rewritten is not a connection matrix of nodes, but of connection matrix of CALMs.
However, the loose nodes as found in the original matrix, are still of importance:
they represent the number of R-nodes in the CALM they form. To prevent for this,
an extra line was added to the matrix file. On this line the number of nodes (as
determined from the string) in each module is written, As mentioned before, this
number is incremented when creating the actual CALM in CalmFunc, to provide for
CALMs that contain just a single R-node.

To reach this, a function was added to the L-system module. The program still
creates the node connection matrix as was originally done, but this matrix is processed
once more to transform it into a CALM connection matrix. This is done by simply
taking a node, and finding all other nodes in the matrix that are connected to the
same nodes, adding the number and noting.

The second adaptation is of less importance. In the original L-systems module,
single node modules that were of no importance for the computational power of the
network, but simply passed on information were shortcircuited: the connections made
through them were made directly, pruning the superfluous node. However, in a CALM
network such a single node would become a two node CALM, which does add to the
computational power of the network, therefore the mentioned pruning mechanism was
removed from the code.

7.5 CalmFunc

CalmFunc is the part of this software that was solely made for this research. Its
function is to interpret the matrix as created by the L-system and transform it into
a network. Apart from that it takes care of the reading, or otherwise offering of the
input, as well as determining the fitness of the created network.

7.5.1 Creating the Network

The creation of the network is established using functions from the CALMIib. The
network as created by the L-system is the internal part of the CALM, the part that
does not communicate with the outside world. The input is of a set size: one pattern
representing the input for the problem (as mentioned earlier a pattern is a stripped
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form of a CALM) and a second pattern representing the desired activation for the
output CALM. These two input patterns are connected solely to the CALMs in the
network that are input CALMs: CALMs that receive no input (in the original struc-
ture created by the L-system) from other nodes. The output module is of the same
size as the second input pattern, and is only connected to the output CALMs of the
network (the nodes that did not give output in the original structure created by the
L-system).

If two CALMSs within the network are connected, their connections are reciproca-
tive: they go both ways. This, of course, blurs the concept of input and output
CALMs, which is why the original structure created by the L-system was referred to
when speaking of input and output CALMs.

7.5.2 Input Problems

As a means of offering input to the network, several functions were written. Some
of them are hard codings of problems (one function for instance codes the mapping
problem, which will be explained in the next chapter). Apart from this some functions
were written to read input from disk files.

7.5.3 The Fitness

One of the most important factors in the success of the GA is the fitness function
chosen. If the fitness does not properly reflect what in a we are looking for in a
solution, we can not expect the GA to find a satisfying solution.

There are three factors that are of basic importance for determining the quality of
a neural network: the size of the network (number of nodes or modules), the speed of
convergence (how fast the network comes up with a solution, preferably the right one)
and finally how many of the offered problems were solved correctly by the network.
This last factor is the most important one: for one thing we want the network to give
as many good solutions as possible. For this research we gave the number of correct
solutions to be of such importance, that a network can never have a lower fitness
than a network that gives less correct answers. To be more concrete, we started out
with a maximum fitness, in this case 1000 (since rank-based selection was used, the
exact value was of no importance. It should be noted, though, that this number
should be at least the number of offered patterns 4+ 1 (to account for the number of
modules in the network)), and for each wrong answer one was subtracted. Besides
this, 0.01 was subtracted for each module the network had; since the network could
not have more than 30 modules, the number of modules could not diminish the fitness
by more than 0.3, thus making sure that the number of modules could not violate the
aforementioned fitness constraint. The speed of convergence was not used, but can
easily be brought into the fitness.
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7.6 Using the Software

A number of different modules and programs have been written for this project. Since
these are fairly stand alone, they are treated seperately here.

7.6.1 GA generated, L-system Assisted Architecture Creation

The unit of this program that starts everything is called calmgenalg w. It takes
a population and starts genetically manipulating this. It takes four parameters, of
which the first three are mandatory. They are:

e The simulation file: this file contains some of the parameters used by the
program. It could, for instance, look like this:

## Sample configuration file

#i#

#files .
#population test.pop
#control test.ctl
#size 100
#pmut 0.005
#pcross 0.5
#sites 20

#pinv 0.3
#pressure 1.5
#steps 6

#axiom A

This sample contains all the recognized parameters of the parameter file. files
determines the directory where all created files are put (the production rule,
matrix and string of each chromosome are saved), population is the name of the
population file, control the name of control file, size the number of members
in the population, pmut, pcross, sites, pinv and pressure influence the
genetic operators, steps is the number of rewriting steps for the L-System and
axiom is the axiom for the L-System.

e The number of members to be processed: this parameter determines how
many of the members of the population are processed in one iteration.
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e The name separator: the names for matrix, production rule and string files
are build from some components, for instance for the production rule file this
is ¢ ‘prodr’’ 4 parameter three + “.” + member number, where the member
numbers range from 000 to the second parameter (counting starts when an iter-
ation is started). A name could for instance be prodr000.000, the production
rules for the first member to be processed in any iteration (which iteration does

not influence the name) where the third parameter was 000.

e verbosity: adding a fourth parameter (any) will put the program in verbose
mode, some extra information is giving during running.

The command

calmgenalg w simfiles/sim.tst 10 000 -v

would start the process using the parameter file simfiles.sim.tst, process 10 mem-
bers each iteration, use code 000 in the names and turns the program to verbose
mode.

During the process, the population of genetic codings of networks changes, ruled
by the members with higher fitnesses. After each iteration information about, lowest
fitness, average fitness and highest fitness of members in the population is written
to file called result.maprec, which is stored in the directory indicated by the file
parameter in the parameter file.

Before actually starting evolution on a population, one has to be created. This is
done by the calmnewpop program. The command

calmnewpop simfiles/sim.tst

creates a new population with the size mentioned in the sim.tst file. The calmnewalg w
should be started on a population that was by the same parameter file as the one it
receives itself.

7.6.2 testxrand

The testxrand program was written to give some graphic representations of both
categorizations and network activations. The program is not as user friendly as could
be possible, but a lack of time did not permit making a better looking, more user
friendly version. The network should be coded in the program, which asks for at least
a rudimentary understanding of the working of the CALM library and the program.
Some features might be implemented as parameters for the program.
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The command

testxrand sf <filename>

starts a simulation using one network with set parameters and evaluates this until
stopped by the user (this can be done by simply killing it). At certain moments the
learned categorization is saved as a picture to a file, exactly when, depends on when
the user wants this to happen, by changing the program. This normally happens once
every ten rounds of offering the patterns. This feature could be made a parameter in
the future. The <filename> parameter is mandatory (leaving causes an error from
the program). The file is written to directory pic (this should be a subdirectory of
the directory the program is started from).
The command

testxrand ss

starts the same simulation, but the produced pictures are not written to a file, but
immediately shown on screen. This does require an X-type terminal.
The command

testxrand v <filename>

shows a picture file written by this program. The file should be in the pic directory.
The commands

testxrand 7

and

testxrand h

print a help message.



Chapter 8

Parameters and Architecture

Apart from certain things as learning rules, type of connections and units, which are
fixed within an artificial neural network paradigm, there are also variable factors,
most importantly architecture and parameters . To be able to solve a problem using
an artificial neural network, we should first determine these two factors.

8.1 Architecture

In determining the architecture of the networks the first strategy used was the one used
by Boers And Kuiper ([Boer 92]): determining the architecture of the networks by
using Genetic Algorithms. However, this approach fell short. The parameters of the
resulting CALM-networks were simply the standard parameters. These parameters
appear to be unfit for networks that contain more than one internal module. It
appears that not only the problem the network has to learn, but also the size of
the network have an influence on which values for the parameters work well. At the
moment the insight in what precise behaviour in networks is created by the changing
of certain parameters is rather limited, which makes it hard to determine in a rational
way what values the parameters should get to make the network work properly.

Therefore another method of determining architectures was employed, albeit a
rather brute one: the architecture was developed by hand, keeping in mind what type
of architecture might be useful for solving the problem at hand.

!We are talking about the normal situation here. There are cases in which we might want to
change certain features of the paradigm, because we find that it is simply unable to properly solve
the problem we offer, even though we want it to be solved.
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8.2 Parameters

Almost all neural network paradigms incorporate some type of parameter, which
influences the speed and the effectiveness with which they learn to solve problems.
Most paradigms take only a few parameters, with the most important of those being
the learning parameter, the parameter that determines how fast the values of the
weights of the connections of the neural network can change.

CALM takes a rather special place when it comes to the number of parameters:
the implementation used, uses no less than 37 parameters (of which a number, ad-
mittedly, are user defined). One of the reasons for the increase in the number of
parameters compared with other paradigms is the fact that a CALM-network has
more set weights; where most paradigms, like for instance Hopfield and Back Prop-
agation Networks, have simple units (nodes), CALM has complex units: modules.
Each of these modules has a set of set weights, for each of the eight different connec-
tions within the modules. These weights are normally set to the same value for all
CALMs in the network, even though they can be chosen to differ per CALM. In fact,
they should be chosen to differ per module when optimizing the parameter values of
a network: preliminary research seems to indicate that fine tuning of the parameters
should be done by changing parameters separately for each module.

All and all this leaves us with two rather complex tasks to complete before we can
start using the network. Of course, we do have the possibility of keeping one of the
factors, parameters or architecture, fixed, which is exactly what was done in a lot of
experiments.

8.2.1 Determining Parameters

In trying to determine suitable parameters for a CALM-network, several approaches
were chosen in this research.

Genetically

The research started out determining network architecture only using Genetic Al-
gorithms, and choosing the parameters simply to be the default ones. However, it
became clear quite soon that this approach sells the parameters short: it appears to
be difficult, to say the least, to find a network that works well without in some way
making changes to the values of the parameters: the network’s performance is clearly
dependent on the value of the parameters (or why would they have been implemented
any way?). As suggested before, experiments showed that the default values for the
parameters are fit for networks without internal modules, however, the networks de-
veloped using the genetic algorithm always contain internal modules, so some kind of
alteration had to be made to the values of the parameters.
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To come to terms with this problem we chose to try to determine the parameters
of the network along with the architecture: codings for the parameters of the network
were added to the chromosomes fed to the genetic algorithm, which were evolved
along with the chromosomes for architecture.

This method, however, has a rather unfortunate drawback: for a chromosome
to survive it needs to have a good architecture as well as good parameters. This
results in good architecture with bad parameters and good parameter sets with bad
architectures to be lost from the population. The parameters and/or architectures
lost this way might of course be produced by the genetic algorithm again, but it
will cost time. Since the evaluation of one a network can take a lot of time, due
to the relative complexity of the CALM-paradigm, these type of experiments are
not feasible on a normal Sparc or Indy machine. However, since a parameter set is
only good for certain network architectures, the determination of architecture and
parameters should best be done simultaneously

However, we needed a way to get around this time problem in an acceptable way.
One way is to separate the stages of developing the network architecture and the
parameters for the network. We first determine the architecture and later determine
the parameters. For this to be feasible, though, we need some way to determine for
which networks we want a good parameter set to be determined. Which sounds well
enough, if it weren’t for the fact that we have no safe way to determine which network
architecture is promising. To be able to do some experiments with determining pa-
rameters apart from architecture a number of network structures were chosen (after
being developed by hand), and for those the parameter space was searched using the
methods described in the following subsections.

Manually

One approach was to change the parameters “manually”. This sounds worse than
it actually was. The first sixteen parameters were systematically upscaled or down-
scaled, separately: simulations were run where one of the parameters at a time was
repeatedly multiplied by a factor of 1.02 for upscaling or 0.98 for downscaling. This
was repeated 100 times, with each resulting network being trained five times, to filter
out effects caused by random induced deviations. Apart from this, changing some
of the parameters simultaneously for a couple of potentially interesting combinations
was tried.

The most notable result from this experiment was that the parameters are quite
robust: changing one parameter at a time appeared to have hardly any effect. Only
two of the sixteen parameters resulted in serious affection of the network performance:
as well downscaling the ninth parameter (the initial learning weight) as upscaling
the eleventh parameter (the activation decay weight) resulted in the network not
converging at all from a certain point on. Apart from this, changing some of the
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other parameters seemed to have the effect of stabilizing the network performance:
where tests with the original parameters tend to look erratic with large differences
in performance between tests of one network, the changed parameters appeared to
give smaller differences. The problem was, however, that this also resulted in worse
performances: the performance was stable at a rather mediocre level (this is probably
caused by the network not really learning, which would explain why all result are
rather bad and constant). This, of course, is something we would not want: a couple
of good solutions are what we want.

Evolutionary Strategies

In the experiments using evolutionary strategies a population of one hundred pa-
rameter sets was used. A new generation is created by dumping the fifty least fit
individuals and make fifty new ones from each of the fifty most fit individuals. These
were created by adding a random number, normally distributed round zero, to each
of the parameters. To determine the standard deviation for each of these numbers,
an extra set of parameters was kept, each of which was initialized to one eight of the
standard value of the parameter 2. The initial population was determined using twice
the standard deviation, this to start out with a population distributed over a larger
area. After each generation a random number was added to the standard deviation
parameters with a mean of zero and a standard deviation of one fifth of the value of
the parameter. Since the effect of a parameter with a negative value is different from
one with a positive value, provisions were made for the parameters not to change sign
(this was not necessary for the standard deviation, the absolute can simply be taken)
The new individuals are evaluated by training the mapping problem (which will be
treated in the next chapter) on the resulting networks. To avoid flooding of the pop-
ulation by one good member, the individual with the highest fitness was deleted from
the population, although it did reproduce.

The advantage of using this type of genetic manipulation is that there is a closer
relation between the objects manipulated and what they code: changing random bits,
especially higher order bits, would throw a parameter far of from where it started,
with this method the parameters evolve around their starting value, although a bad
starting value would still be able to evaluate to a decent value (although it is severely
hampered due to its bad start: the chance of the deviant individual disappearing from
the population shortly after the start is huge).

A disadvantage is that it appears to be less biologically plausible: in real life gens
information is coded in the abstract way information is coded in in bit strings.

>This resulted in the parameter sets being twice the size they were before, for each of the 30
parameters of the 100 members, a full set of standard deviations was kept.



Chapter 9

Experiments

9.1 The Problems

In this section some problems which were tested in this research or could have been
tested during this research are visited.

9.1.1 The XOR Problem

The XOR problem is a relatively simple problem, which was mainly tried for testing
purposes; it is so simple any paradigm should be able to solve it. The network gets
two inputs, and returns true if exactly one of the inputs is one, zero else. As expected,
CALM networks learned this problem perfectly. The used architecture can be seen
in figure 9.9.

9.1.2 The Mapping Problem

The most important problem used during this research is a rather tough categorization
problem, of which a simpler version was also used. It was originally designed by Van
Hoogstraaten ([Hoog 91]) in order to investigate the influence of the structure of the
network on its ability to map functions. He created a square [0,1)? input space. In
this space 100 points (10x10) are assigned to one of four classes. The neural network
has to learn with which of the four classes each of the 100 points is associated. How
difficult it is for a neural network to learn such a problem is strongly dependent on the
way in which the points are assigned to the four classes. If we have four 5x5 blocks
for each of the categories, the problem space would be rather easy to separate. If
we assign the points at random the network will have to learn each point separately.
Figures 9.1 through 9.3 show examples of three mapping problems, the first with a
clear division into the four categories, the second less organized, although still far
from random, the third is very regular, although there are no adjoining points from
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Figure 9.1: A mapping problem with a clear division into the four categories

the same category.

The first problem needs a cross type of separation between categories. From
this observation and the fact that networks with unbiased input draw categorizations
through the origin, we might conclude that what we need to solve this problem is input
with bias. The second mapping problem has three points of one category surrounded
by eight points of one other category; these points can be seen as miscategorizations.
Originally (in Van Hoogstraten’s research) these three points were miscategorizations,
however, in Boers’ and Kuiper’s research as well as this research the network was
supposed to learn the categories like this, in this driving the calculative power of the
network closer to (or over) the edge.

9.1.3 The Spiral Problem

Imagine two flexible layers of different colours, for instance black and white. Put
these on top of eachother and roll it up and take a slice of it. Looking at this slice
one sees two entangled spirals. In the spiral problem these two spirals are used: take
any point on this slice and determine on which of the two spirals this point is. Unlike
the mapping problem, which is discrete, this problem uses a continuous space. This
means that we have an unlimited number of possible inputs (abstracting from the fact
that real numbers are represented in a discrete way on computers). In this research a
function written by Bart Happel was used for calculating on which of the two spirals a
certain point lays. The degree of spiraling (the tightness of the winding of the spirals)
can be given as a parameter to this function. Figure 9.1.3 shows some examples of
spirals. It should be noted that this problem is very difficult: the spiraling creates
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Figure 9.2: The mapping problem used in both Boers’ and Kuiper’s research, the
original developed by Van Hoogstraaten
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Figure 9.3: A very regular mapping problem, without large areas, in fact no two
adjoining points are from the same category
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(a) (b)

Figure 9.4: Spirals with spiralness 1.0 and 100.0, respectively. The origin is at the
top in both spirals.

a total lack of linear separability, thus making it hard for artificial neural networks
that are based on linear separability to learn to solve the problem.

9.2 GAs, L-Systems and CALM-networks

This research started out doing experiments using the same kind of development
system Boers and Kuiper [Boer 92] used on their experiments. The initial intention
was to let this project move along that way, however the initial results indicated that
a different approach might be more fruitful. Because of the straight out disappointing
results obtained in preliminary experiments using this set up, no definite tests were
done (there was no hope for those to be good). This results in no real experimental
results being available.

The object of solving any problem is not to simply find a network that turns the
problem into a simple association problem, we want it to find the regularities in the
input (which are definitely there). One way to aid this is to limit the number of
CALM:s in a network as well as the number of nodes in a CALM. The limits were set
to 10 CALMs per network (apart from input and output) and 10 nodes per CALM.

The parameters used on the experiments using the GAs were (these are not pa-
rameters of the CALM-network, they are parameters of the genetic algorithm):
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e population size 500, chromosome length of 1024

e rank based selection and replacement, pressure of 1.4
e mutation probability of 0.01

e crossover probability of 0.3, 10 crossover sites

e inversion probability 0.7

e [-System axiom A

e sites 3

e aging 1.00

Most parameters speak for themselves: the population size is the number of chro-
mosomes in the population, chromosome length the number of bits in the chromosome,
pressure indicates the willingness for selection to select a good solution, mutation in-
dicates the chance for a chromosome to get mutated (flipping one bit), crossover
indicates the chance that two chromosomes are crossed over, as inversion indicates
the chance of a chromosome getting inverted. The axiom is the string from which the
application of production rules stars, sites the number of cycles production rules are
applied. Aging indicates an aging factor with which the fitness of each chromosome
is multiplied each cycle of the GA (this should be 1 at most: higher values indicate
that aging increases fitness, which is not something we would want). The aging factor
was chosen to be 1, since initial tests did not indicate a positive effect of a different
aging factor (0.99 was used). This last parameter was not implemented in Boers’ and
Kuiper’s research.

These experiments were all run using the first two mapping problems

9.3 Categorizing Random Input

A good way to try to understand the working and the strength of a certain ANN
paradigm is by offering it random input and see how it reacts to that. This is one
approach that has been taken in this research: a simple CALM-network was offered a
two node pattern: two random numbers in the range [0.00 ... 1.00]. This is fed into a
two respectively eight node CALM, which then categorizes to one of two, respectively
one of eight categories. On learning the network was offered 100 pairs of input. The
categorization of the input can then be plotted by simply offering points on a grid,
in this case a 200x200 grid for the two category examples and a 400x400 grid for
the eight category examples, and plot dots with unique colours for all categories.
The images that are created like this give a good idea of the potential complexity
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of categorizations CALM-networks can achieve, as can be seen in figures 9.5 through
9.7. In learning new random input was used for each time a pattern was offered.
Figure 9.8 shows a categorization of the mapping problem that gives a categorization
that looks to be heading to a good categorization. Unfortunately, the network did
not improve towards a perfect categorization from this point. All tests were run using
the network from figure 9.9, and using the standard parameters.

The irregularity of some of the categorizations suggests that a CALM-network
should be able to learn virtually every problem: there appear to be almost no restric-
tions on the complexity of the categorizations. We should, however, get some kind of
control over these categorizations, or the potential strength is lost.

9.4 Visualizing learning

One of the problems of the complexity of CALM-networks is that it is quite hard
to get any conception of what happens inside a CALM-network. To come to terms
with this problem some graphical method has to be used (the repeated activations
present such a vast amount of data, that leafing through is hardly a manageable —or
efficient, for that matter— method). The method used for this was a rather simple one:
each node of a module is represented by a circle, with a disc inside representing the
activation of the node in question. A CALM-module is represented by two horizontal
lines of nodes, the R- and V-nodes, adjoined by two loose nodes, the E- and A-nodes.
The lowest line of modules represents the input patterns (a pattern is actually a
stripped version of a CALM: all nodes but the R-nodes are omitted), the middle
the internal modules (all of them, not minding the connections between modules)
and the top line represents the output module, as can be seen in figure 9.10. The
connections between the modules were left out because of the potential complexity
of these connections, as well as the overhead created by positioning the modules in a
reasonable way. Figure 9.9 shows the architecture of the used network. Figure 9.10
shows part of the categorization of one input pattern. A larger example can be found
in Appendix B.

From these graphical plots it becomes clear that the activation caused by the
input pattern or patterns is propagated through the network, in fact resembling the
way this happens in BPNs rather closely. However, instead of there being loose nodes
receiving activation, as in BPNs, the R-nodes of a CALM-module receive activation,
which they propagate through other modules, as well as categorizing it themselves,
after which this propagation is passed on to the other modules as well, of course.
This modularization gives the network the opportunity of splitting the problem to be
learned in smaller parts (albeit that networks find it hard to do this by themselves,
which, unfortunately, is not an uncommon problem).
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Figure 9.5: Some rather striking examples of categorization of random input to two
input categories. (a) gives a good view of how complicated the borders between cat-
egory bounds can be, (b) shows a categorization closer to the “ideal”, two categories
separated by the diagonal whilst (¢) shows a near perfect categorization. After more
learning cycles the ragged borders tend to transform themselves into one like the one
in (c). All images are created by networks without a bias node, which can be con-
cluded from the hyperplanes going through the origin (upper left corner). The small
black spots in the lower left corner were caused by a somewhat inaccurate snap, not
by the network.
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Figure 9.6: Letting CALM-networks categorize input to more than two outputs can
result in stunning fractalic images. Examples shown have categorized to eight cat-
egories, represented by eight gray scales. (a) through (c¢) show categorizations after
one learning cycle, (d) after two cycles, same run as (c), that is, (d) is the output
from the same network as (c), but after more learning. Since (c) was already close
to what seems to be a “normal form”, it did not change very much. All images are
created by networks without a bias node.
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Figure 9.7: Some examples of random categorizations to eight categories, using biased
input. As can be clearly seen, these categorizations are far less centered round the
origin than unbiased input categorizations are. All these categorizations were made
on the same run, in this order.
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(c) (d)

Figure 9.8: This figure shows categorizations of the simplified mapping problem.
Although these categorizations are far from perfect, the tendencies to grow towards a
quadrant categorization can be clearly observed. (b), (c) and (d) were taken from one
run, in that order, which seemed to be doing well right away. Unfortunately it moved
away from the perfect categorization. This could be caused by overcategorization, on
the other hand, the network never learned to solve the problem perfectly, so more
training was necessary (and did not have the desired effect). The architecture used
can be seen in figure 9.9
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Figure 9.9: This figure shows the architecture of the network used in figure 9.10

9.4.1 Mapping Problem Tests with Evolutionary Strategies

For the more elaborate tests in this research, the following set up was used: the
networks used were one of those in figure 9.11. A pool of fifty parameter sets was
generated, each parameter with its own standard deviation, of which all parameters
of all members were adapted by using evolutionary strategies each generation. To
each parameter and each standard deviations one of these numbers was added. The
numbers had mean zero and initial standard deviation one eigth of the value of the
parameter. Apart from this, a scheme was tried with uniformly distributed parameters
in the [0.95...1.05] range, which were used as factor for the parameter values. This
approach was first taken because of initial implementation problems with the normally
distributed numbers set up. The fifty new members were evaluated, after which the
worst fifty of the one hundred individuals were discarded. Each of these members was
evaluated by counting the number of correct categorizations on the simple mapping
problem. Although the normally distributed set up would give for a better range
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Figure 9.10: This figure shows the more important parts of the categorization in a
CALM. (a) through (f) show the initial surge, while (g) and (h) show the activations
shortly before categorization. See Appendix B for a more elaborate treatise of the
total process. The network structure is given in figure 9.9
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Figure 9.11: The most important handdesigned networks used in this research for the
mapping problem.
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of parameter values, there are no really noticeable differences between the set ups.
Apparently the spreading of the parameters itself is most important.

Figure 9.12 show the main results of the tests run. It also refers, along with
the networks in figure 9.11, to network 5 through 8. These networks have the same
architecture as figure 9.11(d), except for the number of nodes in the internal CALM:
network 5 has three internal nodes, network 6 has twenty, network 7 has ten and
network 8 has four.

config

network ‘ bias | initial parameters changing parameters

pre-activation ‘ extra input | pre-activation ‘ extra input
1 y 44 50 80 (25, 27) 50
2 y 58 0/48' 79 (27, 174) 82 (2, 30)
3 y 45 40 63 (13, 13) 90 (53, 57)
4 y 48 0/48' 72 (14, 26) 82 (1, 4)
5 n 57 0/43" 74 (10, 12) | 90 (191, 284)
6 n 29 0? 82 (6, 10) 87 (16, 26)
7 n 25 0/46' 78 (7, 122) 86 (22,210)
8 n 62 0/48! 89 (50, 231) | 88 (135,256)

Figure 9.12: The most important results in the evolutionary strategy tests. The
numbers are the number of correct categorizations out of 100, the numbers between
parentheses are the number of generations after which the best member was found,
followed by the total number of generations for which the simulation ran.

! These networks did not reach an unambiguous categorization, therefore their fit-
ness is zero, the number behind the slash indicates the number of inputs categorized
correctly, for those instances that were categorized. It should be noted, though, that
these numbers are highly inaccurate and are only given for the sake of completeness.
2 The networks did not converge with default parameters.

When the method of learning by using a second input pattern representing the
desired output was used, all networks that didn’t achieve an unambiguous categoriza-
tion (that is, network that failed to map at least one category to an output node, or
had mapped more than one category to a node) were discarded. It should be noted,
though, that the requirement that every category is mapped to a unique node, does
not necessarily mean that all the categories are used in the division into categories of
the problems. During several simulations done, networks that had mapped all cate-
gories to unique nodes turned out to not use all the categories for the categorization
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of the input. These networks were accepted. It should be noted that this type of mis-
categorization is impossible in the pre-activation tests: only the pre-activated node is
accepted as the correct answer.

The large number of members in the populations made it possible for the sim-
ulation to find the best member after a rather short period of time. Despite this
occasional, and quite marginal —one or two points better— score improvements were
found at times. Compared to some of the scores Boers and Kuiper found ([Boer 92]),
these scores, although rather good at times, are quite disappointing.

Especially network 2 has an architecture which one would expect to be very suited
for the problem at hand: dividing the input into four quarters. One module could
separate left from right, the other top from bottom. However, the score this network
achieved, fails to show this enhanced “fitness”. In fact, the only way a CALM-
network seems to be able to learn to solve a problem with such rigid borders and
lack of fuzziness between categories, seems to be learning each of the offered patterns
separately. This would be a reasonable explanation for the fact that the networks
scored more or less the same on mapping problems 1 and 2, even though the first one
is a lot easier than the second one: the first is an easily generalizable problem, while
the second can only be solved with some sense for detail (especially the seemingly
misabled points in it). This is further backed by the fact that network 4 scored 87
correct categorizations without using bias on the spiral problem, which should be
markedly more difficult than both mapping problems.

The fact that there is hardly any difference in performance between networks
using bias-nodes and networks not using bias nodes can probably be found in the
fact that performance is rather poor anyhow. Bias-nodes are direly needed for precise
and complete categorizations, however, if a network does not categorize the full set
correctly anyway, the presence of a bias-node is of less importance.

One big difference between the pre-activation method and extra input pattern
method can be found in the reaching of maxima. Where the extra input pattern
method almost all of the time found several (if not a lot of) members that were on
or close to the maximum, maxima in pre-activation were often clearly above the rest
of the field. In several cases the difference in correct categorizations between the
fittest and the second fittest member was more than 10. Apparently, the values of
the parameters with which the network performs well are more strictly defined with
pre-activation than with the extra input pattern. This might also explain why the
difference in maximum over the different networks is far larger than it is in the extra
input pattern tests. The fact that high scores are more irregular in pre-activation
makes it less predictable, and therefore raises the chance of finding a member with a
score close to 100. However, the highest scores so far are below those found with the
extra input scheme, so that the irregularity might only result in less good solutions
being found, without them having a higher score. Apart from that, the pre-activation
networks find good scores quite seldom, which also becomes apparent from the fact
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Figure 9.13: A typical division of the problem space for network 1, using fixed stan-
dard parameters.

that the simulation that ran real long still achieved their best score relatively early
in the simulation. The poor performance of the extra input networks with initial
parameters, seems to indicate that these values for the parameters, as suggested
before, are not fit for networks with more modules.

There is no way of predicting when a good solution will be found for the first time
(that is, a solution that comes close to the best solution found).

9.4.2 Connections

One result that is clear from experiments is the best connecting pattern from the
input patterns to the output module. A network works best when only the real input
is directly connected to it.

The reason for this is, of course, quite obvious: if the supervization input is directly
connected to the output module, this doesn’t need pay any attention whatsoever to
the internal modules, the direct connection with the supervised input suffices. This,
however, does not necessarily mean that this happens in practice: networks sometimes
come up with better scores when both supervization and real input are connected then
when supervization input only is connected. It therefore is not possible to draw any
clear conclusions on which method works better.
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Figure 9.14: One of the networks used in Happel’s research

9.5 Handwritten Digit Recognition

Over the past couple of years the psychologist Bart Happel has been working on
a dissertation on CALM (see for instance [Happ 92]). One of the problems he used
during his research was a handwritten digit recognition problem. This type of problem
is very suitable for a categorization type network like CALM: there are ten categories
(one for each digit), in which all scribblings have to be put.

In solving this problem he used a network with an architecture found by a GA
and genetically manipulated the learning parameters of this network. To be able to
test this network with he attached an input unit where the user can write a digit on
screen by using the mouse. This input is sampled on a 5x5 square: the more “ink”
in a square, the higher the value. Each of these squares is one of the 25 input signals
to the network. On testing half of the input is used for training, the other half for
testing. The network turned out to be quite robust in recognizing: a digit had to be
seriously mutilated for the network not to recognize it anymore. Figure 9.14 shows
a preliminary network used in Happel’s research. This network reached 81% correct
responses on the 100 digits large test body, with that falling seriously short of the
BPN found by Boers’ and Kuiper’s method: they found a BPN without a hidden layer
that found 97% correct responses. The CALM network however does not suffer from
the BPN problem that learning more problems seriously interferes with previously
learned problems.

This problem wasn’t tested during this research, although it should be noted
that it is an interesting experiment to run in the future, since it can not only be
compared to Boers’ and Kuiper’s genetically architectured BPNs, but also with the
CALM-network Happel used.
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Chapter 10

Conclusion and
Recommendations

As argued before using genetic methods to determine the architecture of a network
relieves us of the problem of having to design a suitable architecture for a problem by
hand. The same, although less strongly, can be said for parameters: even though we
do have more insight in the function of the parameters than we have in the function of
architecture, fixing them to optimize the learning of the network is still difficult. The
beauty of the used scheme is that all we have to do, essentially, is offer the problem
in the right format and the system will look for the best network itself (using the
criteria we give it).

The other side of mentioned independence of the system is that it becomes even
harder for us to determine what’s going on: we could not work that out when we
were just using a hand designed artificial neural network, but now that we do not
even develop the network for ourselves, we can only look at what comes out. This
would not be so bad, if it weren’t for the fact that a lot of people do not wish to
accept results given by a system they are unable to understand, and with the system
getting more complicated, acceptance will be harder to obtain. All we can do for now
is hope that further research will make clear what happens inside an artificial neural
network.

This said, we have to look at the results of this research, and can not go around
concluding that those are rather disappointing. Even though some of the problems
offered to the networks are rather simple, the CALM-networks did not perform par-
ticularly well on them.

A first explanation for this could be the fact that determining a suitable architec-
ture as well as a set of parameters to solve a certain problem, is by no means easy, in
fact, it has been one of the most difficult problems within biologically based methods.
The fact that the parameter set of CALMs is so much more complicated than it is
for most other Artificial Neural Network paradigms, makes this particular case an
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even more difficult one. Mainly because of this, networks developed by hand were
used, thus alleviating the genetic algorithms task, since it has only the values of the
parameters left to determine. This did lead to better results; most often scores of
80-90 out of 100 were obtained. Pretty good scores, but still not living upto par.

10.1 Conclusions

The idea behind the research for this thesis was to obtain a more efficient way of
coding both architecture and parameters for a CALM-type artificial neural network.
In order to do so genetic algorithms (GAs) were used. However, if GAs were used
sec, the chromosomes representing networks would have to grow with the growth of
the network. To circumvent problems the networks were not coded themselves, but
codings of an L-Systems type grammar, with each L-system representing the structure
of a network, were used. As a result fixed size chromosomes could we used, if larger
networks were needed all that was to be done was increase the number of steps of the
L-system, thus giving it the chance to lengthen the string representing the network.
One thing that remains to be solved for sure is the amount of computing power
needed. Finding networks even for simple problems takes a lot of time, simply because
of the fact that to judge the quality of a network the network needs to be tested.
However, this great use of computing power can be seen as an investment: once a
good network has been found, a lot of time can be saved. If a network has to be used
often, the amount of computing power needed for the network itself is also of great
power, the further this can be limited, the greater the profit on the investment.
From Bart Happel’s work it follows that CALM-networks do quite well on certain
problems: his digit recognition experiment got good results on both recognition and
generalization of input. Yet a network of the same size (for internal modules, that is.
The size of input and output modules is determined by the problem the network is to
solve) is unable to come to a reasonable score on even the simple mapping problem.
A possible explanation for this can be found in the kind of problems: digit recognition
has a very large problem space (the input is 25 dimensional), and a lot of room for
fuzzy borders with it: the room between members of each of the categories is so large
that CALM is provided with ample room for error. On the mapping problem, on the
other hand, we have a limited problem space (2 dimensional). Moreover, we expect
the networks to produce a very sharp distinction between the inputs. Unlike with
digit recognition, the mapping problem hardly has undefined areas (the points in the
problem are quite close together). Apparently CALM-networks are unable to produce
a division of the problem space in such a way that a well performing network is found.
We must remember why we started developing ANNs, though. From the psycho-
logical point of view, if was done to obtain better insight in cerebral activities. From
the computer science point of view it was done to develop tools for solving problems
that are hard to solve with normal algorithmic programs. People are generally to
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very good at solving the type of problems used in this problem, that is, we would not
perform very well on the difficult mapping problem (although we would on the easy
one, apparently what what takes us ahead of CALM is a better capability of gen-
eralizing: we would simply remember the four quadrants, while the CALM-network
seemingly attempts to remember the individual cases) or the spiral. We have high
expectations on CALMs performance on these type of tasks, because we know BPNs
solve them well enough, but it really is more important that ANNs perform better on
the type of problem computers find hard to solve. The scores obtained by Happel on
digit recoginition (90% succesfull) are promising in that line, although more research
will be necessary.

The overall conclusion must be that CALM-networks, as yet, are unable to prop-
erly solve certain types of problems. Large problems with vague problem areas are
solved well enough, yet the scores on small problems with tightly defined solutions
are not good enough to compete with, for instance, Back Propagation Networks.

10.2 Comparison of CALM and BPN

When we want to compare two paradigms, the first thing we need is one or more
criteria to judge the quality. In this section three criteria will be attended to.

The most obvious criterion is the number of correct categorizations the network
gives. This criterion is easy enough, however, if a very small network of one type gets
97% correct while a giant of the other type gets 99% correct, one might wonder if this
isn’t too simple a criterion. As mentioned before we want to have networks that do
not simply learn an association, but networks that actually learn what features in the
input are of importance for solving the problem. For this we have another criterion.

Determining which of two networks, a CALM-network and a BPN is biggest, we
can’t simply count something, since the paradigms do not use the same kind of units.
We could count the number of modules: the CALMs in a CALM and the modules
at the lowest level in BPNs (as explained in an earlier chapter). A measure we could
use is the number of nodes in the hidden layers of the BPN, compared to the number
of R-nodes in the internal CALMs. Since input and output width are equal (at least
we hope s0), these are of no importance.

A final criterion in comparison is the number of iterations each of the networks
uses. As with the number of nodes, however, the correspondence is not a direct one.
Where a CALM normally converges (reaches a categorization) within some 30 steps,
a BPN uses just one. However, it may take several thousand offerings of the problem
to a BPN before this has learned the problem, where a CALM might have learned it
after just one offering. What we could compare is the number of occasions on which
a pattern was offered to a BPN with the number of occasions on which a pattern was
offered to the CALM-network multiplied by the number of steps it took the network
to converge to a solution.
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Another, and much more simple criterion, would be to simply take the amount of
computer time the respective networks needed to learn the problem.

Having said all this, we come to the rather sad conclusion that all these projections
may be superfluous: on the problems tested in this research, the results obtained
on runs with CALM-networks are far less promising than those obtained by Boers
and Kuiper ([Boer 92]) using Back Propagation Networks. They, for instance, found
networks with a 100% score on the difficult mapping problem, while the maximum
obtained in this research was a somewhat disappointing 90%.

10.3 Recommendations For Further Research

The research report to which this research is a sequel ([Boer 92]) already mentioned
a number of topics on which further research might be useful. However, since this
network started out by using a different paradigm and time was short, these recom-
mendations did not find a place in this research. This results on some of the recom-
mendations in genetic algorithms being identical to those mentioned in [Boer 92].

10.4 The genetic algorithm

Make a more stable fitness function. The fitness function currently used is
dependent on training the network once. However, due to the random process at work
in learning, the same network would not on every training section obtain the same
fitness. This means that a certain structure can gain a far too important place in the
population due to a once-in-a-lifetime-type push in the right direction by the random
processes. To prevent this from happening the most fit creature in the population
might be evaluated each step, averaging its fitness over all evaluations. This, however,
would take more computing power still, when so much is used already.

Find a better way to genetically manipulate the parameters. At the
moment the learning parameters of the network are manipulate by the genetic al-
gorithm in a way very similar to the way the chromosomes for the architecture are
manipulated. It might be better, though, to manipulate those in a different way.

Evaluate a network once. At the moment when a network is found it is
evaluated right away (excepting the axiom). This, of course, is not too efficient: it
would be far better if networks that have been evaluated once, are not evaluated
again, or if reevaluation would be used to make the fitness a more reliable one. To
achieve this, a database would have to be kept of the networks already evaluated.
However, there might be a problem in determining which networks are the same: if
two strings form the same network, they are not necessarily the same. If two networks
are the same in structure, their matrices will not necessarily be the same: nodes or
modules might be interchanged, thus change the matrix without changing the actual
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structure. At the moment it is hard to judge were implementing this would save more
time than the overhead required uses.

Calculate the fitness of the initial population. The initial population is
created with random chromosomes. The fitnesses of all these chromosomes were set
to zero. However, it might be that these initial members of the population have certain
qualities that enhance the fitness of the population. These qualities would be lost,
since the chromosomes with fitness zero are gradually pushed from the population (at
least we hope so). Again, this is something of which it is unclear whether the extra
amount of work required is justified by the information won from it.

Initialize the population with members having a positive fitness. Instead
of using an initial population with random numbers, of which a lot turn out to have
a zero fitness (this could be observed from the new members made during genetic
evolution), we might use initial members that have a positive fitness. A large part
of these zero fitness members create an L-System that has no rules that can be
applicated. A better way to solve this problem would be to change the axiom: the
larger the axiom, the greater the chance a production rule can be applied. This,
however, would seem like tampering with genetics. A better way to solve this problem
would be to evaluate a string before inserting it in the initial population and only
place it in the population if it has a positive fitness. This might also be a way to get a
more diverse population, since the initial population contains far more members that
can have a positive effect on the evolution.

Use a set of useful production rules in the initial population. An extension
of the previous idea would be to make a set of useful production rules, code this set
as a chromosome and insert this in the population. This method poses a threat,
however: since we do not know for sure which structure will emerge as the fittest
member, tampering the population this way might steer it in a direction away from
good solutions, thus making it much harder for the GA to find a good solution.

Include the axiom in the genetic process. At the moment a fixed axiom is
used. Including this axiom as a separate gene in the population, might create new
axioms from which very useful solutions, that are otherwise neglected, can start off.
This would also be more biologically plausible: the human ovum can be seen as a
type of axiom which contains the information on which the coded production rules
can operate.

Find a tighter relation between GA-string and network architecture.
“Real life” chromosome “bits” code a feature of the organism directly, that is, there
is a direct relation between the possible development of a certain feature and such a
“bit” (the bit determines the genetic coding of the feature, the genotype, from which
the organism, the phenotype, develops). Artificial chromosomes are represented by
a string of characters, with each character having its influence on the architecture of
the network which develops from it. However, the phenotype in natural organisms is
similar to the sequence of characters coded by the chromosome, and not so much to
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the architecture of the network. Making the relation between the chromosomes and
the architecture of the network more direct might cope for the networks to be more
flexible, thus giving them a greater potential power.

Apart from that, the use of Genetic Algorithms might work better if the cor-
respondence between chromosomes and architecture was closer, than it did in this
research, since the problem presented to the Genetic Algorithm appears to be too
large to be taken on succesfully.

Use larger computers. This may sound like the another case of software crisis,
however, the problem at hand simply asks for a lot of CPU time, the faster the CPU(s)
used, the sooner the problem is solved. One of the reasons no good networks were
found in this research might have been that the simulations weren’t run for a long
enough period of time.

10.4.1 CALM

Use incremental learning. So far the networks were offered the complete problem
immediately. It may, however, work better to offer bits of the problem at first. CALM-
networks do solve the XOR-problem, which has a problem space similar to that of the
mapping problem. The networks might work better if the network first gets offered
the corners, gradually working towards the center of the problem space, thus guiding
the network along the way.

Something similar holds for the spiral problem. The problem in itself is very hard
to learn, yet it might learn better when the spiral is offered bits by bits, starting of
with a filled circle in the middle, and only the outside of the category. The second
spiral can then insert itself into the first gradually.

For this approach to work well, the CALM-network must have some sort of sense of
what the problem is, it should be more than just a collection of inputs, as the mapping
problem sometimes appeared to be treated. If the network treats the problem simply
as a collection of patterns, this gradual learning scheme will not help, since all it will
see is changes in points (or at least we hope it will), without noticing the connection
with the rest of the inputs.

Enhancing strict learning. The pictures of random input shown in figures 9.5
through 9.7 suggest that CALMs are able to make sharp distinctions between cate-
gories (although some of the borders suggest a certain degree of fuzziness: the net-
works with more output nodes show a kind of “smudges”, these might be an indication
of doubt about the category of those particular points). This suggest that CALMs
might be able to solve the type of problems offered in this research, but that the
learning method is not sufficient to reach through to the network. Despite this, some
rather wild categorizations were found on non-random problems, but unfortunately
those categorizations didn’t come close to the desired categorizations.

Further evidence for a lack in strict learning comes from the fact that a lot of the
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categorizations produced by networks were definitely attempts at making a quadrant-
type categorization, but lacking the exact boundaries.

Do more theoretical research. Due to the complexity of CALMs, still rela-
tively little is known about the internal processes. It remains largely unclear what
exactly the effects are of certain parameter values and which values enhance learning
in certain architectures or with certain problems. This lack of knowledge about the
theoretical background of CALM makes it very hard to make clear judgements about
results. In fact, this research suffered a lot from that: the networks were expected
to perform well, yet they did not. The first thought in that case is that there is
something wrong with the programming, while in the end it turned out to be the
paradigm that was not working well enough.

Try different connecting methods. All connections in CALM-networks are
full connections. Even though the learning algorithm can adapt this for connections
between CALMs, by making a weight zero, this does make learning a giant proces.
Apart from that, all weights within a CALM are fixed during learning. Using different
connections (for instance one-to-one, as mentioned before) or using less rigid internal
weights might aid learning.

Check the convergence methods. Learning in a CALM-network depends on
the convergence criteria for an important part. If a network is assumed to have
converged while it hasn’t, chances are the result will not be very good. Some of the
categorizations, see for instance some of the pictures of categorizations of random
input, are very ragged, and might have suffered from seemingly, but not actually,
converged output-modules. This might also be solvable by simply letting the network
train a couple of cycles after convergence, by the used criteria, of course, is reached.

bf Use larger computers. This also seems to go for CALMs. Even though runs
after only a couple of generations seemed to get stuck on a plateau, often enough
improvements (slight as they may have been) were found after more than 100 gener-
ations. There is no way of telling whether letting a simulation run for, for instance,
5000 generations would not produce eventually a member with a fitness of 100 (al-
though the chance is admittedly small), however letting a simulation run for 200
generations on an indigo already costs several days, and with the problem of comput-
ers going down regularly it is difficult to run long simulations. The last problem can
be solved by saving data to disk after each generations, something that is not done
at this moment.
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Appendix A

The Default Parameters Of
CALM

This appendix shows one of the most aspects. Figure A.1 shows the names and
functions of the parameters, figure A.2 shows the default values of the parameters.
It should be noted that these parameters values do not work well for every type of
network architecture, in fact, they do not work well for most. The parameter values
can be changed per CALM.

In this research the default parameters were mostly used for determining more
suitable values for the parameters: they were used as a basis for the evolutionary
strategies.

105



106 APPENDIX A. THE DEFAULT PARAMETERS OF CALM

name function

UP Up-weight

DOWN Down-weight

CROSS Cross-weight

FLAT Flat-weight

HIGH High-weight

LOW Low-weight

AE AE-weight

ER ER-weight (strange-weight)
INIT_LWT Initial learning weight

INIT_MU Reset value

ACTIV_DECAY_PAR Decay parameter activation rule
K_LEARNING_PAR Grossberg K-parameter learning rule
L_.LEARNING_PAR Grossberg L-parameter learning rule
D_LEARNING_BASERATE base rate learning rule
E2MU_VIRTUAL_-WEIGHT Virtual weight from e to mu

LOWCONVERGENCE_CRITERIUM Low convergence criterium

HIGHCONVERGENCE_CRITERIUM | High convergence criterium

ERROR Random excitation error
VE Weight from V to E node
OUT_RESET Weights from output module R-nodes to
Reset-node in paired CALM module
ANODE_RESET weights from A-node to Reset-node
of paired output module
RESET _RESET Weight from Reset-node in CALM-module
to Reset-node in paired output module
VNODE_DECAY_IN_STM Decay V-nodes in STM module
OUTPUT2STM Weights from output module
to STM-module (one to one)
CALM20OUTPUT Weights from CALM module

to output module (one to one)

RNODE_INHIBIT_-ON_OUTPUT_MOD | Decay R-nodes in output

LATERAL_INHIBIT Lateral inhibition V-nodes in STM-module
AUTO_DECAY Auto decay of weights
THRESHOLD Threshold for activation

V-nodes in STM module
USEPAR2 User defined parameter
USEPARY User defined parameter

Figure A.1: The names and functions of the CALM-parameters.
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parameter | name value
number

0| UP 1.0

1 | DOWN -1.0

2 | CROSS -9.0

3 | FLAT -1.5

4 | HIGH -0.4

5 | LOW 0.6

6 | AE 1.4

7| ER 0.5

8 | INIT_LWT 0.4

9 | INIT_-MU 0.005
10 | ACTIV_.DECAY_PAR 0.12
11 | K.LEARNING_PAR 0.7
12 | LLLEARNING_PAR 0.8
13 | D.LEARNING _BASERATE 0.003
14 | E2MU_VIRTUAL WEIGHT 0.03
15 | LOWCONVERGENCE_CRITERIUM 0.00001
16 | HHGHCONVERGENCE_CRITERIUM | 0.00010
17 | ERROR 0.00005
18 | VE 0.00000
19 | OUT_RESET 1.0
20 | ANODE_RESET 1.2
21 | RESET_RESET 0.18
22 | VNODE_DECAY_IN_STM 0.005
23 | OUTPUT2STM 5.0
24 | CALM20OUTPUT 3.0
25 | RNODE_INHIBIT_ON_OUTPUT_MOD 0.25
26 | LATERAL_INHIBIT 0.0
27 | AUTO_DECAY 0.0
28 | THRESHOLD 0.5
29 | USEPAR2
36 | USEPAR9

Figure A.2: The default values of the CALM-parameters.
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Appendix B

An Example Of Categorization

In A CALM-network

This appendix gives a rather large example of the categorization of one input by a
CALM. Due to an unknown cause the exact architecture of the network was lost, but
the figures were still added to this thesis because they still show some of the processes

that rule within a CALM-network.

Input Moz 0000 Iteration: 0000 Corwergence: —001 Previous convergence: 0000 Mum Comvergences 3 0000 Cycle 0000
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a0 00 00 00
G 00 G0 o0
Gt 00 G0 o0
00 00 00 00

109




110

AN EXAMPLE

Input Ma: 0000

Iteration: 0001 Convergence: -001 Previous convergence: 0000 Mum Convergences : 0000 Cycle 0000

Corw 0 to
Corw 1 to
Corw 2 to
Corw 3 to

00 00 00 0
00 00 00 00
00 00 00 00
00 00 00 00

Input Moz 0000

Iteration: 0002 Convergence: -001 Previous convergence: 0000 Num Corwergences : 0000 Cycle 0000

00 00 90 00
a0 00 00 00
G 00 G0 o0
Gt 00 G0 o0

Tnput. Mo 0000

Iteration: 0003 Conuergence: 001 Freuious convergence: 0000 Hum Convergences

0000 Cycle 0000

...O

OOO

O

Corw 0 to
Corw 1 to
Corw 2 to
Corw 3 to

00 00 00 00
a0 00 06 00
a0 00 06 00
G0 00 06 0O
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Input Mot 0000 Iteration: 0004 Conwvergence: -001 Previous convergence! 0000 Mum Convergences @ 0000 Cycle 0000

6%, OF, OF,
@ch O% 0%

OO COe0)

OOOO

OOO

O,

Corw 0 to 00 00 00 0O
Corw 1 to 00 00 00 0O
Corw 2 to 00 00 00 0O
Corw 3 to 00 00 00 0O

(e)

Input Moz 0000 Iterationgy O00E Convergence; -001 Previous corwergence: 0000 Mum Coreergences 1 0000 Cycle 0000

Conv 0 to 00 00 00 00
Conw 1 to 00 00 00 00
Corw 2 to 00 00 00 00
Corw 3 to 00 00 00 00

Input Moz 0000 Iteration: 0007 Corwergence: —001 Previous convergence: 0000 Mum Comvergences 3 0000 Cycle 0000

Conv 0 to 00 00 OO OO
Conv 1 to 00 00 G0 OO
Conv 2 to 00 00 G0 OO
Corw 3 to 00 00 00 00
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AN EXAMPLE

Tnput. Mo 0000

Iteration; 0008 Conwvergence: -001 Previous convergence; 0000 Hum Convergences @ 0000 Cycle 0000

£
£

Corw 0 to 00 00 00 0O
Corw 1 to 00 00 00 0O
Corw 2 to 00 00 00 0O
Corw 3 to 00 00 00 0O

JE
:

Tnput. Mo 0000

Iteration; 0003 Conwvergence: -001 Previous convergence; 0000 Hum Convergences @ 0000 Cycle 0000

5
£

:
:

Corw O to 00 00 00 00
Corw 1 to 00 00 00 0O
Corw 2 to 00 00 00 0O
Corw 3 ko 00 00 00 00

Tnput. Mo 0000

Iteration; 0010 Conwvergence: -001 Previous convergence; 0000 Hum Convergences @ 0000 Cycle 0000
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O

()

5
O

. 86
L
85

OOOO

Corw O to 00 00 00 00
Corw 1 to 00 00 00 0O
Corw 2 to 00 00 00 0O
Corw 3 ko 00 00 00 00
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Input Mot 0000 Iteration: 0011 Conwvergence: -001 Previous convergence! 0000 Mum Convergences @ 0000 Cycle 0000

Corw 0 to 00 00 00 0O

Conw 1 to 00 00 00 00
Cm Conv 2 0 00 00 00 00

Corw 3 to 00 00 00 0O

Input Mot 0000 Iteration: 0012 Conwvergence: -001 Previous convergence! 0000 Mum Convergences @ 0000 Cycle 0000

OOOO

OOo

O,

Corw O to 00 00 00 00
Corw 1 to 00 00 00 0O
Corw 2 to 00 00 00 0O
Corw 3 to 00 00 00 0O

Input Moz 0000 Iterationy 0013 Conwvergence; -001 Previous corwergence: 0000 Mum Coreergences 1 0000 Cycle 0000

Conv 0 to 00 00 00 00

Conw 1 to 00 00 00 00

Corw 3 to 00 00 00 00

(m)
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AN EXAMPLE

Tnput. Mo 0000

Iteration; 0014 Conwvergence: -001 Previous convergence; 0000 Hum Convergences 0000 Cycle 0000

OOOO

Corw O to
Corw 1 to
Corw 2 to
Corw 3 to

00 00 00 00
00 00 00 00
a0 00 06 00
G0 00 06 0O

(n)

Input Mo 0000

Iterationy 0015 Convergence; -001 Previous convergence; 0000 Mum Corwergences 1 0000 Cycle 0000

O.OOO

O.OOO
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OO COe00)

0000
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Corw 0 to
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Conw 3 to

00 00 00 00
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Input Ma: 0000

Iteration: 0016 Convergence: -001 Previous convergence: 0000 Mum Convergences : 0000 Cycle 0000
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Input Moy 0000

Iterationy 0017 Convergence: -001 Previous conwergence; 0000 MNum Corwergences @ 0000 Cycle 0000

Cony O to 00 00 00 00
Conv 1 to 00 00 00 00
Cony 3 to 00 00 00 00
(a)
Input Mot 0000 Iterationi OOLE Convergence: -001 Frewious convergence: 0000 Hum Comvergences § 0000 Cycle 0000
Corw 0 to 00 00 00 0O
Corw 1 to 00 00 00 0O
Corw 3 to 00 00 00 0O
(r)
Input Moz 0000 Iterationy 0019 Convergence; -001 Previous corwergence: 0000 Mum Corwergences 1 0000 Cycle 0000
Conv 0 to 00 00 00 00
Conv 1 to 00 00 00 0O
Conv 3 to 00 00 00 00
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AN EXAMPLE

Input Mo 0000

Iterationy 0020 Convergence; -001 Prewvious convergence; 0000 Mum Corwergences 1 0000 Cycle 0000

Corw O ko 00 00 00 00
Cornw 1 ko 00 00 00 00
Conw 2 ko 00 00 00 00
Conw 3 ko 00 00 00 00

Tnput. Moz 0000

Iteration; 0021 Corwergence: -001 Frevious convergence: 0000 Num Corvergences @ 0000 Cycle 0000

OOOO

Conv O to 00 00 00 00
Conv 1 to 00 00 00 00
Conv 2 to 00 00 00 00
Conv 3 to 00 00 00 00

Tnput. Mo 0000

Iteration; 0022 Conwvergence: -001 Previous convergence; 0000 Hum Convergences @ 0000 Cycle 0000

OOO

O

Corw 0 to 00 00 00 0O
Corw 1 to 00 00 00 0O
Corw 2 to 00 00 00 0O
Corw 3 to 00 00 00 0O




AN EXAMPLE

Input Mot 0000 Iteration: 0023 Conwvergence: -001 Previous convergence! 0000 Mum Convergences @ 0000 Cycle 0000

55
35

Corw O to 00 00 00 00
Corw 1 to 00 00 00 0O
Corw 3 to 00 00 00 0O
(w)

Input Moy Q000  Tteration: 0024 Conwergenced —001 Prewious convergence! 0000 MNum Corwergences @ 0000 Cycle 0000
Corw O to 00 00 00 00
Corw 1 to 00 00 00 00
Corw 3 to 00 00 00 0O

Input Mop 0000 Iteration: 0025 Corwergence: -001 Prewious corwvergence: 0000  Mum Convergences ¢ 0000 Cycle 0000
Corw 0 ko 00 00 00 00
Corw 1 ko 00 00 00 00
Cony 3 to 00 00 00 00
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Input Moz 0000 Iteration: 0029 Corwergence: 0000 Prewious convergence: 0000 Mum Convergences @ 0000 Cucle 0000

®000,
e
BERRBRLRE

Conv 0 to 00 00 00 00

Conv 1 to 00 00 00 00
00 00 00 00

Corv 3 to

(z)

Figure B.1: This figure shows the process of an unlearned network categorizing offered
input. This is the first time input is offered to the network, so all weights are at
initialization value. (a) shows how all R-nodes in most CALMs get activated, whilst
(b) shows how this input is propagated to the output CALM as well as the upcoming of
activation in the V-nodes in the internal CALMs. The high activations are typically
caused by unknown patterns. (c) shows how some of the A-nodes get activated
because of the strong competition of the R-nodes, caused by the unknown pattern,
as well a lot of R-nodes getting less active because of the strong inhibition by the
V-nodes (which also get activated through the strong competition). (d) and (e)
show how some R-nodes pick up activation for the second time, a process known
as oscillation, one of the features of CALM-networks. (f) through (i) shows the
first signs of the network getting familiar with the pattern: not all R-nodes in a
CALM have the same activation, and activations change less rapidly, although (j)
through (1) show the network still has some work to do: a lot of nodes are still
able to reach a high activation (also in the output module, which should in the
end have just one R-node with a significant activation). (m) through (o) show that
the differentiation between activations within one CALM grow: there are CALMs
with virtually unactivated nodes as well as strongly activated nodes (typically what
we want to have in categorization), the differences in the activations in the output
module already hint at the node to which the input is categorized. (p) through
(r) show the network in the lull before the final run to categorization. These lulls
become gradually longer with the learning of the pattern. (s) through (y) show how
only a limited number of R-nodes get activated now that the pattern is learned, the
learning of the problem seems not only to result in the output module having just
one activated R-node (which in fact is the most common criterion for determining
whether the pattern is learned), but also in most of the internal modules having just
one activated R-node. This in principle limits the calculative powers of the network:
so much less patterns might be coded when just one node is activated, compared to
combinations of activated nodes. (z) shows the final activations: just one R-node is
activated, activation in the others in negligible: the pattern is learned.
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