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AbstractCALM (Categorization And Learning Module) is a rather recent [Murr 92] neuralnetwork paradigm, developed at the Leiden University Department of ExperimentalPsychology, which is said to be more powerful than older paradigms, like Back Prop-agation Networks (BPN) and Hop�eld Networks. Instead of loose nodes, a CALM-network consists of a number of modules, each consisting of a number of nodes of fourdi�erent types, each with its own function. This thesis shows some research into howwell CALM can do on di�erent types of problems using di�erent types of methods todevelop architectures and parameters.This was �rst done by using the method Boers and Kuiper ([Boer 92]) used intheir research, followed by some manual methods and use of evolutionary strategies.This change of direction was mainly taken because the �rst direction did not resultin any useful network architectures. Unfortunately CALM-networks do not appearto score as well on smaller problems with strict categorizations of input patterns, asmight be expected from results on, for instance, digit recognition.
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Chapter 1IntroductionThe main idea behind this research was to do some experiments on the relatively newarti�cial neural network paradigm CALM. This, of course, is a rather vague descrip-tion of a research project, but this seems inherent in research. It more or less startedout as a sequel to Boers and Kuiper's research ([Boer 92]). They determined thearchitecture of Back Propagation Networks using genetic algorithms and interpret-ing the thus created strings as an L-system ([Lind 68]). The L-system thus createdgenerates the architecture of a neural network. Since this did not appear to work aswell with CALM as it did with Back Propagation Networks, a somewhat di�erentapproach was chosen. The main reason for the lack of success with CALM appearedto be the fact that the parameters did not receive any attention. If these are evalu-ated at the same time as the architecture, the process of �nding a network becomesto time assuming, at least with the current state of technological art. Therefore acouple of network architectures were chosen and a genetic method was used to de-termine the values of the parameters. Besides this, some side steps were taken, suchas categorizing of random input and writing an interface that visualizes learning ofCALM-networks.This chapter gives a brief introduction of the main pilars for this research. Thefollowing chapters will give more in depth information about these, although they stillremain introductory. For further information on these paradigms and/or methods,the cited references can be used.1.1 Genetic AlgorithmsGenetic algorithms are based on the ideas as laid out in the theory of Darwinianevolution. Darwinian evolution [Darw 1859] states that the �tter a certain memberof a population is, the greater the chance the member will reproduce, and in that, willlive on in his o�spring. According to Darwin evolution was unintentional (as opposedto Lamarckian evolution ([Bem 89]). 7



8 CHAPTER 1. INTRODUCTIONIn genetic algorithms a population of strings is used, where each of the members ofthe population can be seen as a chromosome, consisting of a number of genes. Thesegenes are interpreted as parameters for the problem to be solved: the total of genesof one member creates one \creature" which will be used in attempting to tackle thegiven problem. According to how well this creature does at tackling the problem,a �tness is awarded. If the creature does well it receives a high �tness, if it doespoorly it gets a low �tness. The �tness determines how large the chance is for theparticular creature to survive and reproduce when a new generation of the populationis being created. In creating a new generation, the most commonly used operatorsare selection, crossover, inversion and mutation. Genetic algorithms are described inmore detail in chapter 2. One of the pioneers of GAs (genetic algorithms) was JohnHolland: [Holl 75].1.2 L-systemsLiving beings develop by the grace of genes. Each being has its own genetic infor-mation to start with (genotype), which determines the way it will look in the end(phenotype). This genetic information does not completely determine how the beingwill look, but is more a kind of recipe [Dawk 86]. All cells contain the same set of genecoded information, which they use during development, but their �nal form does notonly depend on this genetic information, it also depends on its cellular environmentand on the information from genes which were read in the past. All this renders thedevelopment of the cell a local matter.As the biologist Aristid Lindenmayer wanted to model this development in plants,he developed L-systems [Lind 68]. By using rewriting rules with an L-system, a stringcan be rewritten into another string by rewriting all characters in the string in parallelinto other characters. It should be noted that rewriting in parallel results in a di�erentkind of formal language than rewriting just one occurrence at a time. L-systems willbe described in more detail in chapter 3.1.3 Neural Networks...or maybe one should say arti�cial neural networks.For a long time humans have tried to create computer programs exhibiting in-telligent behaviour. For quite some time they thought that intelligently behavingcomputers were just a couple of years away. And then to think that we are not evencertain we know what intelligence is...In the early days of computers, limited attempts were made to create intelligenceby deterministic programs, programs which behaviour can be predicted. A popularapproach was formed by rule based systems, but these never have been able to live



1.4. RESEARCH GOALS 9up to expectations. A di�erent approach was chosen, reverse engineering, which hadproved to be successful in many other areas. The human brain consists of many,seemingly computationally rather simple, units, called neurons. After taking a closerlook at these units, however, it becomes clear that neurons are far from simple. It ispossible to make more or less accurate simulations of these, by abstracting from mostof the more complicated mechanisms at work in a neuron, which is exactly what isdone in arti�cial neural networks. Even so; it is at the moment impossible to imitatethe brain as a whole, partly because of lack of insight in the interaction betweenthe neurons and partly because current computers are far too slow to simulate thecomplexity and the number of the connections. Therefore the aforementioned largesimpli�cations are made in arti�cial neural networks (ANN).The neurons in the human brain are represented by so called nodes in an ANN.Each of these nodes receives input from other nodes and, based on this input, createsoutput, which is passed on to other nodes. Part of the nodes are input nodes and partof the nodes are output nodes. These nodes take care of the communication with theoutside world. Because of their lack of communication with the outside world, theremaining nodes are often referred to as hidden nodes.When we learn an ANN to solve a problem, we say it is being trained. Trainingcan happen in two ways: supervised and unsupervised. In supervised training we o�erthe network so called input/output pairs. Each pair speci�es an input and the desiredoutput for that input. The network is repeatedly o�ered these input/output pairs,until the network has learned the problem (or until its creator has gotten fed up withit). Back Propagation Networks are typically trained with supervised training. CALMcan be used both with supervised and unsupervised training. In this research bothparadigms were used with supervised training. In unsupervised training the networkis only o�ered the input, to which it will have to generate output by itself. The tasksperformed this way are typically categorizing tasks. One of the older and more knownparadigms that is often used in unsupervised learning is the Hop�eld network.Further treatises on BPN and CALM can be found in chapter 4 and 5, respectively.Finally, chapter 6 describes some methods that do not fall into any particular category,but which are of importance.1.4 Research GoalsIn their master's thesis Egbert Boers and Herman Kuiper [Boer 92] describe a methodfor determining the architecture of a Back Propagation Network by interpreting ge-netically manipulated strings as an L-system, which in itself describes the architectureof the network. Part of the work they did was developing a software package whichcontained, among other things, functions implementing the genetic operators and thebuilding, running and evaluation of the Back Propagation Networks.In this work an adaptation of their work is described that genetically determines



10 CHAPTER 1. INTRODUCTIONthe architecture of a CALM network, as well as the learning parameters of the net-work. Since the understanding of CALM is even less|due to the extra complexity|than the understanding of BPNs, it is even more di�cult to determine an optimalarchitecture for a CALM network than it is to determine one for a BPN.In order to do this, several adaptations had to be made to the original functions.First of all, the Back Propagation part had to be replaced by a CALM library (writtenby Bart Happel). Apart from that, the genetic functions had to be adapted to notonly generate strings representing the architecture of the network, but also the valuesof the thirty learning associated parameters CALM has.Along the line, though, several other directions of research were taken, for instance,categorizing random input (to see what kind of problem space divisions CALM canhandle), determining the parameters by adding noise (this to optimize the parame-ters, which clearly enhances learning), as well as visualizing the learning of CALMnetworks.



Chapter 2Genetic AlgorithmsOne of the greater problems of using ANNs, is to determine a suitable topology. So ifit poses us with problems, why not let a computer solve it? A rather brute way wouldof course be to simply sum up and evaluate all possible networks in an e�ective way.This, however, would be rather ine�cient. So we need a way that takes us throughthe world of possible topologies in a better way. One way to do this is by using geneticalgorithms.Genetic algorithms (GAs) are a biological metaphor of evolution, as laid down byDarwin (evolution, that is) and were introduced by John Holland [Holl 75].2.1 OverviewGoldberg [Gold 89] mentions the following di�erences between GAs and more tradi-tional search algorithms:1. GAs work with a coding of the parameter set, not the parameters themselves.2. GAs search from a population of points, not from a single point.3. GAs use pay-o� (objective function) information, not derivatives or other aux-iliary knowledge4. GAs use probabilistic transition rules, not deterministic rules.The parameters of the problem are usually coded in binary strings (analogous tochromosomes in biology). The coding of the parameters as well as the evaluation ofchromosomes created by the GA are done outside of the GA's view. All the GA doesis creating one population from another, generation after generation. Normally eachof the parameters of the coded problem is represented by one gene in the chromosome.11



12 CHAPTER 2. GENETIC ALGORITHMSDuring reproduction a new population of strings, possible solutions to the problem,is created by selecting and recombining strings already in the population accordingto their �tness, which is externally awarded and states how well the string does atsolving the problem. This can be compared with natural selection, as described byDarwin: the �tter the organism, the greater the chance it will survive and thereforethe greater the chance it will reproduce.A �tness can be awarded in many di�erent ways. If we for instance want thegenetic algorithm to �nd the maximum of a function, we can simply take the functionvalue as the �tness: the maximum of the function corresponds with the optimalattainable �tness. If the GA has to �nd the best neural network for a certain solution,the criterion used could, for instance, be the number of inputs associated with thedesired output: the more inputs that are correctly associated with an output, thehigher the �tness of the string. Again, the GA is unaware of the meaning or theorigin of the �tness, it is merely a criterion to be used in selecting individuals fromthe population for reproduction.The population starts out as a collection of random strings, each of which isevaluated (has its �tness calculated). As new populations are created from this,generation by generation, the overall �tness will go up, thus creating better solutionsfor the problem.The four most commonly used genetic operators are selection, crossover, inversionand mutation. Each of these operations constitutes of only random bit ipping, stringcopying and random number generating. Crossover, mutation and inversion are allapplied to a limited portion of the population. Since selection alone is not enough inthe general case (some simple cases excepted), some of the other operators have tobe included.2.2 SelectionSelection is used to choose strings from the population for reproduction. The higherthe member's �tness, the greater the chance of being picked for reproduction. Thereare two important selection methods, of which only the latter was used in this research.The �rst method is roulette wheel selection: strings are selected with a probabilityproportional to their �tness. A drawback of this method is that an early highly �tmember can get to dominate the population, due to its high selection chance. Thesecond is rank based selection where the chance of being selected is determined as alinear function of the member's position in the population sorted by �tness [Whit 89].For this method to work the population has to be sorted by �tness. One advantageof this method is that there is less dominance by an early good solution that is notoptimal and which could lead the system into a non-global optimum. However, onedoes have to be cautious on choosing a �tness criterion: in roulette wheel selectionit doesn't really matter exactly what the order of the members is, since more or less



2.3. CROSSOVER 13the same �tness leads to more or less the same chance, with rank based selection,however, the order is important. This can become a problem when all the membershave �tnesses that are close together. This typically happens when �tnesses are chosento have a too high nominal value, resulting in the di�erences between individuals beingdwarfed by the value. This can be solved by chosing a �tness function that makesoptimal use of the [0: : :MaxFitness] interval, with MaxFitness being the maximumpossible �tness.2.3 CrossoverThe crossover operator creates a new member for the new population by combiningdi�erent parts from two members of the previous population. A number of crossoverpoints is chosen at random. The new string is made from alternating parts of thetwo originating strings: the bits from the �rst string are copied till the �rst crossoverpoint is reached, than we switch to the second string, at the �rst bit following thecrossover point. This string is copied till we reach the next crossover point, where weswitch back to the �rst. If more crossover points are used {which was not done inthis research{ the crossing over between strings goes similarly. An example is shownin �gure 2.1(a).
101010101JJJĴ JJJĴ100101001



�010101010(a)

100110100JJJĴ



�101011000(b)
101011010?101011000(c)Figure 2.1: Examples of Crossover, Inversion and Mutation



14 CHAPTER 2. GENETIC ALGORITHMS2.4 InversionInversion is an operator that swaps around parts of the originating strings. Twoinversion points are chosen at random. The genes between these two points areswapped, the �rst becoming the last, the second the penultimate, the penultimatebecoming the second and the last becoming the �rst, etcetera. An example is shownin �gure 2.1(b).As mentioned before, a member consists of several genes, each coding part of therecipe for the eventual organism. It would be both unwanted and biologically strangeto simply intermingle two genes coding distinct information. Therefore steps have tobe taken to prevent this from happening.2.5 MutationMutation is as simple as you can get in genetic operators. All it does is ip one ormore bits in the string from 0 to 1 or from 1 to 0.The purpose of mutation is to introduce new solutions in the population that areclose to solutions that are known to do well already (since just one bit is ipped,the string stays largely the same). Mutation can also reintroduce genes that werelost by unfortunate cross-overs. To prevent mutation from messing the population up(by ipping too many bits, thus making the population more or less random noise),the mutation rate has to be kept low. There are applications where selection andmutation as operators are enough to solve a problem (see for instance [Gari 90]).Figure 2.1(c) shows an example.2.6 ImplementationIn his program GENITOR Whitley [Whit 89] uses a one-at-a-time selection and re-placement schedule: a new member of the population replaces the member with thelowest �tness, thus making sure of a monotonically increasing total �tness. This re-sults in the member with the highest �tness always staying in the population. Thismodel is known as the static population model. One-at-a-time replacement is alwaysbetter than creating a whole new population when it can be guaranteed that a globalmaximum can be reached from a good string in the population without passing alocal maximum on the way.At the Department of Experimental and Theoretical Psychology at the LeidenUniversity, a C-library was written to create and manipulate binary strings eitherusing roulette wheel selection or rank-based selection and replacement ([Happ 92]and [Murr 92]). The functions in this library were �rst adapted by Boers and Kuiperfor their research, and later by me for my research. Boers and Kuiper's functions weremeant to genetically determine the architecture (topology) of the network. Since not



2.7. EVOLUTIONARY STRATEGIES 15only the architecture, but also the learning parameters were determined geneticallyfor this research, the genetic operators, as well as the members, had to be adapted toinclude these.2.7 Evolutionary StrategiesGenetic Algorithms are not the only genetic metaphor used in computation, thereare others. One is Evolutionary Strategies. The variation used in this research workswith a kind of random noise (as can be found in the undirected evolution as de-scribed by Darwin). In this case it was used to generate values for the parameters ofCALM-networks. All parameters are multiplied by a random real value in the range[0:50 : : : 1:50], thus repeatedly generating new members. The size of the population isarbitrary, but the search tends to get to directed for small populations (in the sameway as with GAs).
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Chapter 3L-systems3.1 Biological DevelopmentThe development of living organisms is governed by genes. Each cell contains geneticinformation (genotype) which determines the way the organism will look (phenotype).The genetic information is not a blueprint, but more a recipe of the �nal form. Thisrecipe is not followed by the whole organism, but by each cell separately. The shapeand behaviour of a cell depend on the genes from which information is extracted,which in itself depends on from which genes information was read in the past as wellas the environment of the gene. This leaves the development a solely local matter.3.2 Simple L-systemsL-systems were introduced in 1968 by Aristid Lindenmayer [Lind 68] in an attemptto model the biological growth of plants. An L-system is a parallel string rewritingmechanism, a kind of grammar.A grammar consists of a starting string and a set of production rules. A productionrule consists of two parts; the part before the !, the left side, and the part after the!, the right side. The following production rule rewrites an A into AB. Repeatedapplication will result in the string ABn, with n the number of times the rule wasapplied.A ! ABThe starting string, also known as the axiom, is rewritten by applying the pro-duction rules: each production rule describes how a certain character or string ofcharacters should be rewritten into other characters. For a production rule to be ap-plied, it must �rst match: the left side of the rule has to be the same as a part that isto be rewritten. Whereas in other grammars production rules are applied one-by-one17



18 CHAPTER 3. L-SYSTEMSa. The initiator (axiom)
������@@@@@@b. The generator (production rule)

��@@ ��AAÀ `̀ ��@@   ���@@ ��@@c. The generator rewrittenFigure 3.1: Example of a Koch fractalsequentially, in an L-system all characters in a string are rewritten in parallel to forma new string.This creates the opportunity to draw approximations of certain types of fractals,by using a special interpretation of a string generated by an L-system. We do this byusing a LOGO-style turtle [Szil 79].Consider the following L-system:Axiom FProduction rule F ! F - F ++ F - FIf we interpret F as a step forward, - as a 45 degree turn left and + as a 45 degreeturn right, we could visualize this production rule as shown in �gure 3.1.3.3 Bracketed L-systemsA disadvantage of the turtle symbols from the previous paragraph, is that they canonly make so called single line drawings, in contrast to what is observed in natural lifebranching, as seen in for instance plants. To give the turtle the freedom of movementto create this more natural branching, two new symbols are added:[ Remember the current position and direction of the turtle (push).



3.4. CONTEXT SENSITIVE L-SYSTEMS 19

Figure 3.2: 30 rewriting steps, � = 16�, axiom F1F1F1. See the text for the productionrules used.] Restore the last stored position and direction (pop).With these two new symbols, far more realistic drawings can be made, as can beseen in �gure 3.2.3.4 Context Sensitive L-systemsAnother way of making more complex, more natural looking drawings of plants, isimplemented by using context. Context models the exchange of information betweenneighbouring cells, it can be left, right or both for a certain string. An L-systemwithout context is called a 0L-system, an L-system with one-sided context a 1L-system, and one with context on both sides a 2L-system. A production rule is of thefollowing form:L < P > R ! S



20 CHAPTER 3. L-SYSTEMSWhere P (the predecessor) models the left side in the earlier production rulewithout context, and S (the successor) the right side. L and R are the left-contextand right-context respectively.If in a rule P has context on both sides, it can only be replaced by S if it hasits left context directly on the left in the string and its right context directly on theright. If two production rules qualify for application, the one with context is chosen.If we take the following production rules:A ! XB ! YC ! Zthe string ABC would be rewritten to XYZ, after which neither of the rules applies.If we were to take these production rules:A ! XB ! YY < C ! Zthe string ABC would be rewritten to XYC in one step. The C is not rewrittenbecause the left context is not Y at the moment of writing (remember, rewriting goesin parallel, so C's left context still is B). However, if we were to rewrite XYC wewould �nd one rule that applies: since C's left context now has been changed to Y,the third rule does apply. This results in XYC being rewritten to XYZ.Determining what the context is, is a little more tricky with bracketed 2L-systems.Since the left and right context is not always direct left or right from the string orcharacter that is to be replaced, but can be distanced by a bracketed pattern (thesebracketed patterns would represent branches if we were to plot the string as a tree)([Prus 89]). If we, for instance, had a production rule with the following left side:BC < S > G[H]MIt could be applied on the S in:ABC[DE][SG[HI[JK]L]MNO]skipping DE on the left side and I[JK]L on the right side in the process, since theserepresent (parts of) branches that are of no importance to the rule to be applied.The following example was generated by Hogeweg and Hesper [Hoge 74] and pro-duces a quite natural looking drawing of a plant. See �gure 3.2 for a picture.
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Figure 3.3: Both plants were created with the rules F ! F [+F ]f [�F ]F ,F ! F [+F ]F and F ! F [�F ]F , each with a 33% probability.0 < 0 > 0 ! 00 < 0 > 1 ! 1[-F1F1]0 < 1 > 0 ! 10 < 1 > 1 ! 11 < 0 > 0 ! 01 < 0 > 1 ! 1F1F1 < 1 > 0 ! 11 < 1 > 1 ! 0+ ! {{ ! +3.5 ImplementationPrzemyslaw Prusinkiewicz and James Hanan [Prus 89] present a small L-system pro-gram for the Macintosh (in C). To experiment with L-systems Boers and Kuiperported this to PCs. Besides �xing some\irregularitie" the program was rewritten inorder to accept less rigid input �les. Two features were added: probabilistic productionrules and production rule ranges (both from [Prus 89]).With probabilistic rules more than one production rule for the same L, P and Rcan be given, each with a certain probability. When rewriting a string, one of therules is selected proportional to its probability. This results in more natural lookingplants, without them losing their characteristic appearance. Figure 3.3 shows a plantthat was created with one set of probabilistic rules.Production rule ranges introduce a temporal aspect to the L-system and tell whichrules should be looked at during a certain rewriting step. This can be used for exam-



22 CHAPTER 3. L-SYSTEMSple, to generate twigs �rst and then the leaves and owers at the end of those twigs.All the examples shown were generated using software by Egbert Boers. See section7.1 for an extension of L-systems producing Arti�cial Neural Network architectures.



Chapter 4Neural Networks4.1 The Human BrainThe human brain consists of a large number of interconnected neurons. Each of theseneurons shows rather complex bio-electrical and bio-chemical behaviour, although itdoes not appear to do more than determine whether there is enough stimulation for itto �re. What happens is that the neuron gets electrically charged substances, whichare collected in the cell body. If the potential of the substances in the cell exceeds acertain threshold the neuron �res and the cell is neutralized again. When the neuron isnot stimulated enough to �re, the electrically charged substances also oat out of thecell body. Even though all the units perform such in principle simple actions, the totalcreates behaviour more complicated than we can fully understand at the moment (orever...). Since the units do not appear to be the ones performing complex behaviour, itcan only be the interaction between them that does. Even though neurons are ratherslow compared to modern day computers, their large number gives them such a greatadvantage, that computers haven't managed in coming close to the human brains intheir achievements. It is this larger number of the neurons that is believed to be thebasis of intelligence, even though we do not even know what exactly intelligence is.And if we ever �nd out what intelligence is, it will probably be done by intelligence...4.2 Arti�cial IntelligenceThose working in the �eld of Arti�cial Intelligence are mainly concerned with tryingto create intelligent behaviour in machines. This task is a task into the unknownfor more than one reason, the �rst being that we are not even that sure we knowwhat intelligence is. Webster's Dictionary alone gives four de�nitions of Arti�cialIntelligence: 23



24 CHAPTER 4. NEURAL NETWORKS1. An area of study in the �eld of computer science. Arti�cial Intelligence isconcerned with the development of computers able to engage in human-likethought processes, such as learning, reasoning, and self-correction.2. The concept that machines can be improved to assume some capabilities nor-mally thought be like human intelligence such as learning, adapting, self-cor-rection, etc.3. The extension of human intelligence through the use of computers, as in timespast physical power was extended through the use of mechanical tools.4. In a restricted sense, the study of techniques to use computers more e�ectivelyby improved programming techniques.Alan Turing [Turi 63] has proposed a test that should be satis�ed in order to speakof intelligence, the Turing test. A person is placed in a room with two terminals, eachof which he can ask questions. On one of the terminals the answers are given by ahuman, on the other one by a computer. If the person fails to determine which ofthe two is manned by the computer, the computer is said to have passed the test.Of course the set up has to be made in a way that makes it impossible to determinewhich is which by factors not of importance, such as the speed of answer (a computeris unlikely to make typing errors, humans however...).Traditionally researchers tried to create intelligent behaviour by using things likerule based systems, but these never could give the desired behaviour. So far no onecame up with a set of rules that created intelligent behaviour, although there are somerule based systems that perform pretty well in a very small �eld|so called expertsystems|but don't ask one of these how much a carton of milk costs... It shouldbe noted that ANNs can also be seen as rule-based systems, however, as opposed to\traditional" rule-based systems, ANNs work sub-symbolically.Another problem in these rule based systems is that the programmer has to supplyall the knowledge. However, it turns out that the real life expert often doesn't knowexactly why he came up with a certain solution for a presented problem. Part of beingan expert is \feeling" the solution. This method of problem solving is, of course, hardto formalize. Therefore a new area of research, knowledge engineering, has arisenwhich purpose it is to �nd methods for acquiring knowledge.The lack of success in the search for intelligence with traditional methods, hasmade researchers look for other options. They found one in reverse engineering, amethod that worked well on a lot of other occasions. The idea is to look at somethingthat works and try to imitate that. In this case that means trying to make somethingthat works like a human brain.
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Figure 4.1: A Neuron
4.3 The NeuronThe main actors in our brains are neurons. Therefore arti�cial neural networks arebased mainly on the workings of neurons. The neuron shown in �gure 4.1 can beseparated in the three functional parts: axon, cell body and dendrites. The dendritesreceive information from other neurons and transmit those signals by electro-chemicalmeans to the cell body. The body collects all these signals, sums them and if this sumexceeds the threshold for that neuron, the axon is activated: the neuron �res. Theaxon transmits this activation to the dendrites of other cells. The communicationfrom one neuron to another takes place at the synaptic junction, or synapse. Thesynapse is a small gap between the axon of one neuron and a dendrite of the next.The axon releases neurotransmitters which are absorbed by the dendrite. These chem-ical substances inuence the potential inside the receiving cell body. When learningtakes place, the amount of released neurotransmitters changes (for a more elaboratecoverage of these concepts see [Free 91] and [Bloo 88]).4.4 The Connected Neurons: a BrainThe brain consists of about 1011 neurons. Because of this number it is virtuallyimpossible to simply connect every neuron to every other neuron. To prevent fromhaving to fully connect, the brain got split in several regions, most of which are splitin several regions again. The smallest neuron structures found in the brains are the socalled mini-columns ([Bloo 88]), consisting of some 100 neurons each. The simplestdivision of the brain is in the left and the right hemisphere. These two hemispheres



26 CHAPTER 4. NEURAL NETWORKSare connected by the corpus callosum. Apart from this, there is also a division intosmaller functional areas, such as the visual area or the auditory area. Usually thereare relatively few connections between areas with di�erent functions. This strongmodularity is partly suggested by patient studies, see for instance [Gazz 89]. Despitethis strong modularization the brain still has some 1015 connections. This numberimmediately indicates one of the reasons researchers have as yet not run completesimulations of human brains|apart from the fact that they are not that sure thatour current ANNs are a fair copy of our brains|it would be too big a simulation to�t into a computer's memory (apart from the fact that it takes too much time).From these numbers we can give an estimate of the brains computing power. Everyaxon is able to transmit one pulse every 10 milliseconds, and since a neuron �res ornot, we can say that one neuron transmits 100 bits per second, which results in thecomplete brain transmitting 1013 bits per second. Jacob Schwartz [Schw 88] estimatesthe total number of arithmetic operations even higher, at 1018 per second, needing1016 bytes of memory. This is a lot faster than the best of current supercomputersdoes; the best we can do so far is the CM-5. This machine is developed to entail16,384 processors, giving 0:7 � 1012 oating point operations, with a transport of1:6 � 1011 ([Hill 93]), leaving us still about a factor 106 short. It should be noted thatthe largest version sold so far had \only" 1,024 processors. This gap between currentand needed possibilities is a de�nite motivation to do a lot of research in massiveparallel computing4.5 Arti�cial NeuronsAs a consequence of the huge complexity of the human brain and the state of currenthardware, it is impossible to build an arti�cial brain that imitates the natural brainin all its detail. So in order to make use of its functional principles, we are forced tomake very large simpli�cations regarding the computations performed by the neuronsand their connectivity.The most obvious function of neurons is taking their real-valued inputs and de-termining their activation from that. This activation determines whether the neuronwill �re or not. Normally the stimulation is simply the (weighted) sum of all theinputs. Usually a bias is added, which shifts the activation relative to the origin:stim = nXi=1wixi + �:The analogy with the real life neuron is obvious: where the neurons in the brainget charged chemicals in their cell bodies, where reaching a charge above a certainthreshold makes the neuron �re, the arti�cial neuron simply sums the input values anddetermines whether it will �re by comparing it to a threshold value. The amount of



4.6. ARTIFICIAL NEURAL NETWORKS 27neurotransmitters transmitted by the axon are a metaphor for the weights in arti�cialneurons. The connections in arti�cial neural networks are not speci�cally excitatoryor inhibitory, like they are in the brain, but the weights can be either negative orpositive, and can be changed during the learning process. It should be noted that thestimulation is not necessarily the same as the activation of the neuron:act = f(stim):Sometimes it is implemented as a function of the stimulation and the previousactivation: act(t) = f(act(t� 1); stim(t)):Although f is determined for a large part by the type of ANN being used, thebasic functioning of neurons is globally the same, since all ANNs are in one way oranother based on the original brain.4.6 Arti�cial Neural NetworksIn arti�cial neural networks we take the next step: the connection of a number ofneurons into a network. One of the main problems to be tackled in arti�cial neuralnetworks is that we are modeling things we do not fully understand. So we don'treally know whether the neural network we create is even remotely similar to itsoriginal. What we do know is that one of the larger advantages of ANNs is that wedo not have to present to a network how we came to a certain solution: we simplypresent the network with a lot of problems and their solutions, and the ANN �ndsthe regularities in the associations of input/output pairs itself.Some areas where neural networks have been successfully used are ([Hech 90] givesa more extensive overview):� handwritten character recognition,� image compression,� noise �ltering,� broomstick balancing,� automobile autopilot,� nuclear power-plant control,� loan application scoring,� speech processing,



28 CHAPTER 4. NEURAL NETWORKS� medical diagnoses .4.7 The Training SetSince it is normally impossible to present a network with all possible inputs, we onlypresent it with part of it, the training set. This set has to be chosen in such a waythat the network also gives correct output for an input that was not in the trainingset. If the network also responds well to inputs that were not in the training set, it issaid to generalize well. If the training set wasn't a good representation of all possibleinputs, the network probably will not perform too well on inputs not in the trainingset. Generalization is quite similar to interpolation in mathematics.4.8 Back Propagation NetworksProbably the best known arti�cial neural network learning paradigm is Back Prop-agation. It was �rst formalized by Werbos [Werb 74] and later by Parker [Park 85]and Rumelhart and McClelland [Rume 86]. It is a multi-layer feed forward networkthat is trained with supervised learning. Normally a BPN has an input and an out-put layer, and a certain amount of hidden layers. The input and output layers aremandatory, the number of hidden layers is free, but often a single layer is chosen.Nodes in a certain layer only get input from other lower layers, which means thatthe input layer does not get any input from within the net, and only give output tonodes in higher layers, which means that nodes in the output layer do not give outputto other nodes. This constitutes the feed forward principle: input only comes fromlower layers and output only goes to higher layers. Their is no recurrence in a feedforward network, although there are some adaptations of the BPN paradigm thatallow a limited amount of recurrence. It should be noted that the lack of recurrenceis a huge simpli�cation of the real brain. Figure 4.2 shows an example of a BPN withone hidden layer. The subsequent layers are fully connected.During supervised learning the network is repeatedly presented input/output pairs(I, O) by a supervisor, where O is the desired output of input I. The input/outputpairs specify the activation patterns of the input and output layers of the networkrespectively. The network has to �nd an internal representation that associates theinput with the desired output. To achieve this, Back Propagation uses a two-phasepropagate-adapt cycle.In the �rst phase the network is presented with the input and the activation ofeach of the nodes is propagated through the net to the �rst hidden layer (or the outputlayer, if no hidden layers are present), where each node sums its input and decideswhether it should �re to the modules in the next layer. This process repeats itselfuntil the activations have reached the output layer.
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Figure 4.2: A Back Propagation Network
In the second phase the output of the network is compared to the desired outputand the error is calculated for each of the nodes in the output layer with this formula:�oi = oi(1� oi)(yi � oi)where oi is the output the network gave on node i, and yi is the desired output fornode i. These error values are transmitted to the last of the hidden layers|hencethe name Back Propagation|where for each node its total contribution to the erroris calculated: �hi = hi(1� hi) rXj=1 �ojwoij ;where woij is the weight of the connection from hidden node j to output node i. Thecalculations for possible other hidden layers are done in a similar way. Based on thesecontributions to the errors, the connection weights are adapted:woij(t+ 1) = woij(t) + ��ojhi + ��woij(t� 1)with �woij(t� 1) = woij(t)� woij(t� 1), for the weights to the output layer andwhij(t+ 1) = whij + ��hj xi + ��whij(t� 1)for the hidden layer(s). This makes the overall error:



30 CHAPTER 4. NEURAL NETWORKSE = 12 rXi=1(yi � oi)2(for this input/output pair) smaller, with the overall objective being to reach itsminimum.When we take a (n+1)-space, with n the number of weights in the network, we canplot the total error of the net for all inputs as a function of all the weights. This spaceis called the error space. Since we want the network to perform as well as possible,we want to �nd the minimum in this error space. The function drawn in this spacecan be seen as a surface across which we let a marble roll during learning with BackPropagation: it always follows the steepest gradient, or the direction that goes downas fast as possible. However, it is possible that the error surface not only has thewanted global minimum, but also some local minima. The fact that a certain pointon the error surface is a minimum, means that the surface goes up on all surroundingsides. This means that when the marble hits a minimum, it will stay there. Thisis|of course|rather unfortunate when the found minimum is not a global, but alocal minimum: the network gets stuck in the local minimum.4.9 Problems with Back PropagationAs mentioned in the previous paragraph, one of the problems of Back Propagationis that it can get stuck in a local minimum. This isn't too bad if the local minimumturns out to be close to the global minimum, but there is no guarantee of that.This problem can be partially solved by using a momentum term. The momentumterm uses the speed the marble already has, so when it hits the minimum it will notimmediately remain there, it will �rst go up again. This works because the edgesaround a local minimum are lower than those around a global minimum most of thetime (the global minimum is the deepest point of the problems space, so speakingon the average, it must be harder to get out of a global minimum, than it us to getout of a local minimum). So if the momentum term is chosen right, it can push themarble out of the ditch created by the local minimum, but it will remain in the ditchcreated by the global minimum. This momentum term also enhances learning, sinceit uses the steepness of the slope the \marble" is on, instead of simply using steps of�xed size when moving through the error space.Another problem associated with Back Propagation is that the place at whichone starts on the error surface | which is determined by the initial weight settings,which are often random | determines whether or not a good or the best solution isfound. When a solution is found that performs well on the training set, the networkmight still perform badly on the overall set of input, if the training set was not a goodrepresentation. One danger in Back Propagation is for the network to get overtrained.



4.9. PROBLEMS WITH BACK PROPAGATION 31This means that the net did not look at similarities over the input, but simply learnedall associations by heart. If presented with output not in the training set, the networkwill likely respond with other output than the desired. This problem only occurs whenthe network is still further trained, even though it already gives correct output. Thenetwork has learned to detect global features at �rst, but is trained longer and reachessuch a specialization in the given training set, that it loses its ability to generalize:there is no need for generalization, it already knows every input/output pairing. Thiswill have resulted in perfect scores on the training set. Overtraining can only happenif the network is large relative to the training set. In this case training is betterstopped before full conversion on the training set is reached. Other ways to preventovertraining is using a smaller network or adding noise to the input. Both methodswill result in poorer performance on the training set, but will lead to better overallresults.Unfortunately Back Propagation does not do well on extrapolation. If it is trainedin a certain area, it does not perform well in other areas, even if these are close tothe trained area. This stresses the importance of choosing a proper training set.Back Propagation can be used, however, to make predictions when historic data isavailable.A last problem is the occurrence of interference. This occurs when a network issupposed to learn similar tasks at the same time. Apart from the fact that smallernetworks are unable to learn too many associations|they simply are full after acertain amount of learned associations|there is also the danger of input patternsbeing so hard to separate, that the network can't �nd a way to do it. When welook at the problem we can take its input and divide that into categories. If weplot this, we would get a problem space. The network has to �ll this space with�gures of such a form that all inputs from the same category are included in thesame �gure. This means that the network has to encode these forms in some way.The more complex these forms|or the more precise they have to be|the harder itis for the network to learn it. This means that inputs that are close together, withlittle room left for a line separating the categories of the problems, and �gures withstrange forms (the more concave, the worse) are hard to learn. An example of suchinterference between more classi�cations is the recognition of both position and shapeof an input pattern [Ruec 89]. Rueckle et al. conducted a number of simulations inwhich they trained a three layer Back Propagation Network with 25 input nodes, 18hidden nodes and 18 output nodes to simultaneously process form and place of theinput pattern. They used nine, 3x3 binary input patterns at 9 di�erent positions ona 5x5 input grid, resulting in 81 di�erent combinations of shape and position. Thenetwork had to encode both form and place of a presented stimulus in the output layer.It appeared that the network learned faster and made less mistakes when the taskswere processed in separated parts of the network, while the total amount of nodesstayed the same. The number of hidden nodes allocated to both sub-networks was



32 CHAPTER 4. NEURAL NETWORKSof importance. When both networks had 9 hidden nodes the combined performancewas even worse than that of the single network with 18 hidden nodes. Optimalperformance was obtained when 4 hidden nodes were dedicated to the place of thepattern and 14 to the apparently more complex task of the shape of the pattern.It should be emphasized that Rueckle et al. tried to explain why form and placeare processed separately in the brain. The actual experiment they did, showed thatprocessing the two tasks in one unsplit hidden layer caused interference. What theyfailed to describe, however, is that removing the hidden layer altogether, connectinginput and output directly, leads to an even better network than the optimum theyfound using 20 hidden nodes in separate sub-networks, as described in [Boer 92].However, more recent research has been unable to reproduce this (see Lawrence Pit'sMaster's thesis, which will appear around September 1995). Another example ofthe di�culty Back Propagation has in separating a task in modules can be found inNorris' article about an idiot savant date calculator [Norr 90].The problems mentioned, however, do not occur solely with Back Propagation,a lot of other network paradigms su�er from it. This brought on the search formodularity, which we already �nd in the brain, and which we also �nd in CALM, towhich I will turn in the next chapter.4.10 Modular Back PropagationUntil now we have discussed only simple networks, where every layer is fully connectedto the next. However, this is not due to a limitation in the Back Propagation's learningrules. More complicated networks are created by, for instance, adding hidden layers.This doesn't really add to the computational power of the network|in fact, it hasbeen proven that all continuous functions that can be implemented by a network withmore than one hidden layer can also be implemented by a network with one hiddenlayer, although we would need an in�nite number of nodes in the hidden layer for theerror to approach 0|but it does enhance the speed with which the network learns,especially for highly nonlinear inputs, inputs that are hard to di�erentiate.When more hidden layers are used, all layers are still fully connected to the next.This means that all modularity in the net has to be propagated to the nodes throughthe connections. Another way is to not simply create full connectivity between layers,but leave speci�c connections out. So by adding hidden layers without full connectiv-ity, we can greatly enhance the amount of modularity in the network, without raisingthe number of weights to astronomical numbers. See for instance the accompanying�gure 4.3(a) , which can be separated in two parts.Since there are no connections between the two parts of the network, the number ofweights is reduced by 10 compared to a fully connected network with the same numberof nodes in each of the layers. Apart from a speed up caused by less connections,there might also be a speed up due to the greater modularity of the network.
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(b)Figure 4.3: A modular Back Propagation Network and its modularized counterpart.
To further enhance this idea of modularity, we de�ne a module to be a group ofmutually unconnected nodes with as well the same set of input as of output nodes[Boer 92]. This means that a fully connected network has the same number of modulesas it has layers. The network from �gure 4.3(a) has 6 modules. Every node in a BackPropagation Network is in exactly one of these modules. In �gure 4.3(b) the networkof �gure 4.3(a) is remodeled to this standard, and is, as you will see, a lot simplerthan its original counterpart.This idea of modules is much more elaborated on in CALM, to which we will turnin the next chapter. It should be noted that there are connections with a CALM,but that they are not between the CALM-counterparts of BPNs nodes, but betweennodes of di�erent types.To test whether this modularization worked, Boers and Kuiper [Boer 92] imple-mented a Back Propagation Network for the XOR-problem with a di�erent topologythan the network used by Rumelhart and McClelland [Rume 86]. The two networksare shown in �gure 4.4. Rumelhart and McClelland's network got stuck in a localminimum a couple of times during their experiments. Boers and Kuiper found thattheir network not only always learned to solve the problem, but it also learned fasterthan Rumelhart and McClelland's network did. On plotting the number of trainingsteps required by the net as a function of the two learning parameters Boers andKuiper found a much more regular dependence for their network than they found
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(b)Figure 4.4: \The McClelland and Rumelhart" and \The Boers and Kuiper" networks
for Rumelhart and McClelland's network. Apart from that, they found that for thebest combination for the learning parameters the Rumelhart and McClelland networkneeded 1650 training cycles, while the Boers and Kuiper network needed only 30 cy-cles. McClelland and Rumelhart also found a net with a di�erent architecture, whichdid work with all experiments, although it still tended to be slow in learning.The intuitive idea behind imposing modularity on a network is modeling theweight space in such a way that all local minima disappear, making the surface alot smoother along the way. This greatly enhances learning. But if modularity isimposed by simply changing the structure of the network, we get our network in ahighly unnatural way. What we're trying to do, is to imitate nature by creating anarti�cial neural network, but since neural networks aren't structured by some divinehand, but develop naturally, this is not biologically plausible: it is not similar to theway things happen in a more natural context. So we need a di�erent method if wewant to preserve biological plausibility.Another problem modularity poses us with, is that of �nding a suitable topologyfor a given problem (in determining whether a network is good, we also need to knowwhat problem it is supposed to solve, since di�erent problems have di�erent suitabletopologies). This was already a problem with classic networks, but with the extracomplexity of the network connections, this problem gets even more di�cult to solve,especially by hand.The simplest method is of course to choose something for ourselves, however, this



4.10. MODULAR BACK PROPAGATION 35is|as mentioned before|hardly biologically plausible and is di�cult to do, since weoften do not know what would be a good topology for a network.Since BPNs were of secondary importance to this research, only a limited overviewwas given here. More complete treatises on them can be found in [Boer 92] and forinstance [Free 91] and [Hech 90].
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Chapter 5CALMA relatively recent approach to arti�cial neural networks, CALM, was developed atthe Department of Experimental Psychology at the University of Leiden [Murr 92].CALM stands for Categorizing And Learning Module. A CALM is a building blockfor a network of CALMs, but is far more complicated than the building blocks in forinstance Back Propagation or Hop�eld networks. A CALM consists of several typesof nodes (these can be compared to the nodes in other types of neural networks)connected to each other by connections with �xed weights, that is the weights stayconstant during learning.The idea of a CALM is, as its name already suggest, to categorize input. Thereforethe chosen convergence criterion is often for exactly one node to remain active, thenode that represents the category in which the input is put.5.1 The Maths behind CALMThe e�ective input to node i|the excitation ei|is the weighted sum of the individualactivations of all nodes connected to the input side of node i. Each input is eitherexcitatory or inhibitory (this is a feature of a connection, not of a node). It should benoted that this is highly biologically plausible, since the neurons in the human brainalso only have connections which are either positive or negative. The activation ofnode i at time (t + 1), ai(t + 1), is a function of ai(t), the activation at time t, andits input excitation ei, expressed in the following formula:ai(t+ 1) = (1� k)ai(t) + ei1 + ei [1� (1� k)ai(t)]; ei � 0for excitatory input, and:ai(t+ 1) = (1� k)ai(t) + ei1� ei (1� k)ai(t); ei < 037
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Figure 5.1: The labeling of nodes
for inhibitory input, where ei =Xj wijaj(t)with wij denoting the weight of a connection from node j to node i (see �gure 5.1).The di�erence in time between t and t + 1 is called the iteration time. k, the decayfactor, is a constant between zero and one. It should be noted that the summationfor ei takes both inhibitory and excitatory input into account.The activation rule can be split into three important parts. The �rst, (1�k)ai(t),represents the decay of the activation of the node. When no new input arrives, theactivation of the node gradually decays to zero (asymptotically). Since k is supposedto be a decay parameter, it should be chosen between 0 and 1; if it is smaller than0 the activation will rise with time, if it is chosen larger than one, the activationwill ip signs every iteration (which is something we do not want to happen). Thesecond part, ei1+ei , for ei � 0, squashes the input excitation to a number betweenone and zero. The third part [(1� k)ai(t)], makes sure the increase of the excitationdecreases with growing excitation, thus making the activation grow asymptoticallytowards the maximum activation. Something equivalent holds for the part for ei < 0:ei1�ei squashes the negative excitation between minus one and zero, the (1 � k)ai(t)component ensures the asymptotic approach of the minimum activation.5.2 The NodesThere are four types of nodes in a CALM. This categorization is made on both thetype of connections of the nodes to other nodes, and the function each type of node



5.2. THE NODES 39has within|or, as we shall see, outside|a CALM.The �rst type is comprised of nodes which have modi�able connections to sim-ilar nodes in other modules. All the outgoing connections from R-nodes, short forRepresentation nodes|both inside and outside the CALM|are excitatory. Sincethe activation of these nodes represents the given input or the resulting output of theCALM, these nodes are called R-nodes. R-nodes are the only nodes that communicatewith the nodes outside of the CALM.The nodes in the second category are the V-nodes, or Veto-nodes. V-nodes haveonly inhibitory outgoing connections. A V-node inhibits all the other nodes withinthe CALM: they inhibit all their fellow V-nodes, as well as all R-nodes. Every V-node receives excitatory input from exactly one R-node, and every R-node receivesinhibitory input from all V-nodes, but a little less from the V-node to which it ispaired. This means that each R-node forms a pair with a V-node. Since such apairing is mandatory, there is always the same number of R-nodes and V-nodes.There is always exactly one node of the third category in a CALM, the A-node,or Arousal-node. The A-node is excited by all R-nodes and inhibited by all V-nodes.Because of the weights on the connections within the CALM the excitation of theA-node designates the amount of competition within the module. In a CALM com-petition will be most prevalent for inputs that weren't o�ered before, new input whichhasn't been learned by the network or CALM yet.The fourth and �nal node category is the E-node, or External-node. It is a nodethat di�ers from the other types of nodes in that it isn't exactly in the CALM, eventhough it does belong with the CALM. It is meant to model a certain part of anarousal center outside the model. This is a metaphor to certain sub-cortical centersin the nervous system that seem to di�usely activate large parts of the cortex. SeveralE-nodes may be connected to form such a center, but in most simulations just one E-node per CALM is used. So generally an E-node has connections to just one CALM.The E-node receives input only from the A-node of the CALM to which it is attachedand sends random activations to all the R-nodes of the CALM. These random pulsesfall within the range [0; aE(t)], where aE(t) stands for the activation of the E-nodeat the time t. What the E-node does by this construction is basically rattling theR-nodes. If several R-nodes within the CALM are highly active|when the CALMis not able to �nd the right category for the input|this E-node activation gives allthe R-nodes a di�erent random stimulation. Since these stimulations vary, one of thecompeting nodes will probably get a larger extra stimulation than the other ones,which results in its activation going up further than the activation of the other nodes.This solves the competition within the CALM (not immediately, but in the long runthe advantage given by the stronger stimulation will leave the node on top). Due tothe continuous activation of the A-node, this external stimulation process will go onuntil the competition within the CALM is resolved. Figure 5.2 shows a CALM with3 R-nodes (resulting in three V-nodes).
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Figure 5.2: A schematic drawing of a CALM, with three R-nodes. It also contains alltypes of connections, numbered for type. For clarity's sake not all connections werenumbered. The meaning of the numbers is:1. Up-weight 3. Cross-weight 5. Low-weight 7. AE-weight2. Down-weight 4. Flat-weight 6. High-weight 8. Strange-weight



5.3. THE INTERNAL CONNECTIONS 415.3 The Internal ConnectionsLike the nodes, all the di�erent types of connections have received di�erent names.The weights of all these connections remain �xed at a freely chosen value duringlearning (the are determined before actually using the network, in fact, determin-ing the parameter is closely related to determing the architecture of the network).The values of the weights connecting di�erent CALMs all remain within the interval[1;K]. These weights will change during learning. Figure 5.2 also shows the types ofconnections possible in a CALM.The di�erent types of internal weights are:� Up-weight (excitatory): connection from an R-node to its corresponding V-node.� Down-weight (inhibitory): this is the counterpart of the up-weight connec-tion. The up- and down-weights together cause an R-V-node pair to exhibitdi�erentiating characteristics with respect to changes in activation input to theR-node.� Cross-weight (inhibitory): control recurrent lateral inhibition from V-nodes toR-nodes. Normally these weights are signi�cantly larger than the down-weights,to enhance the performance of their own paired R-node.� Flat-weight (inhibitory): control the competition between the V-nodes, andthus between the R-V-node pairs.� Low-weight (excitatory): control excitation of the A-node by the R-nodes.If a lot of competition occurs between the R-nodes, these connections get theactivation of the A-node up, as to later resolve the competition between theR-nodes through the E-node.� High-weight (inhibitory): control inhibition of the A-node by the V-nodes.These weights are relatively low compared to the low-weights, this to make surethe A-node does get activated if to much competition occurs, and to keep itsactivation relatively low when the competition is within boundaries.� AE-weight (excitatory): regulates the activation of the E-node if the compe-tition within the CALM can't be resolved.� Strange-weight (excitatory): regulates the random activations used to resolveactivation. In contrast to the other connections, the weights of the strange-weight connections di�er within a module.



42 CHAPTER 5. CALMAppendix A sums up the initial values of the CALM parameters, including thoseof the weights.As already suggested, all weights of the same type|strange-weights excepted|within one module are set to the same value. These weight values are parameters toa certain CALM, and do not change during learning. Since we want the connectionsto perform certain functions within a CALM, we can say something about the valuesof certain weights relative to others. The cross-weights for instance are meant toincrease the chances of the R-V-node pair, from whose V-node the cross-weightsleave. Therefore the value of these weights has to be far higher than that of thedown-weight. In this way the activation of the other R-nodes is pushed down farmore strongly than the R-node of the R-V-node pair, thus increasing its chance ofwinning the competition. Another example is the ratio of high- and low-weights.The A-node has to be activated if the competition can't be resolved, but it shouldnot be activated if there is little competition. In fact, it is important for the correctfunctioning of the module that the activation of the A-node decreases to zero as soonthe competition is resolved. To make sure this happens, the high-weight has to behigher than the low-weight.5.4 The External Connections: LearningThere is just one kind of weight between interconnected CALMs: the inter-weight.Connected CALMs are always fully connected, that is if CALM 1 receives input fromCALM 2, every R-node in CALM 1 receives input from every R-node in CALM 2.Connections between CALMs are normally directed, but can be chosen to be recip-rocal. All inter-weights fall within the interval [0;K], with K one of the learningparameters of the learning rule. The weights are adjusted using an adaptation ofGrossberg's learning rule, which is related to the Hebb-rule during learning. In theHebb-rule the weight depends on the correlation of the activations of the two con-nected nodes: if they have similar activations the weight is increased, if they di�erthe weight is decreased. It should be noted that changes in weight only appear whenat least one node is active (during learning only external weights, that is, weightsof connections between CALMs, not within CALMs, change). Grossberg [Gros 76]modi�ed this by also taking the total background excitation into account. This back-ground excitation is caused by the neighbouring R-nodes which give activation to thecorresponding R-node in the other module (since two connected CALMs are alwaysfully connected). Another adaptation is that the weights can only asymptoticallyapproach their minimum and maximum values.Two adaptations were made to Grossberg's scheme: the learning parameter � wasmade dependent on the novelty of the presented input pattern. Secondly instead ofusing the unweighted background activation, P af , the weighted sum, Pwif (t)af , isused. The wif are the weights between node i and all the nodes f it is connected to.



5.4. THE EXTERNAL CONNECTIONS: LEARNING 43This immediately takes care of the awkward question of how a node can get its back-ground activation without going through the weighted connection. This adaptationthus enhances biological plausibility.All this results in the following learning rule:�wij(t+ 1) = �tai[(K � wij(t))aj � Lwij(t)Xf 6=jwif (t)af ]where af , ai and aj stand for af (t), ai(t) and aj(t), respectively. wij(t) is the inter-weight from R-node j to i (where i and j are R-nodes in two di�erent, connectedCALMs), and the wif (t) denote the factor representing the aforementioned back-ground activation. �wij(t + 1) denotes the change in value of the weight of theconnection from R-node j to R-node i. L and K are positive constants, f , i and j arenode numbers. The K�wij term is always positive, since K is the upper boundary ofwij , it also helps inicting the upper boundary K. The second term within bracketslets the �wij(t+1) go down further proportional to the amount of background exci-tation. A high background excitation combined with a high wij(t) might even makethe weight go down, even though ai and aj are correlated. In this manner an overalldown scaling of the weights occurs, thus preventing the weights from su�ering fromceiling e�ects. The importance of preventing these ceiling e�ects have been discussedby Carpenter and Grossberg [Carp 87] within the framework of their \Weber Lawrule". It should be noted that the nodes adding to the background activation do notlie in the same module as node j.If node j is inactive, the weight will decrease, since only the second part of theformula between brackets is signi�cant. �t represents the Hebb-parameter, controllingthe learning rate of the module, and is de�ned as:�t = d+ w�EaEwhere d is a low valued constant, and aE is the activation of the E-node. To makesure wij(t+ 1) stays within the interval [0;K] it is calculated in the following way:wij(t+ 1) = maxfmin[wij(t) + �wij(t+ 1);K]; 0g:It should be noted that this adaptation is only made for safety reasons, since thevalues of wij will stay within the interval for normal|that is low enough|values for�t. This implies that all connections between CALMs are excitatory.Due to the changes of the inter-weights, each of the input nodes get has certainR-nodes with which it is connected stronger than to others, which is exactly whatinduces the CALM to categorize one input to one R-node and another to a di�erentR-node.



44 CHAPTER 5. CALM5.5 CALM's FunctioningThere are three basic processes that determine the working of CALM: excitatory,inhibitory and arousal processes.The excitatory stimulation comes from other modules (within the network), theE-node or receptor nodes (in this case represented by input patterns). Initially allmodi�able connections have the same weight (since an input pattern in the used im-plementation is a special case of a CALM, this simply means all connections betweenCALMs), resulting in all R-nodes within a single CALM being activated equally. Af-ter this all V-nodes get activated. The total process results in a lot of competition,causing the A-node to be activated, which triggers the random activation process byactivating the E-node. In short this means that the excitatory processes trigger thetotal working of the CALM system.The inhibitory process starts as soon as the V-nodes get activated and start toinhibit R-nodes, A-node and the remaining V-nodes. The process of mutual inhibitioncreates competition between the V-nodes (through the at-weight connections) andstarts, because of the ongoing activation of the R-nodes, an oscillating process inthe activation of the V-nodes. It should be noted that this oscillation only occurswhen there is real competition and not when the input is easily categorized, in factthe oscillations can be seen as an indicator of competition. The inhibition of the R-nodes can be split in two kinds: the inhibition of the R-node with which the V-node ispaired up (through the down-weight connections), which is merely to keep activationswithin certain boundaries (it can even be kept at zero for networks consisting of asingle CALM), and the lateral (horizontal cross) inhibition of the R-nodes (throughthe cross-weight connections), which is far more strong than the inhibition of thepaired R-node. The intensity of the competition is regulated by the at-weight andcross-weight connections. The higher these connections are, the stronger activations ofother nodes are vetoed. This results in faster categorization if one R-node repeatedlyreceives more input than the others. If there are bidirectional connections betweenCALMs, the down-weight connections can be used to prevent reverberative actionbetween the winning R-nodes in the CALMs by giving them a small value, after that,they also take care of the decay of activations of previous inputs.The function of the arousal process is twofold. First it is meant to resolve com-petition between several similarly highly activated R-nodes. Since high competitionresults in an activated A-node which triggers the E-node, the E-node starts to giveof random activations to the R-nodes, which will give one R-node the advantage thatmakes it win the competition (eventually). The second function is to enhance learn-ing. When we learn the network a certain pattern, we want it to recognize the patternnot only when it is exactly the same as the one it originally learned, but also whenit is slightly damaged (one of the strengths of neural networks is this kind of gener-alization. This feature is also found in humans). When we add some random noise



5.5. CALM'S FUNCTIONING 45(which is what we do through the E-nodes), only a categorization that can surviveslight adaptations in the pattern will be able to survive. Due to the functioning ofthe E-node, this random noise is much stronger for novel patterns|since they causea higher amount of competition|than it is for known patterns. This causes the net-work to learn more when it is still unfamiliar with the pattern, than it does when ithas already been o�ered the pattern before. Since we want the A-node to stay quietwhen just one R-V-node pair is active, the low-weight connection has to be higherthan the high-weight connection. However, when several R-nodes are activated, wewant the A-node to become active. This is caused by the at-weight connections:when just one V-node is active, these have no function, it only inhibits nodes thatare inactive anyway; when several V-nodes are active, though, it takes down the totalactivation of the V-nodes, thus making the inuence of the R-nodes greater. Thisresults in the A-node only being activated when several R-nodes are active. Due tothe initial activation of the V-nodes the activations of the R-nodes are pushed down,causing the activation of the R-nodes to go up again, etcetera. This oscillatory processoccurs, as mentioned before, when there's a lot of competition in the module, but willeventually cease due to the advantage one of the R-nodes|the ultimate winner|getsthrough the random activation from the E-node. As the competition decreases, theactivation of the winning R-V-node-pair increases, until it �nally reaches a stable sit-uation, with all the other R- and V-nodes unactivated. When this state occurs we saythe CALM converged. Convergence is most often used as criterion to stop presentingthe pattern, at least for the output CALM: it is possible for the output CALM toreach convergence without all CALMs in the network having converged. The winningR-node will remain activated as long as the input pattern is o�ered, but its activationwill deteriorate when the pattern is taken away. The coding of the pattern, however,will remain in the changed inter-weights.On the average one can say that there's a trade o� between strong oscillation andchanges in the inter-weights. When all the weights are still at initialization value,changes will be most strong: all R-nodes will receive the same activation. Since notall of the input patterns nodes are activated, the learning rule will strongly diminishthe values of the weights between those input pattern nodes that are not activated,and the R-nodes of the CALM 1. This change in weights, however, is not the reallearning yet, since all input pattern's nodes weights receive the same value. The reallearning starts when the CALM starts to categorize the input to one of the R-nodesof the CALM: the weights between this particular R-node and the activated nodes ofthe input pattern will become stronger than other weights. The more input patternshave been coded in a CALM, the more the weights will have changed, thus resultingin less oscillation in the CALM, after all, the most important cause of the strong1It should be noted that the input pattern can be external, a real input pattern, as well as theR-nodes of a di�erent CALM. Which of these is the case is of no consequence for the CALM, sincethe input pattern is implemented as a stripped CALM



46 CHAPTER 5. CALMoscillation is the fact that any R-node could be the R-node to which a certain inputpattern is categorized early on, which is not the case anymore when the CALM hasdone a fair share of learning. Re-o�ering a CALM an input pattern it has alreadylearned, generally leads to quicker convergence of the module, and �rmer coding ofthe pattern.5.6 Categorization and LearningOne of the features of CALMs is that they can learn without assistance: they are verysuitable for unsupervised learning. This feature emerges from the fact that CALMis a categorizing system, as opposed to associative systems, such as BPN (which canonly be used with supervised learning). When a CALM has learned to categorizea certain pattern, it has converged to one node, which is then said to represent theinput pattern in the node. Figure 5.3 (adapted from [Murr 92]) shows an exampleof learning in a two R-node CALM. Early on all the inter-weight connections areequal, since the CALM has not learned anything yet. Since all inter-weights arethe same, both R-nodes get activated equally (iteration 2), which gets the A-nodeactivated (iteration 3), and in itself activated the E-node (iteration 4). In iteration 5one can see that the right R-node got the advantage of the random activations thatboth R-nodes got because of the arousal of the E-node, resulting in a strengtheningof the inter-weight from the left pattern node (the one that is activated), and theright R-node (the R-node that has become the category of the o�ered pattern). Theweights of the inter-weight connection from the second pattern node to the secondR-node drop signi�cantly, since the R-node is activated, while the pattern node is not.At iteration 21 the activation of the left R-node has dropped to nil, while the rightR-node is still strongly active, as is the right V-node. Note that when both R-V-nodepairs are activated the lateral inhibition of the V-nodes makes sure that the A-node isactivated (we want this to happen, since there is strong competition between nodes),while it has lost its activation when competition has been resolved. In iteration 21,when the pattern has already been learned, the E-node is still activated, exposing theCALM to noise, thus enhancing a more stable coding of the input.5.7 Supervised LearningAs mentioned in the previous section, CALM is a network paradigm that normallylearns with unsupervised learning. However, unsupervised learning only works fora certain class of problems: those where the input patterns have emergent features,features that separate them from the other cases, that the network can pick up on.If, however, we want a CALM to learn the categorization of patterns into categoriesde�ned by us, we need to be able to tell CALM which category the pattern should
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Figure 5.3: An example of learning in a CALM with 2 R-nodes, the numbers at theupper left of each module indicate the number of the iteration, the size of the dot inthe nodes gives the amount of activation, the thickness of the arrows the size of theweight. For clarity, the connections other than the inter- and AE-weight connectionswere omitted, since these are of no importance to learning.



48 CHAPTER 5. CALMbe put in.There are basically three methods to achieve this CALM variation on supervisedlearning (that is what we are doing). The �rst method is to give the V-node paired upwith the R-node to which we want the CALM to converge a starting activation. Thisstarting activation works as a strong impairment on the other R-nodes, thus givingthe desired R-node such a strong advantage over the other R-nodes, that the CALMconverges to this R-node (assuming we chose the starting activation in the rightinterval, of course). Giving the R-node an initial activation would be less e�ective,since all R-nodes are immediately activated by the input nodes, which results in thepre-activated node soon losing it's advantage. Activating the V-node, however, meansthat the activations of all R-nodes to which the V-node is not coupled are kept down.The second way is to present the CALM with two input patterns: one the originalinput pattern, the second the desired output pattern. This second pattern exists ofexactly as many nodes as the output CALM of the network does, with one activatedR-node, representing the category of the input o�ered on the input pattern. Thishints the network which inputs are to be put in the same category, and which are tobe put in di�erent categories. The network, however, is free to choose on which ofthe output nodes it represents the category, that is the output CALM not necessarilyconverges to the node activated in the supervise pattern, but there is a one-on-onecorrespondence between one node in the supervise pattern and one node in the outputCALM (assuming the network has properly categorized the inputs. This is not some-thing that always happens: when the parameters are too far o� \good" values for thenetwork, the network will perform poorly, not only resulting in bad categorizations,but also in ambiguous categorizations). After learning the network a problem, wehave to �nd what nodes in the output CALM the categories have been mapped upon.To achieve this we o�er the network the supervise pattern only, the input pattern isleft unactivated. This way the output CALM converges upon the supervise patternonly, thus indicating on which output CALM node the category is mapped. Thissecond method is far more biologically plausible than the �rst: when we learn we donot have one neuron, or group of neurons, previously activated to enhance learning,we simply get o�ered the problem and the solution: two inputs, one the problem,the other the way to learn it. This is very similar to the second supervised learningmethod described.A third method is an adaptation from the second method. In stead of the normalfull connection between patterns and/or modules, a one-to-one connection is chosenbetween the supervise pattern and the output CALM. This means that there is a one-to-one connection between a node in the supervise pattern and the output CALM.Unfortunately, the implementation of this method is rather cumbersome within theenvironment used for this research: all functions are built to work with fully connectedpatterns and/or modules, thus making it necessary to change a lot of functions. Thisis caused by the node connections being implemented as module connections. Since



5.8. CONVERGENCE IN CALM-NETWORKS 49all patterns are implemented as special cases of modules, pattern-module connectionsare full connections automatically.The third method was not used in this research.5.8 Convergence in CALM-networksThe normal convergence criterion for a CALM-network is, as mentioned before, aunique categorization for the o�ered pattern. This strategy, however, limits a CALM-network in its \expressive" capabilities: systems of coarse coding (the spreading ofinformation over various nodes, which generally means a potentially far larger chunkof information can be coded with a certain number of nodes) are excluded by it. Inthis research, as most often, this unique categorization criterium is used solely forthe output-CALM, thus making is possible for the internal modules to still use coarsecoding. It might be interesting to do some research in the future after coarse codingin the output module, even though this makes the interpretation of the output as wellas the learning of the network theoretically more complex.Normally, a module is said to have converged when one node is above the highcenvergence criterium, while all the others are below. See Appendix A for defaultvalues.5.9 Bias-nodesA common aw of Arti�cial Neural Networks is that they are hardly able to categorizelow input, that is, input patterns that hardly bring any activation to the network,yet we may want this kind of input categorized anyway. A common, and e�ective,way to solve this problem is by adding a so-called bias node to the input pattern.This bias node has the same activation for all patterns, it therefore does not giveany information, it does, however, result in a certain activation. This way we get thenetwork activated, whether the input pattern itself brings activation, or not.A further advantage of this method is that the network seems to gain in calculativepower: when using n nodes for an n-wide pattern, the hyperplanes always go throughthe origin of the problem space, when using an n+ 1-wide pattern, the hyper planesgain freedom, thus making for wider possibilities in categorizations. Examples of thiscan be seen in some of the pictures in chapter 10.
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Chapter 6Biological Plausibility6.1 Modularity in Nature: the Modularized BrainOne of the simplest de�nitions of modularity is a subdivision in identi�able parts, eachwith its own purpose or function [Boer 92]. Using this de�nition almost everythinghas some kind of modularity, no matter how rudimentary it is.Just like almost everything else, a being, be it human or not, can be split intomodules. One of the most obvious is a decomposition in organs, which can be de-composed in cells, which can be split in the organelles that are in the nucleus and thecytoplasm. The di�erent organelles have di�erent functions within in their cells, asdo the cells in their organs, as do the organs in the total organism.As all organs, the brain can be decomposed in structures, which make the braininto a strongly modularized whole, each module consisting of a number of neurons.Two of the most prominent structural characteristics of the brain will be referredto as horizontal and vertical structure [Bloo 88]. Horizontal structure is found whereprocessing in the brain is carried out by subsequent hierarchical neuron layers. Suchmulti stage information processing can for example be identi�ed in the primary visualsystem, where simple features of visual images as line and arcs are represented in layersof simple neurons which are combined and represented by neurons in subsequent layersthat possess increasingly complex representational properties (e.g. [Hube 62]). Thevertical structure of the brain allows for separate processing of di�erent kinds ofinformation. An example for this, too, can be found in the visual system: form,colour, motion and place are processed in parallel by anatomically separate neuralsystems. This information is integrated at higher levels by convergent structures.The presence of horizontal and vertical structures makes the organization of the brainmodular, as does the subdivision of the brain into two hemispheres. This subdivisiondoes constitute a hemispheric specialization. Striking examples of this can be seen inso called split brain patients, patients who had their corpus callosum, a large structurethat connects the two hemispheres, severed. These patients can function normally51



52 CHAPTER 6. BIOLOGICAL PLAUSIBILITYup to a high degree, since the communication between the two hemispheres can gothrough the outside world. Experiments with such patients show that there is a largemodularization, of even the most complex functions [Kand 85].More evidence for this functional modularization stems from psychological inter-ference experiments. Subjects o�ered totally di�erent tasks at the same time are verycapable of completing these without problems. When we, for instance, walk throughthe woods, we have to do a lot of things at the same time: listen to the birds, stayon the path, watch nature and make sure we don't trip over a root or walk into aprotruding branch. Apart from that, subjects also do rather poorly in tasks that arevery similar, for instance listening to di�erent auditive inputs, on each ear ([Allp 80]).The localization of functions in the brain and its modular structure speak in favourof the functionality of the modularization: the modularization of the brain enhancesits functioning.The question is when this modularity arises. The anatomical location of certainfunctional centers and the fact that they are in the same place in most persons, speaksin favour of a certain prede�nition, which would have to be genetic. Another argumentis the fact that development of most children, for instance linguistic development,follows the same way, no matter where they develop. Since the genes do not haveenough informational capacity to code every single connection of neurons, the codingof the connections has to be modular.6.2 Modularity in GenesThe genetic coding of all life forms on earth is also modular. All genetic information isstored in genes, which are contained in long double stranded helical strings, DNA, ofwhich each cell in an organism has a copy. This genetic information is a digital codingwith four di�erent bases: adenine, guanine, thymine and cytosine. The informationstored in the DNA helix is transcribed into strings of RNA, which is an inverse copyof a part of the DNA. RNA is built from the same bases as DNA, except thyminewhich is replaced by uracil. Each triplet of bases in the RNA forms a coding for oneof 20 amino acids, or a marker. The RNA is translated into proteins by a ribosomethat reads the RNA, and connects the amino acids in the order coded in the RNA.Markers tell where to start and where to stop reading the RNA string.Amino acids are the building blocks of which all proteins are built. Most of theproteins are enzymes that catalyze the di�erent chemical reactions in the cells. Eachprotein consists of a sometimes very large number of amino acids put together in aspeci�c order. It is this order that determines the shape, and through that shape thefunctioning of the protein. For each protein, of which about 30,000 exist in humans,the order of the amino acids is written in the DNA, where each protein is coded by onegene. In this way, the DNA determines what kind of proteins are built and thereforehow di�erentiation takes place. This di�erentiation is caused by the forming of certain



6.3. ARTIFICIAL MODULARITY 53proteins that generate a positive feedback on the genes in the DNA that producedthese proteins. These proteins will also repress another group of genes which willnever be active again. Embryo-logic experiments show also that certain cells in anembryo control the di�erentiation of adjacent cells [Guyt 86], hereby implementingthe idea of context. Most mature cells in humans only produce about 8,000 to 10,000proteins rather than the total amount of 30,000. It is this process of cell di�erentiationthat determines the �nal shape of the organism in all its details.At birth the brain is supposed to have an initial structure. It is the process ofcell di�erentiation that forms the shape of the brain in a way that is still unknown.But somehow the initial structure has to be coded in the genes (genetic modules ofinformation, or building blocks).6.3 Arti�cial ModularityAfter reaching the conclusion that modularity might play an important role in thefunctioning of our brain, we might wonder if modularity would work well in ANNsas well. So far results appear to be pointing that way ([Murr 92], [Happ 92] and[Norr 90]), but since managing large ANNs is still a problem, only research on smallernetworks has been done. Another problem is that even for networks with just a coupleof layers, the mathematical equations become already so complex that is practicallyimpossible to still know what happens within the network: since it is impossible tocalculate what kind of network topology works well, we have to come up with one andthen test whether it works. From the testing point of view this scheme is certainlyfeasible, so all we need now is an attractive, and preferably e�ective, way to movethrough the space of possible topologies. As we used reverse engineering to moveaway from the not so well working algorithmic solutions we turned to ANNs, so whynot try this scheme again: use a metaphor for the natural development of neuralnetworks. This leads to the use of genetic algorithms (GAs). Since we know how totest a network, and have a good idea of what we want in the network, we can usethese ideas in developing a good �tness criterion, with which the GA can be provided,in that evolving to a better, hopefully optimal, solution.Now that we have come this far though, we still have not solved all problems: a gapremains between the GA and the ANN. Even though we know how to communicatefrom the ANN to the GA how well we consider a network to be, we still do nothave a method for the ANN to understand what network the GA has coded: aninterpretation of the string is missing.An ANN can be seen as a graph, so what we could use is a method to generategraphs. Artistid Lindenmayer provided us with one with his L-systems ([Lind 68]), amethod he used to describe the development of multicellular organisms. A good sideof L-systems is, that they are, as ANNs and GAs, biological metaphors, which madethem very suitable for this type of research (the original idea stems from [Happ 92]).



54 CHAPTER 6. BIOLOGICAL PLAUSIBILITYAnother advantage of L-systems is that they are suitable for both the developmentof vertically and horizontally organized networks, apart from the fact that they canuse context as well (which|as mentioned before|can also be found in the develop-ment of brain structures). It should be noted that L-systems are suitable for graphdevelopment, but were not speci�cally developed for it. The biological plausibilityof L-systems in this context is disputable. As mentioned before, it is not completelyclear yet how exactly the human brain is guided in its development by the genes.However, since L-systems are a biological metaphor, we stay as close to nature as ispossible with current knowledge.The method used in [Boer 92] can be summarized as follows:1. A genetic algorithm generates a bit string, which is the chromosome of a memberof its population. The search of the genetic algorithm is directed towards amember with a high �tness, a measure resulting from step 3.2. An L-system implements the growth of the neural network that results from therecipe coded in the chromosome. The chromosome is decoded and transformedinto a set of production rules. These are applied to an axiom for a number ofiterations and the resulting string is transformed into a structural speci�cationfor a network.3. A neural network simulator (for instance BPN or CALM) trains the resultingnetwork structure for the speci�ed problem. The performance of the networkis in some way expressed in a �tness, a measure for the networks performance,which is returned to the genetic algorithm.In this research several methods were used, of which the previous is one.6.4 CALMAt �rst sight one would say that CALM is far more biologically plausible than forinstance BPNs are.CALM uses a Hebb-type learning method, which is quite similar to the way learn-ing takes place in the human brain: weights are changed based on the correlationsbetween the activations of the two nodes connected by the connection. This is farmore biologically plausible than the Back Propagation of an error through a network,like Back Propagation uses.Besides this, a lot of network paradigms use connections that can simply changesign, with the connection simply changing between excitatory and inhibitory be-haviour, while in the human brain a neuron either inhibits or excites another neuron,



6.4. CALM 55without ever changing. All connections within a CALM are either excitatory or in-hibitory, and remain so, while the connections between CALMs always are positive.This makes CALM highly biologically plausible as to connections.A third argument for CALMs biological plausibility is the fact that CALMs arealready structured of themselves. Networks like BPNs simply exist of a number ofloose nodes that are interconnected; even though structure can be imposed on them,they are basically unstructured. CALM networks, on the other side, have a twofoldstructure: the tight organization of the CALMs, which could in a way be comparedto the mini column as found in our brains [Murr 92], within a network upon which,like on a BPN, a structure can be imposed.At second sight, however, it appears that the CALM-mini column analogy doesn'tfully hold. One of the types of cells in a mini column are the pyramidal cells, whichappear to have a functional resemblance with the R-nodes of a CALM ([Murr 92]).However, a mini column has some 60% pyramidal cells, which, beside the fact thatthis fraction is signi�cantly higher than the fraction of R-nodes within a CALM, seemsto contradict the strict pairing of R- and V-nodes. To overcome this de�ciency, somechanges to the CALM paradigm have been proposed ([Murr 92]).The �rst is to let the number of V-nodes in a CALM be a lot smaller than thenumber of R-nodes, with it dropping the strict pairing of V-nodes to just one R-node.In fact, every R-node is connected to several V-nodes. Using this construction, theat-weight connections become superuous, since the concept of lateral inhibition haslost its meaning with every V-node receiving input from several R-nodes. The con-necting of an R-node to several V-nodes also results in a change of the cross-weightconnections: since there are less V-nodes than there are R-nodes, a V-node receivesinput from more than one R-node. Only the R-nodes from which a V-node does notreceive input are connected to it with a cross-weight connection. Despite this changeto the internal wiring of a CALM, the functioning of the network (that is, the com-petition and the arousal systems) remains the same, due to the indirect competitiontriggered by the cross-weight connections. To make sure indirect competition willresult in the network to converge, two di�erent R-nodes can never be connected tothe same set of V-nodes. If this constraint weren't inicted, the possibility wouldexist that competition could not always be resolved: if the set of V-nodes to whicha particular R-node is connected is the same as that of another R-node (all R-nodesare connected to the same number of V-nodes), competition would not be resolved,since the nodes would receive equal inhibition. Indirect inhibition does not resultin every R-node inhibiting the other R-nodes equally, but so far tests have shownsimilar categorization results for this adapted CALM and the original, although thefact that the interconnection of R- and V-nodes is constrained, has some inuenceon the initial categorization of patterns (that is, the node chosen for the �rst patternof a certain category). If for instance the patterns (0,1) and (1,0) were o�ered, theywould be mapped to nodes that are in maximal indirect competition (that is, have



56 CHAPTER 6. BIOLOGICAL PLAUSIBILITYthe smallest intersection of connected V-nodes possible). This however, is merely aninternal change, but has no relevance for the outside: if patterns were in the samecategory before, they still are. For a more elaborate treatment of this adaptation see[Murr 92].Another adaptation that enhances biological plausibility is to put all the E-nodesof all the CALMs within a network together in one structure. Global excitationcould in this way stimulate elaboration learning (the deeper learning of previouslyencountered patterns) through the whole system. Studies have shown ([Murr 92])that lesioning the E-node structure (damaging it), results in the system losing itsability for elaborate learning. The same kind of behaviour is shown in su�erers ofanterogade amnesia, loss of memories from before the occurrence of a lesion [Warr 70].Since this kind of behaviour often occurs in patients with lesions to the hippocampusand amygdala, there is some reason to suspect the functioning of CALMs being similarto the functioning of these structures.A �nal, and somewhat discouraging, thing on CALM's biological plausibility (aswell as other ANN's, but to a lesser degree, since they are less complicated) is that wereally do not know what happens inside a CALM network, just like we do not knowwhat happens inside the human brain. In this aspect ANNs have failed: we have notbeen able, so far, to build an ANN which is a simpli�cation of the brain and that wedo understand, with it giving us more insight in the working of the brain. Of course,from a more computational point of view, ANNs have proved to be very succesful:they are at the moment use in a wide variety of �elds, often working on problems onwhich traditional algorithmic programs performed rather poorly.



Chapter 7Implementing Genetic CALMStructuringThe software written and used in this research consists of several more or less indepen-dent libraries and programs. The CALM part is represented by CALMlib, a library ofCALM and CALM-associated functions mainly written by Bart Happel, Jaap Murreand Nico Mulder, more complete treatises than the one given here can be found intheir work ([Happ 92] and [Murr 92]). The genetic part is represented by CalmGenalgand CalmExtGen, adaptations from GenAlg and ExtGen (a genetic library) which weredeveloped for coding BPN architectures, to the CALM paradigm. GenAlg and ExtGenwere taken from the software used by Boers and Kuiper on their research ([Boer 92]).The production rules are rewritten using the program CalmLSystem, adapted fromLSystem (again, a BPN predecessor from Boers' and Kuiper's work). The LSystemprogram transforms the axiom to the �nal string by using the production rules re-sulting from the genetic manipulating (this process will be explained in the followingsection). It �nally writes a matrix which represents the architecture of the network,which is read and interpreted by CalmFunc, the module that creates the CALM-network and tests it. All the software is written in C.7.1 The GrammarIn this research a context sensitive grammar is used to create CALM networks. Thestrings used in this research are composed of letters from the alphabet fA-Z, 1-9, [, ]g[ f,g 1. An R-node is represented by a letter. If two letters are separated by a comma,no connection between them is made (this means that they will end up in di�erent1It should be noted that this system is the one originally used in the research by Boers and Kuiper([Boer 92]). Since then Boers has adapted this scheme. In this new notation all skips numbers areupped one, and the , is replaced by 1 ([Boer 95]).57



58 CHAPTER 7. IMPLEMENTING GENETIC CALM STRUCTURINGCALMs, since no R-nodes within a CALM are connected), if they are adjoining noconnection is made. Modules are created by grouping a number of characters by usingthe [ and ]. All output nodes, nodes that have no output to other nodes in the module,of a module are connected to the input nodes, nodes that receive no input from othernodes in the module, of any module it is connected to. These modules can be seenas networks connected to form one greater network. Like with characters, adjoiningmodules are connected, while those separated by a comma are not connected. Thistype of connection only provides a rather feed forward oriented type of networks.To enhance more complex types of networks, skips were introduced. Every singlenumber in a string denotes a skip. A digit x means that the next x node units shouldbe skipped, where a node unit can be a single node or a full module. This means that,for instance, in the string A1BC A is connected to C and that in the string A1[BC]DA is connected to D, and not to C. If a skip exceeds a module, it is continued afterthe end of the module as can be seen in the example in �gure 7.1. This �gure showsthe Back Propagation network that would be generated by the string [A2[B,C]D]E,using the interpretation that was used by Boers and Kuiper ([Boer 92]). It should benoted that all connections were chosen to be forward. Figure 7.2 shows the CALMnetwork generated by the same string. The lowest level of modules in the net (nodeswith the same input and output are put in one module) form one CALM. However,since these modules can often contain just one node (as can be seen in the network of�gure 7.1), and categorization by one category is rather useless, the number of nodesis increased with one, by this making sure each CALM has at least two R-nodes.Apart from that, all connections are chosen to be reciprocative.7.1.1 Production RulesAs mentioned in chapter 3, the production rules of the context sensitive grammar areof the form:L < P > R! Swith the characters taken from fA-Z, 1-9, [, ]g [ f,g.PredecessorThe predessor (P) may only contain complete modules and nodes. Therefore thenumber of left and right brackets must be equal in a correct order. Each module mustbe complete. This means that the string A]BD[D (for example) will be discarded.The predecessor may not contain empty modules ([]) and should contain at least oneletter (node).
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(b)Figure 7.1: The network generated by [A2[B;C]D]E (a) and a simpli�ed version ofits CALM counterpart (b) (only R-nodes were drawn). Note that each module from(a) has received an extra node, this to prevent categorization with just one possiblecategory. All connections between CALMs are chosen to be reciprocative.



60 CHAPTER 7. IMPLEMENTING GENETIC CALM STRUCTURINGSuccessorThe successor (S) has the same constraints as the predecessor. The successor maybe absent, in which case the predecessor is removed from the original string whenapplying the production rule.ContextIf a context is present, the same constraints as for the successor and predecessor apply.In addition, no loose digits are allowed: each digit must follow a node or module. Forexample, the string 1A[B] is not allowed because of the leading 1.A deviation from the L-systems described in chapter 3 is the handling of context.Whereas in those L-systems the context is matched against the characters adjoiningthe predecessor (left and right of the predecessor for the left and right context) inthese L-systems the context is formed by the nodes that give input (left context) andthose that receive input (right context).Because of this special interpretation of context, the context string should beseen as an enumeration of a number of nodes and/or modules, all of which shouldbe connected to the predecessor at the time of context matching. The context mustbe a subset of all nodes connected to the predecessor (left context) or all nodes thepredecessor is connected to (right context) in order to match.Let us look at an example with the following rules:1: A ! BBB2: B > B ! [C,D]3: B ! C4: C < D ! C5: D > D ! C1We take A (see �gure 7.2a) as axiom, which means that in the �rst step only rule1 applies, resulting in the string BBB (7.2b). In the second rewriting step rule 2matches the �rst B in the string, which is rewritten to CD. During the same step thesecond B is also rewritten using this rule (7.2d), as the third B is rewritten using rule3 (7.2e). For the �rst and the second B, both rule 2 and rule 3 match, however rule 2is chosen because it poses a greater constraint on the structure. All this results in thestring [C,D][C,D]C after the second rewriting step. It should be noted that the stringBBB is rewritten to the string [C,D][C,D]C in one step, the intermediate strings, ofwhich the networks the present are shown in 7.3c and 7.3d, do not exist at any time,they are just added to enhance clarity. In the third rewriting step, rule 5 matches onthe �rst D of the string. As already explained, this match isn't a textual one (thetwo Ds are not adjoining in the string), but a connectionwise match: the two Ds areconnected in the network. The second D matches rule 4. This all results in the �nal
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62 CHAPTER 7. IMPLEMENTING GENETIC CALM STRUCTURING00 01 10 1100 3 3 * * * * * * 2 2 2 4 , , , ,01 [ [ [ [ 1 1 1 1 A A A A B B B B10 D D 2 2 E E F F G G H H * * [ [11 ] ] 2 5 ] ] ] ] [ [ ] ] C C C C00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11Figure 7.3: The coding of the symbols. To �nd a symbol, �rst �nd the correct row byusing the �rst two bits, then the right quarter by using the bits on top, and �nallythe symbol by using the bits below.26 letters, all representing nodes in the resulting network, however, any number ofsymbols representing nodes can be chosen. The same goes for the digits representingskips. In this research eight symbols for nodes (A-H) were used, and 5 symbols forskips (1-5). This results in an alphabet with 16 symbols (8 letters, 5 digits, 2 bracketsand the comma). Each of the characters was represented by a bitstring of �xedlength (l). As can be read from [Guyt 86], genetic coding is done in triplets of fourpossible di�erent bases. Following this we would let each string exist of three tripletsof two bits each (to code which of the four bases it is), giving us a stringlength ofl = 6. The choice of this l leaves us with 64 possible bitstrings, each coding one of 17symbols: the 16 symbols mentioned before and an extra symbol, the *, to denote theend of each string (this can be compared to the start and stop markers used for thetransformation from RNA to protein ([Guyt 86]). The 17 possible characters haveto spread in some way over the 64 possible codes. The table used can be seen in�gure 7.3. Since connections were chosen to be reciprocative, there is no need fornegative skips to be able to implement recursion.The table is read as follows: to determine the character corresponding to a bit-string (of length 6), determine which of the four rows at the left corresponds with the�rst two bits of the string, then choose the right column from the second pairs of bitsat the top of the table, and �nally choose the right character using the pairs of bits atthe end of the lines in the found 16th of the table. For instance 111000 correspondsto *: choose the lowest of the four 4x4 blocks, choose the third column and in thatthe �rst row.In picking a production rule form a chromosome, the following method is used.Pick a starting point anywhere in the bitstring (chromosome). Start reading the Lpart (left context) of the production rule. This is done by reading six bits in a row,looking up its coding, and considering the left context read when six bits coding an* are found (since * is the separator). Start reading the P (predecessor), R (rightcontext) and S (successor) parts in the same way. When all parts have been read, thereading of the next production rule starts, continuing until the string is exhausted. If



7.2. CALMLIB 63the end of the string is encountered before the production rule is �nished, the partialproduction rule is discarded.With real DNA, the strands are \read" by choosing a starting point within thebases on the strand and then reading triplets of bases until a punctuation mark is read(which can be compared with the asterisk), at which time the building of the currentprotein is \�nished", and the building of a new protein starts. Research indicatesthat di�erent proteins can be coded using the same genetic information, simply byusing a di�erent starting point and using di�erent reading directions. Adapting thisprinciple to our strings, we obtain twelve di�erent ways of reading the strings: sixdi�erent starting o�-sets (starting six bits further down the string gives the samebases (characters) and two directions, starting on each of the 0th through the 5th bitfrom the start or the end, depending on the reading direction). Due to this high levelof information in one string, the level of implicit parallelism might be signi�cantlyhigher in this way than it is when reading a string just once.Using chromosomes of length k results in 2�6�((k�1)div6)+(k�1)mod6 characters.For chromosomes of 1024 bits long this results in a string of 2040 characters. Thetotal number of possible valid production rules for strings of this length usually isabout 250: the 64-characters translation table contains 8 asterisks, so a string of 2040characters contains roughly 864 � 2040 � 255 markers. Almost each marker can beused for a production rule (the last four markers placed at the end can not be used).If we discard all production rules that contain invalid character combinations (thosedescribed earlier), we are left with much less rules, of course.7.1.3 Repair mechanismWith real DNA, in the few hours between DNA replication and mitosis (the actualprocess of a cell splitting into two new cells, [Bloo 88]), a period of very active repairand \proofreading" takes place. Special enzymes cut out defective areas and replacethem with appropriate nucleotides. Because of this, mistakes in the process of cellreplication are seldom made (these mistakes are called mutation). The software alsocontains functions to repair faulty strings. The functions remove spare brackets,commas, digits, etcetera in order for the string to meet the restrictions mentionedbefore. The number of production rules left after this process, is about 50.7.2 CALMlibCALMlib is a library of functions especially made for CALMs and CALM-networks.It includes functions for network creation, maintenance, input handling, showing thenetwork and of course for calculating the activations of the nodes. In contrast with themost other software used for this research, the CALMlib was not adapted especiallyfor it.



64 CHAPTER 7. IMPLEMENTING GENETIC CALM STRUCTURINGThe most important functions in this library are:� calc act: calculates the activations in the next step and stores them in anintermediate variable.� calc wt: calculates the new learning weights, recursively if necessary.� swap act: swaps the new activations calculated with calc act into the network.� net def: allocates memory for a network and creates the required structures.� net free: frees the memory used by a network.� mdl def: allocates memory for and creates a single CALM. Also connects theCALM to a network, as de�ned using net def.� mdl free: frees the memory used by a single CALM.� ptn def: allocates memory for an input pattern. An input pattern is a strippedversion of a CALM.� sall act: sets all activations in a module to a given value.� mdl reset: resets all activations to starting value. Used directly before o�eringa pattern.� mdl con: connects two modules.� mdl tree: shows a tree representation of a CALM or network.More elaborate information on the CALMlib can be found in [Happ 92] and[Murr 92].7.3 Extended CALMGenLibThe original extended GenLib only saw to the genetic creation of the structure of thenetwork. For CALM, however, not only the architecture, but also the learning pa-rameters were determined genetically. To provide for this, the de�nition of a memberof the population was adapted to the following:typedef struct{ float fitness; /* fitness of the member */unsigned *genPos; /* pointer to array of gen positions */unsigned char **genValue;



7.3. EXTENDED CALMGENLIB 65/* pointer to array of architecture chromosomes (strings) */unsigned char **parValue;/* pointer to array of parameter chromosomes */} MEMBER;The pointer to the parValue array was added. This array contains 30 geneticallycoded parameters (as used by the CALMlib). The total population remains de�nedas:typedef struct{ unsigned popSize, /* number of members in this population */nrGenes, /* number of genes in each member */genSize; /* size of gene in bits (multiple of 8) */MEMBER *member;} POPULATION;The genSize is limited to sizes multiples of 8, this to prevent the code frombecoming unnecessarily complicated.To allow for this change in the genes, most of the functions in the extended GenLibhad to adapted:� The creating functions (DefinePopulation and DefineMember) had to be adap-ted to also create an initial parameter population (this can be done by eitherusing starting random values or by using the standard parameters).� The disposing functions (FreePopulation and FreeMember) also had to disposethe structures created for the parameter chromosomes.� The disk IO functions (SavePopulation and LoadPopulation also had to writerespectively load the parameter chromosomes.� The genetic operators had to be adapted, to also code the parameters. Thisformed the bulk of the adaptations to the GenAlg. At the moment the chanceof each genetic operator is the same for parameters and architecture, this canbe easily adapted, though.The genetic operators used for this research are in the functions BitCrossover,BitInvert, BitRankselect and Mutate. The original extended GenLib containeda couple of more genetic operators, but these were intended for use with roulettewheel selection, which was not used in this research (in fact, these functions were notadapted to manipulate the population contain parameter genes).



66 CHAPTER 7. IMPLEMENTING GENETIC CALM STRUCTURING7.4 L-systemsThe main adaptation that had to be made to Boers' and Kuiper's L-systems, was thewriting of the connection matrix. Their system uses simple nodes, so the matrix thatwas written as a nxn-matrix, where a one at position (i,j) denotes a connection fromnode j to node i. The modules in this system would form by themselves. However,for the CALMs not the lowest level nodes are connected, but the CALMs themselvesare (as explained in an earlier chapter). This means that the matrix that is to berewritten is not a connection matrix of nodes, but of connection matrix of CALMs.However, the loose nodes as found in the original matrix, are still of importance:they represent the number of R-nodes in the CALM they form. To prevent for this,an extra line was added to the matrix �le. On this line the number of nodes (asdetermined from the string) in each module is written, As mentioned before, thisnumber is incremented when creating the actual CALM in CalmFunc, to provide forCALMs that contain just a single R-node.To reach this, a function was added to the L-system module. The program stillcreates the node connection matrix as was originally done, but this matrix is processedonce more to transform it into a CALM connection matrix. This is done by simplytaking a node, and �nding all other nodes in the matrix that are connected to thesame nodes, adding the number and noting.The second adaptation is of less importance. In the original L-systems module,single node modules that were of no importance for the computational power of thenetwork, but simply passed on information were shortcircuited: the connections madethrough them were made directly, pruning the superuous node. However, in a CALMnetwork such a single node would become a two node CALM, which does add to thecomputational power of the network, therefore the mentioned pruning mechanism wasremoved from the code.7.5 CalmFuncCalmFunc is the part of this software that was solely made for this research. Itsfunction is to interpret the matrix as created by the L-system and transform it intoa network. Apart from that it takes care of the reading, or otherwise o�ering of theinput, as well as determining the �tness of the created network.7.5.1 Creating the NetworkThe creation of the network is established using functions from the CALMlib. Thenetwork as created by the L-system is the internal part of the CALM, the part thatdoes not communicate with the outside world. The input is of a set size: one patternrepresenting the input for the problem (as mentioned earlier a pattern is a stripped



7.5. CALMFUNC 67form of a CALM) and a second pattern representing the desired activation for theoutput CALM. These two input patterns are connected solely to the CALMs in thenetwork that are input CALMs: CALMs that receive no input (in the original struc-ture created by the L-system) from other nodes. The output module is of the samesize as the second input pattern, and is only connected to the output CALMs of thenetwork (the nodes that did not give output in the original structure created by theL-system).If two CALMs within the network are connected, their connections are reciproca-tive: they go both ways. This, of course, blurs the concept of input and outputCALMs, which is why the original structure created by the L-system was referred towhen speaking of input and output CALMs.7.5.2 Input ProblemsAs a means of o�ering input to the network, several functions were written. Someof them are hard codings of problems (one function for instance codes the mappingproblem, which will be explained in the next chapter). Apart from this some functionswere written to read input from disk �les.7.5.3 The FitnessOne of the most important factors in the success of the GA is the �tness functionchosen. If the �tness does not properly reect what in a we are looking for in asolution, we can not expect the GA to �nd a satisfying solution.There are three factors that are of basic importance for determining the quality ofa neural network: the size of the network (number of nodes or modules), the speed ofconvergence (how fast the network comes up with a solution, preferably the right one)and �nally how many of the o�ered problems were solved correctly by the network.This last factor is the most important one: for one thing we want the network to giveas many good solutions as possible. For this research we gave the number of correctsolutions to be of such importance, that a network can never have a lower �tnessthan a network that gives less correct answers. To be more concrete, we started outwith a maximum �tness, in this case 1000 (since rank-based selection was used, theexact value was of no importance. It should be noted, though, that this numbershould be at least the number of o�ered patterns + 1 (to account for the number ofmodules in the network)), and for each wrong answer one was subtracted. Besidesthis, 0.01 was subtracted for each module the network had; since the network couldnot have more than 30 modules, the number of modules could not diminish the �tnessby more than 0.3, thus making sure that the number of modules could not violate theaforementioned �tness constraint. The speed of convergence was not used, but caneasily be brought into the �tness.



68 CHAPTER 7. IMPLEMENTING GENETIC CALM STRUCTURING7.6 Using the SoftwareA number of di�erent modules and programs have been written for this project. Sincethese are fairly stand alone, they are treated seperately here.7.6.1 GA generated, L-system Assisted Architecture CreationThe unit of this program that starts everything is called calmgenalg w. It takesa population and starts genetically manipulating this. It takes four parameters, ofwhich the �rst three are mandatory. They are:� The simulation �le: this �le contains some of the parameters used by theprogram. It could, for instance, look like this:## Sample configuration file###files .#population test.pop#control test.ctl#size 100#pmut 0.005#pcross 0.5#sites 20#pinv 0.3#pressure 1.5#steps 6#axiom AThis sample contains all the recognized parameters of the parameter �le. filesdetermines the directory where all created �les are put (the production rule,matrix and string of each chromosome are saved), population is the name of thepopulation �le, control the name of control �le, size the number of membersin the population, pmut, pcross, sites, pinv and pressure inuence thegenetic operators, steps is the number of rewriting steps for the L-System andaxiom is the axiom for the L-System.� The number of members to be processed: this parameter determines howmany of the members of the population are processed in one iteration.



7.6. USING THE SOFTWARE 69� The name separator: the names for matrix, production rule and string �lesare build from some components, for instance for the production rule �le thisis ``prodr'' + parameter three + \." + member number, where the membernumbers range from 000 to the second parameter (counting starts when an iter-ation is started). A name could for instance be prodr000.000, the productionrules for the �rst member to be processed in any iteration (which iteration doesnot inuence the name) where the third parameter was 000.� verbosity: adding a fourth parameter (any) will put the program in verbosemode, some extra information is giving during running.The commandcalmgenalg w simfiles/sim.tst 10 000 -vwould start the process using the parameter �le simfiles.sim.tst, process 10 mem-bers each iteration, use code 000 in the names and turns the program to verbosemode.During the process, the population of genetic codings of networks changes, ruledby the members with higher �tnesses. After each iteration information about, lowest�tness, average �tness and highest �tness of members in the population is writtento �le called result.maprec, which is stored in the directory indicated by the fileparameter in the parameter �le.Before actually starting evolution on a population, one has to be created. This isdone by the calmnewpop program. The commandcalmnewpop simfiles/sim.tstcreates a new population with the size mentioned in the sim.tst �le. The calmnewalg wshould be started on a population that was by the same parameter �le as the one itreceives itself.7.6.2 testxrandThe testxrand program was written to give some graphic representations of bothcategorizations and network activations. The program is not as user friendly as couldbe possible, but a lack of time did not permit making a better looking, more userfriendly version. The network should be coded in the program, which asks for at leasta rudimentary understanding of the working of the CALM library and the program.Some features might be implemented as parameters for the program.



70 CHAPTER 7. IMPLEMENTING GENETIC CALM STRUCTURINGThe commandtestxrand sf <filename>starts a simulation using one network with set parameters and evaluates this untilstopped by the user (this can be done by simply killing it). At certain moments thelearned categorization is saved as a picture to a �le, exactly when, depends on whenthe user wants this to happen, by changing the program. This normally happens onceevery ten rounds of o�ering the patterns. This feature could be made a parameter inthe future. The <filename> parameter is mandatory (leaving causes an error fromthe program). The �le is written to directory pic (this should be a subdirectory ofthe directory the program is started from).The commandtestxrand ssstarts the same simulation, but the produced pictures are not written to a �le, butimmediately shown on screen. This does require an X-type terminal.The commandtestxrand v <filename>shows a picture �le written by this program. The �le should be in the pic directory.The commandstestxrand ?andtestxrand hprint a help message.



Chapter 8Parameters and ArchitectureApart from certain things as learning rules, type of connections and units, which are�xed within an arti�cial neural network paradigm, there are also variable factors,most importantly architecture and parameters 1. To be able to solve a problem usingan arti�cial neural network, we should �rst determine these two factors.8.1 ArchitectureIn determining the architecture of the networks the �rst strategy used was the one usedby Boers And Kuiper ([Boer 92]): determining the architecture of the networks byusing Genetic Algorithms. However, this approach fell short. The parameters of theresulting CALM-networks were simply the standard parameters. These parametersappear to be un�t for networks that contain more than one internal module. Itappears that not only the problem the network has to learn, but also the size ofthe network have an inuence on which values for the parameters work well. At themoment the insight in what precise behaviour in networks is created by the changingof certain parameters is rather limited, which makes it hard to determine in a rationalway what values the parameters should get to make the network work properly.Therefore another method of determining architectures was employed, albeit arather brute one: the architecture was developed by hand, keeping in mind what typeof architecture might be useful for solving the problem at hand.1We are talking about the normal situation here. There are cases in which we might want tochange certain features of the paradigm, because we �nd that it is simply unable to properly solvethe problem we o�er, even though we want it to be solved.71



72 CHAPTER 8. PARAMETERS AND ARCHITECTURE8.2 ParametersAlmost all neural network paradigms incorporate some type of parameter, whichinuences the speed and the e�ectiveness with which they learn to solve problems.Most paradigms take only a few parameters, with the most important of those beingthe learning parameter, the parameter that determines how fast the values of theweights of the connections of the neural network can change.CALM takes a rather special place when it comes to the number of parameters:the implementation used, uses no less than 37 parameters (of which a number, ad-mittedly, are user de�ned). One of the reasons for the increase in the number ofparameters compared with other paradigms is the fact that a CALM-network hasmore set weights; where most paradigms, like for instance Hop�eld and Back Prop-agation Networks, have simple units (nodes), CALM has complex units: modules.Each of these modules has a set of set weights, for each of the eight di�erent connec-tions within the modules. These weights are normally set to the same value for allCALMs in the network, even though they can be chosen to di�er per CALM. In fact,they should be chosen to di�er per module when optimizing the parameter values ofa network: preliminary research seems to indicate that �ne tuning of the parametersshould be done by changing parameters separately for each module.All and all this leaves us with two rather complex tasks to complete before we canstart using the network. Of course, we do have the possibility of keeping one of thefactors, parameters or architecture, �xed, which is exactly what was done in a lot ofexperiments.8.2.1 Determining ParametersIn trying to determine suitable parameters for a CALM-network, several approacheswere chosen in this research.GeneticallyThe research started out determining network architecture only using Genetic Al-gorithms, and choosing the parameters simply to be the default ones. However, itbecame clear quite soon that this approach sells the parameters short: it appears tobe di�cult, to say the least, to �nd a network that works well without in some waymaking changes to the values of the parameters: the network's performance is clearlydependent on the value of the parameters (or why would they have been implementedany way?). As suggested before, experiments showed that the default values for theparameters are �t for networks without internal modules, however, the networks de-veloped using the genetic algorithm always contain internal modules, so some kind ofalteration had to be made to the values of the parameters.



8.2. PARAMETERS 73To come to terms with this problem we chose to try to determine the parametersof the network along with the architecture: codings for the parameters of the networkwere added to the chromosomes fed to the genetic algorithm, which were evolvedalong with the chromosomes for architecture.This method, however, has a rather unfortunate drawback: for a chromosometo survive it needs to have a good architecture as well as good parameters. Thisresults in good architecture with bad parameters and good parameter sets with badarchitectures to be lost from the population. The parameters and/or architectureslost this way might of course be produced by the genetic algorithm again, but itwill cost time. Since the evaluation of one a network can take a lot of time, dueto the relative complexity of the CALM-paradigm, these type of experiments arenot feasible on a normal Sparc or Indy machine. However, since a parameter set isonly good for certain network architectures, the determination of architecture andparameters should best be done simultaneouslyHowever, we needed a way to get around this time problem in an acceptable way.One way is to separate the stages of developing the network architecture and theparameters for the network. We �rst determine the architecture and later determinethe parameters. For this to be feasible, though, we need some way to determine forwhich networks we want a good parameter set to be determined. Which sounds wellenough, if it weren't for the fact that we have no safe way to determine which networkarchitecture is promising. To be able to do some experiments with determining pa-rameters apart from architecture a number of network structures were chosen (afterbeing developed by hand), and for those the parameter space was searched using themethods described in the following subsections.ManuallyOne approach was to change the parameters \manually". This sounds worse thanit actually was. The �rst sixteen parameters were systematically upscaled or down-scaled, separately: simulations were run where one of the parameters at a time wasrepeatedly multiplied by a factor of 1:02 for upscaling or 0:98 for downscaling. Thiswas repeated 100 times, with each resulting network being trained �ve times, to �lterout e�ects caused by random induced deviations. Apart from this, changing someof the parameters simultaneously for a couple of potentially interesting combinationswas tried.The most notable result from this experiment was that the parameters are quiterobust: changing one parameter at a time appeared to have hardly any e�ect. Onlytwo of the sixteen parameters resulted in serious a�ection of the network performance:as well downscaling the ninth parameter (the initial learning weight) as upscalingthe eleventh parameter (the activation decay weight) resulted in the network notconverging at all from a certain point on. Apart from this, changing some of the



74 CHAPTER 8. PARAMETERS AND ARCHITECTUREother parameters seemed to have the e�ect of stabilizing the network performance:where tests with the original parameters tend to look erratic with large di�erencesin performance between tests of one network, the changed parameters appeared togive smaller di�erences. The problem was, however, that this also resulted in worseperformances: the performance was stable at a rather mediocre level (this is probablycaused by the network not really learning, which would explain why all result arerather bad and constant). This, of course, is something we would not want: a coupleof good solutions are what we want.Evolutionary StrategiesIn the experiments using evolutionary strategies a population of one hundred pa-rameter sets was used. A new generation is created by dumping the �fty least �tindividuals and make �fty new ones from each of the �fty most �t individuals. Thesewere created by adding a random number, normally distributed round zero, to eachof the parameters. To determine the standard deviation for each of these numbers,an extra set of parameters was kept, each of which was initialized to one eight of thestandard value of the parameter 2. The initial population was determined using twicethe standard deviation, this to start out with a population distributed over a largerarea. After each generation a random number was added to the standard deviationparameters with a mean of zero and a standard deviation of one �fth of the value ofthe parameter. Since the e�ect of a parameter with a negative value is di�erent fromone with a positive value, provisions were made for the parameters not to change sign(this was not necessary for the standard deviation, the absolute can simply be taken)The new individuals are evaluated by training the mapping problem (which will betreated in the next chapter) on the resulting networks. To avoid ooding of the pop-ulation by one good member, the individual with the highest �tness was deleted fromthe population, although it did reproduce.The advantage of using this type of genetic manipulation is that there is a closerrelation between the objects manipulated and what they code: changing random bits,especially higher order bits, would throw a parameter far of from where it started,with this method the parameters evolve around their starting value, although a badstarting value would still be able to evaluate to a decent value (although it is severelyhampered due to its bad start: the chance of the deviant individual disappearing fromthe population shortly after the start is huge).A disadvantage is that it appears to be less biologically plausible: in real life gensinformation is coded in the abstract way information is coded in in bit strings.2This resulted in the parameter sets being twice the size they were before, for each of the 30parameters of the 100 members, a full set of standard deviations was kept.



Chapter 9Experiments9.1 The ProblemsIn this section some problems which were tested in this research or could have beentested during this research are visited.9.1.1 The XOR ProblemThe XOR problem is a relatively simple problem, which was mainly tried for testingpurposes; it is so simple any paradigm should be able to solve it. The network getstwo inputs, and returns true if exactly one of the inputs is one, zero else. As expected,CALM networks learned this problem perfectly. The used architecture can be seenin �gure 9.9.9.1.2 The Mapping ProblemThe most important problem used during this research is a rather tough categorizationproblem, of which a simpler version was also used. It was originally designed by VanHoogstraaten ([Hoog 91]) in order to investigate the inuence of the structure of thenetwork on its ability to map functions. He created a square [0,1)2 input space. Inthis space 100 points (10x10) are assigned to one of four classes. The neural networkhas to learn with which of the four classes each of the 100 points is associated. Howdi�cult it is for a neural network to learn such a problem is strongly dependent on theway in which the points are assigned to the four classes. If we have four 5x5 blocksfor each of the categories, the problem space would be rather easy to separate. Ifwe assign the points at random the network will have to learn each point separately.Figures 9.1 through 9.3 show examples of three mapping problems, the �rst with aclear division into the four categories, the second less organized, although still farfrom random, the third is very regular, although there are no adjoining points from75
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the same category.The �rst problem needs a cross type of separation between categories. Fromthis observation and the fact that networks with unbiased input draw categorizationsthrough the origin, we might conclude that what we need to solve this problem is inputwith bias. The second mapping problem has three points of one category surroundedby eight points of one other category; these points can be seen as miscategorizations.Originally (in Van Hoogstraten's research) these three points were miscategorizations,however, in Boers' and Kuiper's research as well as this research the network wassupposed to learn the categories like this, in this driving the calculative power of thenetwork closer to (or over) the edge.9.1.3 The Spiral ProblemImagine two exible layers of di�erent colours, for instance black and white. Putthese on top of eachother and roll it up and take a slice of it. Looking at this sliceone sees two entangled spirals. In the spiral problem these two spirals are used: takeany point on this slice and determine on which of the two spirals this point is. Unlikethe mapping problem, which is discrete, this problem uses a continuous space. Thismeans that we have an unlimited number of possible inputs (abstracting from the factthat real numbers are represented in a discrete way on computers). In this research afunction written by Bart Happel was used for calculating on which of the two spirals acertain point lays. The degree of spiraling (the tightness of the winding of the spirals)can be given as a parameter to this function. Figure 9.1.3 shows some examples ofspirals. It should be noted that this problem is very di�cult: the spiraling creates
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(a) (b)Figure 9.4: Spirals with spiralness 1:0 and 100:0, respectively. The origin is at thetop in both spirals.a total lack of linear separability, thus making it hard for arti�cial neural networksthat are based on linear separability to learn to solve the problem.9.2 GAs, L-Systems and CALM-networksThis research started out doing experiments using the same kind of developmentsystem Boers and Kuiper [Boer 92] used on their experiments. The initial intentionwas to let this project move along that way, however the initial results indicated thata di�erent approach might be more fruitful. Because of the straight out disappointingresults obtained in preliminary experiments using this set up, no de�nite tests weredone (there was no hope for those to be good). This results in no real experimentalresults being available.The object of solving any problem is not to simply �nd a network that turns theproblem into a simple association problem, we want it to �nd the regularities in theinput (which are de�nitely there). One way to aid this is to limit the number ofCALMs in a network as well as the number of nodes in a CALM. The limits were setto 10 CALMs per network (apart from input and output) and 10 nodes per CALM.The parameters used on the experiments using the GAs were (these are not pa-rameters of the CALM-network, they are parameters of the genetic algorithm):



9.3. CATEGORIZING RANDOM INPUT 79� population size 500, chromosome length of 1024� rank based selection and replacement, pressure of 1.4� mutation probability of 0.01� crossover probability of 0.3, 10 crossover sites� inversion probability 0.7� L-System axiom A� sites 3� aging 1.00Most parameters speak for themselves: the population size is the number of chro-mosomes in the population, chromosome length the number of bits in the chromosome,pressure indicates the willingness for selection to select a good solution, mutation in-dicates the chance for a chromosome to get mutated (ipping one bit), crossoverindicates the chance that two chromosomes are crossed over, as inversion indicatesthe chance of a chromosome getting inverted. The axiom is the string from which theapplication of production rules stars, sites the number of cycles production rules areapplied. Aging indicates an aging factor with which the �tness of each chromosomeis multiplied each cycle of the GA (this should be 1 at most: higher values indicatethat aging increases �tness, which is not something we would want). The aging factorwas chosen to be 1, since initial tests did not indicate a positive e�ect of a di�erentaging factor (0.99 was used). This last parameter was not implemented in Boers' andKuiper's research.These experiments were all run using the �rst two mapping problems9.3 Categorizing Random InputA good way to try to understand the working and the strength of a certain ANNparadigm is by o�ering it random input and see how it reacts to that. This is oneapproach that has been taken in this research: a simple CALM-network was o�ered atwo node pattern: two random numbers in the range [0.00 : : : 1.00]. This is fed into atwo respectively eight node CALM, which then categorizes to one of two, respectivelyone of eight categories. On learning the network was o�ered 100 pairs of input. Thecategorization of the input can then be plotted by simply o�ering points on a grid,in this case a 200x200 grid for the two category examples and a 400x400 grid forthe eight category examples, and plot dots with unique colours for all categories.The images that are created like this give a good idea of the potential complexity



80 CHAPTER 9. EXPERIMENTSof categorizations CALM-networks can achieve, as can be seen in �gures 9.5 through9.7. In learning new random input was used for each time a pattern was o�ered.Figure 9.8 shows a categorization of the mapping problem that gives a categorizationthat looks to be heading to a good categorization. Unfortunately, the network didnot improve towards a perfect categorization from this point. All tests were run usingthe network from �gure 9.9, and using the standard parameters.The irregularity of some of the categorizations suggests that a CALM-networkshould be able to learn virtually every problem: there appear to be almost no restric-tions on the complexity of the categorizations. We should, however, get some kind ofcontrol over these categorizations, or the potential strength is lost.9.4 Visualizing learningOne of the problems of the complexity of CALM-networks is that it is quite hardto get any conception of what happens inside a CALM-network. To come to termswith this problem some graphical method has to be used (the repeated activationspresent such a vast amount of data, that lea�ng through is hardly a manageable {ore�cient, for that matter{ method). The method used for this was a rather simple one:each node of a module is represented by a circle, with a disc inside representing theactivation of the node in question. A CALM-module is represented by two horizontallines of nodes, the R- and V-nodes, adjoined by two loose nodes, the E- and A-nodes.The lowest line of modules represents the input patterns (a pattern is actually astripped version of a CALM: all nodes but the R-nodes are omitted), the middlethe internal modules (all of them, not minding the connections between modules)and the top line represents the output module, as can be seen in �gure 9.10. Theconnections between the modules were left out because of the potential complexityof these connections, as well as the overhead created by positioning the modules in areasonable way. Figure 9.9 shows the architecture of the used network. Figure 9.10shows part of the categorization of one input pattern. A larger example can be foundin Appendix B.From these graphical plots it becomes clear that the activation caused by theinput pattern or patterns is propagated through the network, in fact resembling theway this happens in BPNs rather closely. However, instead of there being loose nodesreceiving activation, as in BPNs, the R-nodes of a CALM-module receive activation,which they propagate through other modules, as well as categorizing it themselves,after which this propagation is passed on to the other modules as well, of course.This modularization gives the network the opportunity of splitting the problem to belearned in smaller parts (albeit that networks �nd it hard to do this by themselves,which, unfortunately, is not an uncommon problem).
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(a) (b)

(c)Figure 9.5: Some rather striking examples of categorization of random input to twoinput categories. (a) gives a good view of how complicated the borders between cat-egory bounds can be, (b) shows a categorization closer to the \ideal", two categoriesseparated by the diagonal whilst (c) shows a near perfect categorization. After morelearning cycles the ragged borders tend to transform themselves into one like the onein (c). All images are created by networks without a bias node, which can be con-cluded from the hyperplanes going through the origin (upper left corner). The smallblack spots in the lower left corner were caused by a somewhat inaccurate snap, notby the network.
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(a) (b)

(c) (d)Figure 9.6: Letting CALM-networks categorize input to more than two outputs canresult in stunning fractalic images. Examples shown have categorized to eight cat-egories, represented by eight gray scales. (a) through (c) show categorizations afterone learning cycle, (d) after two cycles, same run as (c), that is, (d) is the outputfrom the same network as (c), but after more learning. Since (c) was already closeto what seems to be a \normal form", it did not change very much. All images arecreated by networks without a bias node.
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)Figure 9.7: Some examples of random categorizations to eight categories, using biasedinput. As can be clearly seen, these categorizations are far less centered round theorigin than unbiased input categorizations are. All these categorizations were madeon the same run, in this order.
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(a) (b)

(c) (d)Figure 9.8: This �gure shows categorizations of the simpli�ed mapping problem.Although these categorizations are far from perfect, the tendencies to grow towards aquadrant categorization can be clearly observed. (b), (c) and (d) were taken from onerun, in that order, which seemed to be doing well right away. Unfortunately it movedaway from the perfect categorization. This could be caused by overcategorization, onthe other hand, the network never learned to solve the problem perfectly, so moretraining was necessary (and did not have the desired e�ect). The architecture usedcan be seen in �gure 9.9
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Figure 9.9: This �gure shows the architecture of the network used in �gure 9.10
9.4.1 Mapping Problem Tests with Evolutionary StrategiesFor the more elaborate tests in this research, the following set up was used: thenetworks used were one of those in �gure 9.11. A pool of �fty parameter sets wasgenerated, each parameter with its own standard deviation, of which all parametersof all members were adapted by using evolutionary strategies each generation. Toeach parameter and each standard deviations one of these numbers was added. Thenumbers had mean zero and initial standard deviation one eigth of the value of theparameter. Apart from this, a scheme was tried with uniformly distributed parametersin the [0.95: : :1.05] range, which were used as factor for the parameter values. Thisapproach was �rst taken because of initial implementation problems with the normallydistributed numbers set up. The �fty new members were evaluated, after which theworst �fty of the one hundred individuals were discarded. Each of these members wasevaluated by counting the number of correct categorizations on the simple mappingproblem. Although the normally distributed set up would give for a better range
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)Figure 9.10: This �gure shows the more important parts of the categorization in aCALM. (a) through (f) show the initial surge, while (g) and (h) show the activationsshortly before categorization. See Appendix B for a more elaborate treatise of thetotal process. The network structure is given in �gure 9.9
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90 CHAPTER 9. EXPERIMENTSof parameter values, there are no really noticeable di�erences between the set ups.Apparently the spreading of the parameters itself is most important.Figure 9.12 show the main results of the tests run. It also refers, along withthe networks in �gure 9.11, to network 5 through 8. These networks have the samearchitecture as �gure 9.11(d), except for the number of nodes in the internal CALM:network 5 has three internal nodes, network 6 has twenty, network 7 has ten andnetwork 8 has four.
con�gnetwork bias initial parameters changing parameterspre-activation extra input pre-activation extra input1 y 44 50 80 (25, 27) 502 y 58 0/481 79 (27, 174) 82 (2, 30)3 y 45 40 63 (13, 13) 90 (53, 57)4 y 48 0/481 72 (14, 26) 82 (1, 4)5 n 57 0/431 74 (10, 12) 90 (191, 284)6 n 29 02 82 (6, 10) 87 (16, 26)7 n 25 0/461 78 (7, 122) 86 (22,210)8 n 62 0/481 89 (50, 231) 88 (135,256)Figure 9.12: The most important results in the evolutionary strategy tests. Thenumbers are the number of correct categorizations out of 100, the numbers betweenparentheses are the number of generations after which the best member was found,followed by the total number of generations for which the simulation ran.1 These networks did not reach an unambiguous categorization, therefore their �t-ness is zero, the number behind the slash indicates the number of inputs categorizedcorrectly, for those instances that were categorized. It should be noted, though, thatthese numbers are highly inaccurate and are only given for the sake of completeness.2 The networks did not converge with default parameters.When the method of learning by using a second input pattern representing thedesired output was used, all networks that didn't achieve an unambiguous categoriza-tion (that is, network that failed to map at least one category to an output node, orhad mapped more than one category to a node) were discarded. It should be noted,though, that the requirement that every category is mapped to a unique node, doesnot necessarily mean that all the categories are used in the division into categories ofthe problems. During several simulations done, networks that had mapped all cate-gories to unique nodes turned out to not use all the categories for the categorization



9.4. VISUALIZING LEARNING 91of the input. These networks were accepted. It should be noted that this type of mis-categorization is impossible in the pre-activation tests: only the pre-activated node isaccepted as the correct answer.The large number of members in the populations made it possible for the sim-ulation to �nd the best member after a rather short period of time. Despite thisoccasional, and quite marginal {one or two points better{ score improvements werefound at times. Compared to some of the scores Boers and Kuiper found ([Boer 92]),these scores, although rather good at times, are quite disappointing.Especially network 2 has an architecture which one would expect to be very suitedfor the problem at hand: dividing the input into four quarters. One module couldseparate left from right, the other top from bottom. However, the score this networkachieved, fails to show this enhanced \�tness". In fact, the only way a CALM-network seems to be able to learn to solve a problem with such rigid borders andlack of fuzziness between categories, seems to be learning each of the o�ered patternsseparately. This would be a reasonable explanation for the fact that the networksscored more or less the same on mapping problems 1 and 2, even though the �rst oneis a lot easier than the second one: the �rst is an easily generalizable problem, whilethe second can only be solved with some sense for detail (especially the seeminglymisabled points in it). This is further backed by the fact that network 4 scored 87correct categorizations without using bias on the spiral problem, which should bemarkedly more di�cult than both mapping problems.The fact that there is hardly any di�erence in performance between networksusing bias-nodes and networks not using bias nodes can probably be found in thefact that performance is rather poor anyhow. Bias-nodes are direly needed for preciseand complete categorizations, however, if a network does not categorize the full setcorrectly anyway, the presence of a bias-node is of less importance.One big di�erence between the pre-activation method and extra input patternmethod can be found in the reaching of maxima. Where the extra input patternmethod almost all of the time found several (if not a lot of) members that were onor close to the maximum, maxima in pre-activation were often clearly above the restof the �eld. In several cases the di�erence in correct categorizations between the�ttest and the second �ttest member was more than 10. Apparently, the values ofthe parameters with which the network performs well are more strictly de�ned withpre-activation than with the extra input pattern. This might also explain why thedi�erence in maximum over the di�erent networks is far larger than it is in the extrainput pattern tests. The fact that high scores are more irregular in pre-activationmakes it less predictable, and therefore raises the chance of �nding a member with ascore close to 100. However, the highest scores so far are below those found with theextra input scheme, so that the irregularity might only result in less good solutionsbeing found, without them having a higher score. Apart from that, the pre-activationnetworks �nd good scores quite seldom, which also becomes apparent from the fact
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Figure 9.13: A typical division of the problem space for network 1, using �xed stan-dard parameters.that the simulation that ran real long still achieved their best score relatively earlyin the simulation. The poor performance of the extra input networks with initialparameters, seems to indicate that these values for the parameters, as suggestedbefore, are not �t for networks with more modules.There is no way of predicting when a good solution will be found for the �rst time(that is, a solution that comes close to the best solution found).9.4.2 ConnectionsOne result that is clear from experiments is the best connecting pattern from theinput patterns to the output module. A network works best when only the real inputis directly connected to it.The reason for this is, of course, quite obvious: if the supervization input is directlyconnected to the output module, this doesn't need pay any attention whatsoever tothe internal modules, the direct connection with the supervised input su�ces. This,however, does not necessarily mean that this happens in practice: networks sometimescome up with better scores when both supervization and real input are connected thenwhen supervization input only is connected. It therefore is not possible to draw anyclear conclusions on which method works better.
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Figure 9.14: One of the networks used in Happel's research9.5 Handwritten Digit RecognitionOver the past couple of years the psychologist Bart Happel has been working ona dissertation on CALM (see for instance [Happ 92]). One of the problems he usedduring his research was a handwritten digit recognition problem. This type of problemis very suitable for a categorization type network like CALM: there are ten categories(one for each digit), in which all scribblings have to be put.In solving this problem he used a network with an architecture found by a GAand genetically manipulated the learning parameters of this network. To be able totest this network with he attached an input unit where the user can write a digit onscreen by using the mouse. This input is sampled on a 5x5 square: the more \ink"in a square, the higher the value. Each of these squares is one of the 25 input signalsto the network. On testing half of the input is used for training, the other half fortesting. The network turned out to be quite robust in recognizing: a digit had to beseriously mutilated for the network not to recognize it anymore. Figure 9.14 showsa preliminary network used in Happel's research. This network reached 81% correctresponses on the 100 digits large test body, with that falling seriously short of theBPN found by Boers' and Kuiper's method: they found a BPN without a hidden layerthat found 97% correct responses. The CALM network however does not su�er fromthe BPN problem that learning more problems seriously interferes with previouslylearned problems.This problem wasn't tested during this research, although it should be notedthat it is an interesting experiment to run in the future, since it can not only becompared to Boers' and Kuiper's genetically architectured BPNs, but also with theCALM-network Happel used.
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Chapter 10Conclusion andRecommendationsAs argued before using genetic methods to determine the architecture of a networkrelieves us of the problem of having to design a suitable architecture for a problem byhand. The same, although less strongly, can be said for parameters: even though wedo have more insight in the function of the parameters than we have in the function ofarchitecture, �xing them to optimize the learning of the network is still di�cult. Thebeauty of the used scheme is that all we have to do, essentially, is o�er the problemin the right format and the system will look for the best network itself (using thecriteria we give it).The other side of mentioned independence of the system is that it becomes evenharder for us to determine what's going on: we could not work that out when wewere just using a hand designed arti�cial neural network, but now that we do noteven develop the network for ourselves, we can only look at what comes out. Thiswould not be so bad, if it weren't for the fact that a lot of people do not wish toaccept results given by a system they are unable to understand, and with the systemgetting more complicated, acceptance will be harder to obtain. All we can do for nowis hope that further research will make clear what happens inside an arti�cial neuralnetwork.This said, we have to look at the results of this research, and can not go aroundconcluding that those are rather disappointing. Even though some of the problemso�ered to the networks are rather simple, the CALM-networks did not perform par-ticularly well on them.A �rst explanation for this could be the fact that determining a suitable architec-ture as well as a set of parameters to solve a certain problem, is by no means easy, infact, it has been one of the most di�cult problems within biologically based methods.The fact that the parameter set of CALMs is so much more complicated than it isfor most other Arti�cial Neural Network paradigms, makes this particular case an95



96 CHAPTER 10. CONCLUSION AND RECOMMENDATIONSeven more di�cult one. Mainly because of this, networks developed by hand wereused, thus alleviating the genetic algorithms task, since it has only the values of theparameters left to determine. This did lead to better results; most often scores of80-90 out of 100 were obtained. Pretty good scores, but still not living upto par.10.1 ConclusionsThe idea behind the research for this thesis was to obtain a more e�cient way ofcoding both architecture and parameters for a CALM-type arti�cial neural network.In order to do so genetic algorithms (GAs) were used. However, if GAs were usedsec, the chromosomes representing networks would have to grow with the growth ofthe network. To circumvent problems the networks were not coded themselves, butcodings of an L-Systems type grammar, with each L-system representing the structureof a network, were used. As a result �xed size chromosomes could we used, if largernetworks were needed all that was to be done was increase the number of steps of theL-system, thus giving it the chance to lengthen the string representing the network.One thing that remains to be solved for sure is the amount of computing powerneeded. Finding networks even for simple problems takes a lot of time, simply becauseof the fact that to judge the quality of a network the network needs to be tested.However, this great use of computing power can be seen as an investment: once agood network has been found, a lot of time can be saved. If a network has to be usedoften, the amount of computing power needed for the network itself is also of greatpower, the further this can be limited, the greater the pro�t on the investment.From Bart Happel's work it follows that CALM-networks do quite well on certainproblems: his digit recognition experiment got good results on both recognition andgeneralization of input. Yet a network of the same size (for internal modules, that is.The size of input and output modules is determined by the problem the network is tosolve) is unable to come to a reasonable score on even the simple mapping problem.A possible explanation for this can be found in the kind of problems: digit recognitionhas a very large problem space (the input is 25 dimensional), and a lot of room forfuzzy borders with it: the room between members of each of the categories is so largethat CALM is provided with ample room for error. On the mapping problem, on theother hand, we have a limited problem space (2 dimensional). Moreover, we expectthe networks to produce a very sharp distinction between the inputs. Unlike withdigit recognition, the mapping problem hardly has unde�ned areas (the points in theproblem are quite close together). Apparently CALM-networks are unable to producea division of the problem space in such a way that a well performing network is found.We must remember why we started developing ANNs, though. From the psycho-logical point of view, if was done to obtain better insight in cerebral activities. Fromthe computer science point of view it was done to develop tools for solving problemsthat are hard to solve with normal algorithmic programs. People are generally to



10.2. COMPARISON OF CALM AND BPN 97very good at solving the type of problems used in this problem, that is, we would notperform very well on the di�cult mapping problem (although we would on the easyone, apparently what what takes us ahead of CALM is a better capability of gen-eralizing: we would simply remember the four quadrants, while the CALM-networkseemingly attempts to remember the individual cases) or the spiral. We have highexpectations on CALMs performance on these type of tasks, because we know BPNssolve them well enough, but it really is more important that ANNs perform better onthe type of problem computers �nd hard to solve. The scores obtained by Happel ondigit recoginition (90% succesfull) are promising in that line, although more researchwill be necessary.The overall conclusion must be that CALM-networks, as yet, are unable to prop-erly solve certain types of problems. Large problems with vague problem areas aresolved well enough, yet the scores on small problems with tightly de�ned solutionsare not good enough to compete with, for instance, Back Propagation Networks.10.2 Comparison of CALM and BPNWhen we want to compare two paradigms, the �rst thing we need is one or morecriteria to judge the quality. In this section three criteria will be attended to.The most obvious criterion is the number of correct categorizations the networkgives. This criterion is easy enough, however, if a very small network of one type gets97% correct while a giant of the other type gets 99% correct, one might wonder if thisisn't too simple a criterion. As mentioned before we want to have networks that donot simply learn an association, but networks that actually learn what features in theinput are of importance for solving the problem. For this we have another criterion.Determining which of two networks, a CALM-network and a BPN is biggest, wecan't simply count something, since the paradigms do not use the same kind of units.We could count the number of modules: the CALMs in a CALM and the modulesat the lowest level in BPNs (as explained in an earlier chapter). A measure we coulduse is the number of nodes in the hidden layers of the BPN, compared to the numberof R-nodes in the internal CALMs. Since input and output width are equal (at leastwe hope so), these are of no importance.A �nal criterion in comparison is the number of iterations each of the networksuses. As with the number of nodes, however, the correspondence is not a direct one.Where a CALM normally converges (reaches a categorization) within some 30 steps,a BPN uses just one. However, it may take several thousand o�erings of the problemto a BPN before this has learned the problem, where a CALM might have learned itafter just one o�ering. What we could compare is the number of occasions on whicha pattern was o�ered to a BPN with the number of occasions on which a pattern waso�ered to the CALM-network multiplied by the number of steps it took the networkto converge to a solution.



98 CHAPTER 10. CONCLUSION AND RECOMMENDATIONSAnother, and much more simple criterion, would be to simply take the amount ofcomputer time the respective networks needed to learn the problem.Having said all this, we come to the rather sad conclusion that all these projectionsmay be superuous: on the problems tested in this research, the results obtainedon runs with CALM-networks are far less promising than those obtained by Boersand Kuiper ([Boer 92]) using Back Propagation Networks. They, for instance, foundnetworks with a 100% score on the di�cult mapping problem, while the maximumobtained in this research was a somewhat disappointing 90%.10.3 Recommendations For Further ResearchThe research report to which this research is a sequel ([Boer 92]) already mentioneda number of topics on which further research might be useful. However, since thisnetwork started out by using a di�erent paradigm and time was short, these recom-mendations did not �nd a place in this research. This results on some of the recom-mendations in genetic algorithms being identical to those mentioned in [Boer 92].10.4 The genetic algorithmMake a more stable �tness function. The �tness function currently used isdependent on training the network once. However, due to the random process at workin learning, the same network would not on every training section obtain the same�tness. This means that a certain structure can gain a far too important place in thepopulation due to a once-in-a-lifetime-type push in the right direction by the randomprocesses. To prevent this from happening the most �t creature in the populationmight be evaluated each step, averaging its �tness over all evaluations. This, however,would take more computing power still, when so much is used already.Find a better way to genetically manipulate the parameters. At themoment the learning parameters of the network are manipulate by the genetic al-gorithm in a way very similar to the way the chromosomes for the architecture aremanipulated. It might be better, though, to manipulate those in a di�erent way.Evaluate a network once. At the moment when a network is found it isevaluated right away (excepting the axiom). This, of course, is not too e�cient: itwould be far better if networks that have been evaluated once, are not evaluatedagain, or if reevaluation would be used to make the �tness a more reliable one. Toachieve this, a database would have to be kept of the networks already evaluated.However, there might be a problem in determining which networks are the same: iftwo strings form the same network, they are not necessarily the same. If two networksare the same in structure, their matrices will not necessarily be the same: nodes ormodules might be interchanged, thus change the matrix without changing the actual



10.4. THE GENETIC ALGORITHM 99structure. At the moment it is hard to judge were implementing this would save moretime than the overhead required uses.Calculate the �tness of the initial population. The initial population iscreated with random chromosomes. The �tnesses of all these chromosomes were setto zero. However, it might be that these initial members of the population have certainqualities that enhance the �tness of the population. These qualities would be lost,since the chromosomes with �tness zero are gradually pushed from the population (atleast we hope so). Again, this is something of which it is unclear whether the extraamount of work required is justi�ed by the information won from it.Initialize the population with members having a positive �tness. Insteadof using an initial population with random numbers, of which a lot turn out to havea zero �tness (this could be observed from the new members made during geneticevolution), we might use initial members that have a positive �tness. A large partof these zero �tness members create an L-System that has no rules that can beapplicated. A better way to solve this problem would be to change the axiom: thelarger the axiom, the greater the chance a production rule can be applied. This,however, would seem like tampering with genetics. A better way to solve this problemwould be to evaluate a string before inserting it in the initial population and onlyplace it in the population if it has a positive �tness. This might also be a way to get amore diverse population, since the initial population contains far more members thatcan have a positive e�ect on the evolution.Use a set of useful production rules in the initial population. An extensionof the previous idea would be to make a set of useful production rules, code this setas a chromosome and insert this in the population. This method poses a threat,however: since we do not know for sure which structure will emerge as the �ttestmember, tampering the population this way might steer it in a direction away fromgood solutions, thus making it much harder for the GA to �nd a good solution.Include the axiom in the genetic process. At the moment a �xed axiom isused. Including this axiom as a separate gene in the population, might create newaxioms from which very useful solutions, that are otherwise neglected, can start o�.This would also be more biologically plausible: the human ovum can be seen as atype of axiom which contains the information on which the coded production rulescan operate.Find a tighter relation between GA-string and network architecture.\Real life" chromosome \bits" code a feature of the organism directly, that is, thereis a direct relation between the possible development of a certain feature and such a\bit" (the bit determines the genetic coding of the feature, the genotype, from whichthe organism, the phenotype, develops). Arti�cial chromosomes are represented bya string of characters, with each character having its inuence on the architecture ofthe network which develops from it. However, the phenotype in natural organisms issimilar to the sequence of characters coded by the chromosome, and not so much to



100 CHAPTER 10. CONCLUSION AND RECOMMENDATIONSthe architecture of the network. Making the relation between the chromosomes andthe architecture of the network more direct might cope for the networks to be moreexible, thus giving them a greater potential power.Apart from that, the use of Genetic Algorithms might work better if the cor-respondence between chromosomes and architecture was closer, than it did in thisresearch, since the problem presented to the Genetic Algorithm appears to be toolarge to be taken on succesfully.Use larger computers. This may sound like the another case of software crisis,however, the problem at hand simply asks for a lot of CPU time, the faster the CPU(s)used, the sooner the problem is solved. One of the reasons no good networks werefound in this research might have been that the simulations weren't run for a longenough period of time.10.4.1 CALMUse incremental learning. So far the networks were o�ered the complete problemimmediately. It may, however, work better to o�er bits of the problem at �rst. CALM-networks do solve the XOR-problem, which has a problem space similar to that of themapping problem. The networks might work better if the network �rst gets o�eredthe corners, gradually working towards the center of the problem space, thus guidingthe network along the way.Something similar holds for the spiral problem. The problem in itself is very hardto learn, yet it might learn better when the spiral is o�ered bits by bits, starting ofwith a �lled circle in the middle, and only the outside of the category. The secondspiral can then insert itself into the �rst gradually.For this approach to work well, the CALM-network must have some sort of sense ofwhat the problem is, it should be more than just a collection of inputs, as the mappingproblem sometimes appeared to be treated. If the network treats the problem simplyas a collection of patterns, this gradual learning scheme will not help, since all it willsee is changes in points (or at least we hope it will), without noticing the connectionwith the rest of the inputs.Enhancing strict learning. The pictures of random input shown in �gures 9.5through 9.7 suggest that CALMs are able to make sharp distinctions between cate-gories (although some of the borders suggest a certain degree of fuzziness: the net-works with more output nodes show a kind of \smudges", these might be an indicationof doubt about the category of those particular points). This suggest that CALMsmight be able to solve the type of problems o�ered in this research, but that thelearning method is not su�cient to reach through to the network. Despite this, somerather wild categorizations were found on non-random problems, but unfortunatelythose categorizations didn't come close to the desired categorizations.Further evidence for a lack in strict learning comes from the fact that a lot of the



10.4. THE GENETIC ALGORITHM 101categorizations produced by networks were de�nitely attempts at making a quadrant-type categorization, but lacking the exact boundaries.Do more theoretical research. Due to the complexity of CALMs, still rela-tively little is known about the internal processes. It remains largely unclear whatexactly the e�ects are of certain parameter values and which values enhance learningin certain architectures or with certain problems. This lack of knowledge about thetheoretical background of CALM makes it very hard to make clear judgements aboutresults. In fact, this research su�ered a lot from that: the networks were expectedto perform well, yet they did not. The �rst thought in that case is that there issomething wrong with the programming, while in the end it turned out to be theparadigm that was not working well enough.Try di�erent connecting methods. All connections in CALM-networks arefull connections. Even though the learning algorithm can adapt this for connectionsbetween CALMs, by making a weight zero, this does make learning a giant proces.Apart from that, all weights within a CALM are �xed during learning. Using di�erentconnections (for instance one-to-one, as mentioned before) or using less rigid internalweights might aid learning.Check the convergence methods. Learning in a CALM-network depends onthe convergence criteria for an important part. If a network is assumed to haveconverged while it hasn't, chances are the result will not be very good. Some of thecategorizations, see for instance some of the pictures of categorizations of randominput, are very ragged, and might have su�ered from seemingly, but not actually,converged output-modules. This might also be solvable by simply letting the networktrain a couple of cycles after convergence, by the used criteria, of course, is reached.bf Use larger computers. This also seems to go for CALMs. Even though runsafter only a couple of generations seemed to get stuck on a plateau, often enoughimprovements (slight as they may have been) were found after more than 100 gener-ations. There is no way of telling whether letting a simulation run for, for instance,5000 generations would not produce eventually a member with a �tness of 100 (al-though the chance is admittedly small), however letting a simulation run for 200generations on an indigo already costs several days, and with the problem of comput-ers going down regularly it is di�cult to run long simulations. The last problem canbe solved by saving data to disk after each generations, something that is not doneat this moment.
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Appendix AThe Default Parameters OfCALMThis appendix shows one of the most aspects. Figure A.1 shows the names andfunctions of the parameters, �gure A.2 shows the default values of the parameters.It should be noted that these parameters values do not work well for every type ofnetwork architecture, in fact, they do not work well for most. The parameter valuescan be changed per CALM.In this research the default parameters were mostly used for determining moresuitable values for the parameters: they were used as a basis for the evolutionarystrategies.
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106 APPENDIX A. THE DEFAULT PARAMETERS OF CALMname functionUP Up-weightDOWN Down-weightCROSS Cross-weightFLAT Flat-weightHIGH High-weightLOW Low-weightAE AE-weightER ER-weight (strange-weight)INIT LWT Initial learning weightINIT MU Reset valueACTIV DECAY PAR Decay parameter activation ruleK LEARNING PAR Grossberg K-parameter learning ruleL LEARNING PAR Grossberg L-parameter learning ruleD LEARNING BASERATE base rate learning ruleE2MU VIRTUAL WEIGHT Virtual weight from e to muLOWCONVERGENCE CRITERIUM Low convergence criteriumHIGHCONVERGENCE CRITERIUM High convergence criteriumERROR Random excitation errorVE Weight from V to E nodeOUT RESET Weights from output module R-nodes toReset-node in paired CALM moduleANODE RESET weights from A-node to Reset-nodeof paired output moduleRESET RESET Weight from Reset-node in CALM-moduleto Reset-node in paired output moduleVNODE DECAY IN STM Decay V-nodes in STM moduleOUTPUT2STM Weights from output moduleto STM-module (one to one)CALM2OUTPUT Weights from CALM moduleto output module (one to one)RNODE INHIBIT ON OUTPUT MOD Decay R-nodes in outputLATERAL INHIBIT Lateral inhibition V-nodes in STM-moduleAUTO DECAY Auto decay of weightsTHRESHOLD Threshold for activationV-nodes in STM moduleUSEPAR2 User de�ned parameter... ...USEPAR9 User de�ned parameterFigure A.1: The names and functions of the CALM-parameters.



107parameter name valuenumber0 UP 1.01 DOWN -1.02 CROSS -9.03 FLAT -1.54 HIGH -0.45 LOW 0.66 AE 1.47 ER 0.58 INIT LWT 0.49 INIT MU 0.00510 ACTIV DECAY PAR 0.1211 K LEARNING PAR 0.712 L LEARNING PAR 0.813 D LEARNING BASERATE 0.00314 E2MU VIRTUAL WEIGHT 0.0315 LOWCONVERGENCE CRITERIUM 0.0000116 HIGHCONVERGENCE CRITERIUM 0.0001017 ERROR 0.0000518 VE 0.0000019 OUT RESET 1.020 ANODE RESET 1.221 RESET RESET 0.1822 VNODE DECAY IN STM 0.00523 OUTPUT2STM 5.024 CALM2OUTPUT 3.025 RNODE INHIBIT ON OUTPUT MOD 0.2526 LATERAL INHIBIT 0.027 AUTO DECAY 0.028 THRESHOLD 0.529 USEPAR2... ... ...36 USEPAR9Figure A.2: The default values of the CALM-parameters.
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Appendix BAn Example Of CategorizationIn A CALM-networkThis appendix gives a rather large example of the categorization of one input by aCALM. Due to an unknown cause the exact architecture of the network was lost, butthe �gures were still added to this thesis because they still show some of the processesthat rule within a CALM-network.
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(z)Figure B.1: This �gure shows the process of an unlearned network categorizing o�eredinput. This is the �rst time input is o�ered to the network, so all weights are atinitialization value. (a) shows how all R-nodes in most CALMs get activated, whilst(b) shows how this input is propagated to the output CALM as well as the upcoming ofactivation in the V-nodes in the internal CALMs. The high activations are typicallycaused by unknown patterns. (c) shows how some of the A-nodes get activatedbecause of the strong competition of the R-nodes, caused by the unknown pattern,as well a lot of R-nodes getting less active because of the strong inhibition by theV-nodes (which also get activated through the strong competition). (d) and (e)show how some R-nodes pick up activation for the second time, a process knownas oscillation, one of the features of CALM-networks. (f) through (i) shows the�rst signs of the network getting familiar with the pattern: not all R-nodes in aCALM have the same activation, and activations change less rapidly, although (j)through (l) show the network still has some work to do: a lot of nodes are stillable to reach a high activation (also in the output module, which should in theend have just one R-node with a signi�cant activation). (m) through (o) show thatthe di�erentiation between activations within one CALM grow: there are CALMswith virtually unactivated nodes as well as strongly activated nodes (typically whatwe want to have in categorization), the di�erences in the activations in the outputmodule already hint at the node to which the input is categorized. (p) through(r) show the network in the lull before the �nal run to categorization. These lullsbecome gradually longer with the learning of the pattern. (s) through (y) show howonly a limited number of R-nodes get activated now that the pattern is learned, thelearning of the problem seems not only to result in the output module having justone activated R-node (which in fact is the most common criterion for determiningwhether the pattern is learned), but also in most of the internal modules having justone activated R-node. This in principle limits the calculative powers of the network:so much less patterns might be coded when just one node is activated, compared tocombinations of activated nodes. (z) shows the �nal activations: just one R-node isactivated, activation in the others in negligible: the pattern is learned.
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