
Chapter 1

Introduction

1.1 Motivation

In the last half of the 19th century people commonly went to a photographic

studio for portraits. Photography was still in its infancy, resulting in black-

and-white images and long exposure times. Because people generally do not

like to sit still for minutes at a time, they usually ordered a dozen prints from

one negative. These copies were spread around when the opportunity presented

itself.

Nowadays many of these portraits can still be found, in photo albums and

in public and private archives. The pictures, even when they were originally

printed from one negative, may di�er greatly. Some have been exposed to the

sun for years. Some have the name of the person in the picture written on them.

Some have been cut up or reframed.

Often it is no longer clear who the person in the picture is, and people spend

considerable time searching for the names of those photographed. Because there

is such a large of number of pictures around (collections known to the author

number over 50,000 photos in the Netherlands alone) this is a very hard task

for a human being.

The program written during this project, Photobase, attempts to answer ques-

tions like "Who is this man", by comparing an unknown person to a database

of known persons and �nding matching portraits. The goals of the program are

the following:

� Search for direct copies of the input image in the database.

� Search for other photographs of the same person in the database.

� If a matching image is found, show information about these images. This

information also applies to the input image.

Comparing images is a di�cult problem. The comparison program must com-

pensate for many factors: image quality, image orientation, image scale, etc.

1

2 CHAPTER 1. INTRODUCTION

The �rst step in comparing two images is removing as many of these factors as

possible, which is a process referred to as normalization.

This report describes the initial implementation of the Photobase system. In

the inital implementation much attention was given to normalization techniques

and towards building a good user interface. Primitive comparison techniques

were also implemented.

1.2 The degrees of freedom

Images must be scanned before they can be processed. The scanning process

introduces various degrees of freedom, each of which must be compensated for

before images can be successfully compared. Degrees of freedom caused by the

scanning process include:

� Rotation

Often an image is scanned in at a slight angle. It is possible to detect

this angle and compensate for it by digitally rotating the image. Several

rotation algorithms were implemented and tested.

� Borders

Not every part of a scanned-in image is important. Especially the white

background around the image is not signi�cant for the image comparison

process. Therefore, during the second normalization step this border is

removed.

� Lighting

Images can be scanned in at various lighting settings. In addition, the

images themselves can be darker or lighter.

� Scanner noise

The scanning process adds a small amount of noise to the image. Several

methods to visualize and remove this noise were implemented and tested.

� Resolution normalization

Images are often at a di�erent resolution. Before comparison is possible

the images must be rescaled. A scaling algorithm was developed that

causes very little noise.

1.3 Input protocol

The implemented normalization techniques try to cope with many di�erent de-

grees of freedom for the input image. Some restrictions remain, though:

� The input image must be in TIFF 6.0 format.

1.3. INPUT PROTOCOL 3

� When the input image is scanned a border must be left open around the

entire image.

� The border around the image must be colored white or nearly white.

� The angle detection algorithm assumes that the image is contained in a

rectangular box.

� It is assumed that no parts of the original image were cut o�. (Sub-image

searches have not been implemented yet.)

In the next chapters the image normalization techniques are presented.

.

Chapter 2

Angle detection

In order to automatically correct the rotation of an image its angle must be

detected. An algorithm has been developed that can detect the orientation of

a picture with some restrictions:

� It is assumed that the picture is contained in a rectangular box, and that

there is a distinct border around the actual image.

� The orientation is within 45 degrees of being correct, correct being de�ned

as the image having an angle of 0.0 degrees.

� In case of large aberrations in the angle, it is assumed that the image is

higher than that it is wide.

The algorithm consists of several distinct steps. These steps are described below.

Step 1: �nd pixels that lie on the edge between the border and the image.

At regular distances, the algorithm tries to �nd pixels that together de�ne one

of the borders of the image. This is done by comparing pixels in the left-most

column of the image with pixels that lie to the right of these; as soon as the

di�erence in gray value exceeds a pre-de�ned threshold a pixel is considered to

be on the edge, and its coordinates are stored in the coordinate array. A total

of 20 coordinate pairs is selected this way.

Experimentation shows that 10% of the gray range is a good value for the

threshold.

The coordinates of the highlighted pixels are stored in the coordinate array.

Step 2: remove redundant coordinate pairs.

At the extreme top and bottom of the image, the tested pixels may be completely

outside the image. The coordinate pairs that describe these pixels hold no

meaningful information and are removed from the coordinate array.

5

6 CHAPTER 2. ANGLE DETECTION

Real image

Left edge

Figure 2.1: Example of angle detection

Step 3: select a set of coordinate pairs for further processing.

At this point the coordinate array contains information that describes either one

or two lines, each of which corresponds with an edge of the image. In Figure 2.1

�ve of the pixels are part of the left edge of the image, while the other three are

part of the bottom edge. It is necessary to �nd out which pixels are on which

edge.

To this purpose, the algorithm counts the number of pixels that are mostly on

a line from top to bottom and from bottom to top. The procedure responsible

for this counting �rst measures the horizontal gap between the �rst two pixels;

if the gap between the second and third pixels is approximately as wide than

the three pixels are on one line. This process is repeated for successive pixels

until a pixel is found that does not lie on the line, at which time the counting

stops.

The number of pixels counted while going from top to bottom is referred to as

the DownCount, while the number of pixels counted while going from bottom

to top is referred to as the UpCount.

If the DownCount is bigger than the UpCount, the image is slanted to the right,

and the down-going pixels describe the left border. If the DownCount is smaller

than the UpCount, the image is slanted to the left, and the up-going pixels

describe the left border. The set of pixels with the biggest count is selected for

further processing in the next step.

This is done because the biggest set of pixels describes the longest side of the

image (when seen from a projection on the Y-axis), and it is assumed that the

images have an angle less than 45 degrees.

7

Step 4: use a least squares method to �nd a straight line through the selected

pixels.

The selected coordinate pairs are placed in an array A and the formula A

T

Ax =

A

T

y is solved to �nd the values a and b that describe a line with the formula

y = ax+ b, which is the line that �ts best through all selected coordinate pairs

(x; y).

Step 5: calculate the angle of the line.

The angle of a line y = ax+ b is de�ned as tan

�1

a. This angle can be used to

correct the orientation of the image. Figure 2.2 shows the angle together with

an example image. This value can be used directly (without further calculation)

in any of the rotation procedures.

a

Figure 2.2: The detected angle

Note: tan

�1

a has in�nite solutions, but it is assumed that the rotation of the

image is less than 45 degrees, thus dropping all but one.

Algorithms for correcting the rotation are shown in the following chapter.

.

Chapter 3

Rotation

It is possible that a scanned image is at a slight angle. The program must

compensate for this by performing a rotation. Several rotation techniques were

tried, and compared in quality and speed. This chapter describes the tested

algorithms. Test results can be found in chapter 9.

There is no generally agreed upon method of measuring the rotation quality,

therefore one had to be developed as well. Two factors decide the quality of a

rotation:

� A rotation should introduce as little noise as possible. This can be mea-

sured by rotating an image over an arbitrary angle (say 15 degrees) and

rotating the rotated image back over this angle. The doubly-rotated image

should be very close (or if possible, equal) to the original image.

� A rotation should not take too long to complete. This is a subjective

measure: whether a rotation is too slow depends on the patience of the

user and the speed of his computer.

3.1 The inverse rotation with nearest neighbor

The �rst technique, also called the primitive rotation, is a simple a�ne transfor-

mation. The algorithm scans through the destination image. For every pixel it

determines where it can be found in the source image, and retrieves and draws

this pixel. Pixels that are retrieved from outside the source picture are given

the intensity of the nearest pixel in the source picture.

Note that part of the source image is cut o� during the rotation process. This

is not a problem, as this algorithm is meant for straightening pictures that

are already rotated. Those pictures have a wide border, and it is only the

border that is cut o� as can be seen in Figure: 3.1. Since one of the following

normalization steps cuts o� all the borders anyway no steps were taken to rectify

this situation.

9

10 CHAPTER 3. ROTATION

Destination image

Rotated source image
Source image

Cut off border
Real image

Real image

Border area

Figure 3.1: No part of the image is lost during rotation

Source coordinates are derived from destination coordinates with the following

formulae:

SourceX = DestX � cos(Angle)�DestY � sin(Angle) (3.1)

SourceY = DestX � sin(Angle) +DestY � cos(Angle) (3.2)

Both SourceX and SourceY are cast to integer.

3.2 Rotation with bilinear interpolation

When source coordinates are calculated in the primitive rotation, information is

lost during the conversion to integer in the �nal step of the calculation. However,

it is possible to use this information to increase the quality of the rotation.

This realization led to the second algorithm, called the rotation with bilinear

interpolation.

The rotation with bilinear interpolation works the same way as the primitive

rotation, but SourceX and SourceY are
oating points values so that casting to

integer is not necessary. The source coordinate pair points to a spot between

four pixels. The color of the destination pixel is determined by the distance to

these four pixels.

In the example in Figure: 3.2 the intensity of the destination pixel would be

0:73 � (0:52 � P

1

+ 0:48 � P

2

) + 0:27 � (0:52 � P

3

+ 0:48 � P

4

) (3.3)

with P

n

= the color of pixel n.

The general formulae for bilinear interpolation is

Result(x; y) = (P

4

� P

3

)x + (P

1

� P

3

)y + (P

3

� P

1

� P

4

+ P

2

)xy + P

2

(3.4)

3.3. THE SHEAR-BASED ROTATION 11

P1 P2

P3 P4

(SourceX, SourceY)

Figure 3.2: Example of rotation with bilinear interpolation

Tests show that this algorithm generates less noise than the primitive rotation,

but takes longer to complete.

3.3 The shear-based rotation

An attempt was made to create a faster rotation algorithm based on shearing.

This technique requires two steps. In the �rst step the source picture is sheared

horizontally. In the second step the resulting picture is sheared vertically. The

advantage of shearing over the �rst two algorithms is that much less time is spent

calculating source coordinates, as entire lines (or columns) can be processed at

once.

As with the primitive rotation, the color of each pixel in the destination picture

depends on the color of one pixel in the source image. Pixels that are taken

from outside the source image are given the value of the nearest pixel inside the

source image.

Note that shearing is an approximation of rotation that only works well with

small angles. This can be seen in the following manner:

A shear can be described as an a�ne transformation with the following matrix:

�

1 g

h 1

�

(3.5)

� g = horizontal shear factor

� h = vertical shear factor

A rotation can be described by a similar matrix:

�

cos(Angle) sin(Angle)

� sin(Angle) cos(Angle)

�

(3.6)

12 CHAPTER 3. ROTATION

For very small angles the value of cos(Angle) lies very close to 1, therefore for

very small angles a shear is very close to a rotation.

Shear-based rotation is quicker than primitive rotation, but the rotated pictures

are much noisier. For this reason it was decided to test shear-based rotation

with bilinear interpolation as well.

3.4 Shear-based rotation with bilinear interpo-

lation

This rotation works mostly the same as the shear-based rotation, but every pixel

in the destination image is interpolated from two pixels in the source image (for

both steps, leading to the expected four pixels).

Figure 3.3: Example of shear-based rotation with bilinear interpolation

To create the intermediate picture, lines in the source image are shifted hori-

zontally: every intermediate pixel depends on two source pixels. To create the

destination image the columns of the intermediate picture are shifted vertically:

every destination pixel depends on four source pixels.

Unfortunately this method is slower and generates more noise than the normal

rotation with bilinear interpolation.

3.5 Rotation with bilinear- and cubic interpola-

tion

Because rotation with bilinear interpolation performs best (from the tested al-

gorithms) another variant on this algorithm was tested as well. In this variant

the color of a destination pixel depends on the color of more than four source

pixels.

3.5. ROTATION WITH BILINEAR- AND CUBIC INTERPOLATION 13

Discrete data Analogue data

Figure 3.4: Discrete and analogue representation of the same data

To understand why this rotation works it is necessary to think of the digi-

tized images in a di�erent manner than as a collection of pixels. In the (one-

dimensional) example in Figure: 3.4 there are two representations of a set of

data. In the �rst graph this data is shown as discrete units. In the second graph

the data is shown as it might appear in the real world: an analogue curve.

The �rst four rotation algorithms act as if the world consists of discrete data,

but in reality they work with a digitized version of analogue data. The new

algorithm uses a Lagrange method to interpolate data on a third-degree curve

(rather than a line). This means that the color value of a pixel in the destination

image depends on the colors of 16 pixels in the source image.

Interpolation between four pixels is done with the following formulae:

Result = P

1

� L

1

+ P

2

� L

2

+ P

3

� L

3

+ P

4

�L

4

(3.7)

� L

n

=

(x�x

1

)�:::�(x�x

i�1

)(x�x

i+1

)�:::�(x�x

n

)

(x

i

�x

1

)�:::�(x

i

�x

i�1

)(x

i

�x

i+1

)�:::�(x

i

�x

n

)

� P

n

= the color value of pixel n

� x

n

= the x coordinate of pixel n

� x = the required X coordinate

This formula is used four times to interpolate between the horizontal rows of

pixels, then once to interpolate between the results of the �rst four interpola-

tions.

In some cases this algorithm generates less noise than the normal rotation with

bilinear interpolation, but in most cases more noise is generated. In all cases

speed is signi�cantly lower than any of the other algorithms.

Now that the image has the correct angle, the borders can be removed. This is

described in the next chapter.

.

Chapter 4

Border detection

Borders are necessary for angle detection, but they are not part of the scanned-in

image. Because they contain no real information they must be removed before

images can be compared. A border can be detected because it starts at the side

of an image and is of a uniform color. If one side of the image does not have

a uniform color it can be assumed that this side has no distinguishable border

which needs to be cut o�. As an example, for the left border (see Figure: 4.1):

The left-most column is assumed to be part of the border. Then, for the column

to the right, it is determined for every pixel if the di�erence in color with the

corresponding pixel in the leftmost column is small enough; if this is so this

column is also part of the border. This process continues with columns that lie

more and more to the right, until a column is found with pixels that have color

values that di�er enough from the corresponding pixels in the left-most column.

Everything to the left of this column is considered part of the border and must

be removed.

The threshold value (the minimum di�erence between pixels before a pixel is

said to be in the image) is user settable. Experiments show that 10% of the

intensity is a good value.

This process is repeated for the top, right, and bottom borders, thus cutting o�

every border of the image.

The process of removing the borders also takes care of removing any possible

translation the picture may have. This happens because a translation is equal

to wider or smaller upper and left borders.

When the image has the correct size, the di�erences in lighting have to be

compensated for.

15

16 CHAPTER 4. BORDER DETECTION

Border Image

Figure 4.1: Example of an image with a border of uniform color

Chapter 5

Lighting normalization

techniques

Normalization of lighting is a di�cult task, because the lighting for the original

image is unknown. One can not generally say that one technique is better than

another. The problem is to �nd the best technique for the task at hand. What

technique is best depends on the image being processed. Furthermore, more

complex techniques need a lot of time to calculate the results. In this chapter

the following two point processing techniques, techniques where a given gray

level i 2 [0; L] is transformed to another gray level v 2 [0; L] by application of

the equation

v = f(i); (5.1)

are investigated.

Due to equation 5.1 the implemented algorithms are very fast in calculating the

enhanced images.

Two alternatives for lighting normalization were implemented: contrast stretch-

ing and histogram equalization.

5.1 Contrast stretching

A common contrast stretching transformation for an 8-bit image can be ex-

pressed as

v =

8

<

:

�i; 0 � i < a

�(i� a) + v

a

; a � i < b

(i� b) + v

b

; b � i < 255:

(5.2)

Figure 5.1 shows a possible result of equation 5.2 .

The normal intention of contrast streching is an extension of the region between

[a; b]. This is done in this project, too. Moreover, a special case in contrast

stretching where � =
 = 0 called clipping can be used. For instance, the

17

18 CHAPTER 5. LIGHTING NORMALIZATION TECHNIQUES

α

β

γ

0 255a b

Va

bV

V

i

Figure 5.1: A contrast stretching transformation

histogram of Figure: 5.2 has no values between 0-10 and 175-255. The intensity

values between 11-174 are stretched using the following formulae:

v =

v

a

+ (v

b

� v

a

) � (i� a)

b� a

(5.3)

Figure 5.3 shows the result of a contrast stretch.

5.2 Histogram equalization

Histogram equalization has been found to be a powerful image enhancement

technique if the image shows low contrast, which can be recognized as a narrow

histogram. The histogram of an image represents the relative amount of occur-

rances of gray levels in the image.

Consider that n is the total number of pixels in an image and n

i

represents

the number of times the intensity i appears in the image. Then the probability

(intensity count (%)) for the appearance of this intensity value in the image can

be expressed as:

p

i

=

n

i

n

(5.4)

A graph of p

i

versus i is called a histogram. Histogram equalization forms a

uniform histogram by taking the probabilities into consideration.

5.2. HISTOGRAM EQUALIZATION 19

To calculate the transformed intensities of a histogram equalized image, the

following algorithm is used:

v

k

= L �

k

X

i=0

n

i

n

= L �

k

X

i=0

p

i

(5.5)

� n

i

represents the number of times this gray level appears in the image

� n = the total number of pixels in the image

� k = [0; 255] intensities

� L = the total amount of intensities

Figure 5.4 shows a result of histogram equalization.

A further step towards image comparison requires that they are scaled to equal

resolutions. Chapter 6 gives a strategy to reach this goal.

20 CHAPTER 5. LIGHTING NORMALIZATION TECHNIQUES

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

 In
te

ns
ity

 c
ou

nt
 (

%
)

 Intensities

Figure 5.2: The original image and its histogram

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

 In
te

ns
ity

 c
ou

nt
 (

%
)

 Intensities

Figure 5.3: The image and its histogram after contrast stretching

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250

 In
te

ns
ity

 c
ou

nt
 (

%
)

 Intensities

Figure 5.4: The image and its histogram after histogram equalization

Chapter 6

Scaling

The �nal normalization step that must be taken before images can be compared

is scaling them to the same resolution. As with the other steps it is important

that the scaling introduces as little noise as possible.

The implemented method for scaling works with bi-linear interpolation, and can

(in theory) only shrink images. The routine scans through a destination image,

and determines for every pixel in it on what source pixels it depends, and for

how much.

Figure 6.1: The intensity of a pixel in the destination image depends on the

intensities of several pixels in the source image

In the example (Fig.: 6.1) The wide lines show pixels in the source image, while

the fat lines show pixels in the destination image. The shaded destination pixel

depends on nine source pixels, and its value is calculated with the following

formula:

21

22 CHAPTER 6. SCALING

Image 1

Image 2

Final image

Figure 6.2: Images are scaled to the largest possible size

Result =

P

1

+ P

3

+ P

7

+ P

9

16

+

P

2

+ P

4

+ P

6

+ P

8

8

+

P

5

4

(6.1)

The procedure can also enlarge images by pretending that every pixel is rep-

resented multiple times. This way the source image appears to be bigger than

the destination image and the scaling is turned into a shrinking again, which is

handled normally.

6.1 Strategy for scaling

When comparing images that have di�erent resolutions, there are two possible

methods:

� Scale to the smallest resolution.

� Scale to the biggest resolution.

While scaling to smaller resolution the values of several pixels are stored in

one pixel, losing information which would not be lost while scaling to bigger

resolution. Because of this the pictures are scaled to the resolution of the bigger

picture.

Currently, scaling is applied regardless of the resolution of the images. If two

images are of di�erent sizes than they are scaled to the same size, even if it is

already known that they have the same resolution and should be compared at

their current sizes. When one image has bigger width, but the other has bigger

height, the images are scaled to the largest alternative. This is demonstrated in

Figure: 6.2.

6.1. STRATEGY FOR SCALING 23

Similar images that have the same resolution generally have (almost) the same

size as well. This is demonstrated in Table: 6.1.

Image Size

Image 1: 251 � 412

Image 2: 251 � 413

Image 3: 251 � 413

Image 4: 250 � 412

Table 6.1: Image sizes after normalization

This table shows the sizes of four similar normalized pictures. The originals

di�er greatly in size, angle, and lighting, but the normalized images are mostly

the same, in size as well as angle and lighting.

.

Chapter 7

Noise

The process of scanning images is a transformation of nearly continuous inten-

sities in the image to discrete gray levels. The consequence of the discretization

is that when an image is scanned in several times without changing any pa-

rameter, the scanner does not produce the same result. This chapter attacks

this problem and introduces two ways to visualize this noise. Additionally, two

methods are presented to reduce this noise.

7.1 Discretization noise

As mentioned above noise is added by digitizing images. This noise is composed

by each of the two steps in digitizing:

1. The process of digitizing can be described as putting a grid on the image.

For the reason, that the images in the database are scanned with 300dpi

* 300dpi resolution, the adjustment of the scanner changes and the grid

does not start on exact the same position.

2. From each part of the grid, the scanner calculates an intensity value. This

value lies between 0 and 255 using 8-bit images. This means, that it is

not the exact gray value of the image. It is only an approximation.

The standard method to visualize noise in images is to split the image into its

bit-planes. An 8-bit image can be taken apart by the following algorithm:

b

7

2

7

+ b

6

2

6

+ :::+ b

1

2

1

+ b

0

2

0

(7.1)

where bit 7 is the most signi�cant and bit 0 is the least signi�cant bit. Now the

8 1-bit images can be created by showing only the nth bit-plane of the image.

This technique is called bit-plane slicing.

25

26 CHAPTER 7. NOISE

Figure 7.1: An 8-bit digitized image

The output is created by using the formulae:

v =

�

L; if k

n

= 1

0; otherwise .

(7.2)

The disadvantage using bit-plane slicing is the fact, that small changes in the

graylevel are not well taken into consideration. If, for instance, a pixel with the

intensity 127 (01111111) is adjacent to a pixel of the intensity 128 (10000000),

every bit-plane contains a corresponding 0 to 1 (or 1 to 0) transition. For

instance, if the most signi�cant bits of the binary codes for 127 and 128 are

di�erent , bit-plane 7 will contain a zero-valued pixel next to a pixel of value 1,

creating a 0 to 1 (or 1 to 0) transition at that point. A preferable algorithm to

avoid the demonstrated e�ect is the Gray code. The Gray code can be computed

using the following formulae:

g

i

= b

i

OR b

i+1

0 � i � m� 2

g

n�1

= b

n�1

(7.3)

The application of this code gives a Gray code for 127 (11000000) and for 128

(100000000). Fig. 7.5 - Fig. 7.12 show the processed images using bit-plane

slicing and Gray code. Due to the used formulas for bit-plane slicing and Gray

code the result for bit-plane 7 is the same.

7.2. REDUCTION TECHNIQUES FOR SAMPLING NOISE 27

Regarding only the bit-planes created using bit-plane slicing, one could think

that the two least signi�cant bits do not store any information of the image

since they show no structure. The impression changes if one takes the results of

the Gray code into consideration. Even the least signi�cant bit (Fig.:7.5) shows

local structures.

7.2 Reduction techniques for sampling noise

Enhancement techniques which are performed on local neighborhoods of input

pixels are called spatial operations. Two techniques which are slightly di�erent

using spatial masks are presented (see [Gonzalez 92]. These techniques can be

used with variant spatial masks. In this thesis the 3 � 3 mask (Fig.: 7.1) is

chosen for description.

w

1

w

2

w

3

w

4

w

5

w

6

w

7

w

8

w

9

Figure 7.1: A 3 � 3 mask

7.2.1 Lowpass spatial �lter

The lowpass spatial �lter investigated here is a satisfying technique for image

enhancement, if only small changes in the output images are desirable. The

resulting image is a smoothed image. Using a low pass �lter, all coe�cents

must be positive. The coe�cients, which have the value 1 must be scaled by

division with 9. Otherwise, the output result would not �t in the given amount

of gray levels.

1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9

Figure 7.3: The used 3 � 3 lowpass �lter

7.2.2 Median �lter

The disadvantage of the introduced lowpass �lter is that it blurs edges and other

sharp detail. A method to achieve noise reduction rather than blurring is the

median �lter.

28 CHAPTER 7. NOISE

The median �lter replaces the gray level of every pixel with the median of the

neighborhood of this pixel. Consider Figure 7.4 where the mask of the pixel

with the value 1 is given. First all values have to be sorted. The median is the

�fth value (four values are less than the median, four values are higher than the

median).

medianf5; 2; 8; 4; 1; 7; 3; 9; 6g= medianf1; 2; 3; 4; 5; 6; 7; 8; 9g= 5 (7.4)

5 2 8

4 1 7

3 9 6

Figure 7.4 example for a 3 � 3 mask for value 1

With the end of this chapter the image normalization is completed and the

images can be compared. Several comparison methods are described in the

next chapter.

Figure 7.5: The binary (left column) and Gray code (right column) of bit plane

0 of the image in Fig. 7.1 .

7.2. REDUCTION TECHNIQUES FOR SAMPLING NOISE 29

Figure 7.6: The binary (left column) and Gray code (right column) of bit plane

1 of the image in Fig. 7.1 .

Figure 7.7: The binary (left column) and Gray code (right column) of bit plane

2 of the image in Fig. 7.1 .

30 CHAPTER 7. NOISE

Figure 7.8: The binary (left column) and Gray code (right column) of bit plane

3 of the image in Fig. 7.1 .

Figure 7.9: The binary (left column) and Gray code (right column) of bit plane

4 of the image in Fig. 7.1 .

7.2. REDUCTION TECHNIQUES FOR SAMPLING NOISE 31

Figure 7.10: The binary (left column) and Gray code (right column) of bit plane

5 of the image in Fig. 7.1 .

Figure 7.11: The binary (left column) and Gray code (right column) of bit plane

6 of the image in Fig. 7.1 .

32 CHAPTER 7. NOISE

Figure 7.12: Bit plane 7

Chapter 8

Comparison techniques

During the development of the normalization algorithms it became necessary

to develop routines that could compare pictures and report on the pixel-by-

pixel di�erence. Another use for a comparison routine is to determine wether

two pictures are di�erent or similar. This chapter describes several comparison

routines that were implemented. Test results from these algorithms can be

found in chapter 9.

8.1 Rotation comparison

The rotation comparison compares every pixel in one image to the corresponding

pixel in another image. Rotation comparison was developed to test the amount

of noise generated by the various rotation algorithms. In order to do this, it

was necessary to make a small change to the rotation algorithms, so that they

left blank those parts of an image that were rotated in from outside the original

image.

The standard comparison algorithm does not take pairs of pixels into account

when one or both of the pixels are blank. This way only pixels that were actually

rotated are tested.

The noise is calculated as the sum of all absolute values of all the di�erences of

every pixel pair, ie:

noise =

X

jP

1

� P

2

j (8.1)

with P

n

= the color values of corresponding pixels in both images, P

n

6= 0.

The output of the algorithm consists of several values:

� The number of pixels that were skipped during comparison (by virtue of

one or both being blank).

� The number of pixels that were taken into account during comparison.

33

34 CHAPTER 8. COMPARISON TECHNIQUES

� The sum of all absolute values of all di�erences taken together, called the

total di�erence.

� The total di�erence divided by the number of pixels that was taken into

account, called the average di�erence.

Also generated is a di�erence image. Pixels in this image have a color value

equal to the absolute value of the di�erence of the corresponding pixels in the

input images.

The di�erence image makes it easy to spot the distribution of large di�erence

values. During the tests it became apparent from these distributions that often

a double rotation (ie. back and forth over the same angle) seemed to leave the

image at a slight o�set from the original. To further test this phenomenon a

routine was developed that calculates a so-called di�erence vector.

8.2 The di�erence vector

The di�erence vector represents the distance and direction in which one source

image must be shifted to �nd the smallest average di�erence with the other

source image. A function was developed to calculate the di�erence vector.

The algorithm compares pixels in one image with several pixels in the other

image. These pixels are distributed as follows:

11 x 11 area in destination image

Pixel in
source image

Figure 8.1: One pixel in the source image is compared to several in the desti-

nation image

The routine calculates the absolute value of the di�erence of every selected pixel

in the second image with the pixel in the �rst image. These di�erences are added

to an 11�11 array of total di�erences. The whole process is repeated for a user-

selectable number of pixels from the �rst image.

The array element with the lowest value represents the best likely di�erence

vector. The standard comparison routine can automatically translate an image

over this vector during the comparison process.

8.3. ABSOLUTE COMPARISON 35

Likely candidates have been tested; these tests show that none of the rotations

has a systematic translation error.

8.3 Absolute comparison

The comparison algorithms can also be used to identify wether two images are

the same or di�erent. If they are to succeed in this they must have two important

properties:

� Similar images must be detected as being similar.

� Di�erent images must be detected as being di�erent.

This may seem obvious, but it is easy to create algorithms that satisfy only

one of these rules! The �rst algorithm that was tested for these properties is

based on the rotation comparison. Absolute comparison di�ers from rotation

comparison in that absolute comparison does not skip blank pixels. Other than

this the routines are completely the same.

Apart from the absolute comparison algorithm two others were tested. These

are the nonabsolute comparison and the best neighbor comparison.

8.4 Nonabsolute comparison

Nonabsolute comparison is the same as absolute comparison, but the absolute

value is taken over the total di�erence rather than every di�erent pixel pair.

8.5 Best neighbor comparison

Best neighbor comparison searches, for every pixel P

1

in an input image, an area

around the corresponding pixel in order to �nd the pixel P

2

so that jP

1

�P

2

j is

as small as possible. The area that is searched is user selectable.

Best neighbor comparison is much less sensitive to small di�erences in image

position, angle, or size, as long as the area that is searched is big enough to

contain slightly misaligned corresponding pixels.

Several images have been normalized and compared with all of these methods.

Results can be found in chapter 9.

.

Chapter 10

Evaluation

10.1 Rotation

Method: Average di�erence Speed of operation

primitive: 11.44 (4.49%) 20 secs.

bilinear: 4.73 (1.85%) 44 secs.

shear-based: 28.22 (11.07%) 12 secs.

bilinear shear-based: 28.25 (11.08%) 44 secs.

multiple neighbors: 8.60 (3.37%) 480 secs.

Table 10.1: Average noise generated by rotation

� Rotation with bilinear interpolation is in all cases (except one) better than

the other rotations techniques.

� Rotation with bilinear- and cubic interpolation can in some cases be better

than just rotation with bilinear interpolation.

� Rotation with bilinear- and cubic interpolation is exceptionally slow.

For these reasons the normalization procedure uses the rotation with bilinear

interpolation.

53

54 CHAPTER 10. EVALUATION

10.2 Border removal

Image Size

Image 1: 251 � 412

Image 2: 251 � 413

Image 3: 251 � 413

Image 4: 250 � 412

Table 10.2: Image sizes after normalization

� After borders are removed, images at the same resolution have almost the

same size.

For this reason, images can be compared directly using the 3 � 3 best neigh-

bor method after the normalization procedure has �nished (the best neighbor

method compensates for small di�erences in image size; with a 3 � 3 area it

compensates for one pixel in all directions).

10.3 Lighting noise

Table 9.24 compares the average di�erence of the four images without processing

and after processing. The di�erence between the unprocessed images is calcu-

lated as 0.45 in intensity. This result corresponds to the visualization using

bit-plane slicing (chapter 7).

Reducing this noise output images using 3 � 3 median �ltering and 3 � 3 low-

pass spatial �ltering were investigated. The reduction of the average di�erence

to 0.38 in intensity in median �ltering is not a signi�cant improvement. The

reduction to 0.24 in lowpass �ltering is better, but it has the disadvantage of

loosing information because of smoothing.

Because of these reasons none of the �lters is recommended for implementation

in this project.

10.4 Scaling

� Scaling to larger size adds less noise than scaling to smaller size.

� Scaling to an integer multiple of the current size adds no noise to the

image.

Because of this the normalization scales to the largest possible size, when nec-

essary. Several likely resolution scalings (100dpi to 400dpi, 200dpi to 400dpi)

can be done without adding noise.

10.5. COMPARISON 55

New size Average di�erence

70% 5.78 (2.27%)

100% 0.00 (0.00%)

130% 3.80 (1.49%)

200% 0.00 (0.00%)

Table 10.3: Average noise generated by scaling

10.5 Comparison

Method Similar images Di�erent images

Absolute 7.43 (2.91%) 66.99 (26.27%)

Nonabsolute 0.70 (0.27%) 1.13 (0.44%)

3 � 3 best neighbor 2.22 (0.87%) 47.14 (18.49%)

5 � 5 best neighbor 1.52 (0.60%) 42.81 (16.79%)

Table 10.4: Average di�erences found by the comparison methods

� Nonabsolute comparison does not recognize di�erent images as being dif-

ferent.

� The other methods are all capable of recognizing di�erent images as being

di�erent and similar images as being similar.

3 � 3 best neighbor comparison is recommended for image comparison after

normalization for the following reasons:

� There is a big enough di�erence in average di�erence between comparisons

done with similar images and comparisons done with di�erent images.

� This method compensates for the 1 pixel di�erence in image size which

may be left after normalization.

10.6 Discretization noise

Comparing the results of histogram equalization (Tables 9.8 + 9.11) with con-

trast stretching(Table 9.9 + 9.12), histogram equalization results in a di�erence

smaller than 1% in the gray level range from -1 to +2, whereas contrast stretch-

ing has a di�erence smaller than 1% in a smaller range.

According to this result and the high dependance from contrast stretching on

56 CHAPTER 10. EVALUATION

the appearance of the histogram (see chapter 5), histogram equalization is rec-

ommended for this image normalization implementation.

10.7 The normalization procedure

The normalization procedure consists of the following steps:

Detect angle: Angle detection must take place before the angle can be cor-

rected.

If necessary, apply rotation with bilinear interpolation: This rotation

method adds the least noise of all tested methods. Rotation must take

place before the borders can be removed.

Remove borders: Borders are generally much lighter than the actual image.

They must be removed before histogram equalization can be applied.

Equalize the histogram: Histogram equalization removes most di�erences in

lighting conditions.

Scale to new resolution: If necessary, the image can be scaled to a new res-

olution. The new resolution depends on the images that will be compared

with the image that is normalized; for this reason scaling is not part of

the current normalization procedure.

When an image is scanned in twice with di�erent angle, borders, position, light-

ing, and resolution the normalization procedure (together with 3 � 3 best neigh-

bor comparison) demonstrates that both scans are similar with less than 1%

di�erence in intensity, and less than 1 pixel in size. Thus it is possible to use

normalization to �nd copies of images in a database.

Chapter 11

Ingres/Windows 4GL

11.1 Overview

This chapter brie
y describes the Ingres/Windows 4GL toolkit [Ingres 92] and

emphasizes the advantages and restrictions of this tool.

Ingres/Windows4GL (4GL = Fourth Generation Language) is an application

editor to create and edit Windows4GL applications. It is intended to support

experienced developers to create window-based applications.

11.2 Advantages

The packages includes tools to support every step of application development,

from the initial design and creation of prototypes to implementation, testing,

con�guration management and deployment. After comparison with the Motif

toolkit [X Window 90] and TCL/TK [TCL/Tk 94] Ingres/Windows4GL was

chosen as the interface development tool for the Photobase project for the fol-

lowing reasons:

� The generated and already known information of the photographs will be

stored in a database. Ingres/Windows4GL is the only program which of-

fers easy database access. (Ingres is a well known company in database

applications). TCL/TK and MOTIF do not have built-in database func-

tions.

� TCL/TK does not support images in 8-bit graylevel format. It can only

load black and white (1-bit) images.

� User interface code written in Ingres/Windows4GL is much more compact

and readable than similar code written for the Motif toolkit.

� For future programmers on this project the basics to add procedures to

Ingres/Windows4GL can be understood after a relatively short time of

acquaintance.

57

58 CHAPTER 11. INGRES/WINDOWS 4GL

Figure 11.1: The working platform

11.3. RESTRICTIONS 59

� Ingres/Windows4GL o�ers some support for working with multiple pro-

grammers on one project.

� Ingres/Windows4GL can be used on Unix, VMS and DOS platforms.

11.3 Restrictions

Regarding the state of the art in modern user interfaces, Ingres/Windows4GL

has the following limitations:

� A help menu on the right side of the menu bar is not possible.

� The complete generation of the implemented code including the code of

the windows in an author readable format, for instance as the appendix

of a thesis, is not possible.

� Opening and redrawing windows is very slow, even on a fast computer.

� Ingres/Windows4GL does not use procedures calls, but so called userevents.

Userevents are executed in an asynchronous, out-of-order fashion, which

can be limiting in many situations.

11.4 Linking with C

Ingres has the ability to use a link library of external functions at run-time. A

special utility, make3gllib, is included to create these object �les. The interface

between Ingres and the external procedures is not very smooth:

� Every called C function must speci�cally be registered with Ingres.

� Ingres can only link the external functions when it is started. If a new

external function library is generated Ingres must be quitted and restarted.

� Only one external function library can be used at any time. This means

that a project with multiple authors must somehow use a shared directory

for C source. They must manage (and limit) access to this directory

themselves.

� Ingres/Windows4GL can call C, but C cannot call Ingres/Windows4GL.

After introducing the user interface development tool chapter 13 shows the result

of its application.

.

Chapter 12

Implementation of the user

interface

This section describes the user interface of the Photobase program. It consists

of several windows, each of which are described in detail.

12.1 The Image Processing Platform

After starting the Photobase program, the main window opens (Fig.: 13.1).

From here it is possible to select a primary or secondary image, and operate on

them. Operations that require only one input image, such as histogram equal-

ization, act on the primary image. The secondary image is used for operations

that need two input images, such as comparison.

The primary or secondary image can be chosen directly by clicking on the corre-

sponding Choose button. A �le requester (Fig.: 13.2) opens and the required

image can be selected. The name of the image appears in the text widget and

the attached Load button is no longer ghosted. It is now possible to show this

image, or process it directly.

To normalize an image, it must be designated as primary image, after which

the Normalize button must be pressed. This starts the image normalization

process:

� The angle of the image is detected and if necessary corrected.

� The borders are cut o�.

� The image is histogram equalized.

� The image is rescaled if necessary.

The processed image will be shown in a separate window.

Quitting the application can easily be done by pressing the Quit button.

61

62 CHAPTER 12. IMPLEMENTATION OF THE USER INTERFACE

Figure 12.1: The Photobase window

12.1. THE IMAGE PROCESSING PLATFORM 63

Figure 12.2: The �le requester

The following options can be found in the menu bar of the Image Platform

window: (If no comment is added to the button, a detailed description appears

in other chapters.) The menu options o�er acces to all the techniques tested for

the normalization procedure and enables the user to execute the normalization

steps one by one.

� menu "File"

Option

{ Load image

(= Pops up a �le requester and loads and shows the selected image

immediately in the image window. The same result can be reached

by pushing Choose and Load.)

{ Preferences

(= Pops up the Preferences window.)

{ Credits

(= Presents information on version and author)

{ Quit

(= Closes the application)

The following options all perform some kind of operation on the primary

image.

64 CHAPTER 12. IMPLEMENTATION OF THE USER INTERFACE

� menu "Single image"

Option

{ Detect angle

{ Rotate

{ Set method

- Primitive

- Bilinear

- Shearbase

- Shearbased bilinear

- 4x4 bilinear

{ Set angle

- -15

- -10

- -5

- +5

- +10

- +15

- User de�ned

{ Scale

- to picture window

- User de�ned

{ Cut borders

{ Histogram

(= Opens the histogram window.)

{ Histogram equalization

{ Contrast stretching

{ Median �lter

- 3 * 3

- 5 * 5

- 7 * 7

{ Low pass �lter

- 3 * 3

- 5 * 5

- 7 * 7

{ Bit operation

- Gray code

- Bit plane 0 (LSB)

12.1. THE IMAGE PROCESSING PLATFORM 65

- Bit plane 1

- Bit plane 2

- Bit plane 3

- Bit plane 4

- Bit plane 5

- Bit plane 6

- Bit plane 7 (MSB)

- Bit plane slicing

- Bit plane 0 (LSB)

- Bit plane 1

- Bit plane 2

- Bit plane 3

- Bit plane 4

- Bit plane 5

- Bit plane 6

- Bit plane 7 (MSB)

{ Threshold

- Automatic

- Manual

The following options perform an operation on both the primary and sec-

ondary image.

� menu "Double image"

Option

{ Di�erence image

(= creates a di�erence image)

{ Di�erence

- Absolute

- Non absolute

- Best neighbor

{ Super impose

{ Calculate di�. vector

� menu "misc"

Option

{ History

(= Opens the history window.)

66 CHAPTER 12. IMPLEMENTATION OF THE USER INTERFACE

12.2 The Image window

Images are shown on screen in Image windows. Each image has it's own window,

and one image can be visible multiple times. When the window is resized the

image is automatically scaled as well, if necessary.

The visible part of the image can be altered by moving the horizontal and

vertical scroll bars.

� menu "File"

Option

{ Save

(= Saves the image as a TIFF 6.0 �le.)

{ Close

(= Closes the window and deletes the temporary sun raster�le of this

image. The original is not deleted.)

� menu "Select"

Option

{ as primary

(= Selects the image as primary. Its name is shown in the primary

text widget in the main window. This selection is important for

additional processing of the image.

{ as secondary

(= Selects the image as secondary. Its name is shown in the secondary

text widget in the main window.

� menu "Scale"

Option

{ No scale

(= The picture is shown in its generated or scanned size, without any

scaling.)

{ scale to height

(= Set as default. The image is scaled to the height of the image

widget.)

{ scale to width

(= The image is scaled to the width of the image widget.)

12.2. THE IMAGE WINDOW 67

Figure 12.3: The image window

68 CHAPTER 12. IMPLEMENTATION OF THE USER INTERFACE

12.3 The Preferences window

It is possible to change the default path for loading and saving images from the

preferences window. A new path is not used until the okay button is clicked.

Figure 12.4: The preferences window

12.4. THE HISTORY WINDOW 69

12.4 The History window

The history window shows a list of previously loaded or generated images. An

image can be selected from the history window by clicking its name, and selecting

the Show button. Through this window the user can keep track of images even

after they are no longer visible on the screen.

Figure 12.5: The history window

70 CHAPTER 12. IMPLEMENTATION OF THE USER INTERFACE

12.5 The Histogram window

The histogram of the image contains the information about the distribution of

the grayvalues or intensities of an image, respectively. There are 256 di�erent

intensities.

The histogram window can be selected from the "single" menu, option his-

togram. This selection opens the histogram window and shows the histogram

of the image which is selected as primary on the main window.

Figure 12.6: The histogram window

The next chapter deals with future enhancement of the project.

Chapter 13

Future enhancement of

Photobase

13.1 Example of adding an image manipulation

This chapter gives an example of adding an image manipulation to Photobase.

The manipulation that will be added is a super impose function. Super imposing

is a technique where corresponding pixels of two pictures are added together and

divided by two to generate a pixel in the destination image. This can be useful

to determine visually how much two images overlap.

Step 1: add the super impose function to the C source

After writing the super impose function it must be added to the C source.

Generally, manipulations that require one source image are put in single proc.c

while manipulations that require two source images are put in double proc.c.

Note that this is just a matter of organization; there is no real need to add new

functions to these �les. Because SuperImpose() requires two source images it is

placed in double proc.c. A header for SuperImpose is added to double proc.h.

Step 2: call SuperImpose() from Process()

Process() (in picture.c) is used to dispatch Ingres calls to the rest of the C code.

All image manipulations are activated through a call to Process(). Process()

takes care of loading the required images, scaling them to the same size if nec-

essary, and saving the results. Process() determines what image manipulation

to call through a number given by Ingres. SuperImpose() must be given such a

number. Numbers in the range 0..99 are reserved for operations that manipulate

one source image, while numbers in the range 100..200 are reserved for opera-

tions that require two source images. Because SuperImpose() uses two source

images it is given the (so far unused) number 105. A call to SuperImpose() is

added in the large switch statement:

71

72 CHAPTER 13. FUTURE ENHANCEMENT OF PHOTOBASE

...

case 105:

ErrCode = SuperImpose ();

break;

...

Step 3: add a menu entry to the image platform frame

To make the manipulation accessible to the user a menu entry must be added

to the image platform frame. There are two menus with image manipulation,

'single image' and 'double image'. SuperImpose() is added to 'double image'.

The Windows 4GL code for the operation looks like this:

on click menu.double.superimpose =

BEGIN

curframe.senduserevent (eventname = 'process',

messageinteger = 105);

END;

The userevent Process calls the C routine Process(), places the resulting image

on screen and handles possible error conditions. The number 105 must be the

same number that was used in Process().

13.2 Source for SuperImpose()

Most initialization is done automatically, but some things must be done by

SuperImpose(). The following source shows what these things are.

int SuperImpose (void)

{ LONG x, y, Width, Height;

UBYTE ByteVal1, ByteVal2;

/* First, the output image must be initialized */

Width = idata[PRIMARY].width;

Height = idata[PRIMARY].length;

idata[OUTPUT].width = Width;

idata[OUTPUT].length = Height;

if (!init_pic(OUTPUT)) return ERR_OUT_OF_MEMORY;

/* If an error occurs an error code is returned. */

/* Error codes are defined in defines.h */

for (y=0; y<Height; y++) {

for (x=0; x<Width; x++) {

13.3. HANDING VALUES FROM INGRES TO C 73

/* Read image data from input images */

ByteVal1 = idata[PRIMARY].image[y][x];

ByteVal2 = idata[SECONDARY].image[y][x];

/* Write resulting data to output image */

idata[OUTPUT].image[y][x] =

(ByteVal1+ByteVal2) >> 1;

}

if (y % UPDATEGAP == 0)

fprintf (stderr, "Calculating line %d (%d%%)\n"

, y, (100*y)/Height);

}

/* No error occurred, so return ERR_NONE */

return ERR_NONE;

}

Operations that do not return an image must return ERR DONT SAVE, which

causes Ingres to skip the image loading code.

13.3 Handing values from Ingres to C

In some cases it is necessary to set values in the C code prior to calling Process().

This can be done with a call to C SetField(). C SetField() takes four arguments:

an identi�er, an integer, a
oat, and a character string. The identi�er determines

which variable in the C source is given a value. This variable can be integer,

oat, or a character string, and the argument of the same type is used to set it.

Currently all values that can be set by C SetField() are members of the d�eld

datastructure. This structure is globally accessible in picture.c, single proc.c

and double proc.c. As an example of the use of C SetField, this is the Ingres

code for Threshold():

on click menu.single.threshold.value =

BEGIN

ThresholdPercentage = menu.single.threshold.value;

Result = C_SetField (3, 0, ThresholdPercentage, ' ');

curframe.senduserevent (eventname = 'process',

messageinteger = 8);

END;

74 CHAPTER 13. FUTURE ENHANCEMENT OF PHOTOBASE

13.4 Suggestions for further research

The current normalization process stop after the angle of the image was cor-

rected, the border was cut o�, and the histogram was equalized. However, there

are other steps that could be taken as part of a normalization process. An

example of such a step is removing the outer frame that surrounds the actual

photo. This outer frame can mostly be removed the same way that borders are

currently removed: by checking for di�erences in intensity. It is recommended

that this step is taken after the borders are cut o�, but before the histogram is

equalized. This is because histogram equalization can have a profound impact

on the intensities of the individual pixels. If the intensities of the pixels in the

borders change too much the method of removing borders described here (which

relies on the border having a uniform color) will no longer work. Extra attention

must be given to removing the lower part of the outer frame, as it is usually

embellished with texts and the logo of the photographer.

A possible re�nement of the border removal algorithm is the following: the cur-

rent algorithm is susceptible to noise in the border, even a single stray pixel of

di�ering intensity (to the rest of the border) can disrupt the correct operation

of the border removal. It may be possible to �nd such pixels (and groups of

such pixels) and remove them before the borders themselves are removed.

Another re�nement could be made to the comparison algorithms. The current

algorithm scans the entire image for di�erences, but a future algorithm could

take into account that more interesting information is generally found closer to

the center of the image. A comparison algorithm that assigns a weight to the

di�erences in intensity based on the di�erence to the center of the image (or

some other point) may be more succesful in identifying copies of images. See

Figure: 14.1 for an example of a weight distribution.

Area of greatest interest

Area of least interest

Total image

Figure 13.1: A possible weight distribution

13.5. OTHERAPPLICATIONS FORTHENORMALIZATION PROCEDURE75

Finally, the current normalization procedures all operate on 8-bit data. Several

normalization routines can be made to operate on 24-bit data by splitting the

24-bit image into its red, green, and blue components (each of which are 8 bits

in size) and normalizing these component images separately. This will not work

for angle detection, border removal, and possibly histogram equalization. In

each of these cases the routines must be altered to directly operate on 24-bit

data.

13.5 Other applications for the normalization

procedure

The current normalization procedure has some limitations that prohibit use in

certain situations. However, several other uses can be found for the procedures

described in this report.

� Paintings: Paintings meet the requirements set for the normalization

procedure. A database that can identify unknown paintings can be created

if the normalization procedures are changed to operate on 24-bit data, as

is described above.

� Stamps: The normalization procedures seem cut out for identifying stamps.

Because stamps generally have irregular borders it may be necessary to

weaken the identifying conditions for lines in the angle detection routine.

Also, stamps exist that are not rectangular.

� Telephone cards: Telephone cards are quickly becoming a collectors

item; an on-line database of telephone cards could be an invaluable aid in

card auctions.

� ID cards: A database with ID cards connected to a camera could be

equipped with the normalization procedure to allow a completely optical

identi�cation of cards. Other problems that must be solved before this

becomes a possibility: ID cards move in 3D space and can be rotated over

the X- and Y-axis (which must be compensated for), and the card must

be identi�ed in a screen that can contain many other details.

.

Bibliography

[Brown 92] L. G. Brown, "A Survey of Image Registration Techniques",

ACM Computing Surveys, vol. 24, no. 4, pp. 325-376, 1992

[Fang 93] N. Fang and M.-C. Cheng, "An automatic crossover point

selection technique for image enhancement using fuzzy sets,"

Pattern Recognition Letters, vol. 14, no. 5, pp. 397-406, 1993

[Gonzalez 92] R. C. Gonzalez and R. C. Woods, Digital Image Processing,

Addison-Wesley, USA, ISBN 0-201-50803-6, 1992

[Hill 90] Francis S. Hill, Computer Graphics, Macmillan Publishing

Company, USA, ISBN 0-02-946185-5, 1990

[Jain 89] A. K. Jain, Fundamentals of Digital Image Processing, Pren-

tice-Hall, Englewood Cli�s, NJ, ISBN 0-13-332578-4, 1989

[Ingres 92] Ingres/Windows4GL, -Application Editor User's Guide-, -

Programming Guide-, -Language Reference Manual-, Ingres

Corporation, California 94501, 1992

[Koelma 94] D. Koelma and A. Smeulders, "A visual programming inter-

face for an image processing environment," Pattern Recogni-

tion Letters, vol. 15, no. 11, pp. 1099-1109, 1994

[Leu 92] J.-G. Leu, "Image Contrast Enhancement Based on the Inten-

sities of Edge Pixels," CVGIP: Graph. Models Image Proc.,

vol. 54, no. 6, pp. 497-506, 1992

[Lindenbaum 94] M. Lindenbaum, M. Fischer and A. Bruckstein, "On Gabor's

Contribution to Image Enhancement," Pattern Recognition,

vol. 27, no. 1, pp. 1-8, 1994

[Ousterhout 94] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley,

Masssuchettes, ISBN 0-201-63337-X, 1994

[Pratt 78] W. K. Pratt, Digital image processing, John Wiley & Sons,

Inc., USA, ISBN 0-471-01888-0, 1978

77

78 BIBLIOGRAPHY

[TIFF 92] TIFF Revision 6.0, Aldus Corporation, Seattle, WA 981004-

2871, 1992

[Yan 93] Hong Yan, Skew Correction of Document Images Using Inter-

line Cross-Correlation, CVGIP: Graphical Models and Image

Processing, Volume 55, no. 6, pp 538-543, 1993

[X Window 90] The X Window System Vol. 0 - 7, O'Reilly & Asscciates Inc.,

Sebastopol, CA 95472, ISBN 0-937175-13-7, 1990

Appendix A

The TIFF �le format

To describe image data that come frome scanners, one has to face the problem

which �le format is the best to store the processed images. The decision to store

the digitized images in the TIFF 6.0 �le format has several below mentioned

reasons.

� The TIFF 6.0 header includes the image size and the original scanning

resolution.

� TIFF is a public domain standard. A library which reads and writes TIFF

�les can be downloaded from ftp.sgi.com

(graphics/tiff/v3.3beta.src.tar.Z).

� A complete description of the TIFF [TIFF 92] �le format and example

applications are o�ered.

� TIFF o�ers the possibility to store graylevel as well as colour images.

� TIFF can be used with di�erent scanners, an advantage, because this

project operates with the Epson and the Hewlett-Packard II cx scanner.

� For future extension, TIFF includes several compression schemes for sav-

ing disk space.

79

.

Appendix B

The Sun Raster format

The Ingres system can only read pictures that are stored in the Sun Raster

format. The format consists of three chunks, with the following speci�cations:

The header

The header consists of 8 32-bit words, with the following meaning:

word 1: The identi�er 0x59A66A95.

word 2: The width of the image in pixels, rounded to the nearest even number.

word 3: the height of the �le in pixels.

word 4: the depth of the �le, expressed in bits per pixel.

word 5: the length of the image chunk in bytes, including possible padding

bytes.

word 6: speci�es the type of palette chunk in this image, must be 1 for Ingres.

word 7: speci�es the type of image chunk in this image, must be 1 for Ingres.

word 8: the length of the palette chunk, in bytes.

The palette

This chunk is best described with the corresponding C structure:

struct Palette {

UBYTE Red [NumEntries];

UBYTE Green [NumEntries];

UBYTE Blue [NumEntries];

};

81

82 APPENDIX B. THE SUN RASTER FORMAT

UBYTE is an 8-bit unsigned number. NumEntries is the number of palette

entries in this image. If there are less than 256 colors than the palette speci�es

the colors for the �rst NumEntries pixel values. NumEntries is calculated from

the length of the palette chunk by dividing it by three.

The image data

Every byte in this chunk describes the color of a single pixel. The �rst byte

describes the palette number of the upper left pixel, the second byte the palette

number of the pixel to the right of it, and so on, until a line is �lled. If the

image width is odd there is a padding byte before the byte that describes the

�rst pixel of the second line.

Appendix C

Photobase style

The user interface

An e�ort was made to keep the Photobase user interface visually consistent.

The following rules were used while developing this interface:

� The interface looks best on the Aurora (Sun) workstation. On other ma-

chines the colors may di�er, and window layout changes slightly in di�erent

environments. If new frames are added they must be normalized on the

Aurora.

� In the top-left corner of every frame there is title which describes what is

found in the frame. The title is printed in 18 pts. Times Roman characters.

The color of the title is bright red.

� Below the title there is a thin black line which stretches across the entire

width of the frame.

� All other text is in 14 pts. Times Roman, colored black.

� Buttons have a pale yellow background.

� Scrolling lists and images have a medium blue background.

� Viewports have as few lines and borders as possible. The reason is that

generally the images already have several frames within each other, causing

visual confusion.

� Everything is aligned to the grid, both top-left and bottom- right corners.

Other than this, nothing was changed from the Ingres default settings.

83

84 APPENDIX C. PHOTOBASE STYLE

Programming style

The code also follows certain style guides, though less rigidly so than the user

interface. The following style rules apply to the Ingres code:

� Names of frames, C procedures, and global variables start with "F ", "C ",

and "V " respectively.

� Names of buttons and other 'clickable' interface parts start with "gad ".

� Code for menu entries is kept locally with the menu entry. Code for

buttons is either kept locally or globally with the frame. Userevent code

is kept globally.

Chapter 1

Introduction

1.1 Motivation

In the last half of the 19th century people commonly went to a photographic

studio for portraits. Photography was still in its infancy, resulting in black-

and-white images and long exposure times. Because people generally do not

like to sit still for minutes at a time, they usually ordered a dozen prints from

one negative. These copies were spread around when the opportunity presented

itself.

Nowadays many of these portraits can still be found, in photo albums and

in public and private archives. The pictures, even when they were originally

printed from one negative, may di�er greatly. Some have been exposed to the

sun for years. Some have the name of the person in the picture written on them.

Some have been cut up or reframed.

Often it is no longer clear who the person in the picture is, and people spend

considerable time searching for the names of those photographed. Because there

is such a large of number of pictures around (collections known to the author

number over 50,000 photos in the Netherlands alone) this is a very hard task

for a human being.

The program written during this project, Photobase, attempts to answer ques-

tions like "Who is this man", by comparing an unknown person to a database

of known persons and �nding matching portraits. The goals of the program are

the following:

� Search for direct copies of the input image in the database.

� Search for other photographs of the same person in the database.

� If a matching image is found, show information about these images. This

information also applies to the input image.

Comparing images is a di�cult problem. The comparison program must com-

pensate for many factors: image quality, image orientation, image scale, etc.

1

2 CHAPTER 1. INTRODUCTION

The �rst step in comparing two images is removing as many of these factors as

possible, which is a process referred to as normalization.

This report describes the initial implementation of the Photobase system. In

the inital implementation much attention was given to normalization techniques

and towards building a good user interface. Primitive comparison techniques

were also implemented.

1.2 The degrees of freedom

Images must be scanned before they can be processed. The scanning process

introduces various degrees of freedom, each of which must be compensated for

before images can be successfully compared. Degrees of freedom caused by the

scanning process include:

� Rotation

Often an image is scanned in at a slight angle. It is possible to detect

this angle and compensate for it by digitally rotating the image. Several

rotation algorithms were implemented and tested.

� Borders

Not every part of a scanned-in image is important. Especially the white

background around the image is not signi�cant for the image comparison

process. Therefore, during the second normalization step this border is

removed.

� Lighting

Images can be scanned in at various lighting settings. In addition, the

images themselves can be darker or lighter.

� Scanner noise

The scanning process adds a small amount of noise to the image. Several

methods to visualize and remove this noise were implemented and tested.

� Resolution normalization

Images are often at a di�erent resolution. Before comparison is possible

the images must be rescaled. A scaling algorithm was developed that

causes very little noise.

1.3 Input protocol

The implemented normalization techniques try to cope with many di�erent de-

grees of freedom for the input image. Some restrictions remain, though:

� The input image must be in TIFF 6.0 format.

1.3. INPUT PROTOCOL 3

� When the input image is scanned a border must be left open around the

entire image.

� The border around the image must be colored white or nearly white.

� The angle detection algorithm assumes that the image is contained in a

rectangular box.

� It is assumed that no parts of the original image were cut o�. (Sub-image

searches have not been implemented yet.)

In the next chapters the image normalization techniques are presented.

.

Chapter 9

Results

9.1 Rotation

It is possible to measure the noise generated by a rotation by rotating over a

certain (randomly chosen) angle and rotating back over that same angle, and

comparing the resulting image with the original. The comparison technique

used is described in chapter 8 under 'Rotation comparison'. The angle used for

this test is randomly chosen as 15 degrees.

Table 9.1 shows the result of this procedure executed for four di�erent images

and all methods. The numbers in the table represent the average di�erence per

pixel in gray level. Table 9.2 shows these same numbers as a percentage.

Method: Image 1 Image 2 Image 3 Image 4

primitive: 11.25 12.79 10.80 10.90

bilinear: 4.90 5.47 4.62 3.93

shear-based: 24.90 31.07 24.05 32.21

bilinear shear-based: 24.95 30.88 24.70 32.47

multiple neighbors: 11.85 12.54 6.87 3.14

Table 9.1: Average di�erence in gray level after rotation

Method: Image 1 Image 2 Image 3 Image 4

primitive: 4.41% 5.02% 4.23% 4.27%

bilinear: 1.92% 2.15% 1.81% 1.54%

shear-based: 9.76% 12.18% 9.43% 12.63%

bilinear shear-based: 9.78% 12.11% 9.69% 12.73%

multiple neighbors: 4.65% 4.91% 2.69% 1.23%

Table 9.2: Average di�erence expressed as a percentage after rotation

37

38 CHAPTER 9. RESULTS

It is important to note the great di�erence in execution time between the �rst

four methods and the last one. Rotation with multiple neighbors is much slower

than the other methods, as can be seen in Table 9.3. The machine used for

measuring has a 25MHz 68030 and operated under a stable taskload. The

images have approximately 40000 pixels.

Method: Image 1 Image 2 Image 3 Image 4

primitive: 20 20 19 20

bilinear: 45 43 44 45

shear-based: 12 11 11 12

bilinear shear-based: 44 43 43 45

multiple neighbors: 487 469 472 490

Table 9.3: Execution times for rotations in seconds

From Table 9.1 and Table 9.3 it becomes clear that rotation with bilinear inter-

polation is the best available technique. For this reason this method was tested

further.

Extra tests performed on the rotation with bilinear interpolation

� The noise added to an image steadily increases while the image is being

rotated back and forth multiple times (over an angle of 15 degrees):

Number of rotations Average di�erence

1 3.33 (1.31%)

2 5.35 (2.10%)

3 6.84 (2.68%)

4 8.07 (3.16%)

Table 9.4: Noise increases during multiple rotations

� Noise is similar for all angles:

Angle Avg. di�.

1 degree 3.29 (1.29%)

2 degrees 3.19 (1.25%)

3 degrees 3.17 (1.24%)

4 degrees 3.24 (1.27%)

Table 9.5: Noise is similar for all angles

� Rotation over 0 degrees leaves the image untouched.

9.2. LIGHTING NOISE 39

9.2 Lighting noise

To simulate the normal noise of lighting in images, they are scanned with dif-

ferent levels of lighting. The Epson scanner makes seven di�erent settings of

lighting available (Fig. 9.1-Fig.9.7).

A measure for the di�erence of the created images is the result of a pixel by

pixel comparison. Table 9.7 and Table 9.10 shows the results in absolute and

percentage values.

Afterwards, contrast stretching and histogram equalization (Fig.9.8-Fig.9.14)

were used to produce equalized images.

9.3 Scaling

It is possible to measure the noise generated by scaling, by scaling an image to a

new size and scaling it back to the old size, and comparing the results with the

original. The comparison technique used is the absolute comparison, described

in chapter 8. Table 9.6 shows the average di�erence in gray level and the same

number as a percentage for several pictures.

New size Image 1 Image 2 Image 3 Image 4

70% 6.21 (2.44%) 6.57 (2.58%) 5.08 (1.99%) 5.24 (2.05%)

100% 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%)

130% 3.90 (1.53%) 4.29 (1.68%) 3.48 (1.36%) 3.54 (1.39%)

200% 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%)

Table 9.6: Noise generated by scaling

40 CHAPTER 9. RESULTS

ImagesA�D (-2) (-1) (0) (+1) (+2) (+3)

(-3) 18.537 47.17 58.31 74.21 97.76 129.15

(-2) - 28.64 39.77 55.68 79.23 110.61

(-1) - - 11.14 27.04 51.33 75.01

(0) - - - 15.89 39.45 70.84

(+1) - - - - 23.55 54.94

(+2) - - - - - 31.39

Table 9.7: Scanning with di�erent lighting (absolute values)

Images A�D (-2) (-1) (0) (+1) (+2) (+3)

(-3) 51.41 65.09 65.28 65.56 66.38 72.64

(-2) - 15.10 15.15 15.27 16.06 22.23

(-1) - - 1.49 1.57 2.32 8.66

(0) - - - 1.49 2.22 8.55

(+1) - - - - 2.20 8.46

(+2) - - - - - 7.60

Table 9.8: Histogram equalization (absolute values)

Images A�D (-2) (-1) (0) (+1) (+2) (+3)

(-3) 26.92 56.16 55.15 55.85 71.19 100.97

(-2) - 29.25 28.24 28.94 44.28 74.06

(-1) - - 1.26 0.83 15.11 44.83

(0) - - - 1.01 16.05 45.83

(+1) - - - - 15.39 45.13

(+2) - - - - - 31.29

Table 9.9: Contrast stretching (absolute values)

9.3. SCALING 41

ImagesA�D (-2) (-1) (0) (+1) (+2) (+3)

(-3) 7.24% 18.43% 22.78% 28.99% 38.19% 50.45%

(-2) - 11.19% 15.54% 21.75% 30.95% 43.21%

(-1) - - 4.35% 10.56% 20.05% 29.30%

(0) - - - 6.21% 15.14% 27.67%

(+1) - - - - 9.2% 21.46%

(+2) - - - - - 12.26%

Table 9.10: Scanning with di�erent lighting (percent)

Images A�D (-2) (-1) (0) (+1) (+2) (+3)

(-3) 20.08% 25.43% 25.50% 25.61% 25.93% 28.37%

(-2) - 5.90% 5.92% 5.97% 6.28% 8.69%

(-1) - - 0.58% 0.62% 0.91% 3.38%

(0) - - - 0.58% 0.86% 3.34%

(+1) - - - - 0.86% 3.31%

(+2) - - - - - 2.97%

Table 9.11: Histogram equalization (percent)

Images A�D (-2) (-1) (0) (+1) (+2) (+3)

(-3) 10.51% 21.94% 21.54% 21.81% 27.81% 39.44%

(-2) - 11.43% 11.03% 11.30% 17.29% 28.93%

(-1) - - 0.49% 0.33% 5.90% 17.51%

(0) - - - 0.39% 6.27% 17.90%

(+1) - - - - 6.01% 17.63%

(+2) - - - - - 12.22%

Table 9.12: Contrast stretching (percent)

42 CHAPTER 9. RESULTS

Figure 9.1: Lighting level -3 Figure 9.2: Lighting level -2

Figure 9.3: Lighting level -1 Figure 9.4: Lighting level 0

Figure 9.5: Lighting level +1 Figure 9.6: Lighting level +2

Figure 9.7: Lighting level +3

9.3. SCALING 43

Figure 9.8: Lighting level -3 after

histogram equalization

Figure 9.9: Lighting level -2 after

histogram equalization

Figure 9.10: Lighting level -1 af-

ter histogram equalization

Figure 9.11: Lighting level 0 af-

ter histogram equalization

Figure 9.12: Lighting level 1 af-

ter histogram equalization

Figure 9.13: Lighting level +2 af-

ter histogram equalization

Figure 9.14: Lighting level +3 af-

ter histogram equalization

44 CHAPTER 9. RESULTS

9.4 Comparison

Two tests were done; in the �rst test, similar images (that is, images that

look very much the same to a human) were normalized and compared with

several methods, and in the second test, di�erent images (images that look very

di�erent to a human) were normalized and compared with the same methods.

The numbers in the tables show the average di�erence in gray value per pixel

for several images, and the same number expressed as a percentage.

Figure 9.15: Test image 1 before and after normalization

Image 2 Image 3 Image 4

Image 1 52.96 (20.77%) 49.24 (19.31%) 81.86 (32.10%)

Image 2 - 44.73 (17.54%) 88.94 (34.88%)

Image 3 - - 84.23 (33.03%)

Table 9.13: Comparison of di�erent images using the absolute method

9.4. COMPARISON 45

Figure 9.16: Test image 2 before and after normalization

Figure 9.17: Test image 3 before and after normalization

46 CHAPTER 9. RESULTS

Figure 9.18: Test image 4 before and after normalization

Image 2 Image 3 Image 4

Image 1 0.81 (0.32%) 2.08 (0.82%) 0.82 (0.32%)

Image 2 - 0.12 (0.05%) 1.53 (0.60%)

Image 3 - - 1.42 (0.56%)

Table 9.14: Comparison of di�erent images using the non-absolute method

Image 2 Image 3 Image 4

Image 1 36.65 (14.37%) 36.11 (14.16%) 56.00 (21.96%)

Image 2 - 31.21 (12.24%) 61.82 (24.24%)

Image 3 - - 61.07 (23.95%)

Table 9.15: Comparison of di�erent images using 3�3 best neighbor comparison

Image 2 Image 3 Image 4

Image 1 30.12 (11.81%) 32.02 (12.56%) 52.80 (20.71%)

Image 2 - 27.31 (10.71%) 57.77 (22.65%)

Image 3 - - 56.82 (22.28%)

Table 9.16: Comparison of di�erent images using 5�5 best neighbor comparison

9.4. COMPARISON 47

Figure 9.19: Test image 5 before and after normalization

Figure 9.20: Test image 6 before and after normalization

48 CHAPTER 9. RESULTS

Figure 9.21: Test image 7 before and after normalization

Figure 9.22: Test image 8 before and after normalization

9.4. COMPARISON 49

Image 6 Image 7 Image 8

Image 5 7.76 (3.04%) 7.26 (2.85%) 6.95 (2.73%)

Image 6 - 6.91 (2.71%) 7.78 (3.05%)

Image 7 - - 7.91 (3.10%)

Table 9.17: Comparison of similar images using the absolute method

Image 6 Image 7 Image 8

Image 5 0.98 (0.38%) 0.73 (0.29%) 0.27 (0.11%)

Image 6 - 0.29 (0.11%) 0.84 (0.33%)

Image 7 - - 1.07 (0.42%)

Table 9.18: Comparison of similar images using the non-absolute method

Image 6 Image 7 Image 8

Image 5 2.30 (0.90%) 2.08 (0.82%) 2.22 (0.87%)

Image 6 - 1.92 (0.75%) 2.49 (0.98%)

Image 7 - - 2.33 (0.91%)

Table 9.19: Comparison of similar images using 3 � 3 best neighbor comparison

Image 6 Image 7 Image 8

Image 5 1.67 (0.65%) 1.44 (0.56%) 1.49 (0.58%)

Image 6 - 1.36 (0.53%) 1.66 (0.65%)

Image 7 - - 1.49 (0.58%)

Table 9.20: Comparison of similar images using 5 � 5 best neigbor comparison

50 CHAPTER 9. RESULTS

9.5 Discretization noise

Remembering the visualization of discretization noise in chapter 7, there is a

way to prove this optical result mathematically, by calculating di�erence images.

For this reason, four original images (Fig.: 9.23) were scanned with the same

lighting and no changes in their position on the scanner. The resulting images

were compared pixel-by-pixel. The result of image A and the average di�erence

is shown in Table 9.21.

Table 9.22 and Table 9.23 show the results after 3 � 3 median �ltering and 3 � 3

lowpass �ltering.

Figure 9.23: The four example images

Image A scan 2 scan 3 scan 4 scan 5

scan 1 0.38 0.37 0.37 0.37

scan 2 - 0.39 0.44 0.43

scan 3 - - 0.42 0.41

scan 4 - - - 0.37

Average = 0.39

Table 9.21: Scanner noise (Image A, Lighting level 0)

Conclusions from these �ndings follow in the next chapter.

9.5. DISCRETIZATION NOISE 51

Image A scan 2 scan 3 scan 4 scan 5

scan 1 0.34 0.32 0.32 0.31

scan 2 - 0.35 0.39 0.38

scan 3 - - 0.37 0.35

scan 4 - - - 0.31

Average = 0.35

Table 9.22: Scanner noise after 3x3 median �ltering (Image A, Lighting level 0)

Image A scan 2 scan 3 scan 4 scan 5

scan 1 0.20 0.20 0.20 0.21

scan 2 - 0.21 0.23 0.21

scan 3 - - 0.21 0.21

scan 4 - - - 0.19

Average = 0.21

Table 9.23: Scanner noise after 3x3 lowpass �lter (Image A, Lighting level 0)

ImagesA�D Average

without processing 0.45 (0.18%)

median �lter (3*3) 0.38 (0.15%)

lowpass �lter (3*3) 0.24 (0.10%)

histogram equalization 0.84 (0.33%)

contrast stretching 0.89 (0.35%)

Table 9.24: Application of the processing techniques

.

