
operations on JPEG imagesE.F. de Vries G.P. KumaraSeptember 20, 1994

Contents

1 Introduction 5
1.1 The operations : 5
1.2 Terminology & notation : 6

2 JPEG coding 7
2.1 JPEG algorithm : 7

2.1.1 Block division : 7
2.1.2 Normalization : 7
2.1.3 Discrete cosine transform : 7
2.1.4 Quantization : 8
2.1.5 Zigzag : 9
2.1.6 Runlength encoding : 9
2.1.7 Huffman encoding : 10

2.2 Minimal Code Unit : 10
2.3 Some more DCT : 10
2.4 Quantization tables : 12

3 Algebraic operations: the mathematical side 13
3.1 Scalar multiplication : 13
3.2 Scalar addition : 13
3.3 Pixel addition : 14
3.4 Pixel multiplication : 14

4 Algebraic operations: the implementation side 15
4.1 DC-differences, quantization and rounding errors : 16
4.2 Scalar multiplication : 17
4.3 Scalar addition : 18
4.4 Pixel addition : 20
4.5 Pixel multiplication : 22
4.6 Combination array : 22

4.6.1 The datastructure : 23
4.6.2 The convolution algorithm : 24

5 The modules 27
5.1 block.c : 27
5.2 calc.c : 27
5.3 huffman.c : 27

5.3.1 Setting up Huffman tables : 27
5.3.2 Decoding : 28
5.3.3 Encoding : 29

5.4 image.c : 29
5.5 jfif.c : 29
5.6 memmgr.c : 30

1

Contents 2

5.7 pmul.c : 31
5.8 rle.c : 31
5.9 The main modules : 31

5.9.1 Scalar multiplication : 31
5.9.2 Pixel addition : 32
5.9.3 Pixel multiplication : 33
5.9.4 The brute force operations : 33

6 JFIF 37
6.1 Markers : 37
6.2 A JFIF example : 38

7 Results 41
7.1 Scalar multiplication : 43
7.2 Scalar addition : 44
7.3 Pixel addition : 45
7.4 Pixel multiplication : 46

8 Conclusions 47
8.1 General remarks : 47
8.2 Scalar multiplication : 47
8.3 Scalar addition : 48
8.4 Pixel addition : 48
8.5 Pixel multiplication : 48

9 Further ideas for further research 49
9.1 Pixel division : 49

A Auxiliary tools 52
A.1 readblock.c : 52
A.2 huffload.c : 52
A.3 dct.c : 52
A.4 setcomp.c : 53
A.5 rlestat.c : 53
A.6 Timing tools : 53

A.6.1 alljobs.c : 54
A.6.2 checkjob.c : 54

B Timing results SGI Indy 56
B.1 Scalar multiplication : 56
B.2 Scalar addition : 57
B.3 Pixel addition : 58

C Run Length Encoding - statistics 60

List of Figures

1.1 Scalar multiplication in practice. : 5
1.2 Scalar addition in practice. : 5
1.3 Pixel addition in practice. : 6
1.4 Pixel multiplication in practice. : 6
1.5 An example of our notation. : 6

2.1 Normalization. : 7
2.2 DCT step. : 8
2.3 Quantization step. : 8
2.4 Zigzag step. : 9
2.5 RLE step. : 9
2.6 The construction of one MCU. : 11
2.7 Basic quantization tables. : 12
2.8 Quality conversion. : 12

4.1 Example of DC-differences and rounding errors : 16
4.2 Scalar multiplication: input, result of DC-coefficients, result of DC-differences. : : : : : : : : : : : : : : 16
4.3 Scalar multiplication with DC-coefficients and with DC-differences. : : : : : : : : : : : : : : : : : : : 17
4.4 Scalar addition with DC-coefficients and with DC-differences. : 19
4.5 Pixel addition with DC-coefficients and with DC-differences. : 20
4.6 The combination array. : 23
4.7 The most likely way to evalute YQ;zz. : 24
4.8 Another way to evaluate YQ;zz. : 25
4.9 The convolve algorithm. : 26

5.1 An MCU of blocks. : 27
5.2 The Huffman structure. : 27
5.3 Part of a hufftable. : 28
5.4 Mincode, maxcode and valptr. : 28
5.5 Image struct: the image structure. : 30
5.6 The relation between prec, factor and range. : 31
5.7 An overview of the main modules. : 32
5.8 The smart way. : 32
5.9 Scalar multiplication: RLE-in-RLE-out and ghost-amplitudes. : 32
5.10 Scalar multiplication: RLE in zigzagged vector out. : 33
5.11 Pixel addition: block in block out. : 34
5.12 Pixel addition: RLE in block out. : 35
5.13 An overview of the main brute force modules. : 36
5.14 The brute force way. : 36

6.1 A list of used markers. : 37
6.2 An example of the output of readblock which identifies blocks within a JFIF file. : : : : : : : : : : : : : 40

9.1 Pixel division as a linear system. : 50

3

List Of Figures 4

A.1 Huffload in action. : 52
A.2 Example of a dct session. : 53
A.3 Example of a jobfile. : 54
A.4 Example output of a timing session. : 54

Chapter 1

Introduction

This report describes the implementation of a family
of algorithms, that can perform image operations directly
on the compressed data of the image. The time needed,
to execute these operations directly on the compressed
data of the image, should be less than the so called ‘brute
force’ version of the operation. This can be achieved,
because of the following reasons:� a compressed image contains substantially less data

than its unpacked counterpart.� no decompression and compression has to be per-
formed.

The compression algorithm used in this project is de-
veloped by the Joint Photographic Expert Group (JPEG).
The JPEG standard is developed for continuous-tone
(real-life) images. Using a JPEG compression algorithm
for non continuous-tone images might result in a ‘com-
pressed image’ that is actually larger than its unpacked
version. The JPEG standard includes two basic compres-
sion methods.

1. a predictive method for ‘lossless’ compression. (a
description of this method can be found in [Wall])

2. a DCT-based method for lossy compression. (for a
description of this method see Section 2.1)

The JPEG compression method used in the project is a
DCT-based method.

1.1 The operations
scalar multiplication

Intuitively, scalar multiplication will give a change in
contrast in the image. In the YCbCr colour space, the
first component determines the (greyscale) ‘scene’ of the
image. Differences of neighbouring values are scaled
by a given factor, and therefore are increased (if the
factor> 1) or decreased (if the factor< 1), with a change
in contrast as a result. For an example, see Figure 1.1.

1 5

12 7

2 10

24 14∗ 2 =

* 2 =

Figure 1.1: Scalar multiplication in practice.

scalar addition

Scalar addition adds the same factor � to all elements
in a component (each component can have it’s own add
factor). This will result in a brighter (factor> 0) or darker
image (factor < 0) (see Figure 1.2).

This operation can be used before scalar multiplication,
to maximize the effect of contrast stretching.

1 5

12 7

101105

112107+100=

+ 100 =

Figure 1.2: Scalar addition in practice.

5

Chapter 1. Introduction 6

1 5

12 7

21 2249 54

3 1533 40+ =

+

Figure 1.3: Pixel addition in practice.

pixel addition

Two images are added pixel by pixel. The resulting image
is a mix of the two input images. This might be useful for
subtitling (add an image of a real life scene to an image
of the subtitle) or dissolving one image into another.

Figure 1.3 shows pixel addition in practice.

pixel multiplication

Pixel multiplication can be used to mask off regions in
an image. Another use of pixel multiplication is image
enhancement. Taking the ‘square of an image’ applying
the correct scaling factors can give interesting results.

Figure 1.4 shows an example of pixel multiplication.

1.2 Terminology & notation
In this section we will introduce the notations and termi-
nology used in this report. First we introduce the notations
we use for (sub)images. With x1, x2 and y we denote the
normalized 8x8 matrices in the spatial domain. X1,X2
and Y are used to represent x1, x2 and y resp. in the
frequency domain. The subscript ‘Q’ is used whenever
we are dealing with the quantized version of a matrix.
The subscript ‘zz’ is used for zigzagged ordered versions
of the matrices. Note that this subscript implies a vector
instead of a matrix. For an example of our notation see
Figure 1.5.

1 5

12 7

2 24 20

3 365 35∗ =

*

Figure 1.4: Pixel multiplication in practice.

We use i and j for the indices of a block in the spatial
domain (x1[i; j]). u1, u2, v1, v2, w1 and w2 are used for
indices in the frequency domain (X1[v1; v2]). u is the
zigzag ordered (Subsection 2.1.5) counterpart of (u1; u2).v and w are defined likewise (see Subsection 2.1.3 and
Subsection 4.6.1).x1 : spatial domainX1 : frequency domainX1;Q : quantized X1X1;Q;zz : zigzag ordered vector of X1;Q

Figure 1.5: An example of our notation.

Chapter 2

JPEG coding

In this chapter we will present everything needed to
understand our implementation of the operations given
in [Smith]. This knowledge not only includes the JPEG
algorithm, but also some insight in the Discrete Cosine
Transform and quantization tables.

2.1 JPEG algorithm
In this section, we give an overview of the JPEG algo-
rithm. A complete description can be found in [Wall].

Suppose we are dealing with images in the YCbCr
colour space; the first component determines the lumi-
nance, the second and third component determine the
chrominance. Suppose also that each value in all com-
ponents is an eight bit value. These assumptions are
realistic ones since most JPEG-images are distributed in
the JFIF-standard which uses the YCbCr colour space as
a standard. The JFIF-standard will be briefly described
later in this report. See Chapter 6.

2.1.1 Block division
The first step divides all components in submatrices of
8x8. Components that do not have sizes that are a multiple
of 8 are padded with zeroes on the right and bottom side
of the image. These submatrices are called blocks in
JPEG-terminology.

2.1.2 Normalization
The second step in the JPEG-algorithm is to normalize
the blocks i.e. all values in all blocks of all components

should be in the range �128 : : :127. In our colour
space, we only need to normalize the blocks of the first
component (which have values in the range 0 : : :255),
since the blocks of the second and third component are
already in the correct range.166 166 166 166 166 165 166 166166 166 166 168 166 164 166 167166 166 166 165 166 167 166 166166 164 166 166 165 166 166 166166 166 167 166 166 98 166 166167 166 168 166 166 98 98 98166 166 166 166 166 98 108 108166 165 164 166 166 98 108 108

Normalisatie38 38 38 38 38 37 38 3838 38 38 40 38 36 38 3938 38 38 37 38 39 38 3838 36 38 38 37 38 38 3838 38 39 38 38 -30 38 3839 38 40 38 38 -30 -30 -3038 38 38 38 38 -30 -20 -2038 37 36 38 38 -30 -20 -20
Figure 2.1: Normalization.

2.1.3 Discrete cosine transform

The third step is the Discrete Cosine Transform (DCT)
which transforms the original 8x8 matrices into blocks in
the frequency domain in which we perform our opera-
tions. Let y be a normalized 8x8 matrix and let Y be the
result of the DCT on y. Then by definition of the DCT

7

Chapter 2. JPEG coding 8

we haveY [u; v] =
1
4

7Xi=0 7Xj=0C(i; u)C(j; v)y[i; j] (2.1)

for u; v = 0 : : :7 whereC(i; u) = A(u) cos
(2i + 1)u�

16
(2.2)

andA(u) =

� 1p2 for u = 0

1 for u 6= 0

This is done for every block in all components.Y [0; 0] is called the DC-coefficient (Direct Current).
The DC-coefficient represents the average intensity or
amplitude of the block.

The Y [u; v] for u; v = 1 : : :7 are called the AC-
coefficients (Alternating Current). The AC-coefficients
represent the fluctuations in the intensity of the block.38 38 38 38 38 37 38 3838 38 38 40 38 36 38 3938 38 38 37 38 39 38 3838 36 38 38 37 38 38 3838 38 39 38 38 -30 38 3839 38 40 38 38 -30 -30 -3038 38 38 38 38 -30 -20 -2038 37 36 38 38 -30 -20 -20

DCT224 86 -24 -27 35 -3 -26 2981 -89 30 19 -30 7 21 -23-18 22 -16 8 1 -6 5 -5-20 24 -4 -11 10 0 -10 1116 -23 16 -7 0 6 -7 43 -1 -7 13 -8 -3 12 -9-11 14 -10 6 -1 -4 5 -27 -11 15 -13 5 4 -13 10
Figure 2.2: DCT step.

2.1.4 Quantization
The fourth step is the quantization step. This quantization
step is defined by:YQ[u; v] = IntegerRound

�Y [u; v]q[u; v]

�

for u; v = 0 : : :7.

Every element of each block is divided by a given value.
The values, q[u; v], that are used for this quantization
process are stored in a matrix. This matrix is called a
quantization table. The 64 element quantization table
does not contain any values less or equal to zero.

The aim of this process is to get rid of small values
in the frequency domain, which appear mostly at the
lower right of the matrix (with the origin at the upper
left corner) by scaling them to zero. This will cause
runs of consecutive zeroes, which will result in a better
compression (see 2.1.6).

Small entries in the matrix can be set to 0 by dividing
them by larger values using integer rounding. At the
decoding process (at the dequantization stage to be more
precisely), these zero entries will stay zero. In other
words, instead of the original matrix, a mutated matrix
will be the result of dequantizing.

Typically, there is one quantization table for the lu-
minance component and one quantization table for the
chrominance components. A quantization table in the
JFIF standard is always stored in zigzag order, see fig-
ure 2.4. The higher the values in the quantization table,
the better the compression, but the bigger the loss of
information will be. If all entries in the quantization
tables would be 1, then no information loss due to quan-
tization will occur, but a poor compression ratio will be
the penalty.224 86 -24 -27 35 -3 -26 2981 -89 30 19 -30 7 21 -23-18 22 -16 8 1 -6 5 -5-20 24 -4 -11 10 0 -10 1116 -23 16 -7 0 6 -7 43 -1 -7 13 -8 -3 12 -9-11 14 -10 6 -1 -4 5 -27 -11 15 -13 5 4 -13 10 16 11 12 14 12 10 16 1413 14 18 17 16 19 24 4026 24 22 22 24 49 35 3729 40 58 51 61 60 57 5156 55 64 72 92 78 64 6887 69 55 56 80 109 81 8795 98 103 104 103 62 77 113121 112 100 120 92 101 103 99

Quantisatie14 8 -2 -2 3 0 -2 26 -6 2 1 2 0 1 -1-1 1 -1 0 0 0 0 0-1 1 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0
Figure 2.3: Quantization step.

Chapter 2. JPEG coding 9

2.1.5 Zigzag
The fifth step of the JPEG algorithm is called the zigzag
scan step. The 8x8 matrices YQ, the so called ‘blocks’,
are converted into zigzagged vectors YQ;zz , containing
the 64 matrix elements using the ‘zigzag’ ordering.

In most images this vector will contain a lot of sequen-
tial zeroes, especially at the end of the vector. Both the
discrete cosine transform and the quantization process are
responsible for this.

If a picture is compressed according to the JFIF stan-
dard, the quantization tables are stored in zigzag order.
In that case steps 4 and 5 of the algorithm should be
swapped.14 8 -2 -2 3 0 -2 26 -6 2 1 2 0 1 -1-1 1 -1 0 0 0 0 0-1 1 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Zigzag14 8 6 -1 -6 -2 -2 2 1 -1 0 !,! 1 -1 1 3 0 2 0 0 0 0 0 !,! 0 0 0 0 0 -2 2 1 0 0 0 !,! 0 0 0 0 0 0 0 0 0 -1 0 !,! 0 0 0 0 0 0 0 0 0 0 0 !,! 0 0 0 0 0 0 0 0 0
Figure 2.4: Zigzag step.

2.1.6 Runlength encoding
The input of the Run Length Encoding (RLE) process is
the 64 element zigzag vector. The output of this process
is a ‘Runlength Encoded block’ (RLE-block). Note that a
more precise term would be RLE-zigzag-vector. The first
element is the DC-coefficient of the frequency domain,
the other 63 elements are the AC-coefficients.

The DC-coefficient is treated differently from the AC-
coefficients: Instead of the actual DC-coefficients, the

difference of the DC-coefficients of two consecutive
blocks is stored in the RLE representation.14 8 6 -1 -6 -2 -2 2 1 -1 0 1 -1 1 3 0 !,! 2 0 0 0 0 0 0 0 0 0 0 -2 2 1 0 0 !,! 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 !,! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RLE0 140 80 60 -10 -60 -20 -20 20 10 -11 10 -10 10 31 210 -20 20 112 -10 0
Figure 2.5: RLE step.

RLE is used to represent a run of zeroes by the length
of this run. This decreases storage space for the vector
since most vectors end with a lot of zeroes.

The RLE representation for the DC-coefficient is de-
fined as:

(SIZE)(AMPLITUDE)

where ‘SIZE’ is the number of bits that is needed to
represent the difference of the DC-coefficient of the
current block and the DC-coefficient of the previous block
in the same component (‘AMPLITUDE’). Differences are
stored because in real life images, differences between
consecutive DC-coefficients tend to be small, so we need
fewer bits to store them.

Chapter 2. JPEG coding 10

The RLE representation for the AC-coefficients is
defined as:

(RUNLENGTH, SIZE)
(AMPLITUDE)

where ‘RUNLENGTH’ represents the number of con-
secutive zeroes preceeding the current ‘AMPLITUDE’
(nonzero). This nonzero is represented by ‘SIZE’ bits.
In Section 7.1 of [Wall] it is mentioned that the FDCT
applied on a 8x8 point signal containing 8-bit integers
results in DC-coefficients of at most 11-bits. So ‘SIZE’
can have integer values in the range [1, 11]; ‘SIZE’ needs
4 bits to represent values in this range.

‘RUNLENGTH’ represents zero-runs of length 0 to 15
(note that ‘RUNLENGTH’ can be stored using 4 bits).
A run containing more than 16 consecutive zeroes, sayn zeroes, is represented by a (0xF,0) marker, followed
by the (RUNLENGTH, SIZE)(AMPLITUDE) represen-
tation for the remaining n � 16 zeroes. Up to three
consecutive (0xF,0) markers can preceed the terminating
(RUNLENGTH, SIZE) symbol.

The last step is the Huffman encoding step.

(0,0).

This marker is called the End of Block marker (EOB).
We end this subsection by mentioning that a (RUN-

LENGTH, SIZE) symbol can be stored in exactly one
byte.

2.1.7 Huffman encoding
The last step is the Huffman encoding step. Huffman is
used to decrease the storage space that is needed for the
Runlength Encoded version of YQ;zz. The most frequent
(RUNLENGTH, SIZE) combinations are given the short-
est Huffman codes and less frequent combinations are
given the larger codes. Huffman tables can vary between
JPEG images that are generated by different applications.

2.2 Minimal Code Unit
The steps described in Subsection 2.1.3 through Sub-
section 2.1.7 describe what to do with each block of a
component but not in what order the components (or
rather, the blocks of the components) are to be processed.

Another problem is that different components can have
a different number of blocks. This can be caused by the
different sampling factors for each component.

For example, in the YCbCr colour space, the first
components needs to be sampled more precise because
the first component determines luminance, but the second

and third component can be sampled roughly since these
two components determine chrominance only.

For these purposes, the notion Minimal Code Unit
(MCU) was introduced. The idea is to interleave the
scan-data of the components. an MCU is defined to be
the smallest unit of interleaved data.

First each component i is divided into block-matrices
of Hi by Vi blocks where Hi and Vi are the horizontal
and vertical sampling factors for component i.

Next, each block-matrix is transformed into a block-
vector by a left to right, top to bottom ordering.

Now the jth MCU can be formed by taking the jth
block-vector of the first component, then the jth block-
vector of the second component and so on. (See Fig-
ure 2.6).

The implementation of the steps in Subsection 2.1.3
through Subsection 2.1.7 is MCU oriented; each step
operates on a complete MCU.

2.3 Some more DCT
In this section, we will highlight some features of the
DCT which will be useful further on.

Consider equation 2.1 in Section 2.1. Supposey[i; j] = n for i; j = 0 : : :7 and for some value n.
If the DCT would be applied on matrix y thenY [u; v] =

�
8n for u; v = 0
0 otherwise

(2.3)

This result can be generalized; now y[i; j] = ni;j fori; j = 0 : : :7. The DC-coefficient can still be calculated
without the difficult equation 2.1:Y [0; 0] =

1
8

7Xi=0 7Xj=0 y[i; j]

which could be rewritten as:Y [0; 0] = 8
1

64

7Xi=0 7Xj=0 y[i; j]:
This is the average of all matrix entries in y multiplied
by 8, so determination of the DC-coefficient is a linear
process.

This may not be a surprising result if you’re familiar
with the Discrete Cosine Transform, but it’s a useful fact.

Again, consider equation 2.1, and the entries in the
matrix are y[i; j] = ni;j for i; j = 0 : : :7. Y is the result
of the DCT applied to y. Suppose we want to add n to
every entry in y but we only have Y .

We could apply the inverse DCT to Y and add n to
every entry in y. But if we keep in mind that the DC-
coefficient is the average value of all y[i; j], we could
‘shift’ this average.

Chapter 2. JPEG coding 11

component 3:
(Hi,Vi) = (1,1)

1

component 2:
(Hi,Vi) = (1,1)

1

block (8x8 subimage)

1 2 3 4 1 1MCU
co

m
po

ne
nt

1

co
m

po
ne

nt
2

co
m

po
ne

nt
3

1 2

3 4

component 1:
(Hi,Vi) = (2,2)

Figure 2.6: The construction of one MCU.

Chapter 2. JPEG coding 12

If a is the average and we would add n to every y[i; j]
then the new average would be a+n. The DC-coefficient
is the average value multiplied by 8, so we get 8a + 8n.
We see that we only have to multiply n by 8 and add this
to Y [0; 0]. So our new version of Y (let’s call it Y 0) looks
like:Y 0[u; v] =

� Y [0; 0] + 8n for u; v = 0Y [u; v] otherwise
(2.4)

This property is not only useful for scalar addition,
but also for denormalizing the first component when
performing scalar multiplication or pixel multiplication.

To finish this Section, we will present the inverse DCT
(IDCT), which will be used in pixel multiplication.y[i; j] =

1
4

7Xu=0 7Xv=0C(i; u)C(j; v)Y [u; v] (2.5)

2.4 Quantization tables
As already mentioned in Section 2.1.4, in a colour| 3 component| image there is a separate quantiza-
tion table for the luminance component, and one quan-
tization table for both the chrominance components. A
greyscale image consists of only one (luminance) compo-
nent and therefore contains only one quantization table.

The quantization tables determine the quality and the
compression ratio of the resulting image. The higher the
values in the quantization table, the better the compres-
sion, but the bigger the loss of information will be. If
all entries in the quantization tables would be 1, then
no information loss due to quantization will occur, but a
poor compression ratio will be the penalty. Because of the
influence of the quantization tables on the file size and the
quality of the resulting image most JPEG compression
programs let you pick a file size versus image quality
trade off by selecting a quality setting. This quality deter-
mines the contents of the quantization tables. A quality
range that is used in most JPEG compression programs
is 1: : : 100. For every different quality, different (quality
based) quantization tables should be used. For a max-
imum quality (of 100) all elements of the quantization
tables should be 1.

To determine a quality based quantization table the
only additional information needed is a basic quantization
table. For a greyscale image only a basic luminance
quantization table is required. For a colour image two
basic quantization table are needed to determine the
quality based luminance and chrominance quantization
tables. For some example basic quantization tables see
Figure 2.7. These basic tables quantization tables are (as
all good quantization tables) stored in zigzag order.

luminance quantization table:

16 11 12 14 12 10 16 14
13 14 18 17 16 19 24 40
26 24 22 22 24 49 35 37
29 40 58 51 61 60 57 51
56 55 64 72 92 78 64 68
87 69 55 56 80 109 81 87
95 98 103 104 103 62 77 113

121 112 100 120 92 101 103 99

chrominance quantization table:

17 18 18 24 21 24 47 26
26 47 99 66 56 66 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Figure 2.7: Basic quantization tables.

Every quality based quantization table can now be
extracted from this basic table by using the user selected
quality. The relationship between an element in the
basic quantization table (basic tbl[i]) and an element in a
quality based quantization table q tbl[i] can be described
according to the algorithm in figure 2.8.

if quality<50 then

q table[i] =

�
basic tbl[i]� 5000

quality
+50

�
100

else

q table[i] =

�
basic tbl[i]�(200 - 2�quality) + 50

�
100

fi

Figure 2.8: Quality conversion.

If the selected quality is 100 then all elements in
the quality based quantization table will be 1. Use of
this maximum quality is not recommended because the
resulting file will be two or three times as large as with
quality 95, but of hardly any better quality. If the selected
quality is 50 the quality based quantization table will be
the same as the basic quantization table.

The lower the quality, the larger the elements in the
quality based quantization tables. As a result, the quan-
tization step will produce more zero-entries. More zero-
entries will reduce the average number of entries in an
RLE block.

Chapter 3

Algebraic operations: the mathematical side

The sections in [Smith] that deal with the operations
only give a short mathematical explanation (except for
pixel multiplication). A complete mathematical descrip-
tion will be given for each operation in the following
sections, where we won’t involve quantization yet. We
will only show how the algebraic operations would look
like in the frequency domain.

Furthermore, in the following sections of this chapter,
we will work with the actual DC-coefficients instead of
the DC-differences that are stored in the bitstream by the
JPEG method. How to deal with the DC-differences will
be discussed in Chapter 4.

3.1 Scalar multiplication

Let’s recall the Discrete Cosine Transform (Eq. 2.1).
Suppose y is the result of scalar multiplicationby factor �
on the original 8x8 submatrix and x is our original matrix.
In other words:y[i; j] = �x[i; j] (3.1)

for i; j = 0; : : : ; 7.
We now substitute Eq. 3.1 into Eq. 2.1 to obtain:Y [u; v]

=
1
4

7Xi=0 7Xj=0C(i; u)C(j; v)y[i; j]

=
1
4

7Xi=0 7Xj=0C(i; u)C(j; v)�x[i; j]

= �1
4

7Xi=0 7Xj=0C(i; u)C(j; v)x[i; j]

= �X[u; v]

This implies that scalar multiplication in the frequency
domain is equivalent to scalar multiplication in the spatial
domain.

3.2 Scalar addition
Scalar addition adds the same factor � to all elements in a
block. If we recall Section 2.3, scalar addition is an easy
operation.

Let y be the result of scalar addition on x with factor �
in the spatial domain. So we havey[i; j] = x[i; j] + � (3.2)

for i; j = 0; : : : ; 7.
Substitution of Eq. 3.2 into Eq. 2.1 givesY [u; v] =

=
1
4

7Xi=0 7Xj=0C(i; u)C(j; v)y[i; j]

=
1
4

7Xi=0 jXj=0C(i; u)C(j; v) fx[i; j] + �g
=

1
4

7Xi=0 7Xj=0 fC(i; u)C(j; v)x[i; j] +C(i; u)C(j; v)�g
=

1
4

7Xi=0 7Xj=0C(i; u)C(j; v)x[i; j] +

1
4

7Xi=0 7Xj=0C(i; u)C(j; v)�
= X[u; v] + Z[u; v]

for u; v = 0; : : : ; 7.
Let Z[u; v] be the result of the DCT applied on matrixz, with z[i; j] = � for i; j = 0; : : : ; 7. If we use the

property, given in Eq. 2.3, we see thatY [u; v] =

= X[u; v] + Z[u; v]

=

� X[u; v] + 8� for u; v = 0X[u; v] otherwise
(3.3)

Another way of looking at scalar addition is to notice
that adding � to all entries in x is the same as adding �

13

Chapter 3. Algebraic operations: the mathematical side 14

to the average of all entries in x. If we define a to be the
average of all values in x then a+� would be the average
of all entries in y, so Y [0; 0] (the DC coefficient of Y)
would be 8(a + �) = 8a + 8�, which is X[0; 0] + 8�.

We conclude this section with the remark that we
only have to perform one addition and one multiplication
per matrix in the frequency domain (namely Y [0; 0] =X[0; 0]+8�), instead of 64 additions in the spatial domain.

3.3 Pixel addition
Pixel addition (or rather matrix addition) is defined byy[i; j] = x1[i; j] + x2[i; j] (3.4)

for i; j = 0; : : : ; 7.
Substitution of Eq. 3.4 into Eq. 2.1 givesY [u; v] =

=
1
4

7Xi=0 7Xj=0C(i; u)C(j; v)y[i; j]

=
1
4

7Xi=0 7Xj=0C(i; u)C(j; v) fx1[i; j]

+x2[i; j]g
=

1
4

7Xi=0 7Xj=0 fC(i; u)C(j; v)x1[i; j]+C(i; u)C(j; v)x2[i; j]g
=

1
4

7Xi=0 7Xj=0C(i; u)C(j; v)x1[i; j] +

1
4

7Xi=0 7Xj=0C(i; u)C(j; v)x2[i; j]

= X1[u; v] + X2[u; v] (3.5)

for u; v = 0; : : : ; 7
So if we compare Eq. 3.4 to Eq. 3.5, we see that pixel

addition in the frequency domain is the same as pixel
addition in the spatial domain.

3.4 Pixel multiplication
Pixel multiplication in the spatial domain is defined byy[i; j] = x1[i; j]x2[i; j] (3.6)

for i; j = 0; : : : ; 7.
In [Smith], a factor � is introduced to scale the prod-

ucts in order to keep the values within the correct range
(depending on the colour space and component we’re

using). Since this is not important for the mathematical
discussion on pixel multiplication in the frequency do-
main, we will leave it out for now, and we will introduce
this � in Section 4.5.

Substitution of Eq. 3.6 into Eq. 2.1 gives:Y [u1; u2] =

=
1
4

7Xi=0 7Xj=0C(i; u1)C(j; u2)y[i; j]

=
1
4

7Xi=0 7Xj=0C(i; u1)C(j; u2)x1[i; j]x2[i; j]

=
1
4

7Xi=0 7Xj=0C(i; u1)C(j; u2)
1
4

7Xv1=0 7Xv2=0C(i; v1)C(j; v2)X1[v1; v2]

!
1
4

7Xw1=0 7Xw2=0C(i; w1)C(j; w2)X2[w1; w2]

!
(3.7)

=
7Xv1;v2;w1;w2=0 (X1[v1; v2]X2[w1; w2]��M [v1; v2; w1; w2; u1; u2]) (3.8)

whereM [v1; v2; w1; w2; u1; u2] =

=
1

64
W [u1; v1; w1]W [u2; v2; w2]

withW [u; v; w] =
Xi=0 C(i; u)C(i; v)C(i; w)

for u1; u2 = 0; : : : ; 7.
Notice that the IDCT, as defined in Eq. 2.5, is used to

get Eq. 3.7.

spatial domain frequency domainy[i; j] = �x[i; j] Y [u; v] = �X [u; v]y[i; j] = x[i; j] + � � X [u; v] + 8� als u; v = 0X [u; v] als u; v 6= 0y[i; j] = x1[i; j] + x2[i; j] Y [u; v] = X1[u; v] +X2[u; v]y[i; j] = x1[i; j]x2[i; j] Y [u1; u2] == 7Xv1 ;v2;w1 ;w2=0(X1[v1; v2]X2[w2; w2]�M [v1; v2; w1;w2; u1; u2])
Table 3.1: An overview of the operations.

Chapter 4

Algebraic operations: the implementation side

In this chapter we will adjust the theory, given in
Chapter 3 to properties of JPEG compressed images.

First we will extend the results obtained in Chapter 3;
Eq. 3.2, Eq. 3.3, Eq. 3.5 and Eq. 3.8 are modified to quan-
tization, DC-differences and normalization separately.
Then these modifications are combined.

quantization
A complete mathematical description for each operation
was given in Chapter 3, in which we didn’t use quantiza-
tion. Now we will use quantization but we will make the
following assumptions:

Assumption 4.1 The quantization tables for the output
image of scalar multiplication and scalar addition are
the same as for the input image.

Assumption 4.2 The quantization tables for the output
image of pixel multiplication and pixel addition are the
same as for the first input image that is selected in our
program.

In the operations scalar addition, pixel addition and
pixel multiplication, we introduce an additional scaling
factor. With this factor, we try to keep the outcome in
the correct range (depending on the colour space and
component we’re using).

DC-differences
In Chapter 3 we didn’t use the DC-differences. In this
chapter we will examine the influence of using DC-
differences, instead of DC-coefficients, on the equations
in Chapter 3.

In [Smith], DC-coefficients are used instead of DC-
differences. Reasons for the use of DC-coefficients could
be:� Source code; The source code provided by the [Ijg]

automatically converts the quantized DC-differences
into the quantized DC-coefficients.

� Simplicity; Using DC-coefficients makes the the-
ories in Chapter 3 easier to understand. However
some increase in performance can be expected when
the DC-differences are used.� Rounding errors; Theoretically in some operations it
doesn’t make any difference whether DC-differences
or DC-coefficients are used to calculate the out-
put image. In pratice however, rounding errors
made during calculation of the output image (using
DC-differences) might influence further calculations
of the output DC-differences. Rounding errors might
pile up.

normalization

In the JPEG method, all values are brought into the range�128 : : :127, before the DCT is applied. Normally,
we would bring our data back into the spatial domain,
denormalize it when necessary, perform our operation,
normalize it when necesarry and bring it back into the
frequency domain.

Now we want to perform the operations directly in the
frequency domain. This leaves us with the problem of
combining denormalization, applying our operation and
normalization in the frequency domain.

As we’re assuming our JPEG files to be formatted in
the JFIF style, this process only needs to be done for the
first component.

One remark can be made here on the combination of
normalization and the use of DC-differences: When DC-
differences are used to perform an operation on a normal-
ized component, then the denormalization and normal-
ization only needs to be done for the first DC-difference
(which is in fact a DC-coefficient); the difference be-
tween two consecutive DC-coefficients stays the same,
whether the component containing the DC-coefficients
was normalized or not.

15

Chapter 4. Algebraic operations: the implementation side 16

scaling factor
In the operations pixel addition and pixel multiplication,
the values of the resulting pixels could easily go out of
the valid ranges. To avoid this, we introduced a scaling
factor �. The principle is basicly the same as scalar
multiplication, but now we have to combine the scaling
factor with pixel addition and pixel multiplication.

combined
In practice, the above properties of JPEG images are
combined, so the underlying theories have to be com-
bined as well. This has consequences for the operations
scalar multiplication and pixel addition, in particular for
the calculation of the resulting DC-differences or DC-
coefficients. The calculation of the DC-differences or
DC-coefficients, will be discussed in these subsections

4.1 DC-differences, quanti-
zation and rounding er-
rors

Before we describe the implementation issues of the op-
erations, we will take a look at the use of DC-differences
in combination with quantization tables.

One general remark on DC-differences can be made :
Regardless of the operation to be performed, every round-
ing error made on a DC-difference works accumulative
because the DC-coefficients are sums of DC-differences.

DC coefficients

DC differences

4

4 4 4 4

0

0 0 0 0

8 1 112 16 2

∗ 0.1 =

∗ 0.1 =

Figure 4.1: Example of DC-differences and rounding
errors

The DC-coefficient of the ith block is the sum of the
first i DC-differences. If during the calculations of the
first i DC-differences k (k < i) rounding errors were
made, then these k rounding errors are used to calculate
the ith DC-coefficient. So the larger the image, the more
likely this effect will start to show.

This unpleasant effect is amplified by the use of quan-
tization tables. Suppose a quantized DC-difference dQ

should have been stored in the JPEG bitstream, butdQ�1,
a mutated version of dQ, was stored because of a rounding
error made during the calculations and integer rounding.

After this incorrect value dQ � 1 is read from the
bitstream during decompressing, it will be dequantized
by q[0; 0]. As a result, the DC difference that will be used
to calculate the current DC-coefficient will be�dQ � 1

� � q[0; 0] = dQ � q[0; 0]� q[0; 0]

But the correct DC-difference should have beendQ � q[0; 0]

So the rounding error made during the calculations
using DC-differences results in an error of q[0; 0] in the
dequantized frequency domain. This causes an error of18q[0; 0] for every element in the spatial domain (see
Section 2.3).

Now we see the following: The bigger q[0; 0] | or
the lower the quality, see Section 2.4| the less time the
operation takes, since the RLE lists are smaller, but the
more influence a rounding error has on the resulting data
in the spatial domain. So we expect our DC-difference
oriented versions not to be useful for low quality images.
Figure 4.2 shows scalar multiplication, using � = 0:5
with an input image that has a 10% quality.

Figure 4.2: Scalar multiplication: input, result of DC-
coefficients, result of DC-differences.

Chapter 4. Algebraic operations: the implementation side 17

4.2 Scalar multiplication

quantization
In Section 3.1 we sawY [u; v] = �X[u; v] (4.1)

However, the values obtained after Huffman decoding
are quantized. Instead of X[u; v], as in Eq. 4.1, we
have XQ[u; v]. The relationship between X[u; v] andXQ[u; v] can be described asX[u; v] = XQ[u; v]qX[u; v] (4.2)

where qX[u; v] is the (u; v)th quantization value for every
block in the current component.

This result substituted in Eq. 4.1 givesY [u; v] = �XQ[u; v]qX[u; v] (4.3)

Now we need to quantize the result; we want an
equation for YQ[u; v]. The relationship between Y [u; v]
and YQ[u; v] is a similar one as in Eq. 4.2. After
substitution of Y [u; v] of Eq. 4.3 we obtainYQ[u; v]qY [u; v] = �qX[u; v]XQ[u; v]

which leads toYQ[u; v] = �qX[u; v]qY [u; v]
XQ[u; v] (4.4)

Because of Assumption 4.1 on the quantization tables,qX[u; v] = qY [u; v], Eq. 4.4 can be rewritten asYQ[u; v] = �XQ[u; v] (4.5)

As a result of Eq. 4.5, we can see that scalar mul-
tiplication can be performed directly on the quantized
coefficients in the frequency domain.

DC-differences
Suppose the DC-coefficient of the first block is d1 and the
DC-coefficient of the second block in the same component
is d1 +d2. So the JPEG algorithm will store d1 as the first
DC-difference and d2 as the second DC-difference.

Let’s assume we are multiplying by factor �.
Performing scalar multiplication on the DC-

coefficients would result in �d1 for the first DC-
coefficient and �(d1 + d2) for the second DC-coefficient.
So the DC-difference for the second block is�(d1 + d2) � �d1 = �d2:

Performing scalar multiplication directly on the DC-
differences would give �d1 for the first block and �d2
for the second block.

D
C

-c
oe

ffi
ci

en
ts

D
C

-d
iff

er
en

ce
s

∗ α
d1

d1 d2

d1+d2 d1α

d1α

(d1+d2)α

d2α
?

Figure 4.3: Scalar multiplication with DC-coefficients
and with DC-differences.

Figure 4.3 shows the process for DC-coefficients and
for DC-differences.

The first component however was normalized, so in
that case we cannot just multiply the DC-differences by
the given factor.

So it is proven that theoretically, it doesn’t make any
difference for the calculation of the output image data
if DC-differences are used instead of DC-coefficients (if
normalization is not taken into account).

In practice however, rounding errors on DC-differences
can have too big an impact on the output image data;
rounding errors might occur, if the multiplication factor� is not an integer.

normalization
The first component should be denormalized before per-
forming scalar multiplication, otherwise we would also
scale the ‘�128’ that is used in the normalization process.
The only problem we have is that we are working in a
quantized frequency domain as calculated by the DCT
and the quantization table.

But if we recall that the DC-coefficient is the same as
the average of all original values multiplied by 8, then
‘denormalizing’ should not be difficult.

Suppose d is our DC-coefficient and q[0; 0] is the
quantization coefficient for the DC-coefficients. Then the
quantized DC-coefficient dQ | the value that is actualy
stored in the image bitstream| would bedQ =

dq[0; 0]

In the ordinary case, i.e. when we would transform
our blocks back into the spatial domain, we would have
added 128 to each value in the block.

If we were to denormalize in a quantized frequency
domain, the proces of denormalizing in the frequency
domain would simply look likedQq[0; 0] + 128 � 8 = dQq[0; 0] + 1024

Chapter 4. Algebraic operations: the implementation side 18

combined
A block which is input of the scalar multiplication op-
eration can have one of the following combinations of
properties:

1. The block is DC-difference oriented, normalized and
it is the very first block of the component.

2. The block is DC-difference oriented, normalized and
it is not the first block of the component.

3. The block is DC-difference oriented and not normal-
ized

4. The block is DC-coefficient oriented and normal-
ized.

5. The block is DC-coefficient oriented and not nor-
malized

Note that in addition to each combination, each block
is quantized.

DC-difference, normalized, first block

This combination occurs when we are working with a
DC-difference oriented algorithm in the first component,
and we’re about to perform scalar multiplication on the
first block.

Because we’re working on the first block of the com-
ponent, the quantized DC-difference of this block is
actually a quantized DC-coefficient. Suppose d is that
DC-coefficient and d0 is the DC-coefficient to be calcu-
lated.

First we need to dequantize the DC-coefficient, then
denormalization should be applied before scalar multi-
plication can be applied. After that, normalization and
quantization should be done. This and Assumption 4.1
gives the following combination:d0 =

� (dqX[0; 0] + 1024)� 1024qX [0; 0]

=
dqX[0; 0]� + 1024�� 1024qX [0; 0]

= d� +
1024(�� 1)qX [0; 0]

DC-difference, normalized, not first block

It was shown that scalar multplication can be applied
directly on the DC-differences. What we need to do
normally is to dequantize, denormalize, perform scalar
multiplication, normalize and quantize the DC-difference
(in that order).

However, since we’re working with DC-differences,
we don’t need to denormalize; thiswas already done in the

first block of this component. Whether we are working
in a normalized frequency domain or in an ordinary
(not) normalized frequency domain, the difference of two
consecutive DC-coefficients stays the same; the DCT is
a linear processes. So we need to dequantize the DC-
difference, perform scalar multiplication and to quantize
the result. Using Assumption 4.1, the calculation of d0
looks like:d0 ==

�(dqX[0; 0])qX[0; 0]
= �d (4.6)

DC-difference oriented and not normalized

This is a similar case as the one described above. The
only difference is that we do not have to denormalize
the block because it was not normalized at all. So the
method to be used for such DC-differences is the same as
described in Eq. 4.6

DC-coefficient oriented and normalized

After dequantization of the DC-coefficient, we need to
denormalize it. After the scalar multiplication, normal-
ization and then quantization is needed.

Using Assumption 4.2 gives the following calculation:d0 =

=
((dqX[0; 0] + 1024)�) � 1024qX[0; 0]

=
�dqX[0; 0] + 1024�� 1024qX[0; 0]

= �d +
1024(�� 1)qX[0; 0]

DC-coefficient oriented and not normalized

A DC-difference of this combination only needs to be
dequantized before the scalar multiplication operation.
Afterwards quantization is to be applied. Using Assump-
tion 4.1 the calculation for d0 would look like:d0 =

= �dqX[0; 0]qX[0; 0]
= �d

4.3 Scalar addition
quantization
In Section 3.2 we found Eq. 3.3. This equation needs to
be quantized, but as in Eq. 3.3 can be seen, there are two
cases: u; v = 0 and u; v 6= 0.

Chapter 4. Algebraic operations: the implementation side 19

For u; v = 0 we had Y [u; v] = X[u; v] + 8�. Again,
we substitute Eq. 4.2.Y [u; v] = XQ[u; v]qX[u; v] + 8� (4.7)

A similar substitution for Y [u; v] is done:YQ[u; v]qY [u; v] = XQ[u; v]qX[u; v] + 8�
But YQ[u; v] is what we’re looking for:YQ[u; v] =

=
XQ[u; v]qX[u; v] + 8�qY [u; v]

=
qX [u; v]qY [u; v]

XQ[u; v] +
8�qY [u; v]

For u; v 6= 0 we had Y [u; v] = X[u; v]. After doing
the same as u; v = 0 for Y [u; v] = X[u; v] we getYQ[u; v] =

qX[u; v]qY [u; v]
XQ[u; v]

As qY [u; v] = qX[u; v] (Assumption 4.1) we can now
writeYQ[u; v] =

� XQ[u; v] + 8�qX [u;v] for u; v = 0XQ[u; v] otherwise
(4.8)

Eq. 4.8 shows us that only qX[0; 0] is needed to
calculate YQ[0; 0]. The remaining entries of Y are just
copies of X.

DC-difference
As already mentioned in Section 3.2, we only have to
perform one addition and one multiplication per block
if we use the (non)quantized frequency domain with
DC-coefficients. An additional division is needed if
we’re using the quantized frequency domain with DC-
coefficients. But what if we’re using DC-differences
now?

Let’s inspect the process using DC-coefficients. Sup-
pose the DC-coefficient of the first block is d1 and of
the DC-coefficient of the second block is d1 + d2. After
scalar addition using factor � we getd1 +

8�qY [0; 0]

for the first block and

(d1 + d2) +
8�qY [0; 0]

for the second block. Converting these actual DC-
coefficients into DC-differences would gived1 +

8�qY [0; 0]

as the first DC-difference andd1 +
8�qY [0; 0]

� �(d1 + d2) +
8�qY [0; 0]

�
= d2

as the second.
Now we will examine the process using DC-

differences. Using the same DC-coefficients as above,
we would store d1 as the first DC-difference and d2 as the
second. Applying scalar addition on the first block givesd1 +

8�qY [0; 0]
:

Note that the DC-difference in the second block is d2.
This would also be the result if the DC-coefficients were
used for scalar addition (see Figure 4.4).

D
C

-c
oe

ffi
ci

en
ts

D
C

-d
iff

er
en

ce
s

+β
d1

d1 d2 d2

d1+d2 d1+8β

d1+8β

d1+d2+8β

?

Figure 4.4: Scalar addition with DC-coefficients and
with DC-differences.

So scalar addition can be done very efficiently if we
use the DC-differences. We only need to perform this
operation on the first DC-coefficient of each component.
In this way, every component only needs one addition,
one multiplication and one division. If DC-coefficients
were used, a lot more work would be needed.

Integer rounding does not give any trouble, because for
every component only one rounding error might occur
(the operation is only performed on the first DC-difference| which is acutally a DC-coefficient). So a piling up of
rounding errors onto rounding errors will not occur since
only one rounding error per component can be made.

normalization
Another nice property of scalar addition is that we don’t
need to denormalize the first component.

Again, d is the DC-coefficient of a block in the first
component. If we were to denormalize the first component
in a nonquantized frequency domain, it would look like
this:d + 1024

Chapter 4. Algebraic operations: the implementation side 20

but since we’re dealing with a quantized frequency do-
main, the normalization needs to be quantized:d + 1024qY [0; 0]

After the addition (with factor �) is performed it would
look like this:d + 1024qY [0; 0]

+
8�qY [0; 0]

Now we need to ‘normalize’ the result:�d + 1024qY [0; 0]
+

8�qY [0; 0]

�� 1024 = d +
8�qY [0; 0]

which is basicly the same as described in Eq. 4.8.

4.4 Pixel addition

quantization

In Eq. 3.5 we foundY [u; v] = X1[u; v] + X2[u; v]

After substitution of Eq. 4.2 into this equation we get:Y [u; v] =

= X1;Q[u; v]qX1[u; v] + X2;Q[u; v]qX2[u; v]

A similar substitution for Y[u,v] is done:YQ[u; v]qY [u; v] =

= X1;Q[u; v]qX1[u; v] + X2;Q[u; v]qX2[u; v]

After division by qY [u; v] we get:YQ[u; v] =

=
X1;Q[u; v]qX1[u; v] + X2;Q[u; v]qX2[u; v]qY [u; v]

=
qX1[u; v]qY [u; v]

X1Q[u; v] +
qX2[u; v]qY [u; v]

X2;Q[u; v]

As qY [u; v] = qX1[u; v] (Assumption 4.2) we can now
write:YQ[u; v] = X1;Q[u; v] +

qX2[u; v]qX1[u; v]
X2;Q[u; v]

This leads to the conclusion that the quantization tablesqX1 and qX2 are extensively used.

DC-difference
Suppose the DC-coefficient in the first block of the first
input image is c1 and the DC-coefficient of the second
block is c1 + c2 Doing the same for the second input
image gives a DC-coefficient of d1 for the first block and
a DC-coefficient of d1 + d2 for the second block.

Pixel addition, using DC-coefficients, would givec1 + d1
as the first DC-coefficient of the output image, andc1 + d1 + c2 + d2
as the second DC-coefficient. Converting these actual
DC-coefficients into DC-differences would givec1 + d1
as the first DC-difference of the output image, andc1 + d1 � (c2 + d1 + c2 + d2) = c2 + d2
as the second.

DC-coefficients DC-differences

c1 c1 c2

d1

c1+d1

d1

c1+d1

d1+d2

c1+c2

+
d1+d2

d2

c2+d2

c1+c2

+ +?

Figure 4.5: Pixel addition with DC-coefficients and with
DC-differences.

Let’s inspect the process using DC-differences instead
of DC-coefficients. Suppose the DC-coefficients of the
input images are the same as above. The DC-difference
of the first block of the first input image would be c1
and the DC-difference of the second block would be c2.
Calculation of the DC-differences of the second input
image gives d1 as the first DC-difference, and d2 as
the second. Addition of the two images, using DC-
differences, would give c1 + d2 as the first DC-difference
of the output image, and d1 + d2 as the second.

Figure 4.5 shows the comparison of DC-coefficients
and DC-differences with respect to pixel addition.

Chapter 4. Algebraic operations: the implementation side 21

So we see that theoretically it doesn’t make any differ-
ence for the calculations whether we use DC-coefficients
or DC-differences. For performance it could make a dif-
ference since the differences are mostly small numbers.
Of course, in practice, rounding errors are still a problem
and the use of actual DC-coefficients would be a solution.

normalization
The first component is normalized, this means that we
have to denormalize this component. This is done by
adding 1024 to the dequantized DC-coefficients.

(Working with DC-differences instead of DC-
coefficients means that the denormalization can be done
by denormalizing the first DC-coefficient of the first MCU
of the first component!) So using the DC-difference in-
stead of the actual DC-coefficient would save a lot of
work.

The first components of the two images that are added
are normalized. This means that we have to denormalize
the first components of the two images before performing
our operation.

Dequantization and denormalization of the first com-
ponent of the first image givesd1 � qX1[0; 0] + 1024.

Dequantization and denormalization of the first com-
ponent of the second image givesd2 � qX2[0; 0] + 1024.

Pixelwise addition givesd1 � qX1[0; 0] + d2 � qX2[0; 0] + 2048.

After the addition, the result needs to be normalized
and quantized again:�d1 � qX1[0; 0] + d2 � qX2[0; 0] + 2048

�� 1024qY [0; 0]
.

Using Assumption 4.2 and rewriting the normalization
and denormalization makes itd1 +

d2 � qX2[0; 0] + 1024qX1[0; 0]

scaling
Scaling the result found in 3.5 with � results inY [u; v] = �(X1[u; v] + X2[u; v])

A typical value for � could be 1=2. In this case, the
resulting image could be considered an average image of
the two input images.

combined
A block which is input of the pixel addition operation can
have one of the following combinations of properties:

1. The blocks are DC-difference oriented, normalized
and they are the very first blocks of their component.

2. The blocks are DC-difference oriented, normalized
and they are not the first blocks of the component.

3. The blocks are DC-difference oriented and not nor-
malized

4. The blocks are DC-coefficient oriented and normal-
ized.

5. The blocks are DC-coefficient oriented and not nor-
malized

DC-difference, normalized, first block

Because this is the first DC-difference of the first compo-
nent, this DC-difference is also the DC-coefficient of the
first block of the component. So for both DC-coefficientsd1 and d2, we need to dequantize them, with qX1[0; 0]
and qX2[0; 0] respectively, denormalize them, perform
pixel addition, normalize the sum and finaly, quantize the
normalized sum:d0 =

=
� �d1qX1[0; 0] + 1024 + d2qX2[0; 0] + 1024

�� 1024qX1[0; 0]

=
� �d1qX1[0; 0] + d2qX2[0; 0] + 2048

�� 1024qX1[0; 0]

DC-difference, normalized, not first block

It was already shown that pixel addition could be per-
formed directly on the DC-differences. And because we
are working with real DC-differences | unlike the very
first DC-difference of a normalized component, which is
in fact a DC-coefficient| we do not have to bother with
the denormalization stage.

So what we need to do is to dequantize the quantized
DC-difference, perform pixel addition, scale the sum and
quantize the scaled sum:d0 =

� �d1qX1[0; 0] + d2qX2[0; 0]
�qX1[0; 0]

DC-difference, not normalized

DC-differences that are not normalized are easily dealt
with. Again, we use the fact that we can perform pixel
addition and scaling directly on the DC-differences.

Chapter 4. Algebraic operations: the implementation side 22

So the only thing to do is dequantization, pixel addition,
scaling and quantization.d0 =

� �d1qX1[0; 0] + d2qX2[0; 0]
�qX1[0; 0]

DC-coefficient, normalized

This situation occurs when the used algorithm is a DC-
coefficient oriented algorithm, and the first component is
to be processed. In this case the steps to be taken are,
dequantization, denormalization, pixel addition, scaling,
normalization and quantization.d0 =

� �d1qX1[0; 0] + 1024 + d2qX2[0; 0] + 1024
�� 1024qX1[0; 0]

=
� �d1qX1[0; 0] + d2qX2[0; 0] + 2048

�� 1024qX1[0; 0]

DC-coefficient, not normalized

This occurs when the DC-coefficient oriented algorithm is
processing a block from the second or third component.
Calculation of such a DC-coefficient consists of the
following steps: dequantization, pixel addition, scaling,
quantization.d0 =

� �d1qX1[0; 0] + d2qX2[0; 0]
�qX1[0; 0]

4.5 Pixel multiplication

quantization
Pixel multiplication in the frequency domain is given by
Eq. 3.6. Substituting Eq. 4.2 into Eq. 3.6 and doing a sim-
ilar substituting for Y [u; v], and using Assumption 4.2,
givesYQ[u1; u2] = (4.9)

=
7Xv1;v2;w1;w2 (X1[v1; v2]X2[w1; w2]��MQ[v1; v2; w1; w2; u1; u2]

�
whereMQ[v1; v2; w1; w2; u1; u2] = (4.10)

=
qX1[v1; v2]qX2[w1; w2]

64qY [u1; u2]
��W [u1; v1; w1]W [u2; v2; w2]

withW [u; v; w] =
Xi C(i; u)C(i; v)C(i; w) (4.11)

with C(i; u) as defined in Eq. 2.2.
In Eq. 4.10 it can be seen that the quantization table of

the second input image is neccesary.

DC-differences
Pixel multiplication is done with the DC-coefficients
instead of DC-differences. Using DC-differences would
not work here.

normalization
As we’re using actual DC-coefficients, instead of DC-
differences, we need to denormalize every block in the
first component. Denormalizing a block in the frequency
domain can be done by adding 1024 to dequantized
DC-coefficient of the block. After the operation, normal-
ization can be done by subtracting 1024 of the not yet
quantized DC-coefficient.

scaling
Scaling Eq. 4.5 can be done in two ways: the complete
sum can be scaled or the matrix M can be scaled.
Advantage of the second way is that scaling only needs
to be done during initialization of M :Y [u1; u2] =

=
7Xv1;v2;w1;w2=0 (X1[v1; v2]X2[w1; w2]��M [v1; v2; w1; w2; u1; u2]

whereM [v1; v2; w1; w2; u1; u2] =

=
�
64

W [u1; v1; w1]W [u2; v2; w2]

withW [u; v; w] =
Xi=0 C(i; u)C(i; v)C(i; w)

for u1; u2 = 0; : : : ; 7.

4.6 Combination array
This section will be spent on the performance optimization
of the process given in Section 4.5. In [Smith] two remarks
are made on the summation in Eq. 4.9.

Chapter 4. Algebraic operations: the implementation side 23

Figure 4.6: The combination array.

1. Eq. 4.9 is a rather large summation. However, in
practice many elements in X1;Q and X2;Q are zero.

2. The matrix MQ has 86 elements. However, about
4% are nonzero entries, so MQ is a sparse matrix.

Using the runlength encoded representation of the blocks
takes care of the first remark. To make use of the second
remark [Smith] introduced the combination array.

4.6.1 The datastructure
Because we want to perform pixelwise multiplication on
the RLE blocks, and because the entries in RLE blocks
are in zigzag order, we want to rewrite MQ into a zigzag
version.

We introducex1, x2 and z as the zigzag ordered indices
of (v1; v2), (w1; w2), (u1; u2) respectively. Define MQ;zz
as the zigzag ordered version of MQ, so now we haveMQ;zz[x1; x2; z]. Furthermore, we define YQ;zz, X1;zz
and X2;zz as the zigzag ordered version of YQ, X1 andX2 respectively.

These new notations are used to rewrite Eq. 4.9 asYQ;zz[z] = (4.12)

=
63Xx1;x2=0X1;Q;zz[x1]X2;Q;zz[x2]MQ;zz[x1; x2; z]

for z = 0 : : :63.MQ;zz[x1; x2; z] with x1; x2; z = 0 : : :63 is a sparse
matrix. In order to store this matrix efficiently and in
order to calculate Eq. 4.12 efficiently, [Smith] introduced
a datastructure called the combination array.

A combination array is a 64x64 matrix, one entry
for each (x1; x2) combination, where x1; x2 = 0; : : : ; 63.
Each element in a combination array is a combination
list.

We call the (x1; x2)th entry in the combination array
the combination list of (x1; x2).

A combination list is a list of combination elements.
There is one combination element for every nonzero value
in the matrixM . A combination element holds two items:

1. a value indicating a nonzero entry in M .

Chapter 4. Algebraic operations: the implementation side 24YQ;zz [0] = P63x1;x2=0 X1;Q;zz [x1]X2;Q;zz [x2]MQ;zz[x1; x2; 0]... ...YQ;zz [63] = P63x1;x2=0 X1;Q;zz [x1]X2;Q;zz [x2]MQ;zz[x1; x2; 63]
Figure 4.7: The most likely way to evalute YQ;zz.

2. an integer z value indicating the zigzag ordered
index of the nonzero element MQ;zz[x1; x2; z].
Note that presence of a combination element in
the list of (x1; x2) implies the zigzag ordered indicesx1 and x2.

See Figure 4.6 for an illustration of this datastructure.

4.6.2 The convolution algorithm
In this subsection we will explain how to use the combi-
nation array to calculate Eq. 4.12.

The most likely way to evaluate Eq. 4.12 is to evaluate
it one z value at a time, as in Figure 4.7.

But the equations could also be evaluated as given in
Figure 4.8. Notice that for each iteration in the alternative
evaluation, the (x1; x2) combination is constant within an
iteration.

This is exactly why the method explained in Figure 4.8
is more suited for our purposes than the first method
(Figure 4.7). If we would use the first method, we would
have to visit all (x1; x2) combinations for every z 2f0; : : :63g Keeping (x1; x2) constant during an iteration
of the second method, means that we don’t have to
traverse the RLE lists (during that iteration); in the entire
proces, each (x1; x2) is visited once at most.

Let’s have another look at Figure 4.8. To computeYQ;zz efficiently, we want to avoid unuseful calculations

of Y (i)Q;zz[z]. To make the discussion easier, we define the
notions (possibly) useful evaluation and useful iteration.

Chapter 4. Algebraic operations: the implementation side 25Iteration 0: (x1; x2) = (0; 0)Y (0)Q;zz[0] = X1;Q;zz [0]X2;Q;zz[0]MQ;zz[0;0; 0]Y (0)Q;zz[1] = X1;Q;zz [0]X2;Q;zz[0]MQ;zz[0;0; 1]... ...Y (0)Q;zz [63] = X1;Q;zz [0]X2;Q;zz[0]MQ;zz[0;0; 63]Iteration 1: (x1; x2) = (0; 1)Y (1)Q;zz[0] = Y (0)Q;zz[0] + X1;Q;zz [0]X2;Q;zz[1]MQ;zz[0;1; 0]Y (1)Q;zz[1] = Y (0)Q;zz[1] + X1;Q;zz [0]X2;Q;zz[1]MQ;zz[0;1; 1]... ...Y (1)Q;zz [63] = Y (0)Q;zz[63] +X1;Q;zz [0]X2;Q;zz[1]MQ;zz[0;1;63]...Iteration i: (x1; x2) = (i div 64; i mod 64)Y (i)Q;zz[0] = Y (i�1)Q;zz [0] + X1;Q;zz [i div 64]X2;Q;zz [i mod 64]MQ;zz[i div 64; i mod 64;0]Y (i)Q;zz[1] = Y (i�1)Q;zz [1] + X1;Q;zz [i div 64]X2;Q;zz [i mod 64]MQ;zz[i div 64; i mod 64;1]... ...Y (i)Q;zz [63] = Y (i�1)Q;zz [63] +X1;Q;zz [i div 64]X2;Q;zz [i mod 64]MQ;zz[i div 64; i mod 64;63]...Iteration 642 � 1 = 4095: (x1; x2) = (63;63)Y (4095)Q;zz [0] = Y (4094)Q;zz [0] +X1;Q;zz [63]X2;Q;zz[63]MQ;zz[63;63;0]Y (4095)Q;zz [1] = Y (4094)Q;zz [1] +X1;Q;zz [63]X2;Q;zz[63]MQ;zz[63;63;1]... ...Y (4095)Q;zz [63] = Y (4094)Q;zz [63] +X1;Q;zz [63]X2;Q;zz [63]MQ;zz[63;63;63]where YQ;zz [z] = Y (4095)Q;zz [z] for z = 0 : : :63.
Figure 4.8: Another way to evaluate YQ;zz.

Chapter 4. Algebraic operations: the implementation side 26

for every x1 for which X1;Q;zz[x1] 6= 0 do
for every x2 for which X2;Q;zz[x2] 6= 0 do

if combination list of (x1; x2) not empty then
for every entry z in combination list do

calculate Y x1�64+x2Q;zz [z]
od

fi
od

od

Figure 4.9: The convolve algorithm.

Definition 4.1 The evaluation of Y (i)Q;zz[z] for some z 2f0; 1; : : : ; 63g during some iteration i 2 f0; 1; : : : ; 4095g
is a possibly useful evaluation if and only ifX1;Q;zz[i div 64] 6= 0 and X2;Q;zz[i mod 64] 6= 0

A useful evaluation is a possible useful evaluation for
which also holds thatMQ;zz[i div 64; i mod 64; 1] 6= 0

Definition 4.2 An iteration i is a useful iteration if and
only if for some z 2 f0; 1; : : : ; 63g, the evaluation ofY (i)Q;zz[z] is useful. Otherwise the iteration i is not useful.

If we project Definition 4.1 and Definition 4.2 onto the
combination array, we can conclude that an iteration is
useful if the combination list of (x1; x2) | where x1 andx2 are entries in the RLE block of X1;Q;zz and X2;Q;zz
respectively| is not an empty list.

The entries in the combination list for a certainx1 and x2 are exactly those entries of MQ;zz withMQ;zz[x1; x2; z] 6= 0. The order in which the z co-
ordinates occur in the combination list is not important
for the method used in Eq. 4.8.

To make use of the fact that many entries of X1;Q;zz
and X2;Q;zz are zero, we use the Runlength Encoded
representation of X1;Q;zz and X2;Q;zz. In this way, we
skip iterations that are not useful at all. Note that the
entries in an RLE block are ordered by the index of the
nonzeroes within the 8x8 blocks.

Now we can give the idea of how to evaluate Eq. 4.9.
For every (x1; x2) combination | where x1 and x2 are
the indices of nonzero values in X1;Q;zz and X2;Q;zz| we traverse the combination list of (x1; x2). Every
combination element in the list represents an evaluation
of iteration x1 � 64 + x2. See Figure 4.9.

Chapter 5

The modules

5.1 block.c

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

Figure 5.1: An MCU of blocks.

In this module, all functions concerning blocks are de-
fined, such as allocating, freeing and setting to zero.
These functions perform directly on a complete MCU,
so the datastructure should be designed to store a com-
plete MCU. The datastructure for an MCU is an array of
pointers. Each pointer points to an array of 64 integer
elements; this represents one block.

5.2 calc.c
In this module a function for integer rounding is given.
This function was designed for quantization, but is used
in other calculations as well.

5.3 huffman.c
The Huffman tables are provided by the image file;
different image files could contain different Huffman
tables. Mostly, separate Huffman tables are given for the
DC and AC-coefficients and for the different components.
In practice, the Huffman tables for the second and third
component are the same.

As already mentioned in section 2.1.7, the aim of
Huffman coding is to assign short codes to frequent
(RUN, SIZE) combinations. If we were to take full
advantage of Huffman coding, we would have to count

∼ ∼
∼ ∼

∼ ∼

∼ ∼
∼ ∼

∼ ∼

∼ ∼

Figure 5.2: The Huffman structure.

all (RUN, SIZE) combinations in every image we would
process, to construct an optimal Huffman table for that
image. This is of course too much work; determination of
frequencies of (RUN, SIZE) combinations, constructing
the Huffman table and encoding the image would require
two scans of the image. To save runtime, we use
predefined tables.

5.3.1 Setting up Huffman tables
Setting up the Huffman tables is handled in the function
fix huff tbl. The Huffman tables of JPEG images in
the JFIF style are stored in Huffman table segments
(see Chapter 6). A Huffman table segment contains the
following:� an array bits[]. bits[i] represents the number of

Huffman codes with i bits.

27

Chapter 5. The modules 28

i bits[i] ehufsi ehufco huffval

Figure 5.3: Part of a hufftable.� an array huffval[]. huffval[i] gives the ith
(RUN,SIZE) combination (see Section 2.1.7) in the
Huffman table.

The Huffman tables can be computed out of bits[]
and huffval[]. The Huffman tables are stored bybits[] and huffval[] to decrease storage space.

Now we will generate the Huffman codes (the codes
are to be stored in the array ehufco[]): Since we have
the array bits[], we know how many Huffman codes of
length i should be generated. Suppose we are generating
the jth code of length i, and suppose the value of this
code is C. The (j + 1)th code of length i is (C + 1). This
process should be repeated untill bits[i] tells us that
we have generated all Huffman codes of length i.

We define Cilast to be the value of the last Huffman
code of length i and Cifirst to be the value of the first
Huffman code of length i.

The following equation shows how the next Huff-
man code is generated if we have completed generating
Huffman codes of length i:Ck+�first = 2Cklast
where� = min f� j � � 1 ^ bits[k+�] 6= 0g .

See Figure 5.3. The first Huffman code to be used is 0.
For decoding purposes, it is useful to know where the

codes of length i begin in the array huffval[]. This data
is stored in the array valptr[], valptr[i] is the index
in the array huffval[], where huffval[valptr[i]]
is the first code of length i (see Figure 5.4). To calculatevalptr[], both huffval[] and bits[] are needed.

i

Figure 5.4: Mincode, maxcode and valptr.

5.3.2 Decoding
The input to the decoding step is a Huffman coded
bitstream. The first couple of bits from the inputstream
form an encoded DC-difference. The next values to be
decoded are AC values, until 63 AC values have been
read, or until an end of block marker has been read.
The process of reading DC-differences and AC values is
repeated until an end of image marker is encountered.

extracting Huffman codes

The process of extraction is implemented in the func-
tion huff DECODE. Suppose the ith bit has just been
read. These i bits form a binary number codevalue.codevalue is compared to maxcode[i]. If codevalue >maxcode[i] then the i bits read so far don’t form a Huff-
man code yet, so a next bit has to be read from the input
stream. If codevalue � maxcode[i] then the i bits form
a valid Huffman code. Since matching Huffman values
and Huffman codes have the same index to huffval[]
and ehufco[] respectively, we need to compute the in-
dex of the Huffman code in the array ehufco[]. This
computation makes use of the property that the values
of consecutive Huffman codes of the same length have a
difference of one. Within all codes of length i, the Huff-
man code just found is the (codevalue� mincode[i])th
entry. valptr[i] gives the index of the first Huffman
code of length i within the complete array ehufco[].
Now we can compute the index of the Huffman code,
which is also the index of the matching Huffman value:valptr[i] + codevalue - mincode[i].

Chapter 5. The modules 29

decoding DC-differences

All Huffman codes are stored in the array ehufco[] and
with valptr[], mincode[] and maxcode[] it is easy
to determine the index of the Huffman code in the arrayehufco as described in Section 5.3.2. The index found in
the Extracting step is used in the array huffval[], to find
the matching SIZE with this Huffman code. This SIZE
is the number of bits, that has to be read from the input
stream, to find the two’s complements representation of
the DC-difference.

decoding AC values

Again bits are extracted (from the proper AC Huffman
table) until a Huffman code is found. The matchinghuffval[] gives a (RUN, SIZE) combination. RUN is
the number of zeroes preceding the AMPLITUDE. Again
SIZE is the number of bits to be read to find the two’s
complement representation of the AC value.

5.3.3 Encoding

The input to the Huffman encoding process is a number
of runlength encoded vectors see Subsection 2.1.6.

encoding DC-differences

Suppose a DC-difference is to be encoded, and that the
number of bits needed to represent this DC-difference is
SIZE. The proper base code (the first couple of bits of the
Huffman code) is SIZE. The last part of the code can be
calculated by taking the two’s complement representation
of the DC-difference.

encoding AC values

Suppose an AC-coefficient is to be encoded, and that the
number of bits needed to represent this AC-coefficient is
SIZE. And suppose that the number of zeroes previous
to the AC-coefficient is RUN. The proper base code
(the first bits of the Huffman code) is the 4 bits binary
representation of RUN, followed by a 4 bits SIZE (The
(RUN, SIZE) pair is stored in one byte). The next part of
the Huffman code can be calculated by taking the two’s
complement representation of the AC value.

A special base code is inserted for runs of 15 zeroes
followed by a zero. This is stored under (RUN, SIZE)
pair (0xF, 0). Another special base code to mark an end
of block exists: (RUN, SIZE) pair is (0, 0).

5.4 image.c
In the function allocate image struct, memory is allocated
to store a complete image structure. An image structure
not only contains data such as size, number of components
and the filename of the image, but also data needed for
Huffman coding and quantization.

All pointers in this structure are initialized with NULL
in case some pointers are not used; in order for re-
lease image to work properly, unused pointers are as-
sumed to be NULL. See Section 5.6 for details.

In release image, all memory used for the image struc-
ture is released. Before the structure itself can be released,
all memory allocated to the pointers in the image structure
has to be released.

The function init output image initializes the output
image structure by copying the input image structure.
In case of an image operation with two input images,
the structure of the first image is used to initialize the
structure for the output image.

There are two ways to copy a structure in C. The first
possibility is to copy the contents of the structure one
field at a time.

The second (and faster) solution, is to copy the entire
memory occupied by the structure, using memmcpy. In
this case, special care has to be taken of the pointers in the
structure. The pointers in the output image structure point
to the same memory areas as the pointers in the input
image structure. Changing some memory in the input
image structure would result in a change in the output
image structure and vice versa.

To avoid this, we allocate a different area of memory
and copy the allocated memory areas of the input image
structure into these newly allocated areas.

The function images compatible checks whether two
images are suitable for pixel addition and pixel multipli-
cation.

Two images are compatible if the heigth, the width and
the number of components are the same.

The functions open image and close image are used
for file I/O.

5.5 jfif.c
The routines in this module, rely heavily on the JFIF
standard. See Chapter 6 for an overview of the JFIF
standard.

In copy2bytes, two bytes are read from the input stream
and copied to the output stream. The two bytes form a
16 bits integer. This function is mostly used to read (and
write) the length of the segment to be processed.

copy next marker looks for the next segment marker.
A segment is marked by two bytes: 0xFF followed by

Chapter 5. The modules 30

∼ ∼
file I/O

image dimensions

huffman

∼ ∼

∼ ∼

∼ ∼

quantization

∼ ∼

pixel multiplication

∼ ∼

∼ ∼

∼ ∼
∼ ∼
∼ ∼

scan data

∼ ∼

Figure 5.5: Image struct: the image structure.

another byte which specifies the segment. See Chapter 6
for a list of markers.

The copy segment function copies an entire segment
without processing the stored information. This function
is used for segments that are not needed for our operations.

get dqt is used to read and write a quantization seg-
ment. One quantization segment can contain several
quantization tables. Each table has a unique number to
identify this table. This number is also stored in this
segment.

get dqt2 reads a quantization segment but writes quan-
tization tables in which all entries are set to one.

read dqt only reads a quantization segment. This is
used to process the quantization segment of the second
input image of pixel addition and pixel multiplication.

get dht reads and writes a Huffman segment (read dht
only reads the segment). First, the number of the table
is read from the input stream. This number also deter-
mines whether the following table is an AC or DC table.
Following this identifying number are the arrays bits[]
and huffval[]. See Section 5.3.1 for an explanation on
these arrays.

5.6 memmgr.c

In this module, the allocation and release routines are
defined.

In order for the release routine to work properly, all
pointers, not attached to an allocated piece of memory,
should be NULL; on some systems, releasing non-defined
pointers is not allowed.

There are two allocation routines: allocate and
large allocate. This is done to support MS-DOS ma-
chines, which do not have enough memory for some
operations. Using ‘far memory’ solves this problem, but
this makes memory management more difficult for the
operating system and therefore less efficient. Another
drawback is that allocation of ‘near memory’ requires
a different function than allocation of ‘far memory’.
Therefore two different allocation routines are needed for
MS-DOS machines.

UNIX based machines (and most other operating sys-
tems) do not divide memory into ‘far memory’ and ‘near
memory’; all memory can be considered to be one con-
tiguous area. As a consequence, one function suffices to
allocate all memory available in the system. For UNIX
based machines, the routines allocate and large allocate

Chapter 5. The modules 31

are the same, two different routines were made for porta-
bility between MSDOS and non-MSDOS systems.

5.7 pmul.c
In this module, all functions concerning combination
arrays and the convolution algorithm (as described
in [Smith]) are defined. These functions are needed
for pixel multiplication. The functions C init and W init
calculate Eq. 2.2 and Eq. 4.11 respectively.

Because of the finite precision used in computers, small
values cannot be trusted. Therefore, in W init, small
values in a specified range are set to zero to increase
performance in convolve init. This thresholding is not
neccesary for C init as the calculated values do not suffer
from finite precision. The results of C init and W init are
stored in tables and these tables are used in the function
convolve init prec.

In convolve init prec the combination arrays are built.
Our implementation is much the same as described
in [Smith] but in order to limit the number of entries
in the combination lists, small values outside a specified
range (user defined, see Figure 5.6) are discarded.

prec 2 3 4 5
factor=
24prec�1 128 2048 32768 524288

range � 1factor : : : 1factor
Figure 5.6: The relation between prec, factor and range.

Small combination lists result in a faster convolution
algorithm, but discarding too many values would result
into inaccurate calculations. For example, precision=2
will most likely give a black output picture. precision=5
will probably take more time than precision=3,but the
output image will not differ too much.

To avoid floating point calculations, we multiplied
every W value (see Figure 4 in [Smith]) by a user defined
factor (see Figure 5.6) and used integer rounding on
the result. Because of performance reasons, we usefactor > 10prec, where factor a power of 2. See
Figure 5.6.

Convolve init is almost the same as convolve init prec,
the only difference is that precision is now a constant
value.

5.8 rle.c
The function rle2block converts a runlength encoded
MCU into an MCU of 8x8 blocks. Actually the blocks
are 64 element vectors, but thinking of them as blocks

makes things easier to understand. block2rle converts
an MCU of 8x8 blocks into a runlength encoded MCU.
These two functions are used in the brute force versions
of scalar multiplication, scalar addition, pixel addition
and pixel multiplication. When performing brute force
operations, we would like our operations to be performed
on the bitmaps. So it should be obvious to use 8x8 blocks.

The function block2rle is also used for pixelwise ad-
dition and for scalar- and pixelwise multiplication (for a
further explanation see Section 5.9).

Other functions in this module are allocate RLE,
init RLE and release RLE.

5.9 The main modules
For an overview of the main modules see Figure 5.7 and
Figure 5.13. The following is handled in every main
function described in this section:� The input and output files are opened.� It is checked whether the first input image is in the

JFIF standard, and the header is copied.� This step is only needed for pixelwise operations:{ The second input image is checked for the JFIF
standard.{ The first and second input files are checked on
compatibility, see Section 5.4� The config file is read. If there is no config file,

default values are used.� The actual operations are handled (this part differs
for every operation).� the structures that were used used are freed

For an overview of the steps taken in the non-brute-
force implementation of the operations see Figure 5.8.
Step 2 also involves quantization and if needed, denor-
malization and normalization.

Now we take a closer look at scalar multiplication,
pixel addition, pixel multiplication and we will make
some general remarks for the brute force implementations.
For the different implementations of scalar addition, it
suffices to refer to Section 4.3.

5.9.1 Scalar multiplication
There are four different flavours for scalar multiplication.
There is a DC-coefficient oriented version and a DC-
difference oriented version. Both versions can be either
RLE-in-RLE-out or RLE-in-block-out.

Chapter 5. The modules 32

OPERATIONS
smval1.c scalar multiplication using DC-coefficients, RLE-in-RLE-out oriented
smval2.c scalar multiplication using DC-coefficients, RLE-in-block-out oriented
smdif1.c scalar multiplication using DC-differences, RLE-in-RLE-out oriented
smdif2.c scalar multiplication using DC-differences, RLE-in-block oriented
saval.c scalar addition using DC-coefficients
sadif.c scalar addition using DC-differences
paval1.c pixel addition using DC-coefficients, block-in-block-out oriented
paval2.c pixel addition using DC-coefficients, RLE-in-block-out oriented
padif1.c pixel addition using DC-differences, block-in-block-out oriented
padif2.c pixel addition using DC-differences, RLE-in-block-out oriented
pm.c pixel multiplication
pmprec.c pixel multiplication using user defined precision

Figure 5.7: An overview of the main modules.

step 1

huffman decoding

step 3

huffman encoding

step 2

perform operation

Figure 5.8: The smart way.

A discusion of DC-coefficient oriented versus DC-
difference oriented was given in Section 4.2.

an RLE-in-RLE-out oriented implementation operates
directly on the runlength encoded block (RLE-block).
This could be dangerous, specially if a small scaling
factor is applied to a small amplitude in the RLE-block;
if the scaled amplitude is in the range 0 : : : 12 , then
integer rounding will set the resulting amplitude to 0
(See Figure 5.9). This would mean that a zero-amplitude
would appear in the RLE-block. Even though the RLE-
block was introduced to leave out zeros! We call these
zero-amplitudes ghost-amplitudes.

−1 −153 13
0 08 2
1 1
0 0

0 00 0

4 4
2 2

1 0
3 1

−4 −1
−2 −1

∗ 0.25 =
}

Figure 5.9: Scalar multiplication: RLE-in-RLE-out and
ghost-amplitudes.

An option could be to rearrange the RLE-block, but

we expect this to cost too much overhead. Therefore,
another option was chosen; we read the incoming am-
plitudes from the RLE-blocks, but we store the outgoing
amplitudes directly in a block (See Figure 5.10). The
index of a resulting amplitude in the output block can
be calculated, using the runlengths of the current and
previous amplitudes.

Ofcourse this method has a drawback; an addi-
tional conversion | runlength encoding, from block
to RLE-block| has to be applied for each MCU. This
takes time. But the result is mostly better | a better
compression ratio is achieved.

5.9.2 Pixel addition

The implementation of pixel addition comes in four dif-
ferent flavours. Again there is a DC-coefficient oriented
version and a DC-difference oriented version. Now both
versions can be either block-in-block-out or RLE-in-
block-out.

Note that we left out an RLE-in-RLE-out version. We
expect this version to take too much overhead because
we have to merge the incoming RLE-blocks; Often, two
matching block entries | for example, the two Y-
components of the pixels at (xi; yi) of the input images| do not match in the RLE-blocks because one of the
two is missing in the RLE-block, due to an amplitude of
zero.

Chapter 5. The modules 33

−1 −153

13

13

00 −1 −12

2

01
1

00 00 0 0 0

0

−1
−1

0

0 08
1 2
0

0
0 0

4
4

2
2

1
3

−4
−2

∼ ∼
∗ 0.25 =

Figure 5.10: Scalar multiplication: RLE in zigzagged vector out.

The most straightforward way to overcome this prob-
lem is to convert the incoming RLE-blocks to normal
blocks and perform pixel addition in a matrix addition
like manner. Figure 5.11 illustrates this method with all
quantization table entries set to 1. The drawback of this
method is that lots of unuseful additions could be done;
many entries in the blocks are zero, so it is likely that two
zeroes are added.

This leads to another implementation. We return to the
idea of merging the RLE-blocks, but now we perform
the merging process during the pixel addition, and the
merging takes place in a block; The first input RLE-block
is taken and its amplitudes are stored in the output block
using the runlenghts for each amplitude (an RLE-block
to block conversion). Then the second input RLE-block
is taken and its amplitudes are added to the matching
entries in the output block, again using the runlenghts for
each amplitude. An example can be found in Figure 5.12.
Again, all quantization table entries are set to one.

Section 7.3 shows that the RLE-in-block-out approach
often saves time.

5.9.3 Pixel multiplication
For pixel multiplication there is one ‘normal version’
and one version where a user defined precision is needed
(for an explanation see below). For both pixel multi-
plication versions, DC-coefficients are being used. The
module pmprec.c contains the main function of pixel
multiplication with a user defined precision.

The actual work for pixel multiplication is handled in
pmul.c, see Section 5.7. The main modules for pixel
multiplication | pm.c and pmprec.c | are almost the
same, the only difference is that pm.c uses a constant
precision for the calculations instead of a user defined
precision. This constant precision (3) was found by ex-
perimenting and suffices for most images. The advantage
of a constant precision over a user defined precision is

that less overhead | i.e. less calculations| is needed
to compute one block entry. As a result, time is saved.

5.9.4 The brute force operations
A brute force algorithm can be performed as displayed in
Figure 5.14. As can be seen in Figure 5.13 there are four
versions of every brute force operation.

For an overview of the steps needed for a brute force
implementation of an operation see Figure 5.14. The
reverse- and forward zigzag steps (steps 3 and 7) can
be skipped. These steps can be omitted, because the
position within the input matrix is not important for the
performance of the operations. Applying zigzag increases
execution time, because more work is needed. Steps 4 and
6 in the algorithm (the reverse- and forward DCT steps)
can also be executed using a fast DCT algorithm. The
smart implementation is based on an algorithm described
by [Loef].

Chapter 5. The modules 34

−1 53
0 8
1
0

0 0

4
2

1
3

−4
−2

−1 83
0 15
1
0

0 −5

0
2

2
0

1
3

−6
−2

−2
0

−1 30
0 7
3

0 0

2
0

−6
−2
−1

53 30 08 01 0 0 −20−4 0 00 ∼ ∼

83 30 015 −61 0 −2 −20−5 0 00 ∼ ∼

30 00 07 −60 0 −2 0 0−1 ∼ ∼

+

Figure 5.11: Pixel addition: block in block out.

Chapter 5. The modules 35

−1 53
0 8
1
0

0 0

4
2

1
3

−4
−2

−1 83
0 15
1
0

0 −5

0
2

2
0

1
3

−6
−2

−2
0

−1 30
0 7
3

0 0

2
0

−6
−2
−1

83 30 015 −61 0 −2 −20−5 0 00 ∼ ∼

30 00 07 −60 0 −2 0 0−1 ∼ ∼

0 00 0 0 0 0 00 0 ∼ ∼30 7 −6 −2 −1
+ + + + + +
53 8 1 3 −4 −2

Figure 5.12: Pixel addition: RLE in block out.

Chapter 5. The modules 36

BRUTE FORCE
smbd.c brute force scalar multiplication using brute force DCT
smzzbd.c brute force scalar multiplication with zigzag using brute force DCT
smsd.c brute force scalar multiplication using smart DCT
smzzsd.c brute force scalar multiplication with zigzag using smart DCT
sabd.c brute force scalar addition using brute force DCT
pazzbd.c brute force scalar addition with zigzag using brute force DCT
sasd.c brute force scalar addition using smart DCT
pazzsd.c brute force scalar addition with zigzag using smart DCT
pabd.c brute force pixelwise addition using brute force DCT
pazzbd.c brute force pixelwise addition with zigzag using brute force DCT
pasd.c brute force pixelwise addition using smart DCT
pazzsd.c brute force pixelwise addition with zigzag using smart DCT
pmbd.c brute force pixelwise multiplication using brute force DCT
pmzzbd.c brute force pixelwise multiplication with zigzag using brute force DCT
pmsd.c brute force pixelwise multiplication using smart DCT
pmzzsd.c brute force pixelwise multiplication with zigzag using smart DCT

Figure 5.13: An overview of the main brute force modules.

step 7

fwd. zigzag

step 8

fwd. quantization

step 9

huffman encoding

step 1

huffman decoding

step 3

rev. zigzag

step 2

rev. quantization

step 5

algebraic operation

step 4

rev. DCT

step 6

fwd. DCT

Figure 5.14: The brute force way.

Chapter 6

JFIF

Most JPEG-images are distributed in the JFIF (JPEG
File Interchange Format) standard. The purpose of
the JFIF standard is to allow the exchange of JPEG
compressed images. The JFIF standard is compatible
with the standard JPEG interchange format, and meets
with the requirements of the JPEG Draft International
Standard.

The JPEG interchange format requires that all tables
needed in the encoding process are put in the bitstream
before they are used. This is also required by the JFIF
standard.

The colour space used in the JFIF standard is YCbCr.
(if needed the YCbCr colour space can be converted into
the RGB colour space, or vice versa). The first component
of the YCbCr colour space determines the luminance, the
second and third component determine the chrominance.
A component contains 8-bit values. The first component
(luminance) is in the range [0: : :255], and the second
and third components (chrominance) have values in the
range of [-128: : :127]. A picture containing only one
component (the Y of the YCbCr colour space) will be a
greyscale image.

6.1 Markers
A JFIF marker is defined by 0xFF followed by the marker
code. In the file jfif.h the definitions of the codes can be
found. A marker is always followed by two bytes which
give the length of the total segment (except for the SOI
marker, which is directly followed by the APP0 marker) .
All markers, belonging to useful segments of the project,
are briefly described below. For a list of markers of useful
segments (a useful segment contains data that is needed
for the project) see Table 6.1. The other markers and
segments are just copied into the output image data.

SOI marker

According to the JFIF standard, an image has to begin
with a start of image marker (SOI). Directly after the

M_SOF0 = 0xc0, Start of Frame markerM_DHT = 0xc4, Def. Huffman Table(s)M_SOI = 0xd8, Start of ImageM_EOI = 0xd9, End of ImageM_SOS = 0xda, Start of ScanM_DQT = 0xdb, Def. Quantization TableM_APP0 = 0xe0, Application marker
Figure 6.1: A list of used markers.

SOI marker should be a next marker (APP0). If the
segment (identified by this marker) doesn’t contain any
useful information, it is just copied into the output image
data, and a next marker is read. If the segment does
contain useful information, the needed data is extracted,
and then copied into the output image data. This process
of reading and copying data is repeated until the SOS
marker is encountered.

APP0 marker

In order to identify a JFIF compressed image, an APP0
marker is used. This marker has to be added right after the
SOI marker. The JFIF APP0 marker provides an image
with additional data, such as:� version number� X and Y pixel density (dots per inch or dots per cm)� pixel apect ratio� thumbnail.

Additional APP0 marker segment(s) can be used to
specify JFIF extensions and for application-specific in-
formation. The additional APP0 marker segment(s) is/are
optional.

The additional information provided by the APP0
marker is not used in the project.

37

Chapter 6. JFIF 38

SOF0 marker

A start of frame segment is recognized. A start of frame
segment contains useful data, such as:� image height,� image width,� number of components,� horizontal sampling factors,� vertical sampling factors.

Horizontal and vertical sampling factors are used to
calculate the number of blocks per MCU.

DHT marker

A Huffman table segment is identified. The data needed
for setting up the Huffman tables is stored in this segment.� index,� bits[],� huffval[].

Index is needed to identify the Huffman table that is to
be processed. The use of bits[] and huffval[] is
explained in section 5.3.1.

DQT marker

A quantization table segment marker is recognized. The
data, concerning the quantization table(s), is stored in this
segment:� index,� quantization table.

Every quantization table has its own index. The use of
the quantization tables is explained in section 2.1.4

SOS marker

A start of scan marker is recognized. A SOS segment
contains information on components in scan. As we
assume that a file contains only one image, we don’t
really use this information

After a start of scan segment has been processed all
data needed for encoding the Huffman coded bitstream
has been processed, (according to the JFIF standard).
The remaining data following the start of scan segment,
forms the Huffman encoded image in the frequency
domain. Within the scan data, no marker should appear.
If by any change a 0xFF should appear in the scan

data, the processing application could interpret this as
the beginning of a marker. To tell the application that
the 0xFF is not part of a marker but part of the scan
data, 0xFF is followed by a zero byte. Whenever 0xFF is
encountered, the application should check for a folllowing
zero byte. If this byte is not present, the 0xFF and the
non zero byte are interpreted as a JFIF marker. If the zero
byte is present, this zero byte is discarded and the next
byte is used for the scandata.

EOI marker

The End of Image (EOI) marker is used to define the end
of the scandata.

6.2 A JFIF example
In this section we will illustrate the JFIF format with an
example. As mentioned in Section 6.1, each block (or
segment) starts with four bytes: two bytes to indicate what
kind of information is stored in the block (the marker) and
two bytes to indicate the length of the block, including
the two bytes representing the length but excluding the
two bytes that form the marker. A program readblock
was written which takes a JFIF style JPEG image as
input, and identifies the blocks in the file. The output
of readblock for each segment is a JFIF marker, the
length of the segment and the data in the segment (all in
hexadecimal representation). The picture Senna.jpg was
input to readblock, and the output is given in Figure 6.2.

First, readblock checks the first two bytes of the JFIF
file. These two bytes should be 0xFF and 0x8D, together
they form the Start of Image marker (M SOI). The SOI
marker is discarded.

The first marker following SOI is 0xFF 0xE0 (M APP0,
see Figure 6.1). An APP0 segment starts with the hex-
adecimal codes 0x4A, 0x46, 0x49, 0x46, 0x00. These
codes form the ASCII representation of the zero termi-
nated string "JFIF". The next two bytes indicate the
JFIF version of the file. Senna.jpg is in the JFIF style
version 1.01. The following bytes are not needed for our
purposes, but for an overview see [Hami].

The order of the segments after APP0 is not important,
so the order in which the segments of the example are
discussed is not a mandatory order.

The next two segments store the quantization tables.
After the marker (0xFF 0xDB) and the length (next two
bytes), one byte is used to specify both the precision of
the table entries (quantization table entries can be one
byte values or two byte values), as well as a unique
identification number for the table to be read. The
following 64 or 128 bytes (depending on the precision)
are the quantization table entries. In this example each

Chapter 6. JFIF 39

quantization table has its own segment, but it is possible
to store several tables in the same segment. The first
quantization table has index 0x00 (0), its first entry is
0x02 (2), and its last entry is 0x0A (10). The second
quantization table has index 0x01 (1), its first entry is
0x02 (2), and its last entry is 0x0A (10).

Following the quantization segments is the SOF0 seg-
ment. After the 4 bytes that form the marker and the
length specification (0xFF 0xC0 0x00 0x11) is one byte
to define the number of bits per pixel component value
(0x08). The next 4 bytes define the heigth and width of
the image. In our example, the image is 0x018B (395)
pixels high and 0x029B (667) pixels wide. The next bytes
specify the number of components of the image, which
in our example is 0x03 (3). This segment is closed with
information for each component of the image. The infor-
mation for each component consists of an index for each
component, the horizontal and vertical sampling factors
for each component and the index of the quantization ta-
ble to be used with this component. The first component
of our image has index 0x01 (1) and has sampling factor
0x22 which means a horizontal sampling factor of 2 and
a vertical sampling factor of 2. The next byte tells that
quantization table 0x00 is to be used with component 1.
The information for component 2 and component 3 is
dealt with in a similar manner.

The next four segments are Huffman table segments.
As mentioned in Section 5.3, two arrays (bits[] andhuffval[]) are needed to construct the Huffman tables.
The first byte after the marker and the length bytes,
indicates both the index of the Huffman table and the
type of the Huffman table; a Huffman table for DC-
coefficients or a Huffman table for AC-coefficients. The
next 16 bytes are the entries of the bits[] array. Definen as n =

P16i=1bits[i]. Then the next n bytes are the
entries for the huffval[] array. In Senna.jpg, each table
has its own segment, but it is allowed to store several
tables in one segment.

The last segment before the scan data is the Start
of Scan segment. After the marker and length bytes,
the number of components are specified in one byte.
Then for each component the following information is
supplied: the component index, the index of the matching
Huffman table for the DC-coefficients and the index of
the matching Huffman table for the AC-coefficients. In
our example, there are three components (the first 0x03
in the segment). The next 0x01 (1) and 0x00 (0) tell that
component 1 uses AC-Huffman table 0 and DC-Huffman
table 0. Component 2 and 3 use AC-Huffman table 1 and
DC-Huffman table 1 (0x02 0x11 0x03 0x11). The rest of
the bytes in this segment have an unknown purpose.

Chapter 6. JFIF 40

 Filename : /home/gkumara/pic/Senna.jpg
 Total length : 95094 (decimal)
 ==============

 Marker : FF E0
 Length of block : 0010 (=16)
 4A 46 49 46 00 01 01 00 00 01 00 01 00 00

 Marker : FF DB
 Length of block : 0043 (=67)
 00 02 01 01 01 01 01 02 01 01 01 02 02 02 02 02
 04 03 02 02 02 02 05 04 04 03 04 06 05 06 06 06
 05 06 06 06 07 09 08 06 07 09 07 06 06 08 0B 08
 09 0A 0A 0A 0A 0A 06 08 0B 0C 0B 0A 0C 09 0A 0A
 0A

 Marker : FF DB
 Length of block : 0043 (=67)
 01 02 02 02 02 02 02 05 03 03 05 0A 07 06 07 0A
 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A
 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A
 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A
 0A

 Marker : FF C0
 Length of block : 0011 (=17)
 08 01 8B 02 9B 03 01 22 00 02 11 01 03 11 01

 Marker : FF C4
 Length of block : 001F (=31)
 00 00 01 05 01 01 01 01 01 01 00 00 00 00 00 00
 00 00 01 02 03 04 05 06 07 08 09 0A 0B

 Marker : FF C4
 Length of block : 00B5 (=181)
 10 00 02 01 03 03 02 04 03 05 05 04 04 00 00 01
 7D 01 02 03 00 04 11 05 12 21 31 41 06 13 51 61
 07 22 71 14 32 81 91 A1 08 23 42 B1 C1 15 52 D1
 F0 24 33 62 72 82 09 0A 16 17 18 19 1A 25 26 27
 28 29 2A 34 35 36 37 38 39 3A 43 44 45 46 47 48
 49 4A 53 54 55 56 57 58 59 5A 63 64 65 66 67 68
 69 6A 73 74 75 76 77 78 79 7A 83 84 85 86 87 88
 89 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5 A6
 A7 A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3 C4
 C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA E1
 E2 E3 E4 E5 E6 E7 E8 E9 EA F1 F2 F3 F4 F5 F6 F7
 F8 F9 FA

 Marker : FF C4
 Length of block : 001F (=31)
 01 00 03 01 01 01 01 01 01 01 01 01 00 00 00 00
 00 00 01 02 03 04 05 06 07 08 09 0A 0B

 Marker : FF C4
 Length of block : 00B5 (=181)
 11 00 02 01 02 04 04 03 04 07 05 04 04 00 01 02
 77 00 01 02 03 11 04 05 21 31 06 12 41 51 07 61
 71 13 22 32 81 08 14 42 91 A1 B1 C1 09 23 33 52
 F0 15 62 72 D1 0A 16 24 34 E1 25 F1 17 18 19 1A
 26 27 28 29 2A 35 36 37 38 39 3A 43 44 45 46 47
 48 49 4A 53 54 55 56 57 58 59 5A 63 64 65 66 67
 68 69 6A 73 74 75 76 77 78 79 7A 82 83 84 85 86
 87 88 89 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4
 A5 A6 A7 A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2
 C3 C4 C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9
 DA E2 E3 E4 E5 E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7
 F8 F9 FA

 Marker : FF DA
 Length of block : 000C (=12)
 03 01 00 02 11 03 11 00 3F 00

 This program has come to an unknown block-structure.
 Nothing to worry about, I probably found an SOS
 (Start Of Scan) Marker, so in fact this is good news!

Figure 6.2: An example of the output of readblock which identifies blocks within a JFIF file.

Chapter 7

Results

In this chapter we will give our results from several
tests. Our testset is given in Figure 7.2. For our testset
we tried to use testimages of a wide variety. In order
to accomplish this we used one big and one small one-
component (greyscale) image as well as one big and one
small colour (three components) image as testimages.

In order to see if ‘smoothness’ would make any dif-
ference to the output image or the execution time of our
smart algorithm, we have also included a ‘raw’ and a
‘smooth’ version. A raw image can display details with
pixel precision whereas a smooth image tends to smear
out such details.

For every testimage we also used three different quality
settings to determine whether a different quality setting
would make any difference to the performance of the
algorithms. The input images of the lowest quality,used
in our testset, are still of a good visual quality.

Our program runs on a multiuser system, but our tests
were done during off peak periods. The computer used
was a Hewlett Packard 9000/720 running version E of
release A.09.03 of the HP-UX operating system.

With the results we want to show how the different
methods perform on a particular image. The times in the
tables are averages of ten runs and are given in seconds.

As the times on the HP’s were fluctuating due to an
inconsistent systemload, we also timed the algorithms
on an Indy workstation of Silicon Graphics Inc. (using
release 5.2 of the IRIX operation system), in the hope
to find more consistent values. As the Silicon Graphics
Indy is not as busy as the HPs and the systemload is more
consistent, this hope was justified.

The results are given in Appendix B. The results of
the pixel multiplication algorithms are omitted; we did
not succeed to run the pm and pmprec algorithms on the
Silicon Graphics Indy, due to porting problems. As the
results on the Indy are fairly consistent, the times in the
tables are averages of five, instead of ten, runs.

We decided to use the results found using the HPs,
even though these times are less consistent, because of
the absence of the results of the pixel multiplication
algorithms.

val - DC-coefficients
diff - DC-differences
bd - without zigzag with brute force DCT
zzbd - with zigzag and brute force DCT
sd - without zigzag with smart DCT
zzsd - with zigzag and smart DCT
valprec 3 - 3 digits precision
valprec 4 - 4 digits precision
valprec 5 - 5 digits precision

Table 7.1: List of abbreviations.

41

Chapter 7. Results 42

number total average

image quality type bytes size of RLE RLE

RLEs length length

dont.panic.smooth.50.jpg 50% Greyscale 60720 1280 x 852 17120 103971 6.07

dont.panic.smooth.75.jpg 75% Greyscale 96096 1280 x 852 17120 155169 9.06

dont.panic.smooth.100.jpg 100% Greyscale 520990 1280 x 852 17120 806592 47.11

dont.panic.smooth.upsidedown.50.jpg 50% Greyscale 60521 1280 x 852 17120 103826 6.06

dont.panic.smooth.upsidedown.75.jpg 75% Greyscale 95947 1280 x 852 17120 155338 9.07

dont.panic.smooth.upsidedown.100.jpg 100% Greyscale 364687 1280 x 852 17120 509327 29.75

dont.panic.raw.50.jpg 50% Greyscale 119372 1280 x 852 17120 183489 10.72

dont.panic.raw.75.jpg 75% Greyscale 211376 1280 x 852 17120 334446 19.54

dont.panic.raw.100.jpg 100% Greyscale 897012 1280 x 852 17120 1037651 60.61

dont.panic.raw.upsidedown.50.jpg 50% Greyscale 119088 1280 x 852 17120 183617 10.73

dont.panic.raw.upsidedown.75.jpg 75% Greyscale 211089 1280 x 852 17120 334185 19.52

dont.panic.raw.upsidedown.100.jpg 100% Greyscale 896924 1280 x 852 17120 1038480 60.66

sphynx.smooth.50.jpg 50% Greyscale 3228 149 x 199 475 4734 9.97

sphynx.smooth.75.jpg 75% Greyscale 4550 149 x 199 475 6525 13.74

sphynx.smooth.100.jpg 100% Greyscale 16489 149 x 199 475 22114 46.56

sphynx.smooth.upsidedown.50.jpg 50% Greyscale 3198 149 x 199 475 4726 9.95

sphynx.smooth.upsidedown.75.jpg 75% Greyscale 4520 149 x 199 475 6481 13.64

sphynx.smooth.upsidedown.100.jpg 100% Greyscale 12807 149 x 199 475 16153 34.01

sphynx.raw.50.jpg 50% Greyscale 4447 149 x 199 475 6678 14.06

sphynx.raw.75.jpg 75% Greyscale 7022 149 x 199 475 10282 21.65

sphynx.raw.100.jpg 100% Greyscale 25806 149 x 199 475 28711 60.44

sphynx.raw.upsidedown.50.jpg 50% Greyscale 4389 149 x 199 475 6571 13.83

sphynx.raw.upsidedown.75.jpg 75% Greyscale 6950 149 x 199 475 10162 21.39

sphynx.raw.upsidedown.100.jpg 100% Greyscale 26003 149 x 199 475 28876 60.79

wongat.smooth.50.jpg 50% Colour 14716 282 x 349 2376 23600 9.93

wongat.smooth.75.jpg 75% Colour 20711 282 x 349 2376 30703 12.92

wongat.smooth.100.jpg 100% Colour 79707 282 x 349 2376 100378 42.25

wongat.smooth.upsidedown.50.jpg 50% Colour 14709 282 x 349 2376 23491 9.89

wongat.smooth.upsidedown.75.jpg 75% Colour 20690 282 x 349 2376 30623 12.89

wongat.smooth.upsidedown.100.jpg 100% Colour 64359 282 x 349 2376 80511 33.89

wongat.raw.50.jpg 50% Colour 20117 282 x 349 2376 31869 13.41

wongat.raw.75.jpg 75% Colour 30297 282 x 349 2376 44899 18.90

wongat.raw.100.jpg 100% Colour 113652 282 x 349 2376 122084 51.38

wongat.raw.upsidedown.50.jpg 50% Colour 20224 282 x 349 2376 31795 13.38

wongat.raw.upsidedown.75.jpg 75% Colour 30299 282 x 349 2376 44614 18.78

wongat.raw.upsidedown.100.jpg 100% Colour 78529 282 x 349 2376 98532 41.47

sunset.smooth.50.jpg 50% Colour 49360 967 x 810 18666 92287 4.94

sunset.smooth.75.jpg 75% Colour 79822 967 x 810 18666 140000 7.50

sunset.smooth.100.jpg 100% Colour 351833 967 x 810 18666 489782 26.24

sunset.smooth.upsidedown.50.jpg 50% Colour 49627 967 x 810 18666 92687 4.97

sunset.smooth.upsidedown.75.jpg 75% Colour 77769 967 x 810 18666 136502 7.31

sunset.smooth.upsidedown.100.jpg 100% Colour 386060 967 x 810 18666 558947 29.94

sunset.raw.50.jpg 50% Colour 73863 967 x 810 18666 128427 6.88

sunset.raw.75.jpg 75% Colour 126836 967 x 810 18666 208952 11.19

sunset.raw.100.jpg 100% Colour 375238 967 x 810 18666 324514 17.38

sunset.raw.upsidedown.50.jpg 50% Colour 74178 967 x 810 18666 129084 6.92

sunset.raw.upsidedown.75.jpg 75% Colour 126610 967 x 810 18666 210670 11.29

sunset.raw.upsidedown.100.jpg 100% Colour 573603 967 x 810 18666 755925 40.50

Table 7.2: table of testimages.

Chapter 7. Results 43

7.1 Scalar multiplication

Input : dont.panic.jpg

Scale : 1.5

smooth raw

50% 75% 100% 50% 75% 100%

val1 1.4900 2.1920 11.2010 2.7250 4.7080 15.4790

val2 2.1390 2.9910 12.2670 3.4130 5.5790 16.7650

diff1 1.4270 2.1350 10.8860 2.6170 4.6450 15.1950

diff2 2.1260 2.8930 12.3200 3.4100 5.5990 16.7900

bd 977.5530 977.8660 990.0960 979.9280 983.2200 990.5800

zzbd 978.6370 979.3130 993.9470 980.6840 981.7600 992.0590

sd 10.9230 12.2140 22.2780 12.9610 15.4920 26.3540

zzsd 12.9470 13.9910 23.9310 14.6420 17.1170 27.8220

Input : sphynx.jpg

Scale : 1.5

smooth raw

50% 75% 100% 50% 75% 100%

val1 0.0750 0.0960 0.3220 0.0980 0.1510 0.4240

val2 0.0860 0.1150 0.3520 0.1200 0.1700 0.4710

diff1 0.0650 0.0870 0.3090 0.0940 0.1430 0.4220

diff2 0.0860 0.1200 0.3490 0.1150 0.1720 0.4720

bd 27.2050 27.2090 27.3790 27.2080 27.2520 27.7570

zzbd 27.2230 27.2480 27.4120 27.2450 27.2920 27.5270

sd 0.3640 0.3860 0.6340 0.3890 0.4460 0.7310

zzsd 0.4150 0.4300 0.6850 0.4390 0.4910 0.7890

Input : wongat.jpg

Scale : (1.5, 1.5, 1.5)

smooth raw

50% 75% 100% 50% 75% 100%

val1 0.3320 0.4270 1.5140 0.4430 0.6300 1.8690

val2 0.4190 0.5340 1.6200 0.5380 0.7430 2.0510

diff1 0.3240 0.4130 1.4490 0.4200 0.6100 1.8580

diff2 0.4190 0.5290 1.6200 0.5410 0.7380 2.0650

bd 135.7480 135.9280 136.9730 135.8550 136.1670 137.3610

zzbd 135.9460 136.2020 137.2150 136.0590 136.3420 137.5250

sd 1.6440 1.7700 3.0250 1.7840 1.9920 3.4100

zzsd 1.9060 2.0300 3.2070 2.0360 2.2500 3.6170

Input : sunset.jpg

Scale : (1.5, 1.5, 1.5)

smooth raw

50% 75% 100% 50% 75% 100%

val1 1.2570 1.9050 7.0380 1.7770 2.8920 5.6850

val2 1.9320 2.6220 8.0570 2.4850 3.6770 6.5760

diff1 1.1980 1.8540 6.9580 1.7190 2.8340 5.6310

diff2 1.9100 2.6130 8.0680 2.4700 3.6590 6.5780

bd 1065.5060 1065.4340 1071.4760 1066.5190 1070.5100 1071.3240

zzbd 1067.5440 1071.0160 1072.7800 1068.2330 1072.4710 1072.4530

sd 11.1170 12.1170 18.8510 11.8800 13.3110 17.7720

zzsd 13.1300 14.0790 20.2210 13.7950 15.2250 18.9860

Chapter 7. Results 44

7.2 Scalar addition

Input : dont.panic.jpg

Scale : 50.5

smooth raw

50% 75% 100% 50% 75% 100%

val 1.2980 1.9060 9.5140 2.3310 4.0820 13.5710

diff 1.2280 1.8330 9.5120 2.2980 3.9960 13.3070

bd 977.5260 979.5880 986.0200 980.1320 989.5400 990.3250

zzbd 979.6040 978.6400 988.2840 980.8300 993.7520 999.5690

sd 10.1650 11.6250 20.9860 12.4380 14.8790 25.1340

zzsd 12.4180 13.4360 22.3680 14.0710 16.4990 26.9600

Input : sphynx.jpg

Scale : 50.5

smooth raw

50% 75% 100% 50% 75% 100%

val 0.0650 0.0850 0.2710 0.0810 0.1240 0.3880

diff 0.0600 0.0820 0.2700 0.0810 0.1220 0.3780

bd 27.1650 27.1920 27.3710 27.1930 27.2350 27.4940

zzbd 27.2000 27.2230 27.4060 27.2530 27.2910 27.5310

sd 0.3460 0.3780 0.5970 0.3650 0.4340 0.7170

zzsd 0.3980 0.4200 0.6400 0.4130 0.4820 0.7630

Input : wongat.jpg

Scale : (50.5, 50.5, 50.5)

smooth raw

50% 75% 100% 50% 75% 100%

val 0.2260 0.3710 1.2620 0.3830 0.5450 1.6370

diff 0.2720 0.3590 1.2510 0.3750 0.5330 1.6220

bd 135.6900 135.8610 136.7500 136.6670 136.0610 137.1040

zzbd 135.8850 136.0830 136.9360 136.8760 136.2750 137.1880

sd 1.5750 1.7050 2.8420 1.7280 1.9260 3.2410

zzsd 1.8340 1.9720 3.0850 1.9640 2.1840 3.4390

Input : sunset.jpg

Scale : (50.5, 50.5, 50.5)

smooth raw

50% 75% 100% 50% 75% 100%

val. 1.1020 1.6540 6.0750 1.5510 2.4950 5.0710

diff. 1.0270 1.5740 6.0020 1.4660 2.4140 4.9710

bd 1064.5080 1064.8000 1070.5910 1065.7200 1065.8130 1070.5740

zzbd 1066.1520 1066.4600 1071.7850 1067.3340 1067.4500 1071.7200

sd 10.6490 11.6000 17.8050 11.4080 12.7990 16.4900

zzsd 12.6350 13.5710 19.1990 13.3120 14.7160 17.8430

Chapter 7. Results 45

7.3 Pixel addition

Input 1 : dont.panic.jpg

Input 2 : dont.panic.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val1 6.5510 7.6950 18.9370 8.6120 11.9280 27.2970

val2 5.3680 6.5560 18.4080 7.5420 11.0560 27.2210

diff1 6.5180 7.6510 18.8940 8.5790 11.9010 27.2860

diff2 5.3270 6.5300 18.3600 7.5050 11.0220 27.2040

bd 1464.2830 1465.5470 1475.7640 1467.9590 1470.6160 1486.2760

zzbd 1466.4540 1467.7170 1479.0440 1469.6270 1472.6700 1488.9500

sd 14.2650 16.4000 29.1620 18.0050 21.9340 38.9550

zzsd 17.5320 19.2420 31.7220 20.4350 24.3860 40.8900

Input 1 : sphynx.jpg

Input 2 : sphynx.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val1 0.2190 0.2620 0.5580 0.2710 0.3450 0.7650

val2 0.1930 0.2300 0.5420 0.2430 0.3170 0.7650

diff1 0.2220 0.2600 0.5530 0.2660 0.3420 0.7650

diff2 0.1900 0.2300 0.5390 0.2390 0.3210 0.7630

bd 40.7190 40.7620 41.1800 40.7590 40.8200 41.3960

zzbd 40.7710 40.8150 41.2110 40.8110 40.9010 41.4710

sd 0.4770 0.5290 0.8380 0.5360 0.6240 1.0870

zzsd 0.5600 0.6000 0.8990 0.6050 0.6920 1.1390

Input 1 : wongat.jpg

Input 2 : wongat.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val1 1.0840 1.2440 2.6690 1.2720 1.5710 3.1620

val2 0.9300 1.1020 2.6030 1.1330 1.4360 3.1180

diff1 1.0710 1.2380 2.6610 1.2620 1.5540 3.1570

diff2 0.9260 1.0940 2.5870 1.1300 1.4330 3.1070

bd 203.4080 203.6960 205.3860 203.5700 204.0070 205.3100

zzbd 203.7030 204.0240 205.8220 203.8680 204.5440 205.5810

sd 2.2110 2.3970 4.0520 2.4290 2.7730 4.5430

zzsd 2.6040 2.8270 4.3590 2.8160 3.1820 4.9030

Input 1 : sunset.jpg

Input 2 : sunset.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val1 6.5760 7.5840 16.6930 7.4690 9.1060 18.5430

val2 5.2420 6.2870 15.8970 6.1860 8.1060 17.7710

diff1 6.5240 7.5220 16.6350 7.4160 9.2300 18.5000

diff2 5.1970 6.2480 15.8540 6.1520 8.0710 17.7300

bd 1597.4410 1596.3660 1607.0680 1597.3220 1597.9150 1608.8940

zzbd 1598.9550 1598.6210 1610.0900 1601.4550 1600.4850 1610.9290

sd 14.4110 15.9600 26.9560 15.8950 18.1400 28.8342

zzsd 17.5450 19.1270 29.2970 18.7640 21.1380 31.3108

Chapter 7. Results 46

7.4 Pixel multiplication

Input 1 : dont.panic.jpg

Input 2 : dont.panic.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val 4.7170 7.0403 69.5400 9.2190 21.6670 166.4350

valprec 3 6.1090 10.2830 108.8300 13.1890 33.8330 267.7280

valprec 4 6.1520 10.3680 114.7570 13.2120 33.8960 276.4950

valprec 5 6.1550 10.3960 116.1480 13.2380 33.9500 278.7790

bd 1466.8800 1465.9260 1478.9040 1466.6290 1469.4790 1486.7091

zzbd 1469.1830 1468.3030 1480.2190 1469.7700 1471.7760 1490.2050

sd 14.9450 17.0650 30.3940 18.2750 22.2240 39.6050

zzsd 18.2030 19.9340 32.4200 20.8770 24.6660 41.6090

Input 1 : sphynx.jpg

Input 2 : sphynx.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val 0.5850 0.7080 2.4780 0.7230 1.0720 5.0760

valprec 3 0.6840 0.8880 3.6690 0.8960 1.4880 7.7490

valprec 4 0.6900 0.8920 3.8720 0.9080 1.5010 8.1640

valprec 5 0.6900 0.9040 3.8960 0.9090 1.5070 8.2590

bd 40.7470 40.7950 41.2170 40.7720 40.8650 41.5110

zzbd 40.7900 40.8520 41.2200 40.8350 40.9180 41.5740

sd 0.5060 0.5460 0.8690 0.5500 0.6460 1.0920

zzsd 0.5770 0.6200 0.9360 0.6200 0.7190 1.1760

Input 1 : wongat.jpg

Input 2 : wongat.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val 1.8780 2.4280 10.9940 2.6170 4.5090 15.8170

valprec 3 2.4440 3.3380 16.7020 3.6570 6.0480 24.3630

valprec 4 2.4530 3.3680 17.5820 3.6680 6.0890 25.6310

valprec 5 2.4620 3.3840 17.6870 3.7600 6.1090 25.6790

bd 203.4110 203.5600 205.4220 203.4920 203.7170 206.4700

zzbd 203.7340 204.2390 205.8190 204.0830 204.4220 207.0700

sd 2.2240 2.4080 3.9350 2.4160 2.7490 4.4610

zzsd 2.7020 2.8400 4.2370 2.8200 3.1600 4.7660

Input 1 : sunset.jpg

Input 2 : sunset.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val 4.2320 6.3370 46.6280 6.0520 11.2540 44.5560

valprec 3 5.3310 8.6800 72.4840 8.2220 16.6910 67.8880

valprec 4 5.3620 8.7540 75.2640 8.2440 16.7980 70.7610

valprec 5 5.3590 8.7880 75.5130 8.2670 16.8220 71.2150

bd 1595.7220 1596.4120 1606.0380 1596.0330 1597.6960 1607.7820

zzbd 1597.8670 1598.8400 1613.6960 1598.5490 1600.0980 1612.5458

sd 14.5810 16.0650 26.1180 15.8530 17.8690 28.2125

zzsd 17.7630 19.2380 28.5670 18.8120 20.8750 30.4780

Chapter 8

Conclusions

In this chapter we will discuss the results given in
Chapter 7. Each section will deal with a specific operation.

First, it is important to note that the results found in
Chapter 7 are inaccurate, even though the timing of the
operations was done during off-peak hours.

During a run of ten tests the times found, fluctuate
within a reasonable margin, but when the same test is
done on another day, the resulting average can differ a
little. For this reason, we tested the operations we wanted
to compare in one testsession (e.g. smval1, smdif1,
smval2 and smdif2 were tested in one testsession).

We emphasize that we are more interested in the
relative times than in the absolute times. Table 8.1 shows
how an overall performance comparison per operation,
for both smooth and raw versions. In this table, the smart
operation to be preferred (see Section 8.2, Section 8.3,
Section 8.4 and Section 8.5), was compared with its brute
force version that uses that advanced DCT algorithm.
Table 8.1 shows that scalar multiplication is about 4.8
times faster than its brute force counterpart in case of the
50% quality smooth images.

smooth 50% 75% 100%
scalar mul. 4.8 3.9 2.0
scalar add. 7.8 5.8 2.4
pixel add. 2.6 2.4 1.6
pixel mul. 2.2 1.7 0.5
raw 50% 75% 100%
scalar mul. 3.8 2.9 1.9
scalar add. 5.6 4.1 2.3
pixel add. 2.3 2.0 1.5
pixel mul. 1.6 1.0 0.3

Table 8.1: Relative excecution times.

8.1 General remarks
In the brute force versions, it is clear that the zigzag
versions are slower than the ones where the zigzag step
was omitted. The reason for this can be found in the
64 memory references in each block. As it makes no
difference for the output image whether the zigzag version

or the version without zigzag is used, the brute force
versions without zigzag steps are to be preferred.

In the brute force versions it is also clear that the smart
DCT functions are remarkably faster than its brute force
DCT counterparts. As the smart DCT versions do not
suffer much from rounding errors, the smart DCT versions
are to be preferred to the brute force DCT versions.

From Chapter 7 it can be seen that the ‘smooth’ images
result in a better performance than the ‘raw’ images.
This is caused by the RLE-blocks which are longer for
the ‘raw’ versions. One exception to this is sunset.jpg
with 100% quality. Although the smooth image-file is
smaller, the average length of the RLE-blocks is higher
(see Appendix C). This is possible because in the smooth
version, the RLE entries are assigned shorter Huffman
codes.

It is also clear that the quality of the image determines
the performance of the algorithms; the lower the quality
of the image, the lower the average length of the RLE-
blocks (see Section 2.4), and therefore less work is needed
in the Huffman decoding and Huffman encoding phases.
In case of the smart algorithms, less work is also needed
during the operation phase since the smart algorithms are
RLE-based.

8.2 Scalar multiplication
In the scalar multiplication operation, we see that val1
(RLE-in-RLE-out) is faster than val2 (RLE-in-block-out).
This is also true for the DC-difference oriented versions.
Nevertheless, the RLE-in-block-out versions are to be
preferred to the RLE-in-RLE-out versions because of
the possible appearances of ghost-entries (see Subsec-
tion 5.9.1).

The differences in time between the DC-difference
oriented versions and the DC-coefficient versions are very
small, and the differences could be caused by fluctuations
in the systemload of the computer on which our program
was executed.

The DC-coefficient oriented versions are preferred to
the DC-difference oriented versions, because a piling up
of rounding errors in the DC-difference oriented versions
might result in a distorted output image.

47

Chapter 8. Conclusions 48

A promising fact is that the brute force algorithms are
indeed slower than the smart algorithms. Even the brute
force versions that make use of the smart DCT are slower
than smval2, which was to be preferred to the other smart
algorithms, in most cases smval2 is more than three times
faster than smsd.

8.3 Scalar addition

The first thing that comes to mind is that the times for
saval (DC-coefficient oriented) and sadif (DC-difference
oriented) don’t differ very much. These small differences
could even be caused by fluctuations in the systemload,
but because the sadif algorithm is faster for every image
than the saval algorithm, it might be justified to conclude
that sadif is a faster algorithm indeed.

If we remind that saval needs only one operation for
each component, and sadif needs one operation for every
block, it is obvious that saval is a faster algorithm.
See Section 4.3. Taking this into consideration we
expected a better performance from sadif compared to
saval. Probably, the algorithms (both sadif and saval)
spend most of the time in the huff-decoding and huff-
encoding phase. The additional calculations needed for
saval don’t add much to the total time using current
hardware.

The brute force algorithms are still considerably slower
than the smart algorithm.

The output images of any scalar addition algorithm are
of the same visual quality as the input images. This is
why we prefer the fastest algorithm, sadif.

8.4 Pixel addition

In the pixel addition operation, we see that paval2 (RLE-
in-block-out) is faster than paval1 (block-in-block-out).
This is also the case for the DC-difference oriented
versions. The block-in-block-out versions are slower
because in most cases a lot of unnecessary additions are
needed. See Section 5.9.2

The DC-difference oriented versions are faster than the
DC-coefficient versions. Even though the DC-difference
versions are faster, the DC-coefficient versions are pre-
ferred to the DC-difference oriented versions, because a
piling up of rounding errors in the DC-difference oriented
versions might result in a distorted output image. It can
now be concluded that of the smart algorithms paval2,
is the best smart algorithm (fastest version that is not
troubled by a distorted output image).

The brute force algorithms are indeed slower than the
smart algorithms. Even the brute force versions that make
use of the smart DCT are slower than paval2, which was
to be preferred to the other smart algorithms.

8.5 Pixel multiplication
Comparison of the execution times of the smart al-
gorithms, pmval (pixelwise multiplication using DC-
coefficients) and pmprec (pixelwise multiplication with
a user defined precision), shows that of the smart algo-
rithms, pmval is the faster one. This can be explained by
the fact that for the pmprec algorithms more overhead is
needed. As the execution time of pmval is less than any of
the pmprec versions, and the output image of the pmval
version has the same visual quality as the output image
of a pmprec version, it is clear that the pmval version is
to be preferred.

A brute force algorithm, compared to a smart algorithm,
provides a more detailed output image. This might be
caused by the fact that boundaries were set to the values
that are entered in the combination list. This was done to
increase performance. See Section 5.7.

If the execution time of the fastest smart algorithm(pm-
val) is compared to the execution time of the fastest brute
force algorithm (pmsd), the following can be concluded:

1. The smaller the input image, the worse pmval per-
forms in comparison to pmsd.

2. The higher the quality, the worse pmval, in compar-
ison to pmsd, performs.

This can be explained by the fact that in the pmval
algorithm a combination array initialization is needed.
The size of this combination array does not depend on
the size of the image but on the quantization tables of
the input image. As the time needed for initialization of
the combination array only depends on the quantization
tables, it is obvious that the impact of this initialization
is bigger on a small image. Because the quantization
tables depend on the quality of the input image, it can
be concluded that the time needed for the initialization of
the combination array depends on the quality of the input
images.

Chapter 9

Further ideas for further research

9.1 Pixel division
In this section we will discuss the division operation.
Pixel division can be used to reduce the noise in images
of microscopic scenes. A version that works on the
compressed data, has not been implemented yet, but we
will present a suggestion for the implementation of pixel
multiplication. We will use DC-coefficients only.

In a first attempt to solve this problem, we wanted to
develop a method similar to the one followed for pixel
multiplication (see Section 3.4).

Pixel division is defined by:y[i; j] = x1[i; j]x2[i; j] (9.1)
Like in Chapter 3 we substitute the operation into Eq. 2.1.
In this way we get:Y [u1; u2]= 14 7Xi=0 7Xj=0 C(i; u1)C(j;u2)y[i; j]= 14 7Xi=0 7Xj=0 C(i; u1)C(j;u2)x1[i; j]x2[i; j]

Now we apply the IDCT on x1 and x2.Y [u1; u2]= 14 7Xi=0 7Xj=0 C(i; u)C(j; v)x1[i; j]x2[i; j]= 14 7Xi=0 7Xj=0 C(i; u)C(j; v) �� 14 7Xv1=0 7Xv2=0C(i; v1)C(j; v2)X1[v1; v2]14 7Xw1=0 7Xw2=0C(i; w1)C(j;w2)X2[w1; w2]
Now we face a problem. The key to the solution offered

in Section 3.4 | collecting all C(i; u) and putting those

terms in M | cannot be applied here; the division ruins
everything.

So another approach had to be taken. Our next idea
was to rewrite pixel division into pixel multiplication,
and considering the problem as a linear system. To keep
the notations simple, we use the zigzag ordered notation:x1, x2 and z are the zigzag ordered indices of X1;Q, X2;Q
and YQ respectively. We start to rewrite Eq. 9.1:x1[i; j] = y[i; j]x2[i; j]
for i; j = 0; : : : ; 8

Combining Section 3.4 with the notation used in
Eq. 4.12 leads toX1;Q;zz [u] = 63Xv;w YQ;zz[v]X2;Q;zz[w]MQ;zz[v;w; u]
for u = 0; : : : ; 63.

Remember, our original problem was Eq. 9.1, so note
thatX1;Q;zz and X2;Q;zz are known and YQ;zz is unknown.

Now we rewrite the equation:X1;Q;zz [u]= 63Xv (YQ;zz[v] 63Xw X2;Q;zz [w]MQ;zz[v;w;u])
To keep our notation short, we defineP [u; v] = 63Xw X2;Q;zz [w]MQ;zz[v;w; u] (9.2)
Figure 9.1 is the ‘expanded’ version of Eq. 9.2 and

was included to illustrate the underlying linear system of
pixel division.

Now we define~x = (X1;Q;zz [0];X1;Q;zz [1]; : : : ;X1;Q;zz[63])T~y = (YQ;zz [0]; YQ;zz[1]; : : : ; YQ;zz[63])T
andP =0BB@ P [0;0] P [0; 1] � � � P [0; 63]P [1;0] P [1; 1] � � � P [1; 63]

...
...

...P [63; 0] P [63; 1] � � � P [63; 63] 1CCA
49

Chapter 9. Further ideas for further research 50X1;Q;zz [0] = P [0; 0]YQ;zz [0] + P [0; 1]YQ;zz[1] + � � � + P [0; 63]YQ;zz[63]X1;Q;zz [1] = P [1; 0]YQ;zz [0] + P [1; 1]YQ;zz[1] + � � � + P [1; 63]YQ;zz[63]
...

...
...

...X1;Q;zz[63] = P [63; 0]YQ;zz[0] + P [63; 1]YQ;zz[1] + � � � + P [63; 63]YQ;zz [63]
Figure 9.1: Pixel division as a linear system.

Now the system in Figure 9.1 can be written as~x = P~y (9.3)
where ~x and P are given and ~y is the vector we’re looking
for.

In order to solve this linear system, we must know
the entire matrix P ; we have to evaluate every P [u; v].
Evaluation could be done efficiently by using the RLE
representation of X2;Q;zz and by using a datastructure and
convolution algorithm similar to the one used for pixel
multiplication.

Some remarks have to be made on the construction of
matrix P :

1. Eq. 9.3 has to be done for every block in every
component since P depends on X2;Q;zz .

2. The number of calculations needed to construct P
depends on the length of the RLE representation ofX2;Qzz. Since the length of the RLE representation
strongly depends on the quantization tables of the
image, we conclude that the quantization tables of
an JPEG-image influence the number of calculations
needed to construct P .

If P is finaly constructed, then Eq. 9.3 has to be solved.
For this we need a very fast solver, since we expect the
solving of Eq. 9.3 to be the bottleneck of this operation.

Appendix A

Auxiliary tools

51

Appendix A. Auxiliary tools 52

During the process of understanding the knowledge that
was needed for this project, we developed some auxiliary
tools to try to concentrate completely on a certain subject
or to generate testdata. In this chapter we will discuss the
tools briefly.

A.1 readblock.c

After we studied the JPEG baseline method, we wanted
to start implementing the operations. This is exactly the
point where we found out that the file format for JPEG
images is not specified in the JPEG standard itself. After
reading [Lane] we found out about the existence of the
JFIF standard and we studied [Hami].

But in [Hami], only the APP0 segments are explained,
but it gave us a good idea of how the data needed for
decompression is stored in the file.

Then we studied the original source code supplied
by [Ijg]. At this stage, we were interested in the module
jrdjfif.c. In this module all needed segments are identified
and all needed data is extracted from these segments.

But now we wanted to work out some examples man-
ually. To do this we developed the program readblock.
With the output of readblock | which we like to call
segment dumps| , we were able to study jfif.c better
because now we had a way to trace the working of
jfif.c. A demonstration of readblock was already given in
Section 6.2.

A.2 huffload.c

When we were able to extract the meta data of an image| such as heigth, width, quantization tables and Huff-
man tables| it became time to extract the (scan)data
itself.

The scandata is Huffman encoded, so we needed to
understand the Huffman decoding and encoding phase
completely. In [Gon] complete Huffman tables are given
and the example that uses those tables gave us a lot of
insight in the algorithm used.

But in order to embed the Huffman modules from [Ijg]
in our own implementation, we spent some time examin-

 ===
 Defining Huffman Table 0x00 which is a DC table
 ===

 huffcode[p] = (decimal) = (binary) huffsize[p]
 huffcode[0] = 0 = 00 huffsize[0] = 2
 huffcode[1] = 2 = 010 huffsize[1] = 3
 huffcode[2] = 3 = 011 huffsize[2] = 3
 huffcode[3] = 4 = 100 huffsize[3] = 3
 huffcode[4] = 5 = 101 huffsize[4] = 3
 huffcode[5] = 6 = 110 huffsize[5] = 3
 huffcode[6] = 14 = 1110 huffsize[6] = 4
 huffcode[7] = 30 = 11110 huffsize[7] = 5
 huffcode[8] = 62 = 111110 huffsize[8] = 6
 huffcode[9] = 126 = 1111110 huffsize[9] = 7
 huffcode[10] = 254 = 11111110 huffsize[10] = 8
 huffcode[11] = 510 = 111111110 huffsize[11] = 9

 Encoding table

 [category/run] - huffman code - # of bits in code
 [0/0] = 00 - 2
 [0/1] = 010 - 3
 [0/2] = 011 - 3
 [0/3] = 100 - 3
 [0/4] = 101 - 3
 [0/5] = 110 - 3
 [0/6] = 1110 - 4
 [0/7] = 11110 - 5
 [0/8] = 111110 - 6
 [0/9] = 1111110 - 7
 [0/A] = 11111110 - 8
 [0/B] = 111111110 - 9

 Total number of codes: 12

 maxcode[1] = -1

 mincode[2] = 00 = 0
 maxcode[2] = 00 = 0

 mincode[3] = 010 = 2
 maxcode[3] = 110 = 6

 mincode[4] = 1110 = 14
 maxcode[4] = 1110 = 14

 mincode[5] = 11110 = 30
 maxcode[5] = 11110 = 30

 mincode[6] = 111110 = 62
 maxcode[6] = 111110 = 62

 mincode[7] = 1111110 = 126
 maxcode[7] = 1111110 = 126

 mincode[8] = 11111110 = 254
 maxcode[8] = 11111110 = 254

 mincode[9] = 111111110 = 510
 maxcode[9] = 111111110 = 510

 maxcode[10] = -1

 maxcode[11] = -1

 maxcode[12] = -1

 maxcode[13] = -1

 maxcode[14] = -1

 maxcode[15] = -1

 maxcode[16] = -1

Figure A.1: Huffload in action.

ing those implementations of the Huffman process. We
wanted to trace the original Huffman modules and for
that purpose we created huffload.

The program huffload prints the contents of some
arrays that contain important information for the Huffman
decoding and encoding phase. Where necessary, the
contents of the array are given in binary representation.
See Figure A.1 for an example (the output has been edited
because the complete output is too long).

A.3 dct.c
When we wanted to implement the operations, we no-
ticed that in [Smith], normalization was not dealt with
explicitly; it is mentioned that normalization needs to
be done, but is is not mentioned how this affects the
implementation.

So we needed to find out more about the Discrete
Cosine Transform. We could have done some extensive
studying on the Discrete Cosine Transformation, but we
only wanted to know what we needed to know.

Appendix A. Auxiliary tools 53

 Enter value to fill input-block with >5

 ORIG
 ====

 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000

 FDCT
 ====

 +40.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000

 IDCT
 ====

 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000

Figure A.2: Example of a dct session.

Another option was to study it by ‘observing’ the be-
haviour of the Discrete Cosine Transform by implement-
ing and running it. Because the DCT modules supplied
by [Ijg] (which are actually designed by [Loef]) work
on integers only, and because of the difficulty we had
understanding the given modules, we implemented the
Discrete Cosine Transfrom for floats in a straightforward
way. The results was the program dct.

We ‘played’ with this program by manipulating the
data in the spatial or frequency domain, and studying the
results. The outputs gave us some clues that lead us to
our needed knowledge described in Section 2.3.

In Figure A.2 the program dct can be seen in action; the
original matrix (ORIG) is transformed into the frequency
domain (FDCT), this result is transformed back into the
spatial domain (IDCT).

A.4 setcomp.c
When our first implementations were ready, we wanted
to test the correctness of the output images. During
the implementation phase we embedded a trace facility
in our program with which we could keep track of
several aspects of the program, such as memory, Huffman
decoding, Huffman encoding and RLEs. This facility
however, turned out to be too tedious to keep track of the
pixels.

We wanted images in which predetermined pixel-
values appeared. For instance, we wanted to generate
an image in which all pixel-values were set to 1 (image
1). A similar image with the value 2 (image 2) and another
image with the value 3 (image 3). Then we could apply
pixel addition on image 1 and image 2, and compare the
output image with image three with the UNIX command
‘cmp’ or the DOS command ‘compare’.

A.5 rlestat.c
When we studied the results and when we wanted to write
something about pixel division, we felt it was necessary
to know something about the (average) length of an RLE
in an image.

For that reason a program rlestat was written that
determines the total length of all RLEs | this is an
indication for the total amount of work needed for the
operation| and the average RLE length | this indicates
the average amount of work to be done per block. Also
the frequencies are calculated for each RLE-length.

It is interesting to see how most frequent RLE-lengths
appear at the small RLE-blocks (10 or less RLE-entries)
for 50 percent quality images, at the medium sized RLE-
blocks (10 to 30 RLE-entries) for 75 percent quality
images and at the large sized RLE-blocks (30 or more
RLE-entries) for 100 percent quality images.

We programmed rlestat to format the output in a LaTEX
style table. Appendix C shows some statistics for all
testimages.

A.6 Timing tools
During the timing phase of this project, we discovered that
our JPEG program was not suited for extensive timing. It
was only possible to test one image at a time, so when
we wanted to run an operation with the same input data
for 10 times, we had to start the operation and select the
input data 10 times.

We looked for a batch-like version of our program.
We wanted our program to read in a jobfile, in which the
following is defined for each operation to be tested:� the name of the operation� 2 input image filenames; if only one input image is

needed, the second input image is ignored.� an output image filename.� the name of the configuration file (in which scaling
factors are defined).� number of input images needed.� a boolean to indicate the need to use a configuration
file.� the number of times to run the operation.� the precision, in case of pixel multiplication with
user defined precision.

In addition, we wanted to specify how many jobs are to
be processed.

We realize that some unnecessary information was
included (e.g. the number of input files needed, could be
derived from the name of the operation), but we wanted
to implement the modifications in a straigthforward and
quick way.

Furthermore, we wanted the output to be written in a
file, so we could create a huge jobfile, keep the computers

Appendix A. Auxiliary tools 543sazzbdsunset.raw.75.jpgsunset.raw.upsidedown.75.jpgresults.jpgsadd.cfg117padif1dont.panic.raw.50.jpgdont.panic.raw.upsidedown.50.jpgresults.jpgsadd.cfg2012pmprecdont.panic.raw.75.jpgdont.panic.raw.upsidedown.75.jpgresults.jpgsadd.cfg20124
Figure A.3: Example of a jobfile.

busy for a weekend and collect and process all data after
the weekend.

The adjustments are only in callback.c, the rest of the
modules are unaffected. In order to start timing, the
user must select an operation and the input data. This
operation won’t be executed, instead all the operations in
the jobfile were executed.

A.6.1 alljobs.c
Creating a jobfile can be tedious, so why not let the
computer prepare a jobfile? The program alljobs creates
a jobfile and uses the images that are given in the file
files.lst to create the jobs that are given in the source code
of alljobs. The user must also specify the number of times
to run an operation in the source code.

Figure A.3 shows a small jobfile in which 3 jobs are
defined. Figure A.4 shows the outputfile after 2 timings,
of the operation ‘sazzbd’, have been completed.

A.6.2 checkjob.c
Sometimes, the jobfile created by alljobs needs to be
altered, or some operations need to be added. A mistake

is easy to make, and can be disastrous. For that reason
a program checkjob was programmed. This program
processes a jobfile, and checks for non-existent files,
invalid operations and also checks for the validity of the
number of jobs, specified in the jobfile.operation : sazzbdexperiment # :0input file : sunset.raw.75.jpgoutput file : morpheus.jpgscale file : sadd.cfgresolution : 967 x 810components : 3MCU's : 3111elapsed time : 1069.1100 seconds-------*************-----------operation : sazzbdexperiment # :1input file : sunset.raw.75.jpgoutput file : morpheus.jpgscale file : sadd.cfgresolution : 967 x 810components : 3MCU's : 3111elapsed time : 1067.6000 seconds-------*************-----------

Figure A.4: Example output of a timing session.

Appendix B

Timing results SGI Indy

55

Appendix B. Timing results SGI Indy 56

B.1 Scalar multiplication

Execution times are given in seconds.

Input : dont.panic.jpg

Scale : 1.5

smooth raw

50% 75% 100% 50% 75% 100%

val1 1.1080 1.6060 8.3220 1.9320 3.4180 11.8800

val2 1.4480 1.9380 7.8340 2.4640 3.6560 11.0140

diff1 1.4080 1.9080 8.3900 2.1520 3.6500 12.1880

diff2 2.1040 2.6720 10.1780 3.0560 4.7580 14.0260

bd 1357.9958 1357.0760 1363.6180 1357.3519 1360.0599 1364.9680

zzbd 1359.4399 1358.4459 1365.0400 1358.7041 1361.5120 1366.3359

sd 11.1100 11.9480 18.3140 12.2780 13.7780 21.1320

zzsd 10.9460 11.6680 17.9440 11.9380 13.4220 20.7740

Input : sphynx.jpg

Scale : 1.5

smooth raw

50% 75% 100% 50% 75% 100%

val1 0.0460 0.0600 0.2380 0.0720 0.1060 0.3300

val2 0.0580 0.0800 0.2320 0.0760 0.1080 0.3100

diff1 0.0500 0.0720 0.2360 0.0720 0.1120 0.3280

diff2 0.0760 0.0940 0.2920 0.0980 0.1440 0.3880

bd 37.7020 37.6720 37.8480 37.6740 37.7480 37.8780

zzbd 37.7380 37.7120 37.8860 37.7120 37.6900 37.9140

sd 0.3480 0.3660 0.5280 0.3660 0.3940 0.5980

zzsd 0.3380 0.3540 0.5080 0.3500 0.3800 0.5760

Input : wongat.jpg

Scale : (1.5, 1.5, 1.5)

smooth raw

50% 75% 100% 50% 75% 100%

val1 0.2100 0.2860 0.9880 0.2940 0.4220 1.2660

val2 0.2820 0.3580 1.0780 0.3660 0.4960 1.3560

diff1 0.2140 0.2840 0.9700 0.2900 0.4180 1.2620

diff2 0.2840 0.3600 1.0940 0.3680 0.5040 1.3840

bd 185.2160 185.0160 185.9000 185.2120 185.1280 186.1580

zzbd 178.5860 178.6480 179.2340 178.6500 178.7500 179.4940

sd 1.3280 1.3940 2.0780 1.4020 1.5220 2.3200

zzsd 1.1080 1.1780 1.8300 1.1860 1.2960 2.0740

Input : sunset.jpg

Scales: (1.5, 1.5, 1.5)

smooth raw

50% 75% 100% 50% 75% 100%

val1 0.8280 1.2620 4.7720 1.1820 1.9420 4.0260

val2 1.3240 1.7620 5.5540 1.7160 2.4240 4.6420

diff1 0.8560 1.2820 4.7300 1.2000 1.9480 4.0040

diff2 1.3260 1.7960 5.4800 1.7100 2.5220 4.6960

bd 1454.3259 1452.5680 1457.9960 1454.6500 1453.1960 1458.0260

zzbd 1402.1820 1402.5740 1405.7600 1404.2440 1403.1460 1405.6599

sd 9.5640 10.0820 13.7940 9.9860 10.7380 13.3160

zzsd 7.7780 8.2840 11.7380 8.1460 8.8980 11.1960

Appendix B. Timing results SGI Indy 57

B.2 Scalar addition

Execution times are given in seconds.

Input : dont.panic.jpg

Scale : 50.5

smooth raw

50% 75% 100% 50% 75% 100%

val 0.7620 1.1240 5.6740 1.3780 2.4040 8.1100

diff 0.7080 1.0620 5.5720 1.3220 2.3460 7.9340

bd 1295.4500 1295.9381 1301.1149 1296.3940 1297.5940 1304.3519

zzbd 979.6040 978.6400 988.2840 980.8300 993.7520 999.5690

sd 8.8580 9.7040 15.8140 10.0100 11.5100 18.7900

zzsd 10.1340 10.8520 16.8100 11.1020 12.5700 19.8100

Input : sphynx.jpg

Scale : 50.5

smooth raw

50% 75% 100% 50% 75% 100%

val 0.0340 0.0500 0.1660 0.0540 0.0760 0.2320

diff 0.0400 0.0480 0.1600 0.0520 0.0740 0.2280

bd 35.9720 35.9780 36.1120 35.9780 36.0060 36.1960

zzbd 27.2000 27.2230 27.4060 27.2530 27.2910 27.5310

sd 0.2780 0.3000 0.4440 0.3000 0.3300 0.5260

zzsd 0.3120 0.3240 0.4740 0.3300 0.3620 0.5560

Input : wongat.jpg

Scale : (50.5, 50.5, 50.5)

smooth raw

50% 75% 100% 50% 75% 100%

val 0.1600 0.2120 0.7420 0.2200 0.3140 0.9600

diff 0.1520 0.2060 0.7220 0.2100 0.3020 0.9420

bd 178.4220 178.4820 179.0680 178.4960 178.5940 179.3120

zzbd 178.5400 178.6040 179.1740 178.6140 178.7120 179.4120

sd 0.9340 0.9980 1.6380 1.0060 1.1200 1.8880

zzsd 1.0580 1.1240 1.7420 1.1240 1.2400 1.9880

Input : sunset.jpg

Scale : (50.5, 50.5, 50.5)

smooth raw

50% 75% 100% 50% 75% 100%

val. 0.6220 0.9460 3.5260 0.8840 1.4360 3.0560

diff. 0.5820 0.8940 3.4380 0.8320 1.3760 2.9740

bd 1401.9000 1402.2720 1405.2200 1402.0281 1402.6560 1405.0360

zzbd 1066.1520 1066.4600 1071.7850 1067.3340 1067.4500 1071.7200

sd 6.4040 6.9120 10.2640 6.8040 7.5500 9.7540

zzsd 7.3800 7.8700 11.0360 7.7420 8.4800 10.4800

Appendix B. Timing results SGI Indy 58

B.3 Pixel addition

Execution times are given in seconds.

Input 1 : dont.panic.jpg

Input 2 : dont.panic.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val1 5.1100 5.8620 12.9180 6.5000 8.5900 18.8100

val2 4.2200 4.9020 11.8940 5.6000 7.5460 17.4500

diff1 4.6960 5.4240 12.4980 6.0680 8.3280 18.3080

diff2 4.2880 5.1860 13.5480 5.8980 8.5000 20.9240

bd 1464.2830 1465.5470 1475.7640 1467.9590 1470.6160 1486.2760

zzbd 1466.4540 1467.7170 1479.0440 1469.6270 1472.6700 1488.9500

sd 14.2650 16.4000 29.1620 18.0050 21.9340 38.9550

zzsd 17.5320 19.2420 31.7220 20.4350 24.3860 40.8900

Input 1 : sphynx.jpg

Input 2 : sphynx.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val1 0.1620 0.1900 0.3740 0.1920 0.2400 0.5260

val2 0.1540 0.1720 0.3580 0.1740 0.2380 0.5020

diff1 0.1560 0.1760 0.3720 0.1840 0.2320 0.5160

diff2 0.1500 0.1760 0.4080 0.1820 0.1820 0.5860

bd 40.7190 40.7620 41.1800 40.7590 40.8200 41.3960

zzbd 40.7710 40.8150 41.2110 40.8110 40.9010 41.4710

sd 0.4770 0.5290 0.8380 0.5360 0.6240 1.0870

zzsd 0.5600 0.6000 0.8990 0.6050 0.6920 1.1390

Input 1 : wongat.jpg

Input 2 : wongat.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val1 0.7120 0.8120 1.7060 0.8240 1.0020 2.0200

val2 0.6420 0.7520 1.6660 0.7800 0.9280 1.9780

diff1 0.7080 0.8060 1.7040 0.8180 1.0000 2.0200

diff2 0.6240 0.7240 1.6380 0.7380 0.9240 1.9540

bd 203.4080 203.6960 205.3860 203.5700 204.0070 205.3100

zzbd 203.7030 204.0240 205.8220 203.8680 204.5440 205.5810

sd 2.2110 2.3970 4.0520 2.4290 2.7730 4.5430

zzsd 2.6040 2.8270 4.3590 2.8160 3.1820 4.9030

Input 1 : sunset.jpg

Input 2 : sunset.upsidedown.jpg

Scale : <default> smooth raw

50% 75% 100% 50% 75% 100%

val1 4.4780 5.0880 10.7540 5.0120 6.1160 11.9860

val2 3.8320 4.4460 10.2460 4.2980 5.5660 11.5300

diff1 4.4260 5.0300 10.6860 4.9540 6.0460 11.9140

diff2 3.7160 4.3480 10.1900 4.2740 5.4140 11.3640

bd 1597.4410 1596.3660 1607.0680 1597.3220 1597.9150 1608.8940

zzbd 1598.9550 1598.6210 1610.0900 1601.4550 1600.4850 1610.9290

sd 14.4110 15.9600 26.9560 15.8950 18.1400 28.8342

zzsd 17.5450 19.1270 29.2970 18.7640 21.1380 31.3108

Appendix C

Run Length Encoding - statistics

59

Appendix C. Run Length Encoding - statistics 60

dont.panic.smooth.50.jpg

length freq.

2 1903

3 1902

4 2386

5 2590

6 2190

7 1533

8 1113

9 914

10 684

11 548

12 506

13 350

14 233

15 145

16 77

17 30

18 11

19 4

21 1

#RLEs 17120

tot. 103971

avg. 6.07

dont.panic.smooth.75.jpg

length freq.

2 455

3 646

4 619

5 922

6 1440

7 1947

8 2100

9 2024

10 1658

11 1355

12 1031

13 743

14 606

15 545

16 380

17 290

18 178

19 105

20 45

21 23

22 4

23 2

24 1

25 1

#RLEs 17120

tot. 155169

avg. 9.06

dont.panic.smooth.100.jpg

length freq.

2 10

5 3

6 1

9 1

10 1

11 2

12 7

13 3

14 4

15 10

16 7

17 10

18 8

19 21

20 26

21 24

22 26

23 29

24 32

25 42

26 36

27 47

28 60

29 75

30 77

31 84

32 101

33 141

34 180

35 234

36 273

37 310

38 412

39 447

40 536

41 556

42 664

43 693

44 693

45 762

46 750

47 778

48 805

49 784

50 821

51 847

52 803

53 814

54 788

55 768

56 707

57 649

58 459

59 371

60 198

61 91

62 29

63 10

#RLEs 17120

tot. 806592

avg. 47.11

dont.panic.smooth.upsidedown.50.jpg

length freq.

2 1918

3 1854

4 2517

5 2537

6 2110

7 1585

8 1155

9 834

10 704

11 585

12 475

13 342

14 232

15 137

16 76

17 37

18 15

19 5

20 2

#RLEs 17120

tot. 103826

avg. 6.06

dont.panic.smooth.upsidedown.75.jpg

length freq.

2 453

3 605

4 617

5 922

6 1458

7 2025

8 2087

9 1964

10 1701

11 1337

12 1012

13 767

14 624

15 464

16 413

17 301

18 181

19 93

20 63

21 23

22 7

23 3

#RLEs 17120

tot. 155338

avg. 9.07

dont.panic.smooth.upsidedown.100.jpg

length freq.

2 9

4 1

5 2

6 1

7 6

8 4

9 9

10 9

11 16

12 32

13 34

14 53

15 97

16 116

17 146

18 204

19 273

20 325

21 393

22 532

23 607

24 695

25 859

26 919

27 1031

28 968

29 970

30 1011

31 1018

32 955

33 845

34 848

35 758

36 664

37 574

38 516

39 459

40 323

41 268

42 196

43 139

44 97

45 59

46 38

47 18

48 11

49 5

50 2

51 3

52 2

#RLEs 17120

tot. 509327

avg. 29.75

Appendix C. Run Length Encoding - statistics 61

dont.panic.raw.50.jpg

length freq.

2 901

3 695

4 649

5 878

6 1121

7 1209

8 1266

9 1217

10 1123

11 1012

12 945

13 890

14 883

15 792

16 762

17 659

18 529

19 427

20 331

21 221

22 178

23 158

24 91

25 75

26 55

27 22

28 12

29 7

30 5

31 5

32 2

#RLEs 17120

tot. 183489

avg. 10.72

dont.panic.raw.75.jpg

length freq.

2 42

3 74

4 153

5 277

6 340

7 383

8 439

9 545

10 606

11 712

12 735

13 757

14 755

15 838

16 783

17 808

18 764

19 773

20 731

21 617

22 555

23 415

24 382

25 336

26 295

27 277

28 296

29 288

30 331

31 318

32 312

33 348

34 310

35 278

36 281

37 192

38 204

39 161

40 127

41 86

42 70

43 47

44 29

45 18

46 20

47 6

48 6

#RLEs 17120

tot. 334446

avg. 19.54

dont.panic.raw.100.jpg

length freq.

2 18

17 2

18 1

25 2

29 5

31 1

32 3

33 9

41 1

44 3

46 3

47 2

48 7

49 14

50 30

51 26

52 39

53 69

54 133

55 255

56 423

57 691

58 1099

59 1668

60 2254

61 2835

62 3249

63 2835

64 1443

#RLEs 17120

tot. 1037651

avg. 60.61

dont.panic.raw.upsidedown.50.jpg

length freq.

2 908

3 636

4 681

5 883

6 1150

7 1222

8 1261

9 1185

10 1106

11 1057

12 930

13 892

14 882

15 775

16 770

17 617

18 572

19 412

20 337

21 258

22 172

23 131

24 95

25 73

26 48

27 21

28 24

29 14

30 4

31 3

32 1

#RLEs 17120

tot. 183617

avg. 10.73

dont.panic.raw.upsidedown.75.jpg

length freq.

2 45

3 70

4 145

5 239

6 384

7 388

8 471

9 527

10 624

11 717

12 741

13 746

14 773

15 820

16 757

17 752

18 816

19 700

20 746

21 638

22 559

23 481

24 385

25 330

26 315

27 253

28 260

29 287

30 311

31 325

32 363

33 325

34 310

35 286

36 267

37 207

38 195

39 161

40 115

41 91

42 70

43 49

44 37

45 16

46 11

47 9

48 1

51 1

53 1

#RLEs 17120

tot. 334185

avg. 19.52

dont.panic.raw.upsidedown.100.jpg

length freq.

2 8

7 2

8 2

10 2

11 1

12 1

16 1

17 1

26 1

27 1

29 3

33 7

34 3

36 1

40 2

41 1

42 2

43 2

46 5

47 3

48 8

49 16

50 19

51 24

52 33

53 77

54 125

55 233

56 400

57 688

58 1052

59 1655

60 2264

61 2930

62 3264

63 2844

64 1439

#RLEs 17120

tot. 1038480

avg. 60.66

Appendix C. Run Length Encoding - statistics 62

sphynx.smooth.50.jpg

length freq.

4 3

5 3

6 22

7 39

8 76

9 69

10 73

11 60

12 55

13 40

14 27

15 3

16 5

#RLEs 475

tot. 4734

avg. 9.97

sphynx.smooth.75.jpg

length freq.

6 2

7 1

8 9

9 12

10 23

11 49

12 62

13 60

14 80

15 45

16 54

17 49

18 14

19 11

20 4

#RLEs 475

tot. 6525

avg. 13.74

sphynx.smooth.100.jpg

length freq.

27 1

30 1

31 1

32 1

34 4

35 4

36 7

37 7

38 15

39 14

40 13

41 19

42 27

43 33

44 35

45 29

46 24

47 30

48 36

49 23

50 26

51 23

52 20

53 23

54 14

55 16

56 12

57 9

58 4

59 2

60 1

62 1

#RLEs 475

tot. 22114

avg. 46.56

sphynx.smooth.upsidedown.50.jpg

length freq.

3 1

4 4

5 8

6 17

7 35

8 65

9 70

10 81

11 73

12 65

13 25

14 17

15 11

16 2

17 1

#RLEs 475

tot. 4726

avg. 9.95

sphynx.smooth.upsidedown.75.jpg

length freq.

6 3

7 1

8 5

9 12

10 35

11 41

12 59

13 58

14 85

15 71

16 50

17 22

18 20

19 7

20 4

21 1

22 1

#RLEs 475

tot. 6481

avg. 13.64

sphynx.smooth.upsidedown.100.jpg

length freq.

16 1

23 3

24 1

25 3

26 8

27 8

28 25

29 20

30 27

31 40

32 37

33 41

34 40

35 45

36 41

37 39

38 27

39 23

40 20

41 8

42 7

43 6

44 4

45 1

#RLEs 475

tot. 16153

avg. 34.01

sphynx.raw.50.jpg

length freq.

5 2

6 2

7 3

8 10

9 21

10 23

11 34

12 49

13 56

14 59

15 60

16 52

17 42

18 30

19 15

20 11

21 5

24 1

#RLEs 475

tot. 6678

avg. 14.06

sphynx.raw.75.jpg

length freq.

9 1

10 1

11 2

12 5

13 4

14 13

15 12

16 32

17 30

18 26

19 33

20 32

21 41

22 42

23 45

24 28

25 25

26 16

27 32

28 18

29 19

30 12

31 1

32 1

33 2

34 1

35 1

#RLEs 475

tot. 10282

avg. 21.65

sphynx.raw.100.jpg

length freq.

48 1

51 3

52 2

53 2

54 3

55 9

56 14

57 20

58 45

59 41

60 63

61 79

62 98

63 65

64 30

#RLEs 475

tot. 28711

avg. 60.44

sphynx.raw.upsidedown.50.jpg

length freq.

4 1

5 2

6 4

7 1

8 14

9 15

10 28

11 39

12 42

13 56

14 84

15 55

16 45

17 38

18 23

19 12

20 9

21 5

22 2

#RLEs 475

tot. 6571

avg. 13.83

sphynx.raw.upsidedown.75.jpg

length freq.

8 1

9 1

10 3

11 1

12 3

13 9

14 11

15 19

16 17

17 29

18 27

19 38

20 42

21 48

22 37

23 45

24 33

25 33

26 15

27 15

28 15

29 12

30 7

31 4

32 6

33 1

34 2

35 1

#RLEs 475

tot. 10162

avg. 21.39

sphynx.raw.upsidedown.100.jpg

length freq.

52 3

53 2

54 2

55 4

56 8

57 17

58 27

59 53

60 70

61 79

62 102

63 79

64 29

#RLEs 475

tot. 28876

avg. 60.79

Appendix C. Run Length Encoding - statistics 63

wongat.smooth.50.jpg

length freq.

2 281

3 264

4 188

5 102

6 53

7 40

8 45

9 67

10 65

11 117

12 138

13 150

14 195

15 176

16 179

17 155

18 90

19 43

20 17

21 8

22 3

#RLEs 2376

tot. 23600

avg. 9.93

wongat.smooth.75.jpg

length freq.

2 65

3 142

4 193

5 199

6 138

7 76

8 51

9 36

10 30

11 31

12 42

13 55

14 88

15 93

16 120

17 176

18 185

19 166

20 188

21 132

22 89

23 47

24 24

25 4

26 4

27 2

#RLEs 2376

tot. 30703

avg. 12.92

wongat.smooth.100.jpg

length freq.

2 1

6 1

7 2

8 3

9 1

10 4

11 5

12 8

13 2

14 4

15 6

16 5

17 16

18 16

19 12

20 24

21 27

22 36

23 26

24 37

25 40

26 57

27 43

28 72

29 64

30 47

31 57

32 40

33 49

34 33

35 32

36 37

37 22

38 31

39 46

40 37

41 35

42 43

43 43

44 38

45 53

46 59

47 64

48 67

49 97

50 109

51 116

52 109

53 104

54 101

55 104

56 90

57 68

58 56

59 33

60 24

61 12

62 7

63 1

#RLEs 2376

tot. 100378

avg. 42.25

wongat.smooth.upsidedown.50.jpg

length freq.

2 255

3 292

4 182

5 89

6 50

7 62

8 41

9 86

10 83

11 127

12 135

13 152

14 175

15 179

16 162

17 115

18 100

19 51

20 23

21 14

22 1

23 2

#RLEs 2376

tot. 23491

avg. 9.89

wongat.smooth.upsidedown.75.jpg

length freq.

2 60

3 151

4 192

5 199

6 134

7 81

8 35

9 23

10 40

11 33

12 62

13 72

14 91

15 99

16 114

17 186

18 153

19 172

20 182

21 117

22 81

23 57

24 26

25 13

26 1

27 2

#RLEs 2376

tot. 30623

avg. 12.89

wongat.smooth.upsidedown.100.jpg

length freq.

2 2

6 1

8 4

10 5

11 6

12 8

13 3

14 7

15 10

16 17

17 20

18 27

19 38

20 43

21 54

22 63

23 70

24 82

25 59

26 64

27 76

28 76

29 69

30 53

31 57

32 64

33 67

34 66

35 85

36 70

37 100

38 112

39 99

40 122

41 116

42 116

43 90

44 96

45 79

46 64

47 47

48 27

49 23

50 9

51 6

52 2

53 1

54 1

#RLEs 2376

tot. 80511

avg. 33.89

Appendix C. Run Length Encoding - statistics 64

wongat.raw.50.jpg

length freq.

2 275

3 269

4 167

5 94

6 38

7 24

8 33

9 29

10 21

11 41

12 26

13 53

14 55

15 65

16 101

17 114

18 104

19 118

20 119

21 144

22 111

23 84

24 80

25 65

26 44

27 33

28 23

29 23

30 12

31 4

32 6

33 1

#RLEs 2376

tot. 31869

avg. 13.41

wongat.raw.75.jpg

length freq.

2 64

3 124

4 187

5 193

6 138

7 70

8 34

9 13

10 10

11 17

12 15

13 30

14 26

15 26

16 15

17 31

18 24

19 44

20 49

21 50

22 76

23 78

24 95

25 80

26 97

27 92

28 102

29 79

30 106

31 78

32 47

33 66

34 42

35 45

36 37

37 20

38 19

39 16

40 14

41 12

42 5

43 3

44 4

45 2

46 1

#RLEs 2376

tot. 44899

avg. 18.90

wongat.raw.100.jpg

length freq.

2 1

6 1

7 1

8 4

9 3

10 1

11 1

12 4

13 6

14 2

15 3

16 7

17 13

18 15

19 2

20 8

21 17

22 11

23 26

24 29

25 30

26 24

27 28

28 40

29 31

30 33

31 47

32 32

33 50

34 35

35 24

36 19

37 28

38 33

39 23

40 23

41 19

42 19

43 22

44 18

45 12

46 13

47 11

48 14

49 5

50 10

51 16

52 10

53 10

54 15

55 19

56 26

57 50

58 52

59 90

60 148

61 231

62 331

63 348

64 232

#RLEs 2376

tot. 122084

avg. 51.38

wongat.raw.upsidedown.50.jpg

length freq.

2 241

3 292

4 180

5 80

6 35

7 24

8 34

9 31

10 27

11 41

12 56

13 55

14 58

15 78

16 89

17 87

18 102

19 109

20 119

21 149

22 106

23 103

24 81

25 67

26 45

27 30

28 19

29 14

30 10

31 8

32 5

33 1

#RLEs 2376

tot. 31795

avg. 13.38

wongat.raw.upsidedown.75.jpg

length freq.

2 55

3 138

4 203

5 172

6 154

7 58

8 26

9 14

10 9

11 16

12 13

13 24

14 25

15 26

16 29

17 35

18 44

19 43

20 63

21 43

22 67

23 61

24 80

25 112

26 92

27 92

28 99

29 100

30 90

31 67

32 60

33 52

34 45

35 39

36 30

37 29

38 17

39 18

40 12

41 12

42 3

43 4

44 1

45 3

46 1

#RLEs 2376

tot. 44614

avg. 18.78

wongat.raw.upsidedown.100.jpg

length freq.

2 2

6 2

7 1

9 1

10 5

11 5

12 4

13 5

14 9

15 1

16 9

17 25

18 17

19 22

20 31

21 49

22 41

23 42

24 52

25 50

26 73

27 43

28 52

29 46

30 56

31 40

32 42

33 32

34 34

35 26

36 28

37 23

38 26

39 30

40 33

41 35

42 38

43 41

44 51

45 49

46 72

47 67

48 78

49 100

50 96

51 117

52 102

53 124

54 102

55 88

56 84

57 61

58 43

59 32

60 24

61 11

62 4

#RLEs 2376

tot. 98532

avg. 41.47

Appendix C. Run Length Encoding - statistics 65

sunset.smooth.50.jpg

length freq.

2 5993

3 2850

4 1921

5 1610

6 1280

7 1093

8 1000

9 831

10 664

11 453

12 320

13 183

14 121

15 120

16 87

17 74

18 42

19 17

20 5

21 2

#RLEs 18666

tot. 92287

avg. 4.94

sunset.smooth.75.jpg

length freq.

2 3222

3 1566

4 1539

5 1422

6 1314

7 1239

8 1182

9 1128

10 1084

11 934

12 912

13 904

14 682

15 502

16 354

17 185

18 150

19 122

20 100

21 58

22 50

23 14

24 3

#RLEs 18666

tot. 140000

avg. 7.50

sunset.smooth.100.jpg

length freq.

2 2376

3 16

4 19

5 115

6 198

7 331

8 371

9 207

10 226

11 243

12 318

13 265

14 265

15 299

16 321

17 290

18 332

19 363

20 322

21 325

22 323

23 343

24 311

25 334

26 361

27 318

28 299

29 323

30 334

31 375

32 407

33 410

34 452

35 442

36 448

37 484

38 496

39 538

40 553

41 547

42 485

43 510

44 431

45 378

46 309

47 276

48 196

49 155

50 114

51 117

52 106

53 92

54 69

55 48

56 40

57 25

58 6

59 5

60 4

#RLEs 18666

tot. 489782

avg. 26.24

sunset.smooth.upsidedown.50.jpg

length freq.

2 5956

3 2754

4 2029

5 1586

6 1306

7 1118

8 951

9 828

10 684

11 485

12 295

13 194

14 138

15 108

16 105

17 68

18 45

19 10

20 6

#RLEs 18666

tot. 92687

avg. 4.97

sunset.smooth.upsidedown.75.jpg

length freq.

2 3218

3 1848

4 1778

5 1531

6 1243

7 1079

8 1042

9 1088

10 1028

11 938

12 891

13 834

14 683

15 480

16 309

17 186

18 138

19 122

20 98

21 73

22 37

23 21

24 1

#RLEs 18666

tot. 136502

avg. 7.31

sunset.smooth.upsidedown.100.jpg

length freq.

2 1413

3 1

4 9

5 8

6 71

7 310

8 174

9 233

10 141

11 173

12 231

13 232

14 253

15 275

16 252

17 257

18 261

19 303

20 286

21 343

22 344

23 352

24 404

25 412

26 424

27 429

28 406

29 401

30 419

31 432

32 417

33 416

34 420

35 468

36 444

37 470

38 480

39 486

40 576

41 547

42 564

43 522

44 528

45 495

46 454

47 374

48 362

49 275

50 212

51 171

52 154

53 161

54 114

55 89

56 77

57 49

58 30

59 30

60 21

61 7

62 4

#RLEs 18666

tot. 558947

avg. 29.94

Appendix C. Run Length Encoding - statistics 66

sunset.raw.50.jpg

length freq.

2 5326

3 2297

4 1419

5 1026

6 903

7 797

8 754

9 754

10 759

11 733

12 740

13 628

14 567

15 517

16 372

17 247

18 185

19 104

20 104

21 77

22 74

23 76

24 52

25 47

26 41

27 36

28 18

29 12

30 1

#RLEs 18666

tot. 128427

avg. 6.88

sunset.raw.75.jpg

length freq.

2 3160

3 1457

4 1307

5 1056

6 906

7 677

8 532

9 414

10 411

11 428

12 464

13 577

14 548

15 564

16 580

17 644

18 650

19 668

20 623

21 551

22 549

23 421

24 372

25 252

26 156

27 112

28 97

29 65

30 78

31 48

32 46

33 62

34 45

35 44

36 32

37 30

38 16

39 9

40 4

41 5

42 4

43 2

#RLEs 18666

tot. 208952

avg. 11.19

sunset.raw.100.jpg

length freq.

2 2720

3 19

4 18

5 185

6 413

7 407

8 404

9 248

10 368

11 470

12 607

13 644

14 593

15 669

16 702

17 769

18 822

19 852

20 853

21 813

22 811

23 789

24 786

25 622

26 592

27 469

28 370

29 261

30 206

31 135

32 90

33 51

34 48

35 37

36 38

37 31

38 27

39 27

40 26

41 26

42 22

43 28

44 25

45 23

46 12

47 18

48 36

49 28

50 28

51 28

52 47

53 42

54 28

55 56

56 46

57 55

58 49

59 29

60 29

61 14

62 3

63 1

64 1

#RLEs 18666

tot. 324514

avg. 17.39

sunset.raw.upsidedown.50.jpg

length freq.

2 5353

3 2151

4 1452

5 1022

6 903

7 831

8 794

9 741

10 770

11 717

12 717

13 665

14 598

15 474

16 351

17 295

18 163

19 121

20 108

21 85

22 72

23 63

24 75

25 54

26 50

27 23

28 10

29 5

30 1

31 1

34 1

#RLEs 18666

tot. 129084

avg. 6.92

sunset.raw.upsidedown.75.jpg

length freq.

2 3060

3 1623

4 1465

5 1107

6 829

7 568

8 435

9 384

10 408

11 444

12 463

13 470

14 543

15 567

16 631

17 609

18 664

19 618

20 612

21 549

22 502

23 482

24 342

25 289

26 216

27 133

28 99

29 79

30 84

31 71

32 61

33 48

34 43

35 49

36 43

37 22

38 17

39 21

40 11

41 1

42 1

43 1

45 1

46 1

#RLEs 18666

tot. 210670

avg. 11.29

sunset.raw.upsidedown.100.jpg

length freq.

2 1380

3 1

4 5

5 2

6 39

7 241

8 151

9 261

10 112

11 131

12 173

13 233

14 212

15 209

16 201

17 224

18 207

19 222

20 267

21 246

22 247

23 269

24 265

25 249

26 255

27 211

28 229

29 212

30 210

31 203

32 165

33 153

34 170

35 139

36 122

37 126

38 119

39 128

40 100

41 130

42 113

43 111

44 121

45 141

46 150

47 167

48 143

49 177

50 189

51 218

52 282

53 317

54 380

55 441

56 558

57 701

58 838

59 996

60 1106

61 1186

62 1092

63 692

64 328

#RLEs 18666

tot. 755925

avg. 40.50

Bibliography

[Gon] R.C. Gonzales and R.E. Woods
‘‘Digital Image Processing’’,
Addison Wesley,
June 1992, page 394 { 403.

[Hami] E. Hamilton
‘‘JPEG File Interchange Format version 1.02’’,
C-Cube Microsystems,
September 1, 1992.

[Ijg] The Independent JPEG Group
‘‘The Independent JPEG Group’s JPEG software, release 4’’,
December 1-th, 1992.

[Lane] T. Lane
‘‘JPEG image compression: Frequently Asked Questions’’,
Internet: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq,
October 18th, 1993.

[Loef] C. Loeffler, A. Ligtenberg and G. Moschytz
‘‘Practical Fast 1-D DCT Algorithms with 11 Multiplications’’,
Proceedings International Conference on Acoustics, Speech, and Signal Processing 1989,
page 988 { 991.

[Smith] B. C. Smith and L. A. Rowe
‘‘Algorithms for Manipulating Compressed Images’’,
IEEE Computer Graphics & Applications,
September 1993, page 36 { 39.

[Wall] G. K. Wallace
‘‘The JPEG Still Picture Compression Standard’’,
Communications of the ACM,
Volume 34, Number 4, April 1991, page 30 { 44.

67

