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Chapter 1

Introduction

This report describes the implementation of a family
of algorithms, that can perform image operationsdirectly
on the compressed data of the image. The time needed,
to execute these operations directly on the compressed
data of theimage, should be less than the so called ‘brute
force' version of the operation. This can be achieved,
because of the following reasons:

¢ acompressed image contains substantially less data
than itsunpacked counterpart.

¢ no decompression and compression has to be per-
formed.

The compression algorithm used in this project is de-
veloped by the Joint Photographic Expert Group (JPEG).
The JPEG standard is developed for continuous-tone
(redl-life) images. Using a JPEG compression algorithm
for non continuous-tone images might result in a ‘ com-
pressed image' that is actualy larger than its unpacked
version. The JPEG standard includestwo basic compres-
sion methods.

1. a predictive method for ‘lossless compression. (a
description of thismethod can be foundin [Wall])

2. aDCT-based method for lossy compression. (for a
description of thismethod see Section 2.1)

The JPEG compression method used in the projectisa
DCT-based method.

1.1 The operations

scalar multiplication

Intuitively, scalar multiplication will give a change in
contrast in the image. In the YCbCr colour space, the
first component determines the (greyscale) ‘scene’ of the
image. Differences of neighbouring values are scaled
by a given factor, and therefore are increased (if the
factor > 1) or decreased (if thefactor < 1), withachange
in contrast as aresult. For an example, see Figure 1.1.

12| 7 [2 — 24|14

Figure 1.1: Scalar multiplicationin practice.

scalar addition

Scalar addition adds the same factor 3 to all lements
in a component (each component can have it's own add
factor). Thiswill resultinabrighter (factor > 0) or darker
image (factor < 0) (see Figure 1.2).

Thisoperation can be used before scalar multiplication,
to maximize the effect of contrast stretching.

1|5 101105

12| 7 +100:112107

+100=

Figure 1.2: Scalar additionin practice.
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15| 40

12 7 + 333

36| 35

12| 7 DSS

Figure 1.3: Pixel additionin practice.

pixel addition

Two imagesare added pixel by pixel. Theresultingimage

isamix of thetwo input images. Thismight be useful for

subtitling (add an image of ared life scene to an image

of the subtitl€) or dissolving one image into another.
Figure 1.3 shows pixel addition in practice.

pixel multiplication

Pixel multiplication can be used to mask off regionsin
an image. Another use of pixel multiplication is image
enhancement. Taking the ‘square of an image’ applying
the correct scaling factors can giveinteresting results.
Figure 1.4 shows an example of pixel multiplication.

1.2 Terminology & notation

In this section we will introduce the notations and termi-
nology used inthisreport. First weintroducethenotations
we use for (sub)images. With z1, 22 and y we denotethe
normalized 8x8 matrices in the spatial domain. X,X»
and Y are used to represent z1, 22 and y resp. in the
frequency domain. The subscript ‘Q’ is used whenever
we are dealing with the quantized version of a matrix.
The subscript ‘zz' isused for zigzagged ordered versions
of the matrices. Note that this subscript implies a vector
instead of a matrix. For an example of our notation see
Figure 1.5.

Figure 1.4: Pixel multiplicationin practice.

Weuse i and j for theindices of ablock in the spatial
domain (l‘l[l,j]) uy, U2, v1, v2, w1 and ws are used for
indices in the frequency domain (Xi[v1,v2]). u isthe
zigzag ordered (Subsection 2.1.5) counterpart of (w1, us).
v and w are defined likewise (see Subsection 2.1.3 and
Subsection 4.6.1).

zy . gpatia domain
Xy . frequency domain
equency
X1, © quantized X
X1,  zigzagordered vector of X ¢

Figure 1.5: An example of our notation.



Chapter 2
JPEG coding

In this chapter we will present everything needed to
understand our implementation of the operations given
in [Smith]. This knowledge not only includes the JPEG
algorithm, but also some insight in the Discrete Cosine
Transform and quantization tables.

2.1 JPEG algorithm

In this section, we give an overview of the JPEG ago-
rithm. A complete description can be found in [Wall].

Suppose we are dealing with images in the YCbCr
colour space; the first component determines the lumi-
nance, the second and third component determine the
chrominance. Suppose aso that each value in al com-
ponents is an eight bit value. These assumptions are
realistic ones since most JPEG-images are distributed in
the JFIF-standard which usesthe Y CbCr col our space as
a standard. The JFIF-standard will be briefly described
later in thisreport. See Chapter 6.

2.1.1 Block division

The first step divides al components in submatrices of
8x8. Componentsthat do not have sizesthat areamultiple
of 8 are padded with zeroes on the right and bottom side
of the image. These submatrices are caled blocks in
JPEG-terminology.

(H)li=

40 pixels

64 pixels

2.1.2 Normalization

The second step in the JPEG-algorithm is to normalize
the blocksi.e. al valuesin al blocks of al components

should be in the range —128...127. In our colour
space, we only need to normalize the blocks of the first
component (which have values in the range 0. . . 255),
since the blocks of the second and third component are
already in the correct range.

166|166|166|166|166|165|166|166

166(166|166|168(166(164|166(167

166(166|166|165|166(167|166(166

166|164 (166|166 |165|166|166 166

166(166|167|166|166| 98 |166(166

167(166|168|166|166| 98 | 98 | 98

166166166 |166|166| 98 |108 (108

166|165|164(166(166| 98 |108 (108

Normalisatie

38|38 (38|38 |38[37|38]38

38383840 |38 |36|38(39

38|38 (38|37 (38[39|38]38

38|36 (38|38 |37[38|38]38

3838393838 (-30(38 |38

3938|4038 |38|-30(-30(-30

3838|3838 |38|-30(-20(-20

38|37 (36|38 |38|-30(-20|-20

Figure 2.1: Normalization.

2.1.3 Discrete cosine transform

The third step is the Discrete Cosine Transform (DCT)
which transformsthe original 8x8 matricesinto blocksin
the frequency domain in which we perform our opera-
tions. Let y be anormalized 8x8 matrix and let Y bethe
result of the DCT on y. Then by definition of the DCT
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we have

7 7
Ylu el =3 303 06w, i) (2.)

i=0 j=0

foru,v=0...7where

() = A(u) cos CEDUT 2.2)
16
and
L foru=0
B
AQ) { 1 foru¥0

Thisisdonefor every block in all components.

Y0, 0] is caled the DC-coefficient (Direct Current).
The DC-coefficient represents the average intensity or
amplitude of the block.

The Y[u,v] for w,v = 1...7 are cdled the AC-
coefficients (Alternating Current). The AC-coefficients
represent the fluctuationsin the intensity of the block.

38 |38 |38 |38|38|37|38]38

38 |38 |38|40 |38 |36 |38]39

38 |38 (38|37 |38|39|38]38

38 |36 |38 |38|37|38|38]38

38 | 38|39 (38|38 (-30| 38|38

39 | 38|40 | 38 | 38 [-30|-30(-30

38 | 38 | 38| 38|38 [-30(-20(-20

38 | 37|36 | 38|38 |-30|-20(-20

DCT

<

224 |86 [-24|-27| 35 | -3 |-26]| 29

81 |-89| 30|19 [-30| 7 | 21 |-23

-18(22|-16| 8 | 1 |-6] 5 |-5

-20(24|-4|-11|10| 0 |-10| 11

16 (-23(16|-7 | 0 | 6 | -7 | 4

3 |-1|-7]13|-8|-3[12]-9

-11({14|-10| 6 | -1 | -4 | 5 | -2

7 |-11|15 |-13| 5 | 4 [-13| 10

Figure2.2: DCT step.

2.1.4 Quantization

The fourth step isthe quantization step. This quantization
step isdefined by:

Yglu, v] = IntegerRound (M)

q[u, v]

foru,v=0...7.

Every element of each block isdivided by agivenvalue.
The values, ¢[u, v], that are used for this quantization
process are stored in a matrix. This matrix is caled a
guantization table. The 64 element quantization table
does not contain any values less or equal to zero.

The aim of this process is to get rid of small values
in the frequency domain, which appear mostly at the
lower right of the matrix (with the origin at the upper
left corner) by scaling them to zero. This will cause
runs of consecutive zeroes, which will result in a better
compression (see 2.1.6).

Small entriesin the matrix can be set to 0 by dividing
them by larger values using integer rounding. At the
decoding process (at the dequantization stage to be more
precisaly), these zero entries will stay zero. In other
words, instead of the origina matrix, a mutated matrix
will be the result of dequantizing.

Typicadly, there is one quantization table for the lu-
minance component and one quantization table for the
chrominance components. A quantization table in the
JFIF standard is aways stored in zigzag order, see fig-
ure 2.4. The higher the values in the quantization table,
the better the compression, but the bigger the loss of
information will be. If dl entries in the quantization
tables would be 1, then no information loss due to quan-
tization will occur, but a poor compression ratio will be
the penalty.

224 | 86 |-24|-27| 35 [-3]|-26]| 29 16 11 12 14 12 10 16 14
81 |-89| 30|19 |-30| 7|21 [-23 13 14 18 17 16 19 24 | 40
18| 22 16| 8 1 6| 5 5 26 | 24 22| 22 24 | 49 35 | 37

-20(24 (-4 (-11({10]|0|-10]11 29 | 40 58 | 51 61 60 57 | 51
16 (-23( 16 | -7 0 6| -7 4 56 | 55 64 | T2 92 | 78 64 | 68
3 1 7113 8 3|12 9 87 | 69 55 | 56 80 |109| 81 87
-11 (14 (-10( 6 -1 |-4f 5 -2 95 | 98 [103(104|103( 62 77 (113
7 [-11| 15 [-13 5 4 [-13( 10 121|112(100(120| 92 [101|103| 99

Quantisatie

Figure 2.3: Quantization step.
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2.1.5 Zigzag

The fifth step of the JPEG algorithm is called the zigzag
scan step. The 8x8 matrices Yy, the so called ‘blocks,
are converted into zigzagged vectors Yy, .., containing
the 64 matrix elements using the ‘zigzag’ ordering.

In most images thisvector will contain alot of sequen-
tial zeroes, especialy at the end of the vector. Both the
discrete cosine transform and the quantization process are
responsiblefor this.

If apictureis compressed according to the JFIF stan-
dard, the quantization tables are stored in zigzag order.
In that case steps 4 and 5 of the algorithm should be
swapped.

148 |-2]|-2|3]o|-2]2]| |@H
6 |-6]2|1]2|0]1]1
1|1|-1]oojolo]o
1|1lolofololo]o
ololo|olo|olo]o
ololo|olo|olo]o
ololo|olo|olo]o
ololo|olo|olo]o
Zigzag

4 8 6 -1 6 -2 2 2 1 -1 0 —
- 1 -1 1 3 0 2 0 0 0 0 0 —
<~ 0 0 0 0 0 -2 2 1 0 0 0 —
<~ 0 0 0 0 0 0 0 0 0 -1 0 —
<~ 0 0 0 0 0O 0 0 0 0 0 0 —
< 0 0 0 0 0 0 0 0 0

Figure 2.4: Zigzag step.

2.1.6 Runlength encoding

The input of the Run Length Encoding (RLE) processis
the 64 element zigzag vector. The output of this process
isa‘Runlength Encoded block’ (RLE-block). Note that a
more precise term would be RLE-zigzag-vector. Thefirst
element is the DC-coefficient of the frequency domain,
the other 63 elements are the AC-coefficients.

The DC-coefficient istreated differently from the AC-
coefficients: Instead of the actua DC-coefficients, the

difference of the DC-coefficients of two consecutive
blocksis stored in the RLE representation.

1486 -1-6-2-221-101-1130 —
— 2 000 0O 0O O0OO00O0OO0-22100 —
— 0 000 0O 0O O0OO0D0DO0O-10 0O0O00=—
— 0 000 0 0O 0O0D0OOO0OO ODOCODO

RLE

o|lo|lo|loj]o|jlo|]o|o|Oo O

—
—

o |lo | o
=

—
[}

10| -2

012

011

12]-1

01]0

Figure2.5: RLE step.

RLE is used to represent arun of zeroes by the length
of thisrun. This decreases storage space for the vector
since most vectors end with alot of zeroes.

The RLE representation for the DC-coefficient is de-
fined as:

(SIZE)(AMPLITUDE)

where ‘SIZE’ is the number of bits that is needed to
represent the difference of the DC-coefficient of the
current bl ock and the DC-coefficient of the previoushblock
inthesame component (f AMPLITUDE'). Differencesare
stored because in real life images, differences between
consecutive DC-coefficientstend to be small, so we need
fewer bitsto store them.
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The RLE representation for the AC-coefficients is
defined as:

(RUNLENGTH, SIZE)
(AMPLITUDE)

where ‘RUNLENGTH’ represents the number of con-
secutive zeroes preceeding the current ‘AMPLITUDE
(nonzero). This nonzero is represented by ‘SIZE' bits.
In Section 7.1 of [Wall] it is mentioned that the FDCT
applied on a 8x8 point signa containing 8-bit integers
results in DC-coefficients of at most 11-bits. So ‘SIZE’
can haveinteger valuesin therange[1, 11]; ‘ SIZE' needs
4 bitsto represent valuesin thisrange.

‘RUNLENGTH’ represents zero-runs of length 0 to 15
(note that ‘RUNLENGTH’ can be stored using 4 bits).
A run containing more than 16 consecutive zeroes, say
n zeroes, is represented by a (OxF,0) marker, followed
by the (RUNLENGTH, SIZE)(AMPLITUDE) represen-
tation for the remaining n — 16 zeroes. Up to three
consecutive (OxF,0) markers can preceed the terminating
(RUNLENGTH, SIZE) symbol.

Thelast step isthe Huffman encoding step.

(0,0).

This marker is called the End of Block marker (EOB).

We end this subsection by mentioning that a (RUN-
LENGTH, SIZE) symbol can be stored in exactly one
byte.

2.1.7 Huffman encoding

The last step is the Huffman encoding step. Huffman is
used to decrease the storage space that is needed for the
Runlength Encoded version of Yq, ... The most frequent
(RUNLENGTH, SIZE) combinations are given the short-
est Huffman codes and less frequent combinations are
given the larger codes. Huffman tables can vary between
JPEG imagesthat are generated by different applications.

2.2 Minimal Code Unit

The steps described in Subsection 2.1.3 through Sub-
section 2.1.7 describe what to do with each block of a
component but not in what order the components (or
rather, the blocks of the components) are to be processed.

Another problemisthat different components can have
a different number of blocks. This can be caused by the
different sampling factors for each component.

For example, in the YCbCr colour space, the first
components needs to be sampled more precise because
thefirst component determines|uminance, but the second

10

and third component can be sampled roughly since these
two components determine chrominance only.

For these purposes, the notion Minimal Code Unit
(MCU) was introduced. The idea is to interleave the
scan-data of the components. an MCU is defined to be
the smallest unit of interleaved data

First each component : is divided into block-matrices
of H; by V; blocks where H; and V; are the horizontal
and vertical sampling factorsfor component :.

Next, each block-matrix is transformed into a block-
vector by aleft to right, top to bottom ordering.

Now the j'* MCU can be formed by taking the j**
block-vector of the first component, then the j** block-
vector of the second component and so on. (See Fig-
ure 2.6).

The implementation of the steps in Subsection 2.1.3
through Subsection 2.1.7 is MCU oriented; each step
operates on acomplete MCU.

2.3 Some more DCT

In this section, we will highlight some features of the
DCT which will be useful further on.

Consider equation 2.1 in Section 2.1. Suppose
yli,j] = = for ¢,7=0...7 and for some vaue n.
If the DCT would be applied on matrix y then

_| 82 foru,v=0
V0] _{ 0 otherwise

This result can be generdized; now y[¢, j] = n; ; for
i,j =0...7. The DC-coefficient can till be calculated
without the difficult equation 2.1:

1 7 7
Y0.00=2> > ulii]

i=0 j=0

(2.3)

which could be rewritten as:

7 7
Y[0,0] = 86i4 > bl
i=0 j=0
This is the average of al matrix entries in y multiplied
by 8, so determination of the DC-coefficient is a linear
process.

This may not be a surprising result if you're familiar
with the Discrete Cosine Transform, but it’sa useful fact.

Again, consider equation 2.1, and the entries in the
matrix are y[¢, j] = n; ; for¢,7 =0...7. Y istheresult
of the DCT applied to y. Suppose we want to add » to
every entry in y but weonly have Y.

We could apply the inverse DCT to Y and add » to
every entry in y. But if we keep in mind that the DC-
coefficient is the average value of al y[i, j], we could
‘shift’ thisaverage.
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D block (8x8 subimage) o o ® ® ®
e e e ‘ e o ()
1 [ [ [ [ [
) [
e e e e ) )
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Figure 2.6: The construction of one MCU.
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If « isthe average and we would add » to every y[i, j]
then the new average would be a + . The DC-coefficient
is the average value multiplied by 8, so we get 8a + 8n.
We see that we only have to multiply » by 8 and add this
toY'[0, 0]. So our new versionof Y (let’scal it Y’) looks
like:

Y[ ]:{Y[0,0]+8n foru,v=0

Yu,v] otherwise (24)

This property is not only useful for scaar addition,
but also for denormalizing the first component when
performing scalar multiplication or pixel multiplication.

To finishthis Section, we will present theinverse DCT
(IDCT), which will be used in pixel multiplication.

7 7
i 71= 3 3030 €600, Y] (25)

u=0v=0

2.4 Quantization tables

As dready mentioned in Section 2.1.4, in a colour
— 3 component — image there is a separate quantiza
tion table for the luminance component, and one quan-
tization table for both the chrominance components. A
greyscaleimage consists of only one (luminance) compo-
nent and therefore contains only one quantization table.

The quantization tables determine the quality and the
compression ratio of the resulting image. The higher the
values in the quantization table, the better the compres-
sion, but the bigger the loss of information will be. If
al entries in the quantization tables would be 1, then
no information loss due to quantization will occur, but a
poor compression ratio will bethe penalty. Because of the
influence of the quanti zationtables on thefile size and the
quality of the resulting image most JPEG compression
programs let you pick a file size versus image quality
trade of f by selecting aquality setting. Thisquality deter-
mines the contents of the quantization tables. A qudity
range that is used in most JPEG compression programs
is1... 100. For every different quality, different (quaity
based) quantization tables should be used. For a max-
imum quality (of 100) al elements of the quantization
tables should be 1.

To determine a quality based quantization table the
only additional informationneeded isabasic quantization
table. For a greyscale image only a basic luminance
quantization table is required. For a colour image two
basic quantization table are needed to determine the
quality based luminance and chrominance quantization
tables. For some example basic quantization tables see
Figure 2.7. These basic tables quantization tables are (as
all good quantization tables) stored in zigzag order.

12

[uminance quantization table;

6 11 12 14 12 10 16 14
13 14 18 17 16 19 24 40
26 24 22 22 24 49 3H 37
29 40 58 51 61 60 57 51
5 55 64 72 92 78 64 68
8 69 55 56 80 109 81 87
95 98 103 104 103 62 77 113
121 112 100 120 92 101 103 99

chrominance gquantization table:

17 18 18 24 21 24 47 26
26 47 99 66 56 66 99 99
9 99 99 99 99 99 99 99
9 99 99 99 99 99 99 99
9 99 99 99 99 99 99 99
9 99 99 99 99 99 99 99
9 99 99 99 99 99 99 99
9 99 99 99 99 99 99 99

Figure 2.7: Basic quantization tables.

Every quality based quantization table can now be
extracted from this basic table by using the user selected
quality. The relationship between an element in the
basic quantization table (basic_tbl[i]) and an element ina
quality based quantization table g-tbl[i] can be described
according to theagorithmin figure 2.8.

if quality<50then

basi c_thl[i]«-2000_, 50
o-tablefi] = ity )
else
. (basic_tbl[i]+(200 - 2xquality) + 50
g-tabldi] = ( e, )

fi

Figure 2.8: Quality conversion.

If the selected quality is 100 then al elements in
the quality based quantization table will be 1. Use of
this maximum quality is not recommended because the
resulting file will be two or three times as large as with
quality 95, but of hardly any better quality. If the selected
quality is 50 the quality based quantization table will be
the same as the basic quantization table.

The lower the quality, the larger the elements in the
quality based quantization tables. As a result, the quan-
tization step will produce more zero-entries. More zero-
entries will reduce the average number of entriesin an
RLE block.



Chapter 3

Algebraic operations: the mathematical side

The sections in [Smith] that deal with the operations
only give a short mathematical explanation (except for
pixel multiplication). A complete mathematical descrip-
tion will be given for each operation in the following
sections, where we won't involve quantization yet. We
will only show how the algebraic operations would look
like in the frequency domain.

Furthermore, in the following sections of this chapter,
we will work with the actual DC-coefficients instead of
the DC-differences that are stored in the bitstream by the
JPEG method. How to deal with the DC-differences will
be discussed in Chapter 4.

3.1 Scalar multiplication

Let's recal the Discrete Cosine Transform (Eqg. 2.1).
Suppose y istheresult of scalar multiplicationby factor «
on theoriginal 8x8 submatrix and z isour origina matrix.
In other words:

yli, j1 = ae[i, 5] 31

fori,j=0,...,7.
We now substitute Eq. 3.1 into Eq. 2.1 to obtain:

Y[u,v]

1 v

i=0 j=0

1 7 7
= Z Z C(i,w)C(j, v)ax[i, j]

i=0 j=0

1.7

= a7 > ClwCG vl ]
i=0 j=0

= aX[u,v]

Thisimpliesthat scalar multiplicationin the frequency
domainisequivalent to scalar multiplicationinthe spatial
domain.
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3.2 Scalar addition

Scalar addition adds the same factor 3 toall dementsina
block. If we recall Section 2.3, scalar additionis an easy
operation.

Let y betheresult of scalar addition on = with factor 5
in the spatial domain. So we have

yli, g1 = «li, j1 + 5

fori,j=0,...,7.
Substitution of Eqg. 3.2 into Eq. 2.1 gives

Y[u,v] =

1 v

i=0 j=0

(3.2)

7 J
= 230306 wWeG ) (el 1+ )

i=0 j=0

1 7 7
= > > H{CGwCG, v)li, 5] +

i=0 j=0

C @, w)C 3, v)P}
1 v
= 3202 ClnCG e, ]+

i=0 j=0

1 0.7
222 Cl,uwCG 0B
i=0 j=0
= X[u,v] + Z[u,v]

foru,v=0,...,7.
Let Z[u, v] betheresult of the DCT applied on matrix

z, with z[i,j] = g for i, = 0,...,7. If we use the
property, given in Eq. 2.3, we see that
Yu,v] =
= X[u,v] + Z[u,v]
X[u,v] +83 foru,v=0
{ X[u,v] otherwise (33)

Another way of looking at scalar addition is to notice
that adding 5 to adl entriesin « isthe same as adding 3
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to the average of al entriesin . If we define a to be the
average of al valuesin z then a + 3 would be the average
of al entriesin y, so Y[0, 0] (the DC coefficient of Y')
would be 8(a + 5) = 8a + 85, whichis X[0, 0] + 85.

We conclude this section with the remark that we
only have to perform one addition and one multiplication
per matrix in the frequency domain (namely Y'[0,0] =
X|[0, 0]+8p5), instead of 64 additionsinthespatial domain.

3.3 Pixel addition

Pixel addition (or rather matrix addition) is defined by
y[laj] :$1[Zaj]+$2[laj] (34)
fori,j=0,...,7.

Substitution of Eq. 3.4 into Eq. 2.1 gives

Y[u,v] =
T

= 3303 6O, i ]
i=0 j=0
v

_ % S° 37 C6 WG, ) {eli ]

i=0 j=0
+l‘2[i,j]}

1 7 7
= ZZZ{C(i,u)C(j, v)zi[i, j]+

i=0 j=0

C@i,w)C (G, v)ali, j1}

1 7 7
= D3Ol w)CG, v)ali, 1+

i=0 j=0
1 7 7
222 ClwCG v)ali, ]
i=0 j=0
= Xl[U,U]"’XQ[U,U] (35)
foru,v=0,...,7
So if we compare Eq. 3.4 to Eg. 3.5, we see that pixel

addition in the frequency domain is the same as pixel
additionin the spatial domain.

3.4 Pixel multiplication
Pixel multiplicationin the spatial domain is defined by

fori,j=0,...,7.

In [Smith], a factor « isintroduced to scale the prod-
ucts in order to keep the values within the correct range
(depending on the colour space and component we're
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using). Since thisis not important for the mathematical
discussion on pixel multiplication in the frequency do-
main, we will leave it out for now, and we will introduce
thisa in Section 4.5.

Substitution of Eg. 3.6 into Eq. 2.1 gives:

Y[Ul, Uz] =

1 7 7
= 21ZZ(J(i,ul)C(j, us)yli, j]

i=0 j=0

v
= 3303 C O, wnli, Lol ]

i=0 j=0

1 7 7
= ZZZC(i,Ul)C(jaU2)

i=0 j=0
1.7
(4_1 > €6 w)C, Uz)Xl[Ul,Uz])
v1=0vo=0
7

7
(% Z Z C@i,u)C(y, wZ)XZ[wlawz])

wy1=0wo,=0

(3.7)
7
= Z (Xi[v1, v2] Xo[wr, wo]*
v1,Uo, w1, we=0
*M[vl,vz,wl,wz,ul,uz]) (38)

where

M[UlavzawlawzaulaUZ] =

= 6—4W[U1,Ul,w1]W[U2,Uz,w2]

with
W, v,w] = > C@, w)C(i, v)C(i, w)
i=0

forul,uz =O,...,7.
Notice that the IDCT, as defined in Eq. 2.5, isused to
get Eq. 3.7.

spatial domain frequency domain

yli, j] = axli, j] Y [u,v] = aX[u,]
T Xu,v] +83 alsu,v=0

yli, sl ==l 1+ 8 { X[, 0] ols w0 %0

y[ivj] = l’1[i,j] + l’g[i,j] Y[uvv] =X [uvv] + Xo [uvv]

y[i, 5] = @1[d, jlwa[d, 1] Ylu,uz] =
7

= Z (Xl[vl,UQ]XQ[w27w2]*

v1,v2,wy,wa=0

Table 3.1: An overview of the operations.

M[U17U27w17w27u17u2])



Chapter 4

Algebraic operations: the implementation side

In this chapter we will adjust the theory, given in
Chapter 3 to properties of JPEG compressed images.

First we will extend the results obtained in Chapter 3;
Eqg. 3.2, Eg. 3.3, Eg. 3.5 and Eq. 3.8 are modified to quan-
tization, DC-differences and normalization separately.
Then these modifications are combined.

guantization

A complete mathematical description for each operation
was given in Chapter 3, in which we didn’t use quantiza-
tion. Now we will use quantization but we will make the
following assumptions:

Assumption 4.1 The quantization tables for the output
image of scalar multiplication and scalar addition are
the same asfor theinput image.

Assumption 4.2 The quantization tables for the output
image of pixel multiplication and pixel addition are the
same as for the first input image that is selected in our
program.

In the operations scalar addition, pixel addition and
pixel multiplication, we introduce an additional scaling
factor. With this factor, we try to keep the outcome in
the correct range (depending on the colour space and
component we' re using).

DC-differences

In Chapter 3 we didn't use the DC-differences. In this
chapter we will examine the influence of using DC-
differences, instead of DC-coefficients, on the equations
in Chapter 3.

In [Smith], DC-coefficients are used instead of DC-
differences. Reasonsfor the use of DC-coefficients could
be:

¢ Source code; The source code provided by the[ljg]
automatically convertsthe quanti zed DC-differences
into the quantized DC-coefficients.
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e Simplicity; Using DC-coefficients makes the the-
ories in Chapter 3 easier to understand. However
someincreasein performance can be expected when
the DC-differences are used.

¢ Roundingerrors; Theoretically in some operationsit
doesn’t makeany differencewhether DC-differences
or DC-coefficients are used to caculate the out-
put image. In pratice however, rounding errors
made during cal culation of the output image (using
DC-differences) mightinfluencefurther calculations
of theoutput DC-differences. Rounding errorsmight

pileup.

normalization

In the JPEG method, al values are brought into the range
—128...127, before the DCT is applied. Normaly,
we would bring our data back into the spatia domain,
denormalize it when necessary, perform our operation,
normalize it when necesarry and bring it back into the
frequency domain.

Now we want to perform the operations directly in the
frequency domain. This leaves us with the problem of
combining denormalization, applying our operation and
normalization in the frequency domain.

As we're assuming our JPEG files to be formatted in
the JFIF style, this process only needs to be done for the
first component.

One remark can be made here on the combination of
normalization and the use of DC-differences: When DC-
differences are used to perform an operation on anormal-
ized component, then the denormalization and normal-
ization only needs to be done for the first DC-difference
(which is in fact a DC-coefficient); the difference be-
tween two consecutive DC-coefficients stays the same,
whether the component containing the DC-coefficients
was normalized or not.
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scaling factor

In the operations pixel addition and pixel multiplication,
the vaues of the resulting pixels could easily go out of
the valid ranges. To avoid this, we introduced a scaling
factor «. The principle is basicly the same as scdar
multiplication, but now we have to combine the scaling
factor with pixel addition and pixel multiplication.

combined

In practice, the above properties of JPEG images are
combined, so the underlying theories have to be com-
bined as well. This has consequences for the operations
scalar multiplication and pixel addition, in particular for
the calculation of the resulting DC-differences or DC-
coefficients. The caculation of the DC-differences or
DC-coefficients, will be discussed in these subsections

4.1 DC-differences, quanti-

zation and rounding er-
rors

Before we describe the implementation issues of the op-
erations, we will take alook at the use of DC-differences
in combination with quantization tables.

One genera remark on DC-differences can be made :
Regardl ess of the operation to be performed, every round-
ing error made on a DC-difference works accumulative
because the DC-coefficients are sums of DC-differences.

DC coefficients

4] o] [ Juef | o) (2] 2] [2]

DC differences

AT 4 4] &1 | JoT o] o [0

Figure 4.1: Example of DC-differences and rounding
errors

The DC-coefficient of the i'” block is the sum of the
first ¢ DC-differences. If during the calculations of the
first ¢ DC-differences k¥ (k < ¢) rounding errors were
made, then these k rounding errors are used to calculate
the i'» DC-coefficient. So the larger the image, the more
likely thiseffect will start to show.

This unpleasant effect isamplified by the use of quan-
tization tables. Suppose a quantized DC-difference dg
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should have been stored inthe JPEG bitstream, but dg — 1,
amutated version of d¢, was stored because of arounding
error made during the cal culations and integer rounding.

After this incorrect vaue dg — 1 is read from the
bitstream during decompressing, it will be dequantized
by ¢[0, 0]. Asaresult, the DC difference that will be used
to calculate the current DC-coefficient will be

(dQ - 1) * Q[Oa O] = dQ * Q[Oa O] - Q[Oa O]

But the correct DC-difference should have been

dq +¢[0, 0]

So the rounding error made during the calculations
using DC-differences resultsin an error of ¢[0, 0] in the
dequantized frequency domain. This causes an error of
%q[O, 0] for every eement in the spatial domain (see
Section 2.3).

Now we see the following: The bigger ¢[0,0] — or
thelower the quality, see Section 2.4 — thelesstimethe
operation takes, since the RLE lists are smaller, but the
more influence a rounding error has on the resulting data
in the spatial domain. So we expect our DC-difference
oriented versions not to be useful for low quality images.
Figure 4.2 shows scalar multiplication, using « = 0.5
with an input image that has a 10% quality.

BT

Figure 4.2: Scalar multiplication: input, result of DC-
coefficients, result of DC-differences.
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4.2 Scalar multiplication

guantization
In Section 3.1 we saw
Yu,v] = aX[u,v] (4.2

However, the values obtained after Huffman decoding
are quantized. Instead of X[u,v], as in Eq. 4.1, we
have Xq[u,v]. The relationship between X[, v] and
X¢q[u, v] can be described as

Xu,v] = Xolu, vlgx[u, v] (4.2)

wheregx[u, v] isthe (u, v)** quantizationvaluefor every
block in the current component.
Thisresult substituted in Eq. 4.1 gives

Yu,v] = aXglu, vlgx[u, v] 4.3)

Now we need to quantize the result; we want an
equation for Y [u, v]. The relationship between Y [u, v]
and Yp[u,v] is a similar one as in Eq. 4.2. After
substitution of Y[u, v] of Eq. 4.3 we obtain

Yolu, vlgy[u, v] = agx[u, v]Xq[u, v]

which leads to
_ qxu,v]
Yolu, v] —an[U’U]XQ[u,v] (4.9

Because of Assumption 4.1 on the quantization tables,
gx[u, v] = qv[u, v], EQ. 4.4 can berewritten as

Yolu,v] = aXg[u, v] (4.5)

As aresult of Eq. 4.5, we can see that scaar mul-
tiplication can be performed directly on the quantized
coefficientsin the frequency domain.

DC-differences

Supposethe DC-coefficient of thefirst block isd; andthe
DC-coefficient of thesecond bl ock inthe same component
isd; +d». Sothe JPEG agorithmwill store d; asthefirst
DC-difference and d-, asthe second DC-difference.

Let’ sassume we are multiplying by factor .

Performing scalar multiplication on the DC-
coefficients would result in «d; for the first DC-
coefficient and «(dy + d5) for the second DC-coefficient.
So the DC-difference for the second block is

a(d1 + dz) — ad1 = Ozdz.

Performing scalar multiplication directly on the DC-
differences would give «d; for the first block and ads
for the second block.
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g |d d,+d, L P (dy+d.)a
=
8 =>
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(%]
3
c d, d, d,a d,a
) ?
Q
=
O
o

Figure 4.3: Scalar multiplication with DC-coefficients
and with DC-differences.

Figure 4.3 shows the process for DC-coefficients and
for DC-differences.

The first component however was normalized, so in
that case we cannot just multiply the DC-differences by
the given factor.

So it is proven that theoreticdly, it doesn't make any
difference for the calculation of the output image data
if DC-differences are used instead of DC-coefficients (if
normalization is not taken into account).

In practicehhowever, rounding errorson DC-differences
can have too big an impact on the output image data;
rounding errors might occur, if the multiplication factor
« isnot an integer.

normalization

The first component should be denormalized before per-
forming scalar multiplication, otherwise we would aso
scalethe’—128' that isused inthe normalization process.
The only problem we have is that we are working in a
guantized frequency domain as caculated by the DCT
and the quantization table.

But if we recall that the DC-coefficient is the same as
the average of al origina values multiplied by 8, then
‘denormalizing’ should not be difficult.

Suppose d is our DC-coefficient and ¢[0, Q] is the
guantization coefficient for the DC-coefficients. Then the
quantized DC-coefficient dg — the value that is actuay
stored in the image bitstream — would be

d
27 .0

In the ordinary case, i.e. when we would transform
our blocks back into the spatial domain, we would have
added 128 to each value in the block.

If we were to denormalize in a quantized frequency
domain, the proces of denormdizing in the frequency
domain would simply look like

dqq[0, 0] + 128 + 8 = d¢[0, O] + 1024
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combined

A block which is input of the scalar multiplication op-
eration can have one of the following combinations of
properties:

1. TheblockisDC-difference oriented, normalized and
itisthe very first block of the component.

2. Theblock isDC-difference oriented, normalized and
itisnot the first block of the component.

3. Theblock isDC-difference oriented and not normal -
ized

4. The block is DC-coefficient oriented and normal-
ized.

5. The block is DC-coefficient oriented and not nor-
malized

Note that in addition to each combination, each block
is quantized.

DC-difference, normalized, first block

This combination occurs when we are working with a
DC-difference oriented algorithm in the first component,
and we' re about to perform scalar multiplication on the
first block.

Because we're working on the first block of the com-
ponent, the quantized DC-difference of this block is
actually a quantized DC-coefficient. Suppose d is that
DC-coefficient and d’ is the DC-coefficient to be calcu-
lated.

First we need to deguantize the DC-coefficient, then
denormalization should be applied before scalar multi-
plication can be applied. After that, normalization and
quantization should be done. This and Assumption 4.1
gives the following combination:

o (dgx[0, 0] + 1024) — 1024
dqx[0, 0] + 1024 — 1024
+ 1024(ex — 1)

d =

DC-difference, normalized, not first block

It was shown that scalar multplication can be applied
directly on the DC-differences. What we need to do
normaly is to dequantize, denormalize, perform scalar
multiplication, normalize and quanti ze the DC-difference
(inthat order).

However, since we're working with DC-differences,
wedon'’t need to denormalize; thiswas already doneinthe
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first block of this component. Whether we are working
in a normalized frequency domain or in an ordinary
(not) normalized frequency domain, the difference of two
consecutive DC-coefficients stays the same; the DCT is
a linear processes. So we need to dequantize the DC-
difference, perform scalar multiplication and to quantize
the result. Using Assumption 4.1, the calculation of d’
lookslike:

a(dgx[0,0])

QX[Oa O]
= ad (4.6)

d =

DC-difference oriented and not normalized

Thisis a similar case as the one described above. The
only difference is that we do not have to denormalize
the block because it was not normalized at al. So the
method to be used for such DC-differencesisthe same as
described in Eq. 4.6

DC-coefficient oriented and normalized

After dequantization of the DC-coefficient, we need to
denormalize it. After the scalar multiplication, normal-
ization and then quantization is needed.

Using Assumption 4.2 gives thefollowing cal cul ation:

d =
((dqx[0, 0] + 1024) o) — 1024
adqx [0, 0] + 1024« — 1024
1024(ex — 1)

ad +

DC-coefficient oriented and not normalized

A DC-difference of this combination only needs to be
dequantized before the scalar multiplication operation.
Afterwards quantization is to be applied. Using Assump-
tion 4.1 the calculation for d’ would look like:

d =

= ad

4.3 Scalar addition

guantization

In Section 3.2 we found Eg. 3.3. This equation needs to
be quantized, but as in Eq. 3.3 can be seen, there are two
cases. u,v =0and u, v # 0.
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For u,v = 0 we had Y[u,v] = X[u,v] +83. Agan,
we substitute Eq. 4.2.

Yu,v] = Xolu, vlgx[u,v] +88 (4.7)
A similar substitutionfor Y[u, v] isdone:
YQ[ua U]QY[ua U] = XQ[ua U]QX[ua U] +86
But Y [u, v] iswhat we'relooking for:
YQ[U,U] =
Xo[u, vlgx[u,v] +88
QY[uaU]
qx [u, 0] 8s
= X L] + ————
oo T

For w,v # 0 we had Y[u, v] = X[u,v]. After doing
thesame asu, v = 0for Y[u, v] = X[u, v] weget

- QX[ua U]
QY[uaU]

Yolu, v] Xolu,v]

As gy [u, v] = ¢x[u, v] (Assumption 4.1) we can now
write

Xolu,v] + qXEES’v] for u, v =0
otherwise

4.8

Eqg. 4.8 shows us that only ¢x[0,0] is needed to
calculate Y[0, 0]. The remaining entries of Y are just
copiesof X.

DC-difference

As dready mentioned in Section 3.2, we only have to
perform one addition and one multiplication per block
if we use the (non)quantized frequency domain with
DC-coefficients. An additiona division is needed if
we're using the quantized frequency domain with DC-
coefficients. But what if we're using DC-differences
now-?

Let’s inspect the process using DC-coefficients. Sup-
pose the DC-coefficient of the first block is d; and of
the DC-coefficient of the second block isdy + dy. After
scalar addition using factor 3 we get

+ 85
QY[Oa O]
for thefirst block and
80
QY[Oa O]
for the second block. Converting these actua DC-
coefficientsinto DC-differences would give
+ 86
QY[Oa O]

(dy +do) +
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asthefirst DC-difference and

853 ( 853 )
dy + —((d1+dy)+ ——— ) =d
vratoo  \ R o) T
as the second.

Now we will examine the process using DC-
differences. Using the same DC-coefficients as above,
wewould store d; asthefirst DC-differenceand d- asthe
second. Applying scalar addition on the first block gives

_ 85
qv[0,0]
Note that the DC-difference in the second block is ds.

Thiswould adso bethe result if the DC-coefficients were
used for scalar addition (see Figure 4.4).

1+

[2]

& [q, d;+d, d+8F  |d-+d,+8p|
2 8

2 =>

Q

O

) L3
(%]

]

2 [ d, _odesy G
3 ;

=

Q

(@]

Figure 4.4: Scalar addition with DC-coefficients and
with DC-differences.

So scalar addition can be done very efficiently if we
use the DC-differences. We only need to perform this
operation on the first DC-coefficient of each component.
In this way, every component only needs one addition,
one multiplication and one division. If DC-coefficients
were used, alot more work would be needed.

Integer rounding does not give any troubl e, because for
every component only one rounding error might occur
(theoperationisonly performed onthefirst DC-difference
— whichisacutally a DC-coefficient). So a piling up of
rounding errors onto rounding errors will not occur since
only one rounding error per component can be made.

normalization

Another nice property of scalar addition isthat we don’t
need to denormalize the first component.

Again, d is the DC-coefficient of a block in the first
component. If wewereto denormalizethefirst component
in a nonquantized frequency domain, it would look like
this:

d +1024
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but since we're dealing with a quantized frequency do-
main, the normalization needs to be quantized:

d +1024
QY[Oa O]

After theaddition (withfactor /3) isperformed it would
look like this:

d+1024 85
(JY[O, O] qY[Oa O]

Now we need to ‘normalize’ the result:

80
qy [Oa O]

<d+1024+ 83

—1024=d +
qv[0,0]  ¢v[O, 0])

which isbasicly the same as described in Eq. 4.8.

4.4 Pixel addition

guantization
In Eg. 3.5 we found
Yu,v] = X[, v] + Xo[u, v]
After substitution of Eq. 4.2 into this equation we get:
Yu,v] =
= Xy glu,vlgx,[u, v] + Xs glu, v]lgx.[u, v]
A similar substitutionfor Y[u,v] isdone:

YQ[uaU]QY[uaU] =
= XLQ[U,U]QXI[U,U]+X27Q[U,U]QX2[U,U]

After divisionby ¢y [u, v] we get:

Yolu,v] =
Xi,0lu, vlgx, [u, v] + Xa olu, v]gx,[u, v]

v [u,v]
qx,[u,v]

QY[ua U]

As gy [u,v] = ¢x,[u, v] (Assumption 4.2) we can now
write:

- QXI[U’U]qu[U,U]"‘

Xa olu, v
QY[uaU] 27Q[ ]

qX2[ua U]

ax, [ua U]

This leads to the conclusion that the quantization tables
qx, and ¢x, are extensively used.

Yolu,v] = X1 gfu,v] + Xo,glu, v]
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DC-difference

Suppose the DC-coefficient in the first block of the first
input image is ¢; and the DC-coefficient of the second
block is ¢; + ¢z Doing the same for the second input
image givesaDC-coefficient of d; for thefirst block and
aDC-coefficient of d; + d» for the second block.

Pixel addition, using DC-coefficients, would give

c1 +dy
as thefirst DC-coefficient of the output image, and
e +dy +eat+ds

as the second DC-coefficient. Converting these actual
DC-coefficients into DC-differences would give

¢y +dy

as thefirst DC-difference of the output image, and
e1+dy — (o +dy+eg+ds) =cg +dy

as the second.

DC-coefficients DC-differences

ol [ o el

W [ W el

c,+d, C,*+C, c,+d;

d;dz z>>

C2+d2

Figure 4.5: Pixel addition with DC-coefficients and with
DC-differences.

Let’ sinspect the process using DC-differences instead
of DC-coefficients. Suppose the DC-coefficients of the
input images are the same as above. The DC-difference
of the first block of the first input image would be ¢,
and the DC-difference of the second block would be c,.
Calculation of the DC-differences of the second input
image gives d; as the first DC-difference, and d» as
the second. Addition of the two images, using DC-
differences, would give ¢; +d5 asthefirst DC-difference
of the output image, and d; + d- as the second.

Figure 4.5 shows the comparison of DC-coefficients
and DC-differences with respect to pixel addition.
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So we see that theoretically it doesn’t make any differ-
ence for the cal culations whether we use DC-coefficients
or DC-differences. For performance it could make a dif-
ference since the differences are mostly small numbers.
Of course, in practice, rounding errors are still a problem
and the use of actual DC-coefficientswould beasolution.

normalization

The first component is normalized, this means that we
have to denormalize this component. This is done by
adding 1024 to the dequantized DC-coefficients.

(Working with DC-differences instead of DC-
coefficients means that the denormalization can be done
by denormalizingthefirst DC-coefficient of thefirsst MCU
of the first component!) So using the DC-difference in-
stead of the actua DC-coefficient would save a lot of
work.

The first components of the two images that are added
are normalized. This means that we have to denormalize
thefirst components of thetwo images before performing
our operation.

Dequantization and denormaization of the first com-
ponent of the first image gives

dy * qx,[0, 0] + 1024.

Dequantization and denormaization of the first com-
ponent of the second image gives

ds * ¢x,[0, 0] + 1024.
Pixelwise addition gives
di * qx,[0,0] + ds * ¢x,[0, O] +2048.

After the addition, the result needs to be normalized
and quantized again:

(dy * qx, [0, 0] + da * g, [0, 0] + 2048) — 1024
QY[Oa O] .

Using Assumption 4.2 and rewriting the normalization
and denormalization makes it

dy * q,[0, 0] + 1024
qx,[0,0]

d1+

scaling
Scaling the result found in 3.5 with « resultsin
Y[U, U] = a(Xl[ua U] +X2[U, U])

A typica value for « could be 1/2. In this case, the
resulting image could be considered an average image of
the two input images.
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combined

A block whichisinput of the pixel addition operation can
have one of the following combinations of properties:

1. The blocks are DC-difference oriented, normalized
and they arethevery first blocks of their component.

2. The blocks are DC-difference oriented, normalized
and they are not the first blocks of the component.

3. The blocks are DC-difference oriented and not nor-
malized

4. The blocks are DC-coefficient oriented and normal -
ized.

5. The blocks are DC-coefficient oriented and not nor-
malized

DC-difference, normalized, first block

Because thisisthefirst DC-difference of thefirst compo-
nent, this DC-differenceis also the DC-coefficient of the
first block of the component. So for both DC-coefficients
dy and ds, we need to dequantize them, with ¢4, [0, Q]
and ¢x,[0, 0] respectively, denormalize them, perform
pixel addition, normalize the sum and finaly, quantizethe
normalized sum:

d =
a (d1gx, [0, 0] + 1024 + dogy, [0, O] + 1024) — 1024
- qx,[0,0]
_ a(digx,[0,0] + d2qx,[0, 0] + 2048) — 1024
- QXl[Oa O]

DC-difference, normalized, not first block

It was aready shown that pixel addition could be per-
formed directly on the DC-differences. And because we
are working with real DC-differences — unlikethe very
first DC-difference of a normalized component, which is
infact aDC-coefficient— we do not have to bother with
the denormalization stage.

So what we need to do is to dequantize the quantized
DC-difference, perform pixel addition, scale the sum and
guantize the scaled sum:

a (d1gx,[0, 0] + d2¢x,[0, 0])

d =
1x,[0, 0]

DC-difference, not normalized

DC-differences that are not normalized are easily dedlt
with. Again, we use the fact that we can perform pixel
addition and scaling directly on the DC-differences.
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Sotheonly thingto doisdequantization, pixel addition,
scaling and quantization.
a (d1¢x,[0,0] + dagx,[0, 0])
qx,[0,0]

d =

DC-coefficient, normalized

This situation occurs when the used algorithm is a DC-
coefficient oriented a gorithm, and the first component is
to be processed. In this case the steps to be taken are,
dequantization, denormalization, pixel addition, scaling,
normalization and quantization.

a (d1gx,[0,0] + 1024 + d2q, [0, O] + 1024) — 1024

4x,[0,0]
a (d1qx,[0, 0] + d2gx, [0, O] + 2048) — 1024
4x,[0,0]

DC-coefficient, not normalized

Thisoccurswhen the DC-coefficient oriented a gorithmis
processing a block from the second or third component.
Calculation of such a DC-coefficient consists of the
following steps. dequantization, pixel addition, scaling,
guantization.

a (d1gx,[0, 0] + d2¢x,[0, 0])

d =
1x,[0, 0]

4.5 Pixel multiplication

guantization

Pixel multiplicationin the frequency domain is given by
Eqg. 3.6. Substituting Eq. 4.2 into Eq. 3.6 and doingasim-
ilar subgtituting for Y'[u, v], and using Assumption 4.2,
gives

YQ[Ul, Uz] = (49)
7

=D

V1,V2,W1,W2

(X1[vi, vo] Xo[wy, wo] *

*MQ[Ula V2, W1, Wa, U1, Uz])
where

Mg[vi, va, wi, wa, uy, us) = (4.10)
qx,[v1, va]gx,[wi, wa)

64qy [u1, us]
*W[Ul, V1, w1]W[U2, V2, w2]
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with

Wlu, v, w] = Z C(i,u)C(E, v)C(E, w) (4.11)

with C'(¢, u) as defined in Eq. 2.2.
In Eq. 4.10 it can be seen that the quantization table of
the second input image is neccesary.

DC-differences

Pixel multiplication is done with the DC-coefficients
instead of DC-differences. Using DC-differences would
not work here.

normalization

As we're using actual DC-coefficients, instead of DC-
differences, we need to denormaize every block in the
first component. Denormalizing a block in the frequency
domain can be done by adding 1024 to dequantized
DC-coefficient of the block. After the operation, normal-
ization can be done by subtracting 1024 of the not yet
guantized DC-coefficient.

scaling

Scaling Eq. 4.5 can be done in two ways. the complete
sum can be scaled or the matrix M can be scaled.
Advantage of the second way is that scaling only needs
to be done during initidizationof AM:

Yuy,uz] =
7

=

v1,V2,W1,w2=0

(X1 [v1, v2] Xo[wy, wa]*

*M[Ul, Vg, W1, Wa, Uy, Uz]
where

M[vl,vz,wl,wz,ul,uz] =

«
6—4W[U1, v, wi] Wua, va, wa]

with
W, v,w] = > C@, w)C(i, v)C(i, w)
i=0

forul,u2=0,...,7.

4.6 Combination array

Thissectionwill bespent onthe performance optimization
of theprocessgivenin Section4.5. In[Smith] tworemarks
are made on the summation in Eq. 4.9.
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Figure 4.6: The combination array.
1. Eq. 4.9 is a rather large summation. However, in These new notationsare used to rewrite Eq. 4.9 as

practice many elementsin X, ¢ and X g are zero. Yo...l2] = (4.12)

2. The matrix M has 8° elements. However, about
4% are nonzero entries, so M is asparse matrix.

Using the runlength encoded representation of the blocks
takes care of the first remark. To make use of the second
remark [ Smith] introduced the combination array.

4.6.1 The datastructure

Because we want to perform pixelwise multiplication on
the RLE blocks, and because the entries in RLE blocks
arein zigzag order, we want to rewrite M into a zigzag
version.

Weintroducez, x» and z asthezigzag ordered indices
of (v1, v2), (w1, ws), (u1, uz) respectively. Define Mg ..
as the zigzag ordered version of Mg, so now we have
Mg .:[®1, 22, 2]. Furthermore, we define Yg .., X1 .-
and X ., asthe zigzag ordered version of Yq, X; and
Xo respectively.

63
= Z Xl,Q,zz[xI]XZ,Q,zz[xZ]MQ,zz[xlax2aZ]

r1,r2=0
forz=0...63.

Mg 2. [®1, 22, 2] With 21, 29,2 = 0...63 is a sparse
matrix. In order to store this matrix efficiently and in
order to calculate Eq. 4.12 efficiently, [ Smith] introduced
a datastructure called the combination array.

A combination array is a 64x64 matrix, one entry
for each (21, #2) combination, where z;, 2, =0, ..., 63.
Each element in a combination array is a combination
list.

We call the (1, z2)"" entry in the combination array
the combinationlist of (z1, #2).

A combination list is a list of combination elements.
Thereisonecombination el ement for every nonzerovalue
inthematrix M . A combination element holdstwo items:

1. avaueindicating anonzero entry in M.



Chapter 4. Algebraic operations: theimplementation side

63
Yor:[00 = Y00 o0 X1,0,::[01]X5 0 2 [22]Mg 22 [r1, 22, 0]
) < 63
Yo:(63] = Y10 o X1,0,2:[21]X2,0,z:[#2] Mg, 22 71, 22, 63]

Figure 4.7: The most likely way to evalute Yy, ..

2. an integer z vaue indicating the zigzag ordered
index of the nonzero element Mg ..[z1, 2, 2].
Note that presence of a combination element in
thelist of (z1, z2) impliesthe zigzag ordered indices
T and To.

See Figure 4.6 for an illustration of this datastructure.

4.6.2 The convolution algorithm

In this subsection we will explain how to use the combi-
nation array to calculate Eq. 4.12.

The most likely way to evaluate Eq. 4.12 isto evauate
itone z value at atime, asin Figure 4.7.

But the equations could also be evaluated as given in
Figure4.8. Noticethat for each iterationin the dternative
evaluation, the (x1, 2) combinationis constant withinan
iteration.

Thisisexactly why the method explained in Figure 4.8
is more suited for our purposes than the first method
(Figure 4.7). If we would use the first method, we would
have to visit al (z1, ;) combinations for every z €
{0, ...63} Keeping (1, x=) constant during an iteration
of the second method, means that we don’'t have to
traverse the RLE lists (during that iteration); in the entire
proces, each (z1, ) isvisited once a most.

Let's have another look at Figure 4.8. To compute
Yq .. efficiently, we want to avoid unuseful calculations

of Yg;lz [2]. To make the discussion easier, we define the
notions (possibly) useful evaluation and useful iteration.



Chapter 4. Algebraic operations: theimplementation side

Iteration 0: (z1,z2) = (0,0)

Y0l = Xig.::[0X2 .2 [0]Mg,-2[0,0,0]
YL = Xig.:[01Xs 0,22 [01Mg,.2[0,0,1]
Y5163 = X10.::[01X2 g -:[0]Mg -2[0,0,63]

Iteration 1: (z1,z2) = (0,1)

vl = YL+ X10,..[0X0,0,::[1]M,..[0,1,0]
vy = vO nrex 0]X 1Mo ..[0,1,1
Q,zz[ ] Q,zz[ ]+ 1,Q,zz[ ] 2,Q,zz[ ] Q,zz[ [ES) ]
v 3] = Y (6314 X1,q,-2[01Xs,0,.2 (1Mo, [0,1,63]

Iteration i: (x1,72) = (¢ div 64,7 mod 64)

Yq(;)zz[o] = Yéj;j[o] + X1 g 22[i div 64]X, g .. [i mod 64]Mq .. [i div 64,imod 64,0]
voL = YSTPU 4 Xo g aali div 641X g L. [i mod 64]Mg .. [i div 64,i mod 64,1]
Yq(;)zz[GS] = Yq(;:zl)[GS] + X1.g..2[i div 641X, g .. [i mod 64]Mq ..[i div 64,i mod 64,63]

Iteration 64% — 1 = 4095: (z1,72) = (63,63)

VSO 0] = YSOV[01 4 Xi g, [631Xs,q,-2[63]Mq .. [63,63,0]
YEO = YSOUNI 4 Xy g, [631Xs,0,-2[63]Mq .. [63,63,1]
Vi3] = YOOV (63] 4 X1 ... [631Xs, 0,2 [631Mq -.[63,63,63]

Q,zz

where Y ..[2] = Y(4095)[Z] for z=0...63.

Figure 4.8: Another way to evaluate Yy ...
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for every x; for which X; g ..[#1] Z 0do
for every x» for which X» g ..[#2] Z 0do
if combination list of (x1, #2) not empty then
for every entry z in combination list do
calculate Y5472 (2]
od
fi
od
od

Figure 4.9: The convolve agorithm.

Definition 4.1 The evaluation of Y(\ggz [2] for some z €
{0,1,...,63} duringsomeiterationz € {0, 1, ...,4095}
isapossibly useful evaluationif and only if

X1.q.--[i div64] # 0and X o ..[i mod 64] 70

A useful evaluation is a possible useful evaluation for
which also holdsthat

Mg,..[ div64,imod 64,1] 70

Definition 4.2 An iteration ¢ is a useful iteration if and
only if for some z € {0,1,...,63}, the evauation of

Yg;lz [2] isuseful. Otherwise theiteration i is not useful.

If we project Definition 4.1 and Definition 4.2 onto the
combination array, we can conclude that an iteration is
useful if thecombinationlist of (z1, 3) — wherez; and
xo are entries in the RLE block of X1 g.. and X» g .-
respectively — isnot an empty list.

The entries in the combination list for a certain
ry and z, are exactly those entries of Mg .. with
Mg -[®1,22,2] # 0. The order in which the z co-
ordinates occur in the combination list is not important
for the method used in Eq. 4.8.

To make use of the fact that many entries of Xy ¢ ..
and X, o .. are zero, we use the Runlength Encoded
representation of X, g .. and X, ¢ ... Inthisway, we
skip iterations that are not useful at al. Note that the
entries in an RLE block are ordered by the index of the
nonzeroes within the 8x8 blocks.

Now we can give the idea of how to evaluate Eq. 4.9.
For every (1, 2) combination — where z; and z- are
the indices of nonzero values in Xy g .. and X5 g .-
— we traverse the combination list of (x1,22). Every
combination element in the list represents an evaluation
of iteration x1 * 64 + z5. See Figure 4.9.
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Chapter 5

The modules

5.1 block.c

T
HEHEHEMEE
ERRRRR:

Figure5.1: An MCU of blocks.

INT1

In this module, all functions concerning blocks are de-
fined, such as alocating, freeing and setting to zero.
These functions perform directly on a complete MCU,
so the datastructure should be designed to store a com-
plete MCU. The datastructure for an MCU isan array of
pointers. Each pointer points to an array of 64 integer
elements; this represents one bl ock.

5.2 calc.c

In this module a function for integer rounding is given.
This function was designed for quantization, but is used
in other calculations as well.

5.3 huffman.c

The Huffman tables are provided by the image filg;
different image files could contain different Huffman
tables. Mostly, separate Huffman tables are given for the
DC and AC-coefficientsand for thedifferent components.
In practice, the Huffman tables for the second and third
component are the same.

As aready mentioned in section 2.1.7, the aim of
Huffman coding is to assign short codes to frequent
(RUN, SIZE) combinations. If we were to take full
advantage of Huffman coding, we would have to count
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UINTS bits |_|_I\_ 17 E—l
UINT8 huffval |_|_I\_ 256

UINT16 ehufco |_|_I\_ 256 E
char ehufsi |_|_I\_ 256 [
UINT16 mincode |_|_I\_ 17 [
INT32 maxcode |_|_I\_ 18 [
short valptr |_|_I\_ 17 G

Figure5.2: The Huffman structure.

al (RUN, SIZE) combinationsin every image we would
process, to construct an optima Huffman table for that
image. Thisisof course too much work; determination of
frequencies of (RUN, SIZE) combinations, constructing
the Huffman table and encoding the image would require
two scans of the image. To save runtime, we use
predefined tables.

5.3.1 Setting up Huffman tables

Setting up the Huffman tablesis handled in the function
fix_huff_tbl. The Huffman tables of JPEG images in
the JFIF style are stored in Huffman table segments
(see Chapter 6). A Huffman table segment contains the
following:

e anarray bits[].bits[i] representsthe number of
Huffman codes with ¢ bits.
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i bits[ii ehufsi ehufco huffval
o] [2] 00 01
1] [ o /2 01 02
B Z? B 100 03)
3] Bl g 1 1010 00)
4] | 8 14 1011 (0.4)
5] LQL 1100 (11
6| L\i 11010 (05)
7] [ 4 \5 11011 (12
8] [ 3] 5] 11100 @1
9] [ 9] o\'[6] 111010 31)
0] [5] o 6] 111011 78]
M| 5] o ® ° °
12] [ 4 ° o °
13 [0 | o ° o
1] [0

15 [ 1]

[16] [ 125

Figure5.3: Part of a hufftable.

e an array huffvall]. huffvall[il gives the i'”
(RUN,SIZE) combination (see Section 2.1.7) in the
Huffman table.

The Huffman tables can be computed out of bits[]
and huffval[]. The Huffman tables are stored by
bits[] and huffval [] to decrease storage space.

Now we will generate the Huffman codes (the codes
are to be stored in the array ehufco[]): Since we have
thearray bits[], we know how many Huffman codes of
length ¢ should be generated. Suppose we are generating
the j'* code of length ¢, and suppose the value of this
codeisC. The (j +1)"* code of length i is (C + 1). This
process should be repeated untill bits[i] tells us that
we have generated all Huffman codes of lengthi.

We define C?, ., to be the value of the last Huffman
code of length ¢ and C}”st to be the value of the first
Huffman code of length i.

The following equation shows how the next Huff-
man code is generated if we have completed generating
Huffman codes of length i:

COhte =20F

first

where
a=min{a |« > 1Abits[k+a] Z0}.

See Figure 5.3. The first Huffman code to be used is 0.
For decoding purposes, it is useful to know where the
codesof length ¢ begininthearray huffval[]. Thisdata
isstored inthe array valptr[], valptr[i] istheindex
in the array huffvalll, where huffval[valptr[i]]
isthefirst code of length i (see Figure 5.4). To calculate
valptr[], bothhuffvall] and bits[] are needed.
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Length  huffman code of length i

mincode(2] l——————————— valptr[2]
2

maxcode(2]

mincode[3] l———— valptr(3]
3

maxcode[3]

mincode[4] le———— valptr[4]
4

maxcode[4]

mincode[5] le——— valptr[5]

maxcode(5]

mincode[6] l«—— valptr[6]

maxcode(6]

Figure 5.4: Mincode, maxcode and valptr.

5.3.2 Decoding

The input to the decoding step is a Huffman coded
bitstream. The first couple of bits from the inputstream
form an encoded DC-difference. The next values to be
decoded are AC values, until 63 AC vaues have been
read, or until an end of block marker has been read.
The process of reading DC-differences and AC vauesis
repeated until an end of image marker is encountered.

extracting Huffman codes

The process of extraction is implemented in the func-
tion huff DECODE. Suppose the i bit has just been
read. These ¢ bits form a binary number codevalue.
codevalue is compared to maxcode[i]. If codevalue >
maxcode[7] thenthes bitsread so far don’t form aHuff-
man code yet, so anext hit hasto be read from the input
stream. If codevalue < maxcodel[:] thenthei bitsform
avalid Huffman code. Since matching Huffman values
and Huffman codes have the same index to huffval[]
and ehufcol[] respectively, we need to compute the in-
dex of the Huffman code in the array ehufcol[]. This
computation makes use of the property that the values
of consecutive Huffman codes of the same length have a
difference of one. Within all codes of length ¢, the Huff-
man codejust foundisthe (codevalue —mincode[i])""
entry. valptr[i] givesthe index of the first Huffman
code of length ¢ within the complete array ehufcol].
Now we can compute the index of the Huffman code,
which isaso theindex of the matching Huffman value:
valptr[i] + codevalue - mincode[i].
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decoding DC-differences

All Huffman codes are stored in the array ehufco[]1 and
with valptr[], mincode[] and maxcode[] it is easy
to determine the index of the Huffman code in the array
ehufco asdescribed in Section 5.3.2. Theindex found in
theExtracting stepisusedinthearray huffval[],tofind
the matching SIZE with this Huffman code. This SIZE
is the number of bits, that has to be read from the input
stream, to find the two’s complements representation of
the DC-difference.

decoding AC values

Again bits are extracted (from the proper AC Huffman
table) until a Huffman code is found. The matching
huffvall] gives a(RUN, SIZE) combination. RUN is
the number of zeroes preceding the AMPLITUDE. Again
SIZE is the number of bits to be read to find the two's
complement representation of the AC vaue.

5.3.3 Encoding

The input to the Huffman encoding process is a number
of runlength encoded vectors see Subsection 2.1.6.

encoding DC-differences

Suppose a DC-difference is to be encoded, and that the
number of bits needed to represent this DC-differenceis
SIZE. The proper base code (the first couple of bitsof the
Huffman code) is SIZE. The last part of the code can be
calculated by taking thetwo’scomplement representation
of the DC-difference.

encoding AC values

Suppose an AC-coefficient isto be encoded, and that the
number of bits needed to represent this AC-coefficient is
SIZE. And suppose that the number of zeroes previous
to the AC-coefficient is RUN. The proper base code
(the first bits of the Huffman code) is the 4 bits binary
representation of RUN, followed by a 4 bits SIZE (The
(RUN, SIZE) pair is stored in one byte). The next part of
the Huffman code can be calculated by taking the two's
complement representation of the AC value.

A specia base code is inserted for runs of 15 zeroes
followed by a zero. This is stored under (RUN, SIZE)
pair (OxF, 0). Another specia base code to mark an end
of block exists: (RUN, SIZE) pair is (0, 0).
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5.4 image.c

Inthefunctionallocate.image_struct, memory isallocated
to store a complete image structure. An image structure
not only containsdatasuch assi ze, number of components
and the filename of the image, but aso data needed for
Huffman coding and quantization.

All pointersin thisstructureare initialized with NULL
in case some pointers are not used; in order for re-
lease_image to work properly, unused pointers are as-
sumed to be NULL. See Section 5.6 for details.

Inrelease_image, al memory used for theimage struc-
tureisreleased. Beforethestructureitself can bereleased,
all memory allocated to the pointersin theimage structure
has to be rel eased.

The function init_output_image initializes the output
image structure by copying the input image structure.
In case of an image operation with two input images,
the structure of the first image is used to initiaize the
structure for the output image.

There are two ways to copy a structurein C. The first
possibility is to copy the contents of the structure one
fieldat atime.

The second (and faster) solution, is to copy the entire
memory occupied by the structure, using memmcpy. In
thiscase, special care hasto betaken of the pointersinthe
structure. The pointersin the output image structure point
to the same memory areas as the pointers in the input
image structure. Changing some memory in the input
image structure would result in a change in the output
image structure and vice versa

To avoid this, we alocate a different area of memory
and copy the allocated memory areas of the input image
structure into these newly allocated areas.

The function images_compatible checks whether two
images are suitable for pixel addition and pixel multipli-
cation.

Two images are compatibleif the heigth, thewidth and
the number of components are the same.

The functions open_image and close_.image are used
for filel/O.

5.5 jfif.c

The routines in this module, rely heavily on the JFIF
standard. See Chapter 6 for an overview of the JFIF
standard.

In copy2bytes, two bytesareread from theinput stream
and copied to the output stream. The two bytes form a
16 bitsinteger. Thisfunction is mostly used to read (and
write) the length of the segment to be processed.

copy_next_marker looks for the next segment marker.
A segment is marked by two bytes: OxFF followed by
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Jile I/O

filename char E]

b

image dimensions
image_height

image_width INT16

huffman

de_huff_tbl_ptrs IM_HUFF_TBL

} HUFF_TBL
ac_huff_tbl_ptrs IM_HUFF_TBL!

} HUFF_TBL

Q==

get_buffer INT32
huff_put_buffer INT32
bits_left

huff_put_bits

output_buffer char

1
A

bytes_in_buffer

quantization

quant_tbl_ptrs M_QUANT_TB

=g O

} QUANT_TBL

pixel multiplication

quant_tbl_ptrs [M_COMB_ARRAY:

} COMB_ARRAY
comb_done M_COMB_ARRAYS boolean
scan data
num_components
comps_in_scan
cur_comp_info _COMPS_IN_SC
} JDEQ,CONDOHEHLWIB
comp_inl
MCUs_per_row
MCU_rows_in_scan
blocks_in_MCU

.m ,BLOCKS,\N,MCE]
UUMPS,\N,SCAE] JCoEF

MCU_membership short

o

last_dc_val

last_dc_diff Dﬂx,cows,m,sm JCOEF
max_h_samp_factor

max_v_samp_factor

Figure5.5: Image_struct: the image structure.

another byte which specifies the segment. See Chapter 6
for alist of markers.

The copy_segment function copies an entire segment
without processing the stored information. This function
isused for segmentsthat are not needed for our operations.

get_dqt is used to read and write a quantization seg-
ment. One quantization segment can contain several
guantization tables. Each table has a unique number to
identify this table. This number is also stored in this
segment.

get_dqt2 reads a quantization segment but writes quan-
tization tablesin which all entries are set to one.

read_dqt only reads a quantization segment. This is
used to process the quantization segment of the second
input image of pixel addition and pixel multiplication.

get_dht reads and writes a Huffman segment (read_dht
only reads the segment). First, the number of the table
is read from the input stream. This number also deter-
mines whether the following tableisan AC or DC table.
Following thisidentifying number arethearraysbits[]
and huffval[]. See Section 5.3.1 for an explanation on
these arrays.

5.6 memmgr.c

In this module, the alocation and release routines are
defined.

In order for the release routine to work properly, al
pointers, not attached to an alocated piece of memory,
shouldbeNULL; on somesystems, rel easing non-defined
pointersis not allowed.

There are two dlocation routines. dlocate and
large_dlocate. This is done to support MS-DOS ma-
chines, which do not have enough memory for some
operations. Using ‘far memory’ solves this problem, but
this makes memory management more difficult for the
operating system and therefore less efficient. Another
drawback is that allocation of ‘near memory’ requires
a different function than alocation of ‘far memory’.
Thereforetwo different all ocation routines are needed for
MS-DOS machines.

UNIX based machines (and most other operating sys-
tems) do not divide memory into ‘far memory’ and ‘ near
memory’; all memory can be considered to be one con-
tiguous area. As a consequence, one function suffices to
alocate al memory available in the system. For UNIX
based machines, the routines allocate and large_allocate
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are the same, two different routineswere made for porta-
bility between MSDOS and non-M SDOS systems.

5.7 pmul.c

In this module, al functions concerning combination
arrays and the convolution algorithm (as described
in [Smith]) are defined. These functions are needed
for pixel multiplication. The functions C_init and W_init
caculate Eq. 2.2 and Eq. 4.11 respectively.

Because of thefiniteprecision usedin computers, small
values cannot be trusted. Therefore, in W_init, small
values in a specified range are set to zero to increase
performance in convolve.init. This thresholding is not
neccesary for C_init as the cal cul ated values do not suffer
from finite precision. The resultsof C_init and W_init are
stored in tables and these tables are used in the function
convolve.init_prec.

In convolveinit_prec the combination arrays are built.
Our implementation is much the same as described
in [Smith] but in order to limit the number of entries
in the combination lists, small values outside a specified
range (user defined, see Figure 5.6) are discarded.

prec 2 3 4 S
o0, | 128 | 2048 | aoes | s2a8s
range —fach e facﬁ

Figure 5.6: The relation between prec, factor and range.

Small combination lists result in a faster convolution
algorithm, but discarding too many vaues would result
into inaccurate calculations. For example, precision=2
will most likely give a black output picture. precision=5
will probably take more time than precision=3,but the
output image will not differ too much.

To avoid floating point calculations, we multiplied
every W value (see Figure4 in [ Smith]) by a user defined
factor (see Figure 5.6) and used integer rounding on
the result. Because of performance reasons, we use
factor > 10P"¢¢, where factor a power of 2. See
Figure5.6.

Convolve.initisamost thesame as convolve.init_prec,
the only difference is that precision is now a constant
value.

5.8 rle.c

The function rle2block converts a runlength encoded
MCU into an MCU of 8x8 blocks. Actually the blocks
are 64 element vectors, but thinking of them as blocks
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makes things easier to understand. block2rle converts
an MCU of 8x8 blocks into a runlength encoded MCU.
These two functions are used in the brute force versions
of scalar multiplication, scalar addition, pixel addition
and pixel multiplication. When performing brute force
operations, wewould like our operationsto be performed
on the bitmaps. So it should be obviousto use 8x8 blocks.

The function block2rle is aso used for pixelwise ad-
dition and for scalar- and pixelwise multiplication (for a
further explanation see Section 5.9).

Other functions in this module are alocate RLE,
init RLE and release RLE.

5.9 The main modules

For an overview of the main modules see Figure 5.7 and
Figure 5.13. The following is handled in every main
function described in this section:

¢ Theinput and output files are opened.

o |t is checked whether the first input image isin the
JFIF standard, and the header is copied.

e Thisstepisonly needed for pixelwise operations:

— Thesecond input imageischecked for the JFIF
standard.

— Thefirst and second input files are checked on
compatibility, see Section 5.4

e The config file is read. If there is no config file,
default values are used.

e The actual operations are handled (this part differs
for every operation).

o thestructures that were used used are freed

For an overview of the steps taken in the non-brute-
force implementation of the operations see Figure 5.8.
Step 2 aso involves quantization and if needed, denor-
malization and normalization.

Now we take a closer look at scalar multiplication,
pixel addition, pixel multiplication and we will make
somegenera remarksfor thebruteforceimplementations.
For the different implementations of scalar addition, it
sufficesto refer to Section 4.3.

5.9.1 Scalar multiplication

There are four different flavoursfor scalar multiplication.
There is a DC-coefficient oriented version and a DC-
difference oriented version. Both versions can be either
RLE-in-RLE-out or RLE-in-block-out.
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OPERATIONS

smvall.c
smval2.c
smdifl.c
smdif2.c
saval.c
sadif.c
pavall.c
paval2.c
padifl.c
padif2.c
pm.c

scalar multiplication using DC-coefficients, RLE-in-RLE-out oriented
scalar multiplication using DC-coefficients, RLE-in-block-out oriented
scalar multiplication using DC-differences, RLE-in-RLE-out oriented
scalar multiplication using DC-differences, RLE-in-block oriented
scalar addition using DC-coefficients

scalar addition using DC-differences

pixel addition using DC-coefficients, block-in-block-out oriented
pixel addition using DC-coefficients, RLE-in-block-out oriented

pixel addition using DC-differences, block-in-block-out oriented

pixel addition using DC-differences, RLE-in-block-out oriented

pixel multiplication
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pmprec.c | pixel multiplicationusing user defined precision

Figure5.7: An overview of the main modules.

step 1
quantized
zigzag vector
in frequency domain

compressed data
from bitstream

huffman decoding

perform operation

quantized step 3

zigzag vector
in frequency domain
after operation

compressed data
to bitstream

. after operation
huffman encoding

Figure5.8: The smart way.

A discusion of DC-coefficient oriented versus DC-
difference oriented was given in Section 4.2.

an RLE-in-RLE-out oriented i mplementation operates
directly on the runlength encoded block (RLE-block).
This could be dangerous, specialy if a small scaling
factor is applied to a small amplitude in the RLE-block;
if the scaled amplitude is in the range O...%, then
integer rounding will set the resulting amplitude to O
(See Figure 5.9). This would mean that a zero-amplitude
would appear in the RLE-block. Even though the RLE-
block was introduced to leave out zeros! We call these
zero-amplitudes ghost-amplitudes.

& & &
& \Q\\Q \‘g’\“ wQ.\\
Sl & S
-1 53 -1 13
0 8 0 2
1 1 1 0 }Ghosl—emry
[0.25 =
0 3 e 0 1
4 | -4 4 | -1
2 | 2 2 | -1
0 0 0 0

Figure 5.9: Scalar multiplication: RLE-in-RLE-out and
ghost-amplitudes.

An option could be to rearrange the RLE-block, but

we expect this to cost too much overhead. Therefore,
another option was chosen; we read the incoming am-
plitudes from the RLE-blocks, but we store the outgoing
amplitudes directly in a block (See Figure 5.10). The
index of a resulting amplitude in the output block can
be calculated, using the runlengths of the current and
previous amplitudes.

Ofcourse this method has a drawback; an addi-
tional conversion — runlength encoding, from block
to RLE-block — has to be applied for each MCU. This
takes time. But the result is mostly better — a better
compression ratio is achieved.

5.9.2 Pixel addition

The implementation of pixel addition comes in four dif-
ferent flavours. Again there is a DC-coefficient oriented
version and a DC-difference oriented version. Now both
versions can be either block-in-block-out or RLE-in-
block-out.

Note that we |eft out an RLE-in-RLE-out version. We
expect this version to take too much overhead because
we have to merge the incoming RLE-blocks; Often, two
matching block entries — for example, the two Y-
components of the pixels at (z;, y;) of the input images
— do not match in the RLE-blocks because one of the
two is missing in the RLE-block, due to an amplitude of
zero.
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Figure5.10: Scalar multiplication: RLE in zigzagged vector out.

The most straightforward way to overcome this prob-
lem is to convert the incoming RLE-blocks to normal
blocks and perform pixel addition in a matrix addition
like manner. Figure 5.11 illustrates this method with al
guantization table entries set to 1. The drawback of this
method is that lots of unuseful additions could be done;
many entriesin the blocks are zero, so itislikely that two
zeroes are added.

Thisleads to another implementation. We returnto the
idea of merging the RLE-blocks, but now we perform
the merging process during the pixel addition, and the
merging takes placein ablock; The first input RLE-block
is taken and its amplitudes are stored in the output block
using the runlenghts for each amplitude (an RLE-block
to block conversion). Then the second input RLE-block
is taken and its amplitudes are added to the matching
entriesin the output block, again using the runlenghtsfor
each amplitude. An example can be foundin Figure5.12.
Again, all quantization table entries are set to one.

Section 7.3 shows that the RLE-in-block-out approach
often savestime.

5.9.3 Pixel multiplication

For pixel multiplication there is one ‘norma version’
and one version where a user defined precision is needed
(for an explanation see below). For both pixe muilti-
plication versions, DC-coefficients are being used. The
module pmprec.c contains the main function of pixel
multiplicationwith auser defined precision.

The actual work for pixel multiplicationis handled in
pmul.c, see Section 5.7. The main modules for pixel
multiplication — pm.c and pmprec.c — are amost the
same, the only difference is that pm.c uses a constant
precision for the calculations instead of a user defined
precision. This constant precision (3) was found by ex-
perimenting and sufficesfor most images. The advantage
of a congtant precision over a user defined precision is

that less overhead — i.e. less calculations— isneeded
to compute one block entry. Asaresult, timeis saved.

5.9.4 The brute force operations

A bruteforce algorithm can be performed as displayed in
Figure5.14. As can be seen in Figure 5.13 there are four
versions of every brute force operation.

For an overview of the steps needed for a brute force
implementation of an operation see Figure 5.14. The
reverse- and forward zigzag steps (steps 3 and 7) can
be skipped. These steps can be omitted, because the
position within the input matrix is not important for the
performance of the operations. Applyingzigzag increases
execution time, because morework isneeded. Steps4 and
6 in the algorithm (the reverse- and forward DCT steps)
can also be executed using a fast DCT algorithm. The
smart implementation is based on an algorithm described
by [Loef].
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Figure5.11: Pixel addition: block in block out.
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Figure5.12: Pixel addition: RLE in block out.
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BRUTE FORCE
smhd.c brute force scalar multiplication using brute force DCT
smzzbd.c | bruteforce scalar multiplicationwith zigzag using brute force DCT
smsd.c brute force scalar multiplication using smart DCT
smzzsd.c | bruteforce scalar multiplicationwith zigzag using smart DCT
sabd.c brute force scalar addition using brute force DCT
pazzbd.c | bruteforce scaar addition with zigzag using brute force DCT
sasd.c brute force scalar addition using smart DCT
pazzsd.c | bruteforcescalar additionwith zigzag using smart DCT
pabd.c brute force pixelwise addition using bruteforce DCT
pazzbd.c | bruteforce pixelwise addition with zigzag using brute force DCT
pasd.c brute force pixelwise addition using smart DCT
pazzsd.c | bruteforce pixelwise addition with zigzag using smart DCT
pmbd.c brute force pixelwise multiplication using bruteforce DCT
pmzzbd.c | brute force pixelwise multiplication with zigzag using brute force DCT
pmsd.c brute force pixelwise multiplication using smart DCT
pmzzsd.c | brute force pixelwise multiplication with zigzag using smart DCT
Figure5.13: An overview of the main brute force modules.
sep ] uantized 5P 3 5P 8 8x8 block
o e > | e e B | R S | M 0 v iy domar
huffman decoding rev. quantization rev. zigzag
step 4 step 5 resulting step 6 resulting
. 8x8 block ) 8x8 block 8x8 block
in the spatial domain in the spatial domain in the frequency domain
rev. DCT algebraic operation after the operation fwd. DCT after the operation
Sp L zigzag vector S 3 i qzuamilzed ) 5P 2 compressed data

fwd. zigzag ; tgf?e:r?ﬁ:egggra?%?am fwd. quantization " 1;?6:%?55@3522%?81” huffman encoding aﬁetrorﬁgsggeagﬁon

Figure 5.14: The brute force way.
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JFIF

Most JPEG-images are distributed in the JFIF (JPEG
File Interchange Format) standard. The purpose of
the JFIF standard is to alow the exchange of JPEG
compressed images. The JFIF standard is compatible
with the standard JPEG interchange format, and meets
with the requirements of the JPEG Dréaft International
Standard.

The JPEG interchange format requires that al tables
needed in the encoding process are put in the bitstream
before they are used. Thisis aso required by the JFIF
standard.

The colour space used in the JFIF standard is Y CbCr.
(if needed the Y CbCr colour space can be converted into
the RGB colour space, or viceversa). Thefirst component
of the Y CbCr colour space determinesthe luminance, the
second and third component determine the chrominance.
A component contains 8-bit values. The first component
(luminance) is in the range [O. . .255], and the second
and third components (chrominance) have vaues in the
range of [-128...127]. A picture containing only one
component (the Y of the Y CbCr colour space) will be a
greyscale image.

6.1 Markers

A JFIF marker is defined by OxFF foll owed by the marker
code. In the filejfif.h the definitions of the codes can be
found. A marker is aways followed by two bytes which
give the length of the total segment (except for the SOI
marker, which isdirectly followed by the APPO marker) .
All markers, belonging to useful segments of the project,
are briefly described below. For alist of markers of useful
segments (a useful segment contains data that is needed
for the project) see Table 6.1. The other markers and
segments are just copied into the output image data.

SOl marker

According to the JFIF standard, an image has to begin
with a start of image marker (SOIl). Directly after the
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M_SOFO = 0xc0Q0, Start of Frame marker
M_DHT = Oxc4, Def. Huffman Table(s)
M_SOI = 0xd8, Start of Image

M_EOI = 0xd9, End of Image

M_S0S = 0Oxda, Start of Scan

M_DQT = Oxdb, Def. Quantization Table
M_APPO = 0OxeO, Application marker

Figure6.1: A list of used markers.

SOl marker should be a next marker (APPO). If the
segment (identified by this marker) doesn’t contain any
useful information, it isjust copied into the output image
data, and a next marker is read. If the segment does
contain useful information, the needed data is extracted,
and then copied into the output image data. This process
of reading and copying data is repeated until the SOS
marker is encountered.

APPO marker

In order to identify a JFIF compressed image, an APPO
marker isused. Thismarker hasto be added right after the
SOI marker. The JFIF APPO marker provides an image
with additional data, such as:

e version number

e X andY pixel density (dots per inch or dots per cm)
e pixel apect ratio

o thumbnail.

Additional APPO marker segment(s) can be used to
specify JFIF extensions and for application-specific in-
formation. The additional APPO marker segment(s) isare
optional.

The additional information provided by the APPO
marker is not used in the project.
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SOFO0 marker

A start of frame segment is recognized. A start of frame
segment contains useful data, such as:

e image height,

e image width,

¢ number of components,

¢ horizontal sampling factors,

o vertical sampling factors.

Horizontal and vertical sampling factors are used to
cal culate the number of blocks per MCU.

DHT marker

A Huffman table segment is identified. The data needed
for setting up the Huffman tablesisstored inthissegment.

e index,
e bits[],
e huffvall].

Index is needed to identify the Huffman table that is to
be processed. The use of bits[] and huffvall] is
explained in section 5.3.1.

DQT marker

A quantization table segment marker is recognized. The
data, concerning the quantizationtable(s), isstored in this
segment:

e index,
e quantizationtable.

Every quantization table has its own index. The use of
the quantization tablesis explained in section 2.1.4

SOS marker

A start of scan marker is recognized. A SOS segment
contains information on components in scan. As we
assume that a file contains only one image, we don't
realy use thisinformation

After a start of scan segment has been processed al
data needed for encoding the Huffman coded bitstream
has been processed, (according to the JFIF standard).
The remaining data following the start of scan segment,
forms the Huffman encoded image in the frequency
domain. Within the scan data, no marker should appear.
If by any change a OxFF should appear in the scan
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data, the processing application could interpret this as
the beginning of a marker. To tell the application that
the OxFF is not part of a marker but part of the scan
data, OXFF isfollowed by a zero byte. Whenever OxFFis
encountered, the application should check for afolllowing
zero byte. If this byte is not present, the OxFF and the
non zero byte are interpreted as a JFIF marker. If the zero
byte is present, this zero byte is discarded and the next
byte is used for the scandata.

EOI marker

The End of Image (EOI) marker is used to define the end
of the scandata.

6.2 A JFIF example

In this section we will illustrate the JFIF format with an
example. As mentioned in Section 6.1, each block (or
segment) startswith four bytes: two bytestoindicatewhat
kind of informationisstored inthe block (the marker) and
two bytes to indicate the length of the block, including
the two bytes representing the length but excluding the
two bytes that form the marker. A program readblock
was written which takes a JFIF style JPEG image as
input, and identifies the blocks in the file. The output
of readblock for each segment is a JFIF marker, the
length of the segment and the data in the segment (al in
hexadecimal representation). The picture Senna,jpg was
input to readblock, and the output isgivenin Figure 6.2.

First, readblock checks the first two bytes of the JFIF
file. These two bytes should be OxFF and 0x8D, together
they form the Start of Image marker (M_SOI). The SOI
marker is discarded.

Thefirst marker following SOI isOxFF OxEO (M _APPO,
see Figure 6.1). An APPO segment starts with the hex-
adecima codes Ox4A, 0x46, 0x49, 0x46, 0x00. These
codes form the ASCII representation of the zero termi-
nated string "JFIF'. The next two bytes indicate the
JFIF version of the file. Sennajpg isin the JFIF style
version 1.01. The following bytes are not needed for our
purposes, but for an overview see [Hami].

The order of the segments after APPO is not important,
so the order in which the segments of the example are
discussed is not a mandatory order.

The next two segments store the quantization tables.
After the marker (OxFF OxDB) and the length (next two
bytes), one byte is used to specify both the precision of
the table entries (quantization table entries can be one
byte values or two byte vaues), as wel as a unique
identification number for the table to be read. The
following 64 or 128 bytes (depending on the precision)
are the quantization table entries. In this example each
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guantization table has its own segment, but it is possible
to store severa tables in the same segment. The first
guantization table has index 0x00 (0), its first entry is
0x02 (2), and its last entry is OXOA (10). The second
quantization table has index 0x01 (1), its first entry is
0x02 (2), and itslast entry is OxOA (10).

Following the quantization segments is the SOFO seg-
ment. After the 4 bytes that form the marker and the
length specification (OxFF 0xCO 0x00 0x11) is one byte
to define the number of bits per pixel component value
(0x08). The next 4 bytes define the heigth and width of
the image. In our example, the image is 0x018B (395)
pixelshigh and 0x029B (667) pixelswide. The next bytes
specify the number of components of the image, which
in our example is 0x03 (3). This segment is closed with
information for each component of the image. The infor-
mation for each component consists of an index for each
component, the horizontal and vertical sampling factors
for each component and the index of the quantization ta-
ble to be used with this component. The first component
of our image has index 0x01 (1) and has sampling factor
0x22 which means a horizontal sampling factor of 2 and
a vertical sampling factor of 2. The next byte tells that
guantization table 0x00 is to be used with component 1.
The information for component 2 and component 3 is
dealt with in asimilar manner.

The next four segments are Huffman table segments.
As mentioned in Section 5.3, two arrays (bits[]1 and
huffval[]) are needed to construct the Huffman tables.
The first byte after the marker and the length bytes,
indicates both the index of the Huffman table and the
type of the Huffman table; a Huffman table for DC-
coefficients or a Huffman table for AC-coefficients. The
next 16 bytes are the entries of thebits [] array. Define
nasn =52 bits[i]. Then the next n bytes are the
entriesfor thehuffval[] array. In Sennajpg, each table
has its own segment, but it is allowed to store several
tablesin one segment.

The last segment before the scan data is the Start
of Scan segment. After the marker and length bytes,
the number of components are specified in one byte.
Then for each component the following information is
supplied: the component index, theindex of the matching
Huffman table for the DC-coefficients and the index of
the matching Huffman table for the AC-coefficients. In
our example, there are three components (the first 0x03
in the segment). The next 0x01 (1) and 0x00 (0) tell that
component 1 uses AC-Huffman table 0 and DC-Huffman
table 0. Component 2 and 3 use AC-Huffman table 1 and
DC-Huffman table 1 (0x02 0x11 0x03 0x11). The rest of
the bytesin this segment have an unknown purpose.
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Filename
Total length

/home/gkumara/pic/Senna. jpg
95094 (decimal)

Marker FF EO

Length of block 0010 (=16)

4A 46 49 46 00 01 01 00 0O 01 00 01 00 OO

Marker FF DB

Length of block 0043 (=67)

00 02 01 01 01 01 01 02 01 01 01 02 02 02 02 02
04 03 02 02 02 02 05 04 04 03 04 06 05 06 06 06
05 06 06 06 07 09 08 06 07 09 07 06 06 08 OB 08
09 OA OA OA OA OA 06 08 OB 0OC OB 0A O0OC 09 O0A OA
0A

Marker FF DB

Length of block 0043 (=67)

01 02 02 02 02 02 02 05 03 03 05 0A 07 06 07 OA
0OA 0A 0A OA OA OA OA OA OA OA OA 0A 0A 0A 0A OA
0OA OA 0OA OA OA OA OA OA OA OA OA 0OA 0A 0A O0A OA
0OA OA OA OA OA OA OA OA OA OA OA OA 0A 0A 0OA OA
0A

Marker FF CO

Length of block 0011 (=17)

08 01 8B 02 9B 03 01 22 00 02 11 01 03 11 O1

Marker FF C4

Length of block 001F (=31)

00 00 01 05 01 01 01 01 01 01 00 00 OO OO0 00 OO0
00 00 01 02 03 04 05 06 07 08 09 0A OB

Marker FF C4

Length of block 00B5 (=181)

10 00 02 01 03 03 02 04 03 05 05 04 04 00 00 O1
7D 01 02 03 00 04 11 05 12 21 31 41 06 13 51 61
07 22 71 14 32 81 91 Al 08 23 42 Bl Cl1 15 52 D1
FO 24 33 62 72 82 09 0A 16 17 18 19 1A 25 26 27
28 29 2A 34 35 36 37 38 39 3A 43 44 45 46 47 48
49 4A 53 54 55 56 57 58 59 5A 63 64 65 66 67 68
69 6A 73 74 75 76 77 78 79 7TA 83 84 85 86 87 88
89 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5 A6
A7 A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3 C4
c5 C6 C7 C8 C9 CcA D2 D3 D4 D5 D6 D7 D8 D9 DA EIl
E2 E3 E4 E5 E6 E7 E8 E9 EA Fl1 F2 F3 F4 F5 F6 F7
F8 F9 FA

Marker FF C4

Length of block 001F (=31)

01 00 03 01 01 01 01 01 01 01 01 01 00 00 00 ©00
00 00 01 02 03 04 05 06 07 08 09 O0A OB

Marker FF C4

Length of block 00B5 (=181)

11 00 02 01 02 04 04 03 04 07 05 04 04 00 01 ©02
77 00 01 02 03 11 04 05 21 31 06 12 41 51 07 61
71 13 22 32 81 08 14 42 91 Al B1 Cl1 09 23 33 52
FO 15 62 72 D1 0A 16 24 34 E1 25 F1 17 18 19 1A
26 27 28 29 2A 35 36 37 38 39 3A 43 44 45 46 47
48 49 4A 53 54 55 56 57 58 59 5A 63 64 65 66 67
68 69 6A 73 74 75 76 77 78 79 JTA 82 83 84 85 86
87 88 89 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4
A5 A6 A7 A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2
C3 C4 C5 C6 C7 C8B C9 CA D2 D3 D4 D5 D6 D7 D8 D9
DA E2 E3 E4 E5 E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7
F8 F9 FA

Marker FF DA

Length of block 000C (=12)

40

03 01 00 02 11 03 11 00 3F 00

This program has come to an unknown block-structure.
Nothing to worry about, I probably found an SOS
(Start Of Scan) Marker, so in fact this is good news!

Figure 6.2: An example of the output of readbl ock which identifiesblocks within a JFIF file.
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Results

In this chapter we will give our results from several
tests. Our testset is given in Figure 7.2. For our testset
we tried to use testimages of a wide variety. In order
to accomplish this we used one big and one small one-
component (greyscal€e) image as well as one big and one
small colour (three components) image as testimages.

In order to see if ‘smoothness’ would make any dif-
ference to the output image or the execution time of our
smart agorithm, we have aso included a ‘raw’ and a
‘smooth’ version. A raw image can display details with
pixel precision whereas a smooth image tends to smear
out such details.

For every testimage we al so used three different quaity
settings to determine whether a different quality setting
would make any difference to the performance of the
algorithms. The input images of the lowest quality,used
in our testset, are still of agood visual quality.

Our program runs on a multiuser system, but our tests
were done during off peak periods. The computer used
was a Hewlett Packard 9000/720 running version E of
release A.09.03 of the HP-UX operating system.

With the results we want to show how the different
methods perform on a particular image. The timesin the
tables are averages of ten runs and are given in seconds.

As the times on the HP's were fluctuating due to an
inconsistent systemload, we also timed the agorithms
on an Indy workstation of Silicon Graphics Inc. (using
release 5.2 of the IRIX operation system), in the hope
to find more consistent values. As the Silicon Graphics
Indy is not as busy asthe HPs and the systemload is more
consistent, thishope was justified.

The results are given in Appendix B. The results of
the pixel multiplication agorithms are omitted; we did
not succeed to run the pm and pmprec agorithms on the
Silicon Graphics Indy, due to porting problems. As the
results on the Indy are fairly consistent, the timesin the
tables are averages of five, instead of ten, runs.

We decided to use the results found using the HPs,
even though these times are less consistent, because of
the absence of the results of the pixel multiplication
algorithms.
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val

diff

bd

zzbd

d

zzsd
valprec 3
vaprec4
valprec 5

- DC-coefficients

- DC-differences

- without zigzag with brute force DCT
- with zigzag and bruteforce DCT

- without zigzag with smart DCT

- withzigzag and smart DCT

- 3digitsprecision

- 4ddigitsprecision

- Sdigitsprecision

Table7.1: List of abbreviations.




Chapter 7. Results

number total average
image quality type bytes size of RLE RLE
RLEs length length

dont.panic.smooth.50.jpg 50% | Greyscale 60720 | 1280x 852 17120 103971 6.07
dont.panic.smooth.75.jpg 75% | Greyscale 96096 | 1280x 852 17120 155169 9.06
dont.panic.smooth.100.jpg 100% | Greyscadle | 520990 | 1280x 852 17120 806592 47.11
dont.panic.smooth.upsidedown.50.jpg 50% | Greyscale 60521 | 1280x 852 17120 103826 6.06
dont.panic.smooth.upsidedown.75.jpg 75% | Creyscale 95947 | 1280x 852 17120 155338 9.07
dont.panic.smooth.upsidedown.100.jpg 100% | Greyscale | 364687 | 1280x 852 17120 509327 29.75
dont.panic.raw.50.jpg 50% | Greyscale | 119372 | 1280x 852 17120 183489 10.72
dont.panic.raw.75.jpg 75% | Greyscale | 211376 | 1280x 852 17120 334446 19.54
dont.panic.raw.100.jpg 100% | Greyscale | 897012 | 1280x 852 17120 | 1037651 60.61
dont.panic.raw.upsidedown.50.jpg 50% | GCreyscale | 119088 | 1280x 852 17120 183617 10.73
dont.panic.raw.upsidedown.75.jpg 75% | Creyscale | 211089 | 1280x 852 17120 334185 19.52
dont.panic.raw.upsidedown.100.jpg 100% | Greyscdle | 896924 | 1280x 852 17120 | 1038480 60.66
sphynx.smooth.50.jpg 50% | Greyscale 3228 149 x 199 475 4734 9.97
sphynx.smooth.75.jpg 75% | Creyscale 4550 149 x 199 475 6525 13.74
sphynx.smooth.100.jpg 100% | Greyscae 16489 149 x 199 475 22114 46.56
sphynx.smooth.upsidedown.50.jpg 50% | Greyscale 3198 149x 199 475 4726 9.95
sphynx.smooth.upsidedown.75.jpg 75% | GCreyscale 4520 149 x 199 475 6481 13.64
sphynx.smooth.upsidedown.100.jpg 100% | Greyscae 12807 149 x 199 475 16153 34.01
sphynx.raw.50.,jpg 50% | Greyscale 4447 149x 199 475 6678 14.06
sphynx.raw.75.jpg 75% | Creyscale 7022 149 x 199 475 10282 21.65
sphynx.raw.100.jpg 100% | Greyscale 25806 149 x 199 475 28711 60.44
sphynx.raw.upsidedown.50.jpg 50% | Greyscale 4389 149 x 199 475 6571 13.83
sphynx.raw.upsidedown.75.jpg 75% | Creyscale 6950 149 x 199 475 10162 21.39
sphynx.raw.upsidedown.100.jpg 100% | Greyscae 26003 149 x 199 475 28876 60.79
wongat.smooth.50.jpg 50% | Colour 14716 282 x 349 2376 23600 9.93
wongat.smooth.75.jpg 75% | Colour 20711 282 x 349 2376 30703 12.92
wongat.smooth.100.jpg 100% | Colour 79707 282 x 349 2376 100378 42.25
wongat.smooth.upsidedown.50.jpg 50% | Colour 14709 282 x 349 2376 23491 9.89
wongat.smooth.upsidedown.75.jpg 75% | Colour 20690 282 x 349 2376 30623 12.89
wongat.smooth.upsidedown.100.jpg 100% | Colour 64359 282 x 349 2376 80511 33.89
wongat.raw.50.jpg 50% | Colour 20117 282 x 349 2376 31869 1341
wongat.raw.75.jpg 75% | Colour 30297 282 x 349 2376 44899 18.90
wongat.raw.100.jpg 100% | Colour 113652 282 x 349 2376 122084 51.38
wongat.raw.upsidedown.50.jpg 50% | Colour 20224 282 x 349 2376 31795 13.38
wongat.raw.upsidedown.75.jpg 75% | Colour 30299 282 x 349 2376 44614 18.78
wongat.raw.upsidedown.100.jpg 100% | Colour 78529 282 x 349 2376 98532 41.47
sunset.smooth.50.jpg 50% | Colour 49360 967 x 810 18666 92287 4.94
sunset.smooth.75.jpg 75% | Colour 79822 967 x 810 18666 140000 7.50
sunset.smooth.100.jpg 100% | Colour 351833 967 x 810 18666 489782 26.24
sunset.smooth.upsidedown.50.jpg 50% | Colour 49627 967 x 810 18666 92687 497
sunset.smooth.upsidedown.75.jpg 75% | Colour 77769 967 x 810 18666 136502 731
sunset.smooth.upsidedown.100.jpg 100% | Colour 386060 967 x 810 18666 558947 29.94
sunset.raw.50.,jpg 50% | Colour 73863 967 x 810 18666 128427 6.88
sunset.raw.75.jpg 75% | Colour 126836 967 x 810 18666 208952 1119
sunset.raw.100.jpg 100% | Colour 375238 967 x 810 18666 324514 17.38
sunset.raw.upsidedown.50.jpg 50% | Colour 74178 967 x 810 18666 129084 6.92
sunset.raw.upsidedown.75.jpg 75% | Colour 126610 967 x 810 18666 210670 11.29
sunset.raw.upsidedown.100.jpg 100% | Colour 573603 967 x 810 18666 755925 40.50

Table 7.2: table of testimages.
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7.1 Scalar multiplication

Input : dont.panic,jpg
Scale: 1.5

Input : sphynx.jpg
Scele: 1.5

Input : wongat.jpg
Scale: (1.5,1.5,1.5)

Input : sunset.jpg
Scale: (1.5,1.5, 1.5)

smooth raw
50% 75% 100% 50% 75% 100%
vall 1.4900 2.1920 11.2010 2.7250 4.7080 15.4790
val2 2.1390 2.9910 12.2670 3.4130 55790 16.7650
diffl 1.4270 2.1350 10.8860 2.6170 4.6450 15.1950
diff2 2.1260 2.8930 12.3200 3.4100 5.5990 16.7900
bd 977.5530 | 977.8660 | 990.0960 | 979.9280 | 983.2200 | 990.5800
zzbd | 978.6370 | 979.3130 | 993.9470 | 980.6840 | 981.7600 | 992.0590
s 10.9230 12.2140 22.2780 12.9610 15.4920 26.3540
zzsd 12.9470 13.9910 23.9310 14.6420 17.1170 27.8220
smooth raw
50% 75% 100% 50% 75% 100%
vall 0.0750 0.0960 0.3220 0.0980 0.1510 0.4240
val2 0.0860 0.1150 0.3520 0.1200 0.1700 0.4710
diffl 0.0650 0.0870 0.3090 0.0940 0.1430 0.4220
diff2 0.0860 0.1200 0.3490 0.1150 0.1720 0.4720
bd 27.2050 | 27.2090 | 27.3790 | 27.2080 | 27.2520 | 27.7570
zzbd 27.2230 | 27.2480 | 27.4120 | 27.2450 | 27.2920 | 27.5270
< 0.3640 0.3860 0.6340 0.3890 0.4460 0.7310
zz«d 0.4150 0.4300 0.6850 0.4390 0.4910 0.7890
smooth raw
50% 75% 100% 50% 75% 100%
vall 0.3320 0.4270 1.5140 0.4430 0.6300 1.8690
val2 0.4190 0.5340 1.6200 0.5380 0.7430 2.0510
diffl 0.3240 0.4130 1.4490 0.4200 0.6100 1.8580
diff2 0.4190 0.5290 1.6200 0.5410 0.7380 2.0650
bd 135.7480 | 1359280 | 136.9730 | 135.8550 | 136.1670 | 137.3610
zzbd | 1359460 | 136.2020 | 137.2150 | 136.0590 | 136.3420 | 137.5250
< 1.6440 1.7700 3.0250 1.7840 1.9920 3.4100
zz«d 1.9060 2.0300 3.2070 2.0360 2.2500 3.6170
smooth raw
50% 75% 100% 50% 75% 100%
vall 1.2570 1.9050 7.0380 1.7770 2.8920 5.6850
val2 1.9320 2.6220 8.0570 2.4850 3.6770 6.5760
diffl 1.1980 1.8540 6.9580 1.7190 2.8340 5.6310
diff2 1.9100 2.6130 8.0680 2.4700 3.6590 6.5780
bd 1065.5060 | 1065.4340 | 1071.4760 | 1066.5190 | 1070.5100 | 1071.3240
zzbd | 1067.5440 | 1071.0160 | 1072.7800 | 1068.2330 | 1072.4710 | 1072.4530
s 11.1170 12.1170 18.8510 11.8800 13.3110 17.7720
zzsd 13.1300 14.0790 20.2210 13.7950 15.2250 18.9860
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7.2 Scalar addition

Input : dont.panic,jpg
Scale: 50.5

Input : sphynx.jpg
Scale: 50.5

Input : wongat.jpg
Scale: (50.5, 50.5, 50.5)

Input : sunset.jpg
Scale: (50.5,50.5, 50.5)

smooth raw
50% 75% 100% 50% 75% 100%
val 1.2980 1.9060 9.5140 2.3310 4.0820 13,5710
diff 1.2280 1.8330 9.5120 2.2980 3.9960 13.3070
bd 977.5260 | 979.5880 | 986.0200 | 980.1320 | 989.5400 | 990.3250
zzbd | 979.6040 | 978.6400 | 988.2840 | 980.8300 | 993.7520 | 999.5690
< 10.1650 11.6250 20.9860 12.4380 14.8790 25.1340
zzsd 12.4180 13.4360 22.3680 14.0710 16.4990 26.9600
smooth raw
50% 75% 100% 50% 75% 100%
val 0.0650 0.0850 0.2710 0.0810 0.1240 0.3880
diff 0.0600 0.0820 0.2700 0.0810 0.1220 0.3780
bd 27.1650 | 27.1920 | 27.3710 | 27.1930 | 27.2350 | 27.4940
zzbd 27.2000 | 27.2230 | 27.4060 | 27.2530 | 27.2910 | 27.5310
< 0.3460 0.3780 0.5970 0.3650 0.4340 0.7170
zz«d 0.3980 0.4200 0.6400 0.4130 0.4820 0.7630
smooth raw
50% 75% 100% 50% 75% 100%
val 0.2260 0.3710 1.2620 0.3830 0.5450 1.6370
diff 0.2720 0.3590 1.2510 0.3750 0.5330 1.6220
bd 135.6900 | 135.8610 | 136.7500 | 136.6670 | 136.0610 | 137.1040
zzbd | 135.8850 | 136.0830 | 136.9360 | 136.8760 | 136.2750 | 137.1880
< 1.5750 1.7050 2.8420 1.7280 1.9260 3.2410
zzsd 1.8340 1.9720 3.0850 1.9640 2.1840 3.4390
smooth raw
50% 75% 100% 50% 75% 100%
val. 1.1020 1.6540 6.0750 1.5510 2.4950 5.0710
diff. 1.0270 1.5740 6.0020 1.4660 2.4140 49710
bd 1064.5080 | 1064.8000 | 1070.5910 | 1065.7200 | 1065.8130 | 1070.5740
zzbd | 1066.1520 | 1066.4600 | 1071.7850 | 1067.3340 | 1067.4500 | 1071.7200
< 10.6490 11.6000 17.8050 11.4080 12.7990 16.4900
zz«d 12.6350 13,5710 19.1990 13.3120 14.7160 17.8430
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7.3 Pixel addition

smooth raw
50% 75% 100% 50% 75% 100%
vall 6.5510 7.6950 18.9370 8.6120 11.9280 27.2970
L val2 5.3680 6.5560 18.4080 7.5420 11.0560 27.2210
Input 1. dont.panfc.]pg' . diffl 6.5180 7.6510 18.8940 85790 11.9010 27.2860
Input 2:: dont panic.upsidedown,pg diff2 5.3270 6.5300 18.3600 7.5050 11.0220 27.2040

Scale : <default>

bd 1464.2830 | 1465.5470 | 1475.7640 | 1467.9590 | 1470.6160 | 1486.2760
zzbd | 1466.4540 | 1467.7170 | 1479.0440 | 1469.6270 | 1472.6700 | 1488.9500

5ol 14.2650 16.4000 29.1620 18.0050 21.9340 38.9550
zzsd 17.5320 19.2420 31.7220 20.4350 24.3860 40.8900
smooth raw
50% 75% 100% 50% 75% 100%

vall 0.2190 0.2620 0.5580 0.2710 0.3450 0.7650
val2 0.1930 0.2300 0.5420 0.2430 0.3170 0.7650
diffl 0.2220 0.2600 0.5530 0.2660 0.3420 0.7650
diff2 0.1900 0.2300 0.5390 0.2390 0.3210 0.7630

Input 1 : sphynx.jpg
Input 2 : sphynx.upsidedown.jpg
Scale : <default>

bd 40.7190 | 40.7620 | 41.1800 | 40.7590 | 40.8200 | 41.3960
zzbd | 40.7710 | 40.8150 | 41.2110 | 40.8110 | 40.9010 | 41.4710
< 0.4770 0.5290 0.8380 0.5360 0.6240 1.0870
zzsd 0.5600 0.6000 0.8990 0.6050 0.6920 1.1390

smooth raw
50% 75% 100% 50% 75% 100%
vall 1.0840 1.2440 2.6690 1.2720 15710 3.1620
val2 0.9300 1.1020 2.6030 1.1330 1.4360 3.1180

Input 1 : wongat.jpg

. ) diffl 1.0710 1.2380 2.6610 1.2620 1.5540 3.1570
Input 2 : wongat.upsidedown.jpg

diff2 0.9260 1.0940 2.5870 1.1300 1.4330 3.1070

Scale : <default>
bd 203.4080 | 203.6960 | 205.3860 | 203.5700 | 204.0070 | 205.3100

zzbd | 203.7030 | 204.0240 | 205.8220 | 203.8680 | 204.5440 | 205.5810

o 22110 | 23970 | 40520 | 24200 | 27730 | 45430
zsd | 26040 | 28270 | 43500 | 28160 | 31820 | 49030
smooth raw

50% 75% 100% 50% 75% 100%
vall 6.5760 75840 | 16,6930 7.4690 91060 | 185430
, val2 5.2420 62870 | 158970 6.1860 81060 | 17.7710
Input 1 : sunsetjpg ' diff1 6.5240 75220 | 16,6350 7.4160 92300 | 185000
Input 2 sLnset. upsidedown|pg diff2 51970 62480 | 158540 6.1520 80710 |  17.7300

Scale : <default>

bd 1597.4410 | 1596.3660 | 1607.0680 | 1597.3220 | 1597.9150 | 1608.8940
zzbd | 1598.9550 | 1598.6210 | 1610.0900 | 1601.4550 | 1600.4850 | 1610.9290
< 14.4110 15.9600 26.9560 15.8950 18.1400 28.8342
zzsd 17.5450 19.1270 29.2970 18.7640 21.1380 31.3108
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7.4 Pixel multiplication

Input 1 : dont.panic.jpg
Input 2 : dont.panic.upsidedown.jpg
Scale : <default>

Input 1 : sphynx.jpg
Input 2 : sphynx.upsidedown.jpg
Scale : <default>

Input 1 : wongat.jpg
Input 2 : wongat.upsidedown.jpg
Scale : <default>

Input 1 : sunset.jpg
Input 2 : sunset.upsidedown.jpg
Scele : <default>
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smooth raw

50% 75% 100% 50% 75% 100%
val 4.7170 7.0403 69.5400 9.2190 21.6670 166.4350
valprec 3 6.1090 10.2830 108.8300 13.1890 33.8330 267.7280
valprec 4 6.1520 10.3680 114.7570 13.2120 33.8960 276.4950
valprec5 6.1550 10.3960 116.1480 13.2380 33.9500 278.7790
bd 1466.8800 | 1465.9260 | 1478.9040 | 1466.6290 | 1469.4790 | 1486.7091
zzbd 1469.1830 | 1468.3030 | 1480.2190 | 1469.7700 | 1471.7760 | 1490.2050
< 14.9450 17.0650 30.3940 18.2750 22.2240 39.6050
zzsd 18.2030 19.9340 32.4200 20.8770 24.6660 41.6090

smooth raw

50% 75% 100% 50% 75% 100%
val 0.5850 0.7080 2.4780 0.7230 1.0720 5.0760
valprec3 0.6840 0.8880 3.6690 0.8960 1.4880 7.7490
valprec4 0.6900 0.8920 3.8720 0.9080 1.5010 8.1640
valprec5 0.6900 0.9040 3.8960 0.9090 1.5070 8.2590
bd 40.7470 | 40.7950 | 41.2170 | 40.7720 | 40.8650 | 41.5110
zzbd 40.7900 | 40.8520 | 41.2200 | 40.8350 | 40.9180 | 41.5740
< 0.5060 0.5460 0.8690 0.5500 0.6460 1.0920
zz«d 05770 0.6200 0.9360 0.6200 0.7190 1.1760

smooth raw

50% 75% 100% 50% 75% 100%
val 1.8780 2.4280 10.9940 2.6170 4.5090 15.8170
valprec3 2.4440 3.3380 16.7020 3.6570 6.0480 24.3630
valprec4 2.4530 3.3680 17.5820 3.6680 6.0890 25.6310
valprec5 2.4620 3.3840 17.6870 3.7600 6.1090 25.6790
bd 203.4110 | 2035600 | 205.4220 | 203.4920 | 203.7170 | 206.4700
zzbd 203.7340 | 204.2390 | 205.8190 | 204.0830 | 204.4220 | 207.0700
< 2.2240 2.4080 3.9350 2.4160 2.7490 4.4610
zzsd 2.7020 2.8400 4.2370 2.8200 3.1600 4.7660

smooth raw

50% 75% 100% 50% 75% 100%
val 4.2320 6.3370 46.6280 6.0520 11.2540 44.5560
valprec 3 5.3310 8.6800 72.4840 8.2220 16.6910 67.8880
valprec 4 5.3620 8.7540 75.2640 8.2440 16.7980 70.7610
valprec5 5.3590 8.7880 75.5130 8.2670 16.8220 71.2150
bd 1595.7220 | 1596.4120 | 1606.0380 | 1596.0330 | 1597.6960 | 1607.7820
zzbd 1597.8670 | 1598.8400 | 1613.6960 | 1598.5490 | 1600.0980 | 1612.5458
< 14.5810 16.0650 26.1180 15.8530 17.8690 28.2125
zzsd 17.7630 19.2380 28.5670 18.8120 20.8750 30.4780




Chapter 8

Conclusions

In this chapter we will discuss the results given in
Chapter 7. Each sectionwill deal with aspecific operation.

First, it is important to note that the results found in
Chapter 7 are inaccurate, even though the timing of the
operations was done during off-peak hours.

During a run of ten tests the times found, fluctuate
within a reasonable margin, but when the same test is
done on another day, the resulting average can differ a
little. For thisreason, we tested the operationswe wanted
to compare in one testsession (eg. smval, smdifl,
smval 2 and smdif2 were tested in one testsession).

We emphasize that we are more interested in the
relative times than in the absol ute times. Table 8.1 shows
how an overall performance comparison per operation,
for both smooth and raw versions. In thistable, the smart
operation to be preferred (see Section 8.2, Section 8.3,
Section 8.4 and Section 8.5), was compared withitsbrute
force version that uses that advanced DCT agorithm.
Table 8.1 shows that scalar multiplication is about 4.8
times faster than its brute force counterpart in case of the
50% quality smooth images.

smooth 50% | 75% | 100%
scdarmul. | 48 | 39 20
scdaradd. | 7.8 | 5.8 24
pixe add. 26 | 24 16
pixel mul. 22 | 17 05
raw 50% | 75% | 100%
scdarmul. | 3.8 | 29 19
scdaradd. | 56 | 4.1 2.3
pixe add. 23 | 20 15
pixel mul. 16 | 10 0.3

Table 8.1: Relative excecution times.

8.1 General remarks

In the brute force versions, it is clear that the zigzag
versions are slower than the ones where the zigzag step
was omitted. The reason for this can be found in the
64 memory references in each block. As it makes no
differencefor the output imagewhether thezigzag version
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or the version without zigzag is used, the brute force
versions without zigzag steps are to be preferred.

Inthe bruteforce versionsitisalso clear that the smart
DCT functions are remarkably faster than its brute force
DCT counterparts. As the smart DCT versions do not
suffer much from rounding errors, thesmart DCT versions
areto be preferred to the bruteforce DCT versions.

From Chapter 7 it can be seen that the ‘ smooth’ images
result in a better performance than the ‘raw’ images.
This is caused by the RLE-blocks which are longer for
the ‘raw’ versions. One exception to this is sunset.jpg
with 100% quality. Although the smooth image-file is
smaller, the average length of the RLE-blocks is higher
(see Appendix C). Thisis possible because in the smooth
version, the RLE entries are assigned shorter Huffman
codes.

Itisaso clear that the quality of the image determines
the performance of the algorithms; the lower the quality
of the image, the lower the average length of the RLE-
blocks (see Section 2.4), and thereforelesswork isneeded
in the Huffman decoding and Huffman encoding phases.
In case of the smart agorithms, lesswork is aso needed
during the operation phase since the smart algorithmsare
RL E-based.

8.2 Scalar multiplication

In the scalar multiplication operation, we see that vall
(RLE-in-RLE-out) isfaster than val 2 (RLE-in-block-out).
Thisis also true for the DC-difference oriented versions.
Nevertheless, the RLE-in-block-out versions are to be
preferred to the RLE-in-RLE-out versions because of
the possible appearances of ghost-entries (see Subsec-
tion 5.9.1).

The differences in time between the DC-difference
oriented versionsand the DC-coefficient versionsarevery
small, and the differences could be caused by fluctuations
in the systemload of the computer on which our program
was executed.

The DC-coefficient oriented versions are preferred to
the DC-difference oriented versions, because a piling up
of rounding errorsin the DC-difference oriented versions
might result in adistorted output image.
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A promising fact is that the brute force algorithms are
indeed slower than the smart algorithms. Even the brute
force versionsthat make use of the smart DCT are slower
than smval 2, which was to be preferred to the other smart
algorithms, in most cases smva 2 ismore than threetimes
faster than smsd.

8.3 Scalar addition

The first thing that comes to mind is that the times for
sava (DC-coefficient oriented) and sadif (DC-difference
oriented) don’t differ very much. These small differences
could even be caused by fluctuations in the systemload,
but because the sadif algorithm is faster for every image
than the saval agorithm, it might be justified to conclude
that sadif is afaster agorithm indeed.

If we remind that saval needs only one operation for
each component, and sadif needs one operation for every
block, it is obvious that sava is a faster algorithm.
See Section 4.3. Taking this into consideration we
expected a better performance from sadif compared to
sava. Probably, the dgorithms (both sadif and saval)
spend most of the time in the huff-decoding and huff-
encoding phase. The additiona calculations needed for
saval don't add much to the total time using current
hardware.

Thebruteforceagorithmsarestill considerably slower
than the smart algorithm.

The output images of any scalar addition agorithm are
of the same visua quality as the input images. Thisis
why we prefer the fastest a gorithm, sadif.

8.4 Pixel addition

In the pixel addition operation, we see that paval2 (RLE-
in-block-out) is faster than paval1l (block-in-block-out).
This is aso the case for the DC-difference oriented
versions. The block-in-block-out versions are slower
because in most cases a lot of unnecessary additions are
needed. See Section 5.9.2

The DC-difference oriented versions are faster than the
DC-coefficient versions. Even though the DC-difference
versions are faster, the DC-coefficient versions are pre-
ferred to the DC-difference oriented versions, because a
piling up of rounding errorsin the DC-difference oriented
versions might result in a distorted output image. It can
now be concluded that of the smart agorithms paval2,
is the best smart agorithm (fastest version that is not
troubled by a distorted output image).

The brute force algorithms are indeed slower than the
smart agorithms. Even the bruteforce versionsthat make
use of the smart DCT are slower than paval 2, which was
to be preferred to the other smart agorithms.
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8.5 Pixel multiplication

Comparison of the execution times of the smart d-
gorithms, pmva (pixelwise multiplication using DC-
coefficients) and pmprec (pixelwise multiplication with
a user defined precision), shows that of the smart ago-
rithms, pmva is the faster one. This can be explained by
the fact that for the pmprec agorithms more overhead is
needed. Astheexecutiontimeof pmval islessthanany of
the pmprec versions, and the output image of the pmval
version has the same visua quality as the output image
of a pmprec version, it is clear that the pmval versionis
to be preferred.

A bruteforceal gorithm, compared to asmart algorithm,
provides a more detailed output image. This might be
caused by the fact that boundaries were set to the values
that are entered in the combination list. Thiswas done to
increase performance. See Section 5.7.

If theexecution timeof thefastest smart a gorithm (pm-
val) iscompared to the execution time of the fastest brute
force agorithm (pmsd), the following can be concluded:

1. The smaller the input image, the worse pmval per-
formsin comparison to pmsd.

2. The higher the qudity, the worse pmval, in compar-
ison to pmsd, performs.

This can be explained by the fact that in the pmval
algorithm a combination array initialization is needed.
The size of this combination array does not depend on
the size of the image but on the quantization tables of
the input image. As the time needed for initialization of
the combination array only depends on the quantization
tables, it is obvious that the impact of this initidization
is bigger on a small image. Because the quantization
tables depend on the quality of the input image, it can
be concluded that the time needed for the initialization of
the combination array depends on the quality of the input
images.



Chapter 9

Further ideas for further research

9.1 Pixel division

In this section we will discuss the division operation.
Pixel division can be used to reduce the noise in images
of microscopic scenes. A version that works on the
compressed data, has not been implemented yet, but we
will present a suggestion for the implementation of pixel
multiplication. We will use DC-coefficients only.

In afirst attempt to solve this problem, we wanted to
develop a method similar to the one followed for pixel
multiplication (see Section 3.4).

Pixel divisionisdefined by:

yli sl = (9-1)

Likein Chapter 3 we substitutethe operationinto Eq. 2.1.
In thisway we get:

Y[U1,UQ]

= LY Sl
1=0 j=0

S S i)y 2
1=0 j=0 r2lh

Now we apply the IDCT on z; and z».
Y[U1, UQ]

- iz ZC(i, w)C(3, v)$1[i,j]

1=0 y=0 $2[Z,]]

= EZZC(LU)C(] v) *

1=0 j=0

—ZZszl

V1= ng 0

_ZZ i

w1 =0 wo=0

(4, v2) X1[v1, v2]

w1)C(7, w2) Xa[wy, ws]

Now wefaceaproblem. Thekey to the solution offered
in Section 3.4 — collecting al C(7, ») and putting those
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termsin M — cannot be applied here; the division ruins
everything.

So another approach had to be taken. Our next idea
was to rewrite pixel division into pixel multiplication,
and considering the problem as alinear system. To keep
the notations simple, we use the zigzag ordered notation:
z1, 22 and » arethe zigzag ordered indices of X1 ¢, X»,¢
and Yy, respectively. We start to rewrite Eq. 9.1:

$1[Z,]] = y[la]]x2[la]]

fors,j=0,...,8
Combining Section 3.4 with the notation used in
Eq. 4.12 leads to

63

ZYQ 22[v]X2,0,2:[W]Mg 2 2[v, w, u]

v,w

Xl sz

foru=o0,...,63.
Remember, our origina problem was Eqg. 9.1, so note
that X ¢,.. and X5 ¢ .. areknownand Yy, .. isunknown.
Now we rewrite the equation:

Xl,Q,zz[u]
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= Z{YQ,zz[v]ZXQ,Q,zz[w]MQ,zz[v,w,u]}

v

To keep our notation short, we define

63
Plu,v] =Y Xo.0,2:[w]Mo,--[v, w, u]
Figure 9.1 is the ‘expanded’ version of Eg. 9.2 and
was included to illustrate the underlying linear system of
pixe division.
Now we define
T = (X1,0,2:[0], X1,0,22[1],

(9.2)

L X1,0,22[63])7

7= (Yg:=[0], Yo -[1],..., Yo - [63])"

and
Plo,0]  P[0,1] P[0, 63]
Pl1,0]  P[1,1] P[1,63]

P= :
P63,0]  P[63,1] P[63, 63]
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X1,g:2:[0] = P[0,0]Yg:-[0] +  P[0,1]Yg::[1]  + +  P[0,63]Yq,-2[63]
Xig::[1] = P[L0PYg::[0] + PIL1]Yo:[1]  + +  P[1,63]Yq,-:[63]
X1,,::[63] = P[63,0]Yo..[0] + P[63,1]Y0.2[1] + --- + P[63,63]Vg..[63]

Figure9.1: Pixd division as alinear system.

Now the system in Figure 9.1 can be written as
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= Py (9.3)

where # and P are given and i isthevector we' relooking
for.

In order to solve this linear system, we must know
the entire matrix P; we have to evaluate every Plu, v].
Evaluation could be done efficiently by using the RLE
representation of X» ¢ .. and by using adatastructure and
convolution agorithm similar to the one used for pixel
multiplication.

Some remarks have to be made on the construction of
matrix P:

1. Eq. 9.3 has to be done for every block in every
component since P dependson X: g, ..

2. The number of caculations needed to construct P
depends on the length of the RLE representation of
X» g--. Since the length of the RLE representation
strongly depends on the quantization tables of the
image, we conclude that the quantization tables of
an JPEG-image influencethe number of calculations
needed to construct P.

If Pisfinay constructed, then Eg. 9.3 hasto be solved.
For this we need a very fast solver, since we expect the
solving of Eqg. 9.3 to be the bottleneck of this operation.

50



Appendix A

Auxiliary tools

51



Appendix A. Auxiliary tools

During the process of understanding theknowledgethat
was needed for this project, we devel oped some auxiliary
toolsto try to concentrate completely on a certain subject
or to generate testdata. In this chapter we will discussthe
toolsbriefly.

A.1 readblock.c

After we studied the JPEG baseline method, we wanted
to start implementing the operations. Thisis exactly the
point where we found out that the file format for JPEG
images is not specified in the JPEG standard itself. After
reading [Lane] we found out about the existence of the
JFIF standard and we studied [Hami].

But in [Hami], only the APPO segments are explained,
but it gave us a good idea of how the data needed for
decompression is stored in thefile.

Then we studied the origina source code supplied
by [ljg]. At this stage, we were interested in the module
jrdjfif.c. Inthismoduleal | needed segments areidentified
and al needed datais extracted from these segments.

But now we wanted to work out some examples man-
ually. To do this we developed the program readblock.
With the output of readblock — which we like to call
segment dumps — , we were able to study jfif.c better
because now we had a way to trace the working of
jfif.c. A demonstration of readblock was aready givenin
Section 6.2.

A.2 huffload.c

When we were able to extract the meta data of an image

— such as heigth, width, quantization tables and Huff-
man tables— it became time to extract the (scan)data
itself.

The scandata is Huffman encoded, so we needed to
understand the Huffman decoding and encoding phase
completely. In [Gon] complete Huffman tables are given
and the example that uses those tables gave us a lot of
insight in the a gorithm used.

But in order to embed the Huffman modulesfrom [1jg]
in our own implementation, we spent some time examin-

52

Defi ning Huf fman Tabl e 0x00 which is a DC table

huf f code[ p] = (decinmal) = (binary) huf f si ze[ p]

huf f code[
huf f code[ 10]
huf f code[ 11]

126 = 1111110 huffsize[ 9] =7
254 = 11111110 huffsize[ 10] = 8
510 = 111111110 huffsize[ 11] = 9

|

huf f code[ 0] 0= 00 huffsize[ 0] =
huf f code[ 1] = 2 = 010 huf fsize[ 1] 3

huf fcode[ 2] = 3 =011 huffsize[ 2] =3
huf f code[ 3] = 4 = 100 huffsize[ 3] =3
huf f code[ 4] = 5 = 10 huffsize[ 4] =3
huf f code[ 5] = 6 = 110 huffsize[ 5] =3

huf fcode[ 6] = 14 = 1110 huf fsi ze[ 6] =
huf f code[ 7] = 30 = 11110 huffsize[ 7] =5
huf f code[ B] = 62 = 111110 huffsize[ 8] =6

Encoding table

[calegory/run] - huffman code - # of bits in code
2

= 111110 - 6
= 1111110 - 7

oooooooo000
BLRNARARWNRO
W
B
N
B oP
IS
IS

/
/
/
/
/
/
/
/
/
/
/

= 11111110 - 8
[o/B = 111111110 - 9

Total nunber of codes: 12

maxcode[ 1] = -1

nmincode[2] = 00 = 0
maxcode[2] = 00 = 0

m ncode[ 3] = 010 = 2
maxcode[3] = 110 = 6
mincode[4] = 1110 = 14
maxcode[ 4] = 1110 = 14

m ncode[ 5] = 11110 = 30
maxcode[ 5] = 11110 = 30

i ncode[ 6] = 111110 = 62
maxcode[ 6] = 111110 = 62
mincode[7] = 1111110 = 126
nmaxcode[ 7] = 1111110 = 126
mincode[ 8] = 11111110 = 254
maxcode[ 8] = 11111110 = 254
mincode[ 9] = 111111110 = 510
maxcode[ 9] = 111111110 = 510
maxcode[ 10] = -1
maxcode[ 11] = -1

maxcode[ 12] = -1

maxcode[ 13] = -1

maxcode[ 14] = -1

nmaxcode[ 15] = -1

maxcode[ 16] = -1

FigureA.1: Huffload in action.

ing those implementations of the Huffman process. We
wanted to trace the origina Huffman modules and for
that purpose we created huffload.

The program huffload prints the contents of some
arraysthat containimportant information for the Huffman
decoding and encoding phase. Where necessary, the
contents of the array are given in binary representation.
SeeFigureA.1 for an example (the output has been edited
because the complete output istoo long).

A.3 dct.c

When we wanted to implement the operations, we no-
ticed that in [Smith], normalization was not dealt with
explicitly; it is mentioned that normalization needs to
be done, but is is not mentioned how this affects the
implementation.

So we needed to find out more about the Discrete
Cosine Transform. We could have done some extensive
studying on the Discrete Cosine Transformation, but we
only wanted to know what we needed to know.
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Enter value to fill input-block with >5

RIG

+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000

FDCT

+40.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000

+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5. 0000

+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000
+5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000 +5.0000

Figure A.2: Example of adct session.

Another option was to study it by ‘observing’ the be-
haviour of the Discrete Cosine Transform by implement-
ing and running it. Because the DCT modules supplied
by [ljg] (which are actually designed by [Loef]) work
on integers only, and because of the difficulty we had
understanding the given modules, we implemented the
Discrete Cosine Transfrom for floatsin a straightforward
way. The results was the program dct.

We ‘played’ with this program by manipulating the
datain the spatia or frequency domain, and studying the
results. The outputs gave us some clues that lead us to
our needed knowledge described in Section 2.3.

InFigure A.2 the program dct can be seen in action; the
original matrix (ORIG) istransformed into the frequency
domain (FDCT), thisresult is transformed back into the
spatial domain (IDCT).

A.4 setcomp.c

When our first implementations were ready, we wanted
to test the correctness of the output images. During
the implementation phase we embedded a trace facility
in our program with which we could keep track of
severa aspects of the program, such as memory, Huffman
decoding, Huffman encoding and RLEs. This facility
however, turned out to be too tediousto keep track of the
pixels.

We wanted images in which predetermined pixel-
values appeared. For instance, we wanted to generate
an image in which al pixel-values were set to 1 (image
1). A similarimagewith thevaue2 (image 2) and another
image with the value 3 (image 3). Then we could apply
pixel addition on image 1 and image 2, and compare the
output image with image three with the UNIX command
‘cmp’ or the DOS command ‘ compare’ .
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A.5 rlestat.c

When we studied the results and when we wanted to write
something about pixel division, we felt it was necessary
to know something about the (average) length of an RLE
in animage.

For that reason a program rlestat was written that
determines the total length of al RLEs — thisis an
indication for the total amount of work needed for the
operation— andtheaverageRLE length — thisindicates
the average amount of work to be done per block. Also
the frequencies are calcul ated for each RLE-length.

It isinteresting to see how most frequent RLE-lengths
appear a the small RLE-blocks (10 or less RLE-entries)
for 50 percent quality images, at the medium sized RLE-
blocks (10 to 30 RLE-entries) for 75 percent qudity
images and at the large sized RLE-blocks (30 or more
RLE-entries) for 100 percent quality images.

We programmed rlestat to format the output in a IATEX
style table. Appendix C shows some statistics for all
testimages.

A.6 Timing tools

During thetiming phase of thisproject, wediscovered that
our JPEG program was not suited for extensive timing. It
was only possible to test one image a a time, so when
we wanted to run an operation with the same input data
for 10 times, we had to start the operation and select the
input data 10 times.

We looked for a batch-like version of our program.
We wanted our program to read in ajobfile, in which the
following is defined for each operation to be tested:

o the name of the operation

¢ 2 input image filenames; if only one input image is
needed, the second input image isignored.

¢ an output image filename.

o the name of the configuration file (in which scaling
factors are defined).

o number of input images needed.

o aboolean to indicate the need to use a configuration
file.

o the number of times to run the operation.

¢ the precision, in case of pixel multiplication with
user defined precision.

In addition, we wanted to specify how many jobs are to
be processed.

We redize that some unnecessary information was
included (e.g. the number of input files needed, could be
derived from the name of the operation), but we wanted
to implement the modifications in a straigthforward and
quick way.

Furthermore, we wanted the output to be written in a
file, so we could create ahugejobfile, keep the computers
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3

sazzbd

sunset.raw.75. jpg
sunset.raw.upsidedown.75. jpg
results. jpg

sadd.cfg

1

1

7

padif1l

dont.panic.raw.50. jpg
dont.panic.raw.upsidedown.50. jpg
results. jpg

sadd.cfg

2

0

12

pmprec

dont.panic.raw.75. jpg
dont.panic.raw.upsidedown.75. jpg
results. jpg

sadd.cfg

2

0

12

4

Figure A.3: Example of ajobfile.

busy for aweekend and collect and process al data after
the weekend.

The adjustments are only in callback.c, the rest of the
modules are unaffected. In order to start timing, the
user must select an operation and the input data. This
operation won't be executed, instead al the operationsin
the jobfile were executed.

A.6.1 alljobs.c

Creating a jobfile can be tedious, so why not let the
computer prepare a jobfile? The program alljobs creates
a jobfile and uses the images that are given in the file
files.st to create the jobsthat are given in the source code
of alljobs. The user must a so specify the number of times
to run an operation in the source code.

Figure A.3 shows a small jobfilein which 3 jobs are
defined. Figure A.4 shows the outputfileafter 2 timings,
of the operation ‘sazzbd’, have been completed.

A.6.2 checkjob.c

Sometimes, the jobfile created by alljobs needs to be
altered, or some operations need to be added. A mistake
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is easy to make, and can be disastrous. For that reason
a program checkjob was programmed. This program
processes a jobfile, and checks for non-existent files,
invalid operations and aso checks for the vaidity of the
number of jobs, specified in the jobfile.

operation : sazzbd
experiment # H)

input file . sunset.raw.75.jpg
output file : morpheus. jpg
scale file : sadd.cfg
resolution : 967 x 810
components : 3

MCU’s ¢ 3111

elapsed time : 1069.1100 seconds

operation : sazzbd
experiment # 11
input file . sunset.raw.75.jpg

output file : morpheus. jpg

scale file : sadd.cfg
resolution : 967 x 810
components : 3

MCU’s ¢ 3111

elapsed time : 1067.6000 seconds

Figure A.4: Example output of atiming session.



Appendix B
Timing results SGI Indy

55



Appendix B. Timing results SGI Indy

B.1 Scalar multiplication

Execution times are given in seconds.

Input : dont.panic,jpg
Scale: 1.5

Input : sphynx.jpg
Scele: 1.5

Input : wongat.jpg
Scale: (1.5,1.5,1.5)

Input : sunset.jpg
Scales (1.5,1.5, 1.5)

smooth raw
50% 75% 100% 50% 75% 100%
vall 1.1080 1.6060 8.3220 1.9320 3.4180 11.8800
val2 1.4480 1.9380 7.8340 2.4640 3.6560 11.0140
diffl 1.4080 1.9080 8.3900 21520 3.6500 12.1880
diff2 2.1040 2.6720 10.1780 3.0560 4.7580 14.0260
bd 1357.9958 | 1357.0760 | 1363.6180 | 1357.3519 | 1360.0599 | 1364.9680
zzbd | 1359.4399 | 1358.4459 | 1365.0400 | 1358.7041 | 1361.5120 | 1366.3359
s 11.1100 11.9480 18.3140 12.2780 13.7780 21.1320
zzsd 10.9460 11.6680 17.9440 11.9380 13.4220 20.7740
smooth raw
50% 75% 100% 50% 75% 100%
vall 0.0460 0.0600 0.2380 0.0720 0.1060 0.3300
val2 0.0580 0.0800 0.2320 0.0760 0.1080 0.3100
diffl 0.0500 0.0720 0.2360 0.0720 0.1120 0.3280
diff2 0.0760 0.0940 0.2920 0.0980 0.1440 0.3880
bd 37.7020 | 37.6720 | 37.8480 | 37.6740 | 37.7480 | 37.8780
zzbd | 37.7380 | 37.7120 | 37.8860 | 37.7120 | 37.6900 | 37.9140
< 0.3480 0.3660 0.5280 0.3660 0.3940 0.5980
zz«d 0.3380 0.3540 0.5080 0.3500 0.3800 0.5760
smooth raw
50% 75% 100% 50% 75% 100%
vall 0.2100 0.2860 0.9880 0.2940 0.4220 1.2660
val2 0.2820 0.3580 1.0780 0.3660 0.4960 1.3560
diffl 0.2140 0.2840 0.9700 0.2900 0.4180 1.2620
diff2 0.2840 0.3600 1.0940 0.3680 0.5040 1.3840
bd 185.2160 | 185.0160 | 185.9000 | 185.2120 | 185.1280 | 186.1580
zzbd | 1785860 | 178.6480 | 179.2340 | 178.6500 | 178.7500 | 179.4940
< 1.3280 1.3940 2.0780 1.4020 1.5220 2.3200
zzsd 1.1080 1.1780 1.8300 1.1860 1.2960 2.0740
smooth raw
50% 75% 100% 50% 75% 100%
vall 0.8280 1.2620 47720 1.1820 1.9420 4.0260
val2 1.3240 1.7620 5.5540 1.7160 2.4240 4.6420
diffl 0.8560 1.2820 4.7300 1.2000 1.9480 4.0040
diff2 1.3260 1.7960 5.4800 1.7100 25220 4.6960
bd 1454.3259 | 14525680 | 1457.9960 | 1454.6500 | 1453.1960 | 1458.0260
zzbd | 1402.1820 | 1402.5740 | 1405.7600 | 1404.2440 | 1403.1460 | 1405.6599
< 9.5640 10.0820 13.7940 9.9860 10.7380 13.3160
zzsd 7.7780 8.2840 11.7380 8.1460 8.8980 11.1960
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B.2 Scalar addition

Execution times are given in seconds.

Input : dont.panic,jpg
Scale: 50.5

Input : sphynx.jpg
Scale: 50.5

Input : wongat.jpg
Scale: (50.5, 50.5, 50.5)

Input : sunset.jpg
Scale: (50.5,50.5, 50.5)

smooth raw
50% 75% 100% 50% 75% 100%
val 0.7620 1.1240 5.6740 1.3780 2.4040 8.1100
diff 0.7080 1.0620 55720 1.3220 2.3460 7.9340
bd 1295.4500 | 1295.9381 | 1301.1149 | 1296.3940 | 1297.5940 | 1304.3519
zzbd 979.6040 978.6400 988.2840 980.8300 993.7520 999.5690
< 8.8580 9.7040 15.8140 10.0100 11.5100 18.7900
zzsd 10.1340 10.8520 16.8100 11.1020 12.5700 19.8100
smooth raw
50% 75% 100% 50% 75% 100%
val 0.0340 0.0500 0.1660 0.0540 0.0760 0.2320
diff 0.0400 0.0480 0.1600 0.0520 0.0740 0.2280
bd 35.9720 | 35.9780 | 36.1120 | 359780 | 36.0060 | 36.1960
zzbd 27.2000 | 27.2230 | 27.4060 | 27.2530 | 27.2910 | 27.5310
< 0.2780 0.3000 0.4440 0.3000 0.3300 0.5260
zzsd 0.3120 0.3240 0.4740 0.3300 0.3620 0.5560
smooth raw
50% 75% 100% 50% 75% 100%
val 0.1600 0.2120 0.7420 0.2200 0.3140 0.9600
diff 0.1520 0.2060 0.7220 0.2100 0.3020 0.9420
bd 178.4220 | 178.4820 | 179.0680 | 178.4960 | 178.5940 | 179.3120
zzbd 1785400 | 178.6040 | 179.1740 | 178.6140 | 178.7120 | 179.4120
< 0.9340 0.9980 1.6380 1.0060 1.1200 1.8880
zzsd 1.0580 1.1240 1.7420 1.1240 1.2400 1.9880
smooth raw
50% 75% 100% 50% 75% 100%
val. 0.6220 0.9460 3.5260 0.8840 1.4360 3.0560
diff. 0.5820 0.8940 3.4380 0.8320 1.3760 2.9740
bd 1401.9000 | 1402.2720 | 1405.2200 | 1402.0281 | 1402.6560 | 1405.0360
zzbd | 1066.1520 | 1066.4600 | 1071.7850 | 1067.3340 | 1067.4500 | 1071.7200
< 6.4040 6.9120 10.2640 6.8040 7.5500 9.7540
zz«d 7.3800 7.8700 11.0360 7.7420 8.4800 10.4800
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B.3 Pixel addition

Execution times are given in seconds.

Input 1 : dont.panic.jpg
Input 2 : dont.panic.upsidedown.jpg
Scale : <default>

Input 1 : sphynx.jpg
Input 2 : sphynx.upsidedown.jpg
Scale : <default>

Input 1 : wongat.jpg
Input 2 : wongat.upsidedown.jpg
Scale : <default>

Input 1: sunset.jpg
Input 2 : sunset.upsidedown.jpg
Scale : <default>

smooth raw
50% 75% 100% 50% 75% 100%
vall 5.1100 5.8620 12.9180 6.5000 8.5900 18.8100
val2 4.2200 4.9020 11.8940 5.6000 7.5460 17.4500
diffl 4.6960 5.4240 12.4980 6.0680 8.3280 18.3080
diff2 4.2880 5.1860 13.5480 5.8980 8.5000 20.9240
bd 1464.2830 | 1465.5470 | 1475.7640 | 1467.9590 | 1470.6160 | 1486.2760
zzbd 1466.4540 | 1467.7170 | 1479.0440 | 1469.6270 | 1472.6700 | 1488.9500
5ol 14.2650 16.4000 29.1620 18.0050 21.9340 38.9550
zzsd 17.5320 19.2420 31.7220 20.4350 24.3860 40.8900

smooth raw

50% 75% 100% 50% 75% 100%
vall 0.1620 0.1900 0.3740 0.1920 0.2400 0.5260
val2 0.1540 0.1720 0.3580 0.1740 0.2380 0.5020
diffl 0.1560 0.1760 0.3720 0.1840 0.2320 0.5160
diff2 0.1500 0.1760 0.4080 0.1820 0.1820 0.5860
bd 40.7190 | 40.7620 | 41.1800 | 40.7590 | 40.8200 | 41.3960
zzbd 40.7710 | 40.8150 | 41.2110 | 40.8110 | 40.9010 | 41.4710
< 0.4770 0.5290 0.8380 0.5360 0.6240 1.0870
zz«d 0.5600 0.6000 0.8990 0.6050 0.6920 1.1390

smooth raw
50% 75% 100% 50% 75% 100%
vall 0.7120 0.8120 1.7060 0.8240 1.0020 2.0200
val2 0.6420 0.7520 1.6660 0.7800 0.9280 1.9780
diffl 0.7080 0.8060 1.7040 0.8180 1.0000 2.0200
diff2 0.6240 0.7240 1.6380 0.7380 0.9240 1.9540
bd 203.4080 | 203.6960 | 205.3860 | 203.5700 | 204.0070 | 205.3100
zzbd | 203.7030 | 204.0240 | 205.8220 | 203.8680 | 204.5440 | 205.5810
s 2.2110 2.3970 4.0520 2.4290 2.7730 4.5430
zzsd 2.6040 2.8270 4.3590 2.8160 3.1820 4.9030

smooth raw
50% 75% 100% 50% 75% 100%
vall 4.4780 5.0880 10.7540 5.0120 6.1160 11.9860
val2 3.8320 4.4460 10.2460 4.2980 5.5660 11.5300
diffl 4.4260 5.0300 10.6860 4.9540 6.0460 11.9140
diff2 3.7160 4.3480 10.1900 4.2740 5.4140 11.3640
bd 1597.4410 | 1596.3660 | 1607.0680 | 1597.3220 | 1597.9150 | 1608.8940
zzbd | 1598.9550 | 1598.6210 | 1610.0900 | 1601.4550 | 1600.4850 | 1610.9290
< 14.4110 15.9600 26.9560 15.8950 18.1400 28.8342
zzsd 17.5450 19.1270 29.2970 18.7640 21.1380 31.3108
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Appendix C. Run Length Encoding - statistics

dont.panic.smooth 50, pg

dont.panic.smooth.75,pg

length | freg,
2| 1008

3 1902

4 2386

5| 259

6 2190

7 1533

8 1113

9 914

0| 634

1 548

12 506

B[ 30

14 233

15| w5

16 w

17 30

18 1

19 4

21 1
#RLEs | 17120
tot. 103971
avg 6,07

length | freg,
2| 4

3| &6

4| e

5 922

6| 1440

7 1947

8 2100

9 2024

10| 1658

1 1355

12 1031

B|

14 606

15 55

6 30

17 290

18 178

19| 105

20 5

21 23

22 4

23 2

24 1

25 1
#RLEs| 17120
tot. | 155169
avg 906

dont 100jpg dont 50jpg dont 5ipg dont 100jpg
length | freq length | freq length | freg length | freq
2 10 2| 1018 2| 43 2 9
5 3 3| 184 3| 605 4 1
6 1 4| 2517 4| o7 5 2
9 1 5| 2537 5| o2 6 1
10 1 6| 2110 6| 1458 7 6
1 2 7| 1585 7| 2025 8 4
12 7 8| 115 8| 2087 9 9
13 3 9| s 9f 1964 10 9
14 4 0| 704 10| 1701 1 16
15 10 1| 8 1| 1337 12 2
16 7 12| 45 12| 1012 13 )
17 10 13| 32 13| 767 14 53
18 8 u| 232 14| 64 15 a7
19 21 15| 137 15| 464 6| 116
20 2% 16 7 6| 413 17| 146
21 2 17 37 17| 301 18| 204
2 2% 18 15 18| 181 19| 23
3 2 19 5 19 s 20( 35
2 2 20 2 20 63 21 33
2 42 #RLEs | 17120 21 23 2| 532
2% 3% tot, 103826 2 7 23| 607
27 47 ag 606 23 3 2| 6%
2 60 #RLEs | 17120 25| 859
2 7 tot 155338 2| o9
0 7 avg 9,07 27| 1081
Eil 8 28( 98
2| 101 20[ 90
| 141 30| 1011
ul 180 31| 1018
s 234 2| 95
36| 213 3| 85
37| 310 u| 88
38| 412 s 788
39| 447 %[ 664
| 53 37| 514
41| 556 8| 516
2| 664 | 459
43| 6% w| 33
wu| 68 4| 268
5| 762 2| 1%
6| 750 3| 130
a7| 778 2 a7
48| 805 5 59
9| 784 26 38
50| s 47 18
51 847 48 1
52| 803 29 5
53| 814 50 2
saf 788 51 3
s5( 768 52 2
s6| 707 #RLEs | 17120
57| 649 tot, 509327
58| 459 avg 275
s am
60| 198
61 a1
62 2
63 10
#RLEs | 17120
tot. [ 806592
ag 4711

60



Appendix C. Run Length Encoding - statistics

dont.panic.raw.50,pg dont.panic.raw.75,pg dont.panic.raw.100jpg dont.panic.raw. 50jpg dont.panic.raw. 5ipg dont. pani c.raw.upsidedown. 100pg
length | freq length | freq length | freq. length | freq length | freg. length | freg.

2| o1 2 a2 2 18 2| o8 2 a5 2 8
3| 6% 3 7% 17 2 3| 6% 3 70 7 2
4| e 4| 153 18 1 4| a1 a4l s 8 2
5| 8 s| 2 2% 2 5| 883 5| 239 10 2
6| 1121 6| 30 29 5 6| 1150 6| 384 1 1
7| 1200 7| 38 31 1 7| 1222 7| 388 12 1
8| 1266 8 4 32 3 8| 1261 8| 4n 16 1
9| 1217 9 a5 3 9 9| uss 9| =27 17 1
10 123 0| 606 4 1 10| 1106 0| 624 2% 1
1| 1012 ul 2 a4 3 | 1057 u| 7 27 1
12| o5 2| 73 46 3 12| 90 2| M 29 3
13| 80 13| 757 a7 2 13| 82 13| 746 3 7
14| 83 1| 75 48 7 4| 82 u| m 7S 3
5| 792 15| 88 29 1 2 15| 80 3% 1
6| 762 6| 783 50 0 .| 70 . 757 4 2
17| 659 17| 88 51 2% 7| e | 72 4 1
18| 529 18| 764 52 £ 18| 572 18| 816 a2 2
19| a2 9| ™ 53 69 9 a2 9| 700 3 2
20| 331 20( 73 54 133 0| 337 0| 76 26 5
2| 2z 21| 617 55 255 21| 258 21| 638 a7 3
2| 1B 2| 555 56 43 2| 1 2| 559 28 8
23| 158 23| a5 57 601 23| 131 23| 81 29 16
2 o1 2| 332 58| 1099 2 % 24| 385 50 19
2% 75 5| 336 59| 1668 2% 73 5| 30 51 2
2% 55 6| 295 60| 2254 2% 28 6| 315 52 3
27 2 27| e 61| 2835 27 21 27| 23 53 i
28 12 28| 2% 62| 3249 28 2 28| 260 54 125
29 7 2| 288 63| 2835 29 14 29| 287 55 233
0 5 0| 331 64| 1443 0 4 0| 31 56 400
31 5 3| 38 #RLEs| 17120 31 3 3| 35 57 688
32 2 32 312 tot 1037651 32 1 32 363 58 1052
#RLEs | 17120 :B| 3 ag 60.61 #RLEs | 17120 < 59| 1655
tot 183489 34| 310 tot 183617 34| 310 60| 2264
avg 1072 s| 28 ag 1073 s| 286 61| 2930
3% 281 36| 267 62| 3264
37| 12 37| 207 63| 2844
8| 204 38| 195 64| 1439
| 161 9| 161 #RLEs| 17120
| 127 4| us tot 1038480
4 86 a4 a1 avg 6066

a2 70 a2 70

3 a7 3 29

44 29 44 37

5 18 5 16

26 20 46 1

47 6 4 9

48 6 28 1

#RLEs| 17120 51 1

tot 334446 53 1

ag 1954 #RLEs | 17120

tot 334185

ag 1952




Appendix C. Run Length Encoding - statistics

sphynx.smooth.50.jpg sphynx.smooth.75,jpg sphynx.smooth.100,jpg sphynx.smooth. 50,pg sphynx.smooth 75ipg sphynx.smooth.upsidedown. 100pg
length | freq length | freg length | freg length | freg length | freg length | freg
4| 3 6| 2 27 1 3| 1 6| 3 16 1
5| 3 71 1 30 1 4| a4 71 1 23 3
6| 22 8| 9 kil 1 s| 8 8| s 24 1
7| 30 of 12 2 1 6| 17 9| 12 2 3
8| 7 0| 23 A 4 7| 3 0| 3 2% 8
9| e u| 49 35 4 8| un| a 27 8
0| 3 12| 62 3% 7 9| 12| 59 28 2
1| 60 13| 60 37 7 0| 81 13| s 20[ 20
12| s5 1u| & 8| 15 un| 1u| & 0| 2
B3| w0 15 45 9 14 12| e 5| 7 31| 4
u| 27 6| 54 w| 1B B = 16| s0 2| @
15| 3 17| 4 a| 19 ul 17 w| 22 Bl @
6| 5 18| 14 2| 2 15| 11 18| 20 ul
#RLEs | 475 9| 1 a3 B .| 2 v 7 s 45
tot. | 4734 0| 4 | 7| 1 0| 4 36| 41
ag | 997 #RLEs | 475 5| 2 #RLEs | 475 2| 1 7| 3
tot, 6525 % 2 tot. | 4726 2| 1 8| 2
ag  |1374 | ag | 995 #RLEs | 475 o =
8| 36 tot 6481 0| 20
9| = ag  |1364 a1 8
0 2 %2 7
s1f 23 3 6
52 20 P 4
3 23 45 1
54| 14 #RLEs | 475
55 16 tot. | 16153
s6| 12 ag | 3401
57 9
58 4
59 2
60 1
62 1
#RLEs| 475
tot. [ 22114
ag | 4656
sphynx.raw.50jpg sphynx.raw. 75pg sphynx.raw.100.jpg sphynxraw. 50,pg sphynx.raw. 75ipg sphynx.raw.upsidedown. 100pg
length | freg length | freg length | freg length | freg length | freq length | freg
5| 2 9 1 48 1 a4l 1 8 1 52 3
6| 2 10 1 51 3 s| 2 9 1 53 2
71 s 1 2 52 2 6| 4 10 3 54 2
8| 10 12 5 53 2 71 1 1 1 55 4
9| 2 13 4 54 3 8| 14 12 3 56 8
0| = ul 1 55 9 9| 15 13 9 s7| 17
un| 15| 12 s6| 14 0| 28 u| u sg| 27
12| 49 6| 32 s7| 20 u| 3 15[ 19 s =3
B[ s 7| 58| 45 12| 4 6| 17 60| 7
1| so 18 2 59| 41 13| s 7| 2 61| 79
15 60 9 60| 63 u| & 18| 2 62| 102
16| s2 20| 2 61| 79 15 s5 9 3 63| 79
7| 4 2| a1 62| 98 6| 45 20| 64| 20
18| 2| 63| 65 7| 38 2| 4 #RLEs | 475
19| 15 2| 4 6| 18| 2| a7 tot. | 28876
20| n u| 28 #RLEs| 475 9] 12 2| 4 ag | 6079
21| s s 2 tot.  [28711 20| 9 u|
a1 %| 16 ag | 6044 2| s x5 3
#RLEs | 475 7| = 2| 2 %| 15
tot, 6678 28| 18 #RLEs | 475 27| 15
ag | 1406 20| 19 tot 6571 28 15
0| 12 ag  |1383 20| 12
31 1 30 7
2 1 31 4
kS 2 2 6
A 1 k<] 1
35 1 % 2
#RLEs| 475 35 1
tot. | 10282 #RLEs | 475
ag | 2165 tot. | 10162
ag | 2139




Appendix C. Run Length Encoding - statistics

wongat.smooth.50pg wongat.smooth.75.jpg wongat.smooth.100.jpg ongat.smooth. 50jpy ongat.smooth. 75ipy wongat.smooth.upsidedown. 100jpg

length | freq, length | freq, length | freq length | freq length | freq length | freq,
2| 281 2| 65 2 1 2| 255 2| e 2 2
3| 264 3| 142 6 1 3| 2w 3| 151 6 1
4| 188 4| 193 7 2 4| 182 4| 192 8 4
5| 102 5[ 1% 8 3 5| 89 5| 199 10 5
6| 53 6 138 9 1 6| 50 6| 134 1 6
7| 40 7|1 76 10 4 7| e 7| s 12 8
8| 45 8 s1 1 5 8| a1 8| 3 13 3
9| 67 9 3 12 8 9| 8 9| 23 14 7
0| 6 0| 3 13 2 0| 8 0| 4 15| 10
u| ur u| 3 14 4 u| 127 u| 33 .| 17
12| 138 2| 15 6 12| 13 2| e 7| 2
13| 150 13| 55 16 5 13| 152 13| 72 18| 27
14| 195 1| 88 17 16 1| 17 1| o 19| 38
15| 176 5| 9 18 16 15| 179 15| 9 0| 4
16| 179 16| 120 19 12 16| 162 16| 114 21| s
17| 155 7| 17 20 2 17| us 17| 18 2| 63
18| 18| 185 21 27 18| 100 18| 153 3|
9| 4 19| 166 2 3% 9| s1 9| 172 u| &
0| 17 20| 188 23 2% 0| 2 20| 182 5| 59
21 8 21| 132 2 37 21| 14 21| wuz %| 64
2 3 2| & 2% a0 2 1 2| s a7
#RLEs | 2376 23| a7 2% 57 23 2 23| 57 8|
tot 23600 u| 2 27 3 #RLEs | 2376 | 2 20| 6
ag 993 2% 4 28 72 tot 23491 5| 13 0| 53
2% 4 2 64 ag 989 2% 1 31| 57
27 2 30 a7 27 2 2| &
#RLEs| 2376 31 57 #RLEs | 2376 3’| 67
tot 30703 2 40 tot 30623 u| 66
ag | 1292 33 49 ag | 1289 s| &
3 3 ®|
3 32 37| 100
3% 37 38| 12
37 2 | 9
38 31 4| 122
39 26 4| 16
0 37 42| 16
4 £ 8| 0
a2 3 | 9%
43 3 s 7
2 B 46 64
45 53 ar| a7
46 59 g 27
a7 64 9|
28 67 50 9
29 a7 51 6
50| 109 52 2
51| 116 53 1
52| 109 54 1
53| 104 #RLEs | 2376
54 11 tot. 80511
55| 104 ag | 3389

56 %

57 68

58 56

59 3

60 2

61 12

62 7

63 1

#RLEs| 2376

tot 100378

avg 4225




Appendix C. Run Length Encoding - statistics

wongat.raw.50pg wongat.raw. 75pg wongat.raw.100,pg ongat.raw. 50jpy ongat.raw. 75ipg wongat.raw.upsidedown. 100, pg
length | freq, length | freq, length | freq length | freq length | freq length | freq,

2| s 2| & 2 1 2| 2a 2| s 2 2
3| 269 3 124 6 1 3| 22 3| 138 6 2
4| 167 4| 187 7 1 4| 180 4| 203 7 1
5| 9 5 193 8 4 5| 8 5| 12 9 1
6| 38 6 138 9 3 6| 3 6| 154 10 5
7| 2 71 10 1 7| 2 7| s8 1 5
8| 33 8l 1 1 8| 3 8| 2 12 4
9| 2 of 13 12 4 9| 31 9| 1 13 5
0| 21 0| 10 13 6 0| 27 10 9 14 9
un| a un| 1 14 2 u| a u| 16 15 1
2| 2 12| 15 15 3 12| s 12| 13 16 9
13| 53 13| 16 7 13| s 13| 2 |
1| s 1| 2 17 13 1| s8 u| 18| 17
5| 6 5| 2 18 15 5| 78 5| 2 9| 2
16| 101 6| 15 19 2 6| 89 6| 29 20| 31
7| 14 7| 3 20 8 7| s 7| 21| 49
18| 104 18| 24 21 17 18| 102 18| 4 2| a
19| 18 9| 4 2 1 19| 109 9| 43 3|
20| 119 20| 49 23 2% 20| 119 20| 63 2u| =2
21| 144 21| 50 2 29 21| 149 2| 43 5| 50
2| m 2| 2% 30 2| 106 2| e %| 3
23| & 23| 2% 2 23| 103 23| 6l 7| 43
2| & u| o 27 28 2| 81 2| & 8| =2
5| 6 5| 8 28 0 5| 67 5| 112 2| 46
%| 4 %| o7 2 31 6| 6| @2 0| 56
7| 3 7| @ 30 3 271 % 7| @ 3| 4
8| 2 28| 102 31 a7 8| 19 28| 9 2| 2
0| 2 20| 32 32 20| 14 2| 100 B| 2
0| 12 0| 106 3 50 0| 10 0| 9 u| =
31 4 a| 7S 3 31 8 3| 67 B| 2%
32 6 2| a7 £ 24 32 5 2| 6 %| 28
3 1 B| 66 3% 19 33 1 B| 82 7| 2
#RLEs | 2376 u| 2 37 28 #RLEs | 2376 u| 45 8| 2
tot 31869 3 ) 38 33 tot 31795 B| 2|
ag | 1341 ®| 37 3 23 ag | 1338 %®| w| B
7| 2 0 23 37| 2 a| 35
8| 19 4 19 8| 17 2| 38
| 16 2 19 9| 18 B @
o 14 3 2 o 12 u| s
al a4 18 al 5| a9
a2 5 45 12 a2 3 s 72
3 3 26 13 3 4 ar| o7
2 4 a7 1 a4 1 8| 78
45 2 48 1 5 3 29| 100
26 1 29 5 6 1 50| 9%
#RLEs| 2376 50 10 #RLEs | 2376 s1| 17
tot 44899 51 16 tot 44614 52| 102
avg. 1890 52 10 ag. 1878 53| 124
53 10 54| 102
54 15 s5| 88
55 19 56| 84
56 % s7| 6L
57 50 s8| 43
58 52 59| 32
59 % 60| 24
60| 148 61| 11
61| 231 62 4
62| 331 #RLEs | 2376
63| 348 tot 98532
64 232 avg. 4147

#RLEs| 2376

tot 122084

ag 5138




Appendix C. Run Length Encoding - statistics

sunset.smooth.50,/pg sunset.smooth.75,/pg sunset.smooth. 100jpg sunset.smooth. 50.jpg sunset.smooth. 5.ipg sunset.smooth.upsi dedown. 100, pg
length | freq length | freq length | freq length | freg length | freg length | freg
2| 5993 2| 322 2| 2378 2| 5956 2| 328 2| 1413
3| 2850 3 1566 3 16 3| 2754 3 1848 3 1
4] 1921 4| 1539 4 19 4| 2029 4| 1778 4 9
5| 1610 5 1422 5 115 5| 1586 5 1531 5 8
6| 1280 6 1314 6 198 6| 1306 6 1243 6 71
7| 1003 7| 1239 7| s 7| s 7| 1079 7| 310
8| 1000 8 182 8 371 8 951 8 1042 8 174
9 831 9 1128 9 207 9 828 9 1088 9 233
10| 664 10| 1084 0| 226 10| 684 10| 1028 0 141
1| 453 1n| 94 u| 243 1u| 48 1| 938 u| i
12| 30 2| o2 12| 318 12| 205 12 sa 2| 21
13 183 13 904 13 265 13 194 13 834 13 232
1| 121 1| 682 14| 265 14| 138 14| 63 14| 253
15| 120 5[ s02 5[ 29 15| 108 15| 480 | 25
16 87 16 354 16 321 16 105 16 309 16 252
7| 74 17| 18 17| 290 17| 68 17| 18 7| 27
18 42 18 150 18 332 18 45 18 138 18 261
19| 17 19 12 19| 363 19| 10 19 12 9| 303
20 5 20 100 20 322 20 6 20 98 20 286
21 2 21 58 21| 35 #RLEs | 18666 21 73 21| 343
#RLES | 18666 2 50 2| 38 tot 92687 22 37 2| 34
tot 92287 2 14 23| 343 avg. 497 2 21 23| 32
avg. 494 24 3 24 3u 24 1 24| 404
#RLEs | 18666 5| 34 #RLEs | 18666 5[ 412
tot 140000 26 361 tot 136502 26 424
avg. 750 27| 318 avg. 731 27| 429
28 29 28| 406
29 323 29 401
30 334 30 419
31 375 31 432
2| 407 2| a7
33 410 33 416
34 452 34 420
3B 442 3B 468
36 448 36 444
37| 484 37| 40
338 4% 338 480
39 538 39 486
40 553 40 576
a|  s47 a|  s47
42 485 42 564
43 510 43 522
a| a3 4| 528
45 378 45 495
46 309 46 454
47| 216 47| 374
48 19 48 362
49 155 49 275
50 114 50| 212
s1| 117 51| 1
52 106 52 154
53 7] 53 161
54 69 54| 114
55 48 55 89
56 40 56 77
57 25 57 49
58 6 58 30
59 5 59 30
60 4 60 21
#RLEs | 18666 61 7
tot 489782 62 4
avg. 26.24 #RLEs | 18666
tot. 558947
avg. 29.94




Appendix C. Run Length Encoding - statistics

sunset.raw.50,/pg sunset.raw.75,pg sunset.raw.100,pg SUNSet.raw. 50.jpg Sunset.raw. 5.ipg sunset.raw.ups dedown. 100,jpg
length | freg length | freq length | freq length | freq length | freg length | freg

2| s326 2| 3160 2| 2720 2| =383 2| 3060 2| 1380
3 2297 3 1457 3 19 3 2151 3 1623 3 1
4| 1419 4| 1307 4 18 4| 1452 4| 1465 4 5
5| 1026 5| 1056 5| 18 5| 1022 5| 1107 5 2
6 903 6 906 6 413 6 903 6 829 6 39
7| 797 7| e 7| 407 7| 81 7| se8 7| 2m
8 754 8 532 8 404 8 794 8 435 8 151
9 754 9 414 9 248 9 741 9 384 9 261
0 759 0 4 10| 368 0| 70 10| 408 0 112
u| 7 u| 48 u| 40 u| 1n| a4 u| 13
12| 740 12| 464 12| 607 2| 7 12| 463 12| 173
13 628 13 577 13 644 13 665 13 470 13 233
14| se7 14| 58 14| 593 14| 598 14| 543 1| 212
5| 517 15| 564 15[ 669 15| 474 5| se7 5[ 209
.| 32 16| 580 .| 702 6| 3\ 6| 631 6 201
7| a7 17| 64 7| 769 17| 295 17| 609 7| 224
18 185 18 650 18 822 18 163 18 664 18 207
9 104 9| 668 19| 82 19 121 19| 618 19 222
20| 104 20| 63 20| 83 20| 108 20| 612 20( 27
21 77 21 =1 21| 813 21 3 21 549 21| 246
22 74 2| 549 2| su 22 72 2| 502 2| o7
23 76 23 421 23 789 23 63 23 482 23 269
24 52 22| 32 24| 786 24 7 2| 32 24| 265
25 47 5| 22 5| 62 25 54 25| 289 25| 249
2 a 26| 156 26| 592 2 50 6| 26 6| 255
27 36 7| 112 27| 489 27 23 27| 133 7| 2u
28 18 28 97 28 370 28 10 28 9 28 229
29 12 29 65 29( 261 29 5 29 79 29( 212
30 1 30 8 30 206 30 1 30 84 30 210
#RLEs | 18666 31 48 31| 135 31 1 31 k! 31| 203
tot 128427 32 46 32 90 34 1 32 61 32 165
avg. 6.88 3 62 33 51 #RLEs [ 18666 3 48 33 153
34 45 34 48 tot 129084 34 43 34 170
3B 44 3B 37 avg. 6.92 3B 49 3B 139
36 32 36 338 36 43 36 122
37 0 37 31 37 22 37| 126
38 16 38 27 38 17 38| 119
39 9 39 27 39 21 39| 128
40 4 40 26 40 1n 40 100
a 5 a 2 4 1 a| 130
a2 4 2 22 2 1 42| 13
43 2 43 28 3 1 4|
#RLEs | 18666 2 25 45 1 4| 121
tot 208952 45 2 % 1 45| 141
avg. 1119 46 12 #RLEs | 18666 46| 150
47 18 tot. 210670 47| 167
48 36 avg. 1129 48| 143
49 28 49 Fg
50 28 50 189
51 28 51| 218
52 47 52| 282
53 2 53| 317
54 28 54 380
55 56 55( 441
56 46 56 558
57 55 s7| 701
58 49 58 838
59 29 59 996
60 29 60 1106
61 14 61| 1186
62 3 62| 1092
63 1 63 692
64 1 64 328
#RLEs | 18666 #RLEs | 18666
tot 324514 tot 755925
avg. 17.39 avg. 4050
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