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He which soweth sparingly shall reap aso sparingly...

2 CORINTHIANS 9: 6






Preface

Inthisdissertation, consisting of two parts, | present the results of my research in compiler support
for sparse matrix computations, which has been inspired by the research proposal [218].

In the first part, preliminaries are given to keep this dissertation as self-contained as possible
and to present some general purpose techniques that are useful in the second part of the disserta-
tion. Some issues related to the implementation of loop transformations (chapter 2 and 3) have
appeared in publications [33, 36, 120].

The second part of this dissertation deals with the presentation of an automatic data struc-
ture selection and transformation method. This method is used by a sparse compiler, which isa
compiler capable of automatically converting adense program into semantically equivalent sparse
code [27]. First, the organization of the sparse compiler is outlined, and a brief overview of the
phases of the automatic data structure selection and transformation method is given (chapter 4).
Thereafter, adiscussion of automatically analyzing and pre-processing the original dense program
and analyzing nonzero structures of sparse matrices is given (chapters 5 and 6). These methods
appeared in publications [28, 34, 38]. Moreover, the actual data structure selection and code gen-
eration method are presented (chapters 7 and 8), which have been published in[25, 30, 32, 35, 39].
Someinitial experimentation indicating the potential of a sparse compiler has aso been included
(chapter 9). Finally, some more advanced transformations are explored (chapter 10), which have
been presented in [26, 31], and conclusions and topics for future research are given (chapter 11).

Because notational conventions, definitions and methods have been altered during research,
some small inconsistencies with previous publications may occur in this dissertation.

Many have contributed to this research, for which | am very grateful. In particular, | would
like to thank my parents for their constant love and support.

Aart J.C. Bik
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Chapter 1

| ntroduction

In many fields of science and engineering, large problems are encountered that can only be solved
by executing an enormous amount of floating point operations. Solving these problemsin area
sonable amount of time requires substantial computing power. Moreover, the lasting desire to
obtain more accurate results in less time is responsible for the fact that there will always be a de-
mand for even higher performance. The discipline that is concerned with making the solution of
these large problems possible is referred to as high performance computing. Amongst many
innovations, two approaches that are most notable with respect to this dissertation emerged from
this discipline.

First, because many architectural advances have been made to keep up with the demands for
higher performance, exploiting the specific hardware characteristics of the target machineis ex-
tremely important. Because effectively exploiting these characteristics is a complex and cumber-
sometask for the programmer, so-called restructuring compiler s have been devel oped to provide
some support in obtaining high performance. Another, less obvious approach to keep methods to
solvelarge problems feasible isto exploit characteristics of the data operated upon. In particular,
many numerical applications in science and engineering operate on large sparse matrices, which
are matrices with many zero elements. The storage requirements and computational time of such
applications may be reduced substantially if advantage of the zero elements is taken. Storage is
saved if only the nonzero elements of asparse matrix are stored explicitly, whileless computations
are performed if redundant operations on zero elements are avoided. In fact, exploiting sparsity
may be the only way to keep solving a problem feasible. Although exploiting sparsity may also
be acomplex and cumbersome task for the programmer, only limited compiler support for sparse
matrix computations has been developed in the past. In this dissertation, we try to make a step
towards resolving this omission by presenting a sparse compiler that completely supports the
development of sparse matrix computations.

1.1 Exploiting Hardware Characteristics

Forced by demands for higher performance, computer designers have tried to keep up with these
demands. In addition, restructuring compilers were developed to provide some support in effec-
tively exploiting the architectural advances that have been made.

1.1.1 Architectural Advances

At thetechnological level, higher performance can be obtained by increasing the speed of circuits
and enhancing packaging densities. Due to physical limitations on the maximum speed of elec-
tronic components, however, other means to obtain higher performance are required.
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Most architectural advances are aimed either at reducing latency, i.e. the time between start
and completion of an operation, or at increasing bandwidth, i.e. the width and rate of operations
[103, 111][129, ch2][135][175, ch1][229][234, ch2]. A memoary hierarchy, ranging from fast
registers and asmall high-speed cache to slower but larger main memory, has been introduced to
reduce the average memory latency, thereby relying on the spatial and temporal locality exhibited
by most programs. Memory bandwidth can be enhanced by using wider data paths (of which the
switch from bit-serial to bit-parallel data paths is the most obvious example), or by introducing
multiple memory paths. The memory bandwidth can be further increased by dividing memory
into independent memory banks, called memory interleaving, where memory requests to differ-
ent banks can be processed independently by these banks. Reducing execution latency usualy in-
volvestechnological advancesthat reduce the clock cycletime. The execution bandwidth (also re-
ferred to asthroughput), can beincreased by instruction pipelining, atechnique inwhich the exe-
cution of ingtructionsisdivided in anumber of stagesand subsequent instructions are allowed to be
simultaneously active in the different stages. In pipelined vector processors, asimilar technique
is applied to functional units, which isreferred to as data pipelining. We can distinguish between
memory-to-memory pipelined vector processors, where vectors stream directly from memory to
pipelined functional units and back, and register-to-register pipelined vector processors, where
operands and results must first be stored in vector registers. Finally, throughput can be improved
by the incorporation of multiple functional units or even the duplication of complete processors
to obtain aparallel computer. Although traditionally parallel computers were used to increase the
throughput of multiprogrammed operating systems [194], nowadays these architectures are used
more often to reduce the execution time of a single application by means of parallel processing.

At control level, we can use the taxonomy of Flynn [89] to distinguish between SISD, SIMD,
or MIMD architectures. The SISD classisformed by the conventional uni-processors. InaSIMD
architecture, also referred to asaprocessor array, asingle control unit dispatches one instruction
to an ensemble of simple processing elements that execute this instruction synchronously on dif-
ferent data items, where a mask must be used for conditionally executed instructions. A MIMD
architecture consists of anumber of asynchronously executing processors.

As illustrated in figure 1.1, at memory level, we can distinguish between message-passing
(distributed memory) architectures, where each processor has its own local memory, and shared-
address space architectures, where memory is shared over all processors [129, ch2]. The latter
architectures can be further divided into uniform memory access (UMA) architectures, in which
al memory locations are at a uniform distance, and non-uniform memory access architectures
(NUMA), in which processors have their own local memory and where shared memory may or
may not be present. In the latter case, access to memory of other processors is supported in hard-
ware (in contrast, in amessage-passing architecture, access to remote memory requires explicitly
message passing in the code).

E Processor Memory

G000 3w wa suyuoag

I nterconnection Network I nterconnection Network Interconnection Network
Message Passing Shared Address Space (UMA)  Shared Address Space (NUMA)

Figure 1.1: Memory Organization of Parallel Computers
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Typically, interconnection networks like abus, crossbar switch, or multistage interconnection
network are used in shared-address space architectures, whereas interconnection networks like a
ring, tree, mesh or hypercube are used in message-passing architectures. Shared address space
and message-passing MIMD architectures are often also referred to as multiprocessor s and mul-
ticomputer s respectively.

1.1.2 Restructuring Compilers

Although somearchitectural advances remain reasonably invisible to the programmer, others must
be dealt with explicitly to obtain high performance. For example, effectively exploiting the mem-
ory hierarchy requires rewriting aprogram to operate on small data setsthat fit in cache, whereas
the same program must be rewritten into a form that operates on long vectors to enhance the per-
formance on a pipelined vector processor or processor array, where having stride-1 accesses be-
comes important for machines with low-order memory interleaving. Efficiently executing differ-
ent iterations of aloop on a multiprocessor requires yet other program transformations, whereas
re-targeting a code for a message-passing architecture requires even more programming effort,
because explicit message passing must be added to the program.

Because exploiting the hardware characteristics of the target machine may be a complex and
cumbersome task for the programmer, restructuring compilers have been developed to support
this exploitation. Although many restructuring compilers focus on FORTRAN, which still isa
heavily used programming language in science and engineering, the techniques used by these
compilers are applicable to other imperative languages as well. After a serial program has been
analyzed, arestructuring compiler performs a number of semantics preserving program transfor-
mations to make effective use of the specific features of the target machine where, in particular,
exploiting implicit paralelism isimportant. To obtain high performance, the application of these
program transformations must be governed by an appropriate strategy, and the problem of deter-
mining such a strategy, referred to as the phase-ordering problem, is still an important research
topic [217]. Although, in principle, machine code could be generated directly, most restructuring
compiler perform a sour ce-to-sour ce translation [147], which enables the programmer to exam-
ine the parallel program arising after program restructuring. As depicted below, a conventional
compiler can be used thereafter to actually generate machine code for a particular target architec-
ture:

Serial Restructuring Parallel FORTRAN

Progam |  Compiler |~  Program | Compiler | EXecutele

Automatic program restructuring has anumber of advantages. First, it enables the paralleliza-
tion of existing seria software, thereby preserving the enormous investments that have been made
in the past to develop this software. Furthermore, it enables programmers that are only familiar
with seria programming to exploit the benefits that are offered by aparticular target architecture,
whereas existing tools to develop serial software can still be used. Mapping one serial program
automatically to several parald computers reduces the complexity of development and mainte-
nance of parallel programs substantially, and offers some means to achieve portability between
these architectures. Finally, automatically exploiting implicit parallelism is less error-prone and
may gain insight in the constructs required in future paralldl languages.

There are some severe limitations though. Because preserving the semantics of the origina
serial program isthe most important requirement of any restructuring compiler, only conservative
approximations of, for example, the data dependences arising in the program can be made. This
may imply that a restructuring compiler fails to parallelize a code fragment that could be paral-
Ielized by a programmer with more knowledge about the actual data dependences.
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Moreover, some serial algorithms are just not amenable to paralldization, but must be rewrit-
ten into adifferent semantically equivalent algorithm to alow for more parallelism. In an attempt
to overcome these limitations, many restructuring compilers operate interactively, i.e. the com-
piler cooperates with the programmer during program restructuring.

1.2 Exploiting Data Characteristics

Exploiting the occurrence of many zero elements in large sparse matrices may yield substantial
savings with respect to both the storage requirements and computational time of anumerical appli-
cation. In the past, however, only limited compiler support has been developed for sparse matrix
computations.

121 SparseMatrix Computations

If many elements in a matrix are zero, then this matrix is caled a sparse matrix. In contrast,
amatrix containing many nonzero elements is referred to as a dense matrix. Both the storage
requirements and computational time of an application that operates on sparse matrices can be
reduced substantialy in comparison with an application that operates on dense matrices by only
storing nonzero el ements and avoiding redundant operations on zero elements[ 70, 72, 78, 97, 169,
235].

Example: Below, two FORTRAN fragments performing the operation b « b+ AZ are given. In
the dense fragment, atwo-dimensional array Aisused to store al elements of the matrix, whereas
a more complex sparse storage scheme (data structure) is used in the sparse fragment to avoid
redundant operations on zero elements.

Dense Fragment: Sparse Fragment:

REAL  VAL_A(S2)

REAL A(M,N) INTEGER ROW_A(SZ), COL_A(SZ), NNZ_A
DO I =1 M DO 1J = 1, NNZ_A
DO J =1, N | = ROW_A(IJ)
B() = B() + A(J) * X() J = COL_A(19)
ENDDO B() = B(l) + VAL_A(IJ) * X()
ENDDO ENDDO

Possible contents of these storage schemes areillustrated in figure 1.2. For thisexample, 25 el-
ements are stored and operated upon in the dense fragment, whereas only 5 nonzero e ements are
stored and operated upon in the sparse fragment. However, some additional storage, referred to
asoverhead storage, isrequired in the sparse storage scheme to reconstruct the underlying matrix.
The row and column index of each nonzero element of A are stored as well, while an additional
scalar records the total number of elements that are actually stored in the arrays (because some
additional space may be present to allow for the insertion of more nonzero elements). Neverthe-
less, the total storage requirements are reduced with respect to dense storage of A (viz. 16 vs. 25
memory cells). For larger sparse matrices, more extensive savings can be expected.

Note that no substantial savings in computational time arise from protecting the loop-body
of the dense fragment with the test ‘ (A(1,J).NE.0.0) ', because this test would still be exe-
cuted MN times. In contrast, the loop-body of the sparse fragment isonly executed NNZA times.
Keeping the storage requirements as well as the amount of work truly proportiona to the number
of nonzero elements in a sparse matrix is one of the most important objectives in sparse matrix
computations [69][ 78, ch2][97, ch2][169, p1-3][235].
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NNZ_A

VAL_A (85815855 8,5/8)4
ROW A

COLA |2]|5]5]3|1

N

Figure 1.2: Dense Storage vs. Sparse Storage

Asaready illustrated by this small example, however, achieving this objective may be acom-
plex and cumbersome task for the programmer. The use of complicated sparse storage schemes
usually obscures the actual functionality of the code, making both the development and mainte-
nance of sparse codes a non-trivia task. Furthermore, the occurrence of subscripted subscripts
induced by sparse storage schemes (cf. the use of ROWA and COL A in the example) usudly dis-
ables most compiler optimizations because the compiler must make very conservative estimates
about the actua data dependences that may occur at run-time. These problems are even aggravated
when sparsity preserving methods (see appendix A for abrief overview) must be incorporated in
the sparse code. Despite all these problems, however, only limited compiler support for sparse
matrix computations has been developed in the past. Therefore, in the next section, we propose
an alternative approach to develop sparse codes.

1.2.2 Compiler Support for Sparse Matrix Computations

Because restructuring compilers are very useful to automatically detect and exploit implicit paral-
lelism in serid software, the question arises whether it is also possible to let a restructuring com-
piler convert code that operates on simple data structures into aformat that exploits certain char-
acteristics of the data operated on. In contrast to conventional restructuring compilers, mainly fo-
cusing on program transformations, this approach must allow for the application of data structure
transformations as well.

For applications involving sparse matrices, this approach implies that al computations on
these matrices may simply be defined on two-dimensiona arrays. A specia kind of restructuring
compiler, which we will refer to as a sparse compiler, transforms these simple data structures
into more complex sparse data structures, thereby reducing storage requirements and computa-
tional time.

Analogous to the approach taken by conventiona restructuring compilers, a source-to-source
trandation isperformed. The sparse compiler automatically transforms adense program operating
on two-dimensiona arraysinto code that operates on sparse storage schemes. Asdepicted below,
the resulting sparse code is compiled by aconventional FORTRAN compiler for aparticular target
architecture thereafter:

Dense Sparse Sparse FORTRAN

Program - Compiler - Program Compiler —  Executable

Besides the fact that dealing with sparsity of matrices at the compilation level rather than at
the programming is less error-prone, this approach has a number of other advantages. First, the
complexity of writing and maintaining sparse codes is reduced substantially, which enables pro-
grammers that are not familiar with sparse matrix computations to easily produce sparse code.
Second, applying data dependence analysis to the dense code usualy yields more accurate infor-
mation, which allows for more program transformations.
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Because the sparse compiler can account for characteristics of both the nonzero structure and
the target machine (provided that these characteristics are made avail able in some manner), aswell
asthe actual operations performed while selecting a suitable sparse data structure, one dense pro-
gram can be converted into a range of sparse versions, each of which istailored for a particular
instance of the same problem. Program transformations may be applied to the dense program in
case this data structure selection cannot be resolved efficiently. Finaly, just astraditional restruc-
turing compilers enable the re-use of existing serial software, a sparse compiler enablesthe re-use
of parts of existing dense code.

Elaboration of these ideas have resulted in the development and implementation of a proto-
type sparse compiler. In this dissertation, we present the automatic data structure selection and
transformation method used by this sparse compiler to automatically convert adense program into
semantically equivaent code that exploits the sparsity of data operated upon.



Chapter 2

Preliminaries

In this chapter, abrief overview of someimportant concepts that are used throughout this disserta
tionisgiven. Inparticular, concepts that are useful for program analysis and program restructuring
aswell asfor sparse matrix computations are presented.

Systems of linear equations or inequalities in integer-valued variables and affine transforma-
tions are useful to represent many program constructs and transformations in a formal manner.
In addition, many problems in science and engineering require the solution of a sparse system of
linear equations. Therefore, first some preliminaries from geometry and linear algebra are given.
Thereafter, anumber of useful methods that are used extensively in program analysis and program
restructuring are discussed.

2.1 Preliminariesfrom Geometry and Linear Algebra

In this section, some concepts of geometry and linear algebra are presented. For a detailed pre-
sentation, the reader is referred to [40, 42, 61, 100, 104, 153, 172, 203].

2.1.1 Cartesian Spaces

Given afixed natural number d € N, the d-dimensional Cartesian space consists of al d-tuples
(z1,...,24) € R Thismeans that each coordinate z; in atuple is area number. Ford = 1,
d = 2,and d = 3, the corresponding Cartesian spaces define the Euclidean straight line, Euclidean
plane, and Euclidean space, respectively, for which direct graphical interpretations exist. How-
ever, we do not restrict ourselves to these values of d, but allow for Cartesian spaces of arbitrary
dimension.

Each tuple (1, ...,z4) € R%in such ad-dimensional Cartesian space can be thought of as
apoint X or asthe components of the position vector O X = 7 representing this point X, where
point O = (0,...,0) isreferred to as the origin. Usually we do not distinguish between points
and position vectors and simply refer to point X by means of the (position) vector # € R<.

The following operations are defined on two vectors Z, i € R? and ascalar A € R:

i+y = ( mi+y, -, Tatyd )
A% o= ( Amyy, ..., Xzmg )
In these operations, vectors are expressed as row vectors. A vector can also be expressed as
column vector, denoted as # = (1, ...,z4)" inthetext for notational convenience:
I
7=

Iq
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The opposite vector of avector Z isdefined as —# = —1 - Z. This vector has the property
that —7 + # = 0, where0 = (0,...,0). The subtraction of two vectors Z and i/ is defined as
i — i = &+ (—ij). Furthermore, the scalar product of two vectors 7,4 € R? is defined as
follows:

d
Foj=> xiyi (2.1)
i=1

The vectors are per pendicular or orthogonal, denoted by Z L 4/, if and only if these vectors
have azero scalar product, i.e. Z-¢ = 0. Inaddition, this scalar product can be used to give R? the
structure of ametric space by defining the following notion of distance between vectors, denoted

by d(Z, ¥):

d(z,5) = /(& —9) - (&) (22)
A st X C R iscaled bounded if for aparticular § > 0 and & € X, we have d(Z, ) < 0
foral ¢ € X. Thisset X iscaled unbounded otherwise.

2.1.2 Linear and Affine Subspaces

We say that avector # € R? isalinear combination of afiniteset X = {#,,...,#}} if there
exist scalars \; € R such that:

k
F=Y NI (2.3)
i=1
If, additionally, A1 +. . .+X; = 1, then Ziscaled an affinecombination of thisset. Aset X =
{#1,..., @} islinearly independent if A -1 +...4+ ;- = O impliesthat \; = 0forall 1 <
i < k. All other setsare linearly dependent. A set X' = {Z, ..., 7} isaffinely independent,
if theset X = {& —Zy,..., %, — 2o} islinearly independent, and affinely dependent otherwise.
In R¢, the sets X and X’ can only be linearly and affinely independent respectively, if we have
k<d.
Given alinearly independent set X = {#,...,7;}, whereeach 7; € R?, theset § C R¢
consisting of all linear combinations of X forms a k-dimensional linear subspace of R:

k
S={FeR|z=> N &}
i=1
Given an affinely independent set X’ = {i,... %}, whereeach #; € R?, theset § C R¢
consisting of all affine combinations of X’ forms a k-dimensional affine subspace of R¢ (aso
caled aflat):

k
S={FeR"|F=Y N-FrandX+...+ =1}
i=0

Each linear subspace defined by a linearly independent set X = {#,...,%;} isan affine
subspace through the origin defined by the affinely independent set X' = {6, Z1,... 2 }. Hence,
the dimension of linear and affine subspaces is defined consistently in this manner. Conversely,
each affine subspace consists of the trandate of a certain linear subspace of the same dimension.

A one-dimensiona affine subspace, defined by an affinely independent set X' = {7, 71}, is
called a straight line. Since a linear combination Ay - Zy + A1 - #7 is an affine combination if
Ao + A1 = 1, aline consists of al Z satisfying the next equation, where A € R..
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F=(1=X)-Zo+A & (2.4)

Because X' is affine independent, the singleton set X = {27 — %} islinearly independent.
Since thisis true for £, # #;, we see that aline is defined by two different points. If we also
requirethat 0 < A < 1, then astraight line segment is defined. We can rewrite the previous
equation into the following form, in which the line is defined by a position vector 7, and a free
vector d = 71 — Ty, denoting the direction of thisline:

F=g+ - (FL—F)=Fo+A-d

An afinely independent set X' = {Zy, 71,72} defines atwo-dimensional affine subspace,
referred to asaplane, which can also be defined by aposition vector and two linearly independent
Vectors.

2.1.3 Hyperplanes

A (d — 1)-dimensional affine subspace S C R? defined by an affinely independent set X with
cardinality d iscalled ahyperplane. Alternatively, ahyperplane S C R¢ may bedefined in Carte-
sian form, sinceit consists of al Z € R satisfying the linear equation @ - # = b for certain fixed
nonzero normal vector @ € R¢ and ascalar b € R:

SZ{fERd|a1'$1+...+ad'$d=b}

InR, R?, and R? ahyperplane corresponds to asingle point, aline, and aplane, respectively.
The graphical interpretation of three linear equationsisgivenin figure 2.1. For d > 3, thereisno
direct graphical interpretation.

The intersection of anumber of hyperplanes S, ..., S, in R¢, whereeach S; C R¢ isof the
formS; = {# € R? | a;1 - o1 + ... + ajq - ¢4 = b;}, can be easily represented by a system of
(simultaneous) linear equations. Such a system can be expressed in the matrix form shown below
for ac x d coefficient matrix A and aright-hand side vector b € R

T
air ... Qg bl

Gel Ged be
Tq

of

o

X2

/
y
—— -~ 7

X1 X1

2x =4 —X X =21 X 1+2x +22x =§

Figure 2.1: Graphical Interpretation of Linear Equations
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Figure 2.2: Half-Spacesin R, R? and R?

Usually, the variables are omitted and the system is represented by the column augmented
matrix (A | b). The system is called homogeneous if 5 = 0 and in-homogeneous otherwise. A
vector 7 € R that satisfies al equations in this system simultaneously is called asolution of this
system. Theset S C R? of al solutions forms the intersection of the hyperplanes:

S=5nNn...nS,

If rank(A | b) > rank(A), then this intersection is empty, and the system is called incon-
sistent. If rank(A | b) = rank(A), then the system is called consistent and the intersection of
hyperplanes formsa (d — rank(A))-dimensional affine subspace of R¢. Inthis case, there may be
aunique solution, or there may be infinitely many solutions.

A systemwithc = 2 and d = 2, for instance, representstwo lines. Theselinesmay be paralld,
coinciding or intersecting, corresponding to an inconsistent system, or a consistent system with

infinitely many solutions or a unique solution, respectively.

2.1.4 Half-Spaces

A set H C R? consisting of all # € R¢ satisfying alinear inequality @-# < b for afixed nonzero
vector @ € R% and ascalar b € R is called aclosed half-spacein R%:

H={feR|ay -z1+...+aq x4 <Db}

If astrict inequality @ - # < b isused in this definition, H is called an open half-space. The
complement of aclosed half-space H = {# € R% | @-Z < b}, denoted by H, is defined as
the open half-space H = {# € R? | @ - # > b}. Note that we can always convert an inequality
with‘ <’ or ‘<’ intoaformwitha‘>" or ‘>’ and vice versa by multiplying the inequality by —1.
Similarly, the complement of an open half-space is formed by a closed half-space. A half-space
H and its complement H partition R¢ into two digoint sets, since H UH = R*and HN H = .

Obvioudly, each closed half-space consists of al points on one side of a hyperplane. For ex-
ample, in figure 2.2 we show the closed half-spaces in R, R?, and R? that are defined by the
inequalitiesz1 < 1,21 + 22 < 3,and z1 + zo < 3 respectively. In these cases, the hyperplanes
defined by the equations z1 = 1, 1 + 22 = 3 and z; + 2o = 3 correspond to a point, line, and
aplane paralléd to the z3-axis, respectively. In R and R? the corresponding closed half-space is
referred to as a half-line and half-plane respectively.

A sat S C R%isconvex if and only if for each #,if € S, wehave \ - & + (1 — \) - if € S for
al 0 < X\ <1aswdl,i.e dl pointson aline segment with arbitrary end-points # and i/ in S are
also contained in this set.
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Each half-space isconvex. Because theintersection of anumber of convex setsisalso convex,
the intersection of anumber of half-spaces is a convex set.

Any set PS C RY consisting of the intersection of a finite number of closed half-spaces
Hi,...,H,inR%iscaled apolyhedral set:

A bounded polyhedral set forms a convex polytope, caled aline segment, convex polygon,
and convex polyhedron in R, R?, and R3 respectively.

A hdf-space H C R? for which the equality PS N H = PS holds is caled redundant
with respect to a polyhedral set P.S C R?. The following obvious property can be used to detect
redundant half-spaces:

Proposition 2.1 A half-space H isredundant with respect to a polyhedral set PS if and only if
the equation P.S N H = () holds.

Because apolyhedral set PS C R¢ is defined by theintersection of afinite number of closed
half-spaces, aconvenient representation of P.S consists of asystem of linear inequalities. Assum-
ing that PS is defined by the closed half-spaces Hy, ..., H, in R¢, where each H; C R? gives
riseto alinear inequality a;, - x1 + ...+ a;q - x4 < b;, the polyhedral set can be represented by a
system of linear inequalities A7 < b:

I
ai;r ... aiqg b1

IN

Gel Ged be
Zq

Analogous to the representation of a system of linear equations, we will frequently represent
this system of linear inequalities by a column augmented matrix (A | 5).

A vector Z € R that satisfies al inequalities in Az < I;simultaneously iscaled a solution
of the system. A system of linear inequalities is called consistent if at least one solution exists.
The system is called inconsistent otherwise. Obvioudly, the set of solutions forms a polyhedral
st PS C RY
Example: In figure 2.3 we show a convex polyhedron formed by the intersection of the half-
spaces defined by the following system of linear inequalities:

0 0 -1 N 0
-1 0 0 1 -2
0 -1 0 2 S|
1 1 1 3 8

A closed half-space defined by an inequality like 23 < 4 would be redundant with respect to
this polyhedron, because the intersection between the polyhedron and the open half-space defined
by z3 > 4 isempty. Indeed, the closed half-space defined by z3 < 4 does not contribute to the
shape of the polyhedron.
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Figure 2.3: Convex Polyhedron

2.1.5 Linear and Affine Transfor mations

A mapping F : R¢ — R¢ having the following properties for al #,7 € R? and A € R, iscalled
alinear transformation:

F(E+y) = F(@)+F()
FA-&) = \-F(@)
Each linear transformation satisfies F(0) = 0 and F(—Z) = —F(Z). Furthermore, each

linear transformation F' : R% — R° can be expressed in matrix form as F(¥) = Wi, where W
isac x d matrix. Thekernel of alinear transformation F' : R% — R¢, forming alinear subspace
of R?, is defined as follows:

ker F={ZcRY| F(Z) =0}

A mapping F : R — R¢ which can be expressed as F'(%) = ¢4+ W Z, for ac x d matrix W
and a constant vector ¥ € R¢, is called an affine transformation. Hence, linear transformations
are formed by affine transformations having 7 = 0.

A dxd matrix U withinteger elementsthat satisfiesdet(U) = +1 iscalled aunimodular ma-
trix. A linear transformation F : R? — R that can be expressed as F(#) = U for aunimodular
matrix U iscaled aunimodular transformation. Because the product of two unimodular matri-
cesisalso unimodular (viz. UU' isan integer matrix and det(UU’) = det(U) - det(U’) = %1),
unimodular transformations are closed under composition. A unimodular transformation maps a
discrete point # € 29 to adiscrete point f = Uz € Z%. Moreover, since U ! exists and is also
aunimodular matrix, each discrete point i € Z? in the image of a polyhedral set PS under F
uniquely corresponds to a discrete point # € P.S according to the equation & = U~ 'y.
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2.2 Some Useful Methods

In this section, we discuss some methods that are used extensively in this dissertation.

2.2.1 Extended Euclidean Algorithm

The greatest common divisor of the integers o, . . ., ag, denoted by ¢ = ged(ay, ..., ayq), is
the greatest (positive) integer dividing al these integers (for al i, o; mod g = 0).

Below, we present an implementation of the extended euclidean agorithm in pseudo-code
(cf. [18][100, p199-202][122, pl4] [229, p93-96][234, p141]). Given theintegers a;; and ap, this
algorithm computes the greatest common divisor g = ged(ay, as) and yields two other integers
z and y satisfying a; - = + a9 - y = g as aside-effect:

integer function gcd(al, a2, var x, var y)
begin
cl abs(al); c2 := abs(a2);
x1 1; X2 = 0;
while (c2 > 0) do
x1 :=x1 - |cl1/ c2| * x2;
cl :=cl- [c1/ c2] * c2;
swap(x1, x2);
swap(cl, c2);
enddo
ged
X
y
end

cl;
(al ==0) ?20: ( (a1l >0) ? x1: -x1);
(a2 ==0) 20 : ( (c1- al *x) [/ a2);

Thisfunction can also be used to compute the greatest common divisor of anumber of integers
by repetitively using the following equation for d > 3:
ged(an, ... aq) = ged(ar, ged(az, - .., aq))

These integers are called relatively primeif ged(ay, ..., aq) = 1.

2.2.2 Completion Method for Unimodular Matrices

Unimodular transformations provide aconvenient representation of someloop transformations, as
is discussed further in chapter 3. The following completion method of a unimodular matrix U of
which only thefirst row is specified will be useful to construct aloop transformation that satisfies
aparticular goal. In addition, because U ! is required to implement this loop transformation, we
also present a method to construct this inverse simultaneously [29].

Conventional Completion Method

Given an arbitrary vector @ € Z¢ of which the components are relatively prime, a unimodular
matrix of the following form exists [19, p55-59][159, p13-15]:

aq aq

U21 U2d
U=

Ud1 Udd

The construction of the desired integer matrix is based on the fact that, given ak x & integer
matrix Uy, with | det(Uy)| = g, where g, = ged (o, . .., ax), another (k + 1) x (k + 1) integer
matriX Uy.1 With | det(Uk1)| = gx+1 can be constructed from Uy, in arelatively easy manner.
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Hence, if a; # 0, then the following sequence can be constructed, in which the final matrix
isthe desired matrix with | det(U)| = g4 = 1:

(Ozl):Ul—)UQ—>...—>Ud:U

Unfortunately, the completion method cannot always beinitiated for k& = 1, since a prefix of
zeros may appear in . However, for any @ € 2¢ with ged(ay, ..., aq) = 1, an m exists such
that o; = 0fordl 1 <i < manda,, # 0. Hence, in general, the completion method can be
initiated for &k = m with the following m x m matrix U,, satisfying det(U,,,) = (—=1)™*! - ay,,
which impliesthat | det(Uy,)| = gm:

0 0 an
1 0
Un = ) . (2.5
1 0

Now, suppose that a k£ x k integer matrix U, has been constructed with («, . .. ay) asfirst
row and | det(Uy)| = g First, two integers y and 5 must be determined such that the following
equation holds:

Gk Y — Qg1 B = ki1

Theseintegersare obtained asaside-effect of the extended euclidean algorithm, if we compute
gkr1 = ged(ge, agy1) asged(gr, —ags1). Thenext (k 4+ 1) x (k + 1) integer matrix Uy in
the sequence with (o, ..., ax1) asfirst row can be easily obtained by extending the previous
matrix as follows, in which al divisions evaluate to integer values:

k41
0
Ug+1 = Us : (2.6)
0
- a3
;k e g—k v

Expansion of the determinant of this matrix by the last column reveals that the next equation
holds, wherethe & x k£ matrix Ej, denotes the matrix that is obtained after eliminating thefirst row
and last column of Uy, 1:

det(Ugs1) = (—1)**? - aypy - det(Ey) + v - det(Uy)
Consequently, E. can be written as the following product:

0 1

S
I
S

0
8
9k 0

Because det(Ej) = ((—1)k+1 'ﬁ/gk) - det(U},) and for k > 1 the expression (—1)%*+3 is
egual to —1, the following equations hold:

det(Uy) det(Uy)

9k

det(Ug41) = gk -y — g1 - B) = “ k1



2.2. SOME USEFUL METHODS 17

Since either det(Uy) = g or det(Ui) = —gi holds, an integer matrix Uy, is constructed
that satisfies the following equation:

| det(Uk41)| = grt1

Because the components of & € Z¢ are relatively prime, repetitive extending the matrix in
this manner eventually resultsin aunimodular matrix U = Uy with | det(U)| = 1.

In [18, 159, 224], the case d = 2 is considered separately. In order to obtain a unimodular
2 x 2 matrix U with (ay, ap) asfirst row, the integers uo; and ugo are required such that det(U) =
Q1 - Ugo — Qg - Uuoy ISEither +1 or —1:

U1 U222
The extended euclidean algorithm can be used to construct this matrix directly, since if the
greatest common divisor ged (o, as) iscomputed asged (o, —a2), then theintegers uso and usy

satisfying v - uge + (—ag) - ug2; = ged(ag, ag) = 1 are obtained as aside-effect. Theinverse of
such a2 x 2 unimodular matrix can be easily obtained by using the following equation:

U-! — L ugy  —0r
det(U) —ug1 Qi

Computation of U~! is not so straightforward in general. However, because the inverse of
the matrix is required to implement a loop transformation defined by U, we present an efficient
method to construct U ~! simultaneously with the completion of U in the following section.

Extended Completion Method

If amatrix A ismodified into A+ A A, where the modification can beexpressed asAA = VSW T,
then the inverse of the modified matrix A + A A can be obtained from the inverse of A using the
matrix modification formula[78, p243-244]:

A+VSWH T =47 — AWV +wlA vy iwTa! 2.7)

Correction Term

Thisformula provides a convenient method to derive the changesin the inverse of the origina
matrix that are required to obtain the inverse of the modified matrix. Hence, sinceform < k < d,
we have det(U}) # 0, the question arises whether the matrix modification formula can be used
to congtruct U,;' — ... — U; ' simultaneously with the construction of Uy, — ... — Uy
during the completion method. In this manner, the completion method also yields the inverse of
the desired matrix U = Uj.

A subtlety that must be dealt with is the fact that each modification changes the order of the
matrix. However, we can view each extension of Uy, into Uy, as a modification of a matrix A
into A + AA, where A and, hence, A~! are defined as follows:

() ()

The modification AA = VSW can be expressed as follows (cf. formula (2.6)):
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10

V- S:( ) sz(M N )
C 0 0 1 glk g—k ’)’—1
01

The expression W7 A~ in the correction term defined by (2.7) has the following form, in
which we have used the fact that the product (e, ..., ax)U; ' yields the first row of the k x k
identity matrix:

- 0 . 0 (670N Uvi1 0 0 ... 0 (07708

Hence, expression (S~ + W1 A~1V) hasthe following form:

0 1
(Sl_l_WTAlV):((l) (1)>_|_(ﬂ Olk+11>:<ﬁ Olk+1>
w 7 m 7

Because the determinant of the resulting matrix isy — (ax+1 - 8)/gx, Which can be rewritten
into (gx - v — ax+1 - B8)/9k = gr+1/ 9k, theinverse of this matrix is defined as follows:

Jk+1 o

(Sfl _’_WTAflV)fl — 9k . ( Y _alk-l—l )
9k

Equation —aj41 - B = g1 — gk -y impliesthat A=V (S~ + WTA='V)"'WT A~ has
the following form, in which elements of U, ! are denoted as ;;:

u;p O
9k . Y —Oék+1 0 0 0 O(k+1
g | a0 [\ -2 1 Lo .0 y-1
0 1/)° ~- .
(g’;%—y 0 ... 0 g )
B Ghtl _
- 0 ... 0 %

Hence, the following correction term must be subtracted from the inverse of A to obtain the
inverseof A + AA:

_ X9k . QX+1°9k | o
(1 gk+1) i 0 ... 0 Ik 41 ui
. . . 2 8)
_ X9k .7 Qk+1°9k | - ( ’
(1=52) T 0 .. oo Ukl
_ _ 9k
Jk+1 0 ... 0 1 grt+1

Since most elements remain unaffected by the correction term, the matrix modification for-
mula reveals a convenient method to construct U,,! — ... — U, " simultaneously with the con-
struction of the sequence U,,, — ... — Uy.

Onefinal difficulty that must be dealt with isthat, since we have | det(Uy)| = gk, and g # 1
may hold for m < k < d, matrices in this sequence are not necessarily unimodular. Hence,
fractions may appear in some U, L
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Asis shown below, each matrix U, ! can be represented as (1/ay,) - Uy, for ak x k integer
matrix Uj. Therefore, even the sequence Ut —...=U; ! can be constructed with only integer
arithmetic.

The completion method is initiated with the matrix U,,, defined in (2.5) and we can represent
the inverse of this matrix asfollows, where o, # 0:

0 apn
1 - 1
Ul=— U=—-
(677} am 0 O,
1 0 0

Thereafter, as defined by the correction term (2.8), arepresentation (1/auy,) - Ugyy of Ui is
obtained from the representation (1 /vy, .U, of U, ! asfollows, where elements of U/}, are denoted
asu;; andwherep = v - (gx/gr41) ad ¢ = —agy1 - (gk/gr41):

Pyl U2 ... Ulg g UL
1
Uk+1 - ~ ~ ~ ~
QO DU Ug2 Ukk g Ukl
_Oém'ﬁ am Gk
k+1 0 e 0 k+1

Because g1 dividesboth g5 and «,,, by construction, all divisions evaluate to integer values.
Moreover, because | det(U7)| = 1 holds for the final matrix U = Uy, dividing all elements of U,
by «,, yields an integer matrix that is equal to the inverse of this matrix."

Example: Below, the successive steps for the construction of a4 x 4 unimodular matrix U with
first row (8,6,4,1) and theinverse U ! areillustrated:

k=1 (8) g (1)
8 6 L 4 —24
k=2 (1 1> g'(—4 32>
8 6 4 4 —24 —16
k=3 (1 10 s -4 32 16
001 0o 0 8
8 6 41 0 —24 —16 -8
L4 1 1 00 i o0 32 16 8
0 0 10 810 0 8 0
—4 -3 -2 0 8§ 0 0 16

Because | det(Uy)| = ged(av, - . ., ax) holdsforall 1 < k < 4, thefirst three matrices are not
unimodular (viz. ged(8,6,4) = 2). Therefore, the division by 8 required in the inverse matrices
yields integer elementsin the last matrix only.

Some experiments on an HP 9000/720 indicate that the extended completion method can be
implemented more efficiently than explicit construction of theinverse of aunimodular matrix after
application of the conventional completion method [29]. However, because in practice the size of
each matrix islimited by the maximum nesting depth of loopsin aprogram, only adight reduction
in execution time may be expected.

2.2.3 Solving a System of Linear Equations

In this section, we briefly glance at methods to solve a system of linear equations.

!In fact, these divisions can already be performed at any step k for which ged(as, ..., o) = 1.
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Elementary Row and Column Operations

Therearethree elementary row (column) operations: (i) multiplying arow (column) of amatrix
by anonzero scaar, (ii) adding an arbitrary multiple of one row (column) of a matrix to another
row (column), and (iii) interchanging two rows (columns) of amatrix. Applying one elementary
row (column) operation to the identity matrix yields a so-called elementary matrix.

Applying an elementary row operation to ac x d matrix A is equivalent to pre-multiplying
this matrix with the corresponding elementary ¢ x ¢ matrix F (i.e. computing EA, where E is
obtained by applying the e ementary row operation to the ¢ x c identity matrix). Likewise, applying
an elementary column operation to ac x d matrix A is equivalent to post-multiplying this matrix
withthe corresponding elementary matrix E (i.e. computing AE, where E isobtained by applying
the elementary column operation to the d x d identity matrix). Hence, if the matrix A’ isobtained
from another matrix A by applying m elementary row operations represented by R, ..., R,, and
[ elementary column operations represented by C', ..., C, then A’ can be written as follows:

A'=R,,...RIAC, ...C,

For integer matrices, we limit ourselves to the following elementary integer row or column
operations: (i) multiplying a row or column by -1 (reversal), (ii) adding an integer multiple of a
row or column to another row or column (skewing), and (iii) interchanging two rows or columns.
The corresponding elementary matrices are unimodular. Hence, applying any finite sequence of
elementary integer row or column operations to an integer matrix is equivalent to either pre- or
post-multiplying the matrix with aunimodular matrix, formed by the product of the corresponding
elementary matrices [19, p26-31].

Systems of Linear Equations

Repetltlve application of elementary row or column operatlons to the column augmented matrix
(A] b) representation of asystem of linear equation Az = b can be used to convert thissysteminto
an equivalent system (i.e. asystem with the same solution set) whose solutions are easier to deter-
mine. For instance, e ementary row operations can be used to convert acolumn augmented matrix
into amatrix that isin echelon form. This means that in each row the column index of the first
nonzero element is greater than the column index of the first nonzero element in preceding rows,
and all zero rows appear last. Inappendix A, the situation where A isasguare non-singular matrix
(i.e. det A # 0) isconsidered. In this case, converting (A | b) into echelon form is equivalent to
converting A into upper triangular form. We also discuss how symmetry or sparsity of A can be
exploited to reduce the storage requirements and computational time of the solution method.

The following proposition can be used to solve an integer system of linear inequalities with
integer-valued variables (so-called linear diophantine equations) [19, p59-66]:

Proposition 2.2 Givenac x d integer matrix A, an integer column vector b with ¢ components,
and ad x d unimodular matrix R such that £ = RA” isan integer matrix in echelon form, then
all integer solutionsolc AT = Earegiven by Z = [(A1, ..., \g)R]" for arbitrary \; € Z satisfying
[(Ay---, Aa)E]T = b.

An echelon reduction algorithm that computes such aunimodular matrix R with integer arith-
metic only ispresented in [19, p32-39]. Thisalgorithm a so provides aconvenient method to com-
pute the greatest common divisor of a number of integers since for A = (ay, ..., aq), amatrix
E = (e1,0,...,0)T is obtained with ged(a1,...,aq) = |e|. It aso provides an aternative
method to construct a unimodular matrix with a given row or column [19, p55-59].
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2.2.4 Solving a System of Linear Inequalities

The Fourier-Motzkin elimination method [10, 19] [61, p84-85][62][229, ch4] can be used to test
the consistency of areasonably small system of linear inequalities A7 < b, or to convert this sys
tem into aform in which the lower and upper bounds of each variable z; are expressed in terms
of thevariables x4, ..., z; 1 only. In particular, we focus on an implementation for integer sys-
tems[33].

Intuition Behind the Elimination M ethod

Central to so-caled Fourier-Motzkin imination is the observation that variable z;, can be elim-
inated from a system AZ < b by replacing each pair-wise combination of two inequalities that
define alower and upper bound on z;, as follows, where we assumethat ¢; > 0 and ¢y > 0,

L < ¢z
{ c-xpy < U — - L<c-U (2.9

After this elimination, which can be done with only integer arithmetic if al coefficients are
integers, another system of linear inequalities not involving z, results. For real-valued variables,
the origina system is consistent if and only if the second system is consistent [62]. For integer-
valued variables, however, the projection (2.9) may beinexact. For example, eliminating variable
x1 from16 < 3-z; and2 - 1 < 11 yields aconsistent system 32 < 33, whereas the origina

system has no solution for z1 € Z (viz. [$] <z < [11]).

Fourier-Motzkin Elimination

Given a system of linear inequalities represented by ac x (d + 1) column augmented integer
matrix (A | b), Fourier-Motzkin proceeds by successively eliminating the variables in reverse
order. Starting with A(® = A and b (%) = b, the following sequence of column augmented integer

matrices is generated:

(AD | p@Dy 5 (A6=D) | pE=Dy 5 5 (AD |5 M) - 5O (2.10)

Eachm*) x (k+1) column augmented integer matrix (A*) | b (%)) in this sequence represents
inequalities in the first k& variables as follows:

I
S
=z

Ak)

T

At each step k, the rows in the column augmented matrix (A®) | b () are reordered so that
for particular 1 < p*) < ¢®) < m®*) we have aE'kf) > 0forl <4 < p), az(,]:) < 0 for
p#) < ¢ < ¢ and az(,]:) = 0 for ¢®) < ¢ < m®). This reordering gives rise to three sets of
linear inequalities in which only positive coefficients occur for variable zj,:

2For integer-valued variables, each inequality a{f’ - z1 +. .. +a'¥ -z, < b{*) may be simplified into theinequality
a /g w4 +al)g-x < b /9], whereg = ged(al¥), ..., a{’). Thisisdonefor thefirst ¢*) rowsin our
implementation [33].
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k-1
GE? Tk S bgm -2 ag-c) cx; for1 <i<pk)
j=1
k—1
_bl(k) + '21 al(;?) xy < (_az(’;)) -y for pk) < i < ¢(k)
]:
k—1
>l z; < b for ¢® < i < m®
\ Jj=1

After the reordering, thefirst p) rowsin (A®) | 5(*)) definethe upper bounds of variable z,
interms of only the variables z1, . . ., 7. Moreover, the next ¢*) — p(¥) rows define the lower
bounds of zj, interms of only thevariables x4, ..., z; 1. For integer-valued variables, the lower
and upper bounds can be expressed as follows:

k—1 k—1
k k k k
b - Zlan) T b~ Zla§j> T
J1= . 1=
< < 211
p(’“g?;(q(k) a(l’z) =Tk = ISI?SIZ?(’” a(.l,:) 1
(2 1

The other rows represent inequalities in which z, is not involved.

Subsequently, the next column augmented matrix in the sequence (2.10) is obtained by eim-
inating variable z;, from the system according to (2.9). Thisimpliesthat thefirst ¢*) inequalities
are replaced by p*) . (¢*) — p(*)) new inequalities, which gives rise to the following system:

k-1
> () - al) —alf) -y z; < alp) b0 —alf) b 1<i<p® < i < g®)
=1

k1

> al(;-g) T < bz(k) q(k> <i<mk

=1

For m*—1) = p(k). (¢F) —pk)) 4 m*) —¢(¥)  this system can be represented by anm*—1) x k
column augmented integer matrix (A®—1 | 5(*=1)), which is the next matrix in the sequence.
This process is repeated until all variables have been eliminated.

Eventually, acolumn integer vector 5O results. If any of the components of thisvector isneg-
ative, then the original system of inequalities isinconsistent (viz. an inequality 0 < bz(.o) results
where b§°> < 0). Otherwise, the system is consistent in the sense that at least one real solution
exists. Since projection (2.9) isinexact for integer-valued variables, however, this does not nec-
essarily imply that there is also an integer solution. Still, this test provides a necessary (but not
sufficient) condition for the existence of an integer solution.

Example: Consider the following system of linear inequalities:

0 -1 -3 ~10
0 0 —1 i 1
-1 0 6 ! -1
0 1 3 T2 | S 15
0o 0 1 3 3
1 0 —6 50

Applying Fourier-Motzkin to this system yields the following sequence of column augmented
integer matrices (see aso the footnote on the previous page):
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0 1] 12 1] 78 81
1 2| 80 1| 68 71
B . -1 —2|-21 ~-1| 3 71
0 1 3| 15
o o 1l 3 0 —1] -1 —1| =7 61
0o o0 —1l 1|7 0 o 1B =] 0f15 =] 15
0 0| 294 0 | 294 294
0 —1 —3|-10
Lo -6l 50 0 0| 2 0 2 2
-1 0| -7 0118 118
1 0| 68 0| 11 11

Because all components of the terminating vector are positive, the system is consistent. The

bounds of, for instance, x; are defined by max(—3,7) < z; < min(78, 68), which can be sm-
plifiedinto 7 < x7 < 68.
Example: Thesimplification given in thefootnote at page 21 may avoid someinexact projections
for integer-valued variables, but not all. For example, because 16 < 3 - z; and2 - z; < 11 are
first smplified into the inequalities 6 < z; and z; < 5, projection yields 6 < 5, indicating
inconsistency for integer-valued variables:

(3]5)- ()

The projection remains inexact, however, for asimilar system of linear inequalities consisting
of0<z2;<0,16<zy+3-20andzq +2 29 <11:

1 2] 11
1 =3|-16 | 18_)0
1 0] 0 o 0
-1 0] 0

Because none of the inegqualities in the original system can be simplified, Fourier-Motzkin
elimination reveals consistency of the system (with real solutionsz; = 0, 16/3 < 2o < 11/2).

Redundant I nequalities

If aclosed half-space defined by alinear inequality is redundant with respect to the polyhedral set
defined by a system of linear inequalities (see section 2.1.4), then we also say that this inequality
is redundant with respect to the system. A redundant inequality can be eliminated to simplify the
system. In the following sections we present two simplification methods that are especially use-
ful if the sequence is used to enumerate discrete points within the polyhedral set defined by the
original system. First, rows with aE? = 0 are eliminated from each column augmented matrix
(A®) | 5*)), because the corresponding inequalities together with inequalities arising from pro-
jection are also present in column augmented matrices that appear later in the sequence. There-
after, redundant inequalities involving = are eliminated from (A®) | 5*)) during a backward
scan over the sequence, where inequalities represented by previously considered column aug-
mented matrices are preserved, so that inequalities arising from projection may contribute to the
simplification. We first present a computationally inexpensive simplification method which as-
sumesthat all variables are bounded. Since some redundant inegqualities remain undetected by this
ad-hoc method, we aso present an exact simplification method. Note that simplifications could
aready be performed during elimination to improve the efficiency of the solver itself, as suggested
in[229, ch4].
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Ad-Hoc Simplification

For each variable z, intervals [[®, 12X and [ui®, 4,1%4%] are recorded, indicating the possible
values of lower and upper bounds of this variable respectively. The boundsin theseintervas may
have valuesin Z U {—oo, +o0}, and for dl 1 < k < d, weinitialize these values as follows:

= e = oo and u = UM = oo

Subsequently, more accurate val ues are determined during abackward scan over the sequence
of column augmented matrices arising from Fourier-Motzkin elimination.
For each m(*) x (k 4 1) column augmented matrix (A%) | 5(*)) in this sequence, each re-
maining row with az(,]:) # 0 is considered:
( (k) (k) (k)

i oo Qi1 Qi

p(F) ) (2.12)

7

Because z; € [l;-m“, ;“‘*X] holdsfor j < k, the extremal values of the corresponding expres-
sion not involving z;, are given below, where a™ = max(a,0) and e~ = max(—a, 0) according

to the definitions given in [17][ 19, p52-54]:
| = bz(k) + Z ( )—i— lmln _ (_a(/?))— . qmax

,1 .
u = bgk) + Z: ( ) u;nax _ (_ag?))* . l;nln

If az(,]:) > 0, then (2.12) defines an upper bound of x;, that can only have values in the interval
[I',u'], wherel’ = U/ag,]:)J andu' = {u/al('kf)J. Therefore, if uj*** < I’ holds, then thisinequality
is redundant with respect to previously considered upper bounds of x; and is eliminated. Simi-
larly, if u' < w8, thisinequality replaces all previoudly considered inequalities that define upper
bounds of x;,. Thereafter, the following assignments are executed:

Mt = min( WP )
up® = min( wu u' )

If az(,]:) < 0, then (2.12) defines alower bound of z;, that can only have values in the interval
[V, u'], wherel" = fu/al('kf)} andu’ = fl/az(,]:)]. Therefore, if [?** < I, thisinequality replacesall
previously considered inequalities that define lower bounds of ;. Theinequality iseiminated if
u < l,‘;ﬁ“. Thereafter, the following assignments are executed:

[in = max( R )
rex = max( P, o )

After these actions have been performed for al column augmented matrices in the sequence,
we obtain anew sequence of matrices in which some redundant inequalities (viz. rows) are elim-
inated.

Example: Consider the following system of linear inequalities:

1 -2 -3
-1 0

2 ( 1 > < | 300

-1 0 2 ~1

1 100
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Applying Fourier-Motzkin dimination yields the following sequence, where the terminating
column vector indicates the consistency of the system:

1 21300 1100 297
0 1]100 1100 99
-1 =2 =3 (= | —-1]197 | = | 297
1 -1 0 -1| -1 99
-1 0] —~1 0]594 594

During examination of the last column augmented matrix, the ad-hoc method simplifies the
four inequalities that define bounds of x; into 1 < x; and z; < 100. After the first inequality in
the column augmented matrix representation of the bounds of x5 has been considered, we obtain
ud™ = [ (300 — 100)/2] = 100 and u5"®* = [ (300 — 1)/2] = 149.

Sincew’ = 100 holdsfor the second inequality, we have v’ < u5"™ and thisinequality may re-
place thefirst inequality. Similar actions are taken for the inequalities that define lower bounds of
x9, and eventually the following simplified sequence results, from which the terminating column
vector also has been eliminated:

0 1100 . 1100
1 -1 0 -1 —1

Asadvocated in [10], proposition 2.1 provides a convenient method to detect redundant inequal-
ities. A linear inequality is redundant with respect to a system of linear inequalities if the system
obtained by negating thisinequality isinconsistent. For instance, negation of inequaity z; < 11
in the following system of inequalities yields z; > 11, which can be rewritten into 12 < =z, for
integer-valued variables:

Exact Simplification

1< 21 <10 Negation 1< 27 <10 Elimination 1 <10
r <11 — 12 < 14 — 12 <10

Theresulting system isinconsi stent, indicating the redundancy of thethird inequality. Because
negating one of the other inequalities in the origina system does not introduce an inconsistency,
these inequalities are not redundant.

The following rewriting steps are used to negate alower or upper bound of an integer-valued
variable z;,, wherea > 0:

L—-1
a - Ty

L < a-x, Negae a-xp < L Integers  a - xy

<
a-zp, < U — U < a-x — U+1 <

Hence, in generd, an inequality represented by the ith row of a column augmented integer

-,

matrix (A | b) is negated as follows:

;1 ...0L bi — —Q1 ... — Qik —bi -1 (213)

These observations give rise to the following exact simplification method during a backward
scan over the sequence, possibly after ad-hoc simplifications have been applied to reduce the total
number of inequalities that must be examined. At each step, we consider the following column
augmented matrix that represents all inequalities involving the variables x+, . . . , 2:
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Ol O
Ol O

(2.14)
A® | 7

If several inequalities define upper bounds for x;, then one of these inequalities is negated
and Fourier-Motzkin imination is applied to test the consistency of the resulting system. The
inequality iseliminated from both (A®) | 5(*)) and matrix (2.14) if this system isinconsistent, or
recovered into the original inequality otherwise. This process is repeated until all upper bounds
have been considered or only one upper bound remains. Similar steps are performed as long as
several not examined lower bounds remain.

Example: Thefollowing system of linear inequalities in two variables describes the convex poly-
gon shown in figure 2.4:

1 0 0
1 -1 4
2 -5 (“)g 2
0 -1 2 —2
0 1 8

If the sequence obtained after Fourier-Motzkin elimination issimplified by the ad-hoc method,
one redundant bound remains undetected:

0o 1| 8
1 -1 4 1]12
2—52%—1‘0
0 —1|-2

Since only one upper and lower bound is defined for 1, no simplifications are applied to the
last column augmented matrix in the sequence. However, three lower bounds are defined for x-.
Henceinequality 1 — zo < 4 isnegated in system (2.14) for k = 2. Thereafter, Fourier-Motzkin
is used to test consistency of the resulting system:

0 1] 8 1| 21 5’1
1 1|5 1| 12 -
ST N N N
0 —1{-2 ~1|-7 -
0] 12 ~1| 0 1
-1 0] 0 0] 6 ;

Because the terminating column vector indicates that the resulting system is consistent, the
negated inequality (shown in between lines) is restored into the origina inequality. Thereafter,
inequality 2- 21 — 5 - zo < 2 isnegated, followed by Fourier-Motzkin elimination to test consis-
tency:

0 1| 8 1] 12 1;
) =3 1 5 >
1 —1] 4 1] 12 -
0 1|2 |7 | =1|=7 |7 :
1 0] 12 1] 0 -
~1 0] o 0| 6 ;
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X

1 5 10 —

Figure 2.4: Simplification of Lower Bound

Because this system is inconsistent, inequality 2 - 1 — 5 - 2o < 2 isredundant with respect
to the origina system and is eliminated. Since till two upper bounds remain, inequality x5 > 2
is aso negated, followed by Fourier-Motzkin elimination to test consistency:

0 1| 8

0 111 i 12 12

1 -1 4 — 1112 — 5

1 012 11 0 12
-1 0| O

The resulting system of inequalities is consistent, which indicates that thisinequality must be
restored. Eventually, exact simplification yields the following sequence, where rows with az(f) =

0ineach (A®) | 5(®)) are no longer required:
0 1 8
1 -1 4 | — ( _i ‘ 1(2) >
0 —1|-2

Note that actualy inequality z; < 12 is redundant with respect to the whole system of in-
egualities since it arises naturally from the inequalities zo < 8 and z; — zo < 4. However, our
simplification methods keep variable x;, bounded in the system represented by (A®*) | (%)),

Comparison of Different Simplifying M ethods

In this section, we present the performance of Fourier-Motzkin elimination and the two different
simplification methods applied to some 2 - d x (d + 1) matrices of the following form:

1 -1 0
Y

B _i 8 (2.15)
o
1| 999
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Remaining Bounds Execution Time
\ FM. [ Ad-Hoc | Exact | EM. || Ad-Hoc | Exact | Total || Exact Only
2 6 4 41 0.2 0.1 00| 01 12
3 14 8 6| 05 0.2 0.9 11 4.9
4 34 16 8 15 04 48| 5.2 20.6
5| 138 36 10 || 20.7 13| 238 | 25.1 691.5

Table 2.1: Number of Remaining Bounds and Execution Timein milli-seconds

These systems have the important property that some (but not all) redundant inequalities are
eliminated by the ad-hoc method. Applying Fourier-Motzkin elimination to the matrix defined for
d = 3, for instance, yields the following sequence:

-1 1| 0 11999 999
0 1[999 1999 999
_(1) _? i 8 1L -1 0 -1 0 999
0 =1 0 -1 0 999

0 0 1]999
— 0 0 0 |— 0o 0 |— 0

1 0 —1| 0
0 1 -1l o -1 0] O© 0 0 0
P 10999 0999 999
0 0| 0 0 0 0
0 0]999 0| 999 999

Ad-hoc simplification results in the elimination of some redundant inequalities:

1 0 1]0

0 -1 1]0 _)(—1 1‘0)_}( 1‘999)
1 0 —1]0 1 —11]0 1| 0
0 1 —-11]0

Finally, the exact method performs the following simplification, which is only possible using
theinequalities z; < x5 < ;1 arising from projection:;

()—110_)—110_> 11999
0 1 —-11]0 1 -11]0 -1/ 0

Intable 2.1, we show the number of inequalitiesthat remain after Fourier-Motzkin elimination,
the ad-hoc simplification method and the exact simplification has been applied to matrix (2.15)
ford = 2,3,4,5. Inthe same table, we also present the execution time in milli-seconds on an HP
9000/720 for Fourier-Motzkin elimination, the ad-hoc method followed by the exact method, and
the exact method without preceding application of the ad-hoc method. All versions are compiled
with default optimizations enabled (but have not been fully hand-optimized with respect to e.g.
memory allocation, which could yield a substantial reduction in execution time).

Thissimple exampleillustrates that applying the exact method can be expensive in comparison
with actually performing Fourier-Motzkin elimination. Therefore, it must be possible to disable
this exact simplification. Furthermore, the example aso illustrates that if exact simplification is
desired, then the total ssmplification time can be reduced substantially by using the ad-hoc method
as afilter for the exact method.



Chapter 3

L oop Transformations

Many issues related to serial loops can be formalized using the concepts introduced in the previ-
ous chapter. The iteration space of particular loops, for instance, can be represented by a system
of linear inequalities in the loop indices. Likewise, certain subscript functions may be expressed
as dffine transformations from an iteration space to the index space of an array. In this chapter,
wefirst discuss these representations. 1n addition, we define two relations on statement instances.
Theexecution order, arising from the sequential semantics of loops, induces atotal order on state-
ment instances. Data dependences, on the other hand, arise from the way in which datais used
by these statement instances. In general, data dependences (and control dependences) induce a
partial order on statement instances.

An important observation for program restructuring is that changing the execution order on
statement instances does not affect the results of a program, if none of the dependences is vio-
lated. Any program transformation that preserves al dependences, also preserves the semantics
of the program. In this chapter, we discuss how this observation can be used in the context of loop
transformations. We briefly discuss the exploitation of implicit paralelism by relaxing the exe-
cution order induced by individual DO-loops as far as dependences allow. Moreover, we discuss
the framework of unimodular transformations that provides a mathematical foundation for some
conventional loop transformations. Finally, we present a method that isolates the loop-body of a
nested loop for all iterations that satisfy a number of linear inequalities simultaneously.

3.1 Sequential Loops
In FORTRAN, the DO-loop is an important construct to define iteration. If individual DO-loops
are used within other DO-loops, a so-called nested loop results:
DOl =Ly, U
[D lo = Lo, U
DO Id = Ld, Ud
B(ly,..., )
ENDDO
ENiZ)-E.)O
ENiZ)E)O
3.1.1 Loop Terminology

If no other statements appear in between the individual DO-loops, then the whole loop iscalled a
perfectly nested loop. For d = 2 and d = 3, we speak of double and triple loops respectively.
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A loop inwhich arbitrary statements, or even complete other DO-loops appear in between the
individual DO-loops isreferred to as anon-perfectly nested loop. We assume that each I; isan
integer-valued variable, caled aloop index. Wewill refer to the DO-loop having I; asloop index
asthe I;-loop. Wecal T = (I;,...,I,)7 theindex vector of the nested loop. The loop-body
B of thisloop consists of a sequence of indexed statements at nesting depth d. Each individual
indexed statement in this loop-body is denoted by S;(T) for some unique label S;. These labels
reflect the relative position of a statement in a program in the sense that if S; textualy appears
before S;, then i < j holds.

If the loop-bodly is executed for the value T = 7, where 7 € 2, then we call this vector an
iteration (vector) of thisloop. Substituting the value7 € Z? for T in an indexed statement S;(T)
in this loop-body yields the statement instance S;(7) executed during this iteration. Statements
at nesting depth zero only have one instance and are usualy referred to as scalar statements. The
set 1S of dl iterations for which the loop-body of a nested loop is executed is called the itera-
tion space of the loop. Under the assumption that only integer-valued variables are used as loop
indices, wehave IS C 27,

Example: Consider the following double loop:

DOI; =1, 2
DO|2 = l, 3
Si: A(|1,|2) = 10.0
So: B(l1,12) =B(l1,12) - 1
ENDDO
ENDDO

Theindex vector of thisloopisT = (I;,I,)7. Theloop-body consists of the two assignment
statements S, and S, appearing at nesting depth two. For this loop, S;(T) denotes the indexed
statement ‘A(l 1,1 2)=10.0 ’and S;(1,2) denotes the instance ‘A(1,2)=10.0 ' of this state-
ment executed initeration T = (1,2)”". Theiteration space IS C 22 of thisloop is shown below:

18 = {1, 1)7, (1,27, (1,37, 2,17, (2,2)7,(2,3)T}

3.1.2 Loop Bounds

Because DO-loop nor malization [234, p174—177] can be used to enforce unit strides, usually we
assume that each DO-loop is stride one. For such a DO-loop, the loop index | ; iterates over al
integers in the closed interval [L;, U;], called the execution set of the I,;-loop. This execution set
is defined by the loop boundsL; and U;, which may depend on the indices of outer DO-loops.

Admissible Loop Bounds

A single lower bound L; or upper bound U; is called an admissible loop bound if it can be ex-
pressed asfollows, where dl I;;, u;; € Z and [;; > 0 and u;; > 0:

i—1 i—1
lio+ X2 lij - I uip + 3 uij - I
=1 =1
L, = —]l and U; = J

Because I; isan integer-vaued variable and I;; > 0, the inequality L; < I, can be expressed
in terms of the index vector T asfollows:

(lil . li,i—l _lii 0... 0) : f < _liO (31)
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Likewise, the inequality I; < U; can be expressed as shown below:

(—uil...—ui,i_l wi; 0...0)-I <
d—i

(3.2)

Furthermore, a lower and upper bound is aso admissible if it consists of the maximum or
minimum of a number of admissible bounds respectively, asillustrated below:

L; =MAX(L},L?,...) and U; =MIN(U},U?,...)

Because all inequalities in such compound bounds must be satisfied simultaneously, these
bounds give rise to severa inequalities of the form (3.1) and (3.2) respectively. Conseguently,
the iteration space IS C Z¢ of aloop in which al loop bounds are admissible can be represented
by asystem of linear inequalities AT < b, where A is an integer matrix and b an integer vector:

IS ={Te z%| AT < b}

Becausein FORTRAN only finite execution sets may be used, for integer-valued loop indices
theiteration space IS C Z¢ consists of all discrete pointsin abounded polyhedral set P.S C R4,
Usually, programmers use a single lower and upper bound wherel;; = 1 or u; = 1in(3.1)
and (3.2), whichwewill refer to assimpleloop bounds. However, the more general loop bounds
discussed in this section may arise after loop transformations.

Example: Inthe following triple loop, a compound upper bound is used in the I5-loop:

DOI1 =
DO I » I M N(I 143, 8)
DOIlsz =0, 7-11
B(11,12,15)
ENDDO
ENDDO
ENDDO

no

7
1

The following system of inequalities represents the iteration space of this loop:

0 < I, -1 0 0 0
I, < 7 1 0 0 7
I, < I, 1 =1 0 0
I, < I, +3 -1 1 o0 |I<]| 3
I, < 8 0 1 0 8
0 < I4 0 0 —1 0
I, < 7-1 1 0 1 7

Each inequality defines a half-space in R3. The last inequality, for instance, defines the half-
space H = {I € R? | 1; + I3 < 7}. Infigure 3.1, the convex polyhedron defined by the
intersection of all these half-spaces is shown. Taking the intersection of this polyhedron and 23
yields the iteration space of the loop. Note that half-space defined by I; < 7 is redundant with
respect to the polyhedron. Indeed, we could even ‘simplify’ the bounds of the outermost DO-
loopinto ‘DO |1=1, oo’ without introducing additional iterations sincefor I; > 7 only zero-trip
loops are executed. For obvious reasons, however, we are only interested in simplifications that
keep execution sets bounded (cf. section 2.2.4).
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Figure 3.1: Iteration Space

Inadmissible L oop Bounds

All loop bounds that are not admissible are referred to asinadmissible loop bounds. Loop trans-
formations that rely on the representation of loop bounds as a system of linear inequalities may
become disabled in the presence of inadmissible bounds. However, transformations may still be
applicable to a sub-loop consisting of afew DO-loops with admissible bounds. Moreover, asys-
tem of inequalities in which some loop indices are unbounded may be used as a conservative rep-
resentation of the iteration space of aloop with inadmissible loop bounds. In this case, the ap-
proximated iteration space consists of al discrete points in an unbounded polyhedral set.

3.1.3 Subscript Functions

We can distinguish between individual elements of arrays by means of subscript functions, also
called subscripts for short. A c-dimensional array A may be accessed by any c-tuple (f1, ..., fe)
of subscripts, where each subscript f; must evaluate to an integer value satisfying the subscript
bounds of the ith dimension.

Admissible Subscripts

A subscript f; of an occurrence of ac-dimensional array A at nesting depth d is called an admis-
sible subscript if it can be expressed as an affine transformation that isrestricted to f; : 24 — Z
because al v;, w;; € Z and only integer-valued variables are used as loop indices:

d

fi(T) :Ui+zwij'1j (3.3
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Hence, if all subscript functions are admissible, these subscripts can be represented by asingle
affine transformation F : 24 — Z° that can be expressed in matrix form F(I) = 7 + W1 as
follows, where W isac x d integer matrix and ¢ is an integer vector with ¢ components:

U1 w11 ... W4
FIO=| : |+ A I (34)
Ve We1 Weqd

We assume that subscript bounds are not violated, i.e. if the bounds of the corresponding array

are declared as‘A(L; : Uy, ...,L. : U.)’, then F(I) € [L1,U4] X ... x [L.,U.] foral T € IS,
where IS C 22 denotes the iteration space of the loop.
Example: The prototype restructuring compiler MT1[37, 24, 45] uses constant folding and some
simple algebraic equivalences to detect admissible subscripts and loop bounds. Each admissible
subscript or loop bound is prompted to the programmer between angle brackets. The subscript
functions belonging to the occurrence of array X in following loop, for instance, are prompted by
MT1 to the programmer as ‘' <2*[+6*J+17>,<K>,<1> '

DO 10 | =1, 100
DO5 J =1, 100
DO 1 K =1, 100
X(5*(1+J)-(1-5)*3+J+2, K, K+1-K) = 10.0
1 CONTI NUE
5 CONTI NUE

10 CONTI NUE

These subscripts are represented by an affine transformation F : 22 — 23 that can be ex-
pressed in matrix form as follows, where T = (1, 3,K)"":

17 2 6 0
FO=| o|+]001]|T
1 000

Inadmissible Subscripts

A subscript that cannot be expressed as an affine transformation in surrounding loop indicesisre-
ferredtoasaninadmissible subscript. Usually, programs containing inadmissible subscripts can-
not be analyzed very accurately. Conventional transformations, like constant propagation, scalar
forward substitution and induction variable substitution [234, ch3][3, ch10] can beused to increase
the number of admissible subscripts and loop bounds. Moreover, athough we cannot always ex-
pect admissible subscripts in genera programs [192], most subscript functions used in numerical
applications are admissible.

3.1.4 Execution Order

Therelation ‘<;’ on Z¢ for 1 < k < d and the lexicographical order ‘<’ on Z¢ are defined as
follows, where7, 7 € 2

{

Wehave? < 7if either 7 < 7 or7 = 7. Therdations ‘> forl < k <d,'>="and ‘>’ are
defined similarly. Moreover, we say that avector 7 € Z¢ islexicographically positiveif 7 > 0
holds, which means that the first nonzero component is positive.

= Jlyee ey b1 = Jh—1,0k < Jk

<k 7 1= J1,--
T <k<d: <]

=<7

SLsy

-
=
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The following notation is used to isolate some consecutive components of a vector 7 € Z¢,
wherel < c¢; < ¢y < d:

V[er tea] = (igyy - - ,iQ)T

Let IS C 2% and JS C Z% denote the iteration spaces of two loops in which respectively
the statements .S; and S; occur. We define the common nesting depth d < min(d;, d;) of S; and
S; asthe nesting depth of the innermost DO-loop that is still shared by both statements. The exe-

cution order ‘<,,;” oninstances of S; and S, induced by the sequential semantics of FORTRAN
DO-loops with positive strides, can be defined as follows, where? € IS and 7€ JS:

7[1:d] <7[1:d]
Si(1) <0 S;(7) & or
7[1:d]=7[1:dandi <y

If the stride of a particular DO-loop is negative, the value of the corresponding component of
the iteration vector decreases in successive iterations of that DO-loop. Although it is straightfor-
ward to deal with this subtlety in the definition of *<,’ [228], usually we assume that all strides
are positive. In fact, most DO-loops are stride-1 [123], whereas, as stated before, DO-loop nor-
malization can be used to enforce unit strides.

3.1.5 Data Dependences

In this section, we define data dependences. This relation on statement instances arises from the
flow of data in a program and, in contrast with the execution order, induces a partial order on
statement instances.

Input and Output Sets

Theinput set and the output set of astatement S;, denoted by IN(.S;) and OUT(.S;) respectively,
consist of al variables that may be read or written to by this statement. Substituting an iteration
7 € IS for the index vector of the loop with iteration space IS C Z¢ in which S; appears yields
the setsIN(.S;(7')) and OUT (.S;(7)) consisting of the actual elementsthat are read or written to by
the statement instance S; (7).

Example: Consider the following assignment statement:

S X(K+1) = A(1,J) * S- 4.0
Theinput and output set of this statement are shown below:

IN(S1) = { A(1,J),I,],K,S }
OUT(S:1) = { X(X+1) }

If thevariables| , J and K are used asloop indices, then the input and output set of the instance
S1(1,2,3) have the following form (the loop indices vanish):

IN(S1(1,2,3)) = { A(1,2),S }
OUT(S:(1,2,3)) = { X(4) }

The input and output sets of statements enables us to define data dependences.
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Flow, Anti, and Output Dependences

Consider two statements S; and S; that appear two possibly different loops with the iteration
spaces IS C 2% and JS C Z% respectively. If S;(7) <, S;(7) for7 € ISand 7 € JS,
then the following memory-based' data dependences may arise between these two instances, re-
spectively caled aflow, anti, and output-dependence:

Si(¥) ¢ S8;(7) i OUT( Si(m) ) N INC S;(7) ) #0
Si() 6 S;(7) it INC Si(@) ) N OUT( S;(7) ) #0
Si(¥) 62 S8;(7) it OUT( Si(r) ) n OUT( S;(7) ) #0

The notation S;(7') 6* S;(7) isused to indicate that there is an arbitrary data dependence be-
tween two statement instances, and we say that the instance S; (') depends on the instance S; (7'),
or we say that there is a data dependence from instance S; (') to the instance S;(7).

If d < min(d;,d;) denotes the common nesting depth of S; and S, then the dependence
distance vector of such adata dependence is defined as the following vector:

d=7[1:d —7[1:d

Itisnot difficult to see that, because S;(7') <, S;(7), al dependence distance vectors are zero
or IeX|cograph|ca|Iy posmve The data dependence is called loop-independent if d = 0, and
loop- carrled if d 0. 1In particular, in the latter case we say that the loop is carried by the Ij-
loop if d = 0. Furthermore, the data dependence is called lexically forward if 7 > 4, lexically
backward if i < j, or aself-dependenceif : = j holds.

Data dependences impose an ordering constraint on the execution of statement instances be-
cause, if thereis adata dependence between two statement instances, then changing the execution
order of theseinstances could change the semantics of the program. Anti and output dependences
arise from the re-use of memory and, in principle, could be removed by the introduction of new
variables[5]. Therefore, these data dependences are al so referred to asfal se dependences, whereas
flow dependences are sometimes called true dependences. If the intersection of the input sets of
two statement instances is non-empty, then this gives rise to an input dependence. No ordering
constraint areimposed by input dependences, which are not further considered in this dissertation.

If the execution of astatement instance depends on the outcome of a particular test, aso-called
control dependence arises. Although control dependences al so impaose an ordering constraint on
the execution of statement instances, we usually do not explicitly consider control dependences.
In fact, there are methods to convert control dependences into data dependences [6][234, p238-
249].

Static Data Dependences

In the presence of loops, it isusudly infeasible to record all data dependences, because the com-
piler cannot represent each statement instance individually. Therefore, some abstraction is re-
quired [p139-140][229]. We say that there is a static flow, anti or output dependence between a
source statement S; and asink statement S, denoted by S;4.5;, S;6.5; and S;6°S; respectively,
if there is at least one such a data dependence between instances of S; and S;. Again, the notation
S;0*S; isused to indicate an arbitrary static data dependence, and we say that S; depends on S;
or that there is a dependence from S; to S;. A convenient graphical representation of static data
dependences consists of a data dependence graph, in which the vertices and edges correspond
to statements and the different static data dependences, respectively.

'In contrast, data dependences are call ed val ue-based if there are no intermediate writesto the data e ements causing
the data dependence [174][229, ch.5].
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Oneway to represent the data dependence structure of aprogram isto annotate each static data
dependence with dependence distance vectors of the underlying data dependences. However, even
representing the data dependence structure in terms of a set of dependence distance vectors is not
alwaysfeasible. If some of theloop bounds are very large or inadmissible, aninfeasible or infinite
number of distance vectors may arise. In such cases, a static data dependence can be annotated
with a dependence direction vector, which simply records the sign of each component of the
corresponding dependence distance vectors. Each component of a dependence direction vector
isan element in {x, <, >, =}, corresponding to an unknown sign, positive or negative sign, or a
zero component respectively. Inthismanner, apossibly infinite set of dependence distance vectors
can be recorded. For example, the dependence distance vector (<, =) represents the following
infinite set of dependence distance vectors:

{1,007, (2,007, (3,007, (4,0)7,...}

An annotated static data dependence is denoted with the corresponding dependence distance
or direction vector as subscript (€.9. S10(41,0,—4)S2 OF S10(< = +)52).

If a perfectly nested loop with iteration space IS C 2% is considered in isolation, we may
represent the data dependence structure of this loop asaset D C 2¢ of dependence distance (or
direction) vectors, where deD simply implies that a statement instance executed in an iteration
7 € IS depends on an instance executed initeration 7 € IS, where 7= 7'+ d. In this manner,
we abstract from data dependences that involve statements outside the loop-body of thisloop, and
from components of dependence distance vectors caused by DO-loopsthat appear within theloop-
body.

Example: Consider the following fragment:

DOI; =1, N1
S1: X(11) = X(11+#1) * 5.0 ’9 —= Flow
ENDDO
DOI; =2, N —t= Anti
DOly =1, N1
Sot A1 12) = A(I1-1,19+1) * X(11)
ENDDO .e
ENDDO

Asdepicted in the data dependence graph, inthisfragment the static anti dependence 514151
and the static flow dependences 5145, and S20(41,-1)52 hold. The data dependence structure of
the first loop in isolation may be represented by D = {(+1)}, whereas the dependence structure
of the second loop in isolation can be represented by D = {(+1,—1)}.

3.1.6 DataDependence Analysis

Data dependence analysis consists of determining the data dependence structure of a program. In
general, the problem of computing all data dependences at compile-time is undecidable. How-
ever, many methods have been developed to determine the data dependences between arrays with
admissible subscripts.

Data Dependence System

Let IS C 2% and JS C Z% denote the iteration spaces of two loops in which respectively
statements .S; and S; occur. Let d < min(d;, d;) denote the common nesting depth of .S; and S;.
If both statements appear in the loop-body of the same loop, then wehave IS = JS. Otherwise,
the d outermost DO-loops are shared by both statements, whereas the other DO-loops are not.
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Now suppose that both statements access a particular c-dimensional array A. If awrite opera-
tion to thisarray occursin.S; and aread operation in S, then there is a potential flow dependence
from S; to S; and a potential anti dependence from S; to S;, depending on the execution order
of instances that access the same element. In the opposite case, there is a potential flow depen-
dencefrom S to S; or potential anti dependence from S; to S;, whereasthereisapotential output
dependence in either direction if write operations occur in both statements.

If the subscripts of A in both statements are admissible and represented by affine transforma-
tions F : 2% — z?and F' : 2% — 22 which are denoted in matrix formas F(I) = 7 + WT
and G(J) = # + Y J respectively, where T and J denote the index vectors of the two loops, then
both statements may access the same element if there exists integer vectors7 € 2% and 7€ 2%
that satisfy F(7) = G(7):2

(W’—Y)(?):f—ﬁ (3.5)

Additiona congtraints arise from the fact that we must search for solutions? € IS and 7 €
JS. All admissible loop bounds give rise to linear inequalities. Other inequalities arise if we test
for a data dependence with a particular dependence direction vector. Eventually, these additional
constraints can be expressed as an integer system of linear inequalities.

A ( ° ) <b (3.6)
J

Together, the systems (3.5) and (3.6) form the data dependence system. If no integer solu-
tions exist, then the statements .S; and .S; are independent (at least, with respect to the two occur-
rences of array A). Otherwise, there is a data dependence between the two statements. Hence, in
essence data dependence analysis is equivalent to integer linear programming [61, 151]. If some
subscripts or loop bounds are inadmissible, we may conservatively omit the corresponding equa
tions or inequalities from the data dependence system.

Data Dependence System Solvers

Because solving linear integer programming programs exactly may beinfeasible in practice, many
data dependence systems solvers have been devel oped for special and more general cases, varying
from exact tests (providing a necessary and sufficient condition for data dependence) to approx-
imate tests (only providing a necessary condition for data dependence). Although solvers may
have a different trade-off between accuracy and efficiency, all solvers must be conservative, i.e.
if independence cannot be proven, then data dependence must be assumed.

Oneway to solve adata dependence system, for example, isto use proposition 2.2 to solve the
system of equations with an integer echelon reduction algorithm (generalized GCD-test), followed
by using Fourier-Motzkin elimination to solve the system of inequalities obtained by substituting
the general form of the solution for the variables in the origina system. In generdl, this reduces
the number of inequalities and variables [151].

Other solvers, such as the GCD- or bounds-test consider equations separately, possibly ac-
counting for the inequalities. Note that if solvers only deal with one equation at the time, depen-
dence anaysis for multi-dimensional arrays can be handled by considering all admissible sub-
scripts separately after which the solution sets are intersected, or by linearizing the subscriptsfirst.

In [47], amethod to reduce the number of applications of a solver is presented. Rather than,
for instance, calling the solver for every plausible dependence direction vector in two directions,

2Note that although the index vectors T and J have the first d loop indices in common, the actual values of the
corresponding components in 7and 7’ may differ.
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Figure 3.2: Hierarchical Dependence Testing

I.e. testing for dependences from S; to S; and from S to S;, we test for dependences in both di-
rections simultaneously in a hierarchical manner by successively refining dependence direction
vectors. First, we start with the dependence direction vector (x, . . ., x), which Ssimply imposes no
additional congtraints on the variables. If independence cannot be proven, one of the components
is refined into the directions *<’, ‘=", and *>’". In this manner, a tree of dependence direction
vectorsis congtructed, asillustrated in figure 3.2 for a dependence direction vector with two com-
ponents. If independence can be shown for a particular dependence direction vector, however, no
further refinements are required, which effectively prunes the subtree rooted at that dependence
direction vector. If wearrive at aleaf, the appropriate static data dependence isrecorded, possibly
after reversing an implausible dependence direction vector from S; to .S; into a plausible depen-
dence direction vector from S; to S; and reversing the nature of the data dependence that would
result from S; to S; according to flow — anti, anti — flow, and output — output.

This approach becomes even more efficient, if information required by the solver algorithm
can be constructed incrementally during traversal of the tree. Moreover, in some casestheway in
which the tree is expanded may affect the number of times the solver is called.

Example: Consider the following double loop:

DOI =1, 100
Sii A1) = ...
Syt ... = A(l+1)

ENDDO

In this loop, there is a potential data dependence between the statement instances Sy (i) and
S2(j), because these instances may refer to the same element of array A asimplied by the follow-
ing dependence system:

i = j+1
1 < i < 100
1 < j < 100

Therefore, we consider the three dependence systems that result after adding the constraints
i < j,i=jandi > jrespectively. Obvioudy, only the last dependence system has solutions.
Because the write occursin S7, we may say that there is a static flow dependence S1 4~ S5 with an
implausi ble dependence direction vector, which isreversed into the static anti dependence S20 .Sy
to account for the fact that S, (j) <, S1(7)-

Effective data dependence analysis should also account for the flow of control in a program.
For example, loop-independent data dependences between instances of statements appearing in
different branches of a multi-way | F-statements cannot occur. In addition, in the presence of sub-
routines and functions, interprocedural data dependence analysisis required.

A moredetailed presentation of data dependence analysis and data dependence system solvers,
however, is beyond the scope of this dissertation but can be found in the literature (see e.g. [15,
16, 17, 23, 47, 82, 109, 127, 142, 151, 155, 166, 170, 228, 229, 234])
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3.2 Exploitation of Implicit Parallelism

Although the sequential semantics of loops induce a total order on statement instances, the exe-
cution order of individual DO-loops may be relaxed without changing the semantics as long as
al data dependences are preserved. Since numerica programs spend most execution time inside
loops, a substantial speed-up may be expected from exploiting such implicit paralelism.

In this section, we briefly discuss how acompiler can convert implicit parallelism into explicit
parallel constructs by loop vectorization and loop concurrentization. A more detailed discussion
of this topic and other restructuring transformations can be found in the literature (see e.g. [4, 5,
41,47, 48,64, 101, 86, 127,128, 132, 135, 147, 152, 158, 165, 166, 170, 217, 228, 227, 229, 234]).

3.2.1 Loop Vectorization

The automatic conversion of serial DO-loops into semantically equivaent vector statements is
referred to as vectorization.

Vector Statements

Themain transformation for vectorization isthe conversion of aDO-loop in which asingle assign-
ment appears into a vector statement, which is made explicit in the text using subscript triplets.
Each vector statement is subject to FS-semantics (fetch before store-semantics), which means
that al right-hand side elements are fetched before any of the left-hand side elements are stored.
Hence, any sdlf-anti dependence may be ignored.

Under the assumption that self-output dependences also may be ignored because stores are
executed deterministically, vectorization of a single assignment statement in a DO-loop is valid,
if no flow dependence is carried by the DO-loop.

Example: Because below, static dependences S;6..5; and S8 S, hold, only statement S, may
be vectorized (we aways assume that the final value of aloop index isnot used after the DO-loop,
making a last-val ue-assignment to restore the value of the loop index unnecessary):

DOI =2, N
Si: A1) = A(1-1) * 2.0 DOI =2, N
ENDDO N A(l) = A(1-1) * 2.0
DOI =1, N1 ENDDO
Sy B(1) = B(1+1) * 2.0 B(1:N-1:1) = B(2:N:1) * 2.0
ENDDO

Generation of Vector Statements

Two basic forms of loop transformations are essential for the effective generation of vector state-
ments. Thefirst transformation, called loop distribution, converts asingle DO-loop with aloop-
body that is partitioned into adjacent blocks B1 and B2 into two adjacent DO-loops with the loop-
bodies B1 and B2 respectively.

Digtribution of aDO-loop isvalid, if no lexically backward data dependence from an instance
of a statement in B2 to an instance of a statement in B1 is carried by the DO-loop:

DOl =1, N
DOl =1, N B1(1)
B1(1) ENDDO
B2(1) - DOI =1, N
ENDDO B2(1)

ENDDO
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Figure 3.3: Data Dependence Graph

The second transformation isreferred to as statement reordering. Given two adjacent state-
ments, simply reordering statements S; and S; 1 textually in the program is valid, if there is no
loop-independent data dependence from an instance of .S; to an instance of S; .

Given the dependence graph of aloop, vectorization may proceed asfollows. First, theacyclic
condensation of the dependence graph is constructed, in which vertices correspond to strongly
connected components. Subseguently, the statements in the loop-body are reordered according to
atopological sort of the acyclic condensation, where statements in the same strongly connected
components become adjacent. Now, there are only lexically forward dependences between in-
stances of statements in different strongly connected components, and loop distribution can be
used to isolate these strongly connected components.

Statements involved in a multi-statement data dependence cycle remain in a seria loop. If
valid, al other statements are vectorized, or possibly recognized as particular idiom that can be
efficiently implemented in some manner, such as areduction [228, ch7][234, p235-237]. For ex-
ample, although aflow dependence is carried by the following DO-loop, the whole construct may
be recognized as a summation:

DOl =1, N
S=S+Al) ~  S=S+SUM ALN )
ENDDO

Vectorizing arithmetic reductions is only valid if roundoff errors, which are due to inexact
computer arithmetic, are allowed to accumulate in a different order [135, ch4][228, ch7].
Example: Based on atopological sort of the acyclic condensation of the dependence graph shown
in figure 3.3, the following loop is vectorized as shown below:

DOl =1, N1 Si:B(2:N:1) = 5.0
S A(l) = 10.0 DOl =1, N1
S B(1) = A(1+1) * (1) Sa: B(1) = A(1+1) * (1)
S3: O(1+1) = B(I) - S3: O(1+1) = B(I)
Sy B(1+1) = 5.0 ENDDO

ENDDO SiiA(1:N-1:1) = 10.0

Nested loops can be vectorized in asimilar way by ignoring data dependences that are carried
by more outer DO-loops during vectorization of inner DO-loops. Details about vectorization can
be found in [5, 135, 166, 170, 227][228, ch3][229, ch10][234, ch6].
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3.2.2 Loop Concurrentization

Executing the different iterations of a DO-loop on different processors of a shared memory multi-
processor may result in a substantial reduction of execution time. Two kinds of concurrent DO-
loops can be distinguished [59, 60, 166, 171][170, p13][228, ch4][234, ch7]. A DOALL-loopis
used if al iterations are independent and can be executed concurrently. A DOACROSS-loop is
used if a partial execution order on some (parts) of the iterations must be imposed. In the latter
case, synchronization between the execution of different iterationsisrequired to meet thisordering
constraint.

DOALL-Loop

A DO-loop can be converted into aDOALL-loop if al iterations of the DO-loop are independent,
i.e. if no data dependence is carried by this DO-loop. Issues related to the automatic concurren-
tization of loops are addressed in [48, 66][228, ch4][229, ch11][234, ch7].

Example: Sinceonly S; 0. S holdsinthefollowing doubleloop, no data dependence iscarried
by the innermost DO-loop and all iterations of this DO-loop may be executed in parallel:

DOl =2, N DOl =2, N
DOJ =2, N DOALL J = 2, N
Si: A(1,J3) = A(l-1,3-1) + 5.0 - A(1,J) = A(1-1,3-1) + 5.0
ENDDO ENDDO
ENDDO ENDDO
DOACROSS-L oop

Toimpose a partial execution order on some (parts) of the iterations of a DOACROSS-Ioop, syn-
chronization between the execution of different iterations is required. In [59, 60], this synchro-
nization is modeled under the assumption that processors operate synchronously by using a par-
ticular delay d > 0 between consecutive iterations of the DOACROSS-loop, i.e. the ith iteration
is executed after adelay of (i — 1) - d. Alternatively, synchronization can be enforced using the
primitives testset/test (or advance/await) [155, ch6][156, 157][229, p393-395] which can beim-
plemented with a single synchronization variable [228, p84-86].

Here, wefocus on more genera random synchronization with the primitives post/wait [228,
p75-83][234, p289-295]. Inabusy-waiting implementation, each post isanon-blocking operation
that sets a unigue bit on which completion of a corresponding wait depends.

If data dependences are carried by a DO-loop that is converted into a DOACROSS-loop, a
post-statement is placed directly after the source statement of the data dependence, while a cor-
responding wait-statement is placed before the sink statement of the data dependence. Different
synchronization variables are used for the synchronization of different static data dependences,
while other parameters are used to distinguish between the different underlying data dependences
of each individual static data dependence. The automatic generation of synchronization and the
elimination of redundant synchronization is addressed in [141, 155, 156, 157, 234].

Example: If the following DO-loop is converted into a DOACROSS-oop, then all underlying
data dependences of 571652 with fixed dependence distance 4 can be enforced by instances of
the given wait- and post-statements (wait does not block on out-of-bounds iterations):

DOACROSS | = 1, N-4
DOl =1, N4 A(l+4) = ...

S A(1+4) = ... post( ASYNG, | )

Sy ... = A1) - wait( ASYNG, | - 4)
ENDDO . = A(l)

ENDDOACRGSS
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Figure 3.4: Execution of a Concurrent-Loop

The synchronization variable ASYNGChas one parameter, so it can be implemented as a one-
dimensional bit array with one bit for each iteration.

In general, however, several parameters may be necessary to distinguish between different in-
stances of asingle source statement. In these cases, the synchronization variable must be imple-
mented as a multi-dimensional bit array. However, because we assume that severa instances of a
wait-statement may test the same hit, it is not necessary to distinguish between different instances
of asingle sink statement.

Concurrent Loop Scheduling

We assume that concurrent loops are executed using fork/join-like paralelism, illustrated in fig-
ure 3.4, where a master process executes the seria part of the program and initiates a number of
dlave processes when aconcurrent loop is reached [229, 385-387]. After all iterations of thisloop
have been executed, the slave processes synchronize using barrier synchronization, and the mas-
ter process continues execution of the serial code after the concurrent loop. Whether each dave
process is actually executed on a physical processor and whether slaves are terminated or smply
parked at the barrier depends on the operating system used.

Theway inwhich iterations of aconcurrent loop are assigned to the slave processes depends on
the scheduling policy. We can use pre-scheduling, where either ablock of consecutive iterations
isassigned statically to each slave process (block-scheduling), or iterations are assigned statically
inacyclic fashion to the dave processes (cyclic scheduling). To reduce the potential of load im-
balance, we can also use self-scheduling, where each dave processes enters a critical section to
dynamically obtain a next chunk of iterations to be executed. A small chunk size probably yields
good load balancing at the expense of much synchronization overhead, whereas alarge chunk size
decreases synchronization overhead at the expense of potential 1oad imbaance. A good comprise
is to vary the chunk size dynamically, such as assigning 1/p of the remaining iterations to each
next slave process in case there are p dave processes (guided self-scheduling). These scheduling
policies are discussed in more detail in [170, ch4][228, p73-74][229, p387-392][234, 296-299].

3.3 Unimodular Loop Transformations

A magjor step forward in solving the phase ordering problem has been accomplished by the obser-
vation that any combination of the iteration-level loop transformations loop interchanging, loop
skewing [226] and loop reversal can be represented by a unimodular transformation [18, 19, 71,
224, 225]. The advantage of this approach is that the order and validity of individual transforma-
tions becomes irrelevant, because a unimodular transformation can be constructed directly for a
particular goal provided that data dependence constraints are accounted for.
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3.3.1 Iteration-Level Loop Transformations

Aniteration-level loop transformation transforms aperfectly nested loop with stride-1 DO-loops,
index vector T = (Iy,...,I,)7, and iteration space IS C Z? into another perfectly nested loop
having index vector I’ = (1},...,I)" and iteration space IS’ C Z¢.

The former loop and IS C Z% are referred to as the original loop and the original itera-
tion space respectively. The latter loop and I.S" C Z¢ are called the tar get loop and the tar get
iteration space. Each iteration-level 1oop transformation consisting of a combination of loop in-
terchanging, loop skewing, and loop reversal can be represented by alinear transformation F' :
IS — IS’ that isdefined by ad x d unimodular matrix U. Aniteration 7 € I.S in the original
iteration space is mapped to aniteration 7/ € 1.S” in the target iteration space as follows:

7 = F7) =UT

Because iterations in both the original and target iteration space are traversed in lexicograph-
ical order, aunimodular transformation changes the order in which iterations are executed. Inthe
original loop, aparticular iteration 7 € 1.5 is executed before another iteration 7€ 1S if we have
7 < 7, whereasin thetarget loop theiteration corresponding to the former is executed before theit-
eration corresponding to the latter if wehave U7 < Uj. Application of an elementary integer row
operation (cf. section 2.2.3) to the d x d identity matrix yields an elementary matrix that defines
asingle loop reversal, loop interchanging, or loop skewing.

Example: Consider the following double loop:

DOI; = 1, 100
DOIy = 1, 50
B(l1,12)
ENDDO
ENDDO

Thetarget loops that result after application of the unimodular transformations defined by the
following 2 x 2 elementary matrices are shown below:

Reversal: Interchanging: Skewing:
-1 0 0 1 1 0
0 1 1 0 p 1
DO 1} = -100, -1 DO} =1, 50 DO 17 =1, 100
DO I} ,:l; 50 DOIfZ,: ,l 100 DOI(ZI: ;_+p:|:1, 50+p* | ]
B(-17,11%) B(14, 1) B(i, 14-p*17)
ENDDO ENDDO ENDDO
ENDDO ENDDO ENDDO

Any combination of loop interchanging, loop skewing and loop reversal can be represented
by asingle unimodular transformation. Conversely, each unimodular matrix can be decomposed
into a finite number of elementary matrices [19, p40-45] and, hence, loop transformations. Con-
sequently, this approach offers more flexibility than the traditional step-wise application of loop
transformations, where the usefulness and validity of each individual transformation must be con-
sidered separately.

3.3.2 Validity of Application

Application of aunimodular transformation isvalid if the semantics of the origina loop are pre-
served. Therefore, we must verify whether the data dependences arising in the original loop are
still satisfied in the target loop (where, as usual, we assume that the final value of loop indicesis
immaterial).
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Dependence Distance Vectors

Let theset D C 29 of dependence distance vectors represent the data dependence structure of
the original loop, i.e. if a statement instance executed in iteration 7' € 1.5 depends on a statement
instance executed in iteration 7 € IS, then for d = 7—1,we haved € D.

Because U definesalinear transformation, applying atransformation defined by aunimodular
matrix U to thisloop affects the dependence distance between the previous two iterations as shown
below:

d'=U7 -Ur=U@F"-7)=Ud

Consequently, application of aunimodular transformation defined by U to aloop of which the
data dependence structure is represented by a set of dependence distance vectors D C Z% isvalid
if and only if Ud = 0 holds for all d € D.

Dependence Direction Vectors

To deal with the general case, both dependence distance and direction vectors are represented by
dependence vectors [224, 225]. Each component of a dependence vector d consists of a range
[d™in d™2¥] that is described by two bounds d™, d™2* € Z U {—o0, +-00}. Components of a
dependence direction vector are trandated to components of a dependence vector as follows:

>
<

1
iR
i
2

Il

1
=)
=2

A component of a dependence distance vector is represented by a degenerate interval [d;, d;].

Given a dependence vector d with d components, then d = 0 holdsif thereisal <i<d
such that @' > 0 and d™ = 0 foral 1 < j < 4. Moreover, d = 0 holdsif either d = G or
d?in > 0foral 1 <i < d. Tworangesare added asfollows, whereco+s = oo forany s # —oo
and —oo + s = —oo for any s # oo:

Lu] + [ ] = +1",u+ ]

Multiplication of arange by ascaar s € Z isdefined below, where s - +o00 = 0 if s = 0, and
s+ +0o = +oo hasthe appropriate sign for s # 0:

] = [s-l,s-u] if s>0
ST [su,s-1] otherwise

Applying aunimodular transformation defined by U to aloop of which the data dependence
structure is represented by a set D of dependence vectors with d = 0foral d € Disvalid, if
Ud > 0 aso holdsfor al d € D under the previous defined arithmetic. The converse implication
does not hold, because loop skewing may cause loss of data dependence information.

3.3.3 CodeGeneration

The application of aloop transformation defined by a unimodular matrix U to aloop nest with
index vector T isimplemented by replacing the original loop with the target loop. Effectively, this
replacement isimplemented by (i) rewriting the loop-body of the original loop, and (ii) generating
new loops with index vector I’ that induce alexicographical traversal of the target iteration space.
Here, we assume that all loop bounds of the original loop are admissible.
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Replacement of Original Loop with Target L oop

Because the index vectors of the target loop and original loop are related according to I’ = UT,
step (i) issimply performed by replacing each loop index in the original loop-body according to
theequation T = U~ 'T".

Moreover, since the origina iteration space can be defined in terms of a system of linear in-
egualities and all discrete pointsin the image of a polyhedral set under a unimodular transforma-
tion uniquely correspond to a discrete point in that set (see section 2.1.5), a representation of the
target iteration space is obtained as shown below:

IS={Tezd|AT<b 5 I8 ={T"ez2d|AU-'T' <b}

Hence, step (i) consists of generating loops that induce a lexicographical traversal of dl dis-
crete points 7’ € Z¢ that satisfy AU—'7" < b.

Example: Consider application of loop interchanging to the following double loop:

DOl =1, 3 DO, =2 4
DO Iy = 1+1, 4 U:(o 1) DO, =1, I}-1
B(11,12) 1 B(14,17%)
ENDDO - ENDDO
ENDDO ENDDO

The loop-body of the target loop is obtained by replacing the loop indices according to the

equation I = U T
L) [0 1)\/[T1
()= (7o) (&) o7

Unfortunately, generating the loop bounds of the target loop is less straightforward. A first
step towards finding these bounds is to apply the substitution defined by equation (3.7), that is
I, = I}, and I, = I/, to the system of inequalities representing the loop bounds of the original
loop:

1< 1; <3 . 1< 1, <3
141, < Ip <4 1+I,< I <4

The bounds of the innermost loop can be determined directly:
1 < 1) <MIN(3,TI) —1)

However, inequality 1 + If, < I} cannot be used directly to determine the lower bound of
index I’ because thisbound is given in terms of theinnermost loop index I),. First, index I}, must
be eliminated from the system. This is performed by replacing all inequalities involving If, by
inequalities in which each lower bound of this index isless than or equal to each upper bound of

thisindex. In the example, we obtain:

1 <1, 1, < 3 1 < 3
I, < Ih—-1 — 1 < Ij—1
I, < 4 I, < 4

Consequently, the lower and upper bound of I’ can be expressed as 2 and 4 respectively,
which is the appropriate form for the bounds of an outermost loop. At this point the valid range
for index | | isknown, and the upper bound of index | ¢, can be simplified into I} — 1. By enumer-
aing al instances of the loop-body that are executed in the original and new loop, we can easily
verify that both loops execute the same instances, but only in a different order:



46 CHAPTER 3. LOOP TRANSFORMATIONS

Original Loop: Target Loop:
B(1,2) B(1,3) B(1,4) B(1,2)
B(2,3) B(2,4) B(1,3) B(2,3)
B(3,4) B(1,4) B(2,4) B(3,4)

Fourier-Motzkin Elimination

In general, the system of inequalities AU~'T < b describi ng the target iteration space is unsuited
to generate theloop bounds of thetarget |oop directly, because the bounds of aparticular index may
be defined in terms of indices of more inner DO-loops. However, as advocated in [10], Fourier-
Motzkin elimination can be used to convert the system in the appropriate form.

Starting with the column augmented integer matrix representation (A@ | b(@) of the target
iteration space, where A(D = AU and b(9) = b, the sequence (2.10) is generated. Each col-
umn augmented matrix (A®) | 5*)) defines the lower and upper bounds of T} according to the
inequalities (2.11). If only one lower or upper bound results (viz. p*) = 1 or ¢*) = p(¥) 4 1),
then the maximum or minimum function is omitted. Ceiling and floor functions are omitted for
al lower or upper bounds having az(,]:) =1.

The ad-hoc and exact simplification method can be used to eliminate redundant inequalities
and, hence, redundant loop bounds, which improves the efficiency of the generated code by re-
ducing evaluation overhead.

Example: Applying Fourier-Motzkin elimination to the system of inequalities that define the tar-
get iteration space of the example presented in the previous section yields the following sequence
of matrices:

-1 11-1

0 1| 3| _i _;L (2
0 —1[-1 2
1 0| 4

The ad-hoc simplification method can eliminate all redundant inequalities:

(o) (1))

Effectively, these simplifications correspond to the following program transformations:

Do) =2 4 DI} =2 4
DOI, =1, MN(I,-1, 3) DO1, =1, I-1
B(14,17) - B(I4,17)
ENDDO ENDDO

ENDDO ENDDO

Example: Consider, as another example, applying the transformation represented by the follow-
ing unimodular matrix U to the loop nest shown below:

DO 1. = 10, 15

DOl =1, 3
EX)2|3:1, 50 0 6 1
B(l1,12,13) U= 1 -3 0
ENDDO

ENDDO 0 10

ENDDO

The loop-body of the target loop is obtained by replacing the original loop indices according
to the equation fﬂz U-lT. Th§ target iteration space is represented by the column augmented
matrix (AU~! | b), where (A | b) represents the original iteration space:
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-1 0 0 ~10

0 -1 0 -1

1 o o -1 |21 3} . -1
AU = 00 1] b=

1ol g e 15

0 1 0 3

0 0 1 50

At page 22, the sequence of column augmented matrices arising from Fourier-Motzkin elim-
ination has already been presented. Eventualy, the following code is generated:

DO} =7, 68
DO I, = MAX(L, [(21-17)/2]), MN(12, [80-14)/2])
DO I, = MAX(1, [(10-14)/3], [(14-50)/6]), MN(3, [(15-14)/3], [(1}-1)/6])
B(1543%1 5, 14,1 7-6%11)
ENDDO
ENDDO
ENDDO

Example: In[225], application of the unimodular transformation defined by the U shown below
to the following triple loop is considered:

DO 1; =1, 100
DO 12 = 2*1 ¢, 100

DO I3 = 2*%1 1+l -1, MN(|2, 100) 0 0 1
B(l1,12,13) U= 01 0
ENDDO
ENDDO 100
ENDDO

Applying Fourier-Motzkin elimination to the column augmented matrix (AU ' | 5), repre-
senting the target iteration space, results in the following sequence:

0 0 11100 -1 1] —1

0 —1 2 0 0 11100 i }88 97
-1 1 2 1 0 —-1| —2 1| _3 97

0 0 —1] —1 — 1 -1 =2 — ol o8 — 98

0 1 0| 100 1 -1 0 ol 99 99

1 -1 0 0 0 0] 99 ol 1 -1

1 0 0| 100 1 0| 100

Because one of the components of the column vector is negative, the system of inequalities
isinconsistent. Thisimplies that both the target and original iteration space are empty. Indeed,
careful examination reveals that the original nest is a zero-trip loop.

3.3.4 Construction of a Unimodular Loop Transformation

Applying an iteration-level loop transformation may change the order in which iterations are ex-
ecuted. In this section, constructing a unimodular transformation that affects this order in some
desired manner is explored.
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Figure 3.5: Application of a Unimodular Transformation

Hyperplane Traver sal
Applying alinear transformation F' : 1S — IS’ defined by ad x d unimodular matrix U gives
rise to the system of equations I’ = UT:
Ill = wupn-I1+...+ug- Iy
: (38)
Iil = ugr-I1+...+ugq- Iy

The ith row of matrix U forms the normal vector of ahyperplane in R%
HZU(I;) :{fERd|u2~1-11+...+uid-Id:I;}

Consequently, for fixed I} = #},..., I} = i}, the other DO-loops of the target loop execute
all iterations in 1.5” that are in the image of the following set under F':

HYG)n...nHY (i) Nn1IS

Because the rows of a unimodular matrix are linearly independent, the intersection of hyper-
planes HY (i) N ... N HY (i}) formsa (d — k)-dimensional affine subspace of R?. All discrete
points in this affine subspace that belong to 1.5 are mapped by F toiterationsin IS’ that are exe-
cuted for fixed I} = 47,..., I} =i
Example: Consider the following unimodular transformation:

—
DO, =0 50 DO 1% =0, 100 ,
DOl, =0, 50- 1, DO I, = 0, MN(50,1}%)
DO 1. = 0. 50 111 DO |5 = MAX(O, I'}-1%-50),
3 : U= 1 0 o0 + M N(50- 14, 17-14)
B(|1,|2,|3) 0 1 0 B(II K |/_|/_|/)
ENDDO 21301 2 3
- ENDDO
ENDDO DDO
ENDDO EN
ENDDO

The transformation of the original iteration space IS into the target iteration space 15" isil-
lustrated in figure 3.5. Therows of U give rise to three planes of the following form:

H(T) = { IeR|L+L+I; = I} }
Hy (1) = { IeR’|L, = I }
H(13) = { TeR’|I, = I }
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All iterations in HY (i}) are mapped to the iterations in 1.5 that are executed for I} = ).
Hence, asillustrated in thefirst picture of figure 3.6, the original iteration space istraversed along
planes defined by I; + I, + I3 = i} that are moved in the direction (1,1,1)” in successive
iterations of the T -loop. Likewise, all iterationsin H (i) N HY (i}) are mapped to iterations
executed for I} = 4} and I}, = 4. Asdepicted inthe second picture of figure 3.6, thisintersection
formsastraight linewith direction (0, 1, —1) (cf. last column of U~ 1). Finally, thesingleiteration
in HY (i) )N HY (i) N HY (i%), illustrated in the last picture of figure 3.6, is mapped to theiteration
I = (i, ih,15)".

On account of these observations, we identify two methods to construct a unimodular matrix
that affects the order in which iterations are executed in some desired manner [25].

Outermost DO-loop of the Target L oop

Suppose that we want to map all iterations of 7S C 2 lying in a hyperplane defined by the
equation & - T = i}, where@ € 2% and ged(a, ..., o) = 1, toiterationsin IS’ C Z? that are
executed for I} = 4}. The desired transformation is defined by any unimodular matrix U having
(a1, ..., 0q) asfirst row.

The extended completion method presented in section 2.2.2 can be used to construct such a
matrix U and corresponding inverse.
Example: Inner loop concurrentization methods [18, 20, 130, 228] are based on this observation.
Givenaset D C 24 of distance vectors representing the data dependence structure of aloop, first
avector & € Z% of which the components are rel ative prime is determined such that for all d e D,
the inequality @ - d > 1 holds. Thereafter, a unimodular matrix U having @ € Z¢ as first row
is constructed and the linear transformation defined by this matrix is applied. For instance, in the
following double loop, the static data dependences S141,0):S1 and S16(g,1)S1 are represented by
theset D = {(1,0)T, (0,1)T}:

DOl =0, 4
DOly, =0, 4
Si: A(|1,|2) :A(|1-1,|2) +A(|1,|2-1)
ENDDO
ENDDO

For @ = (1,1)7, for example, the inequality &-d = 1holdsfor al d € D. Thisreflectsinde-
pendence of all iterations along straight lines defined by the equation I + I = 4}, asillustrated
in the first picture of figure 3.7. Application of the extended completion method to construct a
unimodular matrix U with (1, 1) asfirst row yields the following matrices:

z U Iz

Figure 3.6: Traversal of Original Iteration Space
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2

Figure 3.7: Hyperplane Traversa

o-(23) (1)

By construction, application of the transformation defined by U is valid, and yields the fol-
lowing target loop, of which the iteration space isillustrated in the second picture of figure 3.7:

DI, =0, 8
DO 1, = MAX(-4, -1%), MNO, 4-17)
AC-1L, TE+1G) = AC-15-1, 14+15) + A(-15, 1]+14-1)
ENDDO
ENDDO

Obvioudly, all iterations of the I5-loop can be executed in parallel. We are not restricted to use
this particular matrix, however. In fact, any unimodular matrix having (1,1) asfirst row can be
used, which illustrates that in some cases, different loop transformations can be used to achieve
the same objective.

Innermost DO-loop of the Target L oop

In other cases, we want to map all iterationsin IS C Z¢ that are along asingle straight line with
direction @ € 24, where ged(ay, ..., aq) = 1, toiterationsin IS' C Z¢ in successive iterations
of the innermost DO-loop of the target loop for fixed I} = 4!,...,I),_, = i/,_,. Obvioudly, the
equation I = U~'T’ impliesthat any transformation defined by amatrix U where the last column
of U~! consists of @ € Z? can be used for this purpose.

There is no need to develop another completion method to construct such a matrix, because
any unimodular matrix U with & € Z¢ asfirst row together with U ~! can be converted into the
desired matrices U and U~ asfollows:

Uv-'=wru)"  U=W""'P")T wheeP =
1

Example: Givenaset D C 2¢ of dependence distance vectors representing the data dependence
structure of aloop, enforcing a traversal along straight lines with the direction & € Z¢ enables
concurrentization of all DO-loops except theinnermost DO-loop if for all d € D,wehaved = \-&@
holds for some A > 0. For example, consider the following double loop:
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|24\ /Desired |’,T\

Direction 2
3
U
! 1 ! 1
= —
4 -4 4
Figure 3.8: Enforcing a Direction
DOl =0, 4
DOI, =0, 2
St A(l1,12) = A(11-2,12-1)
ENDDO
ENDDO

In this fragment, the static data dependence S d(2,1)51 holds. Concurrentization of the out-
ermost DO-loop becomes valid if we traverse the iteration space of this loop along straight lines
with the direction @ = (2,1)”". Hence, aunimodular matrix U for which (2, 1)7 forms the last
column of U ! is constructed:

o-(371) w-(41)

The target loop shown below results:

DO I} = -4, 4
DO I, = MAX(O, [-17/2]), MN(2, [(4-1})/2])
A #2510, 1) = AL +2%1-2,1)-1)
ENDDO
ENDDO

In figure 3.8, the transformation of the original iteration space into the target iteration space
isillustrated. This figure clearly shows that all dependences become parallel to the I/,-axis (viz.
Ud = (0,1)T), which implies that the | } -loop can be converted into aDOALL-loop. Obviously,
therestriction that all data dependences must be along the samedirection israther restrictive. More
advanced outermost loop concurrentization methods are described in [19, 225].

3.3.5 Extensionsto Unimodular Loop Transformations

Itisrelatively easy to deal with loop bounds in which symbolic constants appear, which are loop-
invariant variables of which the actua values are unknown at compile-time. Given a perfectly
nested loop with indices I, ..., I; and a number of symbolic constants C4, ..., C,, used in the
loop bounds of this loop, we construct the following representation of loop bounds:

A(C1ye ey Cony Ty, 1) <6

Since symbolic constants are unbounded in this system, conceptually a new perfectly nested
loop having ‘D0 C, = —oo, +o0’ for 1 < k < m asoutermost DO-loops results. Applying aloop
transformation defined by a unimodular matrix U to the origina loop is done using the following
unimodular matrix U, where theindex vectors of the target and original |oop are related according
t0 (C1,.. s Cmy Ihy oo, I =U(Cr, .oy Cony Iny e, Ia)
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~(10) o= o)

Theloop-body of the target loop is still obtained by replacing all origina loop indices accord-
ingto T = U 'T". The new loop bounds are obtained by applying Fourier-Motzkin elimination
to AU~ < b, where symbolic constants appear before loop indices (cf. [196]). During this elim-
ination, unbounded variables may appear.

Example: Consider, for example, application of loop interchanging to the following double loop:

DOI; = 1, C+6 DO 1) = -3, M N Cy+6, 100)
DO I5 = |1-4, M N Cp- G+l 1, 100) DO 1, = MAX(1, Ci- Co+l ), M N(Ci+6, | | +4)
B(I 1, 1 2) - B(14,17)
ENDDO ENDDO
ENDDO ENDDO

For appropriate U, applying Fourier-Motzkin elimination to AU~!(Cy, Cy, T}, 15)7 < b that
represents the loop bounds of the target loop, resultsin a sequence of column augmented matrices
that is initiated with the following two column augmented matrices from which the target loop
bounds can be derived:

-1 0 0 1 6 0 -1 1 6
0 0 -1 1 4 0 0 1]100
1 -1 1 -1 0 — 0 0 -1 3 — ...
0 0 0 -1] -1 1 -1 0 4
0 0 1 0]100 -1 0 0 o

Theinegualities defined by the remaining column augmented matricesin this sequence define
constraints under which execution sets are non-empty (e.g. —5 < C; or —9 < Cs):

0 —1] 9
11| 4 1] 5

"7 0o o103 _>< 0‘103>_>(103)
1 0| 5

A similar technique can be used to enabl e the application of aunimodular loop transformation
to a perfectly nested sub-loop with admissible bounds appearing in a non-perfectly nested loop
with possibly inadmissible bounds. All loop indices of DO-loops that are not directly involved
in the loop transformation are also handled as symbolic constants. Note that in all these cases,
an appropriate padding with zero components must be applied to the data dependence vectors to
enable the validity test.

More advanced extensions can be found in the literature. For example, the framework can be
extended to non-singular matrices [19, 22, 139, 140, 230], which allows for more freedom dur-
ing construction of a suited loop transformation. However, some complications in code gener-
ation arise because not all points within the convex polytope defined by the image of the origi-
nal bounds belong to the target iteration space, whereas the use of conditionals in the loop-body
that exclude such points must be avoided. The framework can aso be extended to deal with the
transformation of non-perfectly nested loops [119]. Applying different loop transformations to
different statements in aloop-body has been studied in [13, 14, 121]. In this case, it is useful to
extend the framework to affine transformations (rather than just linear transformations) as well,
to incorporate loop aignment [48].
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3.4 Iteration Space Partitioning

In this section, we present a method to isolate a loop-body for al iterations within a polyhedral
set defined by a system of linear inequalities [36]. This method differs from directly generating
loop bounds from a given system of inequalities in the sense that |oops iterating over the remain-
ing iterations must also be generated. First, we present a ssimple loop transformation, referred to
as execution set partitioning. Subsequently, we discuss how repetitive application of this basic
transformation can be used to solve the problem.

Our iteration space partitioning method has as advantage that if the origina iteration space
consists of al discrete points within a bounded polyhedral set, then al generated loops have this
property. In this manner, subsequent iteration space partitioning and other transformations rely-
ing on the representation of an iteration space as a system of linear inequalities remain feasible.
Moreover, the method avoids redundant code duplication.

Iteration space partitioning can be used for anumber of purposes. Firg, it can be used to sim-
plify programs[50, 120]. For instance, after we haveisolated the part of aniteration spaceinwhich
aconditional iseither true or false, aconditional statement that iscontrolled by that conditional can
be eliminated. Although such simplifications are not likely to be applicable to ordinary programs,
in many cases the code resulting after compiler transformations provides many opportunities for
simplification. In other cases, isolating certain parts of the iteration space in which particular data
dependences do not hold increases the opportunities for concurrentization and vectorization. Ob-
vioudly, having a general method to isolate an iteration space in combination with an advanced
data dependence analysis tool provides the compiler with sufficient functionality to enhance the
performance of existing codes. Finally, the method can be very useful for acompiler that performs
data structure transformations, such as the prototype sparse compiler presented in the second part
of this dissertation.

3.4.1 Execution Set Partitioning
Execution set partitioning transforms a single DO-loop into two DO-loops, thereby partitioning
the execution set into two digoint sets.

Transformation

Given a stride-1 DO-loop with index | and an inequality I < T, application of execution set
partitioning transforms this DO-loop into two new DO-loops with the same loop-body, such that
al original iterations satisfying this inequality are executed in the first DO-loop, while all other
iterations for which T < T are executed in the second:

DOl =L, MNU T)
Dol =1 U ENLB>(DIO)
B(1) - DOl = MAX(L, T+1), U
ENDDO B1)
ENDDO

Likewise, giventheinequality T < I, we partition the execution set of the DO-loop asfollows,
so that all iterations satisfying the inequality are executed in the second loop, while all remaining
iterations for which I < T are executed in the first loop:

DOI =L, MNU T-1)
_ B(1)
DOB'(I)‘L' U N ENDDO
ENDDO DO = MAX(L, T), U

B(1)
ENDDO
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Execution set partitioning resembles other loop transformations such as index set splitting,
loop unrolling, and loop pedling [147, 166, 170, 228, 229, 234]. Obviously, the semantics of the
original DO-loop are preserved because the use of minimum and maximum functions prevents
the erroneous introduction of additional iterations. However, in many cases the efficiency of the
generated code can be improved by eliminating redundant bounds. Furthermore, a zero-trip loop
iseiminated and aone-trip loop is unrolled by replacing the complete DO-loop by the |oop-body
inwhich theappropriate valueissubstituted for | (recall that we always assumethat thefinal value
of aloop index is not used after a DO-loop).

Implementation of Execution Set Partitioning

Execution set partitioning can be implemented as follows. Suppose that we want to isolate the
loop-body appearing at nesting depth d of an arbitrary loop for all iterations of the iteration space
IS c z¢ in the following half-space, wheredl o, € Z and b € Z:

H={TecR%a-T1+...+aq-Ig< b}

Let 1 < d' < d denote the index of the last nonzero coefficient in the equation (i.e. ay # 0
anda; = 0 for d' < i < d).

Furthermore, let the system A(Iy,...,I4)T < b, where Aisac x d' integer matrix and
b€ Z¢, form a(conservative) representation of the iteration space of the loop consisting of the d’
outermost DO-loops. Werequire that the I -loop isastride-1 DO-loop with admissible bounds.
However, if someinadmissible bounds appear inthe more outer DO-loops, then the corresponding
index issimply left unbounded. Furthermore, these DO-loops may have arbitrary strides, provided
that the role of the lower and upper bound isinterchanged if the stride is negative.

Thesets IS N H and IS N H restricted to the first ¢’ loop indices are represented by the
systems of linear inequalities of which the column augmented matrix representations are shown
below (using the method (2.13) to negate an inequality for integer-valued variables):

M, = A b M, = A b (3.9
aj...aq b —Qaj...— Qg —-bh—1

Transforming the I-loop into two DO-loops, gives rise to two new nested loops, sharing
some outer DO-loops, where acopy of theloop-body of the original I,/-loop isused asloop-body:

DO 11 =Ly, U

DOId/ = ey e

- « first loop
ENDDO
DO Id’ = L.y e
c. <+ second loop
ENDDO
ENDDO

If ag > 0, then the iteration space of thefirst and second loop are represented by M7 and M,
respectively. If ag < 0, then these iteration spaces are represented by M, and M, respectively
In the former case, dl iterationsin IS N H are executed by thefirst loop, whereas these iterations
are executed by the second loop in the latter case.

Adding the bounds of indices of more outer DO-loops enables us to test the consistency of
each system and to simplify the bounds of the resulting DO-loops. First, the consistency of both
systems is tested using Fourier-Motzkin elimination. If a system M; is inconsistent, the corre-
sponding DO-loop is a zero-trip loop and does not have to be generated. Otherwise, the system
may be simplified asfollows.
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While several non-examined upper bounds of index I, remain, the consistency of the system
obtained by negating one of the upper bounds in M; istested using Fourier-Motzkin elimination.
If the resulting system is inconsistent, the corresponding upper bound is eliminated (cf. proposi-
tion 2.1), while the original upper bound is restored otherwise. Lower bounds are smplified in a
similar manner.

The bounds of the corresponding I -loop are generated according to the inequalities (2.11).
If the lower bound isidentical to the upper bound, the DO-loop may be unrolled.

Example: Suppose that we want to isolate the loop-body of the following double loop for all
iterations in the half-plane defined by the linear inequality —I + J < 0:
DOl =1, 100
DOJ =1, |+10
B(1,J)

ENDDO
ENDDO

The column augmented matrix representation of the iteration space is shown below:

-1 1] 10 bounds of

o 1 —1 0 the J-loop
A|b) =

(418) 1 0] 100 bounds of

-1 0] -1 the I-loop

Adding the appropriate inequalities to this system and application of Fourier-Motzkin elimi-
nation to these systems reveals that both systems are consistent. Because two lower bounds are
defined on J by thelast system, consistency of this system where the second inequality is negated
istested (i.e. I < Jisreplaced by J < I — 1). Sincethis system isinconsistent, this upper bound
is eliminated.

Similar simplifications are applied to the first system:

A |b A b
—1 1]0 1T —1]-1
{ {

-1 110 -1 1110
1 =10 1 -1|-1

Consequently, the following code results, in which thefirst loop-body isisolated for iterations
in the polyhedral set. Loop overhead is reduced by unrolling the first J-loop:

DOl =1, 100
DOJ =1, | DOl =1, 100
B(1,J) B(I,1)
ENDDO DOJ = I+1, 1+10
DOJ = |+1, |+10 - B(1,J)
B(1,J) ENDDO
ENDDO ENDDO
ENDDO

3.4.2 Partitioning an Iteration Space

Repetitive application of execution set partitioning can be used to isolate aloop-body of anested
Ioop W|th iteration space IS C 2% for al iterations in a polyhedral set PS C R? defined by
AT < b. For each inequality in the system, we partition the execution set of the appropriate DO-
loop as explained in the previous section.

This gives rise to one of the following situations:
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1. Oneloop is generated for which either

(&) al iterations satisfy the current inequality, or
(b) no iteration satisfies the current inequality.

2. Two loops are generated such that one loop executes all iterations satisfying the current in-
equality and the other loop executes the remaining iterations.

In case 1(b), the process can be terminated because none of the iterations satisfies al inequal-
ities simultaneoudly, i.e. IS N PS = (). In the other cases, however, there is aloop in which
the loop-body at nesting depth d isisolated for al iterations satisfying all previous considered in-
equalities. The process is applied recursively to this loop with the next inequality in the system
until al inequalities have been considered.

Note that considering inequalities that partition the execution set of outer DO-loops before
inequalities partitioning the execution set of inner loops reduces the size of the generated code.
A preceding simplification of the system AT < b may reduce overhead in the resulting code.
Example: Consider the following nested loop:

DOl =1, 10
DOJ =1, 10
B(1,J)
ENDDO
ENDDO

If wewant toisolate theloop-body for all iterationsin the unbounded polyhedral set defined by
J <5and—I + J < 0, anaiveapproach would beto generate two J -loops with the execution sets
[1,MIN(5,I)]and[1 + MIN(5, I), 10]. Thedisadvantage of thisapproach isthat theiteration space
of the second loop is not convex and, hence, cannot be represented by a system of inequalities.

However, using the iteration space partitioning method, we first partition the execution set
of the J-loop according to the inequdity J < 5, yieding two DO-loops with the execution sets
[1,5] and [6, 10]. Subsequently, we partition the execution set of the first DO-loop according to
the half-space defined by —I + J < 0. These transformations eventualy result in the following
code, where the loop-body marked with a‘(x)’ isexecuted for the iterations in the polyhedral set:

DOl =1, 10
DOJ =1, MN5,1)
B(1,J) (%)
ENDDO
DOJ = 1+1, 5
B(1,J)
ENDDO
DOJ = 6, 10
B(1,J)
ENDDO
ENDDO

In this case, the iteration spaces of the loops executing the remaining iterations still consists
of all discrete points in a convex polygon. This has been achieved by one additional partitioning
of the remaining iteration space.

Example: Consider, as another example, the following triple loop:

DOI =0, 50
DOJ = 0, 50
DOK = 0, 50
B(1,J, K)
ENDDO
ENDDO
ENDDO



3.4. ITERATION SPACE PARTITIONING 57

[ lteration Space
Il Polyhedral Set

50

Figure 3.9: Desired Isolation

Now, suppose that we want to to isolate the loop-body of thisloop for al iterations within the
polyhedral set defined by the given inequdlities:

40
40

50
50

VARVAN

I <
J <

In figure 3.9, the iteration space of this loop and the polyhedral set for which the loop-body
must beisolated are shown. Obvioudly, starting with the inequalities that induce a partitioning of
the execution set of thel -loop, which resultsin the generation of two DO-loops with the execution
sets [0, 39] and [40, 50], followed by asimilar partitioning of the execution set of the J-loop in the
second loop results in the |east increase of code size.

The code shown below results, where the loop-body marked with a“(x)’ is executed for iter-
ations in the polyhedral set:

DOI =0, 39
DOJ = 0, 50
DO K = 0, 50
B(1,J,K)
ENDDO
ENDDO
ENDDO
DO | = 40, 50
DOJ = 0, 39
DO K = 0, 50
B(1,J,K)
ENDDO
ENDDO
DO J = 40, 50
DO K = 0, 50
B(1,J,K) (%)
ENDDO
ENDDO
ENDDO

If we would have partitioned the execution set of the J-loop first, the resulting J-loops with
execution sets [0, 39] and [40, 50] would become unnecessary duplicated by application of exe-
cution set partitioning to the | -loop.
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Example: Below, we give an example in which iteration space partitioning can be used to elimi-
nate an |F-statement from the loop-body to reduce run-time overhead:

,1-1
100
* K- J)
BL(1,J, K)
ELSE
B2(1,J, K)
ENDI F
ENDDO
ENDDO
ENDDO

.EQ 20) THEN

DO | = 2, 50
DOJ =1, I-1
DOK = 1, [(J+19)/2]
B2(1,J, K)
ENDDO
DO K = [(J+20)/2],
- B1(1,J, K)
ENDDO
DO K = [(J+21)/2],
B2(1,J, K)
ENDDO
ENDDO
ENDDO

100

[(3+20) /2]

Isolating the loop-body for all iterations lying within the hyperplane —J 4+ 2 - K = 20 can be
done by dicing the iteration space according to the inequalities 20 < —J + 2 - K < 20.

Construction of the appropriate systems, followed by atest for consistency and elimination of
redundant bounds eventually results in the following three systems.

<A\a> =
0 -1 2]19 01
0 -1 2] 19 0 -1
0 0 —1|-1 0 1

2
-2

2
-2

b -
20 ( 0 lA -2 —2? )
—20
20 0 0 1} 100
-20 01 —-2|-21

Although in the resulting fragment the lower bound of the second K-loop resembl es the upper
bound, unrolling is not allowed because this would erroneoudly introduce additional iterations in
case the value of J isodd. The partitioned iteration space is shown in figure 3.10.

—_——————

////
ldZ
g O

=

Figure 3.10: Partitioned Iteration Space
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Chapter 4

A Sparse Compiler

A significant part of scientific codes consists of sparse matrix computations that are difficult to
develop and that show notorioudly bad efficiency on today’s supercomputers (see e.g. [186]). In
most cases, only asmall fraction of the computing power of these computers can be utilized. Many
reasons can be given for these effects. First, the codes usually suffer from alack of spatial locality
caused by irregular data accesses induced by sparse computations. This prohibits efficient cache
utilization and reduces memory bandwidth. Another reason isthat temporal locdlity isnot as high
asin most dense codes, because the amount of possible reuse of data is limited due to the eim-
ination of many operations. Not only does this prevent data locality optimizations, but the com-
muni cation overhead in message-passing architectures can be substantial. Finally, problems arise
because sparse matrices need to be represented in acompact way to keep the storage requirements
and computational timeto reasonable levels. This causesthe representation of asparse codein ei-
ther FORTRAN, with the occurrence of subscripted subscripts, or in another language with pointer
structures, to be complex. Thisis probably the most important problem, because it complicates
both the devel opment and maintenance of sparse codes which are more complex than dense appli-
cations [ 73], and because it disables most compiler optimizations. In addition, because different
architectural features or properties of the nonzero structures may favor different sparse storage
schemes, a sparse program that has been developed for a particular target architecture or class of
sparse matrices may perform poorly on another machine or for another class of sparse matrices.

To tackle the sparse data structure problem, examination of the following generic definition is
useful: sparse matrix computations are computations that compute on spar se data structures and
sparse data structures are data structures that are logically contained in enveloping data struc-
tures. The underlying problem for sparse matrix computations now is where to deal with the fact
that only part of the enveloping data structure is computed on. The common approach is to deal
with sparsity at the programming level. However, it is aso possible to deal with thisissue at a
lower levd, i.e. at the compilation level. Thisimpliesthat al programming can be done as for
dense computations, i.e. all sparse matrices are stored in simple two-dimensional arrays. Obvi-
oudly, this greatly reduces the complexity of developing and maintaining the original dense pro-
gram. Thereafter, asparse compiler selects an appropriate sparse storage scheme for each matrix
that is actually sparse and applies the corresponding data structure transformations to the original
dense program. Hence, the output of the sparse compiler consists of semantically equivaent code
operating on sparse data structures to take advantage of sparse matrices to reduce both storage re-
quirements and computational time of the original dense program. The resulting sparse program
issupplied to a conventional compiler for aparticular target machine.

An advantage of this approach is that the sparse compiler does not need to extract program
knowledge from an obscured code, but is presented with amuch cleaner program on which regular
data dependence checking and standard optimizations can be performed.
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This frequently increases the amount of concurrency that can be detected and exploited au-
tomaticaly. In addition, because the sparse compiler performs the data structure selection and
transformation, this selection can be based on the actual operations performed, possibly in com-
bination with standard program transformations if the data structure selection cannot be resolved
efficiently. Because the sparse compiler can account for both the characteristics of the target ma-
chine and the data operated on, one original dense program can be converted into severa sparse
versions that are specifically suited for aparticular instance of the same problem, which implies
that is it important to supply nonzero structure information to the sparse compiler. Finally, just
astraditional restructuring compilers enable the re-use of existing serial software on parallel tar-
get architectures, a sparse compiler enables the re-use of parts of existing dense codes to develop
sparse applications.

This approach has potentia limitations though. The sparse compiler must rely on powerful
strategies to prevent the generation of sparse codes with poor performance. Since much effort has
aready been put in the development of efficient sparse packages solving a particular problem, it
will be extremely difficult to be competitive with such heavily specialized codes, even if al pe-
culiarities of the sparse matrices could be supplied to the compiler and sophisticated reordering
methods would be incorporated. In any case, a sparse compiler enables inexperienced program-
mers to generate reasonably efficient sparse code in arelatively simple way, whereas it can assist
more experienced programmers to devel op advanced sparse code, because the output of a sparse
compiler can be further extended and hand-optimized.

These observations gave rise to the development and implementation of a prototype sparse
compiler that is presented in this dissertation. In this chapter, wefirst discuss some issues related
to sparse matrices. Subsequently, we give an overview of the organization of the prototype sparse
compiler. Furthermore, we briefly discuss the data structure selection and transformation method
used by this sparse compiler to automatically convert adense program into semantically equive
lent sparse code. The different phases of this method are discussed in more detail in subsequent
chapters.

4.1 SparseMatrices

In this section, we give definitions related to sparse matrices and identify some important nonzero
structures. Next, an overview of sparse storage schemesisgiven. A brief overview of someissues
related to direct methods to solve dense, symmetric, and sparse systems of linear equations can be
found in appendix A.

41.1 Definitions

If many elements in a matrix are zero, then this matrix is called a sparse matrix. Usualy, no
attempts are made to obtain a more formal definition and we simply say that amatrix is sparse if
it contains sufficient zero elements to enable the exploitation of these zero elements. Any other
matrix is referred to as adense matrix.

For an m x n sparse matrix A, the nonzero structureis defined as follows:

Nonz(A) = {(i,j) € [1,m] x [1,n] | ai; # 0}

In figure 4.1, the nonzero structures of two sparse matrices taken from the Harwell-Boeing
Sparse Matrix Collection [79] areillustrated. The 183 x 183 sparse matrix ‘fs 183_1" with 1069
nonzero elements has arather arbitrary nonzero structure. In contrast, the 1005 nonzero elements
of the 185 x 185 sparse matrix ‘gre 185" are clustered around the main diagonal.
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Figure 4.1: Nonzero Structure of ‘fs.183_1" and ‘gre_185’

The number 7 of nonzero elementsin A isdefined as = |[Nonz(A)|. Thedensity p of A is
defined as follows (giving riseto asparsity of 1 — p):

T

p =
m-n
In many fields of science and engineering, applications arise that operate on sparse matrices.
Both the storage requirements and computational time of these applications can be reduced sub-
stantially if advantage of the zero elements in these matrices is taken.

Reduction of Storage Requirements

Many sparse storage schemes have been devel oped to reduce the storage requirements of asparse
matrix. Which sparse storage scheme is the most efficient heavily depends on peculiarities of the
nonzero structure of the sparse matrix and the kind of operations to be applied to this matrix.

Storage required to store numerical vauesis caled primary storage. Storage necessary to
reconstruct the underlying matrix isreferred to as overhead storage. In some casesit is practical
to store some zero elements too, because the use of asimpler storage scheme with less overhead
storage compensates for the increase in the amount of primary storage and resultsin lessrun-time
overhead.

Elements that are stored explicitly are caled entries. The set F(A) is used to indicate the
index set of al entries of asparse m x n matrix A:

Nonz(A) C E(A) C [1,m] x [1,n]

Hence, (i,5) ¢ E(A) impliesthat a;; = 0, but the converse implication does not neces-
sarily hold. Moreover, if elements of the matrix may change during a computation, we must be
ready to deal with situations in which zero elements become nonzero, which isreferred to asfill-
in. Usually, weignore the opposite situation in which nonzero el ements become zero. Depending
on whether afixed E(A) can be chosen such that Nonz(A) C E(A) will aways hold during pro-
gram execution, or whether unpredictable aterations to E(A) must be possible at run-time, we
distinguish between static stor age schemes and dynamic stor age schemes.



64 CHAPTER 4. A SPARSE COMPILER

For static storage schemes, we can further distinguish between cases wherethefixed set F(A)
is already known at compile-time, because al changes are confined to fixed regions known in
advance, or wherethisfixed set E(A) isdetermined at run-time before initialization of the storage
scheme by computing a conservative approximation of elements that may fill-in. In a dynamic
storage scheme, we can dlter the set E/( A) at run-time to account for the insertion of a new entry,
which isreferred to as creation. If initialy al zero elements in the matrix are exploited (viz. we
start with E(A) = Nonz(A)), then al fill-in induces creation. This can contribute substantially to
the computational time because data movement and occasionally aleft compression may occur,
as further explained in section 4.1.3.

Reduction of Computational Time

The actual computational time of an algorithm operating on a sparse matrix can be reduced if we
account for the fact that certain operations on zero elements can be skipped. Usualy, such are-
duction of the actual computational time can only be achieved if an appropriate storage schemeis
used, because, in general, skipping operations by means of conditionals does not yield a satisfac-
tory reduction in computational time. Only if we can keep the work proportiona to the number
of nonzero elements in a matrix, sparsity has been fully exploited. Sparse storage schemes and
related operations are further discussed in section 4.1.3.

4.1.2 Nonzero Structures

We can distinguish between general sparse matrices and sparse matrices that have a particular
nonzero structure. In the following sections some important nonzero structures of square ma-
trices are identified (see e.q. [78, 173, 198, 199, 214]). Note that a matrix in X -form may also
be referred to as an X -matrix (e.g. amatrix in lower triangular form may also be called a lower
triangular matrix).

Band Forms

The lower semi-bandwidth b; and upper semi-bandwidth b,, of ann x n matrix A are defined
asthe smallest integers b, > 0 and b,, > 0 for which the following constraint is still satisfied:

(aij #0) = (=by <i—7 < by) (4.1)

Minimum values reveal the most information about the nonzero structure, because (4.1) is
trivially satisfied for b, = n — 1 and b, = n — 1. Allowing for negative semi-bandwidths would
enable the specification of an arbitrary band in which themain diagonal isnot necessarily included.
However, usually we assumethat all matrices have afull transversal (i.e. all eements onthe main
diagona are nonzero).

If the semi-bandwidths are relatively small, we say that the matrix is in band form, which
means that all nonzero elements are confined to asmall band. The value b; + b, + 1 isreferred
to as the bandwidth. Some special classes of band matrices can be distinguished. A band matrix
isin diagonal form if both b; and b,, are zero, and in tridiagonal form if b, = b, = 1. A band
matrix A isin full band form if the following constraint is satisfied:

(=by <i—j <by) < (ai £0)

The lower skyline; and upper skyline u; of an n x n matrix A with afull transversal are
defined as the following two sequencesfor 1 <i<nand1 < j < n:
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Upper
Skyline

Lower
Skyline

Figure 4.2; Variable Band Matrix

li = 41 — min{j|a; #0}

. . 4.2

{“j = J — min{i[a; # 0} (42

Each /; and u; indicates the lower and upper semi-bandwidth in the ith row and jth column
respectively:

(aij #0) = (—u; <i—j <1l

Thevariable band form of amatrix is defined by the lower and upper skyline. For instance,
infigure 4.2 an 8 x 8 variable band matrix is shown. Although some zero elements still appear
within the variable band, the nonzero structure is described more accurately by a variable band
than by a band with fixed semi-bandwidths.

For a symmetric matrix A, i.e. amatrix that satisfies A = A7, the lower and upper skyline
areidentical. The envelope of asymmetric matrix A consists of al elements in the variable band
that are below the main diagonal. The envelope size or profile p of A is defined as follows [52,
97, 169]:

Triangular Forms

A matrix satisfying the following constraint isin lower triangular form:

(aij 7 0) = (j <)

If additionally, the equation a;; = 1 holdsfor al 1 < i < n, then the matrix isin unit lower
triangular form. If theinequaity isstrict (viz. 7 < 4, whichimpliesthat thetransversal isempty),
then the matrix isin strictly lower triangular form. A lower triangular matrix is, in fact, a spe-
cia band matrix with b, = 0 and relatively large b, > 0. For arelatively smal b, > 0 the
matrix isin so-called band lower triangular form. Similar definitions can be given for matrices
in (unit/strictly) upper triangular form and band upper triangular form.

Block Forms

Consider ablock partition of a square matrix A into sub-matrices A;;:
AH e Alp
Apl App
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Figure 4.3: Two Different Block Partitions into Block Diagonal Form

Each sub-matrix A;;, referred to as adiagonal block, isasquare n; x n; sub-matrix. Hence,
each sub-matrix A;; with i # j, referred to as an off-diagonal block, is necessarily ann; x n;
sub-matrix. If ablock consists of zero elements only, thisis denoted by A;; = 0. Such blocks are
referred to as zero blocks.

Given this block partition, ablock band form is defined by the block lower and upper semi-
bandwidths B; > 0 and B,, > 0, which are the minimum values for which the following constraint
is still satisfied:

(Aij #0) = (=B, <i—3j < By)

If B, = B, =1, then the matrix isin block tridiagonal form and we have ablock diagonal
formif B, = B, = 0. For B, = 0 and ardatively large B;, the matrix isin block lower
triangular form. Likewise, for B; = 0 and arelatively large B,,, the matrix isin block upper
triangular form. The off-diagonal blocks A,; and A;, for 1 <14 < p arereferred to asthe lower
border and upper border respectively. If, except for some nonzero blocks in the lower or upper
border, amatrix isin block diagonal form, then the matrix isin doubly bordered block diagonal
form. Likewise, there are matrices in singly bordered block lower triangular form or singly
bordered block upper triangular form.

Although, depending on which blocks are nonzero, a particular block form of amatrix is de-
fined once ablock partition of that matrix isgiven, it is possible that similar block forms defined
by different block partitions differ in the accuracy of describing the nonzero structure (viz. ama
trix isin any block form using the trivial block partition A = A;;). Infigure 4.3, for example,
two different block partitions of a matrix into block diagonal form are shown with respectively
15 and 25 elements in the nonzero blocks. Therefore, we say the most accurate description for a
particular block form is given by the block form defined by a minimum block partition into that
block form, which means that there are no other block partitions of the matrix into the same block
form with fewer elementsin the nonzero blocks (although the number of elements in the nonzero
block is ill likely to exceed the actual number of nonzero elements, since the nonzero blocks are
not necessarily full).

We state the following obvious properties about block diagona forms (similar propositions
hold for block lower or upper triangular forms).

Proposition 4.1 A square matrix hasa unigue minimum block partition into block diagonal form.

PROOF Assumethat amatrix hastwo different minimum block partitionsinto block diagonal form.
Thisimplies that at least two diagonal blocks of these different block partitions partially overlap
or one is properly contained in the other. Hence, there must be a non-trivial block partition into
block diagona form of at least one of these diagona blocks. This gives rise to a block partition
into block diagonal form of the whole matrix with fewer elements, contradicting the assumption.

[
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Proposition 4.2 A block partition of a square matrix into block diagonal formis minimumif and
only if there is no diagonal block with a non-trivial block partition into block diagonal form.

PrROOF ‘=" A non-trivial block partition of adiagonal block into block diagonal form would con-
tradict the minimality of the block partition. ‘<’ Consider an arbitrary block partition into block
diagona form where no diagona block can be further partitioned into block diagona form. An
arbitrary diagonal block of this block partition cannot be properly contained in an overlapping di-
agonal block of the minimum block partition into block diagonal form (since thiswould contradict
minimality), nor can it partially overlap with a diagonal block of that block partition (since this
would giveriseto afurther non-trivial block partition of at least one of these diagonal blocksinto
block diagonal form). Hence, the two black partitions are equal. (]

4.1.3 Sparse Storage Schemes

In thissection, we present some storage schemesfor sparse matrices. Theoverview isby no means
exhaustive, because many other sparse storage schemes exist and, in addition, thereare many vari-
ants of the presented storage schemes.

General Discussion

Because most numerical applications are written in FORTRAN, many storage schemes are based
on arrays rather than on more advanced data structures using records/structures, pointers and dy-
namic memory allocation. One way to group logically related information together in the absence
of such featuresisto use parallel one-dimensional arrays. Given anumber of parallel arraysAl,
A2, A3, and so on, all data stored at the | th location, i.e. the elements AL(l) , A2(I) ,A3(l) ,
etc., are rdlated. In this manner, alinked list of at most 7 values of type REAL, for example, can
be implemented as follows (cf. [78, p25-28] and [169, p8-10]):

REAL  VAL(7)
| NTEGER LNK(7), HD, FREE

The first element of the list can be found in the parale arrays VAL and LNK at the location
indicated by HD The value of this element is stored in VAL(HD) , while the next element can be
found at location LNK(HD) . We can follow the links stored in LNKuntil anull pointer is encoun-
tered, for which usually the value zero or a hegative value is used. Likewise, al elements of the
parallel arrayswhich are not used are linked together in afree-list. Thefirst element of thislist can
be found through FREE For example, possible contents of these arrays for alinked list containing
(3.0,8.0,12.0) areillustrated below for HD=2and FREE=1:

1 2 3 4 5 6 7
VAL [ - | 30| - | -] 120 ]| 80| -
LNK | 4 6 713 0 5 0

In the following sections, we assume that the constant N contains the order of the matrix to
be stored. For dynamic data structures, we assume that the value of a constant MAXS4s at least
the maximum number of entries that can appear in this matrix. Furthermore, we assume that the
value of each entry in this matrix is of type REAL, athough other types may be used in case dou-
ble precision or complex numbers must be stored. Moreover, the type INTEGERIs used for all
integers, although usualy less bytes are required to store arow or column index of amatrix than
the storage required for an integer that is used as apointer. The value of the former cannot exceed
the order of the matrix, whereas the value of the latter may be as large as the number of entries.
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Band and Diagonal Schemes

In a band scheme [78, p200-203][97, p48-51][169, 185, p13-14], all elements in the band of a
band matrix with the semi-bandwidths b; and b,, are stored in arectangular array declared as either
‘REAL BND1(N,BW) or ‘REAL BND2(BW,N), where BW= b; + b, + 1. Which of these
declarations is used and the way in which entries are stored in this array both depend on whether
consecutive storage of the e ements along rows, columns or diagonals is desirable.
Example: Consider the following 6 x 6 band matrix A having b, = 2 and b, = 1:

a1l a2
a1 G2 G23
A= a3r G322 azz3 a34
42 Q43 Q44 Q45
as53 G54 As5  A56
g4 G65 A66

Two ways of storing the elements within the band of this matrix are illustrated below:

BND1 | L L anr are

L as21 a2 a3 BND2 1 1 a3] Q492 0453 (A4
aszr azz2 a3z as4 L a1 as2 as3 ass ags
A42 043 Q44 Q45 a1 a2 a3z Q44 Aa55 0466
as3 Q54 G55 As56 a12 023 (34 Q45 056 1

ags Qg5 Qs L

For column-magjor storage, elements along one diagona are stored consecutively in the first
rectangular array. The rows of A can be accessed along the rows of BND1because diagonals in
the lower triangular part of A are down-justified, whereas all diagonals above the main diagona
are up-justified in the array. Likewise, rows of A can be accessed aong the columns of BND2
whereas diagonals of A are stored along the rows of this array. However, other layouts are also
possible.

Only the zero elements outside the band in the matrix are exploited using a band scheme, be-
cause all eements within the band are stored explicitly (for symmetric band matrices only the
elements in the lower or upper triangular part of the band have to be stored):

B(A) = {(i,j) € [Lm] x [1,n] | =b, <i—j < b} 2 Nonz(4)

However, an advantage of this storage scheme is that, during L U-factorization without pivot-
ing (see appendix A), al fill-in is confined to the band. Hence, the band scheme can be used as
static data structure in which creation does not have to be accounted for. The relative simplicity
of band schemes and the code operating on this data structure together with the high performance
that can be achieved on pipelined vector processors have made band methods rather popular.

A dlightly more complex variant of aband scheme that allows for storing afew nonzero diag-
onasisformed by adiagonal scheme[185][129, ch11], where for each nonzero diagonal an offset
to the main diagonal is recorded in a one-dimensional array OFF, while the diagonals are stored
along the columns of atwo-dimensiona array VAL.

Example: Consider the following 4 x 4 matrix A:

a1l 612
a a
A — 22 (23
a3t as3 a34
a42 Q44
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A diagonal scheme for this matrix isillustrated below:

VAL | L a1 a2

az1 asz as4
agy agq L

Envelope Schemes

Alternative sparse storage schemes for symmetric band matrices that preserve most of the ssimplic-
ity of band schemes but at the same time offer more potential to exploit sparsity, are formed by
envelope schemes [112, 113]. These schemes are based on storage of al elements in the lower
triangular part that are within avariable band, i.e. E(A) isdefined as follows:

B(A) = {(i.4) € [Lm] x [1,n] | —uj < —j < l;} 2 Nonz(A)

All elements in a row from the first nonzero element up to the diagonal element are stored con-
secutively in aone-dimensiona array, declared asREAL VAL(MAXSZ)(the main sequence), in
which the different row segments are stored contiguously. An additional one-dimensional integer
array, declared as 'INTEGER PTR(N)' (the address sequence), is used to locate the diagonal
elements.

Example: Consider the following lower triangular part of a symmetric and sparse 5 x 5 matrix
A, where only the nonzero elements are shown:

a1 Q22

a43 Q44
as52 54 G55
The corresponding envelope storage scheme isillustrated in figure 4.4, where each PTR(I)
contains the location of the | th diagonal element in the main sequence. An element in the vari-
able band with row index | and column index J is stored at location PTR( 1) - | +J inthe main
sequence. Conversely, the column index of the first entry inrow | can be determined as follows:

| - (PTR(1) - PTR(I-1) - 1)

Many variants of thisstorage scheme exist (seee.g [ 78, p151-153,p204-205][97, p79-80][ 146]
[169, p14-16][185]). The upper triangular part of the matrix can be stored by columns, which
corresponds to storing A” according to the previous method. Separate storage can be used for the
main diagonal. Anadvantagethat isshared by all versionsisthat, because during L U-factorization
without pivoting, fill-inis confined to the variable band, an envel ope scheme can be used as static
data structure. In fact, the envelope even becomes completely full if a nonzero element appears
before each diagonal element after the first row [93].

1 2 3 4 5 6 7 8 9 10 11 12

a a, a a a a a a a a
VAL 819 (851|892 | 1| O |%33|%3|%4|%2| O | %54 %ss

Figure 4.4: Envelope Scheme
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VAL (8551845 1814| 855 | 211 | 851
ROW | 5|4 |1|3|1]|5

COL 514|142 ]1]|1

Figure 4.5: Coordinate Scheme

Coordinate Schemes

The most convenient way to store a general sparse matrix is using a coordinate scheme, in which
al entries are stored as an unordered set of triples (a;;,1,7) in three parallel arrays [78, p23-
24][129, 185, 219][235, ch2].

Example: Consider the following sparse 5 x 5 matrix A:

A = asz9 (43)

The six nonzero elements of this matrix are stored in arbitrary order in the first six elements
of the parallel arrays VAL, ROW and COL of size MAXSZ, asillustrated in figure 4.5. A scalar SZ
is used to record the number of explicitly stored elements. A new entry can be easily inserted at
the first free location. A given entry can be easily deleted by moving the last stored entry to the
location of the deleted entry. However, in order to search for aparticular entry or to fetch an entire
row or column, al entries must be scanned, making this storage scheme less convenient for most
numerical applications. Duetoitssimplicity, coordinate schemes are used asinput scheme by sev-
eral applications [74, 80, 94, 164]. Inthisway, little constraints areimposed on theinput sets. The
coordinate schemeistransformed into an efficient storage scheme before the actual computations
are performed.

Linked List Schemes

A linked list scheme[122, p298-302] provides efficient access from each entry to the next entry in
itsrow aswell asto the next entry in its column. Furthermore, pointersto the first element in each
list are stored. Infigure 4.6 thisideaisillustrated for the matrix (4.3). A possible implementation
of thelinked list scheme[169, p16-20], illustrated in the samefigure, isshown below, where FREE
can be used as a pointer to the first location of afree-list:

REAL VAL( MAXSZ)
| NTEGER RON MAXSZ), COL(MAXSZ), LNKR(MAXSZ), LNKC(MAXSZ)
I NTEGER HDR(N), HDC(N), FREE

For each entry, the value, row and column index together with links to the next entry in the
same row and column are stored in five paralld arrays. Pointers to the location of the first entry
in each row and column can be found through the elements of arrays HDR and HDC, respectively.
For example, because in figure 4.6 we have HDR( 5) =2, LNKR( 2) =4, and LNKR( 4) =0, the
entries in the 5th row can be found at locations 2 and 4 of the parallel arrays. Obviously, because
four integers are associated with each entry, this storage scheme suffers from substantial overhead
storage.
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HDR | 1 | O | 5| 7| 2

I HDC | 1| 5| 0| 6| 4

a_|a a_|a,_|a
i VAL %1 | %51 55| 32| “14 | “a4

ROW 1|5 53|14

CoL

I LNKR

LNKC

Figure 4.6: Linked List Scheme

Some savings are obtained by dropping the row and column index associated with each entry
and replacing the null pointer at the end of each row and column list by the negation of these in-
dices [56][78, 77, p31-32][235, p34-36]. This so-caled Curtis and Reid scheme isillustrated in
figure 4.7. The row or column index of each entry is obtained by scanning to the end of the row
or column list. For sparse matrices having a small number of entriesin each row and column, the
storage savings are obtained at the expense of only arelatively small increase in computational
time. Alternatively, storage can be saved if only the entries in arow or a column are linked to-
gether, yielding arow-linked or column-linked list [78, p28-29][185][199, chl].

The use of linked list scheme has as advantage that creation can be implemented without any
data movement, while only afew links are affected. Accessing thelinks, however, may contribute
substantialy to the computational time, while locality may be disturbed in case the elementsin a
linked list are scattered through the paralld arrays.

General Sparse Row- or Column-wise Schemes

Ancther sparse storage scheme for general sparse matrices is based on storing either the rows or
columns as a set of sparse vectors.
Example: Consider the 5 x 5 sparse matrix given below:

ai aiz a4
a2 ass
A= a3 azy a4 (4.4)
as a4
as3 ass

Sparse row-wise storage of A isillustrated in figure 4.8. The value of al entries in a row
together with the corresponding column indices are stored consecutively inthe parallel arrays VAL
and | ND, where entries in one row are not necessarily sorted on column index.

1 2 3 4 5 1 2 3 4 5 6 7

HDR | 11 0 5] 7 ) 2 VAL |2y, |35 855|232 | 14| P44
HDC | 1 | 5| 0| 6| 4 LNKR | 6 | 4 5| -3|-1| -4
LNKC | 2 | -1 5| -2| 7| -4

Figure 4.7: Curtis and Reid Scheme



72 CHAPTER 4. A SPARSE COMPILER

FREE

¢

1 2 3 4 5 6 7 8 9 10 11 1213 14

a_la_la |a_la_la_la. |a |a_ [a |a_|a
VAL | %3 |%11 | %14 %5 | %22 %33 | 31| %34 | %41 | “a4| %53 | %55

IND 3|14 5] 2 3 1| 4| 1| 4| 3| 5

Figure 4.8: Sparse Row-wise Scheme

Thelocation of thefirst entry inarow | can be found through PTR( | ) , while the number of
entriesin thisrow isdefined by LEN( | ) . A scalar FREE contains the first unused location at the
end of all rows:

REAL  VAL(MAXSZ)
| NTEGER | ND(MAXSZ), PTR(N), LEN(N), FREE

Inserting an element requires some data movement if thereis no free space adjacent to the cor-
responding row. In this case, al entries of the row are moved to free space at the end of all rows,
after which the new element is added. For example, in figure 4.9 we show the data structure of
figure 4.8 after element a3 has been inserted in the second row. The previously occupied loca
tions are marked as free by resetting the associated indices. Free space can be used by subsequent
insertions. Infigure4.9, for instance, anew element can beinserted in row 1 or row 3 without any
data movement. If, however, data movement is required but cannot be done because insufficient
free space is available at the end of all rows, a left-compression is performed to make all rows
contiguous again [ 74, 80][ 164, p25-33][ 235, p16-25]. Since such aleft-compression isrelatively
expensive, sufficient working space (or ‘elbow room’) must be supplied to prevent the situation
in which aleft-compression has to be applied many times.

There are different kinds of sparse row- and column-wise storage schemes (see e.g. [2][78,
p24-25,p31-32][ 77, 80][129, ch11][105, 185][199, ch1][164][235, ch2]). For example, in ordered
variants, the entries are sorted on index information, making creation slightly more expensive.
An additional pointer can be used to separate entriesin the lower and triangular part, whereas the
main diagonal can be kept in separate storage. Because sparse row- or column-wise storage only
supports fast generation of entries along a row or column, the column- or row-structure of the
matrix may be stored as well.

FREE

/

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16

VAL 8131810 (84 = | = 233|231 P34] %41 | 244 %53 | %55 | P25 | 222 | P23

IND 3|1,4)J]0|0|3|1| 4| 1] 4| 3| 5|5|2]3

Figure 4.9; Data Movement
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VAL

Figure 4.10: Extended Column Scheme

A representation of asparse matrix in either alinked list scheme or the general sparse scheme
of this section can be efficiently converted into a similar representation of the transposed ma:
trix [106][169, p236-239]. In fact, since entries are ordered on index information afterwards, ap-
plying such an agorithm twice can be used to converted an unordered representation of a sparse
matrix into an ordered representation [8, 106][169, p239-240].

Extended Column or Row Schemes

In the extended column or ITPACK scheme [162], every kth entry in the sth row of a matrix is
stored in the ith row and kth column of atwo-dimensional array ‘REAL VAL( N, MAXROW ',
while the column index of this entry is stored at the same position in atwo-dimensional integer
array | NDwith the same shape. Here, MAXROWdenotes the maximum number of entriesin arow
of the matrix. Infigure 4.10, weillustrate the extended column scheme for the matrix (4.4), where
an appropriate padding must be used for al rowswith less than MAXROWentries (denoted by * 1').

Again, many variants of this scheme are possible [2, 11, 84, 184, 185, 186, 219][235, p39-40].
The entries in each row may be unordered, while column-oriented schemes are also possible. Re-
ordering therowsin the matrix in decreasing order of the number of entries per row can be used to
move all unused locations in the arraysto the lower right corner. In this manner, redundant opera-
tions can be avoided by recording the number of entries stored in each column of VAL aswell. A
one-dimensional variant of this schemeisusualy called ajagged diagonal scheme. All these stor-
age schemes have been specifically developed to enhance vector performance on pipelined vector
processors by accessing the entries along columns of VAL, which increases the average length of
vector instructions.

Quad-Tree Schemes

Asadvocated in [1, 220, 221, 222, 223], so-caled quad-trees, well-known from the fields of im-
age processing and computer graphics (see e.g. [110, ch10][191]) can be used to represent sparse
matrices. Ann x n matrix isembedded in a2/ "1 x 2" "] matrix, where an appropriate padding
with zero elementsis applied. A zero matrix is represented by aNULL-pointer, whereasal x 1
nonzero matrix issimply represented by ascalar. All other matrices are represented as aquadruple
of sub-matrices consisting of the left-upper-, right-upper-, left-lower-, and right-lower-quadrant.

An example of a quad-tree representation of a4 x 4 sparse matrix is showninin figure 4.11.
The quad-tree representation provides auniform way of representing both dense aswell as sparse
matrices, while it also simplifies the implementation of algorithms based on matrix partitioning.
For example, the sum of two matrices can be assembled recursively, where the recursion termi-
natesif either one of the operandsisthe nil pointer (yielding the other operand as result), or if two
scaars are encountered (yielding the sum of the these scalars). Likewise, matrix multiplication
can be formulated recursively using eight recursive multiplications of quadrants followed by four
additions, where the nil pointer acts as multiplicative cancellator and additive identity.
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Figure 4.11: Quad-Tree Representation

4.2 Organization of the Spar se Compiler

In this section, abrief overview of sparse code generation is given and some sparse methods are
reviewed to determine the issues that should be dealt with by a sparse compiler.

4.2.1 Terminology of the Sparse Compiler

For each matrix, the sparsity of which is not explicitly dealt with in the original dense program,
the following three concepts can be distinguished:

e Anm x n implicitly sparse matrix A, used at alogical level.
e Anarray REAL A(M N), used as enveloping data structure of A.

e A sparse storage schemefor A, selected by the sparse compiler.

The concept of animplicitly sparse matrix isintroduced to reason about programs at alogica
level (perform the operation b = A, consider the nonzero structure of A, etc.). At the program-
ming level, al operations on an implicitly sparse matrix are defined on the envel oping data struc-
ture, for which atwo-dimensional array of appropriate size is used. Hence, an implicitly sparse
matrix is, in fact, an ordinary sparse matrix for which a simple storage scheme is used to reduce
the complexity of developing and maintaining the original dense program. The burden of sparse
code generation is placed on the sparse compiler, which selects a suitable sparse storage scheme
for each implicitly sparse matrix and transforms all occurrences of the corresponding enveloping
data structure in the original dense program accordingly.

Hence, eventually semantically equivalent sparse code is generated in which the sparsity of
each implicitly sparse matrix is accounted for to reduce the storage requirements and computa-
tional time of the original dense program. To emphasize the correspondence between an implic-
itly sparse matrix and its enveloping data structure, identical nameswill be used for both (i.e. two-
dimensional arrays A, B, C, etc., denote the envel oping data structures of implicitly sparse matrices
A, B, C, etc)).

4.2.2 The Sparse Compiler

Asillustrated in figure 4.12, the input of the sparse compiler consists of an ordinary FORTRAN
program stored in, for instance, the file ‘pr g. f '. In this program, two-dimensional arrays are
used as enveloping data structures of all implicitly sparse matrices. The use of arrays simplifies
both the devel opment and maintenance of the code. In addition, regular data dependence checking
and standard restructuring techniques can be applied to the original dense program.

Information that cannot be expressed in the dense description of an algorithm is supplied to
the sparse compiler by means of annotations. There are, for instance, annotations to identify the
enveloping data structures or to incorporate techniques that are specific for sparse applications.
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prg.f mlcs m2.cs m3.cs

Dense Program
with Annotations A\ " B\ " A\ " &

Nonzero

Structure

Analysis
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Program
Analysis
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Feedback
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Program and
Data Structure
Transformations
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library.o

Sparse Program

t

FORTRAN COMPILER

Figure 4.12: Organization of the Sparse Compiler

All annotations have the form of comments, which enables direct compilation and testing of
theoriginal dense program (cf. [92]). Theoriginal dense codeisanayzed by the sparse compiler to
detect statements that can exploit sparsity and to determine the way in which the enveloping data
structures are accessed. Asindicated by annotations, the input of the sparse compiler may aso
consist of someimplicitly sparse matricesthat are available at compile-time on file (cf. ‘mlL. cs’,
‘n2. c¢s’, and soon). Toimpose little constraints on programmers not familiar with sparse appli-
cations, the compiler expects al matrices in avery simple storage format, namely the coordinate
scheme (cf. section 4.1.3). The files are automatically analyzed to determine characteristics of
the nonzero structures. These characteristics are supplied to the transformation phase. If desired,
the results can also be prompted to the programmer to provide some feedback. In arealistic ap-
plication, however, not al sparse matrices will be available at compile-time. Even in these cases,
characteristics of the nonzero structure may be known in advance. Therefore, annotations to sup-
ply nonzero structure information to the sparse compiler have been made available.

Program and data structure transformations are applied to the original dense program in order
to obtain semantically equivaent code in which the sparsity of all implicitly sparse matrices is
exploited. Restructuring techniques required include procedure cloning [54, 55], access pattern
reshaping, iteration space partitioning and actual sparse code generation. Information about this
restructuring phase may be prompted to the programmer. This enables the programmer to fix the
parts of the original dense program that are transformed into inefficient sparse code.

Finally, the resulting sparse program is saved in a file with the additional extension ‘_sp’ to
indicate the sparse character of this program (cf. ‘pr g_sp. f '). Thisfileis supplied to a conven-
tional FORTRAN compiler that produces machine code for a particular target machine. A library
containing some useful primitives, which only has to be compiled once for every possible tar-
get machine, is linked with the generated sparse program. Moreover, to keep the sparse storage
schemes selected for theimplicitly sparse matrices completely transparent to the programmer, the
sparse compiler also generates appropriate initialization code at the beginning of the main pro-
gram. Thisimpliesthat no initialization code has to be defined in the original dense code (except
for some temporarily initialization code for the enveloping data structures that is removed after
testing).
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4.2.3 Incorporation of Sparse Methods

In addition to methods for dense matrix computations, avast amount of methods have been devel-
oped specificaly for sparse matrix computations. In particular, these sparse matrix computations
differ from dense applications by the use of sparse storage schemes (see section 4.1.3) and spar-
sity preserving reordering methods (see appendix A). Both these issues should be addressed by a
sparse compiler to enable the automatic generation of efficient sparse codes.

Spar se Storage Schemes

The most efficient sparse storage scheme that can be selected for a sparse matrix A heavily de-
pends on the operations performed on this matrix, and the peculiarities of the nonzero structure of
A. To enable the selection of an appropriate sparse storage scheme, the original dense program
is analyzed to obtain information about the kind of operations performed, and nonzero structure
information is obtained either from annotations or from automatic analysis of matrices on file.
The sparse compiler alows for the compile-time selection of a hybrid storage scheme, with sta-
tic dense storage of regions which are (or become) rather dense, and dynamic storage in a pool
of sparse vectors of entries in sparse regions. The layout of vectors over these regions may be
different for each region and depends on the most frequently used access direction in that region.
However, the actual position of the entries only becomes known at run-time. Primitives in the
library support the run-time manipulation of the sparse vectors in this pool.

To support thiskind of data structure selection, annotations are available to specify afile that
should be analyzed at compile-time, or to identify the dense or sparse regions in a matrix. Re-
gions that are completely zero, and will remain so at run-time, can also be identified. No storage
is alocated by the compiler for these regions. Moreover, an attempt is made to remove code per-
forming redundant operations on these regions at compile-time. If zero regions are detected by
automatic nonzero structure analysis, the compiler first inquires the programmer whether these
regions actually remain zero at run-time.

Sparsity Preserving Reordering M ethods

Although reordering methods are occasionally used to enable the use of certain data structures,
to increase the amount of exploitable parallelism, or to enhance data locdity or vector perfor-
mance [2, 11, 84, 184], most reordering methods are aimed at preserving sparsity. In the context
of solving a sparse system of linear equations, both local strategies as well as apriori reordering
methods are used (see appendix A). The use of areordering method may be essentia to keep solv-
ing asparse problem feasible. For example, factorization of the matrix shown in figure 4.13 with-
out pivoting causes complete fill-in, whereas application of minimum degree [96, 98] or reverse
Cuthill-Mckee yields a factorization in which no fill-in occurs (cf. [52][ 78, p96-98,p153-157]).

Because such reordering methods improve the efficiency of a sparse application and reduce
storage requirements, a mechanism must be available to incorporate sparsity preserving reorder-
ing methods in the automatically generated sparse code. One possibility would be to let the pro-
grammer deal with permutations explicitly by meansof e.g. masks, permutation arrays or physical
datamovement. Infact, thisapproach istaken in dense applications, where, for instance, partial or
complete pivoting are explicitly implemented in the code (see e.g. [90, p58-67][173, 176]). How-
ever, this solution is unsuited for the automatic generation of sparse codes, since it obscures the
functionality of the code, disables regular data dependence analysis, and reduces the flexibility
of the program since only one reordering method can be implemented. Moreover, it isdifficult to
express sparsity related decisions in the dense code, and much programming effort iswasted since
acompletely different implementation is required in the resulting sparse code.
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Figure 4.13: The Importance of Reordering Methods for Factorization

Therefore, the sparse compiler provides some elementary support for the incorporation of re-
ordering methods, suited for the incorporation of local strategies and apriori reordering methods
The implementation of permutations is kept completely transparent to the programmer and the
compiler isresponsible for the generation of sparse code in which suitable permutations are pos-
sibly selected, applied, and recorded. As far as the programmer is concerned, all programming
can be done on the enveloping data structure as if the permutation is performed by physically
moving elements in this two-dimensional array. In addition, rather than specifying a particular
method directly (e.g. reverse Cuthill-Mckee), the programmer merely uses some annotations to
inform the sparse compiler about the kind of permutations that may be applied to an implicitly
sparse matrix at particular positionsin the code. After analyzing the program, the sparse compiler
selects a suitable reordering method. However, we will see that permutation annotations alone
are not sufficient, but we also need annotations to deal with the mathematical consequences of
permutations.

4.3 Automatic Data Structure Selection and Transfor mation

The automatic data structure selection and transformation method of the sparse compiler is based
on a bottom-up approach and consists of a three phase process. In the first phase, the envelop-
ing data structures and the instructions in the code affected by the sparsity of these data structures
areidentified. Some preparatory program transformations are applied to simplify subsequent data
structure transformations and to make fully use of statements affected by sparsity. In the second
phase, a sparse storage scheme is selected for each implicitly sparse matrix, possibly in combi-
nation with loop transformations to resolve conflicts. In the third and final phase, the actual data
structure transformations are applied and sparse code is generated.

4.3.1 Intuition behind the Automatic Exploitation of Sparsity

If in the original dense program, atwo-dimensiona array REAL A( M N) isused asthe envelop-
ing data structure of an m x n implicitly sparse matrix matrix A, then thisisindicated using the
following annotation:
REAL A(M N)
C_SPARSE( A)
Obvioudly, the storage requirements of the program can be reduced by converting the array A
into a sparse storage scheme for the matrix A.
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Although there are many ways to store sparse matrices, the most efficient of which depends
on the problem considered, some general sparse storage schemes exist. One possible approach to
automatic dense into sparse conversion would be to select one of these data structures for every
implicitly sparse matrix directly, followed by acorresponding transformation of the program. This
approach istoo simple, however, asit does not give any control over the efficiency of the resulting
code.

To achieve areasonable level of control, data structure sel ection must be based on the nonzero
structure of the matrix and the actual operations performed by the code. Regarding the latter as-
pect, this control may berealized by first identifying statements where sparsity can be exploited to
save computational time. We can observe that all instances of an assignment statement in which
a zero is assigned to a non-entry or where an arbitrary variable is updated with a zero can be
eliminated, provided that this statement does not call functions with side-effects. Usually, this ob-
servation is only exploited for non-entries of sparse data structures, and accidentally stored zero
entries or zero elements arising in dense data structures are ignored.

Example: Suppose that below, array Ais used as enveloping data structure of animplicitly sparse
3 x 3 matrix A, of which the nonzero structure isillustrated in the picture:

DOI =1, 3 123
DOJ =1, 3
Si: ACC = ACC + A(I,J) ‘E
So: A(l,J) = A(1,J) * 2.0
ENDDO
ENDDO

It is clear that, independent of the actual numerical value of each entry, executing only the
following statement instances preserves the semantics of the origina dense loop:

Si1(1,1): ACC = ACC + A(1,1) S1(2,3): ACC = ACC + A2, 3)
Sa(1,1): A(L,1) = A(1,1) * 2.0  S5(2,3): A(2,3) = A(2,3) * 2.0
Si1(1,3): ACC = ACC + A(1,3) S1(3,2): ACC = ACC + A(3,2)
S5(1,3): A(1,3) = A(1,3) * 2.0 S5(3,2): A(3,2) = A(3,2) * 2.0

Frequently, statement instances that can exploit sparsity may be executed in arbitrary order.
Thisis certainly true if no cross-iteration data dependences hold (e.g. aloop with only Ss). If
cross-iteration data dependences exist, the original execution order must be preserved, although
data dependences caused by asimple accumulation (cf. S7) can beignored if roundoff errors, due
to inexact computer arithmetic, are allowed to accumulate in a different way [228].

A similar observation can be made for | F-statements, since all statement instances under con-
trol of a condition that cannot hold may be skipped, provided that evaluating the condition isfree
of any side-effects. For example, only instances of a one-way |F-statement with the condition
‘(A(l.J).NE. 0.0)’ that refer to an entry, have to be executed, independently of the state-
ments that actually appear in the body of the | F-statement.

Theidentification of statements that can exploit sparsity enables the sparse compiler to take a
bottom-up approach consisting of three phases. In thefirst phase, every statement in the program
is checked whether it contains occurrences of enveloping data structures. If so, this statement is
conceptually an | F-statement, inwhich adistinction ismade between code operating on entriesand
code that operates on zero elements. For example, a statement in which an occurrence A( | , J)
of an enveloping data structure occurs can be thought of as the following |F-statement, where
E(A) C [1,m] x [1,n] denotes the index set of the entries of the implicitly sparse matrix A:

IF ( (1,3) € E(A) ) THEN
A, T) L < operation on an entry
ELSE
0.0 .. < operation on a zero element

ENDI F
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Due to the previous two observations, the EL SE-branch can be eliminated in some cases. Be-
cause the presence of guardslike ‘(I,J) € E(A)’ reflects the run-time overhead that is inherent
to sparse codes, it isdesirable to eliminate this overhead. Animportant source of overhead reduc-
tion is the encapsulation of a guard that controls a one-way |F-statement in the execution set of a
surrounding loop, asisillustrated below:

DOl eV
IF ( #(1) ) THEN DO I € {V |4}
ENDI F ENDDO

ENDDO

Such aconversionisonly possibleif al elementsintheexecution set {V' | ¢} can begenerated
efficiently at run-time. Therefore, information about the way in which envel oping data structures
are accessed is collected and propagated to the next phase.

In the second phase, constraints are imposed on the organization of the sparse storage scheme
of each implicitly sparse matrix to enable the encapsulation of guards and other overhead reduc-
ing techniques, while each data structure is kept as compact as possible to limit the storage re-
quirements. If possible, access patterns are reshaped and execution sets are partitioned to obtain
anumber of non-overlapping regions in each implicitly sparse matrix that are accessed in a con-
sistent manner. Thereafter, the sparse compiler selects a suitable sparse storage scheme for each
implicitly sparse matrix.

Finally, in the third and final phase, the corresponding data structure transformations are ap-
plied by converting the dense code into aform that operates on the sel ected sparse storage schemes.

Inthefollowing sections, webriefly glance at each of these phases. A more detailed discussion
of the phases can be found in chapters 5, 7, and 8. Nonzero structure analysis and more advanced
topics, such as concurrentization and incorporating reordering methods are presented in chapters 6
and 10 respectively.

4.3.2 Phasel: Program Analysis

In the first phase, conditions are associated with the statements of a program and information is
collected about theway in which envel oping data structure are accessed. Maoreover, some prepara-
tory program transformations are applied to improve these conditions and to simplify subsequent
data structure transformations.

Associating Conditions with Statements

Supposethat an array Aisused asenveloping data structure of anm x n implicitly sparse matrix A,
and that the index set of the entries of this matrix (usually not known at compile-time) is denoted
by E(A) C [1,m] x [1,n]. If an occurrence A( | , J) appears in a statement, then conceptually
this statement is atwo-way |F-statement that distinguishes between entries and zero elements.

If weuse A’ as an abstraction of a sparse storage scheme of A, where abijective storage func-
tionoy : E(A) — AD'; maps theindices of an entry to the corresponding address in A', we
can view a statement in which the enveloping data structure occurs at the right-hand side of an
assignment statement as follows, since either a value must be fetched from A’ or a zero must be
used:

IF (1,J) € E(A) THEN
X = Aloa(I, )]
X = A(l,J) - ELSEIF (1,J) ¢ E(A) THEN
X =0.0
ENDI F



80 CHAPTER 4. A SPARSE COMPILER

Making the distinction seems useless in this case, and we rather use the convention that we
haveo (i, j) =L if (i,7) ¢ E(A) holds, where A’'[ L] = 0, to avoid the distinction shown above.
In other cases, however, branches may be eliminated due to the observations madein the previous
section. An example is shown below:

IF (1,J) € E(A) THEN
ACC = ACC + A(1,J) - ACC = ACC + Ao 4(I,J)]
ENDI F

Another, less obvious example where one branch can be eliminated if zero constants are han-

dled as non-entries is shown below:!

IF (1,J) € E(A) THEN
A(l1,3) =0.0 - Aloa(1,3)] = 0.0
ENDI F
If an occurrence of an envel oping data structure appears at the left-hand side of an assignment
statement in which an arbitrary expressions appears at the right-hand side, then the two branches
must handle the change in value for an entry or creation respectively:

IF (1,J3) € E(A) THEN
Aloa(1,3)] = X

A(l,J) = X - ELSEIF (1,J) ¢ E(A) THEN
Anewy (I,3)] = X
ENDI F

We have used the function newy to insert anew entry in A. Thisfunction returns the address
of anew entry a;;, and adapts the storage function o 4, the index set of the entries £/(A) and the
set of addresses AD', accordingly as side-effects.

The‘e E(A)'-and ‘¢ E(A) -tests are referred to as positive and negative guar ds respec-
tively. Every different occurrence of an enveloping data structures givesrise to an additional posi-
tive and negative guard. Hence, statements with & different occurrences of enveloping data struc-
tures can be thought of asamulti-way | F-statements with 2% branches for every possible conjunc-
tion of the corresponding guards. An example is given below, where we assume that array B is
also used as enveloping data structure. The last branch has been eliminated to exploit sparsity:

IF (1,3) € E(A)A(1,3) € E(B) THEN
X = X+ N[oa(1,3)] + Blop(L,J)]
ELSEIF (1,3) € E(A)A(1,J) ¢ E(B) THEN
X = X+ A(l,J) + B(I,J) - X = X + Afoa(1,3)]
X = X + Blog(l ,J))

ELSEIF (1,J) ¢ E(A)A(1,J) € E(B) THEN
]
ENDI F

We define the condition of a statement as the disjunction of all conditions (consisting of con-
junctions of guards) that appear in the remaining branches of the multi-way | F-statement, i.e. the
branches that cannot exploit sparsity. For the previous example, for instance, the associated con-
ditionis:

( ((1,J) € E(A) A (L,J) € E(B)) V
((1,J) € B(A) A (L,]) ¢ E(B)) V
(L) ¢ E(A)A(T1,7) € E(B)) ) = (1,J) € E(A)V(L,J) € E(B)

This condition, which has been simplified into asingle digunction of guards, reflects the fact
that all instances referring to at least one entry must be executed so that only the instances that
access two non-entries can fully exploit sparsity (if weignore the fact that some entries may acci-
dentally be zero). In general, a condition of a statement defines the instances of the statement that
cannot exploit sparsity and, hence, must be executed. Another example is shown below:

! Note that in this case, the entry could be eliminated from the sparse storage scheme in the remaining branch. Usu-
ally, however, the situation in which an entry becomes zero is simply ignored.



4.3. AUTOMATIC DATA STRUCTURE SELECTION AND TRANSFORMATION 81

IF (1,K € E(A) A (K, J) € E(B) THEN
X=X+ A(l,K * B(K,J) - X = X + N[oa(1,3)] * Blop(I,J)]
ENDI F
Condition ‘(I,X) € E(A) A (X,J) € E(B)’ isassociated with this statement, which in-
dicates that only the instances in which two entries are accessed have to be executed. In some
cases, we can aso associate conditions with |F-statements. Condition “(J,I) € E(A)’, for ex-
ample, may be associated with the following one-way | F-statement, since the boolean expression
“(A(J, ). GT. ABS( X)) ' necessarily evaluates to false for all non-entries:

IF (J,1) € E(A) THEN

IF (A(J,1) .GT. ABS(X)) THEN | F (A[oa(J,T)] .GT. ABS(X)) THEN
ENDI F ENDI F
ENDI F

Obvioudly, it would be extremely cumbersome to first generate multi-way-IF statements, fol-
lowed by eliminating branchesthat can exploit sparsity and computing the condition for each state-
ment according to the remaining branches. Fortunately, it is not necessary to explicitly construct
multi-way |F-statements to compute the condition of each statement. In chapter 5, we present a
simpl e attributed grammar that directly computes the condition for each statement. The conditions
computed by this attributed grammar only exploit zero constants and non-entries, i.e. the condi-
tions conservatively assume that the contents of dense variables and entries are always nonzero.
Although this implies that accidentally stored zeros are not exploited, it prevents the generation
of additional tests on the value of such expressions which are likely to fail.

Dominating Guards

For some statements, the value of the associated condition is completely dependent on the value
of one particular positive guard. Such situations frequently occur in linear algebra operations that
are classified as static or simply dynamic [235, p10-12]. For example, implementing the opera-
tion A < « - A, whichiscaled asimply dynamic operation, involves the following assignment
Statement:

IF (1,3) € E(A) THEN

A(1,3) = ALPHA * A(I,J) - Aoa(1,3)] = ALPHA * Ao 4(T,J)]
ENDI F
We say that a positive guard 1) dominates a condition ¢, if ¢ = 1 holds. Informally speak-

ing, if the guard +) does not hold, then the whole condition ¢ does not hold. In this previous ex-
ample, the guard ‘ (I,J) € E(A)’ dominates the identical condition. As another example, both
the guards in the condition *(I,K) € E(A) A (K,J) € E(B)’ dominate this condition, whereas
none of these guards dominates the condition ‘(I,K) € E(A) V (K,J) € E(B)’. Dominating
guards give rise to a convenient overhead reduction method, because sparse data structures usu-
ally provide efficient generation of al entries, i.e. elements for which the guard holds, along an
access pattern. Therefore, information about the way enveloping data structures are accessed is
collected and propagated to the second phase.

Preparatory Program Transformations

During the first phase, some preparatory program transformations are applied to simplify subse-
quent data structure transformations and to improve the conditions that become associated with
the statements in the program. For example, because in the following fragment another data struc-
turewill be selected for array A, the occurrences of the formal argument Min subroutine SUB must
be converted accordingly to account for the fact that this subroutine may be called with A asactua
argument:
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REAL A(10,10), X(100), D(10,10) SUBROUTI NE SUB( M
C_SPARSE( A) REAL M 10, 10)

CALL SUB(A) RETURN

CALL SUB(X) END

CALL SUB(D)

END

However, since this subroutine is aso caled with X and D as actual arguments, we cannot
bluntly apply program and data structure transformations to SUB. Instead, we first apply proce-
dure cloning [54, 55] to construct a clone ‘SUB_A" of the subroutine, in which there is a unique
association between the enveloping data structure A and the formal argument M Thereafter, the
first CALL-statementsin the main program is converted accordingly and program and data struc-
ture transformations can be applied to the clone without interfering with callsto SUB having dense
actual arguments.

Some transformations that improve the conditions associated with statements may also be ap-
plied. For example, using the attributed grammar that will be presented in chapter 5, condition
‘true’ becomes associated with the following two assignment statements because it seems that
none of the instances of these statements can exploit sparsity. However, after scalar forward sub-
stitution [234, p178-179], the condition of the remaining statement changesinto (I, J) € E(A)":

T
ACC

Al J)
ACC + 3.0 * T

—  ACC = ACC + 3.0 * A(l,J)

4.3.3 Phase2: Data Structure Selection

Each occurrence of an enveloping data structure induces access patterns that form paths through
the index set of the corresponding implicitly sparse matrix. The elements along every path can be
viewed as a vector that, depending on the regions accessed, is either dense, sparse or zero. Inthe
second phase, the sparse compiler selects a storage scheme for each implicitly sparse matrix. Sta
tic dense storage is used for the vectors through dense regions, whereas a pool of sparse vectorsis
selected as dynamic storage for the remaining regions. Thelayout of the vectors over theseregions
is selected to enable overhead reducing techniques as much a possible. Loop transformations are
used to obtain a number of non-overlapping regions that are accessed in a consistent manner.

Overhead Reducing Techniques

Although the multi-way 1F-statements used during the presentation of the first phase are not ex-
plicitly generated, the presence of guards, o 4-lookups and new 4-functions reflect the overhead
inherent to sparse storage schemesfor scanning acompact data structure to determineif and where
an entry is stored or for inserting an entry. Because skipping operations by means of conditionals
does not reduce the execution time on most machines [ 78, 169], overhead reducing techniques are
required. The prototype sparse compiler has the ability to apply one of the following overhead re-
ducing techniques: (i) replacing accesses to zero regions by zero, (ii) avoiding overhead by using
static dense storage for particular regions, (iii) applying so-called guard encapsulation, where a
construct that iterates over the entries along an access pattern is generated, or (iv) applying so-
called access pattern expansion, where a sparse vector is scattered into a full-sized array before
operations are applied to this vector, and gathered back into sparse storage thereafter.

Zero Replacement

If we know that a particular region in an implicitly sparse matrix A is completely zero and will
remain so at run-time, then all occurrences of the corresponding envel oping data structure that can
only induce accesses to this region can be replaced by the constant zero at compile-time.
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If, for example, we know that the whole main diagonal of animplicitly sparse matrix A having
Aasenveloping datastructure iscompl etely zero and will remain so at run-time, then thefollowing
replacement becomes possible:

ACC = ACC + A(5,5) — ACC = ACC + 0.0

Because the condition ‘false’ becomes associated with the resulting statement, the whole as-
signment statement can be eliminated thereafter.

Using Static Dense Storage

If aparticular region in an implicitly sparse matrix is rather dense, then we can use static dense
storage for that region to avoid the overhead that is inherent to sparse storage schemes. For in-
stance, using aone-dimensional array DI AG A to store all elements aong the main diagonal of an
implicitly sparse matrix A having the two-dimensional array A as enveloping data structure avoids
all lookup overhead in the following fragment (another storage organization may be used for the
remaining regions):

REAL A(N, N)
C_SPARSE( A) REAL DIAG A(N), ...
DO =1, N - DO =1, N
X(1) = A1, 1) X(1) = DIAG A(I)
ENDDO ENDDO

If some zero elements along the main diagonal become nonzero, the use of static dense stor-
age even avoids any overhead arising from the run-time insertion of entries. On the other hand,
using static dense storage also disables any exploitation of sparsity to reduce either storage re-
quirements or computational time. For example, athough condition ‘(I,I) € E(A)’ isassoci-
ated with the following statement, sparsity cannot be exploited (viz. selecting static dense storage
of the main diagonal implies that the inclusion {(1,1),(2,2),...} C E(A) isaready known at
compile-time);

ACC = ACC + A(l,1) —  ACC = ACC + DIAG A(l)

Only if the main diagonal isreasonably dense, the number of unnecessarily performed opera
tions and stored zero elementsissmall. Therefore, static dense storage should only be selected for
regions that are or become rather dense, whereas sparse storage should be used for the remaining
regions, using the overhead reducing techniques of the following sections where possible.

Guard Encapsulation

For an occurrence of an envel oping data structure that has admissible subscripts represented by the
affine transformation F(I) = # 4+ W I appearing in aloop with index vector T = (I;,...,14)7,
we define the access pattern P(Iy,...,1; 1) C Z? astheindex set of all elements accessed in
successive iterations of the innermost stride-1 | 4-loop with bounds L ; and U;;:

P(Iy,...,14-1) ={F(@)7T | 14 € [Lg,Ug]}

If guard* F(TI) € E(A)’ dominates the condition of all statementsin the loop-body, wewould
like to let index I, iterate over al values in the irregular execution set {I, € [Lq,Uq] | F(I) €
E(A)}. Thisisobtained by guard encapsulation. In this manner, only iterations in which an
entry is operated on, i.e. an element for which the dominating guard holds, are executed and test
overhead vanishes. Under certain conditions, guard encapsulation can be implemented by iterat-
ing over the entries along each access pattern, asisillustrated below:
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DOl1 =L, U
DO Iy = L1, U

DOy = Lg, Uy

IF F(I) € E(A) THEN DO ad € AD',(I1,...,I4_1)
ACC = ACC + Ao4(F(T))] — ACC = ACC + A[ad)
ENDI F ENDDO
ENDDO e
. ENDDO

ENDDO
This conversion isfeasible if the last column of matrix 1 is nonzero and the organization of
the pool of sparse vectors satisfies the following constraints:

(&) For al possible values of theloop indices Iy,...,I4 1, the addressesin the following set
can be generated efficiently:

AD)(T1,....TIg1) = { oalf)|fE€PTy,...,Ta1) NE(A) }

(b) Torestorethevaueof loopindex | 4, either the value -cr;l(ad) if wy4 # 0 holds, or the
vaue s - o, (ad) if way # 0 holds, can be supplied efficiently together with each address
ad € AD;‘(Il, .., Ig ), wheren; - 7 = x;.

Furthermore, to prevent the requirement for ordered storage (not supported in the current pro-
totype sparse compiler), thisconversion isonly doneif iterations of this DO-loop may be executed
in arbitrary order (although, as discussed in section 4.3.1, data dependences caused by accumula-
tions may be ignored):

() Nodatadependenceiscarried by the I;-loop and no exit branch [234, p238-241] or STOP-
statement can be executed in the loop-body of this DO-loop.

Because, in generdl, it isvery likely that some access patterns are subsets of other access pat-
terns, we usualy relax constraint (a) to the requirement that the addresses of entries along alon-
gitudinal enveloping access pattern of each true access pattern can be generated efficiently, where
alongitudinal enveloping access pattern of an access pattern smply consists of all discrete points
on an arbitrary line segment that is placed over the access pattern. However, in this case, we must
test if the restored value of the loop index | 4 is an integer vaue in the range [L4, Uy to deter-
mine whether an entry actually corresponds to the true access pattern. Constraint (b) followsfrom
ad = 04 (7 + WT) and the fact that the storage function o 4 isinvertible:

{m-azl(ad) = ntwn-Ii1+...+wygy- I (45)
7T2-O'Zl(ad) = wvytwo-I1+...+wyy Iy '

Consequently, for column-wise access pattern (viz. w4 # 0), the value 7y - a;l(ad) isre-
quired (in combination with the values of theindices of more outer DO-loops) to restore the value
of the loop index I,. This clearly illustrates that row index information is required in column-
wise oriented data structures. Likewise, for row-wise access patterns (viz. woy # 0), the vaue
Ty - cr;‘l(AD), i.e. the column index, is required, while for diagonal-wise access patterns (viz.
wig # 0 Or weg # 0) either row or column index information sufficesto solve an equationin (4.5).
Example: Below, array Ais used as enveloping data structure of a 100 x 100 implicitly sparse
matrix A, andguard‘(I,I + J) € E(A)’, dominates the (identical) loop condition. Hence, guard
encapsulation in the execution set of the J-loop isfeasible if (a) the addresses of entries aong the
access patterns P(I) = {(I,I+J) |1 < J <75} for1 < I < 25 can be generated efficiently,
(b) 2 - 0" (ad)-values are available together with each address, and (c) the data dependence
caused by the accumulation may be ignored:
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DOl =1, 25
DOl =1, 25 '
- DO ad € {oa(f) | f € P(T)N E(A)}
DOJ =1, 75 J=nx ail(ad) I
= * T 200y :
X=X+ A1, 1+43) *J — X = Xos Rad) * 3
ENDDO DDC
ENDDO EN
ENDDO

Relaxing constraint (a) enables the sparse compiler to select, for instance, general row-wise
storage of the entries but also requiresthetest ‘J € [1,75] before the value of X is actually up-
dated. Although, in general, test overhead remains in the loop-body, still fewer iterations are ex-
ecuted, since the average number of entries along each longitudinal enveloping access pattern is
probably less than the size of the original execution set.

It is important to realize that the requirement for fast generation of entries along an access
pattern imposes constraints on the organization of the pool of sparse vectors. In generd, the actua
addresses of the entries and their position in the matrix will only be known at run-time. Moreover,
if creation may occur in A, this complicates the actual implementation of guard encapsulation,
because this affects the value of guards, whereas addresses may change due to data movement or,
for some data structures, due to an occasionally required left compression. For scalar-wise access
patterns (viz. both w4 and wo4 are zero), it is possible that the guard can be hoisted out of some
innermost DO-loop, which enables guard encapsulation in the execution set of a more outer DO-
loop. These issues are further elaborated in chapter 8.

Access Pattern Expansion

A related overhead reducing technigue imposing similar constraints on the organi zation of the pool
of sparse vectors is given by access pattern expansion. The compiler may decide to generate a
construct that will expand the entries along an access pattern stored in dynamic sparse storage into
atemporary one-dimensional array using a scatter-operation, so that subsequent operations onthis
vector do not suffer from the inherent sparse lookup overhead [69, 78, 169]. The actual number
of operations performed, however, is not reduced by this technique.

For example, if the addresses of entriesalong P = {(10,J) | 1 < J < N} can be generated
efficiently for an implicitly sparse matrix A with enveloping data structure A, and the value 5 -
071" (ad) is available together with each address, then the following fragment, in which sparsity
cannot be exploited to reduce computational time, can be implemented without repeated lookup
overhead asfollows:

DO ad € {aA(lf) | fE PNE(A)} }
_ AP( 73 - 07, (ad)) = Alad] scatter
DOJ=1 N 1
D(10,J) = D(10,J) * A(10,J) —» E\DDO
ENDDO poJ =1, N
D(10,J) = D(10,J) * AP(J)
ENDDO

If changesto the nonzero structure along the 10th row occur, then this can be easily accounted
for using the so-called switch technique [169], where a switch array records which elements are
entries. Storage is obtained directly to account for creation if necessary and the actual values
are stored back into sparse storage afterwards with a gather-operation. During this operation, the
switch array and the full-sized array are reset to support any subsequent access pattern expansion,
asis further elaborated in chapter 8.

In any case, access pattern expansion isfeasibleif the organization of the pool of sparse vectors
satisfies constraints (a) and (b) of the previous section.
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Supporting Transformations

To enable guard encapsulation and access pattern expansion, the sparse compiler must select for
each implicitly sparse matrix an organization of the pool of sparse vectors that supports efficient
generation of the addresses of entries along certain access patterns. Ideally, wewould like to sup-
port fast generation of addresses of entries along all access patterns through the corresponding
enveloping data structures that are encountered in the program. However, this would demand for
extensive overhead storage.

Consequently, it is desirable to have a number of non-overlapping regions in each implicitly
sparse matrix that are accessed in a consistent way. Loop transformations can assist in achiev-
ing this goal. Unimodular loop transformations can be used to reshape the access patterns of an
occurrence of an enveloping data structure. For example, simple loop interchanging changes the
row-wise access patterns of the following occurrences into column-wise access patterns:

DOl =1, M DOJ =1, N
DOJ =1, N DOl =1, M
A1) = A(1LJ) * 3.0 A(1,3) = A(1,J) * 3.0
ENDDO ENDDO
ENDDO ENDDO

Likewise, iteration space partitioning can be used to obtain a number of non-overlapping re-
gions asisillustrated below:

DOl =1, M
RO A(l,1) = 10.0
ACl,1) = 10.0 AL 1) 2100
DOJ =1, | I<JI<I o .
D(1,J3) = A(l,J) * X(J) N ENB(D'O'J) = AL ) * X(J)
ENEE)I;gDO D(I,1) = A(l, 1) * X(I)
ENDDO

After this loop transformation, a different storage organization can be selected for the main
diagona and the strict lower triangular part of an implicitly sparse matrix A. In chapter 7, we
discuss methods to control these loop transformations and to update information that has been
obtained in the first phase incrementally to avoid re-analysis of the program.

Data Structure Selection

Eventually, the sparse compiler selects a sparse storage scheme for each implicitly sparse matrix.
Static dense storage is used for dense regions, whereas a pool of sparse vectors is selected as dy-
namic storage for the remaining regions. The layout of the vectors over these regions is selected
according to the way in which each region is accessed most frequently, in order to enable guard
encapsulation and access pattern expansion as much as possible.

The pool of sparse vectorsisstored using avariant of the sparse row- or column-wise schemes
presented in section 4.1.3. The numerical values of entriesin each sparse vector are stored consec-
utively in an array VAL _A, while the corresponding column or row indices are stored in aparallel
integer array | ND_A. The pointers LONA(p) and HGH.A(p) are used to locate the pth sparse vector
in the pool. In figure 4.14, possible contents of these arrays for a general sparse row-wise orga-
nization of the pool are shown. In general, however, the layout of sparse vectors over the sparse
regions may be selected arbitrarily by the sparse compiler, so that the number of sparse vectors
in the pool may exceed the number of rows or columns of the matrix. Row index information is
available for column-wise sparse vectors and column index information for sparse vectors stored
aong other directions.

Obvioudly, selecting different storage formats for different regionsin an implicitly sparse ma-
trix enables the sparse compiler to fully account for both the characteristics of the nonzero struc-
ture of this matrix, aswell as for the actual operations applied to the matrix.



4.3. AUTOMATIC DATA STRUCTURE SELECTION AND TRANSFORMATION 87
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Figure 4.14. Dynamic Storage in aPool of Sparse Vectors

4.3.4 Phase3: Sparse Code Generation

Theactual datastructure transformations are applied by converting the dense code into aform that
operates on the selected sparse storage schemes, where overhead reducing techniques are used as
much as possible.

For example, the guard encapsulation of section 4.3.3 can be implemented as follows for a
genera sparse row-wise organization of the pool of sparse vectors.

DOl =1, 25
DO J_ = LOWA(l), HGH A(l)

DOD'Oj L 12575 J=ZINDAJ) - |
v IF ((1.LE J).AND. (J.LE. 75)) THEN
X=X+ AIl,1+)) *J — h
X = X+ VAL AJ) * J
ENDDO
ENDDO ENDI F
ENDDO
ENDDO

Some frequently occurring constructs are supplied as primitives in a separate library and used
in the generated sparse code to reduce the size of this code. Moreover, because the programmer
is unaware of the sparse storage scheme that is eventually selected by the sparse compiler, the
sparse compiler isresponsible for generating appropriate initialization code for each selected data
structure. Thiscodeisgenerated at the beginning of the main program, and expects each implicitly
sparse matrix in coordinate scheme on file. The file names are supplied to the sparse compiler
either interactively or by meansof annotations. A detailed presentation of code generation isgiven
in chapter 8.
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Chapter 5

Phase 1. Program Analysis

During the first phase, the original dense program is analyzed by the sparse compiler. Firgt, the
annotations appearing in the program are analyzed to identify the two-dimensiona arrays used
as enveloping data structures of implicitly sparse matrices and to obtain information about these
matrices. Because, eventually, the data structures of implicitly sparse matrices will change, prob-
lemsariseif these matrices are passed as parameters to subroutines and functions. These problems
are solved by enforcing a unique association between enveloping data structures and formal ar-
guments by means of procedure cloning [54, 55], which is a useful mechanism to differentiate
between call-sites with different properties. Thereafter, conditions are associated with the state-
ments in the resulting program and, possibly, improved by some simple transformations. Finally,
information about the way in which enveloping data structures are accessed is collected.

5.1 Annotations

Information that cannot be expressed in the original dense program is supplied to the sparse com-
piler by means of annotations. We distinguish between annotations that may appear in the declar-
ative part, mainly used to identify the enveloping data structures, and annotations that may appear
in the executable part.

5.1.1 Annotationsin the Declarative Part

In the declarative part, annotations are used to identify the envel oping data structuresin aprogram
and to supply information about the corresponding implicitly sparse matrices.

Declaration Annotations

Because the compiler cannot distinguish between ordinary arrays and arrays that are used as en-
veloping data structures of implicitly sparse matrices, a mechanism to provide the compiler with
thiskind of information must be available. Theidentification of enveloping data structuresisdone
by means of annotations. All annotationsin the declarative part start at the beginning of alinewith
‘C_SPARSE'. Inthis manner, the annotations are simply handled as comments by other compilers,
so that the original dense program can be compiled and tested without any modifications, provided
that theimplicitly sparse matrices are not too large. In each declaration annotation, aparenthesized
list of the identifiers of enveloping data structures is given, separated by semi-colons.

Declaration annotations are generated by the following context free grammar (unless stated
otherwise, each token denotes the literal string in either lower or upper case):
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sp_decl — C_SPARSE ' (' decl_list ")’
>

decl _Iist — decl _list ';' decl
| decl

)

In its most simple form, a declaration annotation consists of single identifier specifying the
name of an enveloping data structure. However, information about the corresponding implicitly
sparse matrix can also be supplied within the declaration annotation as illustrated below, where
the token | D denotes an arbitrary FORTRAN identifier:

decl — ID
| ID’':" info
Thefollowing annotation, for instance, informs the compiler about the fact that arrays Aand B
are used as envel oping data structures of two implicitly sparse matrices A and B of size 100 x 100
and 20 x 50 respectively:

REAL A(100, 100), B(20, 50)
C_SPARSE(A : B)

Each annotation that identifies a particular enveloping data structure must follow the actual
declaration of the corresponding array. Such annotations are only allowed in the main program
and before the first executable statement (although sparsity information can be propagated auto-
matically to subroutines and functions). Moreover, each enveloping data structure must be atwo-
dimensional array with basistype | NTEGER, REAL, DOUBLE PRECI SI ON, or COMPLEX, and
the index set [1..M] x [1..N] for suitable constants Mand N. If any of these constraints is violated,
an appropriate warning is generated and the incorrect part of the annotation isignored.
Example: In the following program, the annotations involving arrays A and B in the main pro-
gram, and the local array G of subroutine PROC violate these constraints and, hence, are ignored:

PROGRAM ANNOT SUBROUTI NE PROC( F)

REAL A(-5:5,10), B(10) REAL F(10, 10)

REAL C(10,10), D(100) REAL (10, 10)
C_SPARSE(A ; B; O C_SPARSE( Q)

CALL PROC(C) .

CALL PROC(D) RETURN

END END

Hence, only thetwo-dimensiona array Cishandled as an enveloping datastructure. Asfurther
explained in section 5.2, procedure cloning is used to construct aclone of PROC, called ‘ PROC C,
inwhich thereisaunique association between Cand F. Hence, the sparsity of Cis propagated into
this clone. The original subroutine PROC with a dense formal argument F is preserved to handle
the call with actual argument D.

File Annotations

As shown below, the filein which the corresponding implicitly sparse matrix resides can be speci-
fied within adeclaration annotation, where the token STRI NGdenotes any sequence of characters
enclosed by single quotes:

info — _FILE'(’ STRING')’

If severd files are specified for the same implicitly sparse matrix, only thefirst fileisrecorded
for this matrix. If thisfileis available at compile-time in either the current directory or the direc-
tory defined by the environment variable SPARSEDI R, then thefileis examined by the automatic
nonzero structure analyzer described in chapter 6.
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Because this analyzer expects all matrices in coordinate scheme (cf. section 4.1.3), sparse
matrices generated in aprogram or stored in aternative storage schemes must first be converted
into coordinate scheme in order to enable this automatic analysis. On file, the coordinate scheme
consists of three integers, indicating the number of rows, columns, and entries in the matrix, re-
spectively, followed by the row and column index and numerical value of each nonzero element
inarbitrary order. If the size of the stored matrix does not match the declaration of the enveloping
data structure, awarning is generated and the results of the analysis are ignored.

Example: The following annotation indicates that the implicitly sparse matrix A having array A
as enveloping data structure can be found in thefile‘mat 1. cs’:
REAL A(5, 5)
C_SPARSE(A : _FILE(' mat1l.cs'))

Below, we show an example file and the corresponding nonzero structure of the matrix A,

annotated with the block form detected by the analyzer:

contents of file’'mat 1. cs’

55 12 . .
11502250335.0445.0 S
5550211.0341.0141.0 ne
251.0541.0451.035 1.0 Nonzero Structure of A

Because the programmer is unaware of the sparse storage scheme that will be selected by the
sparse compiler, the compiler isresponsible for the generation of appropriate initialization code for
each selected data structure. Independent of whether afile specified inafile annotation isavailable
at compile-time, or not, this file will be used in the automatically generated initialization code of
the selected sparse storage scheme. This code is generated before the first executable statement
in the main program, and, in contrast with automatic analysis of the nonzero structure, will only
read the file at run-time. The automatic generation of initiaization code is discussed in detail at
the end of chapter 8.

Nonzero Structure Annotations

Because it is unlikely that at compile time, al implicitly sparse matrices are available on file,
nonzero structure information can also be supplied directly to the compiler by means of anno-
tations. An approximation of the density of an implicitly sparse matrix can be supplied in a dec-
laration annotation as follows, where symbol expr denotes an arbitrary FORTRAN expression:

info — _DENSITY (' expr ')’

The approximated density isonly recorded if the expression can be evaluated at compile-time
and has areal value in the range (0, 1]. If several approximations are supplied for an implicitly
sparse matrix, only the first density that can be evaluated is recorded.

If aparticular region in an implicitly sparse matrix is either sparse, dense (or will become so
a run-time), or completely zero (and will remain so a run-time), then this information can be
supplied to the compiler by specifying this property followed by a description of the index set of
the region. Moreover, a preferred access direction for this region can optionally be supplied. The
production for such annotations is shown below:

info — prop ('’ bpair_list ')’ opt_dir
opt_dir — (expr’, expr’)”
_DENSE €

prop — _SPARSE
\ .
| _ZERO ;



92 CHAPTER 5. PHASE 1: PROGRAM ANALYSIS

11 diagonals 20 diagonals

ZERO I
SPARSE

5 rows ¢
Figure 5.1: Nonzero Structure of B

Theindex set of aregionisdescribed using a, possibly empty, list of boundary pairs, as spec-
ified by the following productions.

bpair_list —  bpair_list ',’ bpair
| bpai r
| €

bpai r —  expr <= Y ‘<= expr
| expr ' <= 'y ‘<= expr
| expr '<=" 17 T+ ) <= expr
| expr <= 1’ -7 ") <= expr

Symbolic constants may be used in each expression to increase the flexibility of the program,
provided that all expressions can be evaluated at compile-time. For an m x n implicitly sparse
matrix A, the region consists of all elements ar ; withindices (I, J) € [1..m] x [1..n] that satisfy
all the constraints in the list of boundary pairs simultaneously.! In this manner, we can describe
regions with an index set that can be expressed in terms of atwo-dimensional ssimple section [15,
16]. Empty regions or regions that overlap with earlier supplied regions in aparticular implicitly
sparse matrix areignored. All regions that are not specified are assumed to be sparse.

Example: The following annotations indicate that the nonzero structure of an implicitly sparse
matrix B with enveloping data structure B has the characteristics shown in figure 5.1, where the
preferred access direction of the first dense regioniis (1,1)7"

INTEGER N
PARAMETER ( N=100)
REAL B(N, N)
C SPARSE(B : _DENSE( -5 <= |-J <= 5)(1,1) )
C_SPARSE(B : _ZERO (1-N <= [-J <= 20-N) )
C SPARSE(B : DENSE(N-4 <= | <= N, 6 <= 1-J <= N-1))

For this matrix B, the sparse compiler will attempt to isolate operations on the different re-
gions, to eliminate redundant operations on the upper right corner, and to reshape the access pat-
terns of occurrences that access the band along the preferred access direction. If these attempts
are successful, astorage scheme will be selected in which the band and border are stored statically
in two rectangular arrays, and the entries in the sparse regions are stored dynamically in apool of
Sparse vectors.

Per mutation Annotations

The programmer can specify that anm x n implicitly sparse matrix A with enveloping data struc-
ture Awill be permuted into P AQ at run-time using the following permutation annotation:

Theindices| and J only serve anotational purpose, and have no relation with FORTRAN variables.
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REAL A(M N)
C_SPARSE(A : _PERM

If the identifier specified in a permutation annotation does not correspond to an enveloping
data structure, the annotation is simply ignored because there is no support to reorder dense data
structures. Otherwise, the annotation indicates that any programmer-defined a priori reordering
method may be applied to A at run-time before this implicitly sparse matrix isinitialized. More-
over, the programmer can use interchange annotations (see next section) to indicate positions in
the code where certain row and column interchanges may be applied to A, thereby enabling the
sparse compiler to select and implement alocal strategy.

The actua implementation of permutations is kept transparent to the programmer. The sparse
compiler isresponsible for generating code in which permutations are possibly selected, applied,
and recorded. Asfar as the programmer is concerned, al programming can be done on the en-
veloping data structure A asif elements are physically moved in thistwo-dimensional array, i.e. if
at acertain moment A is permuted into P AQ, then the programmer may assume that A contains
the elements of PAQ).

5.1.2 Annotationsin the Executable Part

In this section, annotations that may appear in the executable part of the original dense program
are discussed. Interchange annotations support the incorporation of local strategies. Induction
annotations deal with the mathematical consequences of permutations. Because the sparse com-
piler enforces a unique association between enveloping data structures and formal arguments, in
contrast with declaration annotations, the annotations discussed in this section may also appear in
subroutines and functions.

Interchange Annotations

The following interchange annotation can be used to specify that at a particular position in the
code, a run-time an arbitrary row and column of an implicitly sparse matrix A with enveloping
data structure A that arein the range [LR, UR] and [LC, UC| respectively may be interchanged with
the Rth row and Cth column:

C I NTERCHANGE(A, LR UR > R LC UC > Q)

Rather than directly specifying the criteriafor alocal strategy that must be used to determine a
row and column, the sparse compiler may select these criteria after analyzing the program. After
aparticular local strategy has been selected, the sparse compiler is also responsible for generat-
ing code that implements the selected local strategy. In this code, desired row and column in-
terchanges are selected at run-time, applied and recorded. The implementation issues are further
explored in chapter 10.

Induction Annotations

Permuting an implicitly sparse matrix A into PAQ may have mathematical consequences that
have to be dedlt with in the original dense program. For example, if A is permuted into PAQ
before we computeE «— AZ, then we must permute the original vector Z into #/ « Q' % before
the product, and permute the computed vector b’ into the desired result b «+— PTb” after the product
has been computed. Thisisimplied by thefollowing formula, wherethe part () iscomputed by an
implementation that assumes that elements are physically moved in the enveloping data structure:

Pb=0b"= PAQ#' = PAQ(Q"#) = PAZ
—————
(%)
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Likewise, if before factorization or during LU-factorization to solve asystem A7 = 5, the
implicitly sparse matrix A becomes permuted into P A using an apriori or loca strategy, then
effectively the factorization PAQ) = LU iscomputed. Hence, before forward substitution is ap-
plied we must permute theright-hand side 7 into ' «— P#. After back substitution, the computed
7' is permuted into the desired solution 7 + Qz'. Thisisimplied by the following formula,
where () is solved by an implementation assuming physical data movement:

PA# = PAQQ"# = LU(Q"#) = LU#' =b' = Pb
(+)

I nduction annotations are used to deal with such consequences. Theimplementation of record-
ing and applying permutation matrices are kept transparent to the programmer, i.e. the compiler is
responsible for implementing induction annotations. However, it is the responsibility of the pro-
grammer to correctly deal with all mathematical consequences of a permutation using induction
annotations, because it seems to be very hard to determine mathematical consequences automat-
icaly. Since incorrect use of induction annotations may affect the semantics of the original pro-
gram, these annotations must be used with care.

In an induction annotation, the identifier of a one-dimensional array that must be permuted,?
an action, and arow or column permutation matrix currently associated with an implicitly sparse
matrix are specified as shown below:

sp_exec C INDUCE ID action matrix '(' ID ")’

"<

_ROW
“COLUWN

_)

_ 5
action - >

5

mat ri X —

5

The sparse compiler replaces each induction annotation with code that has the following im-
pact on a column vector # = (x1,...,z,)" and arow vector i = (y1,...,y,) stored in arrays
Xand Y respectively, where P and () denote the row and column permutation matrices that at the
time of execution are associated with theimplicitly sparse matrix A with envel oping data structure
A

annotation: result: dternative result:
CINDUCE X < ROW (A z+ Pz zT«zTPT
CINDUCE Y < COLUMN(A) 7+ 7Q ¢§T « QTy"T
CINDUCE X > ROW (A <« P’z 2T+ zTp
CINDUCE Y > COLUMWN(A) 7+ 4Q" ¢7 « Qy"

The alternative result arises from the fact that transposition has no impact on FORTRAN array
representations (viz. Xand Y interpreted asrow and column vector). The method of recording per-
mutation matrices and the actual implementation of the computations specified in induction anno-
tations are kept transparent to the programmer. 1f the number of elements in the one-dimensional
array and the order of the permutation matrix differ, awarning is generated and the annotation is
ignored. If adense data structure is specified, then the one-dimensiona array remains unaffected
(viz. P =@ = I'inthiscase).

Example: Below, we present an implementation of b + AZ, wherethe 100 x 50 implicitly sparse
matrix A may be permuted arbitrarily in advance:

2Thisrestriction isimposed to simplify the implementation in the prototype sparse compiler.
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PROGRAM PERM

INTEGER I, J, M N
PARAMETER ( M=100, N=50)
REAL AMN), B(M, X(N

C_SPARSE(A : _PERM

C_INDUCE X < _COLUMN(A)

DOl =1, M
B(l1) = 0.0
DOJ =1, N
B(1) = B(1) + A(l,J) * X(J)
ENDDO
ENDDO

5.2 Subroutines and Functions

In the original dense program, two-dimensional arrays are used as enveloping data structures of
implicitly sparse matrices. Because the sparse compiler eventually selects another data structure
for each implicitly sparse matrix, problems arise if enveloping data structures are used as actua
arguments in subroutine or function calls. Theway in which the array is passed to and handled in
the subroutine or function must be changed according to the selected data structure. In the follow-
ing sections, we discuss which parameter passing mechanisms are allowed for implicitly sparse
matrices. Furthermore, we discuss how these mechanisms are dealt with by the sparse compiler.

5.2.1 Parameter Passing Mechanisms

Assume that a subroutine P is called as follows:

CALL P(A1,...,An)

The expressions Ay, ..., A, arereferred to as the actual arguments. The header of the sub-
routine definition introduces the formal argumentsF,, ..., F,, which are further declared in the

body of the subroutine:
SUBRQUTI NE P(F,...,Fp)
END

For each CALL-statement, the number of actual arguments must be equal to the number of for-
mal arguments of the called subroutine. Furthermore, the type of each actua and corresponding
formal argument must be the same. During invocation of the subroutine, we say that each actual
argument A; is associated with the formal argument F;. The same terminology is used for func-
tion cals. Mareover, from now on, we use the generic term procedure to refer to a subroutine or
function.

Single Element Arguments

A single element of an implicitly sparse matrix is passed to a procedure, if an arbitrary element
of the corresponding enveloping data structure is associated with a scalar formal argument. For
example, in the following fragment, array A is used as enveloping data structure of a 10 x 10
implicitly sparse matrix A and element ay7 is passed to the subroutine USE:

PROGRAM | N SUBROUTI NE USE( X)
REAL A( 10, 10) REAL X

C_SPARSE( A) .= X
CALL USE( A(2,7) ) RETURN

END END
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Inthisfragment, A( 2, 7) isassociated with aninput-argument, because the formal argument
X cannot be modified in the subroutine. A similar situation isillustrated below:

X = ABS( A(l,J) )

In these situations, envel oping data structures used as actual arguments can simply bereplaced
by alookup in the selected data structure, i.e. the value of the appropriate element is passed to the
called procedure. In this manner, the subroutine or function remains unaware of the fact that el-
ements of an enveloping data structure may be associated with its forma arguments. Although
this implies that sparsity cannot be exploited in body of the called procedure (a similar problem
was encountered at the end of section 4.3.2 for elements stored in temporary variables), the main
advantage of this approach is that no further transformations are required in this body. The fol-
lowing CALL-statement, for instance, would result for the first example shown above if genera
sparse row-wise storage is selected for A (function ‘LKP__" is presented in chapter 8):

CALL USE( VAL _A( LKP_ (IND A LOWA(2), HGHA(2), 7)) )

Itisalso possible that arbitrary elements of enveloping data structures become associated with
output- or input/output-arguments, asisillustrated below:

PROGRAM OUT SUBROUTI NE DEF( X)
REAL A(10, 10) REAL X

C_SPARSE( A) IF(....) X=...
CALL DEF( A(3,4) ) RETURN
END END

In this case, the subroutine must become aware of the sparsity of the formal argument, and
the whole data structure that will be selected for the implicitly sparse matrix must be accessible in
the subroutine to account for the possibility of creation. The best way to handle these situations
isto rewrite the CAL L-statement into aform in which the whole implicitly sparse matrix and the
subscripts are passed separately to the subroutine, asisillustrated below:

PROGRAM OUT SUBROUTI NE DEF(M |, J)
REAL A( 10, 10) REAL M 10, 10)
C_SPARSE( A) INTEGER |, J
CALL DEF(A, 3, 4) IF(...) MI1,3) = ...
END RETURN
END

As further explained in section 5.2.2, a clone ‘ DEF_A0Q’ will be generated having a unique
association between the envel oping data structure A and theformal argument M In this manner, all
occurrences of Mcan simply be handled as occurrences of A. The data structure that is selected for
the corresponding implicitly sparse matrix A will be made avail able to the clone using COMM ON-
storage.

Implicitly Sparse Matrix Arguments

A whole implicitly sparse matrix is passed as a parameter to a procedure if the first element of
an enveloping data structure A becomes associated with atwo-dimensional forma argument that
has the sameindex set as A. In FORTRAN, thisfirst element can be defined in an actual argument
aseither ‘A’ or ‘A(1, 1) . In the following program, for instance, the whole implicitly sparse
10 x 10 matrix A is passed to the subroutine GAUSS:

PROGRAM SOLVE
REAL A(10,10), (10, 10)

SUBROUTI NE GAUSS( M
REAL M 10, 10)

C_SPARSE( A) o
CALL GAUSS(A) RETURN
CALL GAUSS(D) END

END
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Because a new data structure will be selected for the implicitly sparse matrix, the formal ar-
gument Mmust be converted accordingly. However, the subroutine is also called with the actual
argument D, the data structure of which will remain unaffected. Consequently, we cannot apply
the data structure transformation applied to array A directly to M because this would make sub-
routine GAUSS unsuited for calls with other actual arguments. Likewise, if different implicitly
sparse matrices are passed to the subroutine, application of data structure transformations would
make the subroutine GAUSS unsuited for al implicitly sparse matrices for which a different data
structure has been selected.

In-line expansion [5, 55][234, p101-102] could be used to resolve this problem, since this
would enable the application of arbitrary data structure transformations to the separate call-sites
afterwards. However, to prevent the inherent increase in code size caused by in-lining, the sparse
compiler uses procedure cloning [54, 55] to construct clones (copies) of subroutines or functions
in which enveloping data structures are uniquely associated with formal arguments. In the previ-
ous fragment, for instance, the subroutine is cloned into copies that will be used for calls having
different enveloping data structures as actual argument (such as‘ GAUSS_ A’ and ‘GAUSS B'). In
each clone, the unique association between the appropriate enveloping data structure and the for-
mal argument Misrecorded. |f necessary, the original subroutine GAUSS is preserved and used for
al calswith an actual argument of which the data structure is not atered by the sparse compiler.

If aprocedure has several formal arguments, then one clone isrequired for each possible asso-
ciation between enveloping data structures and formal arguments. For example, if a procedure P
with two argumentsiscalled asfollows, then aclone‘P_AB’ inwhich A and B are uniquely associ-
ated with the formal arguments as well as another clone ‘P_AQ’ in which array A and an arbitrary
dense data structure are uniquely associated with the formal arguments F and G

PROGRAM CLONE SUBROUTI NE P(F, G
REAL A(10,10), B(10, 10) REAL F(10,10), & 10, 10)
REAL C(10,10), D(100) o
C_SPARSE(A ; B) .
CALL P(A, B) RETURN

CALL P(A © END
CALL P(A, D)
END

If inaclone, an enveloping data structure is uniquely associated with aformal argument, then
al occurrences of this formal argument are handled as occurrences of the enveloping data struc-
ture. Thedatastructure that will be selected for the corresponding implicitly sparse matrix is made
available to the clone using COMMON-storage, which avoids passing an excessive number of
parameters in case many variables are required to implement the new data structure. Hence, all
arguments that are used to pass awhole implicitly sparse matrix to aclone become redundant and
are diminated. Note that because sparsity information can be propagated into clones, situations
may again arise in which implicitly sparse matrices are passed to subroutines or functions that
are called within the clones. Hence, propagated cloning may be required, as further discussed in
section 5.2.2.

Remaining Arguments

Finally, problems may arise if an enveloping data structure is associated with aformal argument
that has a different shape (which is alowed in FORTRAN). The following user-defined function
SUM for instance, linearizes atwo-dimensional array A that is used as enveloping data structure
into aone-dimensiona array:
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PROGRAM LI NEAR REAL FUNCTI ON SUM M
REAL A(10,10), SUM REAL M 100)
C_SPARSE( A) | NTEGER |
PRINT *, SUMA) SUM = 0.0
DOI =1, 100
END SUM = SUM + M)
ENDDO
RETURN
END

A similar kind of reshaping occurs if the envel oping data structure becomes associated with a
formal argument of higher dimension (e.g. ‘REAL M 2, 25, 2) ’). To simplify subsequent data
structure transformations and to prevent the requirement to transl ate access information according
to the ways arrays are reshaped in subroutine or function calls (cf. trandations performed during
interprocedural analysis [15, 47, 48, 109, 142]), an enveloping data structure may only be asso-
ciated with a formal argument that has exactly the same index set. All other associations must
be resolved explicitly by the programmer before the automatic dense to sparse conversion can be
performed.

Valid Associations

Summarizing, the following parameter passing mechanisms are allowed:

e Aneéeement of an enveloping data structure is associated with a scalar input-argument.

e Thefirst eement of an enveloping data structure is associated with atwo-dimensional for-
mal argument that has exactly the same index set as the enveloping data structure.

These associations, and any association between variables of which the data structure remains

unaffected and arbitrary formal arguments are referred to as valid associations. All other associ-
ations are invalid. In the prototype sparse compiler, we require that potential invalid associations
are resolved by the programmer, as alluded to in the previous sections.
Example: Inthefollowing program, associating A, B, and Cwith the forma argument Misvalid.
However, because a clone will be generated for subroutine P in which the enveloping data struc-
ture A is uniquely associated with M associating Mas actua argument with the formal argument
L inthe cdl to subroutine Qisinvalid:

PROGRAM MAI N SUBROUTI NE P( M
REAL A(10, 10) REAL M 10, 10)
REAL B(100), C(10,10) IF(...) CALL M
C_SPARSE( A) RETURN
CALL P(A) END
CALL P(B)
CALL P(Q) SUBROUTI NE QL)
END REAL L(20, 10)
RETURN
END

In the next section, we present an algorithm to compute all required procedure clonesin apro-
gram and to detect potential invalid associations. These problems are handled as flow insensitive
problems (or MAY-problems). For the previous example, thisimpliesthat evenif the | F-statement
is used to ensure that the call to Qin subroutine P will never occur while A is associated with M
the algorithm records the requirement of aclone Q_A, and reports a potential invalid association.
Only after the declaration ‘REAL L( 20, 10) ’ has been rewritten into ‘REAL L( 10, 10)’, all
associations become valid.
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5.2.2 Procedure Cloning

In the absence of procedure parameters, construction of acall graph is straightforward [183, 229,
234]. avertex labeled P is created for each procedure P in a program, and an edge from P to Q
is added to the call graph if procedure P may call Q Dynamic recursion, where at run-time sev-
era activations of the same procedure can exist simultaneously [3], isnot allowed in FORTRAN.
Moreover, we disallow static recursion, where two procedures can (in)directly call each other but
two activations of the same procedure will never exist simultaneously. Consequently, theresulting
call graphisacyclic. Finaly, because the prototype sparse compiler operates on whole programs
rather than separate source files, we assume that the complete call graph is available.

Computing the Required Procedure Clones

All clones required to enforce a unique association between enveloping data structures and for-
mal arguments can be determined during avisit of all procedures according to atopological sort
of the call graph. Because this implies that for each edge from P to Qin the cal graph, proce-
dure Pisvisited before Q all possible associations between envel oping data structures and formal
arguments are known for al predecessors of avisited vertex. Below, we present a variant of the
agorithm given in [55] to compute the required clones, that also strongly resemblesthe call graph
construction method accounting for procedure parametersin [183].

For each procedure P in a program, atable Tp is created having a column for each formal
argument. We can express the algorithm in a more regular manner, if the main program is aso
handled as a procedure. All local variables of the main program are viewed as formal arguments,
denoted by L4, . .., L,,. We also construct atable for the main program, having a column for each
local variable. Because declaration annotations are only allowed in the main program, thisunitis
the only source of sparsity information. The table of the main program isinitialized by inserting
asinglerow [y, ..., 7], where 7; = L;, if the ‘formal’ argument L; is used as an enveloping data
structure of an implicitly sparse matrix and 7; = 0, otherwise.

Subsequently, rows are inserted in the other tables by executing the following procedure for
al verticesin the call graph according to atopological sort.

procedure visit(P)
begi n

for each procedure call ‘QA;,...,A;) in P do

for each rowr in Tp do
insert(Tq, [71(r),...,m(r)] )
enddo

enddo
end

Each expression 7;(r), where 1 < ¢ < n and n is the number of formal arguments of Q is
evaluated as follows:

{ To[r][j] if A; isjth formal argument of P
Ti(’r’) = .
0 otherwise

If the jth formal argument of P is equa to A;, then 7;(r) contains either the identifier of an
enveloping datastructure that may be associated with thisvariable, or thevalue‘ 0’ if an unaffected
data structure may be associated with this argument. We also have 7;(r) = 0 in al other cases,
i.e. if A; isalocal variable or an arbitrary expression.
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If 7;(r) # 0, then the enveloping data structure defined by 7; () may be associated with the
ith formal argument of procedure Q, which is denoted by F;.
A potentia invalid association is reported in one of the following cases.

1. Forma F; isascalar and occurs in the MODg-set.
2. Formal F; is atwo-dimensiona array and:®

(& Actua A; does not define the first element, or
(b) Theindex sets of formal argument F; and enveloping data structure 7;(r) differ.

3. Formal F; is neither ascalar nor atwo-dimensiona array.

Thereafter, the procedure i nsert iscaled. In this procedure, we test whether the value of
the second argument is present in the table defined by the first argument. If this test fails, arow
with this value is added to the table.

After all vertices in the call graph have been visited, each row in atable Tp indicates a po-
tential association between the enveloping data structures of implicitly sparse matrices and the
formal arguments of procedure P. The value ‘0’ indicates that an arbitrary actual argument re-
maining unaltered by the sparse compiler is associated with the corresponding formal argument.
Consequently, if ‘[0, ...,0]" appears in the table, the origina procedure must be preserved. For
all other rows, one clone must be generated in which a particular association between enveloping
data structures and formal arguments holds. A name is constructed for each clone by concate-
nating the original name with an underscore and the strings defined by each row (‘P_-OA’, ‘P_BA’
etc.). The use of an underscore prevents name conflicts with identifiers in the original program.

Enforcing a unique association between enveloping data structures and formal arguments en-
ables the application of different program and data structure transformations to each generated
clone without interfering with the other clones that support different kinds of associations for the
origina procedure. The presented algorithm is more accurate than a naive agorithm that would
simply determine possi bl e associ ations between envel oping data structures and formal arguments,
after which clones are generated for all possible combinations of these associations.

Adapting CAL L -Statements

After al clones have been generated, each procedure call in the program in which enveloping data
structures appear as actual arguments are replaced by acall to the appropriate clone. Each actual
and corresponding formal argument used to pass a whole implicitly sparse matrix are eliminated
from the program after the unigue association has been recorded in the clone. Arguments used to
pass asingle element of an implicitly sparse matrix, on the other hand, are preserved.

If the program is examined, the unique association of an envel oping datastructure Awith afor-
mal argument F that has been eliminated from the header of the procedure isindicated by prompt-
ing ‘<- Sparse(A)’ after the declaration of this formal argument. Moreover, the same con-
struct is used in the main program to indicate which arrays are used as envel oping data structures.
Example: For the following program, the clone‘P_AQ’ isgenerated in which the enveloping data
structure A is uniquely associated with the formal argument F. The CALL-statement in the main
program is replaced by acal to this clone. Moreover, because the first argument is used to pass
the whole implicitly sparse matrix, the first actual and formal argument are eliminated:

3|f these tests cannot be performed because formal arguments occur in either A; or the declaration of F;, we postpone
this test until cloning and interprocedural constant propagation have been applied.
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PROGRAM CLONE PROGRAM CLONE

REAL  A(10, 10) REAL A(10,10) <- Sparse(A)
C_SPARSE( A) CALL P_AO( A(1,2) )

CALL P(A A(1,2)) END

END SUBROUTI NE P_A0( X)

SUBROUTI NE P(F, X) - REAL F(10,10) <- Sparse(A)

REAL F(10, 10) REAL X

REAL X .

. RETURN

RETURN END

END

If, after application of cloning, an enveloping data structure Aisuniquely associated with afor-
mal argument F, then all occurrences of F are handled as occurrences of the enveloping data struc-
ture A and the selected data structure is made available to the clone using a named COMMON-
block, asisillustrated below (details are given in chapter 8):

PROGRAM CLONE SUBROUTI NE P_A0( X)
... declarations ... ... sane declarations ...
COWON /A ... identifiers ... COMWON /A ... identifiers ...
REAL X
CALL P_AO( ... )
RETURN
END END

Examples of Procedure Cloning

Example: Inthefollowing program, the arrays A and B are used as the envel oping data structures
of implicitly sparse matrices A and B:

PROGRAM MAI N
REAL X(25), Y(40)

REAL A(5,5), B(5,8) H
C_SPARSE(A ; B)

CALL P(A, B) o ,@

CALL QA B, X

CALL X, Y, X
CALL P(X, B)
CALL R(Y, A
END

The following subroutines P, Q and R are used:

SUBROUTI NE P(F, © SUBROUTI NE (F, G H) SUBROUTI NE R(F, O
REAL F(5, 5) REAL F(5, 5) REAL F(5, 8)

REAL G(5, 8) REAL G5, 8) REAL G5, 5)

REAL H(5, 5) REAL H(5, 5)

CALL R(G F) CALL R(G F) RETURN

CALL R(H, F) RETURN END

RETURN END

END

Because the main program calls all subroutines, and the subroutines P and Q call subroutine
R, the call graph has the form shown above. During initialization, the tables Ty, 1y, Tp, Ty, and Ty
are constructed. Because arrays A and B are used as enveloping data structure of two implicitly
sparse matrices, the table for the main program is initialized as shown below:

\MAINHX\Y\A\B\
| tfofofa[B]

All procedures are visited according to atopologica sort of the call graph, e.g. in the order
MAI N, P, Q and R. During the visit to the main program, all callsto P, Qand R are considered.
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Thisresultsin adding the appropriate rows to the tabl es of the subroutines. For example, if the
firstcall ‘CALL P( A, B) ' isconsidered, we seethat associating A and B with respectively F and
Gisvalid. Therefore, weinsert ‘[ A, B] ’ inTp. After al calsinthe main program are considered,
the tables have the following contents:

a[Fe]H]
; L F QEa
ARE 210 [L]o]4]

If, subsequently, thecall ‘CALL R( G, F) ' insubroutine Pisconsidered, thenrows‘[ B, A]’
and‘[ B, 0] * areadded totable Tg. Consideration of thesecond call toRyieldsthevalue‘[ 0, A] ',
aready present in the table, and the new row ‘[ 0, 0] °.

Visiting subroutine Qdoes not result in theinsertion of morerows(viz. ‘[ B, A] "and‘[ O, 0]’
are aready present in the table Tg):

o
o

W[N] —

O|W|lw| O

El
o[ol=[=|a

Thelast row in thistable indicates that the original subroutine R must be preserved. The other
rows give rise to the following clones:

SUBROQUTI NE R _0A(F)
REAL F(5, 8)
REAL ¢ 5,5) <- Sparse(A)
RETURN

END

SUBROUTI NE R_BA()
REAL F(5,8) <- Sparse(B)
REAL  5,5) <- Sparse(A)

RETURN
END

SUBROUTI NE R_BO(Q

REAL F(5,8) <- Sparse(B)
REAL G5, 5)

RETURN

END

Thetables Tp and Ty give rise to the following clones, in which calls to the appropriate clones

of Rare used:

SUBROUTI NE P_AB(F, G
REAL F(5,5) <- Sparse(A)
REAL (¢ 5,8) <- Sparse(B)
REAL H(5, 5)

CALL R BA()

CALL R OA(H)

RETURN

END

SUBROUTI NE P_OB(F, O
REAL F(5,5)
REAL G(5,8) <-
REAL H(5, 5)
CALL R BO(F)
CALLR (H F)
RETURN

END

Spar se(B)

SUBROUTI NE Q_ABO( H)

REAL F(5,5) <- Sparse(A)
REAL (¢ 5,8) <- Sparse(B)
REAL H(5, 5)

CALL R BA()

RETURN

END

In addition, the original subroutine Qis also preserved. Findly, all calsin the main program are
replaced by the following CALL-statements:

PROGRAM NAI N

CALL P_AB ()
CALL Q ABO(X)
CALL Q
CALL P_OB
CALL R 0A
END

(X Y, X
(X
(M

Note that in a naive approach in which all possibly associations are simply combined, the

clones ‘Q.A00’ and ‘Q.0BO’ would aso be generated.
Example: Subroutines and functions can be made more general if scalar forma arguments are
used in the declarations of non-scalar formal arguments:
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PROGRAM MAI N
| NTEGER K

PARAMETER (K = 10) SUBROUTI NE SCAL(F, S, N

REAL A(2*K, 2*K) e ';'( N i\n)J <
REAL B(3*K. 3*K) e A
REAL C(4*K 4*K), S TN
C_SPARSE( A) T e s
CALL SCAL(A S, 2 * K) ENE&DDO
CALL SCAL(B, S. 3 * K) gy
CALL SCAL(C, S, 4 * K) gl

END

Intheorigina program, we cannot determine whether all associations arevalid, sincethevaue
of N cannot be computed by interprocedural constant propagation (theformal argument N can have
the values 20, 30 and 40). Therefore, test 2(b) is postponed until after procedure cloning. The
following tables result:

| SCAL | F |[s|N]
1][aJo]o
2] ofo]o

|MAIN [K[A[B[C|S]
[ t]ofafofofo]

After the clone ‘ SCAL_AQQ’ has been generated, interprocedural constant propagation indi-
cates that the equation N=20 holdsin this clone (note that the value of Nintheoriginal subroutine
remains unknown). Hence, the postponed test 2(b) succeeds and all associations are valid. If the
following CALL-statement would al so appear in the previous program, no additional clonewould
be generated because the second actual argument is associated with a scalar input-argument:

CALL SCAL(A, A(1,1), 20)

If the value of the formal argument S could be modified within the subroutine SCAL, however,
the previous association would be invalid.
Example: For the following program, test 2(a) must be postponed in the subroutine P, because
thevalue of | cannot be determined using interprocedural constant propagation:

PROGRAM MAI N SUBROUTI NE P(F, 1)
REAL A(10,10), B(10,10) | NTEGER |
C SPARSE(A ; B) REAL  F(10, 10)

CALL QF(I,1))
READ *, K RETURN
CALL P(A, 1) END
CALL P(B, 1)
CALL P(B, K) SUBROUTI NE Q( Q)
. REAL & 10, 10)
END .

RETURN

END

After cloning and interprocedural constant propagation, the equation | =1 holds within the
clone ‘P_AQ’. Hence, the postponed test 2(a) succeeds and the association with formal argument
Gisvalid. However, this test still cannot be performed within the clone ‘P_B0’, and a potential
invalid association is reported.

Ingenera, if apotential invalid association isdetected before procedure cloning, thenthe orig-
inal identifier is used in the error message. If a postponed test fails or still cannot be performed
after procedure cloning, then the identifier of the clone is used in this message.
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5.3 Conditions

In chapter 4, the observation was made that not al instances of a particular statement have to be
executed. For example, al instances of the following assignment statement in which the scalar
ACC s updated with a zero can be skipped without affecting the semantics of the program:

ACC = ACC + A(1,J) * X(J)

Hence, condition ‘A(I, J) # 0 AX(J) # 0’ could be associated with this statement to indicate
the instances that have to be executed. Obviously, areasonable goal in computing such conditions
would be to associate the strongest condition with each statement, since this would offer the most
potential for execution time reduction. However, not al tests on the value of expressions can be
effectively exploited to reduce execution time. Therefore, in this section we focus on conditions
arising from accesses to non-entries or zero constants. For example, if in the previous statement
array Aisused as the enveloping data structure of an implicitly sparse m x n matrix A, then the
condition‘(I,J) € E(A)’ isassociated with this statement, where E(A) C [1,m]x [1, n] denotes
the index set of the entries of the matrix. Hereby, we conservatively ignore the possibility that
some entries in A or components of the vector # can also have the value zero. In generd, such
conditions enable the effective exploitation of sparsity (e.g. by means of guard encapsulation),
whereas arbitrary tests do not.

5.3.1 Associating Conditionswith Statements

Conditions are associated with statements by evaluating the semantic rules in an attributed gram-
mar based on a simple context free grammar for FORTRAN statements.* The ambiguity of the
grammar used in thefollowing sectionsis resolved by assigning the usual precedence and associa
tivity to all operators. Furthermore, we assume that the compiler can distinguish between expres-
sions derived from the following two productions for variables and functions calls respectively:

Production: | Examples:
E—va X Y(1), AT, J)
E - id(arg.list) | ABS(X), MAX( 10, V), SQRT( 2. 0)

Each production in the grammar has a set of semantic rules associated with it that define the
value of attributes belonging to the grammar symbols. Some of these values are formed by condi-
tionsthat eventually will be associated with statements. Conditions may consist of thevalue‘true’
or ‘false’, guards, and conjunctions or digunctions of conditions. Because such conditions can
only be evaluated at run-time, an internal representation to store the value of attributes is needed.
Although thisinduces asubtle difference between conditions occurring as values of attributes, and
proper boolean expressions, for convenience sake we use semantics rules like the one shown be-
low to indicate that the internal representation of the value ‘true’ must be assigned to the attribute
E.p associated with the grammar symbol E if the test succeeds, and the representation of the value
‘false’ otherwise:

E.p = (const.va > 0);

Attributesfor Numerical Expressions

To exploit sparsity, it is essential to know whether a numerical expression E is zero (due to ac-
cessing anon-entry or a zero constant) or not. Moreover, later on we will see that it is aso useful
to know the sign of numerical expressions.

*The author would like to acknowledge very helpful discussions with Arnold Niessen which have contributed sub-
stantially to improving the attributed grammar.
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For this purpose, three synthesized attributes E.p, E.z, and E.n are associated with each nu-
merical expression E, recording the condition under which the expression may be strictly positive,
zero, and strictly negative, respectively.

Semantic rules for al numerical expressions formed using the arithmetic operators ‘+' and
‘—' are derived by examination of the following tables in which, given particular assertions on
the value of the operands, similar assertions on the value of the resulting expression are shown:

[Ei+E [[E2>0 [ Ea=0] E2<0 ]

Ei Es || E2>0 | E2=0 | E5<0 |

EL > 0 >0 >0 7 E, >0 7 >0 >0
E; =0 >0 =0 <o E; =0 <0 =0 >0
E; <0 ? <0 <0 E; <0 <0 <0 ?

For example, because expression E='E; + E,’ may be strictly positive if one of the operands
may be strictly positive, wedefine E.pas‘E;.p V Eq.p’. Likewise, expression E='E; — E»’ may
be zero if both operands can be zero or if the operands have identical signs. Hence, inthiscase E.z
isdefined as‘(E;.p A Ez.p) V (E1.z A Es.2) V (E1.n A Ez.n)’. Continuing in this fashion yields
the following semantic rules:

[ Production | Semantic Rule |
E—Ei +Es Ep= Ei.pV E2.p;
Ez=(E;.pAE2.n)V (E1.zA E2.2) V (E1.n A Ea.p);
E.n= E;.nV Ea.n;
E—E; —Es Ep= Ei.pV Ea.n
Ez=(Ei.pAE2.p)V (E1.ZzA E2.2) V (E1.n A Ez.n);
En=E;.nV Ex.p;

A similar table can be given for the unary minus, whereas the tables for the arithmetic opera-
tors‘«+’, ‘/’, and ‘x«’ are shown below:

[Ei*Ez [ E2>0 [ E5=0 [ E2<0 |[E1/Es [[E2>0 [ E3 =0 [ E2<0 |[ E1*#E3 [[E2>0 [ E3=0 | E5 <0 |
E; > 0 >0 =0 <0 EL >0 >0 T <0 EL >0 >0 >0 >0
E; =0 =0 =0 =0 E; =0 =0 L =0 E; =0 =0 L =0
E; <0 <0 =0 >0 E; <0 <0 L >0 E; <0 #0 >0 #0

A subtlety arises for the operators ‘ /> and ‘++’, because the values of 0° and an expression
in which a divisor occurs that is zero are undefined. However, under the assumption that such
situations (and underflow) do not occur at run-time, ‘convenient’ assertions may be placed at the
positions of the‘ L’, which gives rise to the following semantic rules:

[ Production ]| Semantic Rule |[ Production [ Semantic Rule |
E— E; xEs Ep= (El.p A EQ.p) Vv (El.n A EQ.I"I); E — E; *x Es Ep= Ei.pVEi.Nn
Ez= E1.zV Es.z Ez= E;.z
En=(Ei.p A E2.n) V (E1.n A Ez.p); En=(Ei.nA E2.p) V (E1.n A Ez.n);
E—E; / Es Ep=(E1.pAE2.p) V (E1.nA E2.n); E— —E; Ep= E;.n;
Ez= E;.z Ez= E;.z
En=(Ei.p A Ez2.n) V (E1.nA Ez.p); En= E;.p;

For variables, aguard is supplied in a synthesized attribute var.grd. For an occurrence of an
enveloping data structure of an implicitly sparse matrix A with admissible subscripts F(I), this
guard is‘ F(I) € E(A)’ (where the unique association between enveloping data structures and
formal arguments enforced by cloning is accounted for). For al other variables, the value ‘true
issupplied. Likewise, the value of each constant is supplied in an attribute E.val. Thisenables us
to define the following semantic rules:

[ Production || SemanticRule | [ Production ]| Semantic Rule | Production || Semantic Rule
E—var E.p=va.grd, E — congt || E.p=(constvd > 0); E—(E1) || Ep=Eip
Ez=true E.z=(const.val = 0); Ez=E1.7
E.n=var.grd, E.n= (const.va < 0); En=E;.n

Semantic rules for al remaining numerical expressions are given in the following table:
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[ Production [ Semantic Rule |
E—id(Ei,....Ey) Ep=idnme F ? (E1.pV Ei.n) : true

Ez=id.nme G ?E;.z: true;

En=idnme H ?false: (idnme F ? (E1.pV Ei.n): true);
/x others x/ E.p=true

E.z=true

E.n=true

If no further information is available, we conservatively assume that al values are possible
(i.e. we set E.p=E.z=E.n=true). For function cals, however, some tests on the synthesized at-
tribute id.nm containing the lexeme belonging to id are performed first. The set F' consists of
one-argument zero preserving functions (i.e. f(0) = 0):

F = {INT,REAL, ABS, SQRT, SIN,...}

Obvioudly, for such functions, the resulting value may be strictly positive if the single argu-
ment can be nonzero. Likewise, the result of a one-argument nonzero preserving function (i.e.
f(x) # 0if z # 0) may be zero if the argument can be zero. The set G consists of such functions
(ignoring inexact arithmetic):

G = {REAL, ABS, SQRT, ...}

Finally, for functions in F', the resulting value may be strictly negative if the argument can
be nonzero, provided that we first account for the fact that some functions always have positive
results. Therefore, we first test inclusion in the set H, consisting of al functions having positive
results:

H = {ABS,DIM, SQRT,...}

Advanced compile-time analysis techniques could be used to add user-defined functions with
such properties to these sets.
Example: Someexpressions and the conditions stored in the associated attributes are given below,
where we assume that the arrays A and B are used as the enveloping data structures of implicitly
sparse matrices A and B respectively, and that | , J, and K are loop-indices:

E E.p E.z E.n

- 6.0 - SORT(X) false false true <0
ABS(0.0) * (X+1) false true false =0
- SQRT(X) false true true <0
ABS(50) + 10 * ABS( X) true false false >0
-3.0 ** | true false true >0
- SQRT(X) / (-5.0) true true false #0
X + 50.0 true true true ?
10 - SQRT( A(1,3) ) true (I,7) e E(A) (1,J7) € E(A)

-1.0 * ABS( A(l,J) * B(K K) ) false true (1,3) € E(A) A (K,K) € E(B)
ACl,J) * 2.0 + A(IL,J) * B(I1,J) | (1,3) € E(A) true (1,7) € E(A)

During evaluation of the semantic rules, some simplifications of conditions may be performed,
such as ¢ A true = 1, ¢ A false = false, ) Ay =y Vp =,V (Y Ax) = 1, and
P A (¢ V x) = 1. Forinstance, the value of E.p for the last expression shown aboveisin fact a
simplification of the following condition:

( ((1,J3) € E(A) Atrue) V ((I,J) € E(A) A false) ) Vv
( ((1,3) e E(A)A(1,3) e E(B))V ((1,7) e E(A)A(1,3) € E(B)) )

Although such simplifications are useful to reduce the amount of information prompted to the
programmer, no attempts are made to fully simplify each condition because conditions are only
used to determine dominating guards.
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Conditions associated with Assignment Statements

If an instance of an assignment statement updates an arbitrary variable with an expression that is
certainly zero, or assigns acertain zero to anon-entry, then we may skip execution of thisinstance.

To support the identification of update statements that can exploit sparsity, apointer to the left-
hand side variable, supplied in a synthesized attribute var.nm, is copied into an inherited attribute
E.lhs of the right-hand side expression:

[ Production [[ Semantic Rule |
[ stmt — var=E ]| Elhs=varnm; |

Subsequently, this pointer is passed down the parse tree by simple copy rules:

[ Production ][ Semantic Rule |
E—E; +Es E;.lhs=E>.lhs=E.lhs;
E—E — Es El.th: EQ.th: E.th;
E— E; xEs E1.|h5= E2.|h5= E.|hS;
E— E; /E2 El.th: EQ.th: E.th;
E — Eqp *x Eo E1.|h5= E2.|h5= E.|hS;
E——E; Ei.lhs=E.lhs,

E—(E) Ey.lhs=Elhs,

Theattributes E.p, E.n, and E.Ihs are used to associate another synthesized attribute E.ne with
each numerical expression. This attribute indicates the condition under which the right-hand side
expression in an assignment statement may be different from the left-hand side variable. Thisim-
plies that the condition E.neis only faseif the expression is certainly equal to the left-hand side.

For asinglevariable, thevalue of thisattribute issimply determined by whether thisvariableis
egual to theleft-hand side variable or not. Similarly, an expression with an addition or subtraction
isequal to the left-hand side variableif it is certain that one of the positive operandsisidentical to
this variable and the other operand is zero. For all other expressions, we assume that this situation
cannot occur:®

[ Production ]| Semantic Rule |

E — var E.ne= (var.nm # E.lhs);

E— E; + Ez E.ne=(E;.neV Ex.pV Ex.n) A (E1.pV E;.nV Ez.ne);
E—E; — Es E.ne= Ej.neVv E2.pV Ea.n;

E— (E1) E.ne= E;.ne

/* others x/ E.ne= true;

Finally, conditions can be associated with assignment statements. An instance of an assign-
ment statement must be executed, if the left- and right-hand side expression may differ and at least
one of these expressions may be nonzero, provided that the statement does not evaluate functions
with possible side-effects (see section 5.3.3):

[ Production [ Semantic Rule |
[ stmt— var=E || stmt.cnd=E.neA (vargrdV EpV En); |

Example: Below, someassignment statements and associated conditions are shown. By construc-
tion, only positive guards appear within conditions:

stmt | stmt.cnd

A(l1,J) = X* 5.0 true

A1, J) = A(1,J) false

ACC = ACC + A(1,J) * X (1,3) € E(A)
A(J, 1) = ABS(A(J, 1)) I A(l, 1) (3,1) € E(A)
A(1,J) = B(I1,K) * B(KJ) + A(l,J3) | (1,K) € E(B) A (k,J) € E(B)
A(1,3) = A(1,J) * B(1,1) + B(1,J) | (1,3) € E(A)V (1,J) € E(B)

5A shortcoming of these rules is that E.ne becomes ‘true’ for the right-hand side in ‘ ACC=A( | , J) - (- ACO) ’,
athough the stronger condition ‘ (I, J) € E(A)’ would be possible.
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l inherited
1 synthesized

Figure 5.2: Parse Tree of Statement ‘ ACC=ACCHA( I, J) * X

The evaluation of the condition associated with the third statement is depicted in figure 5.2.
Condition ‘false’ is associated with the second statement, because the right-hand side is aways
egual to theleft-hand side. Such statements may be eliminated completely from the program with-
out affecting the semantics. Associating the condition ‘(J,I) € E(A)’ with the fourth statement
isonly valid under the assumption that adivision by zero does not occur. If inthe original code a
non-entry would become undefined because it isdivided by zero, thisnon-entry would erroneously
remain zero by skipping instances for which the associated condition does not hold.

Attributesfor Boolean Expressions

Because conditional statements are under control of boolean expressions, information about the
possible values of a boolean expression can be used to determine which instances of conditional
statement must be executed. Oneway to encode thiskind of information isto associate two synthe-
sized attributes E.t and E.f with each boolean expression E. These attributes record the condition
under which E may evaluate to true or false respectively.

Because expression E='E; and E;’ may holdif itispossible that both operands hold, wedefine
the value of attribute E.t as E; .t A E;.t. Other semantic rules are obtained in asimilar manner:

[ Production [ Semantic Rule |
E — E; and E> Et=Ei1tAEat; Ef=E;.fVEsf;
E —not E; Et=E;.f; Ef=E;.t;

Thefollowing logical equivalences provide a convenient method to derive the semantic rules
for al remaining logical operators:

aVp = —(-aA-p)
aeqvf = (aAp)V(-aA-p)
aneqv S = —(aeqvf)

The resulting semantic rules are shown below:

[ Production [ Semantic Rule |
E — E; or Es Et=E;.tV Ea.t;
Ef=E;fAEsf;

E — E1 eqv E2 Et= (E1 ITAE2 .t) Vv (E1 fA Ez.f);
Ef=(E;.fVE2f)A(E1.tV Exl);
E — E1 neqv Ea Et= (E1 fVEs f) A (E1 tv Ez.t);
Ef=(E1.tAExt) V (E1.f AEa.f);
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For boolean expression obtained by applying relational operators to numerical operands, it is
important to have more knowledge about the possible values of the expression. The tables shown

below are used to derive the semantic rules for the operators ‘=", *<’, and ‘>’

[Ei=Ex; [ Ec>0 [ Ea=0 [E5<0 |[EL>Ey [E2>0 [ E2=0 [ E5<0 |[ Ef<Ey [ E2>0 [Ea=0 [ E3<0 |
E; >0 ? false false E; >0 ? true true E; >0 ? false false
E; =0 false true false E; =0 false false true E; =0 true false false
E; <0 false false ? E; <0 false false ? E; <0 true true ?

Careful examination of these tables gives rise to the following semantic rules:

[ Production || Semantic Rule |
E—E =E> Et= (El.p/\ Ez.p) V (El.Z A EQ.Z) Vv (El.n A EQ.I"I);
Ef=E;.pVE;.nVE2.pV Ez.n;

E—E; > E» Et=E;.pV E2.n

Ef=E;.nVEs.pV (E1.ZAE>.2);

E—E <E2 Et=E;.nV E2.p;

Ef=E;.pVEs.nV (E1.zAE>.2);

The semantic rules for the productions of the relational operators ‘<’ and ‘>’, and ‘#’ are
obtained from the previous rules by interchanging the value for E.t and E.f, as indicated by the
logical equivalences (i < j) = =(i > j), (1 > j) = (i < j),and (i # j) = —(i = j).

The semantic rules for all remaining productions are shown below:

[ Production ]| Semantic Rule |

E— ( Eq ) Et=E;.t Ef= Eq .f;
E — const E.t=(const.va); E.f =—(const.va);
/= others =/ || Et=true Ef=true

Example: Some boolean expression and associated conditions E.t and E.f are shown in the fol-
lowing table, where we have used the FORTRAN notation for logical and relational operators:

E | Et Ef
( A(T.J).EQO0.0 ) true (1,7) € E(A)
( A(l,J).EQ9.0).AND. (X.EQY) ) | (1,3) € E(A) true
( A(l,J).CE (1.0 + ABS(X)) ) | (1,3) € E(4) true
( A(J,K).LT. (- SORT(X) / 2.0) ) | (3,K) € E(A) true
( A(l,1).GT.A(2,2)).AND. (A(1,1).GT.4.0) ) | (I,I) € E(A) true

Conditions associated with | F-statements

Obvioudly, we can safely skip instances of statements that either can be skipped according to pre-
vious made observations or that are under control of a boolean expression that cannot hold. Be-
cause the condition under which this boolean expression may hold is recorded in the synthesized
attribute E.t, whereas the condition under which this expression may fail isrecorded in E.f, thefol-
lowing semantic rule can be used to associate a condition with a genera |F-statement, provided
that evaluating any of the boolean expressions is free of side-effects (see section 5.3.3):

[ Production | Semantic Rule |
stmt — if (E1 ) then stmt.cnd =
stmt_list; (E1.t A stmt_list; .cnd)
eseif (Ez2 ) then \Y

stmt_listo (E1 f A Es.t A stmt_listo .cnd)

dsaf (E,_1 )then || v

stmt_list,, —1 (E1 FAAEp—2fAEp—1.t Astmtlist, 1 .cnd)
dse Vv
stmt_list,, (EifA...ANEp—2.f AE,_1.f A stmtlist,.cnd) ;

endif
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Semantic rules for |F-statements without elseif or else branches are obtained by omitting the
appropriate parts of the digunction. The condition associated with an arbitrary statement list is
obtained by taking the disjunction of al conditions associated with the individual statements, as
defined by the following semantic rule:

[ Production [ Semantic Rule |
[ stmtlist — stmt stmt_list; || stmt.list.cnd = stmt.cnd V stmt_list; .cnd; |

Example: Condition ‘(I,J) € E(A)’ is associated with the following one-way |F-statement,
because the boolean expression cannot hold for non-entries:

IF ( ABS(A(1,J)) > ABS(PIV) ) THEN  « (1,J) € E(A)
ce (Et=(1,J) € E(A),Ef=true)
ENDI F

On the other hand, although E.t=true and E.f=true for the boolean expression used in the fol-
lowing one-way | F-statement, still the condition‘ (I, J) € E(A)’ isassociated with this statement,

because the body can be skipped for non-entries.
IF (1.NE. 1) THEN — (
-

I7
X=X+ A,J) (1,
ENDI F

J
J

Example: Nested | F-statements are correctly accounted for:

IF (A(1,J).NE.O) THEN <« (Et=(I,J) € E(A), Ef=true)
IF (B(K, J).NE.0O) THEN « (Et=(K,J)€ E(B), Ef=true)
X = X + (K K) + (K,K) € E(C)
ENDI F
Y=Y+ DI, K « (1,K) € E(D)
ENDI F

If we assume that all arrays are enveloping data structures, the conditions shown to the right
are associated with the boolean expressions and assignment statements. Hence, condition (X, J) €
E(B) A (K,K) € E(C) is associated with the innermost |F-statement and the condition shown
below is associated with the outermost |F-statement:

(I,) € E(A) A ( ((KJ)€E(B)AKK) €EC)) V
(I,K) € E(D) )

Example: A somewhat contrived exampletoillustrate the potential of associating conditionswith
genera |F-statements is shown below:

IF (A(l,J) .GI. 0.0) THEN + (Et=(1,J) € E(A),Ef=true)
PCS = PCS + 1 + true

ELSEI F (A(l,J) .LT. 0.0) THEN «— (Et=(1,J) € E(A),Ef=true)
NEG = NEG + 1 + true

ELSE
X=X+ B(l,I) + (1,I) € E(B)

ENDI F

Because the condition of the first and second branch can only hold for entries of A (although
the loop-body itself cannot exploit sparsity), whereas the last branch (although executed uncondi-
tionally) can safely be skipped for non-entries of B, the whole general | F-statement can be placed
under control of the condition ‘ (I,J) € E(A) V (I,I) € E(B)’, theevauation of whichisillus-
trated below:

((I,J) € E(A) A true)
vV (trueA (I,J) € E(A) A true)
V (true AtrueA (I,I) € E(B)) = (I,J)€ E(A)V (1,I)€ E(B)
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Example: Thefirst branch of thefollowing | F-statement may be skipped for non-entries of B and
C, whereas the second branch (which cannot exploit sparsity) isonly executed if the first boolean
expression does not hold:

IF (A(1,J) .EQ 0.0) THEN « (Et=true Ef=(1,J) € E(A))
X=X+ B(I,I) «(I,I) € E(B)
X=X+ Cl,1) «(1,1) € E(C)

ELSE
X=0.0 «—true

ENDI F

Thefollowing condition is associated with the whole | F-statement:

E(B)V (1,I) € E(C))) V ((1,3) € E(A) A true)
(

(true A ((I,I) € ) )
)V (I,I) € E(C)V(1,3) € E(A)

= (L)€ E(B
Conditions associated with DO-loops

The following semantic rule is used to associate a condition with a DO-loop, where the function
‘filter’ discardsall guardsinwhich theloop-index exp; isused by replacing theseguardsby ‘true’:

[ Production [[ Semantic Rule |
stmt — doexp: "= expz2 ', exps ', expa stmt.cnd = filter(exp; .id, stmt_list.cnd);
stmt_list
enddo

Example: Thefollowing fragment has been annotated with the conditions that are associated with
all statements:

DOI =1, M <+ true
DOJ =1, N «— (I,I) € E(A)
X=X+ A(l, 1) * B(l1,J3) +(1,I) € E(A)A(1,J) € E(B)
ENDDO
ENDDO

5.3.2 Dominating Guards

Recall that a positive guard 1) dominates a condition ¢, if ¢ = 1 holds. Since each condition
consists of conjunctions and digjunction of guards and boolean constants, the following procedure
in pseudo-code can be used to determine whether a guard g dominates the condition ¢, where
construct ‘nmat ch’ uses the structure of condition ¢ to determine which of the branches must be
taken:

bool ean function don{g, c¢)

begi n
match ¢ on
clAc2 : dom:= don(g, cl1) or don(g, c2);
clvce2 : dom:= dom(g, cl) and dom(g, c2);
true : dom: = fal se;
false : dom:= true;
otherwise : dom:= (g == c);
end on
end

The test ‘g==c’ succeeds if the guards involve the same enveloping data structure and the
corresponding subscripts are structurally equivalent, which meansthat all coefficients of the loop
indices in the common nesting depth are identical, whereas al other coefficients are zero.

Furthermore, we say that a guard dominates the loop-body of the | .-loop, if this guard dom-
inates the condition of each statement in the loop-body of this DO-loop at nesting depth c.
Example: The subscripts of the occurrences of array A in the following example are structurally
equivalent:
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DOl =1, 100
X=X+ A(l,I) + (I,I) € E(A)
DOJ =1, 100 «— (I,I) € E(A)
C(J) = CJ) + A(l, 1) «— (I,I) € E(A)
ENDDO
IF (A(l,1).NE 0) THEN «— (I,I) € E(A)
X =0.0 <+ true
ENDI F
ENDDO

Since the guard ‘(I,I) € E(A)’ isassociated with al statements at nesting depth 1, this guard
dominates the loop-body of the | -loop.

5.3.3 Accounting for Side-Effects

Obviously, we would affect the semantics of a program by skipping instances of a statement in
which functions with possible side-effects are called. In the following fragment, for instance, it
seems that condition ‘(I,J) € E(A)’ can be associated with the assignment statement S; in the
main program. However, since the value of the actual argument K changes with each call to func-
tion F, eliminating instances of S; would be incorrect:

PROGRAM MAI N REAL FUNCTI ON F(P)
INTEGER |, J, K | NTEGER P
REAL  A(100, 100) P=P+1
C_SPARSE( A) F=40*P
RETURN
DO =1, 100 END
DOJ = 1, 100
St ACC = ACC + A(1,J) * F(K)
ENDDO
ENDDO
END

Similar arguments hold for the evaluation of boolean expressions, loop bounds, and strides.
For example, although the boolean expression used in the following | F-statement cannot hold for
non-entries, it must be evaluated to account for the side-effects of function F:

IF ( A(l,J) .GT. ABS(F(K)) ) THEN
ENDI F

Therefore, if afunction with possible side-effects (where executing a STOP-statement isalso a
side-effect) may be evaluated in theleft- or right-hand side expression of an assignment statement,
in any boolean expression of an |F-statement, or in the stride or loop bounds of a DO-loop (but
where we ignore the ‘side-effect’ of assigning the last value to the loop index), then we overrule
any previous computed condition by associating the condition ‘true’ with this statement. Notethat
since intrinsic functions have no side-effects, we can safely associate condition ‘(I,J) € E(A)’
with the following assignment statement:

ACC = ACC + ABS(A(I,J))

5.34 Condition Improvement

Certain conventional program transformations can be used to improve the conditions associated
with statements or to enable the generation of more efficient sparse code.
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L oop Distribution

L oop distribution can be used to increase the number of loop-bodies that are dominated by a par-
ticular guard.

Example: Inthefollowing fragment, loop distribution yieldstwo loops, the loop-bodies of which
are dominated by the guards ‘ (I,J) € E(A)’ and ‘true’, respectively:

DO =1, 100
DO =1, 100 DOJ =1, 100
DOJ = 1, 100 A(1,3) = A(1,J) * 3.0 « (I,J) € E(A)
A(1,3) = A(1,J) * 3.0 ENDDO
D(1,J) = 10.0 - DOJ = 1, 100
ENDDO X1,J) = 10.0 « true
ENDDO ENDDO
ENDDO

Hence, thistransformation may effectively reduce the total number of timesthefirst statement
is executed. In general, loop distribution is valid if there are no lexically backward data depen-
dences. Reordering the statements according to the strongly connected components in the data
dependence graph can assist in making effective use of loop distribution.

Loop Fusion

Loop fusion can be used to reduce overhead of loops with the potential of guard encapsulation,
by fusing adjacent loops, the loop-bodies of which are dominated by the same guard. Loop fusion
is allowed if the bounds of the adjacent loops are identical (which can be achieved by adjusting
the bounds, partialy unrolling the loop or adding some conditionals), and if no loop-carried data
dependence between a statement instance of the second loop to a statement instance of the first
loop arises after fusion. Statement reordering can assist in making particular loops adjacent, asis
demonstrated in the following example.

Example: Below, two loops with aloop-body dominated by the guard ‘(I,J) € E(A)’ can be
distinguished. Statement reordering and loop fusion can be used to merge the two loop-bodies:

DO =1, 100
DOJ = 1, 100 DO1 =1, 100

ACC = ACC + A(l,J) DOJ = 1, 100

ENDDO ACC = ACC + A(l,J) <« true
COPY(1) = ACC - A(1,J) =3.0* A(l,J) <« (1,3) € E(A)
DOJ = 1, 100 ENDDO

A(1,Jd) =3.0* ACI,J) CoPY(1) = ACC + true
ENDDO ENDDO
ENDDO

Update Expression Splitting

If several occurrences of enveloping data structures appear in one assignment statement, then in
some cases the condition associated with the statement consists of a digunction of guards, asil-
lustrated below:

DOI = 1, 100
DOJ = 1, 100
Y =Y+ AlL,J) ** 3+ B(1,J) ** 3
ENDDO
ENDDO

Obviously, none of the guards dominates the condition ‘(I,J) € E(A) Vv (1,J) € E(B)
associated with the assignment statement. Thisimplies that the subcomputations in the statement
must be performed for any instance in which at least one entry of either A or B is accessed.
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However, if roundoff errors may accumulate differently, then we can use the associativity,
commutativity, and distributivity laws of arithmetic operators. The loop-body can be rewritten
into the following two statements, after which loop distribution becomes possible if the data de-
pendence cycleisrecognized as acoupled reduction [228]. Now, each loop-body is dominated by
aguard:

DOI =1, 100
DOI =1, 100 DOJ =1, 100
DOJ =1, 100 Y=Y+ AL ** 3« (I,3) € B(A)
Y=Y+ AL ** 3 ENDDO
Y=Y+ B(l1,J) ** 3 - DOJ = 1, 100
ENDDO Y=Y+ B(1,J) ** 3 <« (1,]) € E(B)
ENDDO ENDDO
ENDDO

Scalar Forward Substitution

Programmersfrequently use atemporary scalar variable to saveloop invariant accessesto an array.
Unfortunately, the use of temporary scalars may obscure the fact that sparsity can be exploited to
reduce computational time. Inthefollowing loop, for instance, the condition ‘true’ resultsfor both
assignment statements. However, after scalar forward substitution [234, p178-179] and dead-code
elimination [3] if thevalue of T isnot required afterwards, the condition of the remaining statement
changesinto ‘(I,I) € E(A)":

DOl =1, 100

) DO =1, 100
-[I-)O_JA(:IELI)I . DOJ =1, | -1

o = oy - T N D(1,J3) =D(1,3) - Al 1) <« (I,I) € E(A)
S : ENDDO
ey ENDDO

5.4 Access Patterns of Two-Dimensional Arrays

Since enveloping data structures are operated upon in the original dense program, analysis of two-
dimensional arrays plays an important role in the sparse compiler.

54.1 Preliminariesof Access Patterns

In this section, preliminaries related to the access patterns of occurrences of two-dimensiona ar-
rays are given.

Definitions

For an occurrence of atwo-dimensional array with admissible subscripts F(I) = &+ W I appear-
ing in a nested loop with index vector T = (I;,...,I4)7, theindex set of al elements accessed
in successive iterations of the innermost I ;-loop (with bounds L, and Uy) for a fixed iteration of
more outer DO-loopsis called atrue access pattern P(Iy,...,I, ;) C Z? of thisoccurrence:®

P(Li,..., I 1) = {F(I)" | 14 € [Ly, Ua]} (5.1)

Thetrue access direction 7 € Z2 of this occurrence is defined as the last column of W:
FZ (7”1,’/’2)T = W(O, e ,0, I)T

———
d—1

5The elements are denoted as row vectors to reflect the correspondence with matrix indices (viz. (i, §) VS. ai;).
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If # = 0, then true access patterns are called scalar-wise. If 7 # 0, the true access patterns
are cdled row-wise if r1 = 0 and ro # 0, column-wiseif ry # 0 and ro = 0, or diagonal-
wise otherwise. Likewise, if & > 1 denotes the index of the last nonzero column in matrix W,
then we define the effective access direction # € 22 of the occurrence as the kth column of W,
Theindex set of al elements accessed in successive iterations of the I;-loop for afixed iteration
of more outer DO-loops form is defined as an effective access pattern P(Iy,...,I;_1) C Z?
of the occurrence (classified as row-, column-, or diagona-wise in a similar manner). If such a
column does not exist, the effective access direction is zero and we leave effective access patterns
undefined.

Only for scalar-wise true access patterns, the true and effective access direction may differ,
and we can speak of effective access patterns if the effective access direction is nonzero. For oc-
currences in scalar-statements (viz. d = 0) or occurrences with inadmissible subscripts, we leave
both the true as well as the effective access patterns undefined, and we set 7 = 0 and 7 = 0.

Given the effective access direction # = (1, 22)" of an occurrence, we define the nor mal-
ized direction #™ € Z? of this occurrence as follows:

fn_{( 0o )T if 2=0

(5.2)

( g ol lza )7 otherwise

g g
In this formula, g denotes ged(z1, z9) and we define s = (21 - 2o > 0)? + 1 : —1. Inthis
manner, the components of normalized directions arerelatively prime, whereas directions that are
linearly dependent become normalized into a uniform direction.
Example: Consider the following occurrence of atwo-dimensiona array A:

DOI; =1, 3
DOl =14, 4 o 9 0 -2 .
cos A(9-2%10, 1) ... F(I) = + I
ENDDO o (0 <0> (1 0)
ENDDO

Both the true and effective access direction of this occurrence are (—2,0)”, which givesrise
to the normalized access direction #" = (—1,0)”. The column-wise true (and effective) access
patterns of this occurrence are defined asfollowsfor 1 < I; < 3:

P(I1) ={(9—2%Iy,1;) | I} <Ip <4}

Hence, the following access patterns are associated with this occurrence:

P(l) = { (771)7(571)7(371)7(171) }
P(2) = { (5,2),(3,2),(1,2) }
P@E) = { (3,3),(1,3) }
Example: Consider the following occurrence of atwo-dimensional array A:
DOIl, =1, 4
DOl, =1, 50 o 10 0 0)-=
... A(10,3 * 1q) ... F(I) = I
oo 50 rm=()+(30)
ENDDO

Thetrue access direction of thisoccurrenceis = 0, indicati ng that this occurrence has scalar-
wise true access patterns. Thefour true access patterns that are associated with this occurrence are
shown below:

p(1) = { (10,3) }
P { a }

pP@E) = { (10,9 }
(2) = p {

(10,12) }
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The effective access direction, however, isz = (0,3)7, which gives rise to the normalized
access direction £ = (0,1)7 and the following single effective access pattern:

P = { (10,3),(10,6),(10,9), (10,12) }

Complications for Access Patterns

The compile-time representation and manipulation of access patterns may be difficult. Infact, this
representation requires compl ete information about the subscript functions aswell astheiteration
space, which may be impossible in the presence of inadmissible loop bounds and subscripts. Ad-
ditionally, the generality of representation complicates most operations, such as testing whether
access patterns associated with two different occurrences of the same array are identical.

To overcome these difficulties, access patterns are represented by asimpler and uniform rep-
resentation, consisting of the normalized access direction together with a conservative approxi-
mation of the index of the part of the array that may be accessed [30, 32]. A convenient represen-
tation of such anindex set isthe simple section [15, 16]. Eveninthe presence of inadmissible loop
bounds and subscripts, using simple sections enables the computation of a conservative approx-
imation of the index set of the accessed part of the array. In addition, this representation can be
stored and manipulated efficiently and supports access shapes that are frequently found in numer-
ical algorithms. This uniform representation of access patterns is discussed in the next section.

5.4.2 Two-Dimensional Simple Sections

A convenient representation of the index set of a part in a two-dimensional array (at program-
ming level) or, likewise, the index set of aregion in amatrix (at logical level) consist of the two-
dimensional smple section [15, 16]. In this section, simple sections are defined and implementa-
tions of some operations on simple sections are presented.

Definitions

A two-dimensional simplesection S C Z? consists of al discrete points (4, j) € Z? inaconvex
polygon defined by the following system of 8 linear inequalities, where o;, 7; € Z:

op < 1 <7
o < 7 < ™
o3 < 1+75 < 13
on < 1—35 < ™y

Each pair of inequalities (e.g. o3 < i + j < 73) isreferred to as aboundary pair. Let the
matrix M be defined as follows:

M:

_ = O =
— = = O

Then, the simple section can be denoted as shown below:

S = {(Z’j) € 22 | (01302703704)T < M(ZaJ)T < (T1’T277—377-4)T} (53)

A two-dimensional simple section can be stored in a compact way as integer vectors & € 24
and 7 € 2%, indicating the constant boundary values used in the boundary pairs. Another ad-
vantage of this representation isthat certain operations on simple sections are easy to perform.



54. ACCESSPATTERNS OF TWO-DIMENSIONAL ARRAY S 117

Figure 5.3: Smallest Enveloping Simple Section

I nter section and Union of Simple Sections

Simple sections have the following property:
Proposition 5.1 Two-dimensional simple sections are closed under intersection

PROOF Let 7 € Z* and 7 € Z* denote the boundary values of asimple section S C 22. Like-
wise, let ' € Z* and 7/ € Z* denote the boundary values of another simple section S’ C 22,
The intersection of these two sets is defined as follows:

Sns' ={(i,j) € 2%| (i,j) € Sand (i,5) € §'}

Thisimplies that each point (4, ) € 22 inthisintersection satisfies the inequalities imposed
by both simple sections. Hence, we can express theintersection as (5.3), where o)/ = max(o;, o)
and 7/ = min(7;, 7/):

SNS ={(,j) € 2% | (o],04,0%,0)" < M(i,§) < (v, 75, 75, 7)T}

[

Consequently, we can construct the intersection S N S’ of two simple sections S € 22 and
S' C 22 by taking the innermost boundary values for all boundary pairs. This observation gives
rise to the following procedure i nt er sect in pseudo-code to construct the intersection of two
simple sections storedins1 ands2. Theconstructs‘s. | [i]'and‘s. u[ i ]’ are used to access
thei th component of @ € 2% and 7 € Z* respectively, forming the boundary values of thesimple
section stored in variable s:

procedure intersect(sl, s2, var s)

begi n
for i :=1, 4 do
s.I[i] = max(sl.1[i],s2.1[i])
s.u[i] := mn(sl.u[i],s2.u[i])
enddo
end

Unfortunately, simple sections are not closed under union. The smallest simple section that
containsthe union of twosimplesections S € Z2? and S’ C 22 isobtained by taking the outermost
boundary values for the boundary pairs [15], asillustrated in figure 5.3. The notation S & S’ is
used to denote this kind of union.

Procedurecomnbi ne constructs the smallest envel oping simple section of two non-empty sim-
ple sections stored ins1 and s 2:

procedure conbi ne(sl, s2, var s)

begi n
for i :=1, 4 do
s.I[i] :=mn(sl.1[i],s2.1[i])
s.u[i] := max(sl.u[i],s2.u[i])
enddo

end
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Consider, for instance, the following two simple sections that are shown in figure 5.4:

(6,3,9,5)T}

T<
T < (47 77 ]-07 _1)T}

S1o= {(i,y) €221 (1,1,2,007 <M, )

Sy = {(Z?j) € z? | (172737 _5)T < M(Zvj)

Using procedure conbi ne to compute S; W S, yields thefollowing simple section, illustrated
with adashed linein figure 5.4:

S19 S ={(i,j) € 2% | (1,1,2,-5)" < M(i,5)" < (6,7,10,5)"}

Boundary Refinement

Each boundary pair in atwo-dimensional simple section is defined by two boundaries, which are
straight lines of theformi =¢,j =c¢,i4+j = cori —j = c¢. A boundary is called tight if it
contains at least one discrete point of the simple section, or non-tight otherwise.

A disadvantage of the given implementation of procedure i nt er sect is that, even if all
boundaries defining the origina simple sections are tight, some non-tight boundaries may arise
in the resulting intersection. Consider, for instance, the following two simple sections:

{& = {(,5) € 22| (1,1,2,-4)T < M(i,j)

1,1,2 (5,5,6,4)7}
Sy = {(Z?j) € z? | (1717270)T < M(Zaj)

T<

< (55,10,4)"}

Using procedure i nt er sect to compute S3 N Sy, resultsin the following simple section:
S3N Sy ={(i,5) € 2* | (1,1,2,0) < M(i, /)" < (5,5,6,4)}

However, as can be seen in figure 5.5, the boundary 7 = 5 becomes non-tight. Although the
intersection S5 N Sy isproperly defined, such boundaries are undesirable because they may affect
the outcome of the construction of the smallest simple section enveloping a number of simple
sections in which thisintersection isinvolved [15]. Therefore, a procedure to refine the non-tight
boundaries of simple section is required.

The following implementation of such aprocedure is based on the observation that the bound-
aries of aboundary pair can be refined using pair-wise combinations of all other boundary pairs.
For instance, because j < 7 and o3 < 7 + j, we know that o3 — 7o < 4. Likewise, because
o1 <siandi—j <74, wemay concludethat 2 - o1 — 74 < i+ j. Inthe procedure, a Pascal-like
‘Wi t h('s) '-construct is used for notational convenience:

Figure 5.4: Smallest Enveloping Simple Section
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procedure refine(var s)

begin
if (not enpty(s)) then
with (s) do
I[1] o= max( I[1], 1[3]-u[2], I[2]+1[4], [(I[3]+[4])/2]);
ufl] :=min(C u[1], u[3]-1[2], u[2]+u[4], [(u[3]+u[4])/2] );
I2] o= max( 1[2], I[3]-u[1], I[1]-u[4], [(I[3]-u[4])/2]);
uf2] = minC uf2], u[3]-1[01], u[1]-1[4], [(u[3]-1[4])/2]);
1[3] :=max( I[3], I[1]+[2], 2*I[1]-u[4], 2*I[2]+I[4] );
u[3] :=mn( u[3], u[l]+u[2], 2*u[1]-I1[4], 2*u[2]+u[4] );
174] := max( 1[4], I1[2]-u[2], 2*I[1]-u[3], I[3]-2*u[2] );
uf4] :=mn( u[4], u[1]-I1[2], 2*u[1]-1[3], u[3]-2*I[2] );
enddo
endi f
end

Because tight boundaries may cause a refinement of other boundaries, but cannot be refined
themselves, a single execution of this procedure suffices.

Animproved definition of procedurei nt er sect isobtained by adding a call to procedure
r ef i ne after the computation of the most interior values for each boundary pair. In this manner,
boundary j = 5 isrefined into j = 3 for the previous example, asimplied by 7 + j < 6 and
0<s—17:

S3n 8y ={(5,9) € 22| (1,1,2,0)T < M(i,5)T < (5,3,6,4)T}

Other Operationson Simple Sections

If (after boundary refinement) we have o; > 7; for at least one boundary pair of asimple section
S C Z?,then S = (). For example, computing the empty intersection S; N S, of the previous
sectionusing i nt er sect yieldsthe following simple section with o4 > 74:

S1N Sy ={(i,j) € 2% (1,2,3,0)" <M< (4,3,9,—-1)"}

This observation gives rise to function enpt y, determining whether a simple section stored
ins isempty, and function over | ap, which can be used to detect a non-empty intersection of
two simple sections stored ins1 and s 2:

i\l’ /B
HS

|:| Intersection

Figure 5.5: Refinement of j = 5



120 CHAPTER 5. PHASE 1: PROGRAM ANALYSIS

bool ean function enpty(s) bool ean function overl ap(sl, s2)
begi n begi n

enpty : = intersect(sl, s2, tnp);

( (s.1[1] > s.u[1]) overlap := not enpty(tnp);

or (s.1[2] > s.u[2]) end

or (s.1[3] > s.u[3])

or (s.1[4] > s.u[4]) );
end

If all boundaries are tight, the following function can be used to determine if S C S’ holdsfor
two non-empty simple sections stored ins1 and s2:

bool ean function subseteq(sl, s2)

begi n
subseteq : =
( (s1l.1[1] >=s2.1[1]) and (s1.u[1] <= s2.u[1])
and (s1.1[2] >=s2.1[2]) and (sl.u[2] <= s2.u[2])
and (s1.1[3] >=s2.1[3]) and (s1.u[3] <= s2.u[3])
and (s1.1[4] >= s2.1[4]) and (sl.u[4] <= s2.u[4]) );
end

Moreover, under the assumption that al boundaries have been refined, we can use the fol-
lowing simple and efficient method to compute the number of discrete points in asimple section
S C 22, denoted by |S|. This number can be determined by computing the number of discrete
points in the rectangle defined by the first two boundary pairs of the simple section, followed by
subtraction of the number of points in the four triangles that are cut off by the rectangle that is
defined by the other two boundary pairs. This gives rise to the following function num in which
an auxiliary functiont r i angl e isused to compute the number of pointsin atriangle:

i nteger function nun(s) i nteger function triangle(n)
begi n begi n
num:= 0; triangle := (n*(n+l))/2;
if (not enpty(s)) then end
with(s) do

num = (u[1]-1[1]+1) * (u[
- triangle(l[4]+u[2]-1[1])
- triangle(l[3]-1[1]-1[2])
enddo
endi f
end

2]-1[2] +1)
- triangle(u[1] +u[ 2] -u[3])
- triangle(u[1]-1[2]-u[4]);

Application of function numto the following simple section, illustrated in figure 5.6, reveals
that |.S| =20 holds(i.e. 36 —15—-0—0—1):

S ={(i,j) € 2% | (=2,-2,-4,0)" < M(i,j)" < (3,3,6,4)"}

X

3
AN
N
7
a
s T
-2
N /
-2 \\// 3

Figure 5.6: Computation of |S]|
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Simple Section Computation

In this section, we present a method to compute the boundary values & € 2% and 7 € 2% of
a simple section approximating the index set of the part of the array that may be accessed by an
occurrence.

We assume that this occurrence appears in aloop index vector T = (I;,...,I4)7 and simple
bounds, and that the occurrence has admissible subscripts F(I) = '+ W I. The method consists
of computing the extremal values of the four integer expressions 4, 7, 7 + j, and 7 — j, where
(4,5) = F(D)":

v+ Y wyj - I
d
v2 + i waj - 1 (5.4)
d . . . .
V1 +v2 + Ejzl (w1j + waj) - I
vy —v2 + E?:l (w1 — waj) - I

A lower bound of the sth expression in (5.4) defines the value of the ith component of the vec-
tor 7 € Z*. Likewise, an upper bound of the ith expression defines a value of the ith component
of vector 7 € Z*. Such lower and upper bounds can be obtained by successively replacing the
loop indices by extremal values in decreasing order of nesting depth.

Starting with & = d, each expression in (5.4) can be expressed as follows:

k
ap + Z aj- I (5.5)
7=1

If index I isbounded asL; < I, < U, alower bound of (5.5) is defined by the following
inequality, in which ¢™ = max(a,0) and e~ = max(—a,0) [19, p52-54]:

k—1 k
ap+ Y ai I+ (af ‘Lp—a; Up) < ap+ Y a;-I; (5.6)
=1 =1

Because either a,j # 0 ora; # 0 (butnot both), only one of the loop bounds of index I is
actually required. If we assume that the required loop bound is simple,” i.e. it can be expressed
as by + Zf;ll b; - I; wheredl b; € Z, then this lower bound can be expressed in the form (5.5)
again for alower value of k. Repetitively using inequality (5.6) to eiminate the loop indicesin
decreasing order of nesting depth eventually yields a constant, which forms the corresponding
component of vector 7 € Z*.

Likewise, an upper bound of (5.5) is defined by the following inequality:

k
ao—l—Zai-Ii < ao—l-Zai-Ii—i-(akJ“-Uk—a,;-Lk) (5.7)
i=1 3

Repetitively eliminating loop indices in decreasing order of nesting depth using this inequal-
ity (5.7) eventually yields the corresponding component of vector & € Z*.
Example: The method isillustrated for the following occurrence of atwo-dimensional array A,
where T = (1,)”"

DOl =1, 10

DOJ =1, | Li=1, U; =10
COA(LLD) L

ENDDO Ly=1, Up=1I

ENDDO

"Because we are only interested in the range of values for each index, we allow for arbitrary strides, where negative
strides are dealt with by interchanging the role of the loop bounds.
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Figure 5.7: Boundaries before Refinement

The eight boundary values are computed by determining the lower and upper bounds for each
of the expressions, j, i + j, and i — 7, where (i, 5) = (I, J):

1 < 1 K< 10
1 < J < I < 10
2 < I+1 < I+J < I+I < 20
0 = I-1I < I-J < I-1 < 9

This example also illustrates the importance of eliminating loop indices in decreasing order
of nesting depth. If, for example, at each elimination, all indices are replaced at once by extremal
values defined by the loop bounds until no indices remain, the lower bound of the last expression
would be computed asI — J > 1 — I > —9. However, because indices are replaced one at the
time, the following simple section results:

S ={(i,5) € 22| (1,1,2,0)" < M(i,5)" < (10,10,20,9)"}

Example: Assume that the following double loop also appears in the program:

DOI =1, 5
DOJ =1, I-1
LAY L
ENDDO

ENDDO

Asillustrated in figure 5.7, straightforward application of the method of this section yields a
simpl e section which has a non-tight boundary due to the fact that the execution set of the J-loop
isempty for | =1. Therefore, after boundary values have been computed, procedurer ef i ne is
applied to the resulting simple section. For the example, this yields the following simple section:

So={(5,9) € 221 (2,1,3,1)" < M(i,5)" < (5,4,9,4)7}

Function over | ap can be used to determine that S; N Sy = B, which implies data inde-
pendence between the two assignment statements. In fact, simple sections were actually intended
to enhance data dependence analysis in a more general context and are also used by the sparse
compiler for that purpose.

Dealing with Inadmissible Subscripts and L oop Bounds

Although most subscripts and loop bounds are admissible in numerical codes, occasionally the
sparse compiler must deal with inadmissible subscripts or loop bounds.
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In this case, we can use the fact that the following simple section defines the index set of the
whole array that is used to store an m x n matrix:

S={G,5) € 2% (1,1,2,1 —n)" < M(i,5)" < (myn,m+n,m-1)"} (5.8

Hence, if we assume that subscript bounds are not violated,® then we can use the boundary
value of this simple section in al cases where the method of the previous section fails.

If thefirst subscript of an occurrence of atwo-dimensional array isinadmissible, the extremal
values of the expressions 7, 7 + 7, and 1 — 5 cannot be determined using the previous method, and
the corresponding boundary values are taken from (5.8) instead. Likewise, if the second subscript
isinadmissible, the method is not able to determine the extremal vaues of the expressions 5, i+ 7,
and i — j, but uses the corresponding boundary values of (5.8). However, the method is initiated
for expression i, for expression 7, or for al expressions if only the first, only the second, or all
subscripts are admissible respectively. If during computation of an extremal value for one of these
expressions, a lower or upper loop bound is required (because the corresponding coefficient in
either (5.6) or (5.7) is nonzero) that is not simple, then the computation of the extremal value is
abandoned, and the corresponding boundary value of (5.8) is used instead. After al boundary
values are determined in this manner, boundary refinement is applied.

Example: The following occurrences of an enveloping data structure of a 100 x 100 implicitly
sparse matrix have one inadmissible subscript:

DOI =1, 10 DOI =1, 50
Z=... DOJ = 1, 90
DAL Z) L o A(PV(1), D) L
ENDDO ENDDO
ENDDO

For S1, the inequalities 1 < 4 < 10 can be determined by examination of the admissible
subscript 7+ = I. The other boundary values arise naturally from (5.8) and boundary refinement.
Simple section S5 is computed similarly:

Sio= {(,4) € 22 1(1,1,2,-99)" < M(i,j)" < (10,100,110,9)"}
Sy = {(i,j) € 22| (1,1,2,-89)" < M(i,5)T < (100,90,190,99)7}

Below, an example with an inadmissible loop bound is given:

For instance, determining the lower bound of expressioni — j fori =5+ I andj = J can
be done without any knowledge of the loop bounds because 5+ I —J > 5+ I — I. However,
computing an upper bound of this expression fails because theloop bound Z isinadmissible. Like-
wise, thelower bound o; = 15 of 4 = 5 + I arisesfrom the simplelower bound 10 of thel -loop,
whereas determination of an upper bound of this expression fails.

Eventualy, the simple section shown below results in which, rather surprisingly, inequality
J < I < 95 arises from boundary refinement:

Ss = {(i,5) € 22| (15,1,16,5)7 < M(i,5)T < (100,95,195,99)T }

8Infact, if one of the boundary values that can be computed is exterior to the corresponding boundary value of this
simple section, then a potential subscript violation is reported.
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Although satisfactory results are obtained with this method, more improvements could be in-
corporated. Symbolic manipulations, for instance could be used to improve computations on sym-
bolic terms. Fore.g. i = PV(I) + I andj = PV(I) + J, expression i —j would evaluateto I — J,
which could befurther analyzed asan admissible subscript. 1nthe prototype sparse compiler, how-
ever, both 7 and 7 are marked as inadmissible, and 7 — j is not analyzed any further.

54.3 Access Summary Bag

To get abetter grip on the effective access patterns associated with an occurrence of an envel oping
data structure, these access patterns are represented by an access summary. In general, access
summaries require less storage than the representation of access patterns and can be manipul ated
more efficiently.

Access Summaries

Two important attributes associated with each occurrence of a two-dimensiona array in a pro-
gram are (i) an effective access direction # € 22 and (ii) asimple section X C Z2. The access
summary z of such an occurrence is atuple consisting of this simple section and the normalized
access direction 2" € Z2:

7= (X"

The access summary representation only requires 10 integers (2 for the normalized access di-
rection and 8 for the boundary values of the simple section). In contrast, complete information
about the subscript functions and the iteration space is required to represent true and effective ac-
cess patterns. Moreover, the uniformity of representation in terms of access summaries simplifies
most operations, such as tests for overlap, which can be performed on the corresponding simple
sections, or tests for equivalence, which can be performed on the simple sections and normalized
access directions.

The collection of access summaries associated with all occurrences of the enveloping data
structure A of an implicitly sparse matrix A is called the access summary bag X'4.

Approximated Access Patterns

An access summary 7 = (X, ") with a nonzero normalized access direction " = (z7,25)"
givesriseto anumber of approximated access patterns. Asillustrated infigure 5.8, each approx-
imated access pattern AP, consists of dl pointsin the simple section that are along astraight line
with the direction ™ € 22, wherek € Z:

APp ={(i,j) € X |25 -1 —af - j =k} (5.9)

The summary constants of the access summary 7 are defined as the maximumvalue £L(Z) €
Z and the minimum value U (z) € Z for which the following constraint is still satisfied:

APL£0 = L(T)<k<U[T)

Hence, = givesrisetoU(Z) — L(Z) + 1 approximated access patterns that form a partition of
the corresponding simple section. In this manner, we obtain aconservative and uniform represen-
tation of the effective access patterns of an occurrence of atwo-dimensiona array (viz. Z" # 0),
in which the distinction between partialy overlapping or multiple traversed access patterns van-
ishes.
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Simple Section

\ Access Direction
\ Approximated Access Pattern

Figure 5.8: Approximated Access Patterns

For each individual effective access pattern P C 2?2, there is an approximated access pat-
tern that forms alongitudinal enveloping access pattern AP O P of this access pattern, i.e. AP
consists of all discrete points lying on an arbitrary line segment placed over P.

Example: Consider the following access patterns:

P = {(la l)a (3a 5)a (5v 9)}

Asillustrated in figure 5.9, AP = {(1,1),(2,3),(3,5),(4,7),(5,9), (6,11) } forms alongi-
tudinal enveloping access pattern of P.

Computation of the Summary Constants

Given an access summary 7 = (X, ") with " # (), the summary congtants £(Z) € Z and
U(T) € Z of thisaccess summary are equal to respectively the minimum and maximum value of
the following expression for (4, j) € S:

R (5.10)
2 1

If 7 € 24and 7 € Z* denote the boundary values of the simple section X C 22, then
(i,7) € Z? issubject to the following linear inequalities:

F< M, )T <7
In general, the extrema values of expression (5.10) can be obtained as follows. First, we
use the extended completion method to construct a unimodular 2 x 2 matrix U with the vector
(x%, —z7) asfirst row and the corresponding inverse U ! (note that the components of 2" € 22

arerelatively prime). Thismatrix isused to establish the following correspondence between  and
4 and two integer variables k and [:

o Accessed Point
' i: o Additional Point
T~ \\ Access Direction

\\}

Figure 5.9: Longitudinal Enveloping Access Pattern
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]
k

IEER T 7

i i

Figure 5.10: Regular Access Patterns

(5)-o(5)

The extremal integer values of k are obtained by eliminating variable I from the following
system of linear inequalities using Fourier-Motzkin elimination:

F< MU DT <7

If the boundaries of the simpl e section are tight and the access patterns areregular, i.e. parale
to one of the boundary pairs (viz. figure 5.10), then the extremal values of expression (5.10) are
directly defined by the boundary values of that boundary pairs, as shown in the following table for
the four possible normalized directions of regular access patterns:

" | (0,07 (=,07 (-1, @7

[,(f) o1 o2 o3 04
U() T Ty T3 T4

This table provides an inexpensive method to obtain the summary constants of access sum-
maries with regular access patterns, which are very likely to occur most frequently in numerical
programs. For all other access patterns, one step of Fourier-Motzkin elimination is required.

Examples of Access Summaries

In this section, some exampl es of access summaries are given. Although most access patterns en-
countered in numerical applications are identical to the corresponding approximated access pat-
terns, the more uniform representation in terms of an access summary may result in some loss of
accuracy.

Example: Consider thefollowing occurrence of atwo-dimensional array A, whereT = (I, J,XK)":

DO | 4
DO 1, 2

DOK =1, 2 . ) 21 0)\-=
A(2%143-2,1) = ... F(I) = + I
S (0 ( 0) (1 0 0)

ENDDO
ENDDO

(S
n e

Although the true access direction is zero, the effective access direction of this occurrence is
# = (1,0)T, giving rise to the following column-wise effective access patternsfor 1 < T < 4:

P(I)={2+I+J—-21)[1<JI<2}

The following simple section with 20 discrete points, illustrated in figure 5.11, is associated
with this occurrence:
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e Accessed Point

o Additional Point

[] Simple Section
\ Access Direction

k=4

Figure 5.11: Approximated Access Patterns (£(z) = 1, U(Z) = 4)

X ={(4,5) € 22| (1,1,2,0)" < M(i,5)" < (8,4,12,4)"}

Some additional discrete points have been included because the index set of the accessed part
of the array cannot be described exactly in terms of asimple section. Since the normalized access
direction is 7" = (—1,0)7, we obtain the access summary 7 = (X, (—1,0)”). Moreover, the
second boundary pair defines the summary constants £(z) = 1 and (%) = 4. Hence, the access
summary gives rise to the following approximated access patterns APy, where1 < k < 4.

AP ={(1,j) € X [ j = k}

Ascan be seenin figure 5.11, each approximated access pattern forms alongitudinal envel op-
ing access pattern of one of the effective access patterns. For instance, P(4) is a subset of the
approximated access pattern AP 4:

{(7,4),(8,4)} €{(4,4),(5,4),(6,4),(7,4),(8,4)}

Example: Inthefollowing tripleloop, some of the row-wisetrue access patterns of the occurrence
of array B are traversed multiple times:

Dol =1, 3

DOJ =1, 2
DOK =1, I+ . .
B(1+J,K) = ... F(I) = L 10 I
ENDDO 001

ENDDO

ENDDO

These true access patterns have the following formfor 1 < I <3and1 < J < 2:
P(L,J) = {(I+3K) |1 <K<I+J}
The simple section associated with the occurrence of array B consists of 14 discrete points:

X ={(4,5) € 221 (2,1,3,0)" < M(i,5)" < (5,5,10,4)"}
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The first boundary pair of this simple section defines the summary constants £(z) = 2 and
U(T) = 5 of the access summary 7 = (X, (0,1)7). Asillustrated in figure 5.12, this access sum-
mary gives rise to the following approximated access patterns AP;., where2 < k < 5, forming a
uniform representation of the multiple traversed true (and, hence, effective) access patterns:

APy ={(i,j) € X |i =k}

Example: Consider the following occurrence of atwo-dimensiona array C.

DOI =1, 3
DOJ =1, 3
DOK =1, 3 o 1 0 1\-=
ENS(DL)+K,J+2K)_... F(I)_(O 1 2);[
ENDDO
ENDDO

For1 <I<3and1 < J < 3,thediagonal-wise true access patterns P(I,J) C 22 of this
occurrence have the following form:

P(1,J) ={(I+K J+2%K)|1<K<3}

The access summary of this occurrence isz = (X, (1,2)7), where X C 22, illustrated in
figure 5.13, consists of 29 discrete points.

X ={(,4) € 2*1(2,3,5,-5)T < M(i,5)" <(6,9,15,1)7}

The access summary gives rise to a number of approximated access patterns AP, consisting
of all pointsin X that are along a straight line with the direction (1,2)7"

APp={(i,j) e X |2-i—j =k}

The summary constants £(z) € Z and U(z) € Z of this access summary are equa to the
extremal values of the expression 2 - i — j, where (7, j) € X. The extended completion method
yields the following matrices:

(1) (1)

o Accessed Point
i

\L [] Smple Section
\ Access Direction

k=5

Figure 5.12: Approximated Access Patterns (£(Z) = 2, U(T) = 5)
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k=-3

e Accessed Point
o Additional Point
[] Smple Section
\ Access Direction

-
R

k=7

Figure 5.13: Approximated Access Patterns (£(z) = —3,U(T) = T7)

Thereafter, we obtain £(z) = —3 and U(z) = 7 by application of Fourier-Motzkin elim-
ination to the system of inequalities that is obtained by replacing (i, ) with U~!(k,1)T in the
boundaries of the simple section X:

2 < I < N
P — Elimination
3 < -k + 21 < _
5 < —k + 3.1 < 15 of variable ! —3<k<T7
-5 < -k - I < 1 ;

Consequently, asillustrated in figure 5.13, the simple section is partitioned into 11 approxi-
mated access patterns, where the distinction between partially overlapping access patterns van-
ishes. For each true (and effective) access pattern P(I, J), there isalongitudina enveloping ap-
proximated access pattern. For example, the approximated access pattern AP, forms alongitu-
dinal enveloping access pattern of both the true access patterns P(1,1) and P(2, 3):

(2,3),(3,5), (4, g>} } C {(2,3), (3,5), (4,7), (5,9)}

Example: Consider, as final example, the following double loop, where T = (1, J)7":

DOl =1, 3

DoJ =1, 3 . -3 0 4)-=
D(4%3-3,2%1-2¥J+5) = ... F(I) = + I
ENDDO 5 2 2

ENDDO

The occurrence of the two-dimensional array D has the following diagonal-wise true access
patternsfor 1 < I < 3:

P(I)={(4+J—3,2%I—2%J+5)|1<J<3}

Although actually only 9 elements are accessed, the simple section that is associated with this
occurrence consists of 61 points:

X = {(7’7]) € ZQ | (171767_8)T S M(Zaj)T S (9797 147 S)T}
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5 10

e Accessed Point
o Additional Point
"~ [] Smple Section
B \ Access Direction

\ k=23

10

Figure 5.14: Approximated Access Patterns (£(z) = 7, U(T) = 23)

The effective access direction of this occurrence is # = (4, —2)”'. Hence, the resulting access
summary 7 = (X, (—2,1)7) givesrise to the following approximated access patterns APy
AP ={(i,j) e X |i+2-j =k}

The summary constants consist of the extremal values of the expression i + 2 - j for (i, j) €
X. First, we use the extended completion method to obtain the unimodular matrices U and U ",
where U has (1, 2) asfirst row:

(1) ()

Thereafter, we obtain £(7) = 7 and U(Z) = 23 by applying one step of Fourier-Motzkin
elimination to the system obtained by replacing (i, 7) by U~ (k,1)T:

< - 20 < o
i < " 2 ; < Elimination
6 < k — I < 14 ofvaEbIel 7T<k<23
-8 < k — 31 < 8

Asillustrated in figure 5.14, quite some additional discrete points are included in X, due to
the discrepancy between theindex set of the accessed part in the array and asimple section. Con-
sequently, additional approximated access patterns appear in between and next to the true (and
effective) access patterns.

In fact, 17 approximated access patterns results as representation of the three true access pat-
terns. However, as stated before, in general an access summary provides a sufficiently accurate
representation for most effective access patterns that are encountered in numerical programs.



Chapter 6

Nonzero Structure Analysis

Because the efficiency of sparse codes is very much dependent on the size and structure of the
input data, peculiarities of the nonzero structure of each sparse matrix must be accounted for in
order to avoid unsatisfactory performance. Therefore, an important part of the sparse compiler
consists of an analyzer that obtains some characteristics of the nonzero structure automatically.
Thisinformation is used to contral the data structure selection and sparse code generation. Since
analysis time contributes to compile-time, the efficiency of the analyzer isimportant.

A nonzero structure analyzer isalso useful for other purposes. For example, if arepresentative
set of sparse matrices is available beforehand, an analyzer can provide a programmer with useful
insights about the characteristics of the matrices for which an application must be developed. Al-
though in this case the efficiency of the analyzer is less important, excessive long running times
would disable the analysis of alarge set of matrices. To deal with the more realistic situation in
which the sparse matrices are not available beforehand, an analyzer can be used at run-time to se-
lect between different versions of one agorithm (which are generated either by a sparse compiler
or by hand), each of which has been optimized for a particular class of nonzero structures. At
run-time, the analyzer isinvoked to determine which version is probably the most efficient. This
approach has as major advantage that nonzero structures do not have to be known at programming-
or compile-time. However, the analyzer must be very efficient to avoid the situation in which the
savingsin execution time using an optimized version are outweighed by analysistime. In generd,
it is desirable to keep analysis time proportiona to the number of entries in the matrix [75].

The analyzer presented in this chapter examines each matrix asit is, i.e. no attempts are made
to permute the matrix into a particular form. If a permutation is applied before the analysis, the
analyzer can still be used to determine whether an unforeseen nonzero structure arises (since in-
formation about the form for which the permutation is intended is usually obtained as side effect
by the method that computes the permutation). First, some methods to automatically analyze the
nonzero structure of a sparse matrix are discussed. Thereafter, we discuss how nonzero structure
information is propagated to the sparse compiler.

6.1 Automatic Nonzero Structure Analysis

We assume that the nonzero structure of each m x n sparse matrix A to be anayzed is available
on filein coordinate scheme. In this scheme, the file consists of theintegers m and n, aninteger 7
that indicates the number of entries, followed by 7 unordered triples (i, 7, a;;) toindicate row and
column indices and the value of each individual entry. Because there is no advantage in storing
zero elements explicitly, we also assume that all entries are nonzero.



132 CHAPTER 6. NONZERO STRUCTURE ANALY SIS

6.1.1 Preparatory Analysis

In subsequent sections, we will see that many nonzero structures can be determined efficiently
from skyline and used-diagonal information only. This information can be obtained in a single
pass over the stored nonzero elements in afile by execution of the following fragment presented
in pseudo-code, where the lower and upper skyline are computed in the arrays| sky and usky
respectively, and used-diagonal information in array di agc:

procedure conp_skylines()

begi n

read(n, m nnz)
N := max(m n)

al l ocate I sky[1:N] and usky[1: N
for i :=1, Ndo
I sky[i] :
usky[i] :
enddo

0
0

al | ocate diagc[1-N N-1]

for i := 1-N, N1 do
diagc[i] := 0;
enddo
for k := 1, nnz do
read(i, j, aij);
I'sky[i] = max(Isky[i], (i-j));
usky[j] = max(usky[j]., (j-1));
diagc[i-j] :=diagc[i-j] + 1
enddo
end

For sake of simplicity, the current implementation of the analyzer handles each arbitrary m xn
matrix A asasquare N x N matrix with N = max(m, n), asillustrated in figure 6.1. Moreover,
skylines are computed under the assumption that this matrix has afull transversal, so that all ele-
mentsof thearrays| sky and usky can beinitialized to zero. Obvioudly, all information requires
O(N) storage and can be obtained in O(7 + N) time.

n n

g

N\

Figure 6.1: Rectangular Matrices

Example: Thefollowing lower and upper skyline are obtained for the 15 x 15 sparse matrix that
is depicted in figure 6.2:

1 15
1sky |0 O 1 0 4 01 0 1. 0 0 0 0 0 3
usky |0 0 2 0 1 0 0 0 3 0 0 O O 3 2
Part of the contents of array di agc for this matrix are shown below:
-5 0 5

diagc ...[0 0 2 2 2 15 3 0 1 1 0]...
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6.1.2 Some Nonzero Structures

Skylineinformation directly definesthe variable band form of amatrix. However, thisinformation
can also be used to obtain other characteristics of the nonzero structure in an efficient way.
Band Forms

Once the lower and upper skyline of a matrix have been computed, the lower and upper semi-
bandwidth of this matrix are determined in O(N) time as follows:

procedure sem _bandwi dt hs()

begi n
bl :=0; bu:=0
for i :=1, Ndo
b | := max(b_I, Iksy[i]);
b u := max(b_u, uksy[i]);
enddo
end

These semi-bandwidths directly determine the band form of amatrix. Specia classes of band
matrices are formed by diagonal matrices (h; = 0 and b, = 0), tridiagonal matrices (b, = 1
and b, = 1), and upper and lower triangular matrices (either b, = 0 or b, = 0 but not both).
Furthermore, if 1 < b, < N —1orl1 < b < N — 1 holds for an upper or lower triangular
matrix respectively, we may say that the matrix is band upper or band lower triangular.
Example: For the matrix of figure 6.2, the semi-bandwidths b, = 4 and b, = 3 result, which
gives rise to the band form shown in the same figure.

Figure 6.2: Band Form

Block Diagonal and Block Triangular Forms

If during construction of a block partition into block diagonal form, diagonal blocks beyond row
and column B aready have been identified, the next diagonal block may be of size k if the fol-
lowing congtraint is satisfied, where I; and u; denote elements of the skylines:

VB—k<i<B: max(l;,u;) + (B —1) <k

If this constraint is violated, then an appropriate change to the size of the next diagonal block
is required. This observation, illustrated in figure 6.3, gives rise to the following algorithm to
construct ablock partition into diagonal block form in O(N) time:

procedure conp_bl ockdi ag()

begi n
p:=0; k:=1;, B:=N
for i :=N 1, -1 do
k := max(k, nmax(lsky[i],usky[i])+B-i+1); +— (%)
if (i = B-k+1) then
p:=p+ 1, wpart[p] :=i; [/* Record Block */
B:=i - 1; k :=1: /* Next Block */
endi f
enddo
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Figure 6.3: Valid Block in Block Diagona Form

After application of this algorithm, p contains the number of diagonal blocks. The row (or
column) indices of the upper Ieft corners of all diagonal blocks of the block partition are recorded
in reverse order in the first p locations of array par t . The following proposition states that the
minimum block partition into block diagonal formisfound. Likewise, if only thevaluel sky[ i ]
or usky[i] isused in statement (x), then the minimum block partition into respectively block
lower, or block upper triangular form is obtained in O (V) time.

Proposition 6.1 Application of conp_bl ockdi ag() tothelower and upper skyline of a matrix
yields the minimum block partition into block diagonal form.

PROOF By construction each entry is incorporated in adiagonal block. Now, assume that the re-
sulting block partition is not aminimum block partition into diagonal form. Then, proposition 4.2
implies that there isacertain £ x & diagonal block with the lower right corner at arow index B
that has a non-trivial block partition into block diagonal form, i.e. thereis ¥’ < k such that the
following constraint holds:

VB — k' <i < B :max(lj,u;) + (B—1i) <k

Since no diagonal block is recorded at any of theiterationsi = B throughi = B — k' + 1,
during at least one of these iterations, a vaue is assigned to k that is greater than &’. However,
this can only occur if max(l;,u;) + B—i+1 > k' for some B — k' < i < B, which contradicts
the assumption. (]
Example: Application of these different versions of the algorithm to the matrix of figure 6.2 yields
the block diagonal, block lower and upper triangular form shown in figure 6.4. The contents of
array part for thefirst block partition, for instance, is shown below:

part [11 10 6 1|

Thetotal number of e ements contained in the nonzero blocks that belong to these block forms
(67, 140 and 138 respectively) can be used to determine which of the forms describes the nonzero
structure most accurately. Inthis case, the block diagonal form reveal s the most information about
the nonzero structure of the matrix. This block form aso provides amore accurate description of
the nonzero structure than the band form shown in figure 6.2, in which 104 elements reside.

Bordered Block Forms

If some nonzero elements appear in the borders of amatrix, very large diagonal blocks may occur
in the minimum block partition into a particular block form.
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Figure 6.4: Block Forms

For the matrix in figure 6.5, for example, 176 elements appear in the nonzero blocks of the
minimum block partition into block upper triangular form. Since only the trivial block partition
defines ablock diagonal or block lower triangular form, the block partitions into these forms con-
tain even more elements.

Figure 6.5: Block Upper Triangular Form

Therefore, it may be useful to construct a minimum block partition into bordered block diag-
onal or triangular form. In a naive approach, we could apply the method of the previous section
to the remaining sub-matrix for each possible border size, followed by a selection of the block
partition with the fewest elements in the nonzero blocks (border blocks included). However, this
approach would have an O(N?) complexity, whichisunacceptable for the analysis of asparse ma-
trix [75]. Fortunately, it is also possible to obtain the best border sizein O(NV) time, as explained
below for doubly bordered block diagona forms.

Let F(b) denote the number of elementsin the nonzero blocks of block partition into bordered
block diagonal form with border size b € [0, N] arising from the minimum block partition of the
remaining (N — b) x (N — b) matrix into block diagonal form. We define the improvement of
using border size v instead of bas I(V',b) = E(b) — E(V'), satisfying the following property:

Proposition 6.2 For b,b',b" € [0, N], we have I(b',b") = I1(b',b) + I(b,b")

ProoF I(t/,0") = E(b") — E(b') = E(b) — E(b') + E(b") — E(b) = I(V/,b) + I(b,0") (]

Now, suppose that for a given border size b € [0, N, we construct the minimum block parti-
tion of theremaining (N — b) x (N — b) sub-matrix into block diagonal form using the procedure
conp_di agbl ock() . Atany iteration i = 7, wemay decideto discard the block partition found
so far, and to start the algorithm with B =4 — 1 and k& = 1 for anew border sizeb’ = N — i + 1.

Obvioudly, selection of thisborder isonly profitable if eventually we are ableto determine that
I(b',b) > 0. However, rather than constructing both block partitions completely, we are already
able to compute theimprovement during aniteration i = s’ inwhich thelast diagonal block of the
new block partition that overlaps with the diagonal block that was assumed during iterationi = 4
has been found. This is because the block partition of the remaining part of the matrix will be
identical for both block partitions. Thisnew diagonal block may be contained in the old diagonal
block (which occurs if the value of k would not have been incremented while computing the old
block partition), or these blocks may may partially overlap.
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Figure 6.6: Gain and Loss for Border

Both cases areillustrated in figure 6.6. In any case, theimprovement is equal to the difference
of the number of elements included in the border (loss) and the number of elements that do not
haveto beincluded inadiagonal block (gain). Let B, k and B’, k' denote the value of B belonging
to the iterations i = i and i = 4 respectively. Furthermore, let Z and 7’ denote the number
of elements in the off-diagonal blocks of the old and new block partition below row B and B’,
respectively. Then, the improvement of using a new border size " with respect to the old border
size b is equal to the difference between the gain and the loss:

IV, = Z2'—Z—-2-(B —K)(B-B)

If the gain exceeds the loss, i.e. I(V',b) > 0, then it is profitable to continue with the new
block partition and border size b’. Moreover, border size b may be discarded, since proposition 6.2
implies that 7(v/,4") > I(b,0") foral " € [0, N]. If no improvement has been obtained, i.e.
I(b',b) < 0, then the block partition corresponding to border size b must be restored and the
algorithm can proceed with the search for the next diagonal block (which minimally is of size
max(k, B — B’ + k') now). In that case, we may discard border size b/, since proposition 6.2
impliesthat I(v',b") < I(b,d") foral b” € [0, N].

These observations enable usto compute a minimum block partition into block diagonal form
in one pass over the skylines. At each step in which no diagona block is recorded, the current
status is saved on a stack, and a new border sizeistried. If adiagonal block isrecorded, no im-
provement can be obtained by trying a new border size. Instead, previously constructed block
partitions belonging to smaller border sizes that can be verified are restored if an improvement is
obtained (whichissimply done by restoring the value of p), or discarded otherwise. Thefollowing
dightly more complex version of procedure conp bl ockdi ag() results:

procedure conp_bord_bl ockdi ag()
begi n

0;
N

nou
ee

b :
k

0; s
1; B:

—-T N

or i :=N 1, -1 do
k = max(k, max(lsky[i],usky[i])+B-i+1); +— (4)
if (i = Bk+1l) then
/* Last Overl appi ng Bl ock? */
while ( (s > 0) & (i == stackB[s]-new k()+1) ) do /* Conditional AND */
/* 1 nprovenent? */
if (1() >0) then

s:=s - 1; /* Discard */
el se

pop_restore(); /* Restore */
endi f

enddo
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Z:=2+2* k* (BKk); /* #Elts in Border */
p:=p+ 1, wpart[p] :=1i; [/* Record Block */
B:=i - 1 k := 1. /* Next Block */
el se
stack(); /* Save State */
Z:=0;, B:=i - 1; /* New Search */
k :=1;, b:=N- i + 1;
endi f
enddo

In this agorithm, the following auxiliary routines are used to implement stack-like operations
that save and restore states:

procedure push() procedure pop_restore()

begi n begi n
s :=s + 1; k := new k();
stackk[s] := k; Z := stackZ[s];
stackZ[s] = Z; B : = stackB[s];
stackB[s] := B; p := stackp[s];
stackp[s] = p; b := stackb[s];
stackb[s] := b; s :=s - 1;

end end

The following auxiliary functions are used to compute the improvement and the new value of
k for the block partition on top of the stack:

integer function I() integer function new k()
begi n begi n
| :=Z - stackZ[s] - 2 * new k : = nax(stackk[s],
(B-k) * (stackB[s]-B); st ackB[ s] - B+k) ;
end end

Although awhile-loop occursinside thei -loop, thisalgorithm till runsin O (V') time because
each border size can only be pushed and popped from the stack once. Because the algorithm sim-
ply applies conp_bl ockdi ag() to the sub-matrix that remains for the most profitable border
size, it is clear that this adapted algorithm constructs a minimum block partition into bordered
block diagonal form.

After application of thisalgorithm, the scalar b contains the sel ected border size (and hencethe
size of the last diagona block). Thefirst p locations of array part represent the block partition
into block diagonal form of the remaining sub-matrix. If a zero border size is selected, the last
diagonal block is empty and ablock partition into block diagonal form results.

If only the value | sky[i] orusky[i] isusedin statement (+) , then a minimum block
partition into respectively (singly) bordered block lower or upper triangular form is obtained. In
these cases, the constant 2 must be removed from the assignment to Z and the computation in
function | () to compute the appropriate improvement.

Example: Infigure6.7, the bordered block formsthat result for the matrix of figure 6.5 are shown,
containing respectively 113 (viz. 225—112), 157 (viz. 225—68), and 162 (viz. 176—14) elements.
The contents of array par t for the bordered block diagonal form having b=3 is shown below:

part [12 11 10 6 4 1|

Example: Applying the version only operating on | sky[i] to the matrix with 22 nonzero €l-
ements of figure 6.8 yields a minimum partition into bordered block upper triangular form with
border size 1. However, the nonzero blocks of the partitions corresponding to border sizes2 and 3
contain the same number of elements, namely 166. Thisexampleillustrates that amatrix may have
different minimum block partitions into a particular bordered block form. Because aborder isde-
nied for azero improvement (viz. 1(3,2) = 0 and I(2,1) = 0 in the example, so that according
to proposition 6.2, wehave I(3,0) = I(2,0) = 21), tiesare solved in favor of the smallest border
size.
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I1(3,0) =112 1(2,0) =68 I1(3,0) =14
Figure 6.7: Bordered Block Forms

Multi-Diagonal Form

The used-diagonal information computed in array di agc enables the analyzer to compute some
band related information rather easily [185]. For example, the percentage p of nonzero elements
that are confined in aband with lower and upper semi-bandwidth b; and b}, is computed asfollows:

C100% o

p

Onthe other hand, the smallest band with bandwidth 2-5+1 inwhich, for instance, 90% of the
nonzero elements are contained, is given by the smallest 4 > 0 for which the following inequality
is satisfied:

zbj diagc[k] > 097
k=—b
Array di agc aso enables the analyzer to compute the number of used diagonals in amatrix
by simply counting the number of nonzero elementsin thisarray, which requires O(N) time. If all
entries appear along relatively few diagonals, then the matrix can be classified asamulti-diagonal
matrix. This form is more flexible that the related band form, because it can account for zero
regionsin between nonzero diagonals. The number of full diagonalsisdetermined by counting the
number of diagonals with density 1, where the density of the kth diagonal is computed asfollows:

diagclk]
min(N, N — k) —max(1,1 — k) + 1

Example: The matrix of figure 6.9 has semi-bandwidths b, = 7and b, = 7. Thereare 3 diagonas
used (at thelocations-7, 0and 7), of which 2 areactually full. Accumulating for b, = 2 and b, = 2
yields p = 51.72%, because 15 of the 29 entries reside in a band with bandwidth 5. Finaly, the
smallest band in which 90% of the entries is contained has bandwidth 15 (in fact, all entries are
contained in this band).

E| i El:._ 7 El:..
1(1:0) = 21E 1(2:0) ) 1(3:0) )

Figure 6.8: Different Minimum Partitions
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\\

Figure 6.9: Multi-Diagona Form

Example: Multi-diagonal matrices typically arise in finite difference methods (see e.g. [163,
173]). These numerical approximation methods are used to solve partial differentia equations
arising in the analysis of continuous systems. Many steady-state or equilibrium problems, for ex-
ample, consist of finding a function u(x,y) over a particular region R, such that the following
elliptic equation, referred to as the Poisson equation, or Laplace equation for p(z,y) = 0, is sat-
isfied for (z,y) € R:

Pu 0%

92 + e = p(z,y) (6.1)

Another notation for this equation is V?u = p(z,y). The behavior of u(z, i) along a bound-
ary B of region R is aso specified, which iswhy the problems are referred to as boundary value
problems. For example, so-called Dirichlet conditions define the value of u(z, y) on the bound-
ary explicitly, i.e. u(z,y) = g(x,y) for (z,y) € B. However other kind of conditions are also
possible. Since only afew €liptic equations can be solved anaytically, approximation methods
are used frequently.

In the finite difference method, the value of function u(z, y) is approximated at the discrete
points (z;,y;) for z; = zo + h-iandy; = yo + h - j forming a grid over region R, where
h is referred to as the grid spacing. Based on Taylor expansion, the following finite difference
approximations can be used for the derivates in (6.1):

or2
ﬁ N u(m,y+h)—2~u}%x,y)+u(x,y—h)
3y2 ~ h2

{ 82114 ~ u(m—l—h,y)—?u(m,y)+u(x—h,y)
~ 2

If denote the approximation of u(x;, y;) in case these two previous two approximations hold
exactly by u;;, then we obtain thefollowing five-pointsfinite difference approximation of the Pois-
son equation at a point (z;,y;):

Uit + Uit + i1+ i1 — 4 uij = h% - p(wi,y;) (6.2)
For the unit square asregion, an M x N interior grid givesriseto asystem of M - N linear
equationsin M - N variablesuy, ..., upry. Onthe boundaries, we require the values of u,; and
un+1,5 forj =1,..., N, and the values of u;o and u; x4 fori = 1,..., M. These values are
defined by the boundary conditions. Representing all interior grid points by an unknown vector
according to a page-wise numbering of the variables u;;, gives rise a system of linear equations
Aii = b, for asparse matrix A. For asguare N x N grid, this matrix A isan N2 x N2 multi-
diagona matrix, asillustrated for N = 4 infigure 6.10.

6.1.3 Sdlection of Best Form

After the different forms have been constructed, the total number of elements contained in the
nonzero regions defined by each particular form is used to determine which form provides the
most accurate description of the nonzero structure.
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Figure 6.10: Finite Difference Method

Counting the Number of Elementsin the Nonzero Regions

For asquare N x N matrix with semi-bandwidths b; and b,,, the number of elements within the
band is given by the following formula:

N-(by4+by+1)— (b2 +b)/2— (b2 +b,)/2

The number of elementsin the more general multi-diagonal form are obtained by counting the
number of elementsin the diagonals that are used in the matrix, which can be done as follows for
theset K = {k € [1 — N, N — 1] | diagc[k] # 0}:

> min(N,N — k) — max(1,1 — k) + 1
keK

If the scalar b and thefirst p locations of array par t describe abordered block diagonal form
or abordered block triangular form, then the number of elements within the nonzero blocks can
be computed using one the following two procedures:

i nteger function cnt_bbd() i nteger function cnt_bbt()

begi n begi n
cnt_bbd :=2* b* N- b* Db cnt_bbt :=2* b* N- b* Db
prv :=N- b+ 1 prv :=N- b +1
for i :=1, p do for i :=1, p do
cnt _bbd : = cnt_bbd cnt _bbt := cnt_bbt
+ (prv-part[i]) + (prv-part[i])
* (prv-part[i]); * (prv-1);
prv := part[i]; prv := part[il];
enddo enddo
end end
Classification

Firgt, the analyzer constructs the band form (with (band) lower or upper triangular, diagonal, or
tridiagonal form as special classes), minimum block partitions into double bordered block diag-
onal and singly bordered block lower and triangular of a matrix, and determines how many di-
agonals appear in the multi-diagonal form. In combination with preparatory analysis, this can be
donein O(N + 7) time. Thereafter, the total number of elements in the nonzero regions of each
form is computed in O(N) time as explained in the previous section.
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Figure 6.11: Band Form and Multi-Diagonal Form of ‘impcol_b’

The form for which this number is minimal, say c, is selected as most representative form,
where we prefer aband form over amulti-diagonal form onties. Only if the actua density within
the nonzero regions also satisfiesthe inequdity 7/c > p! where p' is auser-defined threshold, the
analyzer uses this representative form in the classification of the matrix. Otherwise, the analyzer
classifies the matrix as a general sparse matrix. In this manner, a particular nonzero structure is
only used in the classification of amatrix if this structure actually can be exploited to reduce the
computational time of an algorithm, rather than on a criterion, for instance, that the matrix isin
band form if the semi-bandwidths are relatively small in comparison with the size of the matrix.

Figure 6.12: Block Form and Dense Sub-Matrices of ‘impcol_b’ (p! = 0.5)

Example: Infigure 6.11, the band form and multi-diagonal form of the 59 x 59 matrix ‘impcol _b’
of the Harwell-Boeing Sparse Matrix Collection [79] with 312 entries are shown. In the band
with semi-bandwidths 43 and 20, 2620 elements reside, whereas only 2379 elements reside in
the 54 used diagonals. The nonzero blocks of the bordered block diagonal and block lower and
upper triangular form contain respectively 3461, 3206, and 2930 elements. The bordered block
upper triangular formisillustrated in the first picture of figure 6.12. Hence, if 312/2379 > pt, the
analyzer classifies the matrix as a multi-diagonal matrix, or asagenera sparse matrix otherwise.
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6.1.4 Dense Sub-Matrices

A more expensive method to obtain some information about the nonzero structure of a matrix is
based on the idea behind the quad-tree schemes presented in section 4.11. Dense sub-matrices
in an arbitrary sparse m x n matrix A are detected by recursively partitioning this matrix into
sub-matrices. A sub-matrix for which the density exceeds a user-defined threshold p! is treated
as a dense matrix, whereas a zero matrix is not considered further. For all other sub-matrices,
these criteria are applied recursively to the sub-matrices in four quadrants, as formulated in the
following algorithm called as‘parti ti on(l,m,1,n)":

procedure partition(i_low, i_hig, j_low j_hig)
begi n
X 1= {(i,j) € Nonz 4|(i-low < i < ihigh) A (j-low < j < j_high)};
if (|X] >0) then
frac := |X| / ( (i_hig-i_low+l) * (j_hig-j_lowtl) );
if (frac < pt) then

i_md:= [ (i_low+i_hig) / 2 |;
j_md:=| (j_low+j_hig) / 2 |;
partition(i_low, i_md, j_low, j_md)
partition(i_Iow, i_md, j_md+l, j_hig)
partition(i_md+1, i_hig, j_low, j_md)
partition(i_md+1, i_hig, j_md+1, j_hig)

el se
record_bl ock(i _low, i_hig, j_low, j_hig);

endi f

endi f
end

When carefully coded, the storage requirements can be kept to O(7) by performing an in-
place sorting of the index set, while pointersinto this array are passed as additional parameters to
locate the remaining index set for each invocation. The agorithm has an O(7 - log N') running
time though, where N = max(m, n).

Example: In the second picture of figure 6.12, the dense sub-matrices that are detected for p! =
0.5 inthe 59 x 59 matrix ‘impcol _b’ of the previous section.

Moreover, in figure 6.13, we present the dense sub-matrices in a32 x 32 matrix with 331 en-
tries that result for different values of p’. Although this method captures the dense sub-matrices
reasonable well, the placement of sub-matrices is not always optimal because arbitrary divisions
of theindex set are made. Decreasing the threshold p* partially reduces this problem, but clusters
of dense sub-matrices still result in general.

6.2 Nonzero Structure Analyzer

In this section, some issues related to the nonzero structure analyzer are discussed.

Figure 6.13: Dense Sub-Matrices (p! = 0.4, p! = 0.5 and p! = 1.0)
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6.2.1 Feedback tothe Programmer

To provide some feedback to the programmer, the results of the analysis can be prompted to the
user either as the pictures shown in this chapter, or in areadable format. Below, we present this
latter output for the 80 x 80 matrix ‘steam3’ of the Harwell-Boeing Sparse Matrix Collection [79]
shown in figure 6.14. First, some general information is prompted which is computed under as-
sumption that each nonzero element is stored exactly once in coordinate scheme. Moreover, the
number of detected dense blocks, shown in thefirst picture of figure 6.14, is given.

4+--- THRESHOLD = 0.50 ------ccmmmm i m e o +
| Size : 80 x 80 |
| #Entries : 928 |
| Av #Entries/row : 11. 60 Density : 0.1450 |
| Av #Entries/col : 11. 60 #Bl ocks : 86 |
I I
| Semi-Bandwi dt hs : 43-43 #El ts : 5068 |
| #Used Di agonal s : 29 #El ts o 1472 |
| #Full Diagonals : 3 2-2 SB : 30.17 % |
| >= 90% B: 83 |
| |
| Block-D/L/U : 4960 5680 5680 |
| 40/ 10 40/ 10 40/ 10 |
| |
| Type : Milti-Diagonal Matrix (0.6304) |
o mm e e e eeooo- +

Subsequently, some band related information isgiven. Inthe band with lower and upper semi-
bandwidth of 43, 5068 elements appear. There are 29 used diagonals containing 1472 elements
in total, whereas only 3 of these diagonals are full. Furthermore, 30.17% of the entries appears
in a band with bandwidth 5, and the smallest band containing more than 90% of al entries has
bandwidth 83.

Thereafter, the total number of elements in the nonzero blocks of minimum block partitions
into (bordered) block diagonal and triangular form are shown in combination with apair contain-
ing the corresponding border size and number of diagonal blocksin the remaining sub-matrix. Fi-
nally, the classification of this matrix is shown, together with the density within the corresponding
nonzero regions. For the example, the multi-diagonal form, illustrated in figure 6.14, is selected
having a density of 0.6304 (viz. 928/1472).

6.2.2 Performance

Intable 6.1, we present the execution time of astraightforward implementation of the analyzer on
an HP 9000/720 (compiled with default optimizations enabled) for some matrices of the Harwell-
Boeing Sparse Matrix Collection [79] that have been converted into coordinate scheme.

The column denoted with ‘R’ contains the execution time required to read the matrix from file.
The column denoted with * R-A’ contains the execution time required to read and anayze thefileif

[ Matrix n 7| R|RA[RFA[R(HB)]
jpwh.091 991 6027 | 0.7] 08| 009 05
gre 1107 1107 5664 | 08| 09| 1.0 05
orani678 2529 90158 | 14.0 | 142 | 153 7.8
Ins.3939 3937 25407 | 36| 38| 43 23
psmigr-1 3140 543162 | 719 | 728 | 824 | 317

Table 6.1: Anaysis Timein seconds on an HP 9000/720



144 CHAPTER 6. NONZERO STRUCTURE ANALY SIS

Figure 6.14: Analysis of ‘steam3 (p! = 0.5)

detecting dense sub-matricesis disabled. The column denoted with ‘R-FA’ contains the execution
time for reading the matrix and performing afull analysis, wherethe threshold p! = 0.8 isused to
avoid fast termination of the algorithm that detects dense sub-matrices. Finaly, in the last column
we show the time required to read the matrix from file using the column-wise Harwell-Boeing
standard sparse matrix format.

Thistableindicates that, although the complete analysis time can be substantial dueto thefact
that the matrix must beread from file, the execution time required for actually analyzing the matrix
issmall with respect to the time needed to read the matrix from file. Moreover, we see that reading
the coordinate scheme is more expensive than reading the column-wise Harwell-Boeing standard
sparse matrix format.

6.3 Propagation of Nonzero Structure Information

In the sparse compiler, nonzero structure information is obtained by means of annotations or au-
tomatic analysis of matriceson file. In this section, we discuss how thisinformation is propagated
to subsequent phases of the automatic data structure selection and transformation method.

6.3.1 Property Summary Set

Nonzero structure information is propagated to subsequent phases by means of a property sum-
mary set. Eachindividual property summary p isatriple consisting of asimple section P C 22,
apreferred access direction p’ € 22 for the region of which theindex set isrepresented by the sim-
ple section, and the property p € {zero, dense, sparse} of thisregion:

p= <Paﬁap>

Unlessapreferred direction isdefined explicitly with an annotation, we set the preferred access
direction to 5 = §(P) using the following definition of 5(P) € 2?2, where k denotes the index
that minimizes the expression 7; — o; for the boundary values & € Z* and 7 € Z* of P C 22
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Figure 6.15: Preferred Access Direction

DT if k=1
-1, 07 if k=2
—1,+0)T if k=3
(+1,+1)7 if k=4

(6.3)

In this manner, the number of straight lines through the elements of P C Z? that are along
the preferred direction isminimized, asisillustrated in figure 6.15.

A set of property summaries of an implicitly sparse matrix A is referred to as the property
summary set P4 of this matrix, which must have the property that the simple sections associated
with the property summaries are non-empty and mutually digoint.

6.3.2 Nonzero Structure Annotations

For each nonzero structure annotation describing a property of aregion in an m x n implicitly
sparse matrix A, the following steps are taken. First, the property p is set to the property defined
inthe annotation. Subsequently, weinitialize theboundary values& € 2% and 7 € 24 of asimple
section P asfollows:

P = {(Zaj) € ZQ | (1717271 _n)T < M(Zaj)T < (manam_l_nam_ 1)T} (64)

Thereafter, the boundary pairs that occur in the annotation are scanned. For each construct
defining boundary values o; = [ and 7; = u, the following assignment statements are executed:

{oi := max(oy,1);

7 = max(7,u);

Thereafter, the boundaries are refined with the procedurer ef i ne presented in chapter 5. If a
preferred access direction is defined in the annotation, then this direction is normalized according
to (5.2) and assigned to 5’ € 22, or we set p’ = §(P) otherwise. Findly, if the smple section P C
Z? isnon-empty and does not overlap with asimple section corresponding to a property summary
already present in P4, then we insert the resulting triple (P, p, p) into the property summary set
Pa.

Example: Consider the following nonzero structure annotations:

REAL A(50, 50)
C SPARSE(A: DENSE ( 1 <= | <= 5, 1 <= J <= 5)(2,4))
C SPARSE(A : _SPARSE(40 <= | <= 50, 0 <= | - J <= 0) )

These annatations gives rise to the property summary set:

7)A = {(Pla (]-7 2)T7 dense>7 <P27 (]-7 1)T7 sparse)}
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Figure 6.16: Regionsin Multi-Diagonal and Bordered Block Diagona Form
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In this set, the simple sections P, C 22 and P, C Z? have the following form:

P = {(i,5) € 2% | (1,1,2,-4)T < M(i,j)T < (5,5,10,4)T}
P, = {(i,j) € 2% (40,40,80,0)" < M(i,5)" < (50,50,100,0)7}

A nonzero structure annotation with an empty list of boundary pairs (viz. ‘ _ZERQ() ') defines
aproperty for the whole matrix.

6.3.3 Automatic Nonzero Structure Analysis

Because block datastructures are not (yet) supported by the prototype sparse compiler and nonzero
structure information is done by means of property summaries, not al the information determined
by automatic nonzero structure analysisis actually supplied to the sparse compiler.

If amatrix isclassified either as aband matrix (with diagonal, tridiagona and (band) triangu-
lar form as specia classes) or as a multi-diagonal matrix, then property summaries with simple
sections that describe the index sets of the zero and dense regions of this form are constructed.
Asillustrated in the first picture of figure 6.16, consecutive empty or used diagonals are collapsed
into one region. Likewise, if amatrix is classified as a bordered block matrix, access summaries
of which the simple sections represent the index sets of the dense borders, the zero regions and
possibly the dense band of which the bandwidth is defined by the largest diagonal block inthe re-
maining sub-matrix are constructed, asillustrated for abordered block diagonal forminthe second
picture of figure 6.16.

Subsequently, the compiler inquires the programmer whether the zero regionswill remain zero
a run-time. If not, the properties of these regions are converted into sparse. In addition, for an
m x n implicitly sparse matrix, al simple sections are intersected with the simple section (6.4)
to account for the fact that the current analyzer handles the matrix asan N x N matrix, where
N = max(m,n). Finally, each access summary of which the simple section P C Z? remains
non-empty isinserted into the property summary set P4, where we define ' = 5 (P).

Example: The analyzer classifies matrix ‘steam3' as a multi-diagonal matrix, asisillustrated in
the second picture of figure 6.14. If the user indicates that al zero regions are preserved at run-
time, this classification gives rise to the following property summary set:

PA = {<Pla (17 I)Ta zero), <P27 (17 I)Ta dense), teey <P7a (17 I)Ta zero)}
The simple sections in this set have the following form:

Py = {(i,j) € 2°| (1,45,46,-79)" < M(i, )

T < (36,80,116, —44)T}
P2 = {(Zaj) € ZQ | (17347357 _43)T S M(Zaj)T S }

(47,80,127, —33)T

Py = {(i,j) € 2% | (45,1,46,44)7 < M(i, )T <  (80,36,116,79)"}



Chapter 7

Phase 2: Data Structure Selection

After all enveloping data structures of implicitly sparse matrices have been identified, and the ac-
cess summaries of all occurrences of these arrays have been computed, a sparse storage scheme
must be selected for each implicitly sparse matrix. Although there are dynamic sparse storage
schemes that support the fast generation of entries along different directions, for instance, along
rows and columns (cf. the linked list schemes presented in section 4.1.3), the overhead storage
and run-time maintenance overhead of such storage schemes is usually substantial. Therefore,
we have limited the sparse storage scheme that may be selected to store the entries in the sparse
regions of an implicitly sparse matrix to adynamic data structure that consists of apool of sparse
vectors supporting only one direction for each individual sparse region. However, the layout of
sparse vectors may be different for different sparse regions.

Thisimpliesthat it becomes very important that each sparse region is accessed in a consistent
manner, namely along the direction supported for that region. Only in this manner, the the sparse
overhead reducing techniques guard encapsulation and access pattern expansion may become en-
abled. Even dense regions should be accessed in a consistent manner, because this enables the
selection of afull-sized array over thisregion in which elements along the most frequently occur-
ring access patterns are stored aong the columns, which enhances spatial locality in FORTRAN.
Because it is likely that the enveloping data structures are accessed along arbitrary directions in
the original dense program, a method to reshape the access patterns of two-dimensional arrays,
based on the unimodular framework presented in chapter 3, has been incorporated in the sparse
compiler.

Another important step for the sparse compiler is the construction of a number of mutually
disoint regions in each implicitly sparse matrix A such that each part of the corresponding en-
veloping data structure A that may be accessed by an arbitrary occurrence of A corresponds to a
region in A confined to one of these regions. Given these regions, the sparse compiler can select a
different storage organization for each region and convert the code accordingly. Since each occur-
rence can only access a part of the enveloping data structure corresponding to aregion in A that
is confined to only one of these regions, the need for run-time tests to determine which of the se-
lected storage organizations must be accessed is avoided. Because usually only alimited number
of such regions can be distinguished, we also discuss how iteration space partitioning, presented
in detail in chapter 3, can be used to increase the resulting amount of fragmentation.

In this chapter, we present a reshaping method as well as a method to construct a number of
non-overlapping regions in an implicitly sparse matrix of which the index sets are described in
terms of simple sections. Where possible, unnecessary re-computation of information obtained in
the first phase is avoided. The chapter is concluded with a discussion of the actual data structure
selection and generation of the corresponding declarations. Note that, in general, finding the best
data structure is computationally infeasible [148].
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7.1 Reshaping Access Patterns

In thissection, wefirst motivate the importance of reshaping access patterns. Thereafter, the actual
reshaping method [25] is discussed in detail.

7.1.1 Motivation

Consider, for example, the following fragment, where the operation ¢ <+ Ab is followed by the
accumul ation of someelementsinanimplicitly sparse matrix A for which atwo-dimensional array
Ais used as enveloping data structure:

INTEGER I, J, M N

PARAMETER (M= ..., N = ...)

REAL AMN, M, B(N, X
C_SPARSE (A

o) + A1, J) * B(J)

DOJ =1, N/ 2
DOl =1, M/ 2

Ss: X = X + A(2*1, 2*%J)
ENDDO
ENDDO

Since the occurrences of A in statements S, and S5 have respectively row- and column-wise
true access patterns, only one of the following sparse versions can result after selecting either gen-
era sparse row-wise or general sparse column-wise storage, where function LKP__ performs a
lookup for a particular entry in one of the sparse vectors of pool and returns ‘ 1.’ for non-entries
(cf. function o 4 of section 4.3.2):

row-wise storage: column-wise storage:
DOI =1, M DOl =1, M
c(l) =0.0 C(l) =0.0
DO J_ = LOWA(I), HGHA(I) DOJ =1, N
J = IND_A(J) L = LKP__(IND_A LOWA(J),
C(l) =C(1) + VAL_A(J)) * B(J) + HGH A(J), 1)
ENDDO IF (L #1) THEN
ENDDO C(l) = C(l) + VAL_A(L) * B(J)
ENDI F
ENDDO
DOJ =1, N/ 2 ENDDO
DOl =1, M/ 2 DOJ =1, N/ 2
L = LKP__(IND_A, LOWA(2*1), DO | _ = LOWNA(2*J), HGH A(2*J)
+ HGH_A(2*1), 2*J) I = IND_A(I_)
IF (L #1) THEN IF (MOD(1,2) = 0) THEN
ACC = ACC + VAL_A(L) X = X + VAL_A(I )
ENDI F ENDI F
ENDDO ENDDO
ENDDO ENDDO

In thefirst version, guard encapsulation isfeasible for Sy, which implies that a construct that,
at run-time, iterates over the entriesin each | th row can be used. A similar construct that iterates
over entries in each 2* Jth column can be used for statement S5 in the second version. Some test
overhead remains, to account for thefact that for each column only the entries with even row index
are actually operated on. Unfortunately, lookups are required for all occurrences of which thetrue
access patterns conflict with the selected storage scheme.
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Each lookup induces substantial overhead because in the worst case all entriesin awhole row
or column must be scanned to obtain the address of an entry or to conclude that the element is
zero. Moreover, no reduction in the number of iterations is obtained. For example, statement S
is still executed M - N times in the second version, but only 7 times in the first version, where 7
indicates the total number of entriesin matrix A.

Obvioudly, these problems are caused by the fact that the program induces inconsistent ac-
cesses to the implicitly sparse matrix A. Since the sparse storage scheme that can be selected by
the compiler only supports storage of entries along one particular access direction to prevent pro-
hibitive storage and maintenance overhead, it is desirable to resolve such conflicts by reshaping
access patterns. In the example, interchanging the DO-loops surrounding S5 enables the genera-
tion of the following version if sparse row-wise storage is selected:

reshaped row-wise storage:

DOI =1, M
(1) = 0.0
DO J_ = LOWA(l), HGH A(l)
J = INDAJ)
(1) = C(1) + VAL_A(J) * B(J)
ENDDO
ENDDO
DOI =1, M/ 2
DO J_ = LOWA(2*1), HGH A(2*1)
J = INDAJ)
IF (MODXJ,2) = 0) THEN
ACC = ACC + VAL_A(J)
ENDI F
ENDDO
ENDDO

In table 7.1, we present the execution time of the sparse versions obtained without reshap-
ing and the reshaped version on one CPU of a Cray C98/4256 for some matrices of the Harwell-
Boeing Sparse Matrix Collection [79] (converted into the appropriate storage format), compiled
with default optimizations and vectorization enabled. The row-wise version is preferable over the
column-wise version because lookups are executed |ess frequently in the former (viz. 1 - M- N
vs. M - N times). However, the reshaped version is clearly superior, due to the elimination of all
lookups. Running thefirst two versions without the test overhead of ‘L. £ 1’ by using the property
that VAL_A(_L) = 0.0 results in amost identical timings.

Thisexperiment illustrates the most important objective for sparse codes, namely that the num-
ber of operations performed must be kept proportional to the number of entries in the sparse ma-
trix [68, 78, 169]. Skipping operations on zeros by means of conditionals is useless since condi-
tions have to be evaluated anyway. In addition, scanning a sparse data structure to obtain an entry
must be avoided as much as possible. For the automatic data structure selection and sparse code
generation method thisimpliesthat it isvery important that eventually each regioninanimplicitly
sparse matrix is accessed in a consistent manner. Access pattern reshaping can be used to achieve

this godl.

| Matrix N NNZ | Row | Column | Reshaped Row |
steam?2 600 13760 | 0.1 0.5 1.4-1073
jagmeshl 936 3600 | 03 | 11 1.7-1073
gre.1107 1107 5664 | 0.4 15 2.1-103
orani678 2529 90158 | 2.2 8.8 6.4-1073

Table 7.1: Execution Time in seconds on a Cray C98/4256
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7.1.2 Objective of Reshaping

Suppose that the admissible subscripts of an occurrence of atwo-dimensional array appearing in
a perfectly nested loop with index vector T = (I1,...,I,)” are represented by the affine trans-
formation F'(T) = &+ WI. Recall that the last column of the integer matrix W is called the true
access direction  of this occurrence.

A loop transformation defined by ad x d unimodular matrix U, transforming the original loop
withindex vector T into atarget loop with index vector I’ = UT, changes the true access direction
by replacing the original subscripts F(T) = & + WT with F'(T') = & + WU 'T’. We say that
a loop transformation reshapes the access patterns of this occurrence along a preferred access
direction 5 € 22, if this latter vector and the resulting true access direction ' € 2?2 arelinearly
dependent, which implies that the following equation holds for some A € Z.

P =wU0,...,00)T =Xx.5
———r
d—1

If ged(s1, s2) = 1, thisobjective precisely gives the solutions of the following linear diophan-
tine equation [17, 19]:

(459, —s51) - 7' = (459, —51) - WU(0,...,0,1)T =0 (7.2)
N —
d—1

Note that we alow reshaping that results in scalar-wise true access patterns, because both
equations aretrivially satisfied for the new true access direction 7/ = 0. In this case, the resulting

effective access direction may not be equal to the preferred access direction.
Example: Consider the problem of reshaping the access patterns of the following occurrence of

atwo-dimensional array A along the preferred access direction 5= (0,1)7":

DO1; =1, 10

DOl =1, 10
DOI3 =1, 10
... = A(|1+2*|3,|2)
ENDDO

ENDDO

ENDDO

One way to obtain row-wise true access patterns isto keep I; + 2 - I3 constant in one itera
tion of the outermost DO-loop. As discussed in section 3.3.4, this can be achieved by applying a
transformation that is defined by a unimodular matrix with (1,0, 2) asfirst row:

DO I} =3, 30 L 0 +2
DO} = 1, 10 U = 01 0
D0|g=_|v12x511,|((,|'1-10/2)}), M N(10, [(1]-1)/2]) 00 1
oo 10 -2
ENDDO vl = 01 0
ENDDO 00 1

Although scalar-wise true access patterns result inthe target loop, the resulting effective access
patterns are row-wise. However, the method provides little flexibility. Especidly if wewant tore-
shape the access pattern of several occurrencesin aloop, itisunlikely that the same pre-described
first row of U results. More flexibility is obtained by observing that traversing the original itera-
tion space along any straight line coinciding with aplane defined by I; +2- I3 = 7} asoinduces
accesses to (possibly identical) elements in one row, asillustrated in figure 7.1.
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Figure 7.1: Plane Defined by I; + 2 - I3 =1}

The genera form of the direction of such lines through the origina iteration space is given by
the vector (—2 - A3, A2, A3)7T, for arbitrary Ao, \3 € Z. Aswas also discussed in section 3.3.4,
this goal can be achieved by applying a transformation defined by any unimodular matrix U for
which the last column of U~ is equal to an instance of this direction. Not surprisingly, these
are exactly the matrices that satisfy abjective (7.1). In the transformation above, the direction
(=2,0,1)T ischosen (viz. A3 = 1 and Ao = 0). Alternatively, the direction (0, 1,0)” givesrise
to atransformation defined by the following matrices:

10
U=]|0 0
0 1

O = O

10
Ul=]100
0 1

O = O

Indeed, interchanging the I,- and Is-loop of theoriginal fragment yields afragment with row-
wise true access patterns. The increased flexibility, however, may come at a small penalty. For
example, given the direction (—2,0,1)7, we could equally well apply a transformation defined
by the following unimodular matrices.

010 0 1]-2
U=|10 2 U'=|10| 0
001 0 0] 1

In this case, afragment with scalar-wise true access patterns would result in which column-
wise effective access patterns are induced at higher level. However, because this approach ismore
flexible, and in the sparse code lookup overhead of scalar-wise access patterns could be amortized
over severa iterations, we accept the fact if scalar-wise true access patterns result, then the effec-
tive access direction and the preferred access direction may differ.

7.1.3 Method of Reshaping

In this section, we present a general method to construct a valid unimodular transformation that
simultaneously reshapes the access patterns of ¢ different occurrences of two-dimensional arrays
along preferred access directions 5! € 22,...,5¢ € 2% whereforal 1 < i < ¢ we have
ged(st, sh) = 1. We assume that all occurrences appear in a single perfectly nested loop with
index vector T = (I1,...,I4)" and subscripts F, ..., F.. Foral 1 < i < ¢, the subscripts can
be expressed as F;(T) = #; + W;I. The data dependence structure of this loop is represented by

aset D C 24 of dependence distance vectors.
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Construction of Preferred |teration Directions

A loop transformation defined by ad x d unimodular matrix U reshapes the access patterns of the
ith occurrence in the loop along the preferred access direction 5 = (s%, s4)7 if the last column
a € Z% of theinverse matrix U~ satisfies objective (7.1):

(4sb, —st) - W;@ =0

After application of such a transformation, conceptually the original iteration space is tra-
versed aong straight lines with the direction @ € Z?. Therefore, this vector is referred to as
the preferred iteration direction. All access patterns are reshaped simultaneoudly if & € Z¢
satisfies S&@ = 0 for the following ¢ x d integer matrix S, called the objective matrix:

+s3 —sl
—|—S% —s% w_/l
+s§  —sf We
Since the lements in each row or column of a unimodular matrix must be relatively prime,
any integer solution of S&@ = 0 with ged(ay,...,a4) = 1 may be used as preferred iteration
direction, which gives rise to the following set A C zd-

A={dez%|Sd=0and ged(a,...,aq) =1}

The real solutions of the homogeneous system S&@ = 0 form a (d — rank(S))-dimensional
linear subspace of R, i.e. the kernel of the linear transformation defined by S. More specifi-
cally, proposition 2.2 implies that if we use an integer echelon reduction algorithm [19, p32-39]
to compute the unimodular matrix R such that RS” isin echelon form (yielding r = rank(S) as
side-effect), then all integer solutions of the homogeneous integer system Sa = ( are given by
the following formulafor arbitrary \; € Z:

a=1[(0,...,0,\rp1,..., 2)R]" (7.2)
N——

r

This observation provides asimple condition for the existence of a (possibly invalid) unimod-
ular transformation that performs the preferred reshaping:

Proposition 7.1 Thereexistsad x d unimodular matrix U for which the last column & € Z¢ of
U~! satisfies S&@ = 0 for some ¢ x d matrix S if and only if rank(S) < d.

If » = d, then the reshaping method fails since we cannot construct a unimodular matrix with
azero vector as last column. Otherwise, r < d holds and the last d — r rows of R form abasis of
the linear subspace consisting of al solutions of the homogeneous system. Because there may be
infinitely many solutions of which the components are relatively prime, we restrict our attention
to these basis vectors. We obtain thefollowing set A, C A, where the components of each vector
in this set are relatively prime because R is unimodular:

Ay={aezi|a=10,...,0,1,0,...,0R|T,r <k <d}
——— N———
k—1 d—k
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Construction of Valid Transfor mation

Forany & € A,, wecan use an extended compl etion method presented in section 2.2.2 to construct
ad x d unimodular matrix U for which the last column of U~ consists of this preferred iteration
direction. Given these unimodular matrices, we can exploit the fact that for any (d — 1) x (d —1)
unimodular matrix Y and integer z € {—1,+1}, thefollowing V is still aunimodular matrix for
which the last column of theinverse is +a:

0 0

= Y iy ya=pr| YU (7.3)
0 0
0 ... 0 z 0 ... 0 2

Consequently, if for agiven @ € A, and corresponding U we can construct a unimodular
matrix Y and integer z € {—1,+1} that define a matrix V with Vd » 0 for al d € D, then
avalid transformation performing the preferred reshaping has been found. Otherwise, another
a € Ay istried until either this construction is successful, or the set A, has been exhausted. In
the latter case, the reshaping method fails.

For D = (), the construction is trivial, since we can use the loop transformation defined by
V =U (viz. Y = I and z = 1). Otherwise, we define the following set D C D:

D={deD|Ud=(0,...,0,N)", \ e Z}
N——
d—1

The set of dependence distance vectors D can be partitioned into D and D—D. Wewill seethat
dependence distance vectorsin the former set determine the selection of theinteger z € {—1, +1},
whereas dependence distance vectors in the latter set must be dealt with during the construction
of the matrix Y':

Proposition 7.2 Givenad xd unimodular matrix U andaset D C 2% whereeachd € D satisfies
d>=0andUd = (0,...,0,)\)7 for some \ € Z, then either:

1. for all d € D wehave Ud > 0, or

2. for all d € D wehave Ud < 0.

PROOF Assume that there are d;, d» € D of the following form:
e Udy = (0,...,0,A)7 for A; > 0, and
e Udy =(0,...,0,X)7 for Xy < 0.

Obvioudly, d = U(0,...,0,A\)7 impliesthat both d; = X\, - #and dy = A, - # hold for
afixed 7 # 0, namely the last column of U L. Thisisin contradiction with the assumption that
both vectors are lexicographically positive. Consequently, either:

1. fordl d e D,Ud = (0,...,0,)\)7 for some X > 0,i.e. Ud = 0, or

2. foraldeD,Ud=(0,...,0,)\)7 forsome X < 0,i.e. Ud =< 0.

[

This proposition provides a convenient method to select a suitable integer z € {—1,+1}:
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Corollary 7.1 Givenad x d unimodular matrix U and aset D C 2¢ whereeach d € D satisfies
d=0andUd = (0,...,0,1)" for some A € Z, then for any (d — 1) x (d — 1) matrix Y there
existsaninteger z € {—1, +1} such that (7.3) defines a matrix V with d > 0 for all d € D,

PROOF Since thefirst d — 1 components of Vd remain zero for any de D and Y, this corollary
follows directly from proposition 7.2. We select the integer z = —1 if Ud < 0 for any deD,or
theinteger z = 1 otherwise. I
In z = —1 isselected, the preferred iteration direction @ is converted into —a, which is re-
quired if @ isin the opposite direction of some dependence distance vectors. Thereafter, only the
remaining dependence distance vectorsin D — D have to be accounted for during the construction
of the unimodular matrix Y. Let U consist of thefirst d — 1 rows of the unimodular matrix U

1 0
U= . LU
10

Obviously, this definition enables us to define the partition asD = {d € D | Ud = 0} an
D—D={deD|Ud+ 0}. Becausefor any Y and d € D — D theinequality y ;é olds

we have to find amatrix Y that satisfies the following constraint for al d € D — D:

YUd - 0 (7.4)

Such a matrix Y does not always exist. For instance, for the matrix ' = (1,—1) and the
set of remaining dependence distance vectors {(1,0)7, (0,1)”}, thereisno Y = (y), wherey €
{—1, +1}, such that this objective is satisfied.

We use the following property:

Proposition 7.3 Givenaset Dy C Z9-1 with d- Oforalde Dy, thenthereexistsa (d — 1) x
(d — 1) unimodular matrix F' such that Fd > 0 for all d € Dy.

Consequently, if there exists aunimodular matrix Y that satisfies (7.4) for all d € D — D, then
this proposition implies that another unimodular matrix Y exists such that the constraint YUd =
0 holds for all d € D — D (viz. let Dy consist of all vectors Ud and set ¥ = FY). Hence, we
can safely focus on finding this latter matrix directly.

First, we determine whether there is avector 7 € 29! with ged(y1,...,y4-1) = 1 such
that the inequality 77 - Ud > 0 holds for all d € D — D. This problem is equivalent to finding a
suitable solution of the fO||OWI ng system of inequalities, where the rows of the integer matrix M
are formed of the vectors Ud for al d € D — D:

Y1 -1

Yd—1 -1
We use Fourier-Motzkin elimination to test the consistency of this system (see chapter 2). The
construction of Y fails if the system isinconsistent (e.g. wehave 1 < y; andy; < —1 for the
example above). If the system is consistent, however, any rational solution ", which can be ob-
tained as side-effect of the elimination, can be scaled to an integer solution of which the compo-
nentsarerelatively prime(viz. 7 = \-¢" for A > 1). Theredfter, the extended completion method

is used to construct aunimodular matrix Y" with i € Z4=1 asfirst row and the corresponding in-
verse. Obvioudly, YUd ~1 0 holdsfor all deD-D.
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Summary

Summarizing, the following steps are applied. First, we construct the objective matrix S using
the subscripts and preferred access directions. If rank(S) = d, then the reshaping method fails
(proposition 7.1).

Otherwise, for each preferred iteration direction & € A, acorresponding d x d unimodular
matrix U of which thelast column of U~" isequal tothisdirection is constructed and the following
steps are applied until either the method succeeds or this set has been exhausted, in which case the
reshaping method fails:

o Select 2 = —1if Ud < 0 for any deDorsdectz =1 otherwise (corallary 7.1).

e Finday e Z4 ! withged(ys,...,yq_1) = 1 suchthat 7- Ud > 0 forall d € D — D.

If thisif € 291 exists, then the extended completion is used to construct aunimodular matrix
Y with this vector asfirst row and the corresponding inverse. The resulting matrices Y, Y ~! and
integer z € {—1,+1} define matrices V and V! according to (7.3) such that Vd = 0 holds
for al d € D. Hence, application of the loop transformation defined by this matrix is valid and
reshapes the access patterns of each ith occurrence along the preferred direction 57 € Z2.

Examples of Reshaping in Double L oops

Example: Consider the following loop with index vector T = (I, I,)”, where the subscripts of
both occurrences of the two-dimensional array A are represented by F'(T):

DO1: =1, 100

DO|2:l, Il = 1 0 =
A1) = At 3.0 F(I)=| o | ]I
ENDDO

ENDDO

Below, we present the construction of three loop transformations enforcing row-, column-,
or regular true diagonal-wise access patterns respectively for array A. In the first step, one of the
following matrices S is constructed:

row-wise(5'= (0, 1)) : column-wise(s = (1,0)T) : diagona-wise(5 = (1,1)) :

52(1,0)((1) ?) 5&(0,—1)(3 ?) 52(1,—1)<é (1)>

Reducing S”' into echelon form according to £ = RS™ is done as shown below:

row-wise: column-wise: diagonal-wise:

1\ (1 0Ny (-1 _(01\Ner (-1 _[0 1)
()= 0)s (o)=(h o) (a)=(0 1)
In each case we have rank(S) = 1. Hence, for Ay = 1 in the equation & = [(0, \2)R]”, these
three matrices definethe sets A® = {(0,1)7}, A® = {(1,0)7}, and A® = {(1,1)7'} respectively.

The extended completion method is used to obtain a matrix U for which the last column of U !
consists of @ € A®:
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row-wise: column-wise: diagonal-wise:
10 0 1 -1 1
10 0 1 -1 1
-1 _ -1 _ -1 _

Not surprisingly, row-wise access patterns are obtained by application of theidentity mapping.
New code, however, must be generated to implement the other transformations:

column-wise: diagonal-wise:
DO I} =1, 100 DO1f =-99, 0
DO 1, =19, 100 DO}, =1, I} + 100
ACLL 1) = A(1G, 1) * 3.0 A(TG-10,15) = ACLL-1,14) * 3.0
ENDDO ENDDO
ENDDO ENDDO

In general, data dependences haveto be accounted for. For doubleloops, the reshaping method
can be formulated as follows: if for a unimodular matrix U for which the last column of U~ is
equal to the preferred iteration direction @ € 22 there isan integer y € {—1,+1} such that
y - (u11,u12) - d > 0forald € D, thenan integer z € {—1,+1} exists such that following
matrix V' defines avalid transformation performing the reshaping:

[y O =1y 0
V_<0 z)U vy (0 )

Hence, the possibility of reshaping in a double loop solely depends on the existence of this
integer y € {—1,+1}.
Example: Supposethat in the following fragment for which we assume that the dependence struc-
ture is represented by D = {(1,0)7’, (0, 1)}, we want to reshape the access patterns of the oc-
currence of Aadong 5= (1, 1)

DOI1=2,5

DO, =2 5 . 1 0) -
Al 12) = ... F(I) = 0o 1 /1t
ENDDO

ENDDO

Application of the reshaping method yields A, = {(1,1)”'} which gives rise to the construc-
tion of the following unimodular matrices.

-(271) ()

Becausey - (1,—1) - (1,0)T = yandy - (1,—1) - (0,1)T = —y, the reshaping method fails.
The reason for failure isillustrated in figure 7.2, where the index set of array A is annotated with
data dependences. To enforce diagonal-wise access patterns, all iterations in the target iteration
space that satisfy I; — I, = 4} must be accessed before a next value of i} is considered. This
kind of traversal isimpossible, however, since data dependences impose a cyclic ordering on the
corresponding access patterns.

Example: If there exists an appropriate integer y € {—1, +1}, the reshaping method is success-
ful. Assumethat in the following double loop we want to reshape the access patterns of the occur-
rences of thetwo-dimensional arraysAandBalong 5! = (—3,1)" and52 = (1,1)7 respectively:
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Figure 7.2: Cyclic Ordering on Access Patterns
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B(3*1 5, 11-11)
ENDDO
ENDDO

First, we compute the objective matrix S'

1 0
1 3 1 3 0 1
S_(l 3>_( 1—1> 0 3
1 0
Matrix ST isreduced into echelon form according to E = RST asfollows:

11\ _( 10 11

0o 0) \ =31 3 3
Hence, since A, = {(—3,1)T}, the following unimodular matrices are computed using the ex-
tended completion method:

o-(31) w-(4)

If D = {(1,—-1)T,(3,—1)"} represents the data dependence structure of the original loop,
then theintegersy = —1 and z = —1 are selected to make the loop transformation defined by
V = —Uvdid(viz. V(1,-1)T = (2,)T and V' (3, —1)T = (0, 1)T). In the target loop, the new
access directions are (3, —1)T and (-3, —3)7":

DO I, = MAX(-10, [(11+1)/3)], MN(-1, [(1/+10)/3])
A3 1) =L
B(-3*14, 1-3%1,+11) = ...

ENDDO
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Examples of Reshapingin Triple L oops
Example: Consider the following triple loop:

DO 1. = 10, 15
DOl, =1, 3
DO I3 = 10, 15

AC 11 +3% 12 +13, 11 +13) =
B(2*1, + 5, 2%1, ) =
C( |1-3*|2 , |3):
ENDDO
ENDDO
ENDDO

Suppose that all data dependences are represented by the set shown below:
D = {(1,0,0)",(0,1,0)", (0,0, )7, (3,1, —6)"}

The subscripts of the occurrences of the two-dimensional arrays A, B, and C are represented
by the following three affine transformations:

- 1 3 1\= - 2 0 1)\= - 1 -3 0\ =

Now, suppose that row-wise true access patterns are preferred for these three occurrences, i.e.
5% = (0,1) for 1 < i < 3. Reshaping the access patterns accordingly seems to be anon-trivial
task at first sight. However, the reshaping method proceeds as follows.

Firgt, the objective matrix S is constructed:

1 31
10 ; 8 1 1 3 1
10 0 20 1 -3 0
1 -3 0
0 01
Echelon reduction of ST yields the following form for E = RST":
110 0 0 1 1 2 1
01 1 |=|]10 -1 3 0 =3
0 00 3 1 —6 11 0

Because rank(S) = 2, al integer solutions of the homogeneous system S&@ = 0 are given by
a = [(0,0,X3)R]" for arbitrary \3 € Z. Hence, we have A, = {(3,1,—6)"}. The following
matrices are constructed with the extended completion method:

-1 0 3
U= 00 1
0 1

-1 3
U= 0 6
01

O = O

Let U denote the matrix consisting of thefirst 2rowsof U. ThenD = {d € D | Ud = 0} is
equal to {(3,1,—6)"}. Since U (3,1, —6)T = (0,0,1), we select z = 1.

Finding an integer vector 7 € Z2 suchthat 7- Ud > 0 for al d € D — D is equivalent to
solving the following system of linear inequalities:
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-1 0 ~1
3 —6 ( o ) <| -1
0 —1 Y2

Obvioudly, this system is consistent, and asolution (1, 1)” can be used directly for ¢. Thefollow-

ing matrices results:
[ 11 4 _ [0 -1

These matrices and z = 1 give rise to the following V and V!

131 0 -1 3
V=|-130 vii=l0 0 1
010 1 1 -6

Application of the loop transformation defined by V" yields the following target loop in which
row-wise access patterns result for all occurrences.

DO I} = 23, 39
DO I, = MAX(-12,1%-45,16-11), MN(-1,1}-30,33-1/)
DO I, = MAX([(1}+l}-15)/6], [(1,+10)/3]),
M NC (1 +1%-10) 76, [(1,+15)/3])

ALY -3y =
O )
ENC( A N EA I A
ENDDO

ENDDO

Example: Below, an exampleis given in which several possible preferred iteration directions re-
sult:

DOl =1, 4
DOl =1, 4
DOl13 =1, 4
A(|3+5,|2- |1-2*|3+2)=
B(|3 , 1+ 3%l 3 - |l o ):
ENDDO
ENDDO
ENDDO

Suppose that we want to reshape the access patterns of both occurrences, of which the sub-
scripts are represented by the following affine transformation, along 5 = (1,0) and52 = (1,1)7
respectively:

= (3)+( 40 3)7 mn (1 23

Firgt, the objective matrix S is constructed:

0 0
g_ (0 ~1 -1 1 2| ([ 1 -1 2
- 1 -1 0 0 1| \ -1 1 -2
3
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Figure 7.3: Preferred Iteration Directions

Echelon reduction of ST yields the following form for E = RST:

-1 1 0 10 1 -1
0 0]=111FP0 -1 1
0 0 0 21 2 =2

Because rank(S) = 1, al integer solutions of the homogeneous system S&@ = 0 are given by
the formula shown below, for arbitrary As € Z and A3 € Z:

a = [(0, X2, A3)R]"

We obtain the set A, = {(1,1,0)7,(0,2,1)"'}, whichisillustrated in figure 7.3. Now, sup-
pose that the data dependences in this loop are represented by the following set:

D = {(1,0,0)",(0,1,007, (1,1,0)", (1,0,1)"}

First, wetry @ = (1,1,0)7":

1 -1
U=|[0 0
0 1

O = O

1 01
Ul=]100 1
010

SinceUd = (0,0,1)T ford € DwhereD = {d € D | Ud = 0} = {(1,1,0)T} and U
consists of the first 2 rows of U, we select = = 1. Thereafter, we determine whether there is a
suitable solution of the following system of inequalities:

-1 0 1
-1 - Y2

Application of Fourier-Motzkin elimination yields the following sequence:
-1 —-1]-1
1 0]-1 —>(_Hj>—>(—2)
—1 0| -1

Asrevealed by theinconsistency of this system, the construction of matrix Y fails because the
same problem asillustrated in figure 7.2 occurs.
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Thereafter, wetry @ = (0,2,1)7":

1
v=|0 -
0

S = O

0 1
2 Ult=(0 -
1 0

S = O

0
2
1

In this case, we have D = (). Hence, we try to find avector i € 22 that satisfies - Ud > 0
for al d € D, whichisequivalent to solving the following system:

-1 0 -1

0 1 U1 —1
<

-1 1 ( Yo > =1 -1

-1 =2 -1

Hence, we may use the solution ¢ = (3, —1):

D

These matrices together with z = 1 define the following matrices:

3 1 =2 0 10
V=10 0 vVi=]11 -3 2
00 1 0 0 1

Application of the loop transformation defined by V' yields the target loop shown below, in
which the occurrences of A and B have the appropriate access direction:

DO I = -4, 14
DO I, = MAX(1, [(1}-2)/3]), MN(4, [(1,+7)/3])
2])

) (
—— x|/ ! x| 7 !
DoAl(?,_JrMSAX(l,I($3_|i*||}+£)/21) ,=MN(4, L(3*1,-1%+4)/2))
B(1 a1 1wy =
3 2 1 3
ENDDO
ENDDO
ENDDO

7.1.4 Implementation of Reshaping in the Prototype Spar se Compiler

In the prototype sparse compiler, reshaping access patterns is implemented by scanning over al
perfected nested sub-loops with admissible loop bounds in the dense program. Given such a per-
fectly nested sub-loop, all occurrences of enveloping data structures with admissible subscripts
that only depend on loop indices of the sub-loop are examined. If accesssummary (X, ") € X4
is associated with such an occurrence, then we choose a preferred access direction 5 € 22 of
this occurrence as any s = p for which there is a property summary (P, p,p) € P4 such that
X N P # (), or we simply discard the occurrence from further consideration otherwise.
Subsequently, the reshaping method presented in previous sections is applied to the perfectly
nested sub-loop and the remaining occurrences.” On failure, some interaction with the program-
mer is performed about whether some data dependences or occurrences may beignored during the
reshaping, after which another attempt ispossibly taken. On success, the accesssummary (X, ™)
of each occurrence affected by the reshaping isreplaced by anew access summary (X, ™) where
g™ € 22 denotes the new effective access direction. In this manner, re-computation of simple
sections is avoided. Finaly, al changes in subscripts of enveloping data structures are correctly
accounted for by altering the conditions computed by the method of section 5.3.1 accordingly.

L Constructing a valid unimodular transformation is complicated by the fact that only dependence directions are
computed by the prototype compiler, so that the way of testing validity presented at the end of section 3.3.2 must be
used.
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7.2 Construction of Representatives

Another important step in the automatic data structure selection and transformation method is the
construction of aset ¥4 = {S1,5o,...} of representative simple sections for each implicitly
sparse matrix A. These simple sections, called representatives for short, should have the follow-
ing properties:

(1) VS, 8 exy : S#£S=5nS" =0 (mutualy digoint)
(2) V(X, 2"y e Xy : IS5€e¥4:XCS (representative)

Although these constraints are trivialy satisfied for a single representative that contains the
whole index set of the matrix A, some of the simple sectionsin X4 are fragmented using iteration
space partitioning to enable the construction of a set X 4 with a reasonable degree of fragmenta-
tion. If possible, simple sections are fragmented according to the simple sections in the property
summary set, since it is desirable to have the following property:

(3) VSeX4 (Pp,p)EPs : SNP#D=SCP (property fragmented)

First, asimple approach is discussed that is based on repetitively combining overlapping sim-
ple sections. Since usually only one representative results, we explore how iteration space parti-
tioning, discussed in chapter 3, can be used to increase the resulting amount of fragmentation.

7.2.1 Simple Approach

A simple way to construct the representatives of an implicitly sparse matrix A isto usethe union
‘W’ to combine overlapping simple sections associated with the occurrences of the corresponding
enveloping data structure A, until aset of mutually digoint representatives remains. Starting with
Y4 = (), wescan over all access summariesintheset X'4. For each (X, ") € X4, thefollowing
tests and associated actions are performed:

LIfXNS=0fordl S e X,,then X isadded totheset ¥ 4.
2. Otherwise, wehave X N S # () forsome S € X 4.

(@ If X C .S, then S isused directly as representative of X.

(b) If X ¢ S,then X = X w S iscomputed and S isdeleted from T 4. If X NS # ()
gtill holds for some (other) S € X4, then this step is repeated until X NS = () for all
S € ¥ 4. Thefinal X isinserted into the set ¥ 4.

Example: Consider the following occurrences of atwo-dimensional array A that is used as the
enveloping data structure of an 100 x 100 implicitly sparse matrix A:

DO I =1, 100
DOJ =1, I-1
Au(l,3) = C(1,9)

ENDDO
B(1) = Ax(I1,1)
DOJ =1, 100

Ag(1,J) = @(1,J)
ENDDO
ENDDO

This fragment gives rise to the following access summary bag:

Xy = {<X17 (07 1)T>7 <X27 (17 1)T>7 <X37 (07 1)T>}
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C1x, W%, W% Representatives: [_| [

Figure 7.4: Resulting Representatives

The following simple sections, illustrated in figure 7.4, appear in this bag:

X, = {(4,5)€2?](2,,3,1)" < M(@,45)T < (100,99,199,99)"}
X, = {(,5) € 2?2 (1,1,2,007 < M(i,5)T < (100,100,200,0)7}
Xy = {(i,5) € 22| (1,1,2,-99)T < M(,5)T < (100,100,200,0)"}

Becauseinitialy the set X 4 isempty, no overlap is detected for thefirst smple section and X;
isinserted into this set. Moreover, because X; N X5 = (), the simple section X, can also be used
as representative and we obtain ¥4 = { X, X»}. Finaly, wehave X; N X3 # 0 and X3 Z Xo.
Therefore, we compute X = X, W X3 = X3 and delete X, from X 4. Since X; N X = () for the
only remaining representative X;, weadd X = X3 to ¥ .

Thefinal set ¥4 = {X3, X3} represents the index set of the strict lower triangular and up-
per triangular part of the matrix A, asillustrated in the second picture of figure 7.4. Note that if
X3 would be inserted before X5, then X, C X3 would imply that X5 could be used directly as
representative. In general, because the union computed by conbi ne isassociative [15], the rep-
resentatives computed by this simple approach are independent of the order in which the access
summariesin X 4 are considered.

7.2.2 Improved Approach

The disadvantage of the simple approach is that it is very likely that only a few representatives
result for each implicitly sparse matrix. Typica representatives that arise describe theindex set of,
for instance, the strict lower or upper triangular parts. It isalso likely that only one representative
describing the whole index set of the matrix results. Therefore, we explore how iteration space
partitioning can be used to increase the amount of resulting fragmentation.

Intuition Behind Iteration Space Partitioning Support

Before we compute the union in step (2)b of our simple approach, we can substitute the subscripts
of the occurrencestowhich (X, #™) with X NS # () for some S € X 4 belongs, for the expression
(1,7) intheinequalities that define the intersection X N S. The resulting inequalities on the loop
indices define the part of the iteration space in which elements with indicesin thisintersection are
accessed.

Example: Substituting the admissible subscripts (1 , J) of the third occurrence in the previous
example for (i, 7) in the inequalities that define X, N X3 yields the following system:
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1 < 1 < 100

1 < J < 100 Simplification 1 < I < 100
2 < I+J3 < 200 — I < J < I
0 < I-J < 0

Confining overlap to X>N X5 can bedone by isolating theloop-body in which thethird occurrence
appears for al iterations satisfying1 < I <100andI < J<TI:

DOl =1, 100 DODloj i, l’lOIO_l
AT I—-l A(1,3) = C(1,9)
Ad(l,3) = C(1,9) ENDLO

E?IID;DO—AU 1) I=1J B(1) = Ax(1,1)
DOJ =1, 100 - Asa(1,1) = D(1,1)
A3(I_J)’ =D(1,J) DO J = 1+1, 100
EnoDo Agy(1,3) = D(1,J)

ENDDO
ENDDO S

Obvioudly, after application of arelatively simple transformation, the index sets of the main
diagona and the strict lower and upper triangular part of the matrix can be selected as represen-
tatives, asillustrated with a dashed line in the second picture of figure 7.4.

Although iteration space partitioning can be used to increase the number of resulting represen-
tatives, the code size may also increase. Another disadvantage arisesif iteration space partitioning
induces redundant fragmentation of the simple sections that are associated with other occurrences.
Although loop distribution can be used to limit this effect, in general, we must find a balance be-
tween code duplication and this redundant fragmentation on one side, and the amount of useful
fragmentation on the other side.

Outline of the Improved Approach

Rather than starting the construction of representatives with X 4 = (3, intheimproved approach we
first insert the simple sections arising in the property set P4 into this set, i.e. for each (P, p, p) €
P4, the simple section P isadded to X 4. In this manner, the simple sections associated with the
occurrences of the corresponding enveloping data structure A may become fragmented according
to the simple sections arising in P4.

Subsequently, we scan over all the access summariesin the bag X4 in increasing order of the
simple section size, because small simple sections tend to induce fragmentation of larger simple
sections (note that once a representative has been added to the set X 4, it cannot be further frag-
mented because this representative may represent the simple sections of many occurrences). For
each access summary in X 4, the steps of the simpl e approach of section 7.2.1 are performed. How-
ever, before we combine simple sections in step (2)b, we proceed as follows.

Let 1S C 2% and T denote respectively the iteration space and the index vector of the loop
in which this occurrence appears. Furthermore, suppose that the subscripts of the occurrence to
which the access summary (X, ") with X N .S # () for some S € X4 belongs are admissible,
and represented by F(I) = &+ WI. Now, our goal isto isolate the loop-body of the loop for all
iterations lying in the following set:

{TeIS|F(I)eXnS} (7.5)

If € 2* and 7 € Z* denote the boundary values of the simple section X N S, substituting
F(T) for (i, §) inthe corresponding set of inequalities yields the following system:?

21 only one subscript is admissible, still one of the first two pairs can be constructed.
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o1 < v+ E?Zl wy;-I; <mp

o9 < vy + E?Zl wy; - I < m (7.6)
o3 < wptve + E?:l (wyj +wgj) - I; <73 '
or < vi—ve + N5y (wyj—wy) I, <y

For appropriate [*, o, u* € Z, the kth pair of linear inequalities in this system gives rise to
the definition of asliice C* C Z¢ that can be written in the following form:

Ch={Tezl|iF<dal -1, +... +ak -1, <u®

Rather than using al linear inequalities simultaneously to isolate the loop-body for all iter-
ations in (7.5), partitioning the iteration space according to only one of these dices enables the
incremental construction of new simple sections into which the simple section X becomes frag-
mented, which prevents re-computation of these simple sections by means of subscripts and loop
bounds analysis. Moreover, using only one dice provides more control over the amount of re-
sulting fragmentation, since it enables the compiler to determine whether further iteration space
partitioning is useful. If thisis not the case or if iteration space partitioning fails, then X is com-
bined with representatives in X 4 asin the simple approach. Otherwise, X isreplaced by the new
simple section, each of which is handled separately thereafter.

These issues are further elaborated upon in the following sections.

Incremental Construction of New Simple Sections

Central to incrementally constructing new simple sections is the procedure al t er , in which a
simple section stored in newis obtained from asimple section stored inol d by refining all bound-
aries after the boundary values of the kth boundary pair have been replaced by | and u:

procedure alter(old, k, I, u, var new
begi n

new = ol d;

new. | [k] :=1;

new. u[ k] := u;

refine(new)

end

If we partition the iteration space according to the kth slice C* C 29 that is defined by sys-
tem (7.6), then at most three duplicates of the occurrence are generated. Obvioudly, thisiteration
space partitioning fragments X into three new simpl e sections that become associated with the du-
plicates. These new simple section can be computed ins1, s2, and s3 by calling the following
procedurei ncr ement with X, k£, and X N S asfirst three arguments:

procedure increnent(s, t, k, swp, var sl1, var s2, var s3)

begi n
alter(s, k, s.I1[k], t.1[k]-1, s1);
alter(s, k, t.I[K], t.u[k], s2);
alter(s, k, t.u[k]+1, s.u[Kk], s3);
if (swp) then

swap(sl, s3);

endi f

end

If the last nonzero coefficient ¥ € Z defining C¥ C 27 is negative, then we must swap
thefirst and last simple section to restore the association between the new simple sections and the
three duplicates of the origina occurrence in the resulting DO-loops. In this case, the boolean

variable swp is set.
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B x
BE

Figure 7.5: Fragmentation

Example: Suppose that we initiaize the set of representatives of a 100 x 100 implicitly sparse
matrix A to the index set of the main diagond, i.e. we have ¥4 = {S} for the following simple
section:

S ={(i,j) € 2% | (1,1,2,0)" < M(i,5)" < (100,100,200,0)"}

Now, consider the following occurrence of the enveloping data structure of A:

DOI =0, 80
DOJ = 1, 10+l
A(1041,J) = ...
ENDDO
ENDDO

Obviously, this occurrence gives rise to the access summary bag X4 = {(X, (0,1)7)}, where
the simple section in the only access summary has the following form:

X ={(i,j) € 221 (10,1,11,0)" < M(i, )" < (90,90, 180,89)" }

Because X NS # fand X Z S, asillustrated in figure 7.5, we substitute (I + 10, J) for (7, 7) in
the inequalities defining X N S (in which some boundaries have been refined):

1) o< I < 9
(2) 10 < J < 9
(3) 10 < I+J < 170
(4) —10 < I—-J < —10

Subsequently, we partition the iteration space of the double loop according to one of these
pairs. For instance, the 4th pair of inequalities induces the following transformation:

DOI =0, 80 ol =0, 80
DOJ = 1, 10+l DO J = 1, 9+
» 104 J=1410 A(10+1,3) = ...
ACL0+,J) = ...
> ENDDO
ENDDO
ENDDO Ao(10+1,10+1) = ...
ENDDO

The simple sections associated with the three resulting occurrences (of which the third is not
generated because execution set [11 + I, 10 + I] definesazerotriploop) are computed by calling
i ncrement with X, X NS, and 4 asfirst three arguments. Effectively, thethree resulting simple
sections are obtained from X by boundary refinement after the 4th pair has been replaced with
0<i—j<-1,0<i—j<0,and1 <i—j < 89 respectively. The smple sections X; and
X3 have been swapped to account for the negative coefficient of index J in the inequalities:



7.2. CONSTRUCTION OF REPRESENTATIVES 167

Xi = {(i,5) € 22| (10,1,11, )T < M(i,5)T < (90,89,179,89)T}
Xy = {(i,j) € 2%1(10,10,20,0)7 < M(i, /)T <  (90,90,180,0)"}
X; = {(i,j) € 22| (10,1,11,0)7 < M(i,5)T < (90,90,180,—1)T}

Asillusgtrated in figure 7.5, simple section X becomes fragmented into X;, Xo = X N S and
X3 = () (associated with the duplicate in the zero-trip loop).

7.2.3 Implementation of Representative Construction

Using only one pair of inequalities of the system (7.6) to partition an iteration space not only en-
ables the incremental construction of the new simple sections, but it also enables the sparse com-
piler to determine whether further iteration space partitioning is useful. Once the system (7.6)
has been determined for an occurrence of which the associated ssimple section X C 22 satisfies
XNS#Pand X ¢ S forsome S € ¥4, we proceed as follows.

Procedure i ncr ement is used to determine the new simple sections X C 22, X5 C 22,
and X¥ C 22 into which X becomes fragmented if the iteration space is partitioned according to
the kth pair of inequalities. We define the potential gain of each such iteration space partitioning
asfollows:

Gr = | X| — | X5

Let &' denote the pair of inequalities that induces an execution set partitioning on the outer-
most DO-loop of al the inequalities k that satisfy G, > t for some threshold t € Z (the one
with the largest potential gain isused on ties). The threshold is used to determine whether further
iteration space partitioning is useful. In order to keep fragmentation proportional to the size of
access patterns, avalue t ~ maxz(m,n) seems appropriate for an m x n implicitly sparse matrix.
Furthermore, as for general iteration space partitioning, first applying execution set partitioning
to more outer DO-loops eventually induces the least increase in code size.

If such a k&’ does not exist or if iteration space partitioning fails (because execution set par-
titioning is not applicable), then another representative S € Y4 withX NS # fand X £ S
is considered until either the set X 4 has been exhausted or iteration space partitioning becomes
possible. In the former case, we repetitively combine X with representatives in X 4 according to
step 2(b) of the simple approach (see section 7.2.1). In the latter case, we partition the iteration
space according to the k’th pair of inequalities and perform the following steps to deal with the
corresponding program transformations, after which another access summary is processed using
the improved approach:

™) in the bag

1. For the occurrence to which X belongs, the original access summary (X, #
(X%, &™), which

X isreplaced by the new access summaries (X+', #"), (X5 #™), and
become associated with the duplicates of this occurrence.

2. For al other occurrences of (possibly different) enveloping data structures that are dupli-
cated, identical copies of the origina access summary are associated with the duplicates of
this occurrence, thereby replacing the origina in the corresponding summary bag.

Obvioudly, if aduplicate occurrence appearsin azero trip loop, the corresponding new access
summary is discarded. Moreover, the normalized access direction may change if loop unrolling
is applied, which must be accounted for in the corresponding new access summary. These steps
avoid re-computing simple sections by means of subscript and loop bounds analysis.
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Because, in general, it is not straightforward to determine how other simple sections become
fragmented, step 2 simply ignores any fragmentation of other simple sections. Moreover, al re-
dundant fragmentation isignored, whereas useful fragmentation is eventually accounted for any-
way. In the latter case, some subsequent transformations have no impact on the code, but just
induces incremental construction of the appropriate simple sections.

Finally, the method of section 5.3.1 is used to associate conditions with all new statements or
statements of which the condition may ater due to the previous transformations.

Examples of Construction of Representatives

Example: Consider the following fragment in which there are two occurrences of the enveloping
data structure B of an implicitly sparse 10 x 10 matrix B, where we use the threshold ¢ = 10:

DOl =1, 7
By(1,10) = 20.0

ENDDO

DOl =1, 10
DOJ =1, 10

C(1,3) = Bo(1,)
ENDDO
ENDDO

The corresponding access summary bag Xz = {(X1, (—1,0)T), (X2, (0, 1)T)} contains the
following simple sections:

Xl = {(Zaj) € ZQ | (17107117_9)T S M(Zaj)T S (77 ]-07 ]-77 _3)T}
X = {() €2’ (1,1,2,-9"  <M(@)H" < (10,10,20,9)7}

If no properties of B are known, we start with X3 = (). The smallest simple section X is
considered first and directly inserted into this set. Thereafter, X1 N X5 # fand X5 € X, hold. At
this stage, we have the choice between combining these simple sections into the whole index set,
or partitioning the iteration space according to one of the following pairs of inequalities, obtained
by substituting (I, J) for (4, 7) in the inequalities that define X; N Xo:

LIXEL X3 1XE] | G |
QO 1< 1 <7 0 70 30|30]«
(2 10< J <10| 9 10 0] 9
(3 11< 1+ <17| 45 49 6|51
@4 -9< 1-J <-3| 72 28 0|72

Each potential gain exceeds the threshold ¢ = 10. Sincethefirst inequality induces an execu-
tion set partitioning of the most outer DO-loop, the following transformation is applied:

Dol =1, 7
DOJ =1, 10
DOI =1 10 C(Ir‘]) =BQa(IrJ)
DOJ = 1, 10 ENDDO
_ 1<1<7 ENDDO
C(l1,J3) = B(l1,J) _
ENDDO — DOl =8, 10
ENDDO DOJ =1, 10
C(1,3) = By(l,9)
ENDDO
ENDDO

After this loop transformation, we obtain the following atered access summary bag:

Xp = {<X17 (_17 0)T>7 <X2117 (07 1)T>7 (Xva (07 1)T>}
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Figure 7.6: Resulting Representatives

In this new access summary bag, X, = X4 and Xy, = X3 holds for the three incrementally
constructed simple sections shown below (with respectively 0, 70 and 30 elements), where X is
associated with the duplicate of occurrence A3 in the zero-trip loop having the execution set [1, 0]:

Xt = {(G,5)e2?|(1,1,2,-9T <M()HT < (0,10,20,9)T}
Xy = {(,5)€2*|(1,1,2,-9" <M(,5)" < (7,10,17,6)"}
X} = {(,5)€2?|(8,1,9,-2)T <M(,j)T < (10,10,20,9)T}

Since X5, N X7 = () holdsfor Xy, weobtain X5 = { X, X9} thereafter. However, we still
have X1 N X5, 75 ¢ and Xo, Z X;.

Substituting (I, J) for (4,7) in the inequalities that define this intersection gives rise to the
same set of inequalities, but with different associated potential gains.

LIXT] X5 [XE] 6

k
o 1< 1 <7 0O 70 0|0
(2 10< J <10| 63 7  0|63|«
(3) 11< I1+) <17| 42 28 0| 42
@4 -9< 1-J <-3| 42 28 0| 42

Although the first pair still induces an execution set partitioning of the most outer DO-1oop,
the associated potential gain is below the threshold (viz. G; = 0). The other pairs all induce an
execution set of the J-loop, and the one with the largest potential gain is used:

DOJ =1, 9
DOJ =1, 10 '

Q1. 3) = Bon(1. ) 10<J3<10 (1,J) = Baay(1,3)
ENDDO 2at T - ENDDO

C(1,10) = Bagy(l, 10)

This transformation further aters the access summary bag (note that a normalized direction
changes due to loop unrolling):

Xp = {<X17 (_17 0)T>7 <X21117 (07 1)T>7 <X2a27 (_17 0)T>7 (Xva (07 1)T>}

In this new access summary bag, we have X5, = X{ and Xy,, = X3 for the following
incrementally constructed simple sections, where X2 is associated with the duplicate of A, in
the zero trip loop having the execution set [11, 10]:

X2 = {(i,5)€2?](1,1,2,-8)T < M(,j)T < (7,9,16,6)7}
X3 = {(,5) € 22| (1,10,11,-9)" < M(i,5)T < (7,10,17,-3)"}
X2 = {(i,j) € 2?|(1,11,2,-9)T <M(,)T < (7,10,17,6)T}

Because X1 N Xa,, = 0, Xo4, N X9 = 0, and X5,, C X hold thereafter, eventually we
obtaintheset X5 = { X7, Xop, Xo4, } asillustrated in the first picture of figure 7.6.
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Figure 7.7: Accounting for Useful Fragmentation

If we would eagerly select the pair of inequalities inducing the largest potentia gain at each
step (rather than one with G, > ¢ that induces an execution set partitioning of the most outer DO-
loop), at the first step we would have used the inequalities 10 < J < 10. Because the execution
set of the | -loop is partitioned thereafter, the four representatives shown in the second picture of
figure 7.6 would result due to the unnecessary partitioning of the execution set of the J-loop for
I € [8,10]. Obvioudly, if the column would appear somewhere in the ‘middle’ of the matrix, this
effect would become worse (viz. 5 vs. 9), which clearly illustrates the usefulness of partitioning
the execution sets of more outer DO-loops first.

Example: Suppose that we start with ¥4 = {S}, where S contains the index set of the 25th
columnin a10 x 50 implicitly sparse matrix A. Now, suppose that the following fragment is
considered with the access summary bag X'z = {(X1, (0,1)7), (X2, (0, 1)T)}:

DOJ = 1, 50
AL(5,3) = Ay(5,d) * 2.0
ENDDO

Asillustrated in figure 7.7, intersection X; N .S # () induces the following loop transformation:

DOJ =1, 24
A1a(5,3) = Asa(5,3) * 2.0
DOJ = 1, 50 T ENDDO
AL(5,3) = Ay(5,d) * 2.0 o Aip(5,25) = Agy(5,25) * 2.0
ENDDO DO J = 26, 50
A1e(5,3) = Axe(5,3) * 2.0
ENDDO

Thereafter, the appropriate simple sections X1,, X15, and X, are constructed incrementally,
whichisillustrated in figure 7.7. Because for simplicity, however, acopy of X, isassociated with
the occurrences Ao, Aoy, and As,, it seems that useful fragmentation is not accounted for.

However, it can be easily verified that Xo, NS # 0, Xop NS # 0 and Xo. N S # (), where
Xoq = X9 = X9, = Xy «ill holds. This induces an iteration space partitioning according to
256 < J < 25,25 < 25 < 25,and 25 < J < 25 for respectively the first loop, the scalar-
statement, and the second loop. Obviously, none of the corresponding loop transformations has
impact on the code, but just induces the incremental construction of the appropriately fragmented
simple sections (see figure 7.7). Eventualy, we obtain £ 4 = {S, X14, X1} (Viz. X1, C S).
Example: Finally, consider the following fragment with two occurrences of the enveloping data
structure of an implicitly sparse 100 x 100 matrix A:

DOl =1, 50

B(1) = Ai(l+25,1+10)
DOJ =1, 50

C(|,J) :A2(|+J,J)
ENDDO

ENDDO
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Thisfragment givesrisetotheaccesssummary bag X4 = {(X1, (1,1)7), (X2, (1,1)")}. The
two simple sections consist of theindex set of 50 elements aong the 15th diagonal below the main
diagona and the index set of atrapezoida part with 2500 elements, asillustrated in figure 7.8:

X1 ={(,j) € 2| (26,11,37,15)7 < M(4, )

T < (75,60,135,15)7}
Xo={(,5) € 2] (2,1,3,1)" < M(i, §)T < }

(100, 50, 150, 50)7

Starting with ¥ 4 = (), the smallest smple section X isinserted directly into this set. There-
after, we have X1 N X, # () and Xo € X;. Substituting (I +J, J) for (4, ) in the inequalities
defining the intersection X; N X, (in which some boundaries have been refined) givesriseto the
following table:

IXF] X5 X5 G |
(1) 26< 1+J <65 | 300 1570 630| 930
(2 11< J <50 | 500 2000 0| 500
(3 37< 1+2) <115| 306 1870 324 | 630
4 15< 1 <15 | 700 50 1750 | 2450 | <

For athreshold ¢ > 2450, the simple sections are combined into one representative with 2800
dements asillustrated in the first picture of figure 7.9. Otherwise, the execution set of the | -loop
becomes partitioned into [1, 14], [15, 15], and [16, 50]. Fragmentation of X is simply ignored
by associating a copy of this simple section with the three duplicates of the first occurrence. The
simple sections into which X, becomes fragmented are incrementally computed by refining the
boundaries after replacement of thelast pairwith1l < i — 57 < 14,15 < i —j < 15, and
16 < i — j < 50 respectively:

Xoo ={(6,7) € 22| (2,1,3,1)" <M, 5)" < (64,50,114,14)"}
Xop ={(i,4) € 2| (16,1,17,15)" < M(i,j)" <  (65,50,115,15)7}
Xoe = {(i,4) € 22| (17,1,18,16)" < M(i,5)" < (100,50,150,50)"}

Subsequently, because X5, and X5. do not overlap with any representative simple section,
these simple sections are inserted into X 4. However, X5, and the representative X still overlap.
Again, we have the choice between combining these simple sections, yielding a simple section of
size 60, or dicing theiteration space. Below, we present the sizes of the simple sections that result
if we partition theiteration space according to one of the pairs obtained by substituting (15+J, J)
for (4, 7) inthe inequalities defining X; N Xy,

Figure 7.8: Simple Sections
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Figure 7.9: Resulting Representatives

LIXF] X5 [ XE] | G |

1 11< J K50 10 40 0| 10| «
2 11 < J <50 10 40 0| 10
3 22< 23 <100 10 40 0| 10
4 0< 0 <O 0 50 0| O

For ¢t > 10 we combine the smple sections. This gives rise to the representatives shown in
the second picture of figure 7.9. For a smaller threshold, the first pair induces the following loop
transformation:

DOJ =1, 10
C(15,3) = Ay (J+15,J)

DOJ =1, 50

Q(15,) = Ay(J+15,3) ST <50 ENDDO

ENDDO — DO J = 11, 50
C(15,3) = Ay (J+15, J)
ENDDO

Again, the simple sections into which X5, becomes fragmented can be constructed incremen-
tally by refining boundaries after the first pair has been replaced by 16 < 7 < 25, 26 < i < 65,
and 66 < i < 65, which gives rise to two non-empty simple sections. The simple section Xy,
may be directly added to X 4, whereas X5, C X holds. Hence, the representatives shown in
the last picture of figure 7.9 result. The figure clearly illustrates the usefulness of athreshold to
control the resulting amount of fragmentation.

7.3 Data Structure Selection

The selection of asparse storage scheme for each implicitly sparse matrix A isbased on the access
summary bag X4 arising after reshaping and iteration space partitioning, the constructed set - 4
of representatives, and the origina property summary set Py.

7.3.1 Storage Summary Set

For each representative in the set X 4, a property and a direction are selected by the sparse com-
piler, which gives rise to a storage summary set.

Storage Summaries

Given an arbitrary representative S' € 3 4, the property prop 4 (.S) of this simple section is defined
as shown below:
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Zero if 3(P,p,zero ) €Py : SCP
prop,(S) =4 dense if 3 (P, p,dense) € Py : SCP
sparse otherwise

Thedirection dir 4 (S) € 22 of each representative S € ¥ 4 isdefined asfollows, where §(S) has
been defined in section 6.3.1:

. P if 3(P,p,p)ePs : SCP
dira(S) = { 5(S) otherwise

Given these definitions, each representative smple section S € ¥4 defines the following
triple s, caled astorage summary:

5= (S,dira(S),prop4(S))

The set of storage summaries defined by the simple sectionsin the set ¥ 4 isreferred to asthe
storage summary set Sy.

Storage Patterns

Each storage summary (S, (s1, s2)7, p) € Sa givesriseto anumber of storage patterns, where
each storage pattern SPy, is defined for aparticular k € Z asfollows:

SPr={(i,j) € S|s2-i—s1-j=k}

The summary constants of a storage summary s = (S, 3,p) € Sa with § # 0 are defined
as the maximum value £(5) € Z and the minimum value ¢(5) € Z for which the following
constraint is still satisfied:

SPr£0 = L(3) <k <U)

Asexplained for access summaries, the summary constants of storage summary are either di-
rectly defined by one of the boundary pairs for regular storage patterns, or obtained by one step of
Fourier-Moatzkin elimination to compute the extremal integer values of the expression sy -7 —s1 - 3§
for (,7) € S. Moreover, the same terminology will be used for storage patterns. For instance, if
§=(0,1)", then the storage patterns are called row-wise.

7.3.2 Declaration of the Selected Storage Scheme

Thestorage summary set S 4 represents the storage scheme that has been selected for theimplicitly
sparse matrix A. Storage will be done according to the storage patterns arising from the storage
summariesin this set.

Zero Regions

A storage summary (S, 0, zero) € S, reflects the fact that a;; = 0 holdsfor al (i,5) € S.
Hence, no explicit storage of the region represented by S C 22 isrequired. Moreover, each oc-
currence of the corresponding enveloping data structure A in the program having an access sum-
mary (X, Z") € X4 with X C S isreplaced by azero constant. Thereafter, the condition of the
statement in which this replacement occurs is re-computed, which may also affect the conditions
of surrounding DO-loops or |F-statements.
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Example: In the following fragment, an annotation is used to inform the compiler that the main
diagonal of animplicitly sparse matrix A with enveloping data structure Aiszero, and will remain
SO at run-time:

REAL A(N,N), X(N)
C SPARSE(A : _ZERO(0 <= |-J <= 0))

Si: DG=0.0 o
0ol =1 N - DG = 0.0
Sy DG = DG + A(l,1) * X(I)

ENDDO

Under the assumption that the simple section representing the zero region results as a repre-
sentative, occurrence A( 1, 1) isreplaced by ‘0. 0’. Thereafter, the condition ‘false’ becomes
associated with Sy and, hence, with the | -loop (since we aways ignore the ‘ side-effect’ that sets
the final value of aloop index). Thisimplies that both statements can be €iminated.

Dense Regions

A storage summary 5 = (S, §,dense) € S4 indicates that dense storage must be used for the
region in A that is represented by the smple section S C 22. Let & € 2* and 7 € Z* denote the
boundary values of this simple section. First, an appropriate indexing method is sel ected:

row-indexed if §=(-1,0)T
0(3) = V 5§ (0,—|—1)T A (11 —o1) < (12 — 02)
column-indexed otherwise

Dense storage of row- and column-wise storage patterns will be column- and row-indexed
respectively. For diagona-wise storage patterns, the index inducing the smallest range will be
used. A unique label lab(s), obtained by successively incrementing an integer-valued variable,
is associated with each storage summary belonging to a dense region. Thereafter, the following
declaration is generated, where k& = lab(s) and TYPE denotes the basis type of the enveloping
data structure A:

TYPE DNk_A(R £(3) : U(3))
In this declaration, the range Ris defined as follows:

o1 : 1 if 6(3) = row-indexed
R = .
o9 : T otherwise

Asisfurther discussed in chapter 8, appropriate initialization code for this array will be gen-
erated at the beginning of the program, where each entry a;; with (i, j) € S is stored at either the
location (7,89 -7 — s1 - 7) Or (j, 82 -1 — s1 - j) for row- or column-indexed storage respectively,
where 5 = (s, s2)”. Moreover, the following replacement is performed for each occurrence of
the enveloping data structure in the program with an access summary (X, #") € X4 that satisfies
XCs:

A(E1, E2) — DNk_A(E, s2 * El - s * E2)
In this replacement, & = lab(s) and subscript E is defined as follows:

B E1 if 0(3) = row-indexed
"] E2 otherwise
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After this replacement, the condition of the statement in which this expression occurs is re-

computed. Obvioudly, if " = §, then the second subscript will remain constant in successive iter-
ations of the innermaost DO-loop, which tends to enhance datalocality for the FORTRAN column-
major storage of arrays. Infact, if £L(3) = U(3) holds, then this second subscript even becomes
redundant and a one-dimensional array is used as dense storage.
Example: Below, anannotation isused toindicate that asmall bandinab x 5 implicitly sparse ma-
trix Bisdense. If weobtainaS € ¥ g representing thisband, then the corresponding storage sum-
mary 5 = (S, (1,1)7,dense) € Sp givesriseto the following conversion, since #(3) =column-
indexed:

REAL B(5,5) . .
C_SPARSE(B: _DENSE( - 1<=I - J<=1)) REAL DNL_B(1:5, -1:1)
Dol =-1, 1
- DOl =-1, 1
DOJ‘MAX(}'L')' M NCS, 5-1) - DO J = MAX(1,1-1), MN(5,5-1)
B(1+J,J) = ... -
DNL_B(J, 1) = ...
ENDDO
ENDDO ENDDO
ENDDO

The band scheme illustrated below has been selected, and the code has been altered accord-
ingly:

DN1B -1 0 +1

bu b1z 0 0 O

1] —|b b
bar baa bz O O 2t
_ 2| b12 | bao | b32
B = 0 b3 b3z b3y O

3 | baz | b33 | ba2

0 0 bz baa bus
4| b3 | baa | bsa

0 0 0 bss bss
5| bys | bss | —

Spar se Regions

All entries of animplicitly sparse matrix A residing in one of the sparse regions of this matrix are
stored in dynamic storage as a pool of sparse vectors. The number of sparse vectors in this pool
and the total number of elements in the sparse regions are computed as follows, where we define
S% ={(S,5,p) € Sa | p = sparse}:

Va= Y UBE)-LE)+1 Na= > |5]
€85 (S,5,p)ESY

Given these numbers, the following declarations are generated, where p 4 denotes the approxi-
mated density of theimplicitly sparse matrix A and TYPE denotes the basistype of the enveloping
data structure A:

INTEGER NP A, SZ A
PARAMETER (NP_A = V4, SZ A = INT(pa-Na) + 2 * NP_A)

TYPE VAL_A(SZ_A)
INTEGER | ND_A(SZ_A), LONA(NP_A), HGH A(NP_A), LST_A

In this manner, a pool of V4 sparse vectors is obtained for matrix A, where the eth element
in the arrays LONA and HGH_A are used to locate the entries and indices of the eth sparse vector
in the paralel arrays VAL_A and | ND_A. Because at most p4 - N4 entries must be stored, the
size of these parallel arraysis set accordingly, with some additional working space as suggested
in[77, 80, 235].

A unique base-location is used as label base(s) of each storage summary 5 € S¥ using the
following agorithm:
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bs := 1;

forall 5€ 85 do
base(s) : = bs;
bs = ( UGB)—LEG) +1);
endi f

enddo

Appropriate initiaization codeis generated at the beginning of the program, where each entry
aij With (4,7) € S for somes = (S, (s1,s2)" , sparse) € Sy isstored in the eth sparse vector of
this pool, where ¢ is defined as follows

e=Dbase(s) — L(5)+s2-i—51-] (7.7)

If 6(3) indicates that row-indexed storage is appropriate, where  is defined asin the previous
section, then the row index i is associated with this entry. Otherwise the column index j is as-
sociated with this entry. Hence, different index information may be associated with the entriesin
different sparseregions. Incontrast with occurrences that induce accessesto zero or denseregions,
however, code generation for the remaining occurrences is less straightforward (see chapter 8).
Example: Consider the following annotations in which the enveloping data structure C, the den-
sity pc = 0.125, and some nonzero structure properties of an 8 x 8 implicitly sparse matrix C are
declared:

REAL C(8, 8)
C SPARSE(C : _DENSI TY(0. 125))
C SPARSE(C: SPARSE( 1 <=1 - J <= 4, 2 <= | <= 5)(1,1))
C SPARSE(C : SPARSE( 1 <=1 - J <=7, 6 <=1 <= 8)(0,1))
C SPARSE(C : _SPARSE(-7 <= 1| - J <= 0) (1,0))

Under the assumption that we actually obtain the set ¥ = {51, .52, 53}, where the three
simple sections are equa to the simple sections arising in the previous annotations, the storage
summary set S¢ = {51, 52,53} results for the following storage summaries:

E(Ez) U(El) base(Ez)
5 = (S, (1,17, sparse)| 1 4 1
5 = (S, (0,1)T, sparse)| 6 8 5
33 = (83, (=1,0)T, sparse)| 1 8 8

Hence, we obtain Ve = 15 and N = 64, which gives rise to the following declarations of
the pool of sparse vectors:

REAL VAL _C(38)
| NTEGER | ND_C(38), LOWC(15), HGH C(15), LST C

Row index information is stored for the last eight vectors in this pool, based on column-wise
storage patterns. Column index information is stored for the remaining vectors that are based on
diagonal- and row-wise storage patterns.

If (7, 7) € Sholdsfor astorage summary (S, s, sparse) € S¢ and anentry ¢;;, then thisentry
is stored in the eth sparse vector of the pool, where e is defined asin (7.7). Hence, asillustrated
in figure 7.10, for this data structure the value of ¢ is determined asfollows:

i—j if (i) € S
e={ i—1 if (i,§) € Sy
T+j if (i,§) € Ss

For instance, c41, ¢55, cs1, and ¢1g belong to the 3rd, 12th, 7th, and 15th sparse vector of the
pool that is used to dynamically store the entries of the implicitly sparse matrix C.
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Figure 7.10: Pool of Sparse Vectors

COMMON-Storage

All variables implementing the sparse storage scheme that is selected for an implicitly sparse ma
trix A with enveloping data structure A are made available to all appropriate subroutines and func-
tions using COMMON-storage. These variables are placed in a single named COMMON-block,
asisillustrated below:

COMMON / A/ DNL_A, DN2_A, ..., VAL_A INDA LOWA HGHA LST A

This COMM ON-statement together with the appropriate declarations of the variables are gen-
erated in the main program and in al clones in which A is uniquely associated with aformal ar-
gument (the occurrences of which are handled as occurrences of A).
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Chapter 8

Phase 3: Sparse Code Generation

Inthethird and final phase, the actual data structure transformations are applied by converting the
(possibly adapted) dense code into a form that operates on the selected sparse storage schemes,
thereby using overhead reducing techniques as much aspossible. A small number of genera prim-
itives are supplied in a separate library, so that constructs that would otherwise appear frequently
in the generated sparse code can be replaced by calls to the appropriate primitives. This approach
tends to reduce the size of the generated sparse code whereas, on the other hand, the primitives are
chosen general enough to leave the sparse compiler with enough flexibility in selecting data struc-
tures. Identifiers of all subroutines and functions in this library, aswell as all compiler generated
identifiers contain underscores to prevent conflicts with identifiersin the original dense program.!

In this chapter, we first present the primitives that are supplied in the library. Thereafter, the
generation of sparse code is presented in detail. Because the programmer remains unaware of the
actual sparse storage scheme that is selected for each implicitly sparse matrix, the sparse compiler
is also responsible for generating appropriate initialization code, which is the final topic of this
chapter.

8.1 ThelLibrary

The sparse compiler performs a source-to-source tranglation of adense program into semantically
equivalent sparse code. The resulting sparse program together with alibrary containing some use-
ful primitivesthat may be used in this program are supplied to aconventional FORTRAN compiler
for the desired target architecture, as depicted below:

Library
{
Dense — Spar_se Sparse FORTRAN —  Executable
Program Compiler Program Compiler

To leave the sparse compiler with sufficient flexibility in the data structure selection, only a
small number of genera primitives are supplied in this library. Supplying some primitivesin a
library, however, tends to reduce the size of the generated sparse program because constructs that
otherwise would appear frequently can be replaced by calls to the appropriate primitives. In addi-
tion, severa versions of the library that are fully hand-optimized for different target architectures
can be constructed in advance, which improvesthe efficiency of all sparse codes that are generated
for one of these architectures.

'Here, we assume that identifiers in the original dense program adhere the ANSI FORTRAN 77-standard, whereas
the compiler used to compile the generated sparse code supports the use of underscores in identifiers.
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Even without fully hand-optimized versions, this separate compilation approach is useful to
reduce compilation-time, because after the library has been compiled for a specific target archi-
tecture, the resulting object file may be linked with every sparse program that is generated for this
architecture.

In the context of sparse computations, the use of alibrary has been advocated by others. Inthe
gparse extensions to BLAS [68, 69], a number of basic sparse operations are identified and stan-
dardized in alibrary to improve the readability, portability, and efficiency of sparse codes. This
sparse BLAS, developed for an environment in which the symbolic and numerical operations are
completely separated, focuses on the actual operations on sparse vectors (e.g. sparse dot prod-
uct). Thelibrary of the sparse compiler, on the other hand, mainly deals with basic manipulation
of sparse vectors (e.g. insertion of an entry). The sparse compiler implements the actual opera-
tions on sparse vectors by generating the appropriate constructs, athough some of these constructs
could be replaced by calls to sparse BLAS routines in a future implementation. By focusing on a
small number of general primitives for manipulating sparse vectors, we leave the compiler with
sufficient flexibility to useapool of sparse vectors asdynamic storage for the sparseregionsin each
implicitly sparse matrix, where the layout of vectors may be different for each region. Moreover,
we aso prevent the situation in which each primitive must be implemented for a vast amount of
existing storage schemes for sparse matrices. In SPARSKIT [185] this latter situation is partly
avoided by limiting the number of sparse storage schemes that are used internally and providing
aset of conversion routines from and to a single storage scheme.

8.1.1 Caeilingand Floor Functions

After applying the reshaping method, ceiling and floor functions may arise in the loop bounds of
thetarget loop. Because these functions are not available asintrinsi ¢ functions, animplementation
of these functionsissupplied in thelibrary. Each expression containing a ceiling or floor function
isimplemented using one of the following function calls:

[d/ n] = CEL_(d, n) ld/ n|] = FLOR (d, n)

Straightforward implementations of these functions are shown below:

| NTEGER FUNCTION CEIL_ (D, N) | NTEGER FUNCTI ON FLOOR__ (D, N)
I NTEGER D, N | NTEGER D, N
CEIL_ =D/ N FLOOR =D/ N
I F (MOXD, N). NE.0) THEN IF (MOD(D, N). NE. 0) THEN
IF ((D.GT.0).EQV. (N. GT.0)) THEN IF ((D.LT.0).NEQV. (N.LT.0)) THEN
CEIL__ =CHL_ +1 FLOOR _ = FLOOR _ - 1
ENDI F ENDI F
ENDI F ENDI F
RETURN RETURN
END END

Together withthe FORTRAN intrinsic integer functions MAX0 and M NO operating on an arbi-
trary number of arguments, the functions CEl L __ and FLOOR__ can be used in the generated code.
For notational convenience, however, the mathematical notation for floor and ceiling functionsis
used in most examples.

Example: Consider the following representation of the innermost loop bounds in a double loop
with loop index T = (1,J)”"

1 2 10
-1 3 |= o
1 -4 Is 0
1 -3 1
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This system gives rise to the following innermost DO-loop:

DOJ = MAXO(CEIL_ (1,4), CEIL_ (1-1,3)), MNO(FLOOR (10-1,2), FLOOR (5+I,3))

ENiDiDb
8.1.2 SparsePrimitives

As shown in table 8.1, the library also supplies a number of primitives that can be used to ma-
nipulate sparse vectors in a pool. Inspired on the BLAS convention (see e.g [69, 70]), the first
underscore in each identifier may be replaced by any type specification charactersin {I,S,D, C}
to define | NTECER, REAL, DOUBLE PRECI SI ON, or COVPLEX as basistype of the entries. In
contrast with the scatter and gather primitives defined in sparse BLAS[69], primitives _SCT__and
_GTH__ aso support the so-called switch technique [169, chl].

Initialization

The entries in the sparse regions of an implicitly sparse m x n matrix A are stored in apool con-
sisting of V4 sparse vectors. Since the layout of these sparse vectors may differ over the regions,
row index information is required for some sparse vectors, whereas column index information is
required for others. Hence, although this kind of storage organization differs from conventional
general sparse row- or column-wise storage schemes, in essence this pool can be thought of as
implementing general sparse row-wise storage of a V4 x max(m, n) sparse matrix. Thisimplies
that initialization methods for general sparse row-wise storage schemes [78, p30-31][164, p15-
22][235, p31-34] are applicable.

The primitive _I NI __ provides an initialization method for the pool of sparse vectors that as-
sumes that the entries in the sparse regions of A are available at locations 2, ... ,LST_A of three
parale arrays VAL_A, | ND_A, and TMP__. The first two arrays contain the numerical value and
appropriate index information of each entry. These arrays actually form a part of the sparse stor-
age scheme that has been selected for the implicitly sparse matrix A. Array TMP__is only used
temporarily to hold the number of the sparse vector to which each entry belongs and can be used
for other purposes after initialization.

The pool of sparse vectors selected as dynamic storage scheme of an implicitly matrix A with
enveloping data structure Aisinitialized using the following subroutine call:

CALL INl__(VAL_A, TMP__, IND A LOWA, HGHA NP_A SZ A LST_A

The implementation of subroutine SI NI __ is presented below. The first location is aways
used as location L, which has the property that VAL(L) = 0. Furthermore, array LOWis tem-
porarily used to count the number of entries in each | th sparse vector:

| Primitive | Short Description \

_INl__() | Initialization of dynamic storage

_INS__ () | Insertion in asparse vector

_SCT__ () | Expansion of asparse vector into a dense format

_GTH__() | Compression of adense format into a sparse vector
LKP__() | Lookup in asparse vector (independent of basis type)

Table 8.1: Sparse Primitives
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SUBROUTI NE SINI__(VAL, TMP, IND, LON HGH NP, Sz, LST)
INTEGER NP, Sz, LST, I, J, K

| NTEGER TMP(SZ), |ND(SZ), LONNP), HGH(NP)

REAL  VAL(SZ), V

VAL(1) = 0.0

DOl =1, NP
LONI) =0

ENDDO

DOK = 2, LST
[ = TMP(K)
LONI) = LOWI) + 1

ENDDO

Thereafter, we assign the appropriate values to the elements of HGH, whereas each element of

LOWis set to the first location after the locations reserved for each individual sparse vector:

LON1) = LOW1) + 2
HGH(1) = LOW1) - 1

DOl =2, NP

LOWI) = LOWI) + LOWI-1)
HGH(1) = LOWI) - 1

ENDDO

Finally, entries and index information are moved to the appropriate locations using the foll ow-

ing code which, although a WHILE-loop is nested within the DO-loop, has arunning time that is
proportiona to the number of entries in the sparse regions of the corresponding implicitly sparse
matrix:

2, LST
I ND(K) . GT. 0) THEN
[ = TMP(K)
LONI) = LOWI) - 1
J = LONI)

DO WHI LE (J. NE. K)
V = VAL(J)
I = IND(J)
VAL(J)
I ND( J)
VAL(K)
| ND( K)

|
LON 1)
J

ENDDO
ELSE
IND(K) = - IND(K)
ENDI F
ENDDO

DO K
I F

~

VAL( K)
- IND(K)
v
[

TVP(J)
LONI) - 1
LON 1)

Recall that the individua elements of array | ND can be used to store row indices for some

sparse vectors and column indices for other sparse vectors. Theindex information intheremaining
part of array | NDis reset to indicate that these locations are free.

DO K = LST+1, SZ
IND(K) = 0

ENDDO

RETURN

END
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LOW A | -|-|-|-| - 244|558
HGH A | -|-|-|-| - 343|709
VAL_A - a].1 a45 a].4 a23 a44 a52 a41 a55 - 0 a14 all a23 a44 a41 a45 a55 a52 -
IND A -1 1|5| 4| 3| 42| 1| 5]|- -1 4]1|3|4|1|5|5|2]-
TMP -l 1| 4| 12| 4| 5| 4| 5| - -l -1 =-]1 - - --]-] -] -

Figure 8.1: Initialization

If the Eth sparse vector is empty, then HGH.A( E) =LOWNA( E) - 1 holds after initialization. In
figure 8.1, for example, we show possible contents of the arrays before and after initialization in
casethe pool isused toimplement general sparse row-wise storage for thefollowing sparse matrix:

Although array TMP__ can be re-used for initializing the pools belonging to several implic-
itly sparse matrices, and can also be re-used for e.g. recording permutations applied to some of
these matrices thereafter, the use of this array increases the storage requirements of the applica
tion. Therefore, alternative initiaization methods, usualy trading storage requirements for com-
putational time, should be incorporated in a future implementation.

Lookup

A search for aparticular element with index information F inthe Eth sparse vector in apool used to
store the entries in the sparse regions of animplicitly sparse matrix with enveloping data structure
Ais performed using the following CALL-statement:

CALL LKP_ (IND A, LOWA(E), HGH A(E), F)
The entries in this sparse vector are scanned until either the index information matches F, or

the entries in this vector have been exhausted. In the latter case, location L isreturned to indicate
that the searched element is zero:

| NTEGER FUNCTI ON LKP__(IND, LOW HGH, F)
I NTEGER | ND(*), LOW HGH F

DO LKP__ = LOW HGH
IF (IND(LKP_).EQ F) GOTO 10
ENDDO
LkP__ =1
10  RETURN
END

Insertion

Insertion of anew entry with associated index information F in the Eth sparse vector of apool that
has been selected for an implicitly sparse matrix with enveloping data structure A is performed
using the following call:
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CALL INS_(VAL_A, IND A LOWA HGHA E NP A SZA LST A AD, F)

The numerica value of the new entry is set to zero by this call. However, the location of this
entry isreturned in AD, so that the appropriate value can be assigned to this entry afterwards (viz.
VAL_A( AD) =. . . ). Below, we present an implementation of the subroutine SI NS__ assuming
that no entry with index F is present yet in the Eth sparse vector [164, p25-33][235, p16-21]

If there is some directly surrounding free space for the Eth sparse vector, this space is used to
store the new entry:

SUBROUTINE SINS__(VAL, IND, LON HGH, E, NP, SZ, LST, AD, F)
INTEGER E, NP, SZ, LST, AD, F, I, J, L
I NTEGER LOWNP), HGH(NP), | ND(S2)
REAL  VAL(SZ)
=0

|
IF ( (HGH(E).LT.SZ) .AND. (IND(HGH(E)+1).EQ 0) ) THEN

HGH(E) = HGH(E) + 1
AD = HGH(E)
VAL(AD) = 0.0
IND(AD) = F

IF (LST.LT.AD) LST = AD

ELSEI F ((LOAE). GT. 2). AND. (| ND(LONE)-1). EQ 0)) THEN

LONE) = LONE) - 1
AD = LONE)
VAL(AD) = 0.0

= F

| ND( AD)

If surrounding free space is not available, then an attempt is made to move the whole sparse
vector together with the inserted entry to the end of the data structure, where presumably most
free space resides. The old locations of the sparse vector are marked as free:

ELSEI F ((SZ-LST). GT. (HGH(E) - LONE) +1)) THEN

! Data Mvenent (begin)
AD = LST + 1

DO | = LONE), HGHE)
VAL(AD) = VAL(I)
IND(AD) = IND(I)
INDI) =0
AD = AD + 1

ENDDO

VAL(AD) = 0.0

INDAD) = F

LONE) = LST +1

HGH(E) = AD

= AD

LST
. ! Data Movenent (end)

Infigure 8.2, weillustrate the data movement that occurs if an entry as; isinserted in the 3th
sparse vector of apool that implements general row-wise storage of a sparse matrix A.

If this data movement cannot be done, a so-called left-compression is performed. Since such
a left-compression is relatively expensive, sufficient working space (or ‘elbow room’) must be
supplied to prevent the situation in which aleft compression has to be applied many times during
program execution. First, thevariable| , used asaflagin thisbranch, istested to prevent asecond
application of left compression during the same insertion;

ELSE I Left Conpression (begin)
IF (1.EQ1) THEN
PRINT *, 'Qut of Menory’

STCOP
ENDI F
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LOW_A(3) HGH_A(3) LST A
VAL_A 31|33 %36
IND_A 136
LST_A
LOW_A@3) HGH_A(3)
VAL_A
IND_A

Figure 8.2: Data Movement

The compression starts by marking the index of the first entry of every | th sparse vector in
the pool that is non-empty with the negative value - | . The value of theindex is saved in the cor-
responding LOWpointer:

DOl =1, NP

I F (HGH(1).GE. LON1)) THEN
J = IND( LOWI) )
IND( LON(I) ) = - |
LOW 1) =

ENDI F

ENDDO

Thereafter, the actual |eft compression is performed:

J=2
DOI = 2, LST
IE (IND(1).GT.0) THEN
VAL(J) = VAL(1)
IND(J) = IND(I)
J =J+1
ELSEI F (IND(1).LT.0) THEN
L = - IND(1)
VAL(J) = VAL(I)
IND(J) = LOA(L)
LOWL) = J
HGH(L) = J + HGH(L) - |
J =J+1
ENDI F
ENDDO

A very important property of this implementation of left compression is that the relative or-
der of entries in each sparse vector is preserved. This property is exploited to account for data
movement in the implementation of guard encapsulation (see section 8.2.3). Finally, the remain-
ing locations are marked as free and the last used location is recorded. Thereafter, theinsertionis
tried again:

ENDI F I Left Conpression (end)
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Notethat thisapproach failsif the sparse vector in which theinsertion isdone cannot be moved
to the free space after the left compression, even if some free space remains. Thisis an extraar-
gument for providing sufficient working space.

Expansion and Compression

TheEth sparse vector inapool belonging to animplicitly sparse matrix with envel oping datastruc-
ture A can be expanded into a dense one-dimensional array P and a switch array SWI' with the
following call:

CALL SCT__(VAL_A, IND A LONA(E), HGH A(E), P, SWI)

Likewise, this expanded vector is compressed into the pool again using the following call:

CALL _GTH__(VAL_A, IND_A, LOWA(E), HGH A(E), P, SWI)

In figure 8.3, the expansion and compression of the 3rd sparse vector in a pool that uses row-
wise storage of an 8 x 8 sparse matrix A isillustrated. Implementations of both subroutines are
shown below [78, ch2][169, chl]:

SUBROUTI NE SSCT__ ( VAL, | ND, LOW HGH, P, SWI) SUBROUTI NE SGTH__ ( VAL, | ND, LOW HGH, P, SWI)

I NTEGER | ND(*), LOW HGH, | I NTEGER | ND(*), LOW HGH, |
REAL  VAL(*), P(*) REAL  VAL(*), P(*)
LOGI CAL SWI(*) LOGI CAL SWI(*)
DO | = LOW HGH DO | = LON HGH
P( IND(1) ) = VAL(I) VAL(1) = P IND(1) )
SWI( IND(1) ) = .TRUE. P( IND(I) ) =0.0
ENDDO SWI( IND(1) ) = .FALSE.
ENDDO
RETURN RETURN
END END

All used dlementsin the dense array P and the switch array SWI are reset during the compres-
sion to support the subsequent expansions. In this manner, these arrays only have to beinitialized
once at the beginning of the program (see section 8.3).

8.2 Actual Sparse Code Generation
Dueto theway inwhich the representative simple sections of each implicitly sparse matrix A have

been constructed, for each occurrence of the corresponding data structure A with access summary
(X,Z™) € X4, thereisastorage summary 35 = (S, 5, p) € Sy suchthat X C S.

LOW_A(3) HGH_A(3)

VAL_A 431 | %33| %36
IND_A 1136
P |3 433 a6
SWT [+ * *

Figure 8.3: Expansion and Compression
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In this case, we refer to the storage summary s as the storage summary that matches the oc-
currence of A. Sincep € {zero, dense, sparse}, we can distinguish between occurrences of
enveloping data structures accessing a part of the array corresponding to a zero, dense, or sparse
region in an implicitly sparse matrix. We refer to these occurrences as zero, dense, and sparse
occurrences, respectively.

In this section, we present a method to generate sparse code by applying the appropriate data
structure transformations to these occurrences. The method assumes that subscript bounds are not
violated in the original dense program, because otherwise subscripts of static dense storage or the
pointers used to locate sparse vectorsin the pool may aso be violated in the generated sparse code.
Since for some dense programs, out-of-bounds addressing is actually intended, the semantics of
the program could be affected. Therefore, dense programsin which potential subscript violations
arise are not converted by the prototype sparse compiler.

8.2.1 Zeroand Dense Occurrences

Suppose that the storage summary 5 = (S, (s1, s2)”,p) € Sa withp € {zero, dense} matches
an arbitrary occurrence A( E1, E2) in the program, where E1 and E2 denote the (possibly in-
admissible) subscripts. If p = zero, then we replace the occurrence with a zero constant of the
appropriate type, depending on the basis type of the enveloping data structure A:

basis type constant

| NTEGER 0

REAL 0.0

DOUBLE PRECI SION | 0. 0D

COWPLEX CMPLX( 0.0, 0.0)

If p = dense, then wereplace the occurrence with thefollowing expression, wherethe second
subscript is omitted if £(3) = U(3):

DNE_A(E, s2 * El - s * E2)
In this replacement, £ = lab(3) and subscript E is defined as follows:

E_ E1 if 6(5) = row-indexed
"] E2 otherwise

After al such replacements are done in a statement, the conditions of this statement and sur-
rounding | F-statements and DO-loops are re-computed. If the condition of a statement becomes
‘false’ (which isonly possible if this statement does not call any function with side-effects), then
this statement is eliminated from the program (recall that we always assume that the final vaue
of aloop index is not used after a DO-loop).

Example: Asan extreme example, if we know that A = 0 holds for an implicitly sparse matrix
with enveloping data structure A, then the following fragment computing b= A isconverted as
shown below:

REAL ACM N, B(M, X(N

C_SPARSE(A : _ZERQ() ) REAL B(M, X(N
DOl =1, M DOl =1, M
B(l1) = 0.0 - B(l1) = 0.0
DOJ =1, N ENDDO
B(1) = B(1) + A(l,J) * X(J)

ENDDO
ENDDO
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The storage summary set Sy = {(S,0,zero)} results, where S contains the whole index

set of A. Consequently, the occurrence of A isreplaced by ‘0.0°, which converts the conditions
of the resulting assignment statement and surrounding J-loop into ‘false’. By cleaning up the
code accordingly, the fragment is automatically converted into code that performs the appropriate
operation b = A% = 0.
Example: Replacement may also alter the condition of a statement in another manner. For ex-
ample, if besides the implicitly sparse matrix of the previous example, we also have an implicitly
sparse matrix B with envel oping data structure B, then thefollowing conversion isdone (the sparse
occurrence B( 1, J) will be handled as explained in subsequent sections):

DOl =1, M DOl =1, M
DOJ =1, N DOJ =1, N
X=X+ 3* (A1,3) + B(I,1)) - X=X+3*(0.0+B(l,1))
ENDDO ENDDO

ENDDO ENDDO

This affects the condition of the assignment statement as follows, which implies that guard
encapsulation may become feasible because the guard (I, I) € E(B)’ dominates the condition
afterwards:

(I1,J) € E(A)V(L,I) € E(B) — (I,I)€ E(B)

Example: A similar, but lesstrivial, example is shown below. The condition that has been asso-
ciated with the origina |F-statement is‘(I,J) € E(A) V(I,J) € E(B)V (2,2) € E(A). After
replacing both occurrences of A by zero, however, we have E.t=false for the boolean expression,
while the condition of the last assignment statement becomes ‘false’. Hence, the condition of the
whole IF-statement changesinto‘ (I,J) € E(B)’:

IF (A(1,J).NE 0.0) THEN

NZ = N + 1 IF (0.0.NE.0.0) THEN <« (I,3)€ E(B)

ELSE . ELEEZ = NN\NZ + 1 + true
ﬁ(cg Z) A9CA(+ZB(2;'3)3 0 ACC = ACC + B(1,J) +« (1,3) € E(B)
<) = As : ENDDO

ENDDO

In fact, the whole construct could be replaced by the EL SE-branch.

8.2.2 Preparatory Passover Sparse Occurrences

Before any code is generated for the sparse occurrences of the enveloping data structure A of each
implicitly sparse matrix A, a preparatory pass over the sparse occurrences with admissible sub-
scriptsis made to determine which occurrences may beinvolved in aguard encapsul ation or access
pattern expansion. During examination of an occurrence of array A, werefer to this occurrence as
the candidate.

Suppose that 5 = (S, (s1,s2)”,sparse) € S, matches a candidate with access summary
(X,#™) € X, and admissible subscripts F(T) = o + WT in aloop with index vector T and
iteration space IS C Z¢. Then, we define the e-tag of the candidate as follows, where base(s)
contains the base-location of the access summary in the pool of sparse vectors:

e(I) = base(3) — L(3) + (+s9, —s1) - F(T)
The f-tag of the candidate is defined as shown below:

5] 10 - F(I) if 6(3) = row-indexed
FD=9(0.1)- F(}) otherwise
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During each iteration T = 7, an element in the e(7)th sparse vector of the pool with associated
index information f(7') will be accessed. Obviously, we could generate lookup code directly, but
this would yield very inefficient sparse code and should only be used as alast resort.

If the effective access patterns of the candidate and the storage patterns are consistent, i.e.
#" = (s1,s2)7, then either guard encapsulation or access pattern expansion may be feasible,
because entries along each e(T)th sparse vector can be generated efficiently together with the ap-
propriate index information (cf. constraints (a) and (b) at page 84). It can be easily verified that
inthiscasethereisal < p < d such that both the e-tag and f-tag can be expressed as follows,
where f, # 0 :

(8.1)

e(f) = 60+€1-Il+...—|—6p_1-]:p_1
f(O) = fotfi-Ii+.ooo+fp1-Ipa+fp-Ip

Candidatesfor Guard Encapsulation

If guard ‘ F(I) € E(A)’ dominates the loop-body of the | p»-l00p (see section 5.3.2), and this
DO-loop isastride-1 DO-loop with admissible loop bounds that has not been involved in aguard
encapsulation before, then the candidate and the I,,-loop can beinvolved in aguard encapsulation
if the following two constraints are also satisfied.

To prevent the requirement for ordered storage , we require that the iterations of this DO-loop
may be executed in arbitrary order (cf. constraint (c) at page 84):

o No datadependence iscarried by thel ,,-loop and no exit branch [234, p238-241] or STOP-
statement can be executed in the loop-body of this DO-loop.

Additionally, to simplify code generation and, again, to prevent the need for ordered storage,
we impose the following constraint:

e During eachfixediteration Iy =4y,...,I, 1 =ip_1, insertions in the e (T )th sparse vector
of the pool cannot occur.

If thefirst constraint isviolated, the sparse compiler inquires the programmer whether the pro-
hibitive loop-carried data dependences may be ignored (cf. section 4.3.1).

Verifying the second constraint requires more effort. All occurrences of the same envelop-
ing data structure A appearing at the left-hand side of assignment statements in the loop-body of
the | ,-loop are examined. If the subscripts of such aleft-hand side occurrence are structurally
equivalent to the subscripts F(T) of the candidate, which means that coefficients of loop indices
in the common nesting depth of the two statements in which the occurrences appear are identical
whereas all other coefficients are zero, then thisleft-hand side occurrence cannot induce insertion
(viz. the corresponding guard dominates the loop-body). Likewise, if the storage summary that
matches the left-hand side occurrence differs from s, the last constraint is till satisfied, although
insertions in other sparse vectors of the same pool may occur in this case.

Otherwise, amore expensivetest isrequired. First, weconstruct the e-tag ¢’ (J) of theleft-hand
side occurrence, where J denotes the index vector of the loop in which this occurrence appears,
together with a (conservative) representation AJ < b of the iteration space of this loop, where
inadmissible loop bounds are handled by |eaving the corresponding loop indices unbounded. Be-
cause thefirst p components of T and J are equal and the e-tag e(T) of the candidate only depends
onindicesIy,...,I,_,thelast constraint may beviolated if thefollowing equation has an integer
solution for AT < b:2

2Thistest strongly resembles the test performed during data dependence analysis while testing for the data direction
vector (=,...,=,*,...,*), dthough herethegranularity isincreased to sparse vectorsrather than individual elements.
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e(I) =¢'(J)

Fourier-Motzkin elimination isused to test the consistency of the system of inequalities arising
from the representation of the iteration space and this equation (rewritten into e(T) < ¢/(J) and
¢'(J) < e(T)). If this system is consistent or if the e-tag of the left-hand side occurrence cannot
be constructed due to inadmissible subscripts, we conservatively assume that the last constraint is
violated and disable guard encapsulation. If Fourier-Motzkin elimination reveals that the system
isinconsistent, we may safely conclude that the last condition is not violated, although we till
assume that insertions in other sparse vectors of the same pool may occur.

If al constraints are satisfied, then we record that encapsulation of the dominating guard is
feasible for the | ,-loop and the candidate (and all occurrences of enveloping data structure A in
the loop-body having structurally equivalent subscripts). If insertions in other sparse vectors of
the same pool may occur, thisis aso recorded because eventualy this must be dealt with in the
actual implementation of guard encapsulation.

Example: Consider thefollowing example, in which an annotation isused to enforce the selection
of general sparse row-wise storage for an implicitly sparse matrix A:

REAL A(100, 100)
C_SPARSE(A: _SPARSE( ) (0, 1))

DOl =1, 50

DO J = I+1, 100
X(J) = X(J) + A(l1,J) « (1,7) € E(A)
DO K = 1, 100 «— (1,7) € E(A)

A(J,K) = A(J,K) + A(l,J) <« (1,J) € B(A)

ENDDO
A(1,J) = A1,3) * 2.0 «— (1,7) € E(A)

ENDDO

ENDDO

The true and, hence effective access patterns of the first occurrence of A are consistent with
the storage patterns. When this occurrence becomes the candidate, the following e-tag and f-tag
are constructed (viz. p = 2), where T = (1, 7)73

e(I) = 1-1
f(I) = 0-14+1-7J

Because guard ‘(I,J) € E(A)’ dominates the loop-body of the J-loop and no data depen-
dences are carried by this DO-loop, we test whether insertion in the | th sparse vector of the pool
(i.e. thel throw inthis case) may occur during afixed iteration I = 4. Therefore, the occurrences
A(J, K) andA( 1, J) appearing at the left-hand side of assignment statements in the J-loop are
examined. Because the subscripts of the latter are structurally equivalent to the subscripts of the
candidate, only theformer isfurther examined. Thefollowing system of linear inequalitiesiscon-
structed, where 7 = (1, J,K)T and ¢/(J) = J:

0 0 1]100)\ )
0 0 —-1| -1
0 1 0100
1 -1 0] -1 ATI<b
1 0 0] 50
-1 0 o] -11] J
-1 1 0| 0 e(I) = ¢'(J)
1 -1 0] o0 }

3Notethat if the second occurrence A( | , J) would become the candidate, wewould obtain astructurally equivalent
e-tag and f-tag for T = (1, J,K)7.
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Fourier-Motzkin elimination reveals the inconsistency of this system:

0 11100 11 99 98
-1 1 0 1100 99
1 -1] -1 1| 50 49
— 1 -1 0] — -1 -1 | —» 0
-1 0| —1 0 0 99
0 0] 99 0] 99 1
1 0] 50 0] —1

Consequently, guard encapsulation is feasible, although we must account for possible inser-

tions in other sparse vectors during the actual implementation. Note that if the execution set of
the J-loop would be, for instance, [I, 100], then the system would be consistent and guard encap-
sulation would become disabled because insertions in the | th sparse vector could occur during a
fixed iteration I = 3.
Example: Although in the following example, guard ‘ (I, J) € E(C)’ dominates the loop-body
of the J-loop and the effective row-wise access patterns of occurrence C( 1, J) are consistent
with the storage patterns, guard encapsulation is disabled by the possibility of executing a STOP-
statement in Qif we want to preserve the exact behavior of this program:

PROGRAM MAI N SUBROUTI NE P( X)
REAL C(10,10), D(10) REAL X
C_SPARSE(C : _SPARSE() (0, 1)) CALL Q(X)
. RETURN
DOl =1, 10 END
DOJ = 1, 10
IF (C(1,J).NE 0.0) THEN
CALL P(C(1,J)) SUBROUTI NE (V)
ol,d) =1/ DJ) REAL Y
ENDI F | E (Y. GE. 500.0) THEN
ENDDO STOP
ENDDO ENDI F
. RETURN
END END

If, for example, C( 1, 1) =500,C( 1, 2) =1. 0,and D( 2) =0, then division by zero could oc-
cur if iterations of the J-loop become reordered, whereas the original program terminates without
any exception.

Candidatesfor Access Pattern Expansion

If, for any reason, guard encapsulation is not feasible for acandidate, then, in principle access pat-
tern expansion ispossiblefor thisoccurrence. Again, however, weimpose an additiona constraint
to simplify code generation.

Let 0 < ¢ < p denotethe index of the last nonzero coefficient of thee-tagin (8.1), i.e. e, # 0
ande; = 0for g < i < d. Then, ascatter and gather operation is generated at nesting depth ¢ just
before and after the I,41-loop if the following constraint is satisfied:

e During each fixed iteration Iy = iy,...,I, = 14, accesses induced by every individual
occurrence of A are confined to either (i) the e(T)th sparse vector of the pool, or (ii) other
sparse vectors in the pool.

The congtraint is verified as follows. All occurrences of A in the loop-body of the | . -loop
for which the matching storage summary isidentical to the storage summary that matches the can-
didate are examined.
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Firg, thee-tag e'(j) of such an occurrence is constructed, where J denotes the index vector of
the loop in which this occurrence appears. If this etag is structurally equivalent to e(T), situation
(i) occurs. Otherwise, arepresentation AJ < b of theiteration space of the loop with index vector
Jisconstructed, in which loop indices with inadmissible |oop bounds are | eft unbounded. Because
thefirst ¢ components of T and J areequal and e(T) only dependson Iy, . . ., I, the constraint may
be violated if the following equation has an integer solution for AT < b,

e(I) = ¢'(J)

Fourier-Motzkin elimination isused to test the consistency of the system of inequalities arising
from the representation of the iteration space and this equation. If the system is consistent, or the
e-tag ¢/(J) cannot be constructed due to inadmissible subscripts, we conservatively assume that
the constraint isviolated which disables access pattern expansion. Inall other cases, werecord that
access pattern expansion at nesting depth ¢ is feasible for the candidate (and for all occurrences
in the loop-body of the | . -loop with a e-tag that is structurally equivaent to e(I)).

Example: Inthe example of the previous section, occurrence A( J, K) with row-wise access pat-
terns and the following e-tag and f-tag for T = (I, J,K)” may be involved in an access pattern
expansion at nesting depth ¢ = 2:

e(I) = 0-141-7
f@) = 0-I14+0-J+1-K

Therefore, the other occurrences A(J, K) and A( 1, J) are examined. Because the e-tag of
the former is structurally equivalent to e(T), we only have to test whether e¢(T) = ¢’(J) may hold
during any fixed iteration I = i and J = j, where J = (I,J,K)” and ¢/(3) = I denotes the
etag of A(I, J) . Clearly, this gives rise to the same inconsistent system of inequalities as was
examined in the previous section. Consequently, expansion of the Jth sparse vector (i.e. the Jth
row in this case) at nesting depth ¢ = 2 isfeasible for the occurrences A( J, K) .

8.2.3 Sparse Occurrences

After the preparatory pass over the sparse occurrences of al enveloping data structures in a pro-
gram has been made, the actual sparse code is generated.

Implementation of Guard Encapsulation

If guard encapsulation is feasible for an an occurrence A( F(T)) with e-tag e(I) and f-tag f(I)
having the form (8.1) and a particular | ,-loop with admissible loop bounds L,, and U,, then, de-
pending on whether insertions in other sparse vectors of the pool are possible or not, thel ,-loopis
replaced by one of the following constructs, where | ,,_ and possibly LENLI ,, are two new locally
declared scalar integer variables:

relative-addressing: absol ute-addressing:

IF (Lp.LE. U,) THEN
LEN I, = HGH (e(I)) - LOWe(D))
DOl,_ =0, LEN I,
I, = IND_A(LONA(e(D)) + 1,_)
+ - ot frile - oo - fpo1tlpa
ENDDO
ENDI F

IF (Lp.LE. U,) THEN
DO I,_ = LONA(e(T)), HGH A(e())
1, = IND_A(l )
+ - fot+ fi*le - oo - fpaatlpa

ENDDO
ENDI F
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LOW_A(G) LOW_A(5) + I,

LOW_A(G)  LOW_A(G)+ I, i
VAL_A 852 | %51 | %55
IND_A 21 1|5

Figure 8.4: Left Compression (due to insertion in another sparse vector)

The outermost |F-statement is used to prevent the execution of this construct for zero trip
loops. If the minimum value of the expression *U,—L,,’ isnon-negative (which can be determined
by applying the method presented at page 121 to theloop boundsinthe original code), then thisIF-
statement is omitted. Relative-addressing induces slightly more overhead, but correctly accounts
for any data movement caused by aleft compression, because the relative order of entries is pre-
served by this operation (see primitive ‘.| NS_" in section 8.1.2). For example, asillustrated in
figure 8.4, while iterating over the entries in the 5th row of general row-wise storage, insertion
in any other sparse row of the pool causing data movement is correctly dealt with using relative-
addressing.

Within the loop-body of one of these two constructs, we test whether a generated entry actu-
aly belongs to an entry along the appropriate effective access pattern by testing inclusion of the
restored loop index in the original execution set [L,, U, | asfollows:

I'F (MOD(Ip, fp) = 0) THEN
lp =1p /! fp
IF ((Lp.LE I,).AND. (I . LE. U,)) THEN

ENDI F
ENDI F

If f, = +1or f, = —1, then the MOD-test and the integer division are omitted, although the
sign of the restored loop index must till be reversed in the latter case. Furthermore, if inequality
L, <l,orl, <U,isredundant with respect to the system obtained by substituting subscripts
F(T) for (i, ) inthe inequalities defining the simple section S of the matching storage summary
(S, 5, sparse) (tested with Fourier-Motzkin elimination according to proposition 2.1) then the
corresponding lower or upper bound test is omitted since this implies that the test succeeds for
every generated entry. Note that because bounds L, and U, are admissible, executing a possibly
remaining | F-statement in each iteration is free of any side-effects.

Finaly, at the position of the dots, we generate the loop-body of the original | ,,-loop in which
every accurrence of the enveloping data structure A of which the subscripts are structurally equiv-
dent to F(T) is replaced by one of the following expressions:

relative-addressing: absolute-addressing:
VAL_A(LOWA(e(D) + 1,_) VAL_A(Il »_)

Example: Consider the following example, where an annotation is used to enforce the selection
of general sparse row-wise storage for a 100 x 100 implicitly sparse matrix A with enveloping
data structure A. Obvioudly, the guard ‘(1,2 « J — 1) € E(A)’ dominates the loop-body of the
J-loop, and guard encapsulation isfeasible for A( | , 2* J- 1) withthetagse(T) = T and f(T) =
2 x J — 1. Since insertions do not occur, absolute-addressing is used:
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DOl =1, 45
DO J_ = LONA(I), H GHA(I)
J=INDAJ) +1

REAL A(100, 100)
C_SPARSE(A: _SPARSE( ) (0, 1))

o1 =1 a5 IF (MD(J, 2) .EQ 0) THEN
DOJ =1, 145 . J =372
bo1vs C1ay s IF ((1.LE J). AND. (J. LE. 1+5)) THEN
A1, 253-1) = A1, 2%3-1) * 3 v YR ASST)
ENDDO A Al
oo ENDI F
ENDI F
ENDDO
ENDDO

Example: Consider the following example in which the elements in the lower triangular part of
al0 x 10 implicitly sparse matrix B are accumulated in the scalar variable LW

REAL B(10, 10)
C SPARSE(B : ...)
DOI =1, 10
DOJ =1, |
LW= LW+ B(1,J)
ENDDO
ENDDO

The simple section X associated with the occurrence of B has the following form:
X ={(i,5) € 2°| (1,1,2,0)" < M(i,5)" < (10,10,20,9)"}
If the data dependences caused by the accumulation may be ignored, then one of the follow-

ing fragments is generated, depending on whether we enforce the selection of, asillustrated in
figure 8.5, general sparse row-wise or lower triangular sparse row-rise storage for B:

General Sparse Row-Wise: Lower Triangular Sparse Row-Wise:
DOl =1, 10 DOl =1, 10
DO J_ = LOWB(I), HGH B(I) DO J_ = LOWB(I), HGH B(I)
J = IND_B(J)) J = IND_B(J)) ! could be omitted
IF (J.LE.1) THEN LW= LW+ VAL_B(J))
LW= LW+ VAL_B(J)) ENDDO
ENDI F ENDDO
ENDDO
ENDDO

For genera sparse row-wise storage, thetest*( (1. LE. J) . AND. (J. LE. I)) canbesim-
plified into ‘( J. LE. 1)’ with respect to the system obtained by substituting (I , J) for (7,7) in
the simple section of the matching storage summary (S, 3, sparse), where S describes the whole
index set of B (viz. X C S, but X # S):

S ={(i,j) € 2% | (1,1,2,-9)" < M(i,5)" < (10,10,20,9)"}

Ontheother hand, for lower triangular sparse row-wise storage, the whol e test may be omitted
because both inequalities are redundant with respect to the system obtained by substituting (1 , J)
for (4,7) in the simple section of the matching storage summary (S, s, sparse), where .S now
contains theindex set of the lower triangular part of B (viz. X = S). For example, J < I may be
omitted because Fourier-Motzkin elimination reveals the inconsistency of the following system
A(1, )T < l;(viz. negating J < I for integer-valued variablesyields I — J < —1):
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SPARSE
General Sparse Row-wise Storage Lower Triangular Sparse Row-wise Storage

Figure 8.5: Possible Sparse Storage Schemes

0 1] 10
1 1]20
-1 1| 0
1 —1]-1 :
0 —1]-1|—...—>| -1
1 —1]-2
1 -1 9
1 0] 10
-1 0|-1

In contrast, even if this storage scheme is selected for B in the following fragment, the test
‘(J. LE. K) ' remains required after guard encapsulation, because each fixed iteration K= k de-
termines which part of the lower triangular is actually accessed:

DOI =1, 10
_ DOK = 1, |
ol =1 10 DOJ_ = LOWB(1), HGH B(I)
DOK =1, | -
003 =1 K J = INDB(J)
R IF (J.LE. K) THEN
ENB(D'O'K) = o1, K + B(1,J) - D(I.K = D(1,K + VAL B(J )
ENDI F
ENDDO
ENDDO ENDDO
ENDDO

ENDDO

Implementation of Access Pattern Expansion

If access pattern expansion at nesting depth ¢ if feasible for an an occurrence A( F(I)) with e-tag
e(T) and f-tag f(T) having the form (8.1), where e; = 0 for ¢ < i < p, then just before and after
the |l ;1-loop, the following CALL -statements are generated:

CALL _SCT_(VAL_A, IND A, LOWA(e(I)), HGH A(e(I)), _AP_k, SW_k)
DO |q+1 = Lq+1, Uq+1
ENDDO
CALL _GTH (VAL_A, IND A, LOWA(e(T)), HGH A(e(I)), _AP_k, SW_k)
Thelabel £ isselected such that, on one hand, only alimited number of different arrays _AP_k

and SWI'_k; are reguired, whereas, on the other hand, conflicts between storage required for simul-
taneoudly active access pattern expansions are avoided.
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Each first underscore is replaced by a specification character in {I, S, D, C}, depending on the
basis type of A. If storage summary s = (S, §, sparse) matches the occurrence A( F(T)) , then
the following declarations are generated, where TYPE denotes the basis type of the enveloping
data structure A:

TYPE  _AP_k(1:U)
LOG CAL SWI_k(1: U)
The upper bound Uis defined in terms of the boundary vauesin 7 € Z* of S C 22:

{ 7 if 6(5) = row-indexed
U= .
79 otherwise

If the same identifiers would be generated several times (because label k£ may be re-used),
then the maximum of all upper boundsis used in asingle pair of declarations. In this manner, the
storage required for access patterns expansions that cannot be simultaneously active may be re-
used, thereby reducing the storage regquirements and initialization time of the whole application.
Eventually, all the arrays are placed in a single named COMMON-block, as illustrated below:

COMVON / STOR _/ SAP_10, SWI_10, SAP 20, SWI_20, ...

This COMMON-statement and the corresponding declarations are generated in the main pro-
gram and in each clone in which access pattern expansion may occur.

Within theloop-body of thel . 1-loop, thefollowing steps are applied to each occurrence of A
with an e-tag ¢/ (J) that is structurally equivalent to e(T), and an arbitrary f-tag f’(J). If the occur-
rence appears at the left-hand side of an assignment statement, this statement is replaced by the
following construct, where the (possibly converted) right-hand side expression of the statement
appears at the dots and L _isalocally declared (dummy) scalar integer variable:

IF (.NOT. SW_k(f'(3))) THEN
CALL SINS_(VAL_A IND A LOWA HGHA, ¢ (3), NP_A SZ A LSTA L, f(3)
SWI_k( f/(3)) = . TRUE

ENDI F

_AP_K(f'(3) = ..

Otherwise, the occurrence is simply replaced by ‘ _AP_k( f'(3)) ’. Additionally, if the guard
of the occurrence dominates the loop-body of thel ,1-loop, then thisloop-body may be executed
conditionally under the following test, which implies that the |F-statement shown above may be
omitted for aleft-hand side occurrence:

I F (SW_k(f'(3))) THEN

ENDI F
Example: Inthefollowing example, occurrence A( |, 1) isnot considered asacandidate because
it has diagonal-wise effective access patterns, whereas an annotation is used to enforce the selec-

tion of general sparse row-wise storage. However, access pattern expansion at nesting depth 1 is
feasible for occurrence A( | , J) , which also affects the former occurrence:

REAL  SAP_10(1: 100)

LOG CAL SWI_10(1: 100)
REAL A(100, 100), D(100, 100) COWON /STOR_/ SAP_10, SWI_10
C_SPARSE(A : _SPARSE() (0, 1))
DOI = 1, 100

DOI =1, 100 N CALL SSCT__(VAL_A IND A LOWA(I),
DOJ = 1, 100 + HGH A(1), SAP_10, SWI_10)
D(1,J) = A(l, 1) * Al,J) DOJ = 1, 100
ENDDO D(1,J) = SAP_10(1) * SAP_10(J)
ENDDO ENDDO

CALL SGTH_(VAL_A IND A LOWA(I),
HGH A(1), SAP_10, SWI_10)
ENDDO
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Example: Consider the first example of section 8.2.2 again. As stated before, guard encapsula-
tion is feasible for occurrence A( | , J) (athough insertions in other sparse vectors of the same
pool may occur). Access pattern expansion at nesting depth 2 isfeasible for A( J, K). Therefore,
eventually the following code is generated:

DOl =1, 50
LEN.J = HGH A(l) - LOWA(I)
DOJ_ =0, LENJ
J = IND A(LONA(I) + J))
I E (1+1.LE.J) THEN
X(J) = X(J) + VAL_A(LOWA(1) + J)
CALL SSCT__(VAL_A, IND A LOWA(J), HGH A(J), SAP 20, SWI_20)
DOK = 1, 100
IE (.NOT. SWI_20(K)) THEN
SWI_20(K) = . TRUE.
CALL SINS_(VAL_A, IND A LOWA HGH A J, 100, 1200, LST A L_, K)
ENDI F
SAP 20(K) = SAP 20(K) + VAL _A(LOWA(I) + J)
ENDDO
CALL SGTH_(VAL_A, IND_A LOWA(J), HGH A(J), SAP_20, SWI_20)
VAL_A(LONA(I) + J) = VAL A(LONA(I) + J) * 2.0
ENDI F
ENDDO
ENDDO

Remaining Sparse Occurrences

The remaining sparse occurrences of the envel oping data structure A of animplicitly sparse matrix
A inthe program are handled as follows.

Suppose that 5 = (S, 3, sparse) € S4 matches aremaining sparse occurrence A( E1, E2) ,
where the subscripts are possibly inadmissible. An occurrence at the |eft-hand side of an assign-
ment statement is replaced by the following construct, where the (possibly converted) right-hand
side expression appear at the dots and L_ isanew locally declared scalar integer variable:

L_ = LKP_(IND_A LOWA(E), HGH A(E), F)

IF (L_ .EQ 1) THEN
CALL SINS_(VAL_A, IND A LOWA HGHA E NPA SZA LSTA L, F

ENDI F

VAL A(L) = ...

In this construct, we define F as the compound expression ‘base(s) — L(3) + so*E1 — s1+E2.
Likewise, the expression E is defined as follows:

B E1 if 0(3) = row-indexed
"] E2 otherwise

All occurrences with identical subscripts appearing at the right-hand side of the assignment
statement are a so replaced by the expression VAL_A( L) .

Because subroutine SI NS places a zero constant at the position of a new entry, these right-
hand side occurrences correctly evaluate to zero in case of an insertion.

All other occurrences of an enveloping data structure A appearing at the right-hand side of
assignment statements or appearing in arbitrary expressions of other statements are replaced by
the following function call under the same definitions of E and F (but, of course, possibly with
different subscripts E1 and E2):

VAL_A( LKP__(IND_A, LOWA(E), HGH A(E), F) )
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Because VAL_A(_L) = 0, this construct correctly accounts for the fact that the value of anon-
entry is zero. Obvioudly, these replacements should only be used as alast resort by the compiler
(i.e. in case overhead reducing techniques are not applicable). No attempts are made to account
for any remaining conditions, because the potential gains of skipping the actual statements are
probably small with respect to the incurred lookup overhead (although executing the first con-
struct conditionally could reduce the amount of creation). In fact, frequent application of these
replacements indicates that the conflicts in a program have not been resolved very well.
Example: Consider thefollowing fragment, in which annotations are used to enforce the selection
of general sparse row- and column-wise storage for theimplicitly sparse matrices A and B having
array A and B respectively as enveloping data structures:

REAL A(15,15), B(20, 20)
C SPARSE(A : _SPARSE() (0, 1))
C_SPARSE(B : _SPARSE() (1, 0))

A(2,3) = 7.0 * B(15,4) + 1.0 - A(2, 3)

Because occurrences at nesting depth 0 cannot be involved in any overhead reducing tech-
nique, eventually the scalar statement is replaced by the following construct:

L_ = LKP_(IND_A LOWA(2), HGH A(2), 3)

IF (L_ .EQ 1) THEN
CALL SINS_(VAL_A IND A LONA HGHA 2, NP A SZA LSTA L, 3)

ENDI F

VAL A(L) = 7.0 * VAL B(LKP_ (IND_B, LONB(4), HGH B(4), 15)) + 1.0 - VAL A(L.)

8.3 Initialization Code Generation

While developing and testing the original dense program, the programmer can focus on the actual
agorithms and very simple initialization code can be used for al enveloping data structures to test
the program on some small dense matrices. Oncethe program has been debugged, al initialization
code involving enveloping data structures is eliminated. The remaining dense program is used as
input for the sparse compiler. After sparse storage schemes have been selected for al implicitly
sparse matrices, the sparse compiler generates appropriate initialization code at the beginning of
the main program, expecting al matrices in coordinate scheme. In this manner, the actual sparse
storage schemes that are used in the generated program are kept completely transparent to the
programmer.

8.3.1 Resetting Static Dense Storage and Switch Arrays

For each storage summary 5 = (S, §,dense) € Sy, the following code is used to reset al -
ements in the corresponding static dense storage, where & = lab(3) and the outermost DO-loop
and second subscript are omitted if £(5) = U(5) holds:

DOI_ =1, U
DNk_A(I_,J_) = 0.0
ENDDO 1 zero constant of appropriate type
ENDDO

In this construct, the loop bounds L and U are defined as follows, where o € 24 and 7 € 24
denote the boundary values of the simple section S C Z2:

(L,U) = (o1,71) if 6(s) = row-indexed
"] (02,72) otherwise
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Likewise, for each pair _AP_k/SWI _k in the named COMMON-block ‘STOR__’ (used to sup-
port expansion and compression), the following code is generated, where U denotes the maximum
upper bound recorded for each pair:

DOI_ =1, U
SWI_k = . FALSE.
_AP_k =0.0
ENDDO 1 zero constant of appropriate type

8.3.2 Filelnput

For each implicitly sparse matrix A with enveloping data structure Ain the program, the following
construct is generated:
LSTA=1
OPEN (UNIT=1, FILE=file_name’, STATUS=' OLD)
READ (1,*) M, N, NNZ_
DOK_ =1, NNZ_
READ (1,*) 1_, J_, V_
Clnsert A(l_,J_) =V_in Selected Data Structure

ENDDO
CLOSE (UNIT = 1)

In case a pool of sparse vectors is used as dynamic storage for the entries in the sparse re-
gions of A, the scalar ‘LST_A’ isinitialized to 1 because the first location in the parallel arrays
implementing this pool is used as location L.

Thereafter, aconstruct that reads the matrix from filein coordinate scheme isgenerated, where
thestring ‘f i | e_nane’ isthe file name defined for A (asimilar fragment with *A(1 _, J_) =V_
can be manually inserted in the original dense program for testing purposes). If no file has been
specified, the sparse compiler inquires the programmer for afile name.

At the dots, amulti-way | F-statement appears that determines the action required for each en-
try. Suppose we have the following set:

Sj{d = {(S,3,p) | p=sparse V p = dense} = {S1,..., Sk}

Then, thefollowing I F-statement is generated, in which the condition of thelast branch isomitted,
and the whole statement is omitted if |S%| = 1:

IF (1_,J) €8, THEN

ELSEIF (1 _,J ) €S> THEN

FLSE I (1_,J_) €Sk_1 THEN
ELSE
ENDI F
Testing inclusion in each individual simple section S € Z? with boundary values o € 24

and 7 € Z* can be done as follows:

IF( (o1.LE.1_  ).AND.(I_ .LE.7).AND.(02.LE.  J).AND.( J_.LE. 7). AND.
+ (03.LE 1 _+J ). AND. (I _+J_.LE. 73). AND. (04. LE.1 _-J_).AND. (I _-J_.LE. 74) ) THEN

Thisinclusion test may induce substantial testing overhead. However, usually the condition
can be simplified by omitting tests on lower or upper bounds that coincide with the minimum
or maximum possible value of the expressions| _, J_, | +J_and | _- J_ under the equivalence
(I_,J.) € [1,m] x [1,n] or that are implied by inequalities that have aready been generated.
Moreover, a non-redundant ith pair of tests can be replaced by a single test for equivalence if
oi=m1; (9. (1_ EQ o1)).
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Dense Branch

In a branch corresponding to a storage summary 5 = (S, (s1,s2)”, dense), the following con-
struct is generated where F=I _if 6(3) = row-indexed and F=J _ otherwise:

DNE_A(F, s2 * I_ - s1 *J_) =V_

Sparse Branch

In a branch corresponding to a storage summary 5 = (S, (s1, s2)”, sparse), the following con-
struct is generated, where F=I _if 0(5) = row-indexed and F=J _ otherwise:

LST_A = LST A+ 1
VAL_A(LST_A) = V_
IND_A(LST A) = F
TMP__(LST_A) = base(3) - L£(3) + s2 * |_ - s * J

In this manner, eventually the paralld arrays VAL _A and | ND_A together with the temporary
array TMP__ of the same size contain the numerical vaue, the index information and the number
of the sparse vector for each entry in a sparse region of A.

If apool of sparse vectors is used as dynamic storage of the sparse regions of A, then the
following call is generated after the multi-way |F-statement to initiaize this pool, where the first
underscore is replaced by the appropriate type specification in {I, S, D, C}, depending on the basis
type of the enveloping data structure A:

CALL _INIl_(VAL_A, TMP__, IND A LOWA HGHA NPA SZ A LST A

Example: Consider the following annotations for a 1000 x 1000 implicitly sparse matrix A with
enveloping data structure A:

INTEGER N
PARANETER ( N=1000)
REAL AN, N)

C_SPARSE(A : _DENSI TY(0.01))

C SPARSE(A : _FILE(’ mat.cs’))

C SPARSE(A : _SPARSE(1-N <= |-J <= -1)(0,1))
C SPARSE(A : DENSE ( 0 <= 1-J <= 0)(1,1))
C SPARSE(A : _SPARSE( 1 <= I-J <= N-1)(1,0))

These annotations enforce the selection of a storage scheme in which the main diagonal is
stored in static dense storage, whereas a pool of column- and row-wise sparse vectors is used to
dynamically store entries in the strict lower and strict upper triangular part of A.

If we assume that we actually obtain the set 4 = {51, S2, S5} in which the simple sections
describe the index sets of the strict upper and strict lower triangular part and the main diagonal
of A respectively, then we obtain the storage summary set S4 = {31, 59, 53} with the following
storage summaries:

L(5i) U(si) base(s;) lab(s;)
51 = (S1, (0,1)T, sparse) 1 999 1 —
32 = (S, (=1,0)7, sparse) 1 999 1000 -
33 = (83, (1,1)T,  dense) 0 0 - 1

Because N4 = |S1|+|S2| = 999000, and V4 = 1998, weset NP_A=1998 and SZ_A=13986
(viz. 0.01 - 999000 + 2 - 1998). The following declarations are generated by the sparse compiler:
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Figure 8.6: Two Different Sparse Storage Schemes

REAL  VAL_A(1:13986), DNL_A(1:1000), V

| NTEGER | ND_A(1:13986), LOW A(1:1998), HGH A(1:1998), LST A
INTEGER TMP_ (1:13986), |_, J_, K, M, N, NNZ_

COMMON /A/ DNL_A VAL_A IND A LONA HGHA LST A

Array TMP__and scalars V_, | _J_, K_, M, N, and NNZ_ are temporarily required for theini-
tialization. The other variables actually implement static dense storage for the main diagonal, and
apool of 1998 row- and column-wise sparse vectors as dynamic storage for the strict upper and
strict lower triangular part, asillustrated in thefirst picture of figure 8.6. Therefore, these variables
are placed in anamed COMMON-block with label A, which will be made accessiblein al clones
in which the enveloping data structure is uniquely associated with aformal argument.

At the beginning of the program, the following DO-loop is generated to reset the elements of
the static storage:

DOI_ =1, 1000
DNL_A(I_) = 0.0
ENDDO

Furthermore, because the matrix is stored in the file ‘nat . cs’, the following code is gener-
ated which will initialize the sparse storage scheme selected for A at run-time:

LSTA=1
OPEN (UNIT=1, FILE='mat.cs’, STATUS=' OLD)
READ (1,*) M, N, NNZ_

DOK_ =1, NNZ_, 1
READ (1,*) 1_, J_
IF (((I_-J).EQO

DNI A(J ) = V_

ELSE IF (((1_-J_).LE -1)) THEN
LST_A LST A + 1
VAL_A(LST A) = V_
IND_A(LST_A) = J_

TMP_ (LST A) = 1_

ELSE
LST_A
VAL_A(LST_A)
| ND_A(LST_A)
TMP__(LST_A)

ENDI F

ENDDO

CLOSE (UNIT=1)

CALL SINI_(VAL_A TMP__, I ND A LOWA, HGH A, 1998, 13986, LST_A)

v Vo
) THEN

LST A+ 1
V_

I_
J_ + 999

A multi-way | F-statement is executed to determine which action isrequired for each entry. An
entry a;; with = 5 is placed in the jth location of array DN1_A.
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| Matrix n 7 | Row-Wise | LDU || Read (HB) |
jowh.991 991 6027 11| 11 0.5
gre 1107 1107 5664 11| 11 0.5
orani678 2529 90158 129 | 133 7.8
Ins 3937 3937 25407 40| 41 2.3
psmigr.1 3140 543162 731 | 738 317

Table 8.2: Initialization Time in seconds on an HP 9000/720

Anentry a;; witheither i < jors > j isplaced temporarily in coordinate-scheme like storage
as an entry in the sth sparse vector with index information 5 or in the (999 + ;)th sparse vector
with index information i respectively, since 6(s;) = row-indexed and 0(s,) = column-indexed.
After the file has been read completely, acall to SI NI __ converts this temporary storage into the
selected storage scheme, after which array TMP__ can be re-used for other initializations.

Note that for general sparse row-wise storage, enforced by the following annotation, only the
second branch of the multi-way |F-statement would result:

C SPARSE(A: SPARSE() (0, 1))

Infigure 8.2, we show the execution timein seconds on an HP 9000/720 for initializing general
row-wise storage and the previous presented L DU-scheme. Moreover, inthelast column, thetime
required to read the matrix from file using the column-wise Harwell-Boeing standard sparse matrix
format [79] is shown. Obvioudly, although using coordinate scheme to initiaize the matrices is
substantially more expensive than using the column-wise Harwell-Boeing standard sparse matrix
format, the execution time of from-file initialization of a general sparse row-wise storage and the
execution time of initializing amore advanced sparse data structure are comparable.



Chapter 9

Initial Experimentation

To test the feasibility of automatically converting a dense program into semantically equivalent
sparse code, the automatic data structure selection and transformation method has been actualy
incorporated in the prototype source to source restructuring compiler MT1 [24, 37, 45]. In this
chapter, we present some qualitative and quantitative experiments that have been conducted with
the prototype sparse compiler.

9.1 Qualitative Experiments

In this section, we take a closer look at some sparse constructs generated by the sparse compiler.
First, we examine constructs for general sparse matrices. Thereafter, we show how characteristics
of the nonzero structure can be accounted for. Finally, weillustrate how procedure cloning enables
the application of program and data structure transformations.

9.1.1 Constructsfor General Sparse Matrices

For general sparse matrices, we can distinguish between so-called static and simply dynamic op-
erations, where the nonzero structures of all sparse matrices involved remains fixed, although the
values of entries may change for the latter operations, and essentially dynamic operations, where
nonzero structures may change [235, p10-12].

Static and Simply Dynamic Operations

In many static and simply dynamic operations, the loop-body of aloop only hasto be executed for
the entries of animplicitly sparse matrix. Thissituation occurs, for instance, in the following frag-
ment in which the elements of an implicitly sparse matrix A with enveloping data structure A are
scaled and the position and actual value of an el ement with largest absol ute value are determined:

REAL A(M N)
C_SPARSE( A)
DOI =1, M
DOJ =1, N
A(l,J) = A(1,J) / 3.0 «— (1,J) € E(A)
I'F (ABS(A(l,J).GT. ABS(MX))) THEN + (1,3) € E(A)
I =1 <« true
JJ =1J +— true
MX = A(l,J) « true
ENDI F
ENDDO
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Thefirst assignment statement only hasto be executed for entries, since thedivision hasnoim-
pact on zero elements. Hence, the sparse compiler associates condition (I, J) € E(A)’ with this
assignment statement. Maoreover, although none of the statementsinside the one-way | F-statement
can exploit sparsity, as reflected by the condition ‘true’, the |F-statement as a whole only has to
be executed for entries, because the condition of this IF-statement always fails for zero elements.
Hence, if general sparse row-wise storage is selected for A and the programmer indicates that al
loop-carried data dependences may beignored (under the assumption that any element with largest
absolute value may be found), then encapsulation of the guard ‘ (I, J) € E(A)’ in the execution
set of the J-loop becomes feasible:

DOI =1, M
DOJ_ = LOWA(l), HGH A(I)
J = INDA(J)
VAL_A(J_) = VAL_A(J) / 3.0
[

(
F (ABS(VAL_A(J_).GT. ABS(MX))) THEN
|

(
| =
J =1
MK = VAL_A(J)
ENDI F
ENDDO
ENDDO

After thisconversion, theJ _-loop iterates over all entrieswithin each | th row, of which the nu-
merical vaues and column index information can be found at locations LONA( 1) . . HGHA( 1)
inthe parald arrays VAL _Aand | ND_Arespectively. Although theloop-body of the resulting loop
isexecuted less frequently, and possibly in adifferent order because no ordering isimposed on the
entries in each row, the semantics of the program are preserved.

As shown below, a dense implementation of the operation b + b+ AT with A implicitly
sparse can be converted similarly if general sparse column-wise storage is selected for the matrix:

_ DOJ =1, N
DOD?)F i 1N M DO | _ = LOWA(J), HGH A(J)
= . | = IND_A(I_)
B(1) = B(I) + A(l,J) * X(J) — B = B(I) % VAL AGL) * X(J)
ENDDO NS AL
ENDDO e

After this conversion, the | _-loops implements a sparse SAXPY (§ + ¥ + af, where 7 is
sparse). Likewise, if loop interchanging is applied to the original loop and general sparse row-
wise storage isselected for A, then the sparse compiler generates code that implements asequence
of sparse dot products (w = # - i/, where ¥ is sparse), aswill be shown in section 9.2.2. Hence, in
afuture implementation such constructs could be replaced by calls to primitives of the sparse ex-
tensionsto BLAS[68] or directly by an efficient implementation (such asthe GATHER-SAXPY-
SCATTER implementation of sparse SAXPY for pipelined vector processors [65, 69, 76, 137,
184]).

The conversion into sparse code becomes more complex if the condition associated with a
statement in aloop consists of a conjunction of guards, such as in the following example, where
arrays A and B are used as enveloping data structure of implicitly sparse matrices A and B:

REAL ACMN), B(MN
C_SPARSE(A ; B)

DO |

=1, M
DOJ =1, N

X=X+ Al,3) * B(1,J) <« (1,J) € E(A) A(L,3) € E(B)
ENDDO

ENDDO
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If general sparse row-wise storage is selected for A and B and the data dependences caused
by the accumulation may be ignored, then either the guard ‘ (I,J) € E(A) or ‘(I,J) € E(B)’
can be encapsulated in the execution set of the J-loop, but not both.

To prevent the situation in which alookup would have to be performed for each entry of either
A or B, the sparse compiler uses expansion. For example, if in the generated sparse code, guard
‘(I,J) € E(A)" isencapsulated in the execution set of the J-loop, the | th row of B is expanded
before operated upon:

DOI =1, M
CALL SSCT__ (VAL _B ,IND B, LONB(I1), HGH B(I1), SAP 10, SWI_10)
DO J_ = LOWA(l), HGH A(l)

J = INDAJ)
I F (SWI_10(J)) THEN
X = X + VAL_A(J) * SAP_10(J)
ENDI F
ENDDO
CALL SGTH_(VAL_B ,IND B, LONB(I1), HGH B(I1), SAP 10, SWI_10)
ENDDO

Notethat, although matrix B remains unaffected in thisloop, the gather operation is generated
after the J _-loop all the same. In thismanner, used elementsin array SAP_10 and the switch array
SWI'_10 arereset to enabl e each subsequent expansion. Because thetimerequired to perform each
scatter and gather operation is proportional to the number of entries in the corresponding row of
B, and the initia costs of resetting the full-sized arrays SAP_10 and SWI'_10 can be amortized
over Mexpansions, aconstruct of which the execution timeis proportional to the number of entries
in A and B has been obtained.

A similar problem arises if the condition that is associated with a statement in aloop consists
of adigunction of guards, such asin the following implementation of D <+ D + A + B, where
we assume that Dis used to store the el ements of a dense matrix D:

REAL ACMN), B(MN, D(MN)
C SPARSE(A ; B)

DOl =1, M
DOJ =1, N
D(I1,J) = D(1,J3) + A(l,J) + B(I,J) « (1,3) € E(A) V (1,3) € E(B)
ENDDO
ENDDO

Because none of the guards dominates the condition, in this case guard encapsulation is even
infeasible.! Clearly, performing alookup in both A and B for each element of D would induce an
unacceptable complexity. Fortunately, after this operation has been rewritten into the operations
D+ D+ Aand D + D + B using the transformations update expression splitting and loop
distribution (see section 5.3.4), guard encapsulation becomes feasible if general sparse row-wise
storage is selected for both A and B:

DOl =1, M

DOI =1, M DO J_ = LONA(I), HGH A(I)
DOJ =1, N J = INDAJ)
D(1,J) = D(1,J) + A(l,J) D(1,J) = D(1,J) + VAL_A(J)
ENDDO ENDDO
DOJ =1, N - DO J_ = LONB(I), HGH B(I)
D(1,J) = D(1,J) + B(I,J) J = IND B(J)
ENDDO D(1,J) = D(1,J) + VAL_B(J)
ENDDO ENDDO
ENDDO

L Encapsulation of aconjunction or disjunction of guards could beimplemented efficiently if an ordering isimposed
ontheentriesin each sparse vector using anin-phasescan [ 78, p20-21]. Becausethe sel ection of ordered sparse storage
is not supported by the prototype sparse compiler, however, these constructs are not further considered.
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Essentially Dynamic Operations

In thefollowing two fragments, the nonzero structure of each row of A isobtained by respectively
performing an or- and and-operation to the nonzero structure of the origina row of A and the
corresponding row of B, asillustrated in figure 9.1:

REAL A(MN), B(MN REAL ACMN), B(MN)
C_SPARSE(A ; B) C_SPARSE(A ; B)
DOl =1, M DOI =1, M
DOJ =1, N DOJ =1, N
A(L,J) = A1, J) + B(1,J) ALLd) = A(LLd) * B(1,J)
ENDDO ENDDO
ENDDO ENDDO

Because condition ‘(I,J) € E(B)’ is associated with the assignment statement in the first
loop, the sparse compiler implements A <— A + B asfollows if general sparse row-wise storage
is selected for both implicitly sparse matrices:

DOI =1, M
CALL SSCT__(VAL_A, IND A, LOWA(I), HGH A(l), SAP_ 10, SWI_10)
DOJ_ = LOVB(I), HGH B(I)

J = IND B(J)
I F (. NOT. SWF_10(J)) THEN
SWI_10(J) = . TRUE.

CALL SINS__(VAL_A, IND A LOWA HGHA |, NP A SZA LSTA L, J)
END | F
SAP_10(J) = SAP_10(J) + VAL _B(J)
ENDDO
CALL SGTH__(VAL_A, IND A, LOWA(l), HGH A(l), SAP_ 10, SWI_10)
ENDDO

Consequently, the OR-operation is implemented by iterating over the entries in arow of B
after the corresponding row of A has been expanded. The switch array SWI'_10 is used to deter-
mine where creation occurs. After all entriesin arow of B have been considered, the entriesin
the expanded row of A are gathered back into a sparse vector. In fact, similar implementations
are obtained for adding a number of implicitly sparse matrices if first update expression splitting
and loop distribution are applied (cf. previous section). In essence, these automatically generated
sparse implementations are similar to the code for adding sparse matrices found in [169, p242-
247], athough in the latter code, symbolic and numerical operations are separated.

Because condition (I, J) € E(A)’ isassociated with the assignment statement in the second
loop, the sparse compiler implements the scaling of matrix A with elements of B as follows if
genera sparse row-wise is selected for both A and B:

OR-Operation AND-Operation
o Creation Br = mm | Bm = Em |
o Cancellation | | | | |
A = =] A = =]

AR O = On A= R |

Figure 9.1: OR- and AND-operation
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DOI =1, M
CALL SSCT__(VAL_B, IND B, LONB(I1), HGH B(I1), SAP 10, SWI_10)
DOJ_ = LOWA(l), HGH A(I)

J = INDAJ)
VAL_A(J) = VAL_A(J ) * SAP_10(J)
ENDDO
CALL SGTH_(VAL_B, IND B, LONB(I1), HGH B(I1), SAP 10, SWI_10)
ENDDO

Hence, the situation isin fact handled as a simply dynamic operation by ignoring any cancellation
caused by applying an AND-operation to the nonzero structures of a corresponding row of A and
B (besides the fact that exact cancellation, where the subtraction of two entries is accidentally
zero, isalso ignored). A construct that resets some elements of the implicitly sparse matrix A is
implemented similarly, i.e. the value of each entry in the regions that become zero is ssimply reset
rather than deleting the entry explicitly, as shown below where we assume that M < N:

) DOl =1, M 2
s M2 DO J_ = LONA(I), HGHA(I)
A1, J) = 0.0 > J = 1ND_ACJ_
' : IF (J.LE. 1) VAL_A(J) = 0.0
ENDDO S
ENDDO

ENDDO

9.1.2 Characteristic of Nonzero Structures

Although in the previous section, efficient sparse code has been obtained for general sparse ma
trices, the prototype sparse compiler becomes more powerful if particular characteristics of the
nonzero structure of implicitly sparse matrices are accounted for during this conversion.

Suppose that the operation b + b + A7 is applied to a 15 x 15 implicitly sparse matrix A
having the nonzero structure shown in figure 9.2. If a compile-time the matrix is available on
file, the nonzero structure analyzer of the sparse compiler can identify the zero and dense regions
in this matrix, where the programmer is inquired whether the zero regions will be preserved at
run-time. Likewise, this information can be supplied to the sparse compiler using the following
annotations:

REAL A(15, 15)
C SPARSE(A: _DENSE(15 <= | <= 15))

C SPARSE(A: _DENSE( 1 <= | <= 14, 15 <= J <= 15) )
C SPARSE(A: DENSE( 1 <= | <= 14, 0<=1 - J <= 0) )
C SPARSE(A: _ZERQ( 2 <= | <= 14, 1 <=1 - J <= 13) )
C SPARSE(A: _ZERQ 1 <= J <= 14, -13 <= | - J <= -1) )

Subsequently, iteration space partitioning is applied to the dense implementation to separate
operations on zero regions from operations on dense regions:

Figure 9.2: Nonzero Structure



208 CHAPTER 9. INITIAL EXPERIMENTATION

DOl =1, 14
DOJ =1, I-1
B(1) = B(1) + A(l,J) * X(J)
ENDDO
DOI =1, 15 B(1) = B(1) + A(l,1) * X(1)
DOJ =1, 15 DOJ = |+1, 14
B(1) = B(1) + A(l,J) * X(J) - B(1) = B(I) + A(l,J) * X(J)
ENDDO ENDDO
ENDDO B(1) = B(l) + A(l,15) * X(15)
ENDDO
DOJ =1, 15
B(15) = B(15) + A(15,J) * X(J)
ENDDO

Because this iteration space partitioning is successful, the sparse compiler decides to use the fol-
lowing static dense storage for the dense regions of A:

REAL DN1_A(1:14), DN2_A(1:14), DN3_A(1:15)
COMMON / A/ DNL_A, DN2_A, DN3

Thereafter, al occurrences of A are either replaced by a zero constant or by an appropriate
occurrence of this static dense storage. Finally, the condition of each statement in which such a
replacement occurs is re-computed and redundant assignment statements and DO-loops are €lim-
inated at compile-time:

DOl =1, 14
DOJ =1, I-1
B(1) = B(1) + 0.0 * X(J)
ENDDO DOI =1, 14
B(1) = B(I1) + DN2_A(1) * X(1) B(1) =B(lI) + DN2_A(I) * X(1)
DOJ = |+1, 14 B(1) = B(I) + DNI_A(l) * X(15)
B(1) = B(1) + 0.0 * X(J) - ENDDO
ENDDO DOJ =1, 15
B(1) = B(1) + DNL_A(I) * X(15) B(15) = B(15) + DN3_A(J) * X(J)
ENDDO ENDDO
DOJ =1, 15
B(15) = B(15) + DNB_A(J) * X(J)
ENDDO

Hence, the original dense implementation has been automatically converted into an imple-
mentation that is specially tailored for the particular sparse matrix of figure 9.2. Obvioudly, if the
characteristics of the nonzero structure that can be exploited become more complex, the trans-
formations required to do such a conversion also become more complex as more iteration space
partitioning and access pattern reshaping becomes required. This strongly motivates the use of a
sparse compiler to perform this conversion.

9.1.3 Subroutines and Functions

Procedure cloning enables the sparse compiler to apply program and data structure transforma-
tions to the code and formal arguments in all procedure clones without interfering with other uses
of these subroutines and functions. Moreover, because procedure cloning usually improvesthere-
sults of interprocedural constant propagation, loop bounds and subscript functions involving for-
mal arguments may become admissible, which enables the application of more accurate program
analysis and transformations.

Consider, for example, the following program in which annotations are used to inform the
compiler about the fact that array A is used as enveloping data structure of an implicitly sparse
matrix A in diagona form,i.e. a;; # 0 =i = j:
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@
Gy

Figure 9.3: Call Graph of Program MATRI X

PROGRAM MATRI X SUBROUTI NE MATMAT(H, F, G N)
I NTEGER N, |
INTEGER M N REAL  H(NN), F(NN), GNN
PARAMETER (M = 50, N = 100) DOI =1, N
CALL MATVEC(H, F(1,1), G1,1), N
REAL AMM, B(MM, (MM ENDDO
REAL DINN), E(N N RETURN
REAL X(N),  Y(N END
C SPARSE(A: ZERO ( 1-M<=1 - J <= -1)) SUBROUTI NE MATVEC(H, R S, N)
C SPARSE(A: DENSE( 0 <=1 - J <= 0)) INTEGER N, I, J
C SPARSE(A: ZERO( 1 <=1 - J <= M1)) REAL  H(NN), RN, S(N)
DOI =1, N
CALL MATMAT(A, B, C M DOJ =1, N
CALL MATMAT(D, D, E, N) S(1) = S(1) + H1,J3) * RJ)
CALL MATVEG(E, X, Y, N) ENDDO
. ENDDO
RETURN
END END

In this program, the call graph of which is shown in figure 9.3, the sparse compiler cannot
bluntly apply data structure transformations to the formal arguments Hin MATMAT and MATVEC,
because these subroutines are also used to perform operations involving dense matrices. There-
fore, the sparse compiler generates a clone MATMAT _A00O of the subroutine MATIVAT inwhich A
isuniquely associated with the formal argument H. Moreover, since the clone calls MATVECwith
Hasfirst actual argument, aclone MATVEC A000 of MATVECisaso generated. Theoriginal sub-
routines are preserved to perform the operations £ <+ E + DD and j + ¢ + EZ, whereas the
clones are used to compute C' <+ C' + AB.

If static dense storage is selected for the main diagonal of A, this data structure is placed ina
named COMMON block, and the main program is converted as shown bel ow, where the argument
used to pass the whole implicitly sparse matrix has been eliminated:

PROGRAM NATRI X

REAL DN1_A( 1: 50)
COMMON / A/ DN1_A

CALL MATMAT_A000( B,
CALL MATMAT (D,
CALL MATVEC (E,

X000
x<mg

Z22Z

END

After iteration space partitioning has been applied to the procedure clones, and redundant as-
signment statements and DO-loops have been eliminated at compile-time, the sparse code shown
below results. Interprocedural constant propagation has derived the value N=50 and theformal ar-
gument H has been either eliminated or replaced by an occurrence of the selected storage scheme,
made availabl e to the subroutines using the named COM M ON-block:
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SUBROUTI NE MATMAT_A000(F, G N) SUBROUTI NE MATVEC_A000(R, S, N)
| NTEGER N, | NTEGER N T, d
REAL F(50, 50), G50, 50) REAL R(50), S(50)
REAL DN1_A(1: 50) REAL DN1_A( 1: 50)
COMMON  / A/ DNL_A COWON /A DNI_A
DOl =1, 50 DOI =1, 50
CALL MATVEC AO0O(F(1,1), &(1,1), 50) S(1) = S(1) + DNL_A(I) * R(1)
ENDDO ENDDO
RETURN RETURN
END END

A subroutine computing the product of A with another matrix and a subroutine computing
the product of A with a vector tailored for the specific nonzero structure of A has been derived
automatically.

9.2 Quantitative Experiments

In this section, quantitative experiments are conducted with some small sparse programsthat have
been generated automatically by the prototype sparse compiler.

9.2.1 Preliminary Discussion

The experiments have been conducted on an HP 9000/720 and on one CPU of a Cray C98/4256.
On both machines, all programs are compiled with the native FORTRAN compiler, where default
optimizations and, for the latter, vectorization are enabled. Furthermore, experiments have been
conducted with sparse matrices of the F(n, ¢)-class of [164, p6-11][235, p57-62], which aren xn
matrices A having the following nonzero elements:

ag; = +4.0 1=1,...,n
@iit1 = Git1; = —1.0 i=1,...,n—1
Qjjite = Qitey = —1.0 i=1,....,n—c

Infact, these matrices form simplifications of typical matricesarising in finite difference meth-
ods (cf. figure 6.10). In figure 9.4, the nonzero structure of E(20,5) is given. Although these
matrices have a very simple nonzero structure, using this class enables us to test the generated
sparse program for varying matrix sizes. Moreover, since for each n, at most 5 nonzero elements
appear in each row, the execution time of an algorithm that fully exploits the sparsity of the ma-
trix is expected to depend linearly on the order of the matrix. For a number of dense programs
and varying values of n, aversion for a general sparse row-wise matrix and for the matrix hav-
ing the specific nonzero structure of matrices of the F(n, 5)-class are generated. Subsequently,
the execution time of each version is measured using the appropriate matrix of the E(n, 5)-class.
Note that since sparse row-wise versions can aso be used for sparse matrices having an arbitrary
nonzero structure, probably some performance must be traded for generality.

We can enforce the sparse compiler to select general sparse row-wise storage for animplicitly
n X n sparse matrix A with enveloping data structure A by adding the following annotation to
the declaration of this array, which simply states that the region consisting of the whole matrix is
sparse and the preferred access direction of thisregionisp = (0,1)7:

REAL AN, N)
C SPARSE(A : SPARSE() (0, 1))

Likewise, we can supply the specific nonzero structure of amatrix of the E(n, 5)-classto the
sparse compiler by replacing the previous annotation with the following annotations, in which the
index set of each region is described in terms of a simple section:
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C SPARSE(A : _ZERO (1-N <= |
C_SPARSE(A : _DENSE( -5 <= |
C SPARSE(A : ZERO ( -4 <= |
C SPARSE(A : DENSE( -1 <= |-
C SPARSE(A : ZERO( 2 <= |
C SPARSE(A : DENSE( 5 <= |
C SPARSE(A : ZERO( 6 <= |

Figure 9.4: Nonzero Structure of E(20,5)
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<= N1))

The sparse compiler sets the preferred access direction of all regionsto 5 = (1,1)”, which
implies that attempts to enforce regular diagonal -wise access patterns for al occurrences of Awill
be made. Thisinformation can also be obtained automatically by the nonzero structure analyzer
if, at compile-time, each specific matrix of the E/(n, 5)-class is available on file.

9.2.2 Matrix times Vector

Computing the product of a matrix and a vector forms the basic computation of many iterative
methods (cf. appendix A). Below, we present a dense implementation of b = AZ, where the
| -loop is placed innermost to enhance spatial locality or vector performance:

DOl =1, N
B(I) =
ENDDO
DOJ =
DO |

I
©
o

N
1, N

e

B(1) = B(1) + A(1,J) * X(J)

ENDDO
ENDDO

Depending on whether the annotations enforcing either the selection of general sparse row-
wise or static dense storage of nonzero diagonals for theimplicitly sparse matrix A with envelop-
ing data structure A are used, the sparse compiler converts the double loop shown above into one
of the following fragments, where NP_A=N and SZ_A provides sufficient space for al entries:

Sparse:

REAL VAL A(1:SZ A
| NTEGER | ND_A(1: SZ_A)
| NTEGER LOW A(1: NP_A)
| NTEGER HGH A(1: NP_A), LST_A

Diagonals:

REAL DNL_A(6:N), DN2_A(1: N 5)
REAL DN3_A(1: N, -1: 1)
COMMON / A/ DNL_A, DN2_A, DN3_A

COWON /A/ VAL A INDA ... DOI =6, N
B(1) = B(l) + DN2_A(1-5) * X(I-5)
DOl =1, N ENDDO
DO J_ = LOWA(l), HGH A(I) DOJ =-1, 1
J = INDAJ) DO = MAX(1, 1-J), MN(N, NJ)
B(1) = B(1) + VAL_A(J) * X(J) B(1) = B(1) + DN3_A(J+l,-J) * X(J+I)
ENDDO ENDDO
ENDDO ENDDO
DOl =1, N5

B(1) = B(I) + DNL_A(I+5) * X(I+5)
ENDDO



212 CHAPTER 9. INITIAL EXPERIMENTATION

Cray C98/4256
0012 F | ' ' ' ' ' ' ]
v o

001} L |
) +
© i
c X »
S 0008 s |
N i o
() : /,+’
£ -
i 0.006 [ - Dense —— T
5 7 Sparse -+--
2 x 7 Diagonals -=---
§ 0.004 T Sparse (D) ~x- |
X ] A
i ] -

»
0002 .~ 1
/;F///
0 i) [T R OO RO T N SO 1 L it -l s sl = ekl LA w AR
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
N

Figure 9.5: Computation of b « AZ

Thefirst fragment results after loop interchanging has been applied by the reshaping method to
enforce row-wise access patterns for the occurrence of the enveloping data structure A. Thereafter,
aconstruct iterating over al entriesin each | th row isgenerated. Theresulting code is equivaent
to implementations found in e.g. [169, p248-249][184].

To obtain the second fragment, first the loop transformation defined by the following unimod-
ular matrix is applied to enforce regular diagonal-wise access patterns:

-(47)

Thereafter, iteration space partitioning is used to separate operations on zero diagonals from
the operations on nonzero diagonals. Because a;; # 0 = |i — j| € {0,1,5}, thisimplies that the
execution set [1 — N, N — 1] of the resulting outermost DO-loop is partitioned into the following
sets, where DO-loops with a singleton execution set are unrolled:

[1 —N,—6],[—5,—5],[—4, —2],[-1, +1], [+2, +4], [+5, +5],[+6,N — 1]

Finally, occurrences of A in the resulting loops are either replaced by a zero constant or an
appropriate occurrence of the static dense storage that has been sel ected for the nonzero diagonals,
after which redundant assignment statements and DO-loops are eliminated at compile-time.

Infigure 9.5, the execution times on the Cray of the original dense fragment, the general sparse
code and the diagona code are shown (labeled Dense, Sparse, and Diagonal s respectively). Ex-
ploiting the sparsity decreases the execution time (and storage requirements) of the algorithm sub-
stantially, which has now becomelinearly dependent on the order of the sparse matrix. Thisreduc-
tion becomes more profound if the specific characteristics of the nonzero structure of the sparse
matrices of the E(n, 5)-class are exploited. The execution time of the general sparse code applied
to a dense matrix is also shown (labeled Sparse(D)). In [2, 84, 180, 181], more advanced imple-
mentations of this algorithm are discussed.
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9.2.3 Matrix timesMatrix

Although the product of two matrices can be computed by repetitively calling a subroutine that
computes the product of amatrix and a vector (see section 9.1.3), we can aso perform the opera-
tion C < C' + AB directly using the following dense implementation:

i

. N

1, N

=1, N

o1,3) = C1,3) + A(l,K * B(K J)
ENDDO

ENDDO

ENDDO

8
8o

If the annotation enforcing general sparse-row wise storage for the implicitly sparse matrix A
with enveloping data structure A is used, the reshaping method yields the following unimodular
matrices:

or U=

3

Il
o O =
- o O
O = O
o O =
O = O
- o O

Hence, the sparse compiler can either interchange the J- and K-loop or use the origina frag-
ment to enforce row-wise access patterns for the occurrence of A. Thereafter, one of the following
constructs results:

Row-wisel: Row-wise2:
DOl =1, N DOl =1, N
DO K_ = LOWA(I), HGH A(I) DOJ =1, N
K = IND_A(K) DO K_ = LOWA(l), HGHA(I)
DOJ =1, N K = IND_A(K)
c(l1,3) =Cl,J) + c(lr,J3) =¢c1,3) +
+ VAL_A(K ) * B(K J) + VAL_A(K ) * B(K, J)
ENDDO ENDDO
ENDDO ENDDO
ENDDO ENDDO

If the specific nonzero structure of E(n,5) is exploited, the reshaping method is used to en-
force regular diagonal-wise access patterns, which gives rise to the construction of the following
unimodular matrices:

010 1 00
U=] -1 0 1 oo U=|(0 0 1
0 01 010

Although scalar-wise true access patterns result for the occurrence of A after application of the
loop transformation defined by the second matrix, the effective access patterns of this occurrence
remain row-wise. Therefore, theloop transformation defined by thefirst matrix isapplied. There-
after, iteration space partitioning is used to separate operations on zero elements from operations
onentries. Finaly, redundant assignment statements and DO-loops are eliminated at compile-time
and static dense storage is selected:
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Figure 9.6: Computation of C + C + AB

REAL DNLI_A(6:N), DN2_A(1:N-5), DN3_A(1:N,-1:1)
COMMON / A/ DN1_A, DN2_A, DN3_A
DOI =1, N

DOK =1, N5
C(K+5,1) = C(K+5,1) + DN2_A(K) * B(K, )
ENDDO
DOJ =-1, 1
DO K = MAX(1, J+1), MN(N, J+N)
C(K-J,1) = C(K-J,1) + DN8_A(K, -J) * B(K 1)
ENDDO
ENDDO
DOK =6, N
C(K-5,1) = C(K-5,1) + DNL_A(K) * B(K, 1)
ENDDO
ENDDO

In figure 9.6 and 9.7 the execution times on both the HP and the Cray of these fragments are
shown, where the dense version with the smallest execution time is used on both machines (ver-
sion | JKand KJI on the HP and the Cray respectively). Again, exploiting sparsity reduces the
execution time substantially, although the relative performance of the two general row-wise sparse
versions differs on both machines. Exploiting all characteristics of the nonzero structure, however,
yields the code with the least execution time on both machines.

Now, suppose that the arrays A, B, and C are used as envel oping data structure of three implic-
itly sparsematrices A, B, and C'. Inthiscase, the reshaping method of the sparse compiler enables
us to explore all possible general sparse storage schemes. For example, we can explore whether
the reshaping method can enforce row-wise access patterns for the occurrences of the arrays Aand
B, and column-wise access patterns for the occurrences of C using the following annotations:

PARAMVETER (N=. . .)
REAL AN,N), B(NN), C(N N
C_SPARSE( A : _SPARSE()(0,1) ; B : _SPARSE()(0,1) ; C: _SPARSE()(1,0) )

In figure 9.8, atile is placed at every combination of row-, column-, and regular diagonal-

wise access patterns that can be enforced for the occurrences of A, B, and Crespectively using the

reshaping method (assuming that data dependences caused by the accumulation may be ignored).
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Figure 9.7: Computation of C + C + AB

Not surprisingly, row-wise access patterns for the occurrences of A and C and column-wise
access patterns for B are enforced by aloop transformation defined by U = 1. Because the sparse
storage schemes of the implicitly sparse matrices are selected accordingly, the following sparse
code is generated, in which each | throw of C and Jth column of B isexpanded before operated
upon:

DOl =1, N
CALL SSCT__(VAL_C,IND C, LOWC(l), HGH C(I1), SAP_ 10, SWI_10)
DOJ =1, N
CALL SSCT__(VAL_B, IND_B, LOWB(J), HGH B(J), SAP 20, SWI_20)
DO K_ = LONA(1), HGH A(I)
K = IND_A(K)
I F (SWI_20(K)) THEN
I F (. NOT. (SWr_10(J))) THEN
SWI_10(J) = . TRUE.
CALL SINS_(VAL_C, IND C, LONC, HGHC I, N SZA LSTC L J)
END | F
SAP_10(J) = SAP_10(J) + VAL_A(K) * SAP_20(K)
END | F
ENDDO
CALL SGTH_(VAL_B, IND_B, LOWB(J), HGH B(J), SAP_20, SWI_20)
ENDDO
CALL SGTH_(VAL_C,IND C, LONC(l1), HGH C(I1), SAP 10, SWI_10)
ENDDO

After the K-loop has been involved in guard encapsulation of ‘(I,K) € E(A)’, encapsulation
of ‘(K,J) € E(B)' becomes disabled. Hence, in this fragment only the sparsity of A isexploited
to reduce the computational time.

As another example, if we enforce the selection of general sparse row-wise storage for A
and B and general sparse column-wise storage for C', then the reshaping method fails because
rank(S) = 3 for the objective matrix, asimplied by the following integer echelon reduction:

1 100 010 0010
E=RS"=[0010]|=|100 1 100
0001 0 01 00 01
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Therefore, notile appears at the corresponding row-row-column entry. If weinform the sparse
compiler that occurrences of C may be ignored during reshaping, then the J- and K-loop are in-
terchanged, and the following sparse code is generated:

DOI =1, N
DO K_ = LOWA(l), HGH A(l)
K = IND_A(K)
DO J_ = LONB(K), HGH B(K)
J = IND B(J)
L_ = LKP_ (IND.C, LOWC(J), HEH CJ), 1)
IF ((L_.EQ 1)) THEN
CALL SINS_(VAL_C, IND.C, LONC, HGHC, J, N, SZC LSTC L 1)
END | F
VAL_C(L_) = VAL_C(L_) + VAL_A(K) * VAL _B(J)
ENDDO
ENDDO
ENDDO

Because the true access patterns of the occurrences of C are row-wise, all overhead reducing
techniques become disabled.

As afina example, we enforce the selection of genera sparse row-wise storage for al im-
plicitly sparse matrices. After access pattern reshaping, the following sparse code is generated, in
which the sparsity of both B and C is fully exploited, and the | th row of C' is expanded before
operated upon:

DOl =1, N
CALL SSCT__(VAL_C, IND.C, LOWC(I), HGH C(1), SAP_10, SW_10)
DO K_ = LOWA(I), HGHA(l)
K = IND_A(K))
DO J_ = LOWB(K), HGH B(K)
J = IND_B(K)

I E (. NOT. (SWr_10(J))) THEN
SWI_10(J) = . TRUE.

CALL SINS_(VAL_C, IND.C, LONC, HGHC, I, N, SZC LST.C L_ J)
END | F
SAP_10(J) = SAP_10(J) + VAL_A(K) * VAL_B(J_)
ENDDO
ENDDO
CALL SGTH_(VAL_C, IND_C, LONC(l), HGH C(1), SAP_ 10, SWI_10)

ENDDO

In essence, this automatically generated sparse implementation is equivalent to the code for
sparse matrix multiplication found in [106][169, p253-258], although in the latter code symbolic
and numerical operations are separated. Another implementation is given in [154].



9.2. QUANTITATIVE EXPERIMENTS 217

HP 9000/720 and Cray C98/4256

05 T T T T
0.45 4
0.4 RCRHP —— §
@ RRC HP -+
2 035 RRR HP -=-- 1
3 RCR Cray -
3 0.3 RRC Cray —+-- i
° RRR Cray -*--
E 025 ]
—
15 0.2 T
3 -
g 015 e I
> e e
L - BB
0.1 ) g R
- /»;r . « *
JETrE - K .
0.05 e
-
O 1 1 1 1
500 1000 1500 2000 2500
N

Figure 9.9: Computation of C + C + AB

In figure 9.9, we present the execution times of the automatically generated versions on both
the Cray and HP (labeled according to the kind of storage scheme selected for A, B, and C' re-
spectively, where e.g. RRR denotes general sparse row-wise storage of all matrices). The general
sparse storage schemes of A and B areinitialized to F(n, 5) and we start with C' = 0. Obvioudly,
athough the storage requirements of the first version are reduced, the computational time of this
version is still unacceptable. The other fragments, however, fully exploit the sparsity of A and B
to reduce the computational time, whereas the sparsity of all matrices is exploited to reduce the
storage requirements. This experiment clearly illustrates the importance of selecting appropriate
sparse storage schemes.

9.2.4 LU-Factorization

Animportant step in solving alinear system of equations Ax = b is the factorization of asguare
non-singular matrix A into a unit lower triangular matrix I and an upper triangular matrix U ac-
cordingto A = LU (cf. appendix A). A dense implementation of L U-factorization without piv-
oting is shown below, where the array A that isinitially used to store A becomes overwritten with
the elements of the factors L and U':

DOK =1, N1
DO | = K+1, N
A, K) = Ao(1,K) 1 Ag(K K)
DO J = K+1, N
Ag(1,3) = As(1,9) - As(l,K) * Ar(K J)
ENDDO
ENDDO
ENDDO

Because matrices of the F(n, 5)-class are positive definite, factorization without pivoting is
stable. A straightforward way to exploit the sparsity of the matrix to reduce the computational
time of thealgorithm isto guard the loop-body of thel -loop withthetest*( A(1, K) . NE. 0. 0) ".
However, in this manner, the storage requirements of the algorithm are not reduced.
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If we use an annotation to enforce the selection of genera sparse row-wise storage for the
implicitly sparse matrix A with enveloping data structure A, then the reshaping method fails, and
the following sparse code is generated:?

DOK=1, N
DO I = K+1, N
CALL SSCT__(VAL_A, IND A, LOWA(l), HGH A(l), SAP 20, SWI_20)
I F (SWI_20(K)) THEN
SAP_20(K) = SAP_20(K) / VAL_A(LKP__(IND A, LOWA(K), HGH A(K), K))
LENJ = HGH A(K) - LOWA(K)
DOJ_ =0, LENJ
J = IND A(LONA(K) + J))
| F (K+1.LE.J) THEN
I E (. NOT. SWF_20(J)) THEN
SWI_20(J) = . TRUE.

CALL SINS_(VAL_A IND A LOWA HGHA |, NPA SZA LSTA L, J)
END | F
SAP_20(J) = SAP_20(J) - SAP 20(K) * VAL A(LOWA(K) + J )
END | F
ENDDO
ENDI F
CALL SGTH_(VAL_A, IND A, LONA(I1), HGH A(I), SAP 20, SWI_20)
ENDDO
ENDDO

However, if the programmer indicates that the access patterns of occurrence A( K, K) may
be ignored during the reshaping, the | - and J-loop are interchanged to obtain row-wise access
patterns for the three occurrences A( |, K) . Thereafter, the following sparse code is generated:

DOI =2, N
CALL SSCT__(VAL_AL, IND_A LOWA(I), HGH A(l), SAP_10, SWI_10)
DOK=1, I-1

I F (SWI_10(K)) THEN

SAP_10(K) = SAP_10(K) / VAL_A(LKP__(IND A, LOWA(K), HGH A(K), K))
LENJ = HGH A(K) - LOWA(K)
DOJ_ =0, LENJ

J = IND_A(LONA(K) +J_)

| F (K+1.LE.J) THEN

I F (.NOT. SWT_10(J)) THEN
SWF_10(J) = . TRUE.

CALL SINS_(VAL_A, IND A LOWA HGHA |, N, SZA LSTA L, J)
END | F
SAP_10(J) = SAP_10(J) - SAP_10(K) * VAL _A(LOWA(K+J ))
END | F
ENDDO
END | F
ENDDO
CALL SGTH_(VAL_A, IND A, LONA(1), HGH A(l), SAP 10, SWI_10)
ENDDO

Guard ‘ (K, J) € E(A)’ hasbeen encapsulated in the execution set of the J-loop because dur-
ing each fixed iteration I = 7 and K = £, only insertions in the jth row, wherei < k < j may
occur. The entries are accessed relatively to the base location LONA( K) to correctly account for
any data movement that may occur during insertions in other rows. Moreover, since al entriesin
arow of the sparse matrix are stored in asingle sparse vector, thetest ‘( K+1. LE. J) " isrequired
to determine whether an entry must actually be operated upon. The possible insertions disable en-
capsulation of guard ‘(I,K) € E(A)’ in the execution set of the K-loop, because we would like
to iterate over al entriesin arow in which insertions are performed (which could only be imple-
mented if some kind of ordering would be imposed on the entries in each row).

Because fill-in occurs, the nonzero structure of the sparse matrix changes into the nonzero
structure of thefilled matrix, i.e. L + U.

2Here, we have manually moved to the scatter operation before the first assignment statement to improve the per-
formance. Such optimizations can be easily incorporated in a future implementation.
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In figure 9.10, the nonzero structure of the matrix £(20, 5) and the nonzero structure of the
filled matrix arising after the factorization are shown. Therefore, rather than selecting genera
sparse row-wise storage, we can also inform the compiler about the fact that the implicitly sparse
matrix A eventually becomes a band matrix with semi-bandwidths 5 using the following annota-
tions (note that the zero regions outside the band will be preserved at run-time):

PARAMETER (N = ...)

REAL AN, N)
C_SPARSE(A : _ZERO (1-N <= 1-J <= -6))
C_SPARSE(A : _DENSE( -5 <= |-J <= 5))
C_SPARSE(A : _ZERO ( 6 <= I-J <= N-1))

In this case, the sparse compiler automatically converts the original implementation of LU-
factorization into the following band formulation of LU-factorization using iteration space parti-
tioning and the compile-time elimination of redundant assignment statements and DO-loops:

REAL DN1_A(1: N, - 5: 5)
COMVON / A/ DNI_A

DOK =1, N1
DO | = K+1, MN(N, K+5)
DNLI_A(K, I-K) = DNL_A(K, I-K) / DNL_A(K, 0)
DO J = K+1, MN(N, K+5)
DNLI_A(J, 1-J) = DNL_A(J,[-J) - DNL_A(K, I-K) * DN1_A(J, K-J)
ENDDO
ENDDO
ENDDO

In figure 9.11, we present the execution time of these versions of LU-factorization (Densel
and Dense2 denote the original dense implementation and the dense implementation with a con-
ditional statement respectively). Although the band implementation isclearly superior, the second
general sparse version aso outperforms the dense version that exploits the sparsity to reduce com-
putational time. Because the size of the execution set of the K-loop has not been reduced using
guard encapsulation, however, the execution time of general sparse row-wise version still grows
at least quadraticaly in the order of the sparse matrix for larger matrices. See figure 9.13. This
makes solving large sparse systemsinfeasible. Although we can use the band implementation for
all matrices of the E/(n, 5)-class, wewould also like to be able to generate ageneral sparse imple-
mentation that really exploits all zero elements to deal with other kinds of sparse matrices.

One step in the right direction is the observation that in the original fragment the strict lower
triangular part is mainly accessed along columns, whereas the strict upper triangular part is only
accessed along rows. Moreover, because the elements along the main diagonal are used as piv-
ots, these elements must be nonzero. Hence, we can help the sparse compiler by supplying this
information by means of the following annotations:

Figure 9.10: Nonzero Structure of F(20, 5) and the Filled Matrix
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Figure 9.11: LU-Factorization
PARAMVETER (N = ...)
REAL A(N, N)

C SPARSE(A : _SPARSE(1-N <= |-J <= -1)(0,1))
C SPARSE(A : DENSE ( 0 <= 1-J <= 0)(1,1))
C SPARSE(A : _SPARSE( 1 <= 1-J <= N-1)(1,0))

Firgt, iteration space partitioning is applied by the sparse compiler to isolate operations on the
strict lower and strict upper triangular part and the main diagonal:

DOJ = K+, 1-1
AL, = ALLJ) - A(LL K *ACK, J)

DO J = K+1, N L—g ENDDO

ACLLD) = AL, - AL K *ACK, J) N AL 1Y = AL 1) - ALK *ACK 1)
ENDDO DOJ = [+1, N
AL, = A(LL) - A(LL K *ACK, J)

ENDDO

If the simple section associated with the occurrence with labd 7 in the original fragment is
denoted by S; C 22, then the effects of thisiteration space partitioning are shown in figure 9.12.
Note that independent of whether the iteration space partitioning isinduced by the occurrence with
label 4 or 5, eventually the incrementally constructed simple sections into which both S, and S5
are partitioned become associated with the resulting duplicates of these occurrences according to
the mechanism discussed in detail in section 7.2.3. Moreover, the redundant fragmentation of the
other simple sections is simply ignored. In fact, even without annotations, the sparse compiler
is able to detect the fact that separate storage of the strict triangular parts and the main diagonal
of the matrix matches the kind of operations performed in the code [39]. Indeed, many general
storage schemes for sparse matrices are based on this fragmentation [164, 185, 235, 236].

Thereafter, loop distribution isapplied to the| -loop, after which loop interchanging isapplied
to obtain column-wise access of the strict lower triangular part:?

3In the current prototype sparse compiler, these particular transformations must be guided by the programmer. In
principle, however, these transformations could be done automatically in a future implementation.
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Figure 9.12: Fragmentation of LU-Factorization (N=150)

DOK =1, N1
DO = K+1, N
ALK = ALK 1 A(K K)
ENDDO
DO = K+1, N DOJ = K+1, N1
DOJ = K#1, 1-1 — DOl = J+#1, N
ALY = ALY - ALK * AK J)
ENDDO
ENDDO
DO = K+1, N
ACLLTY = A(LLT) - ALK * ACK 1)
ENDDO
DO = K+1, N
DOJ = [ +1, N
ALY = ALY - ALK * AK J)
ENDDO
ENDDO
ENDDO

Finally, the compiler selects a sparse storage scheme in which the entries in the strict lower
and upper triangular part of A are stored in separate sparse vectors, whereas static dense storage
is used for the main diagonal of A. Werefer to this storage scheme as the LDU-scheme (see also
section 8.3). First, guard encapsulation to the first | -loop is done as shown below, because all
entries in column K below the main diagonal are stored in the K+N- 1th sparse vector of the pool:

DOK =1, N1
DO |_ = LOWA(K+N-1), HGH A(K+N-1)
I = IND_A(I )
VAL_A(1_) = VAL_A(I_) / DN1_A(K)
ENDDO

Subsequently, the double loop performing the updates on the strict lower triangular part of A
is converted into a construct that iterates over entries in the strict upper triangular part of the Kth
row (stored inthe Kth sparse vector) and entriesin the strict lower triangular part of the Kth column
(stored inthe N- K+1th sparse vector). In fact, we have altered the upper bound of the J-loop into
N to reduce the number of resulting tests.
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The sparse compiler generates codein which relative addressing isused to account for possible

data movement. The Jth column below the main diagond is expanded before operated upon:
LEN.J = HGH A(K) - LOWA(K)
DO J_ =0, LEN.J
J = I ND_A(LOW A(K) +J_)
CALL SSCT__(VAL_A, IND_A, LONA(J+N-1), HGH A(J+N-1), SAP 20, SWI_20)
| F (J+1.LE. 100) THEN
LEN | = HGH A(K+N-1) - LOWA(K+N-1)
DOI_ =0, LENI, 1
| = I ND_A((LOWA(K+N-1) + _))
|F (J+1.LE.1) THEN
I F (. NOT. SWr_20(1)) THEN

SWI_20(1) = . TRUE.
CALL SINS_(VAL_A, IND A LOWA HGHA J+N-1, N, SZ A LSTA L, 1)
ENDI F
SAP 20(1) = SAP 20(1) - VAL A((LOWA(K+N-1)+ )) * VAL_A((LOWA(K)+J ))
ENDI F
ENDDO
ENDI F
CALL SGTH_(VAL_A, IND A, LOWA(J+N-1), HGH A(J+N-1), SAP 20, SWI_20)
ENDDO

Updating the elements along the main diagonal isimplemented as follows:

CALL SSCT__(VAL_A, IND A LONA(K), HGH A(K), SAP 10, SWI_10)

DO |_ = LONA(K+N-1), HGH A(K+N-1)
I = IND_A(I )
IF (SWI_10(1)) THEN
DNI_A(1) = DNL_A(I) - VAL_A(l_) * SAP_10(1)
ENDI F
ENDDO

CALL SGTH_(VAL_A, IND A, LONA(K), HGH A(K), SAP 10, SWI_10)

As partly illustrated below, the sparse code generated for the double loop that performs the
updating of elements in the strict upper triangular part is very similar to the code that updates the
strict lower triangular part:

LEN | = HGH A(K+N-1) - LOWA(K+N-1)

DOI_ =0, LEN|
| = | ND_A(LOW A(K) +N- 1+1 )

ENDDO
ENDDO I K-1oop

In figure 9.13, the execution time of the implementation operating upon the LDU-scheme
is compared with the execution time of the genera sparse row-wise and band version of LU-
factorization. Although the LDU sparse version is dightly more expensive than the band version,
these experiments indicate that a general sparse implementation that fully exploits the sparsity of
A can be derived. In figure 9.14 and 9.15, the same experiments are done on the Cray (hote that
the dense versions run significantly faster than on the HP).

Another way to obtain an implementation of LU-factorization that fully exploits the sparsity
of the matrix operated upon isto store the column nonzero structure of the matrix in combination
with general sparse row-wise storage [105][235, ch2][236, 164]. Obvioudly, the LDU-scheme suf-
fers from less overhead storage. Moreover, because matrices of the E(n, 5)-class are symmetric
positive definite, we would rather like to use the Choleski factorization to solve a corresponding
system of linear equations. Experiments with the sparse compiler indicate that a row- or column-
oriented formulation of Choleski factorization (see e.g. [129, p201]) is directly converted into a
version exploiting all zero elements. A symmetric implementation in which symbolic and numer-
ical operations are separated can be found in [169, p258-268].
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Other experiments presented in [35] indicate that code performing the factorization of atridi-
agonal matrix that can be derived automatically is essentialy identical to ahand-coded implemen-
tation [149]. Some remarks and implementation details about parallel direct solvers can be found

in e.g. [129][168][235, ch10].

9.25 Forward and Back Substitution

After amatrix A hasbeen factorized into A =

LU, asystem A% = b issolved by forward substi-

tution of the system ¢ = b, fol lowed by back substitution of U# = ¢. Dense implementations of
forward and back substitution, where an in-place conversion of the vector b into Z is performed,

are shown below:
Forward Substitution:

- A1, J) * B(J)

Back Substitution:

DOl =N 1, -1

DOJ = 1+1, N
B(1) = B(1)

ENDDO

B(1) = B(1) / A(l,1)

ENDDO

- A1, J) * B(J)

If an annotation enforcing general sparse row-wise storage of A is used, the sparse compiler con-
verts these fragments into the following sparse codes:

Sparse Forward:

DOI =2, N
DOJ_ = LOWA(I),
J = INDAJ)

IF (J.LE.1-1) THEN
B(1) = B(1) - VAL_A(J) * B(J)
END | F
ENDDO
ENDDO

HGH A(1)

Sparse Back:
DOl =N, 1, -1
IF (1+1.LE.N) THEN
DO J_ = LOWA(I),
J = IND_A(J)
I'F (1+1. LE. J) THEN
B(l) =

HGH_A(1)

B(1) - VAL_A(J) * B(J)

END | F
ENDDO
ENDI F
B(1) = B(1) / VAL_A( LKP__(IND_A,
+ LONA(1), HGHA(I), 1))

ENDDO
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Figure 9.14: LU-Factorization

Note that although the resulting fragments strongly resemble the code generated for the prod-
uct of a sparse matrix with a vector, there are some differences. First, alookup isrequired in the
back substitution, because the true diagonal-wise access patternsof A( |, 1) areinconsistent with
the way in which the entries of A are stored. Moreover, because the execution set of the J-loop
is empty for | =N, the generated J _-loop is protected by thetest ‘(1 +1. LE. N) ’ to prevent er-
roneous accesses to entries in the Nth row of the sparse matrix (although the test could be safely
omitted for this particular example).* Finally, because all entries in arow are stored in a single
gparse vector, thetest ‘(| +1. LE. J) ' remains required in the innermost DO-loop of both ver-
sions to distinguish between entries in the strict lower and upper triangular part of the matrix re-
spectively. The fragments still exploit the sparsity of A, however, because in contrast with using
thetest‘(A(l, J) . NE. 0. 0) " inthe dense case, the test in the sparse versions is only executed
for entries.

If annotations enforcing the sel ection of the LDU-scheme are used, the sparse compiler applies
loop interchanging to the double loop of forward substitution, and generates the following sparse
codes:

LDU Forward: LDU Back:
DOl =N 1, -1
m = l, N1 :
+
DO |_ = LONA(J+N-1), HGH A(J+N-1) IFDS Jl tTL(I\)DNE({F;\I HGH A(1)
I = INDA(I) JZINDADY
B(1) = B(l1) - VAL_A(I_) * B(J) B(1) = B(1) - VAL_A(J) * B(J)
ENDDO ENDDO S
ENDDO
ENDI F
B(1) = B(l) / DNI_A(I)
ENDDO

Loop interchanging has, in fact, converted the inner product formulation of forward substitu-
tion into an outer product formulation [97, p25-28].

4The generation of thistest can be avoided by peeling oneiteration of the | -loop.
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Figure 9.15: LU-Factorization

Now, no test is required in the body of the J_-loops because entries in the strict lower and
strict upper triangular part of A are stored in separate sparse vectors. Moreover, because sta
tic dense storage is used for the main diagonal of A, the lookup in back substitution vanishes.
However, inthis caseit is essential to protect the whole J _-loop of back substitution with the test
‘(1+1. LE. N) ', because otherwise the Nth sparse vector would be erroneously accessed, thereby
inducing accesses to the first column of A

Finally, if weinform the sparse compiler about the specific band characteristics of matrices of
the E(n, 5)-class after the factorization, the following band versions are generated automatically:

Band Forward: Band Back:
DOl =2, N DOl =N, 1, -1
DOJ = MAX(1, 1-5), I-1 DOJ = I+1, MN(N, [|+5)
B(1) = B(I) - DN1_A(J,1-J) * B(J) B(1) = B(I) - DN1_A(J,1-J) * B(J)
ENDDO ENDDO
ENDDO B(1) = B(l1) / DN1_A(I,0)
ENDDO

Due to data dependences, the access patterns cannot be reshaped aong the diagonals. How-
ever, iteration space partitioning and the compile-time elimination of redundant assignment state-
ments and DO-loopsis still applicable to the innermost DO-loop, which also reduces the amount
of operations that must be executed. Similar implementations of forward and back substitution
can found in SPARSKIT and SPARK [185, 186] and in [11][169, p268-270][184].

Infigure 9.16, the execution times of all versions of forward and back substitution on the Cray
are presented (dense forward and back substitution have aimost identical execution times). Be-
cause for general sparse row-wise storage a lookup remains in the code of back substitution, this
version hasthe largest execution time of al sparse versions. Nevertheless, itisclear that all sparse
versions fully exploit sparsity.



226 CHAPTER 9. INITIAL EXPERIMENTATION

Cray C98/4256
0-08 T T T T T T T T
.

0.07 | T
»  0.06 | Dense —— s .
2 Sparse Forward -+ e
8 LDU Forward -=-- o o
g 005¢7 Band Forward - e T
° Sparse Back -«-- e A
= 0.04 LDU Back -*-- o L i
= Band Back o _.“ o
c A o
£ 003 & T
=} - 4+ B |
(8] /A - - - *3'::%17
g e 7 - *f,,—gii‘i‘g”' N
L 002 o o +/,/’+ B ,x:/;é;;::@"" ¥ T 1

- //A/ //*‘/// - ‘é»7:;1@:—;3%:::%:; x o
0.01 F +* ééééx x i
;’:,%1/’.: - "ﬁ'/@( o
0 1 1 1 1 1 1 1 1

2000 4000 6000 8000 10000 12000 14000 16000 18000
N

Figure 9.16: Forward and Back Substitution

9.2.6 A Non-Numerical Application

A convenient data structure to represent a weighted directed graph G = (V, E), consisting of a
finite set of vertices V' = {vy,...,v,} that are labeled with theintegers 1, ... , n, afinite set of
edges E CV x V andamapping f : E — N that assigns aweight to every edge, is a special
kind of adjacency matrix, called aweight matrix. If v; denotes the vertex with labdl 7, then in
this matrix W we set w;; = ¢, if (v;,v;) € E and f((vi,v5)) = ¢, or w;; = 0 otherwise. The
weighted graph shown in figure 9.17, for instance, is represented by the given weight matrix:

000 0 9 11
000 8 14 0
15 70 10 0 O
W= 000 03 0
000 O O O
000 0 9 0

Although much storage iswasted because W isusually sparse, the advantage of this represen-
tation isthat it can be easily manipulated.

15

11

10

35
5

Figure 9.17: Weighted Graph
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For example, below we present a straightforward implementation of finding atopological sort
of adirected acyclic graph, whichisamapping¢ : V' — {1,...,n}, such that V(v;,v;) € E :
t(Ui) < t(’l)j).

Intheimplementation, first thein-degree of every vertex isdetermined inarray | NDEG. There-
after, thetopological sort iscomputed in array TOP by using a stack to successively consider each
next vertex with zero in-degree and adapting the in-degree of all neighbors:

PROGRAM TOPSORT

INTEGER N, I, J, TOP
PARAMETER (N = ...)
INTEGER  WN, N), |NDEG(N), TOP(N) SUBROUTI NE PUSH( STACK, SP, 1)
INTEGER  STACK(N), SP | NTEGER STACK(*), SP, |
DOJ =1, N sP =sSP+1
INDEG(J) = O STACK(SP) = |
DOI =1, N RETURN
IF (WI,J).NE 0) THEN END
INDEG(J) = INDEG(J) + 1
ENDI F SUBROUTI NE POP( STACK, SP, 1)
ENDDO | NTEGER STACK(*), SP, |
ENDDO
SP =0 | F (SP.GT.0) THEN
DOI =1, N | = STACK(SP)
IF (I NDEG(1).EQ 0) THEN SP=SP- 1
CALL PUSH(STACK, SP, 1) ELSE
ENDI F I =0
ENDDO ENDI F
TP =1 RETURN
CALL POP(STACK, SP, 1) END
DO WHI LE (1. GT. 0)
TOP(1) = TP
TP =TP +1
DOJ =1, N

IE (WI,J).NE 0) THEN
INDEG(J) = INDEG(J) - 1
I F (I NDEG(J).EQ 0) THEN
CALL PUSH(STACK, SP, J)
ENDI F
ENDI F
ENDDO
CALL POP(STACK, SP, 1)
ENDDO

END

For the previous graph, for instance, the mapping ¢(1) = 4, t(2) = 2,#(3) = 1, t(4) = 3,
t(5) = 6, and t(6) = 5 is constructed.

Because matrix W' is sparse and accessed aong the rows within the WHIL E-loop, an annota-
tion that enforces the selection of general sparse row-wise storage for the implicitly sparse matrix
W with envel oping data structure Wis added to this program. Supported by loop distribution and
loop interchanging, the following conversion is applied by the sparse compiler to the fragment
computing the indegree, because the condition of the I F-statement always fails for zero elements,
where NP_WEN and SZ_Wprovides sufficient space to store the entries of W:

DOJ =1, N
bOJ =1 N I NDEG(J) = 0
ENDDO
IINDEG(J) = 0 _
DO 21N DOl =1, N
F (WI,J).NE 0) THEN DOJJ; I‘N'E)OV"\%B"‘;)' HGHW(1)
EN:D'I\'EEG(J) = INDEE(J) + 1 = IF (VAL_WJ_).NE 0) THEN
INDEG(J) = | NDEG(J) + 1
ENDDO
ENDDO ENDI F
ENDDO

ENDDO
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Figure 9.18: Topologica Sorting

A similar transformation can be applied to the J-loop in the WHILE-loop if we inform the
sparse compiler about the fact that | can be handled as a loop index and if we indicate that all
data dependences caused by calling PUSH may be ignored because the order in which vertices are
pushed on the stack is not essential for thisalgorithm. If inthe origina program, the graph would
be represented by an adjacency matrix rather than a weight matrix, the array VAL Wwould even
become redundant after the conversion,

This clearly illustrates that an adjacency matrix representation of a graph can be automati-
cally converted into the more economical adjacency structure [169, p10-13]. Hence, the storage
requirements of the original program are reduced substantially, while the complexity of the algo-
rithm is automatically reduced from O(|V|?) into O(|V| + |E|), since each vertex and edge is
considered only once.

In figure 9.18 we show the execution times of the original dense program and the generated
sparse code on the Cray for varying values of n. The sparse code is applied to an n x n matrix
representation of acomplex chain in which there is an edge from each vertex to all previous ver-
tices, to only the previous 50 or only the previous 10 vertices, and a simple chain in which there
isonly an edge from each vertex to the previous vertex (labeled Sparse (all), Sparse (50), Sparse
(10) and Sparse (1) respectively). The chains areillustrated in figure 9.19.

Figure 9.19: Complex and Simple Chain



Chapter 10

Advanced Transfor mations

In previous chapters, we have demonstrated the feasibility of automatically converting a dense
program into semantically equivalent sparse code. Experiments indicate that in many cases the
sparse compiler iscapable of transforming aparticular dense fragment into code that fully exploits
the sparsity of all implicitly sparse matrices to reduce both the storage requirements as well as
computational time of the original implementation. Although more experiments and probably the
development of more advanced transformations and strategies are required to determine whether a
successful conversion isaso feasible for large programs, the fact that in principle the complexity
of writing sparse codes can be reduced substantially by dealing with the sparsity of matrices at the
compilation level rather than at the programming level aready seemsto justify this new approach.
So far, however, some other important issues have not been addressed.

First, because the sparse compiler is presented with the original dense program, the informa-
tion obtained by data dependence analysis of this program is usually more accurate than the in-
formation that can be obtained by a compiler to which only the resulting sparse code is presented.
Although this advantage already has been exploited to a certain extend, since accurate data de-
pendence information enables more program transformations to support the selection of asuitable
sparse storage scheme, data dependence information obtained by analyzing the original dense pro-
gram can aso be used to exploit implicit parallelism in the corresponding sparse code, as further
discussed in section 10.1 of this chapter.

Second, because on one hand a reordering method may be required to preserve sparsity and,
possibly, stability aswell (cf. appendix A), which can be essentia to keep solving a sparse prob-
lem feasible, whereas on the other hand it is difficult to express sparsity related decisions in the
original dense code, some elementary support for the incorporation of both local strategies and a
priori reordering methods in the generated sparse code is provided by the sparse compiler. The
implementation of this support is explored in section 10.2 of this chapter.

10.1 Exploiting Parallelism in the Generated Spar se Code

Because the sparse compiler is presented with the original dense program, accurate data depen-
dence analysis can be performed. This provides the sparse compiler with al information required
for loop vectorization and concurrentization of the corresponding sparse code. However, because
this information may be lost in an obscured sparse code, the information must be propagated to
the FORTRAN compiler that produces machine code for a particular target machine. Moreover,
the sparsity of particular matrices may even provide opportunities for loop concurrentization that
are not present in the original dense code. In this section, we glance at both the direct exploitation
of implicit parallelism and the exploitation of the kind of parallelism that isinduced by sparsity.
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Figure 10.1: Vectorization of Sparse Forward Substitution

Because exploiting parallelism becomes complicated by the possibility of data movement in
caseinsertions in adynamic pool of sparse vectors may occur, we focus on fragments without the
possibility of creation.

10.1.1 Direct Exploitation of Implicit Parallelism

The information that some DO-loops resulting after guard encapsulation can be vectorized may
becomelost in the resulting sparse code. For example, the native FORTRAN compiler of the Cray
C98/4256 does not apply vectorization to the resulting sparse implementation of forward substi-
tution in which the LDU-schemeis selected for the implicitly sparse matrix A, (see section 9.2.5),
because flow dependences caused by array B must conservatively be assumed:

DOJ =1, N1

DO|_ = LONA(J+N-1), HGH A(J+N-1)
I = IND_A(I )
B(1) = B(1) + VAL_A(I_) * B(J)
ENDDO
ENDDO

To prevent this loss of information, the sparse compiler may, dependent on the way informa
tion can be supplied to the FORTRAN compiler used to compile the generated sparse code, write
the loop in vector syntax, generate a vectorizing directive before the | _-loop, or add an assertion
stating that disjoint elements of B arereferenced in each fixed iteration of the J-loop. For example,
in figure 10.1, we show the execution time of the previous double loop on one CPU of the Cray
C98/4256 for sparse matrices of varying size with 10 nonzero elements in most columns in case
no information is propagated to the native compiler and in case the directive ‘CDI R$ i vdep’ is
added before the | _-loop. This experiment indicates that quite some performance can be gained
by preserving essential information in the generated sparse code.

Similar arguments hold for loop concurrentization. In the sparse SAXPY implementation of
b+ b+ AZ, where genera sparse column-wise storageis selected for A, concurrentization of the
innermost DO-loop seems to be prohibited by output dependences caused by array B.
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However, the sparse compiler may inform another FORTRAN compiler about the fact that all
iterations of this DO-loop are independent using a DOALL-construct:

DOJ =1, N
DOALL |_ = LOWA(J), HGH A(J)
| = IND_A(I)
B(1) = B(1) + VAL_A(I_) * X(J)
ENDDOALL
ENDDO

In a future implementation of the sparse compiler, more advanced program transformations
and data structures could be incorporated to enhance the efficiency of the generated sparse code.
For example, if the sparse compiler would be able to select a two-dimensional VAL_A/ | ND_A
implementation of a pool of row-wise sparse vectors, loop interchanging could be applied to the
automatically generated sequence of sparse dot productsimplementation of b + b+Af toenhance
the performance on pipelined vector processors [2, 11, 84]:

DOI =1, M DOJ_ =1, MAXNNZ
DOJ_ =1, NNZ(I) DOI =1, M
J = INDA(I,J) J = INDA(I,J)
B(1) = B(1) + VAL A(I,J) * X(J) B(1) = B(1) + VAL_A(l,J) * X(J)
ENDDO ENDDO
ENDDO ENDDO

Here, MAXNNZ is equal to the maximum value of NNZ( | ) and an appropriate padding is ap-
plied to the arrays. Note that if entries are sorted on column index information, effectively the
extended column scheme (see section 4.1.3) has been derived automatically, which illustrates the
potential of automatically converting a dense program into efficient sparse code.

10.1.2 Exploitation of Parallelism Induced by Sparsity

Because some data dependences arising in the original dense program may disappear in the corre-
sponding sparse cade, the sparsity of particular matrices may induce opportunities for concurrent
execution that are not present in the original dense implementation. In this section, we glance at
some methods to exploit such parallelism.

Elimination of Data Dependences

After adense program has been converted into semantically equivalent sparse code, many state-
ment instances arising in the original program are no longer executed in the sparse code. This
implies that converting a dense program into sparse code also affects the data dependences that
arise in the original program, because a data dependence of which the sink or source statement
instance is not executed disappears.

For example, below we present the conditions associated with some scalar statements in a
fragment in which array A is used as enveloping data structure of an implicitly sparse matrix A:

REAL A(M N)
C_SPARSE( A)
St: B(3) = ... + true
Sa: ACC = ACC + A(1,3) * B(3) <+ (1,3) € E(A)
Ss: C(1) = ACC <+ true

In this fragment, the data dependences 571655 and S26.55 hold, reflecting the fact that these
scaar statements must be executed serially. However, because the compiler associates the condi-
tion‘(1,3) € E(A)" with Ss, the data dependence chain S; — So — S5 isbroken if a3 is not
an entry.
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Since S; and S5 are independent, the elimination of the data dependences enables concurrent
execution of these scalar statements. Consequently, theimplicit synchronization from S; to Sy and
from S, to S5 that isinduced by the serial semantics of the program can be placed under control
of the condition. Hence, if general sparse row-wise storage is selected for A, the compiler may
generate the following sparse code, where a COBEGIN-construct [67][175, p65-66] is used to
express concurrency at statement level:

L0 = LKP_ (IND A LOWA(1), HGH A(1), 3)
IF (L_O .NE. 1) THEN
Si: B(3) = ...
S»: ACC = ACC + VAL_A(L_0) * B(3)
Ss: (1) = ACC
ELSE
COBEG N
St B(3)
Ss: (1)
CCEND
ENDI F

ACC

If, a compile-time, either static dense storage is selected for the region in which element a3
resides, or we know that the element resides in a zero region, then only one of these branches has
to be generated, because in these cases the condition associated with S; becomes either ‘false’ or
‘tru€’ respectively.

Because only a small reduction of execution time may be expected from such fine grain par-
aleism, in the next section we explore whether a similar technique can be used to enhance con-
currency in loops.

Concurrency in Loops

If aloop is converted into sparse code, then, dependent on the nonzero structures of the sparse
matrices involved in the computation, some data dependences arising in the original loop may
disappear. Asfor the example in the previous section, only a small reduction of execution time
may be expected from exploiting the fact that some loop-independent data dependences disappear,
asthiswould enable the concurrent execution of some statements instances belonging to the same
iteration. Clearly, exploiting the elimination of some loop-carried data dependences has more po-
tential, since this can make different iterations of aloop completely independent.

To capture the data dependence structure of aloop explicitly in the program text, we assume
that particular DO-loops in the original dense program have been converted into DOACROSS-
loops by generating random synchronization that enforces al loop-carried data dependences (see
section 3.2.2). For many loops, such synchronization enforces (nearly) seria execution. However,
if the program is converted into sparse code, we can exploit the fact that some synchronization is
not required if aloop-carried data dependence disappears due to the fact that an instance of asink
statement is not executed:

If the sink statement of a static data dependence of which the underlying data depen-
dences are carried by a DOACROSS-loop is under control of a condition, the corre-
sponding wait-statement can be placed under control of this condition.

Likewise, if the source statement is under control of a condition, in principle we could place
the wait-statement under control of the condition as well. However, because this requires the re-
evaluation of conditions used in earlier iterations, usualy it provides the sparse compiler with
limited opportunities to actually eliminate the synchronization.

Under the assumption that bits may remain untested in the bit array implementation of ran-
dom synchronization, it is not useful to place the corresponding post-statement under control of
acondition of either the sink or source statement, because this operation is non-blocking.
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Dense Matrix (4,4) ¢ E(A)and (6,6) ¢ E(A)
| 2 3 4 5 6 | 2 3 4 5 6
S1(2) wB2 wB3 wB4 wB5 S1(2) wB2  S»(4) wB4  S»(6)
t | S2(2) . . . . t | S2(2) . pB4 . pB6
i pB2 : i pB2 : S1(5)
m S1(3) m 51(3) S2(5)
e S2(3) e S2(3) pB5
pB3 . pB3
4 S1(4) 4
S>(4)
pB4 .
S1(5)
S2(5)
pB5 .
S1(6)
S2(6)
pB6

Table 10.1: Elimination of Random Synchronization

Example: If the following DO-loop is converted into a concurrent loop, then the underlying data
dependences of the static data dependence So0..57 must be explicitly enforced by synchroniza-
tion, whereas all underlying data dependences of S-S, are simply enforced by serial execution
of the loop-body within every iteration:

DOACRCSS | = 2, N

DOI =2, N wait( BSYNG, | - 1)
S1: o) = C(1) + AL, 1) * B(1) o)  =C1) + AL, 1) * B(I)
S B(1+1) = (1) B(1+1) = (1)
ENDDO post( BSYNC, | )
ENDDOACROSS

Obvioudly, synchronizing the lexically backward data dependence effectively serializes the
loop in the dense case. However, if subsequently the sparse compiler isinformed about the fact
that array Aisused as enveloping datastructure of animplicitly sparse matrix A, then the compiler
associates the condition (I, I) € E(A)’ with Sy.

Since the previous rule states that the wait-statement used to enforce the underlying data de-
pendences of Sy6..S1 can adso be placed under this condition, the sparse compiler can convert
the DOACROSS-1oop into the following sparse code in case general sparse row-wise storage is
selected for A:

DOACROSS | = 2, N
L_O = LKP__(IND_A LOWA(I),
IF (L_O .NE. 1)
wait( BSYNC, | - 1)
C(l) =C(1) + VAL_A(L_O) * B(I)
ENDI F
B(I+1) = (1)
post( BSYNC, | )
ENDDOACRGCSS

HGH A(L), 1)

Intable 10.1, the serial execution order for adense matrix and the execution order for asparse
matrix with (4,4) ¢ E(A) and (6,6) ¢ E(A) are shown for N=6, where pBi and wBi are used
as an abbreviation of post(BSYNC,i) and wait(BSYNC,i) respectively.

Example: The outermost DO-loop of the following implementation of forward substitution can
be converted into a DOACROSS-loop as follows:
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DOACROSS | =1, N
DOI =1, N DOJ =1, 1-1
DOJ =1, I-1 wait( XSYNC, J)
Si: X(1) = X(1) - AL * X)), X(1) = X(1) - A(l,J) * X(J)
ENDDO ENDDO
So:r X(1) = X(1) /1 A(l,1) X(1) = X(1) 1 A(l,1)
ENDDO post( XSYNC, 1)
ENDDQACROSS

Although underlying dependences of S2d.S7 hold between asingle source statement instance
and sink statement instances in all following iterations, the synchronization variable XSYNC can
still be implemented as a one-dimensional bit vector by using the fact that several wait instances
may test the same hit.

Again, synchronization seriaizestheloop in the dense case. If the sparse compiler isinformed
about the fact that array A is used as enveloping data structure of an implicitly sparse matrix A,
however, then the compiler associates the condition ‘(I,J) € E(A)’ with Sy and, hence, with
the wait-statement. Consequently, because* (I, J) € E(A)’ dominates al statements in the loop-
body of the J-loop, the sparse compiler can generate the following sparse code if sparse row-wise
storage and static dense storage is used for respectively entries in the strict lower triangular part
and main diagonal of A:

X(1) = X(1) / DNL_A(1)
DOACROSS | = 2, N
DO J_ = LOWA(l), HGHA(I)

J = INDAJ)
wait( XSYNC, J)

X(1) = X(1) - VAL_A(J) * X(J)
ENDDO
X(1) = X(1) / DNL_A(I)
post( XSYNC, | )
ENDDOACROSS

Here, we seethefull potential of combining sparse code generation with synchronization elim-
ination because, in contrast with the previous example, al lookup overhead to determine whether
synchronization and an arithmetic operation are required has been eliminated by guard encapsu-
lation.

Note that, in this example, all underlying memory-based data dependences of S;6. .S are
covered by synchronization of the underlying value-based data dependences of S76..55 in both
the dense and sparse fragment. In general, however, if the sparse compiler is used to generate
conditions for random synchronization, both value and memory-based-data dependences should
be explicitly enforced by random synchronization, whereas methods to eliminate redundant syn-
chronization (see e.g. [141, 155, 156, 157]) should only be applied after al conditions have been
generated.

Effective Exploitation of Concurrency

Although performing random synchronization conditionally may reveal much concurrency, this
approach also increases run-time overhead and the demand for memory or special hardware re-
sources. Moreover, the performance may drop if the data dependence structure induced by partic-
ular nonzero structures and the used scheduling policy do not match. However, suppose that we
can partition the execution set of aDOACROSS-loopintothesets I, . . ., I, such that during any
iteration 7 € I;, random synchronization only tests bits that are set during an iteration 7 € I with
I" < 1. Then, the DOACROSS-loop can be executed as a sequence of DOALL-loops as follows:
DOl = 1,m
DOALL | €1,
ENDDOALL
ENDDO
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Some concurrency may be lost, because barrier synchronization after each DOALL-loop en-
forces that for [ > 1, each iteration in I; must wait for the completion of all iterationsin I, 4,
even if the iterations on which it actually depends aready have been executed. However, this
concurrency may be traded for the reduction of synchronization overhead, while the efficiency of
aDOALL-loop isless sensitive to the scheduling policy.

Below, we present the framework of serial pre-evaluation code that can be generated automat-
ically by the sparse compiler to compute the sets 74, . . ., I,,, a run-time before the actua loop is
executed (inspired on the pre-evaluation code found in the module UNARY of SPARSKIT [185]).
This computation is based on aleveization of the data dependence structure arising in the loop.
For a DOACROSS-loop with execution set [L, U], first alevel L is assigned to each iteration, af-
ter which theiterations are sorted on the MLEV resulting levelsin an array | SET that is accessed
through a pointer structure stored in LVP:

C Conpute Levelization

M.EV = 0
DOl =1L, U
L=1
... conmputation of L ... <« (4)
LEV(l) =L
LVP(L) = LVP(L) + 1
MLEV = MAX(MEV, L)
ENDDO
C Conpute Pointer Structure
DO = 2, MEV+1
LVP(1) = LVP(l1) + LVP(I-1)
ENDDO
C Sort Iterations
Dol =y, L, -1
L = LEV(I)
LVP(L) = LVP(L) - 1
| SET( LVP(L) ) =1
ENDDO

The DOACROSS-oop itself is replaced by the following implementation of the sequence of
DOALL-loops, where the original |oop-body appears at the dots:

DOL =1, MEV

DOALL |1 = LVP(L)+1, LVP(L+1)
| = ISET(I1)
ENDDOALL
ENDDO

The actual computation of thelevel of each iteration that is generated at position (+) depends
on the synchronization statements appearing in the sparse code. For example, for the simple ex-
ample of the previous section, the sparse compiler generates the following computation of L, in
which out-of-bounds synchronization is explicitly protected:

L0 = LKP__ (IND.A, LOWA(I), HGHA(I), I)
IF (L0 .NE L)
IF (1.LE.1-1) L = MAX(L, LEV(I-1))

(
ENDI F

Infigure 10.2, we show the resulting contents of arrays LVP and | SET for the given nonzero
structure of the main diagonal of the implicitly sparse matrix A. Likewise, the level of each iter-
ation for forward substitution is computed by generating the following code at position (+):

DOJ_ = LOWA(I), H GH A(l)

J = INDA(J)

IF (2.LE. J) L = MAX(L, LEV(J))
ENDDO
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Figure 10.2: Leveization (simple example)

Infigure 10.3, we show the results of thelevelization for the given nonzero structure of theim-
plicitly sparse matrix A. For this matrix, all iterationsin thefirst level set I; = {1,2,3,5} canbe
executed independently. Thereafter, iterations with nonzero elementsin only the columns defined
by I, may start, which are the remaining iterations I = {4,6}. In figure 10.4, we present the
execution time of the serial implementation of forward substitution, the execution time required
for alevelization, and the wall clock time required to perform the sequence of DOALL-loops on
four CPUs of a Cray C98/4256 for sparse matrices of varying size with arrow nonzero structures
similar to the matrix arising from minimum degree in figure 4.13. Although a speedup of 3.5is
obtained in some cases, computing the levelization isamost as expensive as performing the actual
computation. Hence, this approach is only useful if the time required to compute the levelization
of the data dependence structure arising in aloop can be amortized over many concurrent execu-
tions of thisloop or if the levelization itself is concurrentized (see discussion below).

Related Work on Run-Time Loop Concurrentization

Other work has addressed the run-time concurrentization of aloop in which the data dependence
structure is determined by loop-invariant contents of arrays that are used as subscripts.

In [160], run-time disambiguation (determining whether references are independent) is used
to enhance concurrency in a stream of instructions, athough some remarks about generalizing
the method to DO-loops is made. In subscript blocking [170, p66-81], the compiler generates
pre—evaluation code that determines subsets of consecutive iterations that may be executed con-
currently, whereas the original loop is converted into a sequence of DOALL-loops. This method,
however, does not alow for reordering the individual iterations to enhance concurrency.

In [155][157, p115-121][233], a method that determines subsets of arbitrary independent it-
erations is presented, which suffers from substantial overhead because independent iterations are
executed using amask which is re-computed between the execution of successive subsets. In[11,
187, 184], the concurrentization of sparse triangular systems solversis considered.

LVP [O] 4] 6]
ISET KK

1234586

o U bh WN B

Figure 10.3: Levdlization (Forward Substitution)



10.2. TOWARDSINCORPORATING REORDERING METHODS 237

Cray C98/4256
0.05 T T T T T T T T

0.045 |

0.04 Serial —<—
Levelization -+-—-
Concurrent -2

0.035
0.03
0.025
0.02

0.015

Execution Time (seconds)

0.01

0.005 ¥~

0 T 1 1 1 1 1 1 1 1

10000 20000 30000 40000 50000 60000 70000 80000 90000
N

Figure 10.4: Concurrentization of Forward Substitution (four CPUS)

These methods are generalized in the run-time loop concurrentization method of [188, 189,
190, 206, 204]. Here, an inspector is generated before aloop that determines subsets of indepen-
dent iterations, called wavefronts, which are executed by an executor as a sequence of DOALL-
loops, or, aternatively, in a DOACROSS-like construct. To reduce the execution time of the in-
spector, which is proportional to the execution time of the origina loop (cf. figure 10.4), thein-
spector itself may be concurrentized [126, 134, 189].

This can be done using sectioning [134], where each individual process computes the wave-
fronts for a contiguous range of iterations, after which the wavefronts of different processes are
simply concatenated. Since this method does not necessarily have the fewest possible wavefronts,
the results of sectioning may be used to re-execute the inspector concurrently, yielding the same
wavefronts as would result using a serial inspector [134].

Note that these methods are only applicable to the actual sparse code and that all potential data
dependences must conservatively be accounted for. In contrast, the sparse compiler is presented
with the original dense code, so that program and data structure transformations may be applied
before the actual sparse code isgenerated, while data dependence analysis, in general, yields more
accurate information. For example, in the sparse implementation of forward substitution, the po-
tential static data dependence S; 651 must be accounted for, whereas the sparse compiler may
safely discard this data dependence. In principle, however, the same concurrency is obtained and
the sparse compiler can benefit from the results arising from further research in this area.

10.2 Towards Incorporating Reordering M ethods

The sparse compiler provides some elementary support for the incorporation of reordering meth-
ods, suited for the incorporation of local strategies and a priori reordering methods for general
sparse matrices (cf. appendix A).
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10.2.1 Recording a Permutation

The programmer can specify that anm x n implicitly sparse matrix A with enveloping data struc-
ture Awill be permuted into P AQ at run-time using the following annotation:

REAL A(M N)
C_SPARSE(A : _PERM

This annotation indicates that any a priori reordering method may be applied to A before this
implicitly sparse matrix isinitialized, whereas particular row and column interchanges may be ap-
pliedto A at the position of an interchange annotation involving the array A. The actual implemen-
tation of permutations is kept transparent to the programmer. The sparse compiler is responsible
for generating code in which permutations are applied and recorded. As far as the programmer
is concerned, all programming can be done on the enveloping data structure A as if elements are
physically moved in thistwo-dimensional array, i.e. if at a particular moment A is permuted into
PAQ), then the programmer may assume that A contains the elements of PAQ.

Because permuting A may affect properties of the nonzero structure of thismatrix in an unpre-
dictable manner, exploiting peculiarities of the nonzero structure seemsto be difficult. Therefore,
in the current prototype sparse compiler, only general sparse storage schemes can be selected for
A. If general sparse row-wise storage is selected, then the sparse compiler adds the following
permutation arrays to the declarations of the sparse storage scheme (general sparse column-wise
storage isimplemented analogoudly):

| NTEGER ROV A(1: M, COL_A(1:N), | NVCOL_A(1:N)
COMMON /A/ ..., RONA COL_A |NVCOL_A

These permutation arrays are used to record the permutation matrices P, @, and Q" accord-
ing to the method presented in [78, 169, p34-35], i.e. the arrays have the contents P(1,...,m)7,
(1,...,n)Q,and (1,...,n)QT respectively. Theinitial contents of the first two permutation ar-
rays must be specified in the file that is used to initialize A at run-time. Given such an implicitly
sparse matrix A with enveloping data structure A, the sparse compiler adds the following fragment
to the initialization code:

OPEN (UNI T=1, FILE="file_nane’, STATUS=' OLD)

DOI_=1, M
READ (1,*) ROWA(I )
ENDDO
DOI_=1, N
READ (1,*) COL_A(l )
ENDDO

CLOSE (UNIT = 1)

At the dots, the matrix isinitialized as discussed earlier. However, after the whole matrix has
been initialized, the following code is executed to perform the row interchanges by simply apply-
ing P to the row pointers, where the temporary integer array TMP__ is used:

Permute LONA: Permute HGH_A:
DOI_=1, M DOI_ =1, M
TMP__ (1) = LOWA( ROWA(I_) ) TMP__ (1) = HGH_A( ROWA(I_) )
ENDDO ENDDO
DOI_ =1, M DOI_ =1, M
LOWVA(I ) = TMP__(I) HGH A(I_) = TMP__(I)
ENDDO ENDDO

However, in row-wise storage, permuting the columns is not so straightforward. Therefore,
in addition to recording @, permutation matrix Q' is also recorded. The following fragment is
generated to initialize the array | NVCOL _A:
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DOI_=1, N
INVCOL_A( COL_A(I_) ) = 1_

ENDDO

Now, the sparse compiler may generate sparse code as before, thereby accounting for the fact

that an entry in the permuted matrix P A with row index 4 and column index j is stored in the
ith sparse vector with index information COL _A(j) whereas, conversely, an entry stored in the ith
sparse vector with index information j corresponds to an entry in the ith row and | NVCOL _A(j)
column of the permuted matrix. In this manner, any a priori reordering method can be incorpo-
rated by computing this reordering just before the generated sparse code is executed, after which
the contents of the corresponding permutation arrays are added to the file in which the implicitly
sparse matrix resides in coordinate scheme.
Example: Below, we give an example in which an a priori reordering method is applied to the
5 x 5 implicitly matrix stored in the file ‘mat 1. c¢s’. The effects of permuting A by physically
moving the elements areillustrated in figure 10.5, where, for instance, the entry with row index 1
and column index 2 in the permuted matrix corresponds to as3 in the original matrix. The way
in which the permutation is recorded in general sparse row-wise storage is also illustrated in the
figure.

PROGRAM PERMUTE f file'mat 1. cs’

8
2
2

S

o

| NTEGER N i g é i ;« + permutation arrays
NN WA 55 + coordinate scheme
REAL AN, N) R
C SPARSE(A : FILEC'matl.cs’) ) 151 5242425253333
C-SPARSE(A = _PERV 3535414143434242
5151535352525454555.5

END

Note that, alternatively, afile in which the permuted matrix is stored in coordinate scheme
could be generated and used as input for the generated sparse program. However, in this case,
particular input and output data should be permuted accordingly. For example, while solving a
linear system of inequalities with a permuted coefficient matrix PAQ), al right-hand sides must
be permuted according to P, whereas the resulting solutions must be permuted according to Q).
The permutation mechanism of the sparse compiler enables the programmer to deal with these
issues only once, at the expense of some run-time overhead and the obligation to add the correct
induction annotations to the original dense program. In addition, the permutation mechanism of
the sparse compiler enables the incorporation of local strategies.
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10.2.2 Implementation of Induction Annotations

The implementation of induction annotation is rather straightforward. Because arow permuta
tion matrix P of animplicitly sparse matrix with enveloping data structure A is recorded with the
contents P(1,...,m) in the permutation array RONA, the induction annotations involving this
row permutation matrix are implemented as follows, where array PERMA is a locally declared
temporary array having the same basis type as A:'

action: X < _RONA) action: X > _RONA)
DOI_=1, M DOI_=1, M

PERM A(1_) = X( ROWA(I_) ) PERM A(I ) = X(I_)
ENDDO ENDDO
DOI_ =1, M DOI_ =1, M

X(1_) = PERMA(I ) X( ROWA(I_) ) = PERMA(I_)
ENDDO ENDDO

Likewise, because acolumn permutation matrix () associated with an implicitly sparse matrix
A withenveloping datastructure Aisrecorded with the contents (1, . . . , n)@Q inthe permutation ar-
ray COL_A, the induction annotations involving this column permutation matrix are implemented
asfollows:

action: Y < _COLUMN(A) action: Y > _COLUMN(A)
DOI1_ =1, N DOl =1, N
PERM A(l ) = Y( COL_A(l_) ) PERM A(1 ) = Y(I.)
ENDDO ENDDO
DOI_ =1, N DOI_ =1, N
Y(1_) = PERMA(I_) Y( COL_A(l_) ) = PERMA(I )
ENDDO ENDDO

10.2.3 Implementation of I nterchange Annotations

The programmer can specify that for an implicitly sparse matrix A with enveloping data structure
Aan arbitrary row and column in the range [LR, UR| and [L.C, UC] respectively may beinterchanged
with the Rth row and Cth column, using the following interchange annotation:

C I NTERCHANGE(A, LR UR > R LC UC > Q)

Rather than directly specifying the criteriafor alocal strategy that must be used to determine a
row and column, the sparse compiler may select these criteria after analyzing the program. After
aparticular local strategy has been selected, the sparse compiler isalso responsible for generating
code that implements the selected local strategy. In this code, at run-time desired row and column
interchanges are determined and applied. In this manner, the sparse compiler is not restricted to
selecting already existing local strategies, but may derive alocal strategy that is suited for a par-
ticular fragment.

Applying the actua interchanges is straightforward. Interchanging two rows is simply per-
formed by interchanging the corresponding row pointers, while corresponding elementsin array
ROWA are interchanged to record the new permutation matrix P. Interchanging two columnsis
performed by altering the permutation arrays COL_A and | NVCOL _A to record the new permute-
tion matrices Q and Q7 :

Interchanging Rows | 1 and | 2: Interchanging Columns J1 and J2:
SWAP( ROWA(11), ROWA(I2) ) SWAP( COL_A(J1), COL_A(J2) )
SWAP( LOWA(I1), LOWNA(I2) ) INVCOL_A( COL_A(J1) ) =J1
SWAP( HGH A(11), HGH A(I2) ) I NVCOL_A( COL_A(J2) ) = J2

! Alternatively, array X could be permuted in-place if the permutation would be stored as a sequence of inter-
changes [78, p34-35].
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Below, an example is given in which we explore the steps that could be taken by the sparse

compiler to incorporate a very simple local strategy. Obviously, as more advanced methods to
select criteria for alocal method have been developed and incorporated in the sparse compiler,
a dense program that has been used earlier to obtain sparse code can be re-trandated into more
efficient sparse code without any modifications to the program.
Example: Consider the following implementation of LU-factorization, where annotations are
used to indicate that any apriori reordering may be applied to the implicitly sparse matrix A with
enveloping data structure A. Moreover, interchanging annotations are used to indicate that an ar-
bitrary element in the active sub-matrix may be used as pivot:

PROGRAM SOLVE SUBROUTI NE FACT(A, N)
INTEGER I, J, K N
INTEGER N REAL  A(NN)
PARAMETER (N = ...)
REAL ANN), B(N) DOK=1, N- 1
C SPARSE(A : _PERM C I NTERCHANGE(A, K:N > K, K:N > K)
DOI = K+ 1, N
CALL FACT(A, N) ALK = A(LLK) 1 ACK K)
CALL FORWA, B, N DOJ =K+ 1, N
CALL BACK(A, B, N) ACLLD) = ACLL) - A(LL K *ACK, J)
ENDDO
END ENDDO
ENDDO
RETURN
END

Asfar as the programmer is concerned, data in the enveloping data structure A is physically
moved according to PAQ), so that eventually the enveloping data structure A is overwritten with
elements of the factors L and U satisfying PA(Q = LU for the original matrix A. Consequently,
forward and back substitution can be implemented as follows. A right-hand side vector bis per-
muted into Pb before forward substitution, whereas the i n-place computed solution  is permuted
into (Q to obtain the desired solution after back substitution. Notethat asystem AX = B canbe
solved by repetitively calling subroutines FORWand BACK with the columns of X and B &fter a
factorization PAQ = LU has been computed, which effectively solves PAQQ" X = PB (see
appendix A for adetailed discussion of L U-factorization):

SUBROUTI NE FORW A, B, N) SUBROUTI NE BACK(A, B, N)
INTEGER |, J, N INTEGER I, J, N
REAL  A(NN), B(N REAL  A(NN), B(N
C INDUCE B < _RONA) DOI =N, 1, -1
DOl =1, N DOJ =1 +1, N
DOJ=1, 1 -1 B(1) = B(I1) - A(l,J) * B(J)
B(1) = B(I) - A(l,J) * B(J) ENDDO
ENDDO B(1) = B(I) / A(l,1)
ENDDO ENDDO
RETURN C_INDUCE B > _COLUMN( A)
END RETURN
END

Because the sparse compiler generates the clones FACT_A0, FORWAOQO, and BACK_A0O0 in
which Aisuniquely associated with the formal argument A, all permutation annotations uniquely
define the permutation matrices associated with the implicitly sparse matrix A.

Straightforward conversion of thefactorization codeinto sparse codeyieldsadightly different
version of the code presented in chapter 9. Now, however, permutations are accounted for:

DOK =1, N
... interchanging code ...
DOl = K+1, N
CALL SSCT__(VAL_A, IND_A, LOWA(I), HGH A(l), SAP_20, SWI_20)
IF (SW_20( COL-A(K))) THEN
SAP_20( COL_A(K)) = SAP_20(COL_A(K)) /

+ VAL A(LKP_ (IND A, LONA(K), HGH A A(K), COLA(K)))
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LEN J = HGH A(K) - LOWA(K)
DOJ_ =0, LENJ
J = INVCOL.A( | ND_A(LONA(K)+J_) )
| F (K+1.LE. J) THEN
I'F (. NOT. SWI_20(COL_A(J))) THEN
SWI_20( COL_A(J)) = . TRUE.
CALL SINS_(VAL_A IND A LONA HGH A I, NP_A SZ A LST A L_, COLA(J))

END | F
SAP_20( COL_A(J)) = SAP_20(COL_A(J)) - SAP_20( COL_A(K))*VAL_A(LOWA(K)+J_)
END | F
ENDDO
ENDI F
CALL SGTH__(VAL_A, IND A, LOWA(I), HGH A(l), SAP 20, SWI_20)
ENDDO
ENDDO

As shown in boldface, permutation arrays are used to translate column indices of the stored
sparse matrix into column indices of the permuted matrix. Because row interchanges are applied
by interchanging the row pointers accordingly, thistrandation is not required for rows. Likewise,
straightforward conversion of the implementation of forward and back substitution yields the fol-
lowing sparse fragments, in which the induction annotations are explicitly implemented:

DOI_=1, N DOI =N, 1, -1
PERM A(l ) = B(ROWA(I_)) IF (1+1. LE.N) THEN
ENDDO DO J_ = LOWA(l), HGH A(I)
DOI_=1, N J = INVCOLA( IND A(J) )
B(1_) = PERMA(I ) IF (1+1.LE.J) THEN
ENDDO B(1) = B(1) - VAL_A(J_) * B(J)
DOl =2, N ENDI F
DOJ_ = LOWA(l), HGH A(l) ENDDO
J = INVCOLA( IND A(J) ) ENDI F
IF (J.LE.1-1) THEN B(1) = B(1) / VAL_A(LKP__(IND_A,
B(1) = B(1) - VAL A(J) * B(J) +  LOWA(I), HGHA(l), COL.A(1)))
ENDI F ENDDO
ENDDO DOl =1, N
ENDDO PERM A(I ) = B(1_)
ENDDO
DOI_ =1, N
B(COL-A(1_)) = PERM A(I_)
ENDDO

Subsequently, the sparse compiler may select criteriatoimplement theinterchange annotation.
Infact, any local strategy varying from the minimum row in minimum column to the Markowitz or
minimum deficiency strategy may arise, because the sparse compiler can determine the conditions
under which creation occursin the | - and J-loop.

For example, because any row in the range [K, N] may beinterchanged with row K and because
the expression ‘HGH A( K) - LOWA( K) ' provides a very rough measure of the amount of fill-in
that could occur at each step K, the sparse compiler may decide to generate the following inter-
changing code in which a row that minimizes this expression is selected and interchanged with
row K:

C DETERM NE ROW
LEN = oo
DOl =K N
IF ((HGH_A(l) - LOWA(I)).LT.LEN) THEN
KK

|
HGH A(1) - LOWA(I)

LEN
ENDI F
ENDDO

C | NTERCHANGE ROAS
SWAP( ROW A(K), ROWNA(KK) )
SWAP( LOWA(K), LOWA(KK) )
SWAP( HGH_A(K), HGH A(KK) )
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Figure 10.6: Solving AZ = b

Furthermore, since element A( K, K) isinvolved in adivision and because any column in the
range [K, N] may beinterchanged with column K and because the pivot isinvolved in adivision, the
sparse compiler may decide to generate code in which an element in the upper triangular part of
the selected row with maximum absolute value isinterchanged to the pivotal position. A possible
implementation that assumes that such an element always can be found is shown below:

C DETERM NE COLUWN
M = -0
= LOWA(K), HGH A(K)
I NVCOL_A(I ND_A(J))
K. LE. J) THEN
(ABS(VAL_A(J_)).GT. M) THEN
KK =J
MX = ABS(VAL_A(J)))
ENDI F

ENDI F

ENDDO

mn—~

C | NTERCHANGE COLUWNS
SWAP( COL_A(K), COL_A(KK) )
INVCOL_A( COL_A(K) ) =K
I NVCOL_A( COL_A(KK) ) = KK

In figure 10.6, we present the execution times of different versions to solve Az = b on both
the HP and one CPU of the Cray for sparse matrices of varying size with arrow nonzero structures
similar to the first matrix in figure 4.13. Here, the execution times of the sparse implementations
without any permutation overhead when applied to the non-permuted matrices and matrices per-
muted on file using an apriori computed minimum degree ordering are shown. Furthermore, the
execution time of the version in which thisapriori reordering isimplemented using the permuta-
tion mechanism of the sparse compiler and the version with the previous presented local strategy
are shown. Obviousdly, theincorporation of areordering method enables amore effective exploita-
tion of the sparsity of the coefficient matrix.
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Unfortunately, however, dueto thefact that inthe current prototype only general sparse storage
can be selected for implicitly sparse matrices that may be permuted, still a sparse implementation
of LU-factorization results of which the execution time grows at least quadratically in the order
of the coefficient matrix. Because this makes solving large sparse systems infeasible, in afuture
implementation, theincorporation of reordering methods should be combined with the sel ection of
more advanced data structures in which, for example, the column structure of the matrix is stored
as well [105, 235]. In addition, more advanced data structures may be required to support the
selected local strategy inwhich, for example, linked lists sort rowsand columnsinincreasing order
of row and column count [74, 81]. Note that, in contrast with the previous example, in which an
inefficient pivot selection method could be used due to the fact that an inefficient implementation
of LU-factorization itself was used, in efficient implementations of L U-factorization, it becomes
extremely important to perform the selection of the next pivot very efficiently aswell.
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Conclusions

Although developing and maintaining sparse codesis a complex and cumbersome task, only lim-
ited compiler support for sparse matrix computations has been developed in the past. In this dis-
sertation, we have tried to make a step towards solving this omission by proposing an aternative
method to develop sparse codes. Rather than dealing with the sparsity at the programming level,
asis done traditionally, the sparsity of implicitly sparse matrices is dedlt with at the compilation
level by a sparse compiler. In this approach, the programmer defines al operations on implicitly
sparse matrices using simple two-dimensional arrays. The burden of sparse code generation is
completely placed on the sparse compiler which selects a suitable sparse storage scheme for each
implicitly sparse matrix and transforms the original dense code into sparse code that operates on
these selected storage schemes, thereby reducing the storage requirements and computational time
of theoriginal dense program. Intheintroduction of chapter 4, several advantages of thisapproach
have been discussed. Elaboration of these ideas has resulted in the development and implemen-
tation of a prototype sparse compiler. The automatic data structure selection and transformation
method that is used by this sparse compiler has been presented in detail in this dissertation. In ad-
dition, some initia experiments have been conducted that indicate that in many cases the sparse
compiler is capable of transforming a dense fragment into code that fully exploits the sparsity of
some matrices to reduce both the storage requirements as well as computational time of the orig-
inal implementation. Finally, we discussed the automatic exploitation of implicit parallelism in
the generated sparse code and explored incorporating sparsity preserving reordering methods.

In thisfinal chapter, we discuss the contributions of our research and shortcomings of the cur-
rent prototype. Moreover, we glance at related work, and we state topics for future research.

11.1 Contributions of this Research

Restricted by time constraints inherent to afour year research project on one hand, but driven by
the desire to actually implement the ideas proposed in the dissertation to demonstrate the feasibil-
ity of theseideas on the other hand, we decided toimplement a prototype sparse compiler by incor-
porating the automatic data structure sel ection and transformation method in an existing prototype
restructuring compiler MT1 [24, 37, 45]. The resulting prototype sparse compiler, in which not
al issuesthat should be dealt with in acommercially acceptable compiler are accounted for [212],
provides sufficient functionality to make afirst claim about the feasibility of automatically gener-
ating sparse codes.

The experiments of chapter 9indicate that in many cases the sparse compiler isableto convert
aparticular dense fragment into semantically equivaent code that fully exploits the sparsity of all
implicitly sparse matrices to reduce both the storage requirements as well as computational time
of the original implementation.
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Although more experiments and probably the development of more advanced transformations
and strategies to control these transformations are required to determine whether a successful con-
version isalso feasible for large programs, these results already indicate that a sparse compiler can
be very useful during development of a sparse algorithm. The experiments also indicate that the
selection of a sparse storage scheme for an implicitly sparse matrix can have a dramatic impact
on the performance of the resulting sparse code. Very efficient sparse code can be obtained if
characteristics of the nonzero structure of each implicitly sparse matrix are already know and ac-
counted for at compile-time. Although, in practice, these characteristics will not be known until
run-time, thisindicates that in principle the sparse compiler can be used to generate multi-version
code for an algorithm, in which each version is suited for a particular class of sparse matrices. At
run-time, the characteristics of the nonzero structure of each implicitly sparse matrix are deter-
mined by means of efficient automatic nonzero structure analysis, after which the outcome of this
analysis determines which version is most appropriate.

We d so have shown that this approach provides the sparse compiler with more opportunities
to exploit implicit parallelism and we have made a cautious step towards incorporating sparsity
preserving reordering methods in the generated sparse code. Although definitely more research
is required to make effective use of all these ideas, the fact that the complexity of writing sparse
codes can be reduced substantially by dealing with the sparsity of matrices at the compilation level
rather than at the programming level seems to justify this new approach. Moreover, the fact that
the sparse compiler can be used to transform an adjacency matrix representation into the more
economical adjacency structure representation, thereby reducing the complexity of the algorithm
accordingly (see section 9.2.6), reved s the potential of going beyond numerical applications and
to provide compiler support for other kinds of data structure transformations as well.

11.2 Shortcomings of the Prototype Spar se Compiler

While experimenting with the current prototype sparse compiler, some severe shortcomings were
encountered that should be fixed before this sparse compiler can provide a serious full alterna
tive to explicitly dealing with sparsity at the programming level. In this section, we discuss these
shortcomings.

A first shortcoming of the prototype sparse compiler isthat, although for many operations that
occur frequently in numerical programs, at least one obvious dense implementation exists that is
handled appropriately by the sparse compiler, there are also some operations for which any ob-
vious dense implementation becomes trandated into extremely inefficient sparse code. Consider,
for example, the following dense implementation of matrix transposition (found in any textbook
on programming, see e.g. [12]), in which annotations are used to enforce selection of the LDU-
scheme for the implicitly sparse matrix A with enveloping data structure A:

INTEGER |, J
REAL A(NN, TWP
C SPARSE(A : _SPARSE( 1 - N<=1 - J <= - 1)(0,1)))
C SPARSE(A : _DENSE ( O <=1 - J <= 0)(1,1)))
C _SPARSE(A : _SPARSE( 1 <=1 - J<=N- 1)(1,0))
DOl =1, N1
DOJ =1+1, N
TP = A(l,J) + true
A(l,J) = A>3, 1) «— (I1,7) e E(A)V (3,I) € E(A)
A(J, 1) = TWP + true
ENDDO

ENDDO
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Figure 11.1: Inefficient Transposition

Because guard encapsulation is not applicable to this fragment, the sparse compiler decides to
expand part of each | th row and column before the elements in these parts are interchanged, as
illustrated in figure 11.1. Unfortunately, however, although the generated sparse code is semanti-
cally equivalent to the original dense code, the resulting codeisembarrassingly inefficient because
completefill-in occursfor A, which clearly isan undesirable effect of transposing a sparse matrix:

DOI =1, N1
CALL SSCT__(VAL_A, IND A, LOWA(I+N-1), HGH A(I+N-1), SAP 11, SWI_11)
CALL SSCT__(VAL_A, IND A LOWA(I), HGH_A(1), SAP_10, SWI_10)

DOJ = I+1, N
TMP = SAP_10(J)
I F (. NOT. SWr_10(J)) THEN
SWI_10(J) = . TRUE.
CALL SINS_(VAL_A, IND A LOWA HGHA I, NP A SZ A LSTA L, J)
ENDI F
SAP_10(J) = SAP_11(J)
I F (. NOT. SWr_11(J)) THEN
SWr_11(J) = . TRUE.
CALL SINS_(VAL_A, IND A LOWA HGHA I+N-1, NP.A SZ A LSTA L, J)

ENDI F
SAP_11(J) = TWP
ENDDO
CALL SGTH_(VAL_A, IND A, LOWA(I+N-1), HGH A(I+N-1), SAP 11, SWI_11)
CALL SGTH_(VAL_A, IND A LOWA(I), HGH A(1), SAP_10, SWI_10)
ENDDO

The inefficiency of thisfragment isin strong contrast with the extremely efficient implemen-
tations of transposition that are possible for many sparse storage schemes. The LDU-scheme, for
example, can simply be transposed by interchanging the pointers to the columns and rows of the
strict lower and upper triangular part respectively. Asaready stated in chapter 4, efficient imple-
mentations to transpose a sparse matrix stored in a general sparse row-wise scheme can be found
in [106][169, p236-239]. Similar problems are encountered for dense implementations in which,
for example, row or column interchanges are explicitly implemented or where (parts of) matrices
are copied to an implicitly sparse matrix. Hence, apparently there are some constructs that must
be recognized explicitly by the sparse compiler to enable the generation of efficient sparse code.

Another problemisthat for larger problems, conflicts may arise that cannot beresolved. Partly
thisisto blame on the way in which transformations have been implemented in the current proto-
type sparse compiler. For example, the reshaping method uses the unimodular framework, which
is only applicable to perfectly nested sub-loops. For larger programs, it is more likely that un-
resolved conflicts remain. However, these are not the fundamental limitations of our approach,
because more advanced transformations that widen the scope of application can be incorporated
in afuture implementation. More fundamentally is the strategy required to control the different
program transformations, asisthe casefor conventional restructuring compilers. Weleavefinding
such a strategy as an open problem.
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Another drawback is that the prototype sparse compiler cannot handle existing sparse codes.
Obvioudly, it would be very useful if asparse compiler could provide some support to alter sparse
storage schemes in such codes. Now, each agorithm must written as a dense algorithm first. Al-
though this is much simpler than coding a sparse agorithm, this approach does not allow for
reusing existing sparse codes.

Finally, the limited support to incorporate sparsity reordering methods currently provided by
the prototype sparse compiler forms afundamental shortcoming. This should be fixed in afuture
implementation, probably in combination with the ability to select more advanced data structures.

Despite all these shortcomings, we would like to stress that for many small fragments, the
sparse compiler enabled us to rapidly obtain reasonably efficient sparse code which, if desired,
could be further improved by hand. Consequently, even if not all shortcomings are solved in a
future implementation, using a sparse compiler as a programming tool to develop new sparse al-
gorithms seems to have some potential .

11.3 Related Work

As dready discussed at the end of section 10.1, part of the compiler support for sparse matrix
computations has been focused on the run-time concurrentization of loops in which the data de-
pendence structure is determined by loop-invariant contents of arrays that are used as subscripts
[126, 134][155][157, p115-121][160][170, p66-81][188, 189, 190, 204, 206]. Compiler support
for cache optimization for band matrices is presented in [138].

Techniques required to make languages that facilitate data parallel programming also suitable
for irregular and sparse computations have been studied in [205, 207, 208, 209]. In this approach,
the compiler can automatically generate efficient code for distributed memory architectures. Since
thisissue has been left unexplored in this dissertation, no comparison can be given about the effec-
tiveness of this approach in relationship with our approach. In contrast with our sparse compiler,
however, the actual sparse storage schemes are not transparent to the programmer, but must be
explicitly operated upon in original code, which complicates the devel opment of the sparse appli-
cation. Future efforts could be aimed at combining the advancements made in both areas.

In general, much effort has already been put in the devel opment of sparse primitives. In chap-
ter 9, some references to papers focusing on efficiently implementing particular sparse primitives
have already been given. Some basic sparse operations are provided in the sparse extensions to
BLAS[68, 69]. Other primitives are supplied in the basic tool-kit SPARSKIT [185]. Complete
genera -purpose packages to solve systems of linear equations are also available (e.g. MA18,
MAZ27, MA28, SPARSPAK, Y12M [56, 78, 80, 81, 74, 94, 97, 169, 236, 164, 235]). The ex-
tremely good performance obtained in such packages for specific problems will makeit very hard
to automatically produce sparse code that is competitive with these applications. In case a pack-
age for a problem one wants to solve is already available, using a sparse compiler seems to be
less attractive, athough tailoring an application for one specific instance of a problem may offset
performance disadvantages. In general, the main potential for sparse compilers here isto assist
the devel opment of new sparse primitives or complete packages.

The automatic conversion of a high level functiona specification to an efficient implemen-
tation for sparse matrices also has been addressed. In [49], it is shown that a general realization
of Gaussian dimination can be automatically converted into atridiagonal solver by a number of
development steps, where each step goes towards alower level of abstraction. 1n[43, 88, 87], the
observation has been made that programmers will attempt to exploit characteristics of both the
target architecture as well as the data being operated upon (cf. chapter 1). Usualy thisimplies
that one particular algorithm is converted into several implementations, each of which istailored
for particular characteristics of the data and target architecture.
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Hence, here the same question as explored in this dissertation arises, namely whether this con-
version can be done automatically. The automatic conversion of ahigh level functional specifica
tion of adense algorithm into an efficient implementation for several target architectures in which
the sparsity of matrices is exploited, is presented in [88, 87]. Unlike our method, the program-
mer is still responsible for selecting a sparse storage scheme. On the other hand, in this approach
advantage of the symmetry of matrices can also be taken. Moreover, high-level functional speci-
fications do not suffer from the semantic gap between imperative programming and linear algebra
that is inherent to our approach. Functiona specifications allow for more freedom in code gen-
eration, making the transformations easier in general. Furthermore, being close to the underlying
linear algebra makes it probably easier to incorporate reordering methods that permute the sparse
matrices, an issue that has only been partly dealt with using awkward annotations in our sparse
compiler. However, in [88] it is till reported that automatically incorporating reordering meth-
ods may be difficult.

Finally, others [125] have started to follow our approach of automatically converting a dense
imperative program into sparse code by showing how a sequential implementation of Conjugate
Gradient can be automatically converted into a sparse implementation of this agorithm that is
suited for a distributed memory architecture.

11.4 FutureResearch

Future research should be focusing on improving the techniques presented in this dissertation and
the development of strategiesthat control the different transformations of the automatic data struc-
ture selection and transformation method. Moreover, the ability to select more advanced data
structures, possibly in combination with other representations of access patterns, supporting more
complex access shapes and striding information should be incorporated. In particular, the sparse
compiler must also be able to select sparse storage schemes for block forms, which enables the
automatic generation of block algorithms.

To improve the efficiency of the generated sparse code in case some conflicts cannot be re-
solved, the compiler should be able to generate code that changes the storage scheme of an im-
plicitly sparse matrix at run-time in between particular algorithms having inherently different ac-
cess patterns through an implicitly sparse matrix. Generating multi-version code should also be
addressed since, in practice, characteristics of the nonzero structure of implicitly sparse matri-
ceswill only be available at run-time. This may require the ability to parameterize the generated
sparse code, however, since we must be ready to deal with, for example, band matrices with vary-
ing bandwidths.

Finally, separating symbolic and numerical processing, an approach frequently taken in sparse
matrix computations, or automatically exploiting other propertieslike symmetry or the occurrence
of many ones could be studied and incorporated in future implementations of sparse compilers.



250 CHAPTER 11. CONCLUSIONS



Appendix A

A Brief Overview of Direct Methods

There are two different approaches to solve asystem of linear equations AZ = b. Indirect meth-
ods (see e.g. [78, 102, 163, 173, 178, 216]), the system is converted into an equivalent system
whose solutions are easier to determine by applying a number of elementary row or column op-
erations (cf. section 2.2.3). A completely different approach is taken in iterative methods (see
e.g. [53, 85, 163, 173, 210, 211, 213, 215, 216, 232]), where the number of operations required
is not known in advance. In linear stationary iterative methods of the first degree, for example, a
system A = b is solved by starting with someinitial guessin # (), after which the next approx-
imation of the solution is obtained as follows, where a non-singular splitting matrix M can be
used:

Mz®ED = (M — A)z® + 5 (A1)

Application of this method is useful, if for each initial guess, the sequence z (), (1), #(2)
and so on converges to the real solution of the system, i.e. lim;_,,, (") = Z. For M = A, the
method isidentical to adirect method. In general, however, a splitting matrix is used that can be
easly inverted.

Although iterative methods play avery important role in solving sparse systems, because the
storage requirements and roundoff errors can be reduced by only using elements of the origina
coefficient matrix, in this section wefocus on direct methods. In particular, we discuss someissues
related to the direct solution of dense, symmetric and sparse systems. Moreover, because using
adirect method to solve a sparse system suffers from so-called fill-in, we discuss some sparsity
preserving reordering methods that are used frequently in combination with direct methods.

A.1 Direct Methodsfor Systemsof Linear Equations

In this section, we focus on direct methods to solve a system A% = b, where A is a sguare non-
singular matrix (i.e. det(A) # 0). These methods are based on the conversion of this system into
an equivalent system with an upper triangular coefficient matrix.

A.1.1 Direct Methodsfor Dense Systems

First, we consider some direct methods for dense matrices.

Gaussian Elimination

A well-known direct method is Gaussian elimination (see e.g. [78, 102, 163, 173]), where the
conversion isdoneinn — 1 successive stages.
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Ateachstagel < k < n, an equivalent system Atz = pk+1) s obtained from the
previous system according to the following formulag, where A1) = A and b(") = b. All other
elements remain unaffected:

az(;-ﬁ_l) = ag-c) — (az(,]:)/a,g;c)) . a,(clj-) fork<i<n,k<j<n
(A.2)
B = b — (0fB) o)y 5B fork <i <m

Here, we assume that at each stage, the pivot a;’;g is nonzero. The variable z;, is diminated
from the equations k& + 1, ..., n by application of elementary row operations nullifying all ele-
ments below the diagonal in the kth column. All eementsinvolved in these computations consti-
tutethe so-called (n — k + 1) x (n — k + 1) active sub-matrix at stage k.

Inthe final system A = ™), matrix A™ isan upper triangular matrix U and the system
UZ = b™ can be solved easily by back substitution, explained below in more detail. Back substi-
tution is not required if A is converted into diagonal form by Gauss-Jordan elimination. Inthis
case, each component of the solution vector can be computed directly. Gauss-Jordan elimination
can also be used to compute A~ in-place [173].

LU-Factorization

A variant isformed by L U-factorization (seee.g. [78, 97, 169, 173, 175, 235]). This method con-
sists of computing atriangular factorization A = LU, in which U isthe upper triangular matrix
arising from Gaussian elimination, and L is a unit lower triangular matrix that represents al €-
ementary row operations. In particular, each stage of Gaussian elimination can be expressed as
A+ — 1K) AK) for 1 < k < n, where L) represents the elimination at that stage as follows
using the multipliers /;;, = ag’,?/a,g’;):

(k) — 1
L —lkt1,k (A3

~lnk 1
SinceU = L= ... LM A, the following factorization of A is obtained:
A= (L= (L=N)"'U = LU

The inverse of each lower column matrix L(*) is simply obtained by negation of al the off-
diagonal elements. Moreover, the product (L(M)~! ... (L("=Y)~" isalower triangular matrix in
which the off-diagonal elements in the kth column are the multipliersin (L(*))~!. Consequently,
the matrix L isin unit lower triangular form. The storage that is originally used to store A can
be used to store both the matrices L and U, i.e. the factorization can be computed in-place, if the
unit diagonal of L is stored implicitly. Each eliminated element ("™ in A®+1 for k < i < n
is simply replaced by the multiplier ;.

An dternative formulation of LU-factorization arises from the following factorization of a
partitioned matrix A, where H, = H — 5 -7 4" and we assume that d # 0:



A.1. DIRECT METHODS FOR SYSTEMS OF LINEAR EQUATIONS 253

1 0.0 d 0---0 Log-ar
d al 0 0
A‘(ﬁ H>_ v I : H : T (A4)
0 0

A recursively obtained factorization Hy = Ly DU, givesriseto thefactorization A = LDU
in which both factors L. and U are unit triangular and D isin diagonal form:

1 0---0 d 0---0 1 %-ﬁT
0 0
A= %-U L, : D, f U, = LDU
0 0

This defines either the factorization A = (LD)U or A = L(DU), in which only one fac-
tor is unit triangular. The latter factorization corresponds to the factorization presented above,
whereas the former factorization results if before each stage an elementary row operation is ap-
plied to obtain a unit pivot. In this case, each stage can be expressed as A(+1) = LK) p(k) A(k)
for 1 < k < n, whereeach n. x n matrix D*) represents the previous described normalization.
Since L(*) represents the elimination at stage &, we have L(™ = I.

Forward and Back Substitution

After thefactorization A = LU hasbeen computed (where L isin lower unit triangular form), the
system LU Z = b issolved in two steps. First, L& = b is solved by forward substitution, where

the components of ¢ are computed fori = 1,...,n:
i—1
¢ =bi— > lik-cx (A.5)
k=1
The remaining system U# = cis solved by back substitution, where the components of the
solution Z are computed for decreasing values: = n, ..., 1:
n
zi=(ci— D Uik k) [ i (A.6)
k=i+1

The advantage of LU-factorization over other direct methods is that if we want to solve the
system for multiple right-hand side vectors (i.e. solving AX = B), these right-hand sides do not
haveto be knownin advance [78, 200]. All forward operations are simply recorded in the factor L
during the factorization, so that these operations can be delayed until anew right-hand side vector
becomes available. LU-factorization can also be used to compute A~! by solving AY = I, or to
determine the determinant of A. Moreover, LU-factorization has a lower operation count than
Gauss-Jordan elimination for solving a system of linear equations, and performs equally well for
inverting amatrix if the special form of the right-hand sidein AY = T isaccounted for [173].

Pivoting for Stability

Row or column interchanges with a later row or column may be required during each stage of
L U-factorization for two reasons. First, in some cases arow interchange is necessary to obtain a
nonzero pivot (if such apivot cannot be obtained, the matrix is singular).
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The second reason for interchanging is due to the fact that representation errors for real num-
bers and inexact computer arithmetic may cause aloss of accuracy. Consequently, effectively a
factorization LU = A + H isobtained for some perturbation matrix H. Only if H isrelatively
small in comparison with A, the algorithm used to obtain the factorization is considered stable.

Stability can be controlled by limiting the growth of elements in the matrix during factoriza-
tion. Based on the bounds of elements of H derived in [21, 177], we can limit this growth by
enforcing the inequalities |I;;| < 1foral k& < i < n at each stage k. This can be achieved by
application of partial pivoting, where at each stage arow interchange is performed if necessary
to enforce the following inequality:

jage] > Joax age|

Alternatively, a column interchange can be used to obtain a pivot with the largest absolute
value in the kth row of the upper triangular part, enforcing the inequality |a§€’;) /a,(!;)| < 1foral
k < j < n. Although partia pivoting yields stable factorizations in practice, the growth of ele-
ments can be further limited by the use of complete pivoting, where row and column interchanges
may be applied to obtain a pivot with the maximum absolute value in the whole active sub-matrix.

Mathematically, there is no difference between applying al row and column interchanges to
the whole compact storage containing elements of both factors during factorization, or permuting
A into PAQ before the factorization, where the permutation matrices P and () represent the ac-
cumulated effects of al row and column interchanges respectively [78, p299]. This permutation
is called asymmetric permutation if P = Q7 holds. However, because row and column inter-
changes correspond to rearranging the equations and relabeling the components of & respectively,
these changes must be accounted for in the solution. We write the original system AZ = b as
follows:

(PAQ)Q"# = (LU)Q"# = Pb

This permuted system is solved by forward substitution of L¢ = Pb, followed by back sub-
stitution of U/ = ¢ and permuting the resulting vector according to ¥ = Q4.

Iterative Improvement

Even if pivoting is used by a direct method to preserve stability, inexact computer arithmetic is
responsible for the fact that, in general, we still may obtain the factorization PAQ + H = LU
for some perturbation matrix H. Consequently, if this inaccurate factorization is used to solve a
system of linear equations AZ = b as (LU)QTZ = Pb, then usually the computed vector Z differs
from the real solution. We can improve the accuracy of the computed solution by amethod called
iterative improvement or iterative refinement (see e.g. [78, 102, 173, 235]).

Starting with the computed solution in a.column vector z (9, at each step k the residual vector
7*) = — A7 *) isdetermined. If the current solution differs from the real solution z, then this
residual vector isnonzero. In this case, we can writethereal solution as = z (%) + 5 %) for some
unknown correction vector. Moreover, because A7 = A(# (k) 4§ (k)) isequa to 5, the following
equation holds:

AF®) = — Az®) = 7(®)

Because afactorization of A is available, the correction vector can be computed by solving
this system as (LU) Q™6 (*) = P (k). Subsequently, we can improve the solution as follows:

2+ _ 200 4§
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This method can be repeated if desired until some criterion has been satisfied. During this
process, it is essential to use more precision for the residual vector. Because both the origina
matrix A and thefactors L and U must be kept in memory, the use of iterative refinement increases
the storage reguirements of the solution method while additional computational time is required
to perform the iterations.

A.1.2 Direct Methodsfor Symmetric Systems

While solving a system AZ = b with asymmetric coefficient matrix, i.e. A = AT, symmetry is
preserved in the factorization if at any stage a suitable pivot can be chosen from the diagonal in
the active sub-matrix. Thisform of pivoting, referred to diagonal pivoting, yields the factoriza-
tion of asymmetric permutation PAPT = LDLT. In this manner, the storage requirements and
operation count of the factorization method are reduced by only computing L and D.

Choleski Factorization

A symmetric matrix A is called positive definite if z7 Az > 0 holds for all & # 0, negative
definiteif 7 A# < 0 holds for all # # 0, and indefinite otherwise. For a symmetric positive
definite matrix A, each diagonal element of D in the factorization A = LDLT is positive and
the factorization can be written as (LD?)(D>LT) = LLT. This Choleski factorization can be
obtained as shown below:

N7 1 0---0 vd -7
d &7 0 0
A:(U H>: it T . H S
0 0

In thisfactorization, H; = H — 5(6- o7 is again a symmetric positive definite matrix [97,
169]. Afterthefactorization Hy = Ly L{ has been obtained recursively, the Choleski factorization
of A isdefined asfollows:

Vvd 0---0 \/Eﬁ-{)’T

A= ~

7T L I
0

Given the Choleski factorization A = LLT, the solution of asystem A# = b is determined
by subsequently solving the systems L& = b and L77 = ¢.

Note that asymmetric positive definite matrix can be factorized without any pivoting. Another
important class of matrices for which pivoting is not required to control the stability consists of
diagonally dominant matrices, which are matrices for which the following condition holds for
al diagona elements and at least one of the inequalities is gtrict:

Jaiil > ) laij]
J#i
Hence, if adiagonal dominant matrix isalso symmetric, the symmetry can be easily preserved
in the factorization. Furthermore, because symmetric permutations preserve both properties de-
scribed above (i.e. if A isasymmetric positive definite matrix or diagonal dominant matrix, then
PAPT isaso asymmetric positive definite or diagonal dominant matrix), diagonal pivoting is
stable.
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Consequently, although pivoting isnot required for stahility, diagonal pivoting can be used to
preserve the sparsity of symmetric positive definite and diagonal dominant matrices, as explained
in more detail in following sections. For indefinite symmetric matrices, however, the use of diag-
onal pivoting may yield an unstable factorization method. Since the use of e.g. partial pivoting
would destroy symmetry, in these cases the notion of apivot isfrequently extended to 2 x 2 blocks
to preserve the symmetry [46, 78].

A.1.3 Direct Methodsfor Sparse Systems

In many scientific and engineering problems, asystem A# = b must be solved, where A isalarge
and sparse matrix. The storage requirements and computational time of direct methods may be
reduced substantially by exploiting the sparsity of A, athough additional nonzero elements may
appear during the factorization.

Fill-In

Usually, LU-factorization is used to solve asparse system A7 = b, because both factors L and U
in A = LU remain reasonable sparse, whereas A~ israther densein general [78, 200]. However,
even during LU-factorization, some zero e ements in the active sub-matrix become nonzero, i.e.
fill-in occurs, asillustrated in figure A.1. Usually, we ignore exact cancellation, which occurs if
subtracting two entries yields a zero, because this is only likely to occur frequently for specia
matrices, such as matrices with many ones.

Ingeneral, given afactorization PAQ = LU, wedefinethefilled matrix as L.+ U (defined as
L+ LT for the Choleski factorization PAPT = LL™). Obviously, Nonz(PAQ) C Nonz(L +U)
holds and the index set of all elements caused by fill-in is shown below:

Fill(PAQ) = Nonz(L + U) — Nonz(PAQ)

Because the sparse storage schemefor A isusually overwritten with the elementsin thefactors
L and U, eventualy sufficient storage must be available to store the entries of the filled matrix.
Hence, usually a dynamic storage scheme must be used. However, if Nonz(L + U) isknown in
advance (e.g. for (variable) band matrices without pivoting) or can be (conservatively) predicted
at run-time before the data structure isinitialized with symbolic factorization [78, 97, 131, 169,
182], then a static storage scheme can be used for the sparse matrix A. For example, in [99] sym-
bolic factorization in case partial pivoting will be used is simply based on taking the union of the
nonzero structures of al potentially target rows.
Example: In figure A.2, the nonzero structures of the test matrix D(20, 5) [164, 235] and the
corresponding filled matrix arising from LU-factorization without pivoting are shown.

=~

Figure A.1: ag-” = 0, whereas aE}““) # 0 because afy) # 0 and al(c];‘) 70
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Figure A.2: Original and Filled Matrix

Thisexampleclearly illustrates that usually adense active sub-matrix isoperated oninthelast
stages of the factorization. Hence, to avoid the computational overhead that isinherent to sparse
codes, in some codes a switch to dense storage of the active sub-matrix is made towards the end of
the factorization (see e.g. [ 76, 78]). This switch is performed as soon as the density of the active
sub-matrix exceeds a certain threshold depending on characteristics of the target machine.

Graph Representation of Nonzero Structures

The nonzero structure of a sparse n x n matrix A can be represented by a directed graph G =
(V,E), where V. = {uv,...v,} isafinite set of vertices which are labeled with the integers
1,...,n. If v; denotes the vertex in V' with label 4, then v; is associated with the ith row and
column, and thereis an edge (v;, v;) € E if and only if a;; # 0 holds [72, 78, 97, 108, 169]. If a
matrix, or at least its nonzero structure, is symmetric, then (v;, v;) € E impliesthat we also have
(vj,v;) € E, and an undirected graph can be used to represent the nonzero structure.

Since the transversal is usualy full, self-cycles caused by these el ements are mostly omitted
from the graph. Examples of an undirected and directed graph associated with a unsymmetric and
symmetric matrix are given in figure A.3. If we ignore the numerical values, the sparse matrices
precisely form the adjacency matrices of the associated graphs.

Elimination Graphs

Graphs provide an alternative view on operations on a sparse matrix that change the nonzero struc-
ture. Gaussian imination, for instance, can be interpreted as the generation of a sequence of
elimination graphs[78, 97, 167, 169]. We start with G; = (V4, E), representing the nonzero
structure of the original matrix A. Assuming that vertex vy is eliminated at stage &, elimination
graph G41 = (Vikt1, Exy1) isobtained from Gy, = (Vi, Ej) by removing vertex v, and al in-
cident edges, followed by addition of edge (v, w) for every (v,v;) € Ej and (vg, w) € Ey, where
(v,w) ¢ Ej.

O b WN PP
O b WD PP

Figure A.3: Nonzero Structures with Associated Graphs
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Hence, Vi1 = Vi — {’Uk} and Epiq = {(v,w) S Ek|’0 €V Aw € Vk—l—l} U Dy, where
for agraph G, and avertex vy, the deficiency Dy, is defined as follows:

Dy, = {(v,w)|(v,vt) € Ei, A (v, w) € B, A (v,w) & Ex Av # w}

The addition of each edge corresponds to fill-in, asillustrated in figure A.4. We assume that
at thefirst stage, entry a1, isused as pivot so that rows 3 and 4 become the target rows. Dueto the
elimination, elements a3, and a4o become nonzero. Thisis represented by the addition of edges
(3,2) and (4, 2) to the graph associated with this matrix. In this manner, a sequence of elimina-
tiongraphs G, G, . . . , G,, isobtained where, ignoring the possibility of exact cancellation, each
graph G, represents the nonzero structure of the (n — k + 1) x (n — k + 1) active sub-matrix
considered at stage k. If all edges that are added during this process are also added to the graph
associated with the origina matrix, thefilled graph Gr = (V, EF) is obtained, representing the
nonzero structure of the filled matrix.

Modeling Gaussian elimination as a sequence of graphs transformations is simple, but has
as disadvantages that dynamic data structures are required for the elimination graph with unpre-
dictable storage requirements. Therefore, in [96, 97] an implicit modd is discussed for the eimi-
nation graphs of symmetric matrices, as opposed to the explicit elimination graph model described
above. Thisimplicit modd is based on the observation that if = € V, isavertex in an elimination
graph G, and the set of vertices S = {vy, ..., v;_1} has been eliminated, the set of vertices that
are adjacent to this vertex z is described by Reach(z, S). The latter set is called areachable set
and consists of dl verticesy ¢ S for which thereisapath (z, w1, . .., w;,y) inthegraph G, asso-
ciated with the original matrix, where all w; € S and [ may be zero. For i < j, both (v;,v;) and
(vj,v;) are edgesin thefilled graph if and only if v; € Reach(v;, {v1,...,v;—1}). Fori > j, the
roles of 4+ and j must be interchanged. Thisimplies that the nonzero structure of the filled matrix
can be described in terms of the nonzero structure of the original matrix.

Because computing a reachable set can be expensive, athird model for elimination graphsis
considered in[97, 96]. Here, the elimination ismodel ed as asequence of quotient graphs, defined
by partitions on the vertex set. A partition P on the vertex set of agraph G = (V, E) consists of a
number of subsetsof V,i.e. P = {So,...,S,}, where S; C V, suchthat S;NS; = 0if i # j and
UP_, S; = V. The corresponding quotient graph is obtained by collapsing the vertices in each set
S; into so-called composite vertices. There is an edge between two composite vertices S; and S
if and only if (v, w) € E for somewv € S; and w € S;. By collapsing adjacent vertices that have
been eliminated into one composite vertex, no more storage than for the first graph is required,
whereas the reachabl e sets can be generated more efficiently.

Finally, a method to model Gaussian elimination by successively adding vertices to a graph
(rather than successively eliminating vertices) is presented in [131].

Permutations

A symmetric permutation of a matrix corresponds to a relabeling of vertices in the associated
graph, asillustrated in figure A.5 for the first matrix of figure A.3.

12345

g b wWwN -
1N
1N

Figure A.4: Addition of Edges
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Figure A.5: Symmetric Permutation

The nonzero structure of the permuted matrix is represented by the same digraph as associated
with the original matrix in which the vertices are relabeled according to the symmetric permuta-
tion. On the other hand, any relabeling of the vertices in the a graph associated with a matrix A
induces asymmetric permutation P AP of that matrix. Therefore, the problem of finding asym-
metric permutation of a sparse matrix satisfying certain requirements can usually be expressed in
terms of finding a particular 1abeling of the vertices in the associated graph.

Unsymmetric permutations, i.e. permutations PAQ where P # Q”, may alter the structure
of the graph representing the nonzero structure of matrix A. This has motivated the use of bipar-
tite graphs. For ann x n matrix, aset of 2 - n vertices is partitioned into R = (r4,...,r,) and
C = (c,...,c,) associated with the rows and columns respectively. There is an edge from ver-
tex r; € Rtovertex ¢; € C'if and only if a;; # 0. The nonzero structure of the matrix resulting
after any unsymmetric permutation is represented by the same bipartite graph in which the row
and column vertices are relabeled accordingly. For example, in figure A.6, an unsymmetric per-
mutation is applied to a matrix by interchanging rows 3 and 4 and columns 1 and 3. The nonzero
structure of the resulting matrix is represented by the bipartite graph resulting after application of
the sameinterchanges to the labels of the vertices representing the rows and columns respectively,
asillustrated in the same figure.

A.2 Sparsity Preserving Reordering Methods

An important observation in the solution of sparse systems of linear equations is that the factor-
ization of a permuted system may induce less fill-in than the factorization of the original system.
Methods that rearrange the equations and relabel the variables in order to preserve sparsity are
caled reordering methods.

A.2.1 Reordering Methods

Although [Nonz(A)| = [Nonz(P AQ)| holds for arbitrary permutation matrices P and @, the total
number of nonzero elementsin thefactorsof A = LU and PAQ = LU may differ.

R C R C
1 7 11234 1 3
2@ @ 2 g 2@ @ 2
3o 3 ., 161
4 4 3 4

Figure A.6: Unsymmetric Permutation
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Ideally, we would like to have a reordering method that determines permutation matrices for
which the minimum number of nonzero elements in the filled matrix results. In this manner, we
would minimize the amount of fill-in, which may be difficult to deal with, whereas preserving
sparsity reduces storage requirements, computational time and may even improve the accuracy of
the computed solution by diminishing the effects of accumulated errors[169, 198, 200]. However,
even finding a symmetric permutation satisfying this minimum fill-in objective is NP-complete
for both unsymmetric and symmetric matrices [182, 231]. Thisimplies that it is computational
infeasible to determine a permutation inducing the least amount of fill-in.

Therefore, in practice only heuristics are used yielding an acceptable but not necessarily op-
timal reduction of fill-in. Two different kind of heuristics can be distinguished [78], which are
discussed in more detail in the following section:

1. Local Strategies. At each stage of the elimination, apivot is selected minimizing somelocal
objective related to sparsity.

2. A Priori Reordering Methods: Before the elimination, the matrix is permuted into aformin
which zero elements areisolated, thereby confining fill-in to particular regionsin the matrix.

Local strategies are useful in combination with methods exploiting all zero elementsin ama
trix, whereas a priori methods are frequently used to permute a matrix into aform in which fill-in
is confined to particular regions. From a mathematical point of view, however, thereis no differ-
ence between the two methods, because in both cases the computed factorization can eventually
be expressed as PAQ) = LU.

Because, frequently, aparticular system must be solved for severa right-hand side vectors and
in some cases we must even solve severa systems having the same nonzero structure, the solution
method can roughly be divided into the phases ANALY ZE/FACTORIZE/SOLVE[56, 73, 74, 81,
78, 80, 94, 164, 236], which are implemented separately.

In the first phase a good ordering is determined, followed by the actual factorization in the
second phase, and computation of the solution in the final phase. If several systems having the
same nonzero structure must be solved, moretime can be spent in thefirst phase, because the costs
of the analysis can be amortized over all subsequent factorizations. In case the use of diagona
pivoting yields astable method, asymbolic factorization operating on the nonzero structureonly is
performed inthefirst phase. If, onthe other hand, the ordering depends on actual numerical values,
afactorization is obtained as side-effect of thefirst phase, called ANALY ZE-FACTORIZE in this
case. Now, we can till use the same ordering for subsequent factorizations, although we must
monitor the stability and repeat the analysis phasein case the method isunstable. Inall cases, once
afactorization has been obtained, we can repetitively execute the last phase to solve the system
for many right-hand sides.

A.2.2 Local Strategies

If weusealocal strategy to preserve sparsity, the stability constraints arising from partial or com-
plete pivoting are usually too restrictive with respect to the pivot selection.

A pivot which preserves the stability the best, may induce an unacceptable amount of fill-in, so
that atrade-off between maintaining stability and sparsity arises[177, 202, 235]. We can increase
the size of the candidate pivot set at the expense of apotential loss of accuracy by using so-called
threshold pivoting. While factorizing a sparse matrix A, at each stage k£ we permute an element
in the active sub-matrix satisfying the following row-wise oriented criterion for afixed0 < v < 1
to the position of the pivot:
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Column Count

Row Count

Figure A.7: Markowitz cost m > 4 for amatrix A

jagy)| > u- ax )| (A7)
Alternatively, a similar column-wise oriented criterion can be used. Which of these two cri-
teriais used depends on the storage scheme of A, since usually we can only access the entries in
either arow or column efficiently. Threshold pivoting resembles complete pivoting in the sense
that row and column interchanges are applied. It also resembles partia pivoting in the sense that
stability constraints are concerned with only a column or row in the active sub-matrix. Based on
experimentation, avalue v =~ 0.1 seems appropriate, athough this value may be different for
specific problems.

Markowitz Strategy

If we use rgk) and cg-k) to denote the number of entries appearing at stage & inrow 7 and column 5
inthe (n — k + 1) x (n — k + 1) active sub-matrix respectively, then the Markowitz cost of an
(k)

element a,;” in the active sub-matrix is defined as follows:

(i — 1) - () — 1) (A.8)

Examination of theformulation (A.4) of LU-factorization revealsthat, after possibly asuitable
pivot has been brought into position, the next active sub-matrix is updated with — éﬁﬁ T, Because
the Markowitz cost of an element isequal to the number of nonzero e ementsin the corresponding
updating matrix, a pivot having minimum Markowitz cost modifies the least elements. Further-
more, the Markowitz cost provides an upper bound of the amount of fill-in that may occur.

These observations give riseto the Markowitz strategy [78, 150, 169, 215, 200], in which at
each stage k, we use one of the elementsin the active sub-matrix satisfying arow- or column-wise
stability criterion for which the Markowitz cost is minimized as pivot. Note that, if we denote the
Markowitz cost of such an element by m, itispossible that thefollowing inequality holds, because
there is no (numerically acceptable) entry in the intersection of the rows and columns having a
minimum number of entries [78, 235]:

m > min (r§k> —1)- min (c(-k) -1)
k<i<n k<j<n

In figure A.7, for example, the minimum row and column count is rfll) = 3 and cgl) =3
respectively. However, because a4; = 0, an element having Markowitz cost m = (4 — 1) - (4 —
1) =9 > 4 will be used at the first stage.

To prevent the situation in which computational savings arising from fill-in reduction are out-
weighed by the costs of finding a suitable pivot, in [56, 80, 78] the following mechanism is used.
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Rows and columns are ordered in increasing entry count in a data structure allowing for an
efficient update at each stage. Rows and columns are scanned in increasing order of entry count,
taking rows before columns. The search can be terminated as soon as a stable element is encoun-
tered with a Markowitz cost that does not exceed (r; — 1)? while scanning arow with count r;, or
that does not exceed (c; — 1) - ¢; while scanning a column with count c;. This mechanism may

fail to find a suitable pivot quickly. In case cg.k) > rfk) holds for many elements satisfying the
stability congtraints, it is possible that alot of these elements are searched before the termination
criterion described above holds [235]. Furthermore, there may be many e ements with minimum
Markowitz costs that do not satisfy the stability constraints.

Therefore, the mechanism proposed in [164, 235, 236] only performs asearch of afew rowsin
increasing number of nonzero elements. Furthermore, all e ements in these rows are considered
and the element which is the largest in absolute value of al suitable elements is used as pivot.
Limiting the search for asuitable pivot yields an unacceptabl e increase of the amount of additional
fill-inin practice, reduces the pivotal search time substantially, and even may yield more accurate
solutions [235].

Minimum Degree M ethod

A symmetric version of the Markowitz strategy, useful for symmetric positive definite matrices for
which pivoting isnot required for stability and diagonal pivoting may be used to preserve sparsity
(see section A.1.2), is called the minimum degree method [52, 78, 97, 200]. At each stage k, a

symmetric permutation is applied, enforcing the following condition for the pivot a,(cl‘,?:

r,(ck) < max rgk)

T k<i<n

Because, effectively, at each stage we use a pivot corresponding to avertex in the dimination
graph with minimum degree, the minimum degree strategy is independent of any numerical val-
ues. Therefore, the ordering can be computed symbolically beforehand once the nonzero structure
of thematrix isknown. The ordering can be used for several systemswith the same nonzero struc-
ture. In[96, 97, 98, 144], various implementations of the minimum degree method are discussed
(yielding a symboalic factorization as side-effect).

No fill-in occurs with this strategy in case the original graph is atree, since only the leaf ver-
tices and possibly the root vertex have minimum degree and elimination of one of these vertices
yields a new tree without the introduction of additional edges. In generd, if we apply a symmet-
ric permutation to such amatrix according to a monotone labeling of the associated graph, where
each child appears before its parent in the labeling, then Gaussian elimination proceeds without
any fill-in [78, 167, 169].

Other Local Strategies

Simplifications of the Markowitz strategy, such asthemin.row in min.column strategy [78, 169],
where a pivot with minimum row count in the column with minimum column count is selected,
usually induce too much fill-in to be practical. On the other hand, gains arising from the reduction
of fill-ininthe more complex strategies are usually diminished by theincreasein searchtime. Such
acomplex strategy isformed by thethe minimum deficiency strategy [57, 78, 200, 215], wherea
pivot is used at each stage with a minimum size of the deficiency, locally minimizing the amount
of fill-in. However, even this strategy does not necessarily minimize the total amount of fill-in.
Hence, because the Markowitz strategy isrelatively simple to implement and yields a satisfactory
reduction of fill-in, this strategy has been most successful in practice.
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A.2.3 Unsymmetric A Priori Reordering Methods

We call amatrix A bi-reducible if there is a permuted matrix P A with a non-trivial partition
into block triangular form and reducible in case this matrix can be expressed with P = Q7 [108].
Furthermore, we will call amatrix fully reduced if it has a partition into block triangular form in
which all diagonal blocks are irreducible.! An important way to confine fill-in while solving a
system A = b isto fully reduce the matrix A initially.

A permutation achieving this goal can befound in two steps[78]. First, a permutation matrix
P isdetermined such that the matrix P A hasafull transversal, i.e. al elements along the diagonal
arenonzero. Subsequently, asymmetric permutation P(P A) PT isapplied to obtain ablock lower
triangular matrix.

A full transversal is constructed by applying one of the variants of the algorithm of Hall [78,
169]. Inthisagorithm, at each step & somerow permutations are applied extending the transversal
by one, while preserving the nonzero elements on the first £ — 1 diagona positions. Eventually,
for all matrices that are not symbolically singular [78, 169], a row permutation P results such
that all elements on the diagonal in P A are nonzero (in contrast, even some singular matrices can
have afull transversal). Alternatively, we can use the algorithm of Hopcroft and Karp, which
operates on bipartite graphs [169]. Although this agorithm has alower time complexity than the
agorithm of Hall, the latter performs better in practice.

One way to obtain ablock lower triangular form is based on the following method to permute
amatrix of which the nonzero structure is represented by an acyclic directed graph G = (V, E)
into lower triangular form. First, welabel al verticesv € V' with azero out-degree and eliminate
all incident edges (w,v) € E. Vertices of which the out-degree becomes zero are labeled next.
This process is repeated until al vertices have been labeled. If we apply the symmetric permuta:
tion induced by this relabeling to the matrix, then alower triangular matrix results (alternatively,
wecould relabel al vertices according to atopological sort of the graph, so that an upper triangular
matrix results). For arbitrary digraphs, this method can be applied at block level to the composite
vertices in the acyclic condensation of the graph [169, 234], which is the quotient graph defined
by the partition of the digraph into strongly connected components. If werelabel al verticesin V
according to the resulting labeling of strongly connected components, where all vertices appearing
in one strongly connected component may appear in arbitrary order, then ablock lower triangular
matrix results. The algorithm of Sargent and Westerberg [78, 169] determines this relabeling
during adepth first search of the digraph. Vertices appearing in acycle are collapsed into one com-
posite vertex as soon as the cycle is detected. However, because repetitive collapsing of vertices
can induce substantial overhead, it ismore efficient to use Tarjan’salgorithm [197], determining
all strongly connected components during a depth first search of thegraph in O(|V| + |E|) time.

After application of both steps, we obtain a permuted matrix P(PA)P” which can be parti-
tioned into ablock lower triangular form:

A oo Ay

This partitioned matrix is fully reduced, since each diagonal block corresponds to a strongly
connected component and as such is irreducible [108]. Edges that are incident to a vertex in a
following strongly connected component give rise to nonzero off-diagona blocks.

1 This partition is necessarily a minimum partition into block triangular form (see section 4.1.2). In contrast, the
diagonal blocks of aminimum partitioninto block triangular form can still be reducible, because this partition is defined
by the nonzero structure only and does not account for possible permutations.
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Figure A.8: Block Lower Triangular Form

An example of a symmetric permutation yielding a block lower triangular form is given in
figure A.8, inwhichtheoriginal labeling isalso used in the resulting matrix to illustrate the applied
permutation.

A system AZ = b can be solved as the following sequence of smaller problems for i =
1,...,p, Wherel/ = PPbandall vectors are partitioned according to the partition of P(PA)P™:

i—1
Aufii = b, = > Aiji;
j=1

Once i/ has been computed, the solution is defined by # = PTjj. Conceptualy, we apply a
forward subgtitution at block level. Solving A7 = b as a sequence of smaller problems has as
advantage that we only have to factorize the diagona blocks A;; to obtain the solution of each
subproblem. Consequently, al fill-inis confined to these blocks. During the factorization of each
diagonal block, pivoting for stability and preserving sparsity can be used. The off-diagonal blocks
A;; for i # j only participate in multiplications. Hence, these blocks do no suffer from fill-in.

A.24 Symmetric A Priori Reordering Methods

Any partition of amatrix A into sub-matrices A;;, where1 < i <pand1 < j < p, givesrise
to apartition of V inthe graph G = (V, E) associated with A. Obviously, the nonzero structure
at block level of a partitioned matrix A isrepresented by the quotient graph defined by the corre-
sponding partition of V. For example, the block lower triangular form considered in the previous
section is represented by the acyclic condensation of the associated graph. Another example is
shown in figure A.9. The four composite vertices in the quotient graph correspond to the four
diagona blocks in the partitioned matrix. Furthermore, there is an edge between two composite
vertices in case the corresponding off-diagonal block is nonzero.

If we use the quotient graph associated with a block matrix to predict fill-in, a rather pes-
simistic approximation of the resulting nonzero structure at block level may result because we
must assume that any product of two nonzero blocks yields a nonzero block.

3

O WNE

Figure A.9: Quatient Graph of a Partitioned Matrix
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But even in this model, we know that for matrices having a symmetric block structure rep-
resented by a quotient graph that is atree, performing the elimination according to a monotone
labeling of the composite vertices proceeds without any fill-in at block level.

Because in such matrices at most one nonzero off-diagonal block appears below and to the
right of each diagona block, we can avoid fill-in in the off-diagonal blocks of A while solving a
system AZ = Eby performing the following implicit block factorization [78, 97]. Let A;; for
1 <i<pandl < j < pdenote the blocksin A of which the quotient graph is a tree with a
monotone labeling. In that case, wefirst adapt the diagonal blocks asfollowsfori =1,...,p:

1—1
Di=Ay; — Y AyD;'Ay
j=1

Subsequently, the following computations are performed for i = 1,. .., p, inwhich al vectors are
partitioned according to the partition of A:

1—1
G =bi—) AiDj'c
j=1
Finally, the solution vector Z is obtained as shown below for: = p, ..., 1:

n
Bi=D; NG~ Y Ayc)
=it

We can avoid the explicit construction of each D, ! by performing all operations with the fac-
torization of these diagonal blocks. Because the off-diagonal blocks remain unmodified, all fill-in
is confined to the diagonal blocks. Therefore, some of the a priori ordering methods discussed in
this section try to obtain a partitioned matrix for which the associated quotient graph isatree with
amonotone labeling. Because the methods are developed for (nearly) symmetric sparse matrices,
al agorithms operate on undirected graphs, and symmetric permutations are used to preserve the
symmetry of the original matrix.

Cuthill-McK ee Method

The Cuthill-M cK eemethod [52, 57, 58, 72, 78, 149, 215] method i s used to reduce the bandwidth
of amatrix by constructing ablock tridiagona form. Starting with asingleton Sy = {vy }, where
v IS acertain vertex in the associated undirected graph, each next level set S; is constructed by
taking neighbors of vertices in S;_; that have not been used yet. In this manner, arooted level
structure [97, 169, 215] is obtained,? defined by the partition of the vertex set V' into level sets
So, - .. S;. The number [ in this partition is called the length. The following formula defines the
width of this level structure:

max |S;|
0<i<l
Subsequently, the vertices in the level sets of this leve structure are labeled consecutively.
Within each level set, vertices are labeled in the order in which the neighbors of these verticesin
the previous level set were inserted. Neighbors of the same vertex are labeled in the order of in-
creasing degree. Thiskind of labeling can be easily obtained by a breadth-first search of the graph
using a queue in which the neighbors of each next vertex are stored in order of increasing degree.

2Usually we assume that the associated undirected graph is connected. For disconnected graphs, the reordering
methods can be applied to the different connected components
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Figure A.10: Ring

The corresponding permutation gives rise to a matrix that can be partitioned into block tridiago-
nal form. The diagonal blocks are formed by the level sets, and off-diagonal blocks represent al
interconnections:
All A12
PAPT — A21 A22
. - Ap—1,p
Ap,pfl App

For example, we can use this method to reduce the bandwidth of the matrix shown in fig-
ure A.10, where the associated graph isaring [149]. Starting with Sy = {1}, we obtain the level
sets S1 = {2,8}, 52 = {3,7}, S5 = {4,6} and Sy = {5}. Permuting the matrix according to a
relabeling of the vertices in the order defined by the Cuthill-M ckee method yields the block tridi-
agona form shown in this figure. This example aso illustrates that labeling vertices in the same
level set according to the order in which the neighbors of these vertices were inserted (e.g. in Sy
vertex 3 islabeled before vertex 7 if vertex 2 isinserted before vertex 8 in Sp) tends to cut off the
corners of the off-diagonal blocks, which limits the resulting bandwidth.

The Cuthill-Mckee method is only effective if many small level setsresult. Since the result-
ing level structure depends on the choice of the initial vertex, in [58] several initia vertices with
low degree are considered. A good candidate for the initial vertex would be aperipheral vertex,
which isavertex v € V for which the largest distance to any other vertex in the graph, called
the eccentricity e(v) = max{d(v,w)lw € V}, isequd to the largest eccentricity over all ver-
tices, i.e. max{e(v)|v € V'}, caled the diameter of the graph. However, since obtaining such a
vertex would be computationally infeasible, usually a pseudo-peripheral vertex is used, which
is avertex v for which e(w) = e(v) holds for al w with d(v,w) = e(v) [169]. Such vertices
are probably just as good to start with and are easily obtained by an iterative construction of level
structures [169, 215].

First, alevel structure rooted at avertex » € V' of minimum degree is constructed. Thelength
of thislevel structure isequal to the eccentricity e(r). For each v inthelast level set, e(v) > e(r)
holds. Therefore, the level structures rooted at each of these vertices are constructed in order of
increasing degree. If alevel structure with greater length is obtained, the process is repeated with
that level structure. Otherwise, a pseudo-periphera vertex has been obtained. Some adaptations
have been proposed to improve the efficiency of this algorithm [95], although this may destroy
the property that a pseudo-peripheral vertex will be found. For example, we can terminate the
construction of arooted level structures of which the width exceeds the width of the current level
structure. Furthermore, we can limit the number of verticesin the last level set that are examined.

Consider, for instance, the undirected graph shown in figure A.11. Since al vertices have a
degree of at least 3, we can arbitrarily start with any vertex of this degree. If vertex f istaken as
root, a level structure of length 2 and width 4 results, where the last level set is {c,e,g,h}. TO
test whether f is a pseudo-peripheral vertex, level structures rooted at the vertices in this set are
constructed.
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Figure A.11: Finding a Pseudo-Peripheral Vertex

Usually, these vertices are also considered in order of increasing degree, since this tends to
reduce the number of level structures that must be constructed [78]. Since vertices ¢, e and h have
minimum degree, we can arbitrarily construct the level structure rooted at ¢ first, which is shown
in figure A.11. Although no improvement in the length is obtained, we cannot conclude that f
is pseudo-periphera according to the previous given definition, because we must also consider
al other vertices in the last level set of the level structure rooted at f. Construction of the level
structure rooted at ¢, for instance, resultsin alevel structure with length 3. Therefore, the process
isrestarted with the level structure rooted at e, asillustrated in figure A.11. Because the last level
set congists of vertex a only, and the level structure rooted at a aso has length 3, vertex e isa
pseudo-peripheral vertex with eccentricity 3. Infact, because the eccentricity of thisvertex isalso
egual to the diameter of the graph in this case, atrue peripheral vertex has been found.

Profile Reduction M ethods

Because aband form is preserved during Gaussian elimination without pivoting, the block tridiag-
onal form that is obtained by the Cuthill-Mckee method is very useful for methods that exploit all
zero elements outside the band. Reversing thelabeling of the graph, referred to asrever se Cuthill-
Mckeemethod [57], frequently reducesthetotal number of elementsintheprofile. Therefore, this
method is useful in combination with methods that exploit zero elements outside a variable band.
Additionally, if theunderlying graphisatree, nofill-inisproduced during L U-factorization in case
this method is used. Ancther profile reduction method isformed by King'salgorithm [57, 169].
Starting with avertex of minimum degree, we select each next vertex from the vertices that are ad-
jacent to aready labeled vertices causing the least increase in the number of verticesin that latter

group.

Refined Quotient Tree Algorithm

Another advantage of having a block tridiagonal matrix stems from the fact that the associated
quotient graph is asimple chain. Consequently, the corresponding system can be solved with the
implicit block factorization discussed at the beginning of this section. In an attempt to reduce
the total amount of fill-in that occurs during this factorization, the refined quotient tree algo-
rithm [97, 169] tries to convert such a quotient chain into a quotient tree by further partitioning
the level sets. The method is based on the observation that each level set S; can be partitioned
according to the connected components of the level sets S; for: < 7 < 1.
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Figure A.12: Refined Quotient Tree

For example, infigure A.12, sets {5} and {1, 2, 3,4} form the two connected components of
the last two level sets. Hence, S» can be further partitioned into {5} and {4}, resulting in the
quotient tree that is also shown in this figure. Subsequently, we permute the original matrix ac-
cording to alabeling of al vertices that corresponds to the monotone labeling of subsets in the
refined quotient tree (i.e. all vertices in a subset are labeled consecutively while the vertices in
one subset appear before all verticesin another subset if the former subset appears before the lat-
ter inthe monotone labeling). In general, smaller diagonal blocksresult, asillustrated with dashed
linesin the figure.

Dissection Methods

Another method to obtain apartitioned matrix of which the associated quotient graph isatree with
a monotone labeling is one-way dissection [97]. First, we determine a number of separators of
the associated graph. Obvioudly, if the vertices in these separators together with al incident edges
are removed, the graph becomes disconnected. Hence, we label all vertices in the disconnected
parts first, followed by all vertices in the separators. This relabeling induces a symmetric per-
mutation converting the original matrix into amatrix that can be partitioned into doubly bordered
block diagonal form. The diagonal blocks correspond to the disconnected parts, while the borders
correspond to the vertices in the separators.

A smple example is given in figure A.13, where the separators {4,5,6} and {10, 11,12} are
used and the original labeling is shown toillustrate the resulting permutation. Because effectively
a quotient tree results, again we can confine fill-in to the diagona blocks by using the implicit
block factorization presented at the beginning of this section. Moreover, because al diagonal
blocks have a band structure, we can exploit zero elements outside this band during factorization
of the diagonal blocks.
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Figure A.13. One-way Dissection
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Analysis of two-dimensional finite element problems (presented briefly at the end of this ap-
pendix) on regular m x [ grids, where m < [, can be used to determine the number o of vertica
grid lines that must be used as separators that dissect the grid into independent blocks of compa
rable size for which either the storage requirements, the factorization time, or the solution timeis
minimized. Theresults of thisanalysis can aso be used to obtain aone way dissection of irregular
graphs automatically, if we use the length of the level structure asameasure for [, and the average
number of elementsin each level set as ameasure for m. For instance, after arooted level struc-
ture of reasonable size has been determined, using the following level setsfor increasing value of
i as separators, will tend to reduce the storage requirements:

3m + 13
2

Vertices in these sets that are not connected to vertices in the next level sets can be removed
from these sets to obtain smaller separators. Vertices in each diagona block can be relabeled ac-
cording to reverse Cuthill-Mckee in order to reduce the bandwidth. In nested dissection [97], the
level setsthat isin the ‘middlie’ of arooted level set is used as separator and labeled lagt, so that
the parts that become disconnected are of comparable size. Subsequently, the resulting diagonal
blocks, corresponding to the separated connected components, are recursively ordered to doubly
bordered block diagona form. However, labeling all separators last causes al separators to ap-
pear in the border, which is more convenient with respect the required data structure. Again, the
vertices in the chosen level setsthat are not connected to vertices in the next set can be removed,
in order to reduce the size of the separators.

SU.(;JFO.E;J wherej =

Frontal Methodsfor Finite Element Problems

A method to find the solution of a partia differential equation on a particular region that alows
for anirregular distribution of grid pointsisformed by the finite e ement method (see e.g. [7, 143,
201]). Rather than presenting the details of this method, we will focus on the algorithmic aspects
of solving the corresponding systems of linear equations [169].

In thefinite element method, the region of interest isdiscretized by subdividing thisregioninto
simple non-overlapping sub-regions, referred to asfinite elements, where adjacent finite elements
share boundaries. We define nodes on the boundaries, and possibly in the interior of the finite
dements. Infigure A.14, for example, we present athree- and six-node triangular element and a
four- and eight-node quadrilateral elements which can be used in the two-dimensional case.

Y

Figure A.14: Some Two-Dimensiona Finite Elements

Thefinite elementsin the domain are label ed consecutively from 1 to m. Nodes on the bound-
ary of finite elements are shared by al finite elements to which this node belongs. Labeling all
nodes from 1 to n, we can express this information in the connectivity matrix E [169]. This
m X n boolean matrix hase;; = true if anode with label j belongs to element with label 4, and
e;; = false otherwise. In this sparse matrix, one row is associated with each element indicating
the nodes that belong to this element. Likewise, one column is associated with each node indi-
cating the elements to which this node belongs. Hence, sparse row-wise storage of E associates
alist of node labels with each finite element, thereby implicitly storing the value true.
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Figure A.15: Grid and Connectivity Matrix
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In sparse row-wise storage of E” (or sparse column-wise storage of E), we associate a list
of labels with each node, indicating the labels of the finite elements to which this node belongs.
Infigure A.15, for instance, we present the connectivity matrix for atwo-dimensional exampleis
given, where agrid is formed by four finite elements and six nodes.

Severd variables may be associated with each node. For instance, in the three-dimensional
case, adisplacement vector at a node can be decomposed into three components along the coor-
dinate directions. For scalar problems, however, only one variable is associated with each node.
In any case, the original problem can be formulated as alinear system of equations Az = b for a
nodal assembly matrix A, where the components of Z correspond to these variables. The nodal
assembly matrix A, alsoreferred to asthe stiffness matrix in structural analysis, consists of the sum
of element matrices Al¥! associated with each finite element. Computing this sum is referred to
as assembly:

A=Y AM (A.9)
k=1

Assuming that only one variable is associated with each node, each n x n element matrix Al¥]
has the property that agj] # 0 canonly hold if both the nodes with label 7 and 5 belong to thefinite
element with label k. Because only few nodes belong to one finite element, an element matrix
is usually stored as a small dense matrix with indexing information. This indexing information
can be thought of as atrandation from local (internal) node labels to global (external) node la
bels. Infigure A.16, the assembly of the nodal assembly matrix A belonging to the grid shown in
figure A.15 isillustrated.

In this example, the graph representing the nonzero structure of the resulting matrix A isiden-
tical to the grid. However, in general, all vertices corresponding to nodes in the same finite ele-
ment become connected, which may result in additional edges. For the grid shown in figure A.17,
additional edges arisein the graph representing the nonzero structure of the resulting matrix [215].

Because the nodal assembly matrix is assembled according to (A.9), we know that a;; # 0
can only hold if thereis afinite element to which both the nodes with labdl 7 and 5 belong (ignor-
ing exact cancellations that may occur during assembly). The nonzero zero structure of A can be
obtained by computing the product E” E, where the ‘and’ -operator is used for a product and the
‘or’-operator for asum.

U100

R R

123456

IR WNRF

Figure A.16: Assembly
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Usually, the number of nonzero elements in the resulting matrix is proportional to the num-
ber of nodes. Since thisimplies that only afew nonzero e ements appear in each row, the result-
ing noda assembly matrix can be very sparse. Therefore, a sparse method can be used to solve
the system A7 = b after the assembly has been completed. Furthermore, the fact that the semi-
bandwidth of A is defined as the maximum of |i — j| over al nodes with labels i and 5 belonging
to the same element justifies the use of aband method. A reordering method can be used to reduce
this bandwidth even further.

An dternative technique, referred to as the frontal method [7, 76, 78, 81, 169], is based on
the observation that eliminations can already be performed during assembly. A variable associated
with a node becomes active as soon asthe first finite element element to which this node belongs
isassembled, i.e. when the corresponding element matrix A*! isadded to A. The variable can be
eiminated after the last element in which this node occurs is assembled. Furthermore, the oper-
ations required for this elimination are confined to the sub-matrix formed by rows and columns
corresponding to currently active variables. Consequently, all operations can be performed to this
sub-matrix, called the frontal matrix, which is usually stored in a dense array that accounts for
the largest possible size. Data associated with a variable is moved from secondary memory into
this frontal matrix when this variable becomes active. After elimination of a variable, this data
is moved back to secondary memory. Pivating for stability can be incorporated in this technique
by the additional use of some threshold criterion and unsymmetric permutations. If required, we
delay some eliminations to obtain asuitable pivot, thereby only dightly increasing the size of the
frontal matrix in practice [78].

Thefrontal method differs from other sparse techniques because, instead of reordering the ma-
trix to reduce fill-in, we select an assembly ordering on finite elements that reduces the maximum
size of thefrontal matrix. The method all ows efficient execution on vector processors because op-
erating on the full frontal matrix avoids indirect addressing (see e.g. [76]), while very large prob-
lems can be solved because only the frontal method has to be kept in main memory. However,
athough the frontal method is an important technique, the sparse compiler presented in this dis-
sertation provides no support for frontal methods, but simply assumesthat all operations on sparse
matrices are performed after assembly.
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Samenvatting

Veel problemen binnen de natuurwetenschappen kunnen met behulp van matrices geformuleerd
worden. Het oplossen van dergelijke problemen kan gedaan worden door bepaal de operaties op
de matricestoete passen. Alseen computer gebruikt wordt voor het toepassen van deze operaties,
is een representatie voor matrices nodig. De meeste imperatieve programmeertalen ondersteunen
zogenaamde twee-dimensionale arrays, hetgeen de programmeur de beschikking geeft over een
datastructuur die nauw verwant is aan een matrix en tevens abstraheert van het feit dat de echte
representatie in het geheugen één-dimensionaal is.

In veel van bovengenoemde problemen komen echter zogenaamde ijle matrices voor, het-
geen matrices zijn die erg ved nul-elementen bevatten. Het moge duidelijk zijn dat, ook al is
het mogelijk om een twee-dimensionale array te gebruiken als representatie voor een ijle matrix,
het gebruik van een compacte representatie waarin aleen de niet-nul-elementen expliciet opge-
slagen zijn het geheugengebruik van een programma drastisch kan reduceren. Bovendien kan een
dergelijke representatie gebruikt worden om de totale tijd die nodig is om een programma uit te
voeren aanzienlijk te reduceren door onnodige operaties op nullen niet uit te voeren. Voor grote
ijle matrices kan het gebruik van een compacte representatie de enige mogelijkheid zijn om een
probleem binnen reddlijke tijd op te lossen.

Omdat dergelijke compacte representaties niet direct ondersteund worden in imperatieve pro-
grammeertalen, moet de programmeur datastructuren die wel ondersteund worden gebruiken om
een compacte representatie expliciet te implementeren. Programma’'s waarin dit gebeurt zijn bij-
zonder moeilijk te ontwerpen en te onderhouden. Vertalers hebben tevens moeite om dergelijke
programma’s te optimaliseren. Omdat huidige herstructurerende vertalers in staat zijn bepaalde
karakteristieken van een computer zeer succesvol te benutten, ligt het voor de hand te onderzoeken
of een herstructurerende vertaler ook karakteristieken van deinvoergegevens kan benutten om het
geheugengebruik en executietijd van een programma te reduceren. In tegenstelling tot conven-
tionele herstructurerende vertalers, die voornamelijk gericht zijn op het toepassen van programma-
transformaties, moeten in deze aanpak ook datastructuur-transfor maties toegepast worden.

In dit proefschrift wordt specifiek gekeken naar de mogelijkheid om een programma waarin
simpelweg een twee-dimensional e array gebruikt wordt al s representatie voor elkeijle matrix (een
niet-ijl programma) automatisch te converteren naar een programma waarin compacte represen-
taties gebruikt worden (een ijl programma). Om een efficiént programma te verkrijgen, moet de
ijle vertaler tijdens deze conversie rekening houden met de operaties die uitgevoerd worden op de
ijle matrices, patronen waarin niet-nul-elementen in elke ijle matrix voorkomen en de karakter-
istieken van de computer waarop uiteindelijk het programmauitgevoerd zal worden. Een herstruc-
turerende vertaler die een dergdlijke conversie uit kan voeren wordt een ijle vertaler genoemd.
Het automatisch gegenereerde ijle programma wordt vervolgens door een conventionele vertaler
vertaald naar machine code voor een bepaalde computer, zoals hieronder is geillustreerd:

niet-ijl ijle ijl conventionele machine
— — —
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Het automatisch genereren van een ijl programma geeft minder aanleiding tot het maken van
programmafouten dan het expliciet ontwerpen van eenijl programma. Bovendien verlicht eenijle
vertaler detaak van de programmeur. Deijle vertaler kan aan de hand van karakteristieken van de
computer, de patronen waarin de niet-nul-elementen voorkomen in deijle matrices en de operaties
die op die matrices uitgevoerd worden, geschikte datastructuren kiezen en een efficient ijl pro-
grammagenereren. Tenslotte, omdat eenijle vertaler defunctionaliteit van een niet-ijl programma
gemakkelijker kan doorzien dan defunctionaliteit van eenijl programma, is het gegenereerde pro-
gramma ook beter te optimaliseren.

De technieken die besproken worden in dit proefschrift zijn daadwerkelijk geimplementeerd
in een prototype ijle vertaler. Diverse simpele experimenten met deze prototype ijle vertaler zijn
tevens opgenomen in dit proefschrift.
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