111

Tl

L+ ch.00 -25.50

Figure F.4: horizontal color slice and contour slice of the pressure together with the map of
the HIRLAM domain

R

o

05,500

Figure F.5: iso surface of the wind at 40 knots together with the orography of the HIRLAM
domain

110 APPENDIX F. EXAMPLE IMAGES

Figure I'.2: contour surface of a 2-D field (without handle) and a 3-D field (with handle)

Figure F.3: legenda of the temperature

Appendix F

Example Images

el

Figure F.1: vertical color surface of the temperature together with the orography of the
HIRLAM domain

109

108 APPENDIX E. VOGL IMPLEMENTATION DETAILS

Note: This routine doesn’t yet work in the VIS-5D distribution of VOGL. It is prob-
ably obsolete as the line style is not device dependent any more. The linestyle
must be used when scan converting lines.

For full details the reader is referred to the X11 driver. The file X11.c¢ contains the complete
specification of a VOGL device driver.

E.2. VOGL DEVICE DRIVER STRUCTURE 107

Note: This routine is not available in the original VOGL distribution.
It is the responsibility of the device to approximate 24-bit color when a frame
buffer of only 8-bits is available.

DEV.mapcolor(int LUTindex, int r, int g, int b):
Changes a colormap index to a given RGB value.

DEV_font(char *fontfile):
Sets up a hardware font. This should also set vdevice.hwidth and vdevice.hheight,
which are the width and height of the current hardware font in pixels. VOGL assumes
that hardware text is of a fixed width.

DEV_char(char c):
Prints a character of hardware text. This routine must do any neccessary moving to
make sure the current drawing position on the device is correct, and it must leave the
device in graphics mode.

DEV_string(char s[]):
Prints a string of hardware text. This routine must do any neccessary moving to make
sure the current drawing position on the device is correct, and it must leave the device
in graphics mode.

DEV_f£ill(int n, int x[], int y[1):
Draws filled polygons, devices which do not support this should just do an outline.

Note: This routine is obsolete in the VIS-5D distribution of VOGL. It is never called
but included to retain backward compatibility.

DEV_backbuf ():
Initializes double buffering by selecting the back drawing buffer and performing any
other initializations. If no double buffering is supported, then —1 should be returned.

Note: The double buffering used is in fact pseudo-double buffering. Drawing is done
is a backbuffer which is copied into the front buffer when requested.

DEV_swapbuf ():
Swaps the front and back buffer. What it really does in most device drivers is copy the
back buffer into the front buffer.

DEV_frontbuf () :
Switches drawing into the front drawing buffer.

DEV_setlw(int w):
Sets the line width.

Note: This routine doesn’t yet work in the VIS-5D distribution of VOGL. It is prob-
ably obsolete as the line width is not device dependent any more. The linewidth
must be used when scan converting lines.

DEV_setls(int lss):
Sets the line style of line drawings.

106 APPENDIX E. VOGL IMPLEMENTATION DETAILS

There must also be a function in the device driver to copy the device driver structure in
the global (used) device entry. This function must be called conditionally from drivers.c
as should the device name print statement (the device are printed if VOGL is used, but no
device is set).

The nineteen functions required for a complete device driver are:

DEV_init():
Device initialization routine. A routine which enables graphics on the device, sets the
default color map, and sets vdevice.maxS[xy] and vdevice.minS[xy] to the window
size in pixels.

Note: In the VIS-5D distribution of VOGL this routine also initializes the palette to
colors distributed in the RGB space (when the frame buffer is only 8 bits).

DEV_exit():
Does the necessary cleaning up to allow VOGL to exit leaving the device in a usable
form.

DEV draw(int x, int y):
Draws a line from the current device position to a point (x, y) in vogle device coords -
note these assume that (0, 0) is the bottom left hand corner. This routine must update
the current device position.

Note: This routine is obsolete in the VIS-5D distribution of VOGL. It is never called
but included to retain backward compatability.

DEV_point(int x, int y):
Draws a single pixel in the current device color.

Note: This function is not available in the original VOGL distribution.

DEV_getkey():
Gets a single character of input from a device capable of providing it.

DEV_locator(int *wx, int *wy):
Returns the mouse position for the device in VOGL device coordinates (returned in the

arguments) and returns a bit pattern giving which buttons were down at the time of
the call.

DEV_clear():
Clears the current viewport to the current background color.

DEV_color(int LUTindex):
Changes the current device color to the specified LUT index.

DEV_RGBcolor(int r, int g, int b):
Changes the current device color to the specified RGB value.

E.2. VOGL DEVICE DRIVER STRUCTURE 105

void lmbind(short target, short index)
lmbind binds one of the eleven light controlling resource of the GL to a resource defined
by 1mdef. target can be one of MATERIAL, BACKMATERIAL, LIGHT [0-7] or LMODEL.

void shademodel(long model)
Sets the shading model. Two shading models are supported: FLAT and GOURAUD.

long getsm(void)
Returns the current shading model. The value returned can be either FLAT or GOURAUD.

E.1.4 Depthcueing functions

Private functions:

void calc_depthcue(Vertex *v)
Calculates the color of the given vertex v using the Screen Z-coordinate of v and the
current RGB and Z-range.

Public functions:

void depthcue(int onoff)
Turns depth-cueing on or off. If onoff is zero, depthcueing is turned off. Otherwise it
is turned on.

void 1RGBrange(short rmin,gmin,bmin,rmax,gmax,bmax,long znear,zfar)
Specified the RGB color and 7 range to be used for depth-cueing. The values rmax,
gmax and bmax are mapped to znear.

E.2 VOGL device driver structure

VOGL device drivers contain the following information:

e Three character pointers giving:

— The name of the device,
— The name for the small hardware font,
— The name for the large hardware font.
e 19 function pointers giving the functionality of the device. If a device is not capable

of some function (eg. color changing) a no-op function should be provided which has a
return value of —1.

104 APPENDIX E. VOGL IMPLEMENTATION DETAILS

LMC_COLOR: RGB color commands will set the current color. If a color is the last
thing sent before a vertex, the vertex is colored. If a normal is the last thing sent
before a vertex, the vertex will be lighted. LMC_COLOR is the default mode.

LMC_EMISSION: RGB color commands will set the EMISSION color property of
the current material.

LMC_AMBIENT: RGB color commands will set the AMBIENT color property of
the current material.

LMC_DIFFUSE: RGB color commands will set the DIFFUSE color property of
the current material. Alpha, the fourth color component specified by RGB color
commands will set the ALPHA property of the current material.

LMC_SPECULAR: RGB color commands will set the SPECULAR color property
of the current material.

LMC_AD: RGB color commands will set the DIFFUSE and AMBIENT color prop-
erty of the current material. Alpha, the fourth color component specified by RGB
color commands will set the ALPHA property of the current material.

LMC_NULL: RGB color commands will be ignored.

IMPORTANT: 1mcolor does NOT change the data structures holding the material
definitions, but is provided to support fast changes to the current material, without
changing the definition of the currently bound material. Thus lmcolor changes are lost
whenever a new material is bound. only the MATERIAL properties can be changed, not
those of the BACKMATERIAL.

void n<len><type>(type normal)
These functions are named identical as the color functions (prefixed with an n instead
of an ¢, and are used to specify vertex normals. len can currently only be 3. type can be
s (short), i (long),d (double) or £ (float). Vertex normals must be normalized in order
for the shading calculation to be meaningful, because the dot product of the vectors is
used as a measure of the angle between the vectors. See also the function nmode().

void nmode(long mode)
Tell the GL when normal vectors must be normalized. mode can be:

e NAUTO, normalize vectors only when the current ModelView matrix is not orthonor-
mal.

e NNORMALIZE, always normalize vectors, disregarding the current ModelView ma-
trix.

Even in hardware, re-normalization can have an adverse effect on the performance.

void lmdef(short deftype, short index, short np, float propsl[])
Defines or modifies a material, light source, or lighting model. deftype can be one of
DEFMATERIAL, DEFLIGHT and DEFLMODEL. index is the index of the resource to define
or modify (each resource type has an unique array of definitions). np is the number
of entries in the props array, props contains the various attributes appropriate to the
type of resource. The kinds of attributes available for each resource type were listed in
section 3.1.3.

E.1. VOGL ENHANCEMENTS 103

void ccall(short r, short g, short b, short a)
Generic color processing functions. All public RGB color functions call this function.

The 4 arguments are clipped to a limit of 255. Then depending on the color mode, see
section 3.1.3, the current color is set or a specific material characteristic is set.

Public functions:

void cpack(unsigned long argb)
Specify a true red, green, blue color using the packed ARGB format (the 4 color com-

ponents are packed into one unsigned long as 0xAARRGGBB). The A component is
the alpha (transparency) component and is currently not used in VOGL.

void RGBcolor(short r, short g, short b)
Equal to cpack() only specifies no alpha component and red, green and blue separately.

void c<len><type>(type colors)
These are various color specification functions which all take a vector (an array) as input.

<len> determines the length of the vector expected and can be 3 (array contains red,
green and blue values) or 4 (alpha component also included). <type> determines the
type of the array and can be s (short), i (long) or f (float). Colors are clipped to a
maximum of 255. If the float variant of the function is used, values are expected to be
in the range 0.0 - 1.0. For the other functions the range is 0 - 255.

E.1.3 Lighting functions

The following functions are implemented for GL lighting support:

Private functions:

void calc_shade(Vertex *v)
Calculates color of vertex v. The supplied Vertex struct should contain the trans-

formed vertex position in Eye coordinates. When lighting is on, the color is calculated
using the vertex normal and lighting model. Otherwise the vertex is colored (using the

current color).

void init_lightmodule(void)
Initializes the light module by binding all eleven lighting controlling resources to zero.
The shading model, lighting and normalization modes are also initialized.

Public functions:

void Imcolor(long mode)
Specifies the color mode. The color mode determines the effect of color commands like

cpack() and the c calls. The following color modes are possible:

102 APPENDIX E. VOGL IMPLEMENTATION DETAILS

Private functions:

zbuftype WtoSz(Vector v)
Returns the Screen Z-coordinate of the Vector v (which must be in Clip coordinates).

int zbuffer_condition (Scoord x, Scoord y, zbuftype z)
Eight zbuffer test functions which all return TRUE and update the Z-buffer if condition
is TRUE, which can be never, less, equal, lequal, greater, notequal, gequal and always.
Selection of the functions is done by zfunction(), which sets a function pointer to
one of the eight functions (a case statement is probably too slow because the selected
function must be called for every pixel in every geometry).

void zbuffer swapbuffers(void)
Swaps the Z-buffers (only when double-buffering is supported and activated).

Public functions:

void zbuffer(Boolean onoff)
Turns Z-buffering on or off.

void zfunction(int type)
Specifies one of eight Z-buffer comparison functions that determine if a pixel must be up-
dated or not. Possible values for type are ZF_NEVER, ZF _LESS, ZF EQUAL, ZF_LEQUAL,
ZF _GREATER, ZF_NOTEQUAL, ZF_GEQUAL and ZF_ALWAYS. Forinstance, if ZF_LESS is cho-
sen, a pixel is updated if the Z-value of the incoming pixel is less than the existing Z-value
in the Z-buffer.

void lsetdepth(unsigned long near, unsigned long far)
Sets the range of Z-buffer values that values in clip coordinates are mapped to.

void zclear(unsigned long zfar)
Clears the Z-buffer to the specified value.

void czclear(unsigned long color, unsigned long zfar)
Clears both the Z-buffer and the color frame buffer. This function has been provided by
the GL because clearing both buffers at once can often be done in hardare faster than
clearing the buffers separately using the functions clear() and zclear(). This is not
the case in VOGL.

E.1.2 RGB color functions

Since VOGL only supported colormap mode, the following functions had to be implemented
in order to enable the specification of RGB colors:

Private functions:

Appendix E

VOGL implementation details

This appendix describes the enhancements made to VOGL and the structure of VOGL device
drivers. Of the private functions, only the most important are discussed. The reader is referred
to the source code for further detail. The public functions are all discussed.

E.1 VOGL enhancements

The list of typedefs of VOGL have been extended with the following new typedefs:

e zbuftype. This is the type used for each entry in the Z-buffer. It can be changed,
but then also the #define for MAXZ must be changed. MAXZ represents the maximum
number that fits in the type zbuftype.

e Vertex. This is a structure which holds information about vertices. It contains the
following members:

— v, vertex position in Object coordinates (as specified by the user),
— eye, vertex position in Eye coordinates,

— clip, vertex position in Slip coordinates,

— 8%, vertex x position in Screen coordinates,

— 8y, vertex y position in Screen coordinates,

— 8z, vertex z position in Screen coordinates,

—r, g, b, a, vertex color and transparency when in RGB mode,

— color, vertex color when in colormap mode (currently not used).

E.1.1 Z-buffer functions

The following functions have been implemented to support Z-buffering;:

101

100 APPENDIX D. VIS-5D MODIFICATIONS

D.A4.

D.4

VOGL RELATED MODIFICATIONS 99

When the interface of extract vslice() is altered, it is of course necessary to change
all the function calls as well. The changed vertical slice routine is not enough however
to visualize wind slices correctly. The wind vectors are scaled with a constant factor
in the function calc hwind() and calc_vwind(). The scaling must be changed when
pressure levels are used.

calc_hwind() and calc_vwind()

e Change the scale factor for the W component of the wind.

VOGL related modifications

In order to use VOGL with visbd the following modifications must be made.

(x.h)

In x.h the VOGL include file vogl.h must be included.

(graphics.c)

The graphics module contains all 3-D graphics library specific code. Fach function in the
graphics module contains system specific parts for the various graphics libraries used by VIS-
5D. In order to use VIS-5D with VOGL, some functions must be extended with a code section
specific to VOGL, while other functions can use the same code as the SGI and IBM systems

does.

The last code sections are enclosed by sgi_or_ibm_or VOGL preprocessor statements

and can be easily identified. Function which are different for VOGL with respect to the SGI

are:

init_graphics. Initialization is split in a system specific part and a VOGL specific
part. The first part initializes the variables ScreenWidth and ScreenHeight to the size
of the screen, and the second part sets variables which indicate the functionality that
is available in VOGL such as High Quality rendering and screendoor transparency.

make window. This function creates the 3-D window and initializes the graphics module.
VOGL must be instructed to use the window created in this function. This is done by
calling the (X11 driver specific) function vo_xt_window(). Furthermore, VOGL doesn’t
support screendoor transparency, which doesn’t have to be initialized.

set_color(). Sets the current color and transparency. The latter is not set for VOGL.

polytrinorm(). Due to strangeness in the IBM hardware it is necessary to break
polytriangle strips into individual triangles and test to make sure the normal vectors
are correct. Also triangles with zero area must be culled out. Apparently, VOGL
suffers from the same behaviour, because the same precautions are necessary when
using VOGL.

Other changes are necessary to disable calls to transparency functions.

98 APPENDIX D. VIS-5D MODIFICATIONS

grid.c:
(read_old grid)

e Set the LevelType variable to HEIGHT LEVELS.
(read new grid)
e Set the LevelType variable to HEIGHT LEVELS.

Note that in the function read_varNL_grid() the LevelType is read from the file. This
is not conditional, the leveltype is always available in this type files (ID = 0x80808085).

(load_dataset_grid)

e Depending on the leveltype read from the file (or set to the default value), ini-
tialize the variable pairs BottomCoordinate, TopCoordinate and BottomBound,
TopBound to the appropriate values. For height levels, the coordinate pairs are
equal, i.e. BottomCoordinate = BottomBound equals the height of level 0 and
TopCoordinate = TopBound equals the height of level MaxNL - 1. For pressure
levels, BottomBound must be set to 0 instead and TopBound to MaxNL. A warning is
printed if an unknown leveltype is encountered and HEIGHT LEVELS is used instead.

(get_grid_value)
e Implementation of the same type interpolation as described in section 5.2.1.

render.c:
(draw_box)

e When real domain bounds must be printed near the box corners, use the variables
BottomCoordinate and TopCoordinate instead of the variables BottomBound and
TopBound used previously.

draw_slice_tick()

e Use BottomCoordinate and TopCoordinate to calculate the level values to place
at slice ticks.

work.c:
extract_hslice()

e Use linear interpolation for HEIGHT_LEVELS and other levels (default). When
LevelType is PRESSURE LEVELS however, interpolation must be performed using
the log of the level pressures. The pressure of the level to extract is calculated using
linear interpolation between the two adjoining levels, and the resulting pressure is
used to calculate new interpolation fractions, as described in section 5.2.1.

extract_vslice()

e Logarithmic interpolation of vertical slices is currently not yet implemented, but
the places are marked where modifications must be made. A method that can be
used is described in section 5.2.2.

D.3. LOGARITHMIC INTERPOLATION MODIFICATIONS 97

D.3 Logarithmic interpolation modifications

The C preprocessor statements have the following form:

#ifdef LEVELTYPES
<newcode>
#else
<oldcode>
#endif

A new global variable int LevelType is declared to contain the leveltype of the data. Cur-
rently LevelType can have the following values:

HEIGHT _LEVELS: Metres are used as unit of the vertical coordinate.This is the default
leveltype and used for old COMP files. VIS-5D should behave as before for data defined
at height levels.

PRESSURE_LEVELS: Pascal is used as unit of the vertical coordinate. If data with
this leveltype is visualized, vertical interpolation is performed using the logarithm of
the vertical pressure coordinate.

Furthermore, because the vertical coordinate stored in the Height[] array doesn’t have to
be the height of the levels in metres anymore, these values can’t be used for scaling of the
topography. Two new variables are used: BottomCoordinate and TopCoordinate represent
the bottom and top of the domain in units of the vertical coordinate. The already existing
variables BottomBound and TopBound represent the top and bottom of the domain in kilome-
tres. The first pair of variables is used to calculate values to place at slice ticks i.e. the real
vertical coordinates. The second pair of variables is used to scale the height of the topography,
etc. to the correct height.

The following changes have been made to vis5d:

globals.h:

e Declare variables
— extern int LevelType,
— extern float BottomCoordinate,
— TopCoordinate.
and preprocessor constants
— HEIGHT_LEVELS,
— PRESSURE_LEVELS.

globals.c:
Idem as globals.h but only the variables and without the extern class.

96 APPENDIX D. VIS-5D MODIFICATIONS

static int compress_iso_verts2(vx, vy, vz,
cVX, Ccvy, cvz, verts, numlev)
int numlev;

This function is obsolete and only changed to preserve consistency.
(extract hslice)

o New interface for extract_hslice():

static float* extract_hslice(grid, level, colmajor, numlev)
int numlev;

where numlev is the number of levels of the parameter for which to extract a slice.
It is used as an upper bound for the level to extract.

(calc_hslice)

e Modified function call to extract hslice, passing the extra parameter NL[parm].
(calc_vslice)

e Set the number of rows in the vertical slice to the number of levels of the parameter.
(calc_chslice)

e Modified function call to extract hslice, passing the extra parameter NL[parm].
(calc_cvslice)

e Set the number of rows in the vertical slice to the number of levels of the parameter.
(calc_ hwindslice)

e Modified function call to extract hslice, passing the extra parameter WindNL

(for U, V and W).

e Calculate the Z-coordinate of the horizontal wind slice using WindNL.
(calc_vwindslice)

e Set the number of rows in the vertical slice to the number of windlevels, WindNL.
(calc_traj)

e Convert from grid to graphics coordinates using WindNL (and check if WindNL is
zero).

D.2. 2-D FIELDS MODIFICATIONS 95

e The new slice position is scaled using MaxNL, but clipped to the extra parameter

maxlevel.

(move_vslice)

e New interface for move_vslice():

static int move_vslice(numlevels,
curx, cury, ril,cl, r2,c2, corner)
int numlevels;

where numlevels is a new input parameter and holds the number of levels of the
parameter for which a vertical slice is moved.

e Set the number of levels of the vertical slice to move to the supplied value numlevels.

(move_slice)
e Callmove hslice() and move_vslice() with the new supplied parameter (6 times).
traj.c:
(trace)
e Set ql the vertical box dimensions) to the number of levels of the wind parameters,

WindNL.

work.c:
(calc_surface)

e Call main march() with the correct number of levels, NL [parm].

e Pass an extra parameter to compress_iso_verts. The number of levels must be
used in that function to scale the Z-coordinates of the calculated iso-surface.

(compress_iso_verts)
o New interface for compress_iso verts():

static int compress_iso_verts(vx, vy, vz, vpts,
cVX, Ccvy, cvz, verts, numlev)

int numlev;

where numlev holds the number of levels of the parameter for which the iso-surface
generated must be compressed. If numlev is one, a warning is given. This should
never occur because iso-surfaces cannot be calculated for single-level fields.

(compress_iso_verts2)

o New interface for compress_iso verts2():

94 APPENDIX D. VIS-5D MODIFICATIONS

(draw_chslices)

o If a horizontal color slice is drawn for a single-level field, initialize the Z-coordinate
of the slice to Zmax instead of doing the division (which will be a division by zero).

e Disable the drawing of slice ticks for single-level fields (color slices).
(draw_hwind)

o If a horizontal wind slice is drawn for a single-level field, initialize the Z-coordinate
of the slice to Zmax instead of doing the division (which will be a division by zero).

e Disable the drawing of slice ticks for single-level fields (wind slices).
(draw_slice_tick)

e Calculate the slice tick Z-position from MaxNL (and make sure that MaxNL is greater
than 1 (MaxNL could be 1 if only single-level fields are in the data set)).

e Idem as above, now to calculate the slice tick level value.

save.c:
(save)

e Calculate the correct number of bytes to save using NL[ip].

e Write the correct number of ga, gb and grid values using NL[ip].
(restore)
e Read the correct number of ga, gb and grid values using NL[ip].

slice.c:
(distance_to_hslice)

e Calculate the normalized slice level using MaxNL and check if MaxNL is greater than
one.

(find nearest_slice)

e Skip single-level field slices when searching for the slice nearest to a given cursor
position. These slices have no slice tick, so they can’t be moved.

e Do the same for color slices.

e Do the same for wind slices.
(move_hslice)

e A new interface:

static int move_hslice(curx, cury, level, corner, maxlevel)
int maxlevel;

with a new variable which holds the upper bound on the slice movement.

D.2. 2-D FIELDS MODIFICATIONS 93

e Use NL[ip] instead of N1 as upper bound for the for-loops.
(decompress)

e The modified decompress () interface:
static int decompress(ip, data, compdata, ga, gb)

int ip;

with an added ip parameter to use as index into the NL[] array.

e Use NL[ip] as upper bound for the for-loop.

gui.c:
(create_widgets)

e Create no buttons for single-level fields for iso-surfaces and vertical slices.
(add_button_row)

e When a new button row is created (for clone and analysis variables) disable the
iso-surface and vertical slice buttons if the variable has only one level.

(init new_var)

e Initialize the horizontal slice level to (NL[newvar]-1)/2. This will be zero for
single-level fields, which is correct.
e Do the same for horizontal color slices.

main.c:
(initialize2)

e Initialize the horizontal contour and color slice levels of all physical parameters to
(#levels)-1)/2, as in gui.c.

e Initialize the horizontal wind slice levels to (WindNL-1)/2.

e Initialize the 3-D cursor position to the middle of the box (MaxNL-1)/2.

render.c:
(init_box)

e Initialize the scale of the box using MaxNL instead of N1.
(draw_box)

o When plotting grid dimensions at the corners of the box, MaxNL should be used.
(draw hslices)

o If a horizontal contour slice is drawn for a single-level field, initialize the Z-
coordinate of the slice to Zmax instead of doing the division (which will be a division
by zero).

e Disable the drawing of slice ticks for single-level fields (contour slices).

92

APPENDIX D. VIS-5D MODIFICATIONS

e Use a new (more difficult) calculation to find the file address in a McIDAS GRID
file. This is more difficult because the grids can vary in size. First the total size
of one time step is calculated. Then the offset in the current time step is found
and is added to timestepnumber*timestepsize. Returned by the function is the
sum of the value calculated and the size of the header (which is calculated in
read_variableNL grid).

(read _from_disk)

e Add the new file format: When a variableNL type COMP file is used, it is possible
to read the original data from the McIDAS GRID file on disc.

e Use the number of levels of the current parameter to read the ga, gb values and
to allocate the correct grid size.

e Read the correct number of bytes from the file, the offset is calculated by
grid_address().

(get_grid)

e Allocate a buffer of the right size (using NL[ip], ip was already available as a
parameter, thankfully).

o Get the address of the ga, gb values for the grid to compress using the new macros.

e Decompress the data, using a modified version of the function decompress(). The
parameter number ip is passed as an extra parameter.

(release grid)
e Deallocate is called with the modified grid size as an extra parameter.
(get_grid_value)

o If the ’lev’ value to find a value at exceeds the total number of levels available for
the requested parameter, return a missing value.

e Modify the upper bound check of kO (the level grid index of the point to obtain),
and if the parameter has only one level available, set both level grid indices to zero.
Interpolation in a cube is not possible in this case.

(allocate_clone_variable)

o Initialize the NL[] array entry for the new clone variable to the value of the original
variable (the one being cloned).

e Use the new number of levels as upper bound in the for-loop.
(allocate_analysis_variable)

e Set the NL[] array entry for the new variable to —1 because no levels are yet
calculated by the external analysis function.

(install new_grid)

e Use the macro COMPSIZE to calculate the grid size.

D.2. 2-D FIELDS MODIFICATIONS 91

(read_old grid)

o When the program is compiled with the preprocessor symbol VARIABLE NL defined,
it must still be possible to read the old COMP formats (see appendix A.4 for a
description of the various file formats VIS-5D can handle). Therefore the old
functions must be patched in the following way:

— Read the single value tempNL from the file, and copy it into every (used) entry
of NL[MAXPARMS]. Also initialize MaxNL to tempNL. Initialization of WindNL is
delayed until the parameters are scanned for existance of the U,V and W
parameters (later in grid.c).

— Allocate the buffers for ga and gb (changed in size, use MaxNL instead of N1).

— When reading the ga and gb values from the file, use NL[ip] as upper bound
of the for-loop instead of N1 (because N1 no longer exists).

— Allocate a buffer for the grid data (size has changed, now uses the COMPSIZE
macro).

— Read the grid from the file (size has changed, now uses the COMPSIZE macro).

(read new grid)

e Read the single value tempNL from the file, and copy it into every (used) entry of
NL[MAXPARMS]. Also initialize MaxNL to tempNL. Initialization of WindNL is delayed
until the parameters are scanned for existance of the U,V and W parameters (later
in grid.c).

e The new grid format contains a Height array of values given the height values of
the grid levels. The size of this array is MaxNL.

The rest of the changes to the function read new_grid() are analog to the changes to
read_old_grid(), from the ga, gb buffer allocation onwards.
(read_variableNL grid)

e A new function is written to read the new format COMP files, described in ap-
pendix A.4. This function is just a straightforward implementation that reads the
new file format. The functions read_old/new/variableNL grid are much alike.

(load_data_set)

e This is the main function that calls one of the functions read_old_grid(),
readnew_grid() or read_variableNL grid(). Prior to loading the data set, the
whole NL [MAXPARMS] array is set to —1. This can make possible bugs go real wrong
and is intended to spot possible bugs more easy.

e Another if (id==...) is inserted to call the new read_variableNL _grid() func-
tion. The FileFormat variable is given the value 4 (the first unused value).

o After reading the data set, the variable WindNL is set to the minimum of the number
of levels of the parameters U, V and W (if they are available). If none of them is
available, WindNL will have the value —1, again to make bugs more apparent.

e Set the TopBound (of the domain) using MaxNL instead of N1.

(grid_address)

90 APPENDIX D. VIS-5D MODIFICATIONS

where numlevels is the new parameter and is used seven times in an upper bound
on the number of iterations of for-loops.

(getmcgrid)

e The changed get mcgrid() interface:

get_mcgrid(file, grid, data, numlevels)
int numlevels;

where numlevels is the number of levels to read from the McIDAS GRID file. This
value is used to verify the read operation, to check if the correct number of levels
is read.

globals.c / globals.h:

e Declaration of the following global variables:
int NL[MAXPARMS], MaxNL, WindNL;

These are described earlier in this section.

grid.c: The following COMP (or grid) formats are mentioned:
old_grid format : equal number of levels for each grid, grid by grid compression.
new_grid format : equal number of levels for each grid, layer (level) by layer compres-
sion.
VariableNL_grid format : variable number of levels for each grid, layer (level) by layer
compression.

e In the grid module buffers are created to store the ga and gb values of each level
(for all parameters and all time steps). Entries from this buffer are set and obtained
by two macros, which are modified to the following:

#define GA(IT,IP,LEV) Ga[((IT) * MAXPARMS + (IP)) * MaxNL + (LEV)]
#define GB(IT,IP,LEV) Gb[((IT) * MAXPARMS + (IP)) * MaxNL + (LEV)]

where IT is the time step, IP the parameter and LEV the level to obtain or set a ga or
gb value for. The array contains gaps because for every parameter MaxNL values are
stored to simplify the indexing. Because every grid has it’s own size, it is impossible
to use the variable CompSize (which was initialized to ((Nr*Nc*N1+3)/4)*4)),the
number of floats in a grid). Therefore a new macro is defined:

#define COMPSIZE(ip) (((NrxNcxNL[ip]+3)/4)*4)

This macro must be used instead of the old variable CompSize. If the parameter
number ip is not available it must be provided by modifying function interfaces.

D.2. 2-D FIELDS MODIFICATIONS 89

INTEGER FUNCTION VARNLUSERFUNC(OUTGRID, MAXNL, OUTNL,
INGRID, SUMNL,
NR, NC, NL, NLIDX, NP,
NAMES, DATE, TIME,
SOUTH, WEST, BOTTOM,
DELTALAT, DELTALON, DELTAHGT)

* K X K ¥

C ARGUMENTS :
INTEGER*4 MAXNL, OUTNL, SUMNL, NR, NC, NP
INTEGER*4 NL(NP), NLIDX(NP)
REAL*4 OUTGRID(NR,NC,MAXNL)
REAL*4 INGRID(NR,NC,SUMNL)

CHARACTER*8 NAMES(NP)

INTEGER*4 DATE, TIME

REAL*4 SOUTH, WEST, BOTTOM

REAL*4 DELTALAT, DELTALON, DELTAHGT

References to the output grid are not changed: outgrid(ir, ic, il) references
grid location row ir, column ic, level il as normal. References to the input grid
are changed in the following way. The old (intuitive) manner of referencing ingrid
to read grid location (ir, ic, il) of parameter ip:

ingrid(ir, ic, il, ip)

now becomes

ingrid(ir, ic, NLIDX(ip) + il)

which is only slightly less intuitive.

e The compress routine compress_grid() must know the number of levels to com-
press, so this value is passed as an extra integer parameter. The new interface is
described below in this module.

e The protocol of the output grid sent back to vissd has changed. First the number
of levels in the output grid is sent, then the grid data. The number of ga and gb
values sent back also changed because there is one such value for each level in the
output grid.

(compress_grid)
e The changed compress_grid() interface:

compress_grid(data, comp, min, max, levga, levgb, numlevels)
int numlevels;

38

cursor.c:

APPENDIX D. VIS-5D MODIFICATIONS

e The receive protocol is changed. The external functions sends the number of levels

in the grid that it has computed. Dynamic allocation of two buffers (one for the
uncompressed grid received, the other for a compressed grid calculated) is done
using this value. After receiving the grid, the compression values ga and gb are
received, one of each for every level in the output grid.

(cursor_event)

e Scale the cursor Z-coordinate using MaxNL, the size of the box expressed in number

of levels.

extmain.c: This module is separated from vis5d in that it is not linked with vis5d but is

linked instead with every external analysis functions. The external analysis function is
called from extmain.c.

e Declare the following new global variables:

int NL[MAXPARMS], Number of levels for each parameters.
MaxNL, Largest number of levels in NL[].
SumNL, Sum of all levels in NL[].

NLindex [MAXPARMS] ; Cumulative sum of levels in NL[].

(call_user_function)

Declare a new integer variable to pass to the external analysis function. After
execution of the external analysis function it contains the number of levels in the
output grid.

Receive an array of N1’s (one for each parameter) instead of one. These values are
stored in NL [MAXPARMS] and MaxNL, SumNL and NLindex[] are calculated during the
reception of the NL[] array.

Allocate storage for all the input grids of one time step and the output grid. A total
time step has Nr*Nc*SumNL floats. The output grid must be allocated worst case,
ie. the largest number of levels, MaxNL, because it is not known in advance how
many levels the external analysis function will compute. Also worst case buffers
are allocated for the ga and gb values and the compressed grid.

Storing of the input grids received from visbd is done using NLindex[]. If the
input buffer of size Nr*Nc*SumlL is seen as an array of levels, then NLindex[] gives
the start index for each parameter in this array.

Read a grid from a McIDAS GRID file using the function get mcgrid, which now
takes the number of levels to read as an extra parameter (change described below
in this module).

The interface of the external analysis functions has been changed. It now looks like

D.2. 2-D FIELDS MODIFICATIONS 87

D.2 2-D fields modifications

The C preprocessor statements have the following form:

#ifdef VARIABLE_NL
<newcode>
#else
<oldcode>
#endif

The following (extra or new) global variables are declared:

e int NL[MAXPARMS], to hold the number of levels for each parameter. Note that the low-
ercase "1’ in the old single integer N1 has been changed deliberately to make the compiler
generate a lot of errors, which has helped in finding the places where modifications had
to be made.

e int MaxNL, contains the mazimum of all the numbers of levels of all physical variables.
MaxNL represents the size of the viewbox in levels and must be used in every operation
that needs the height of the box.

e int WindNL, contains the minimum number of levels of the three parameters, U, V and
W, which are used for wind trajectories and wind slices. This variable is introduced for
safety only. In practice, the user could present VIS-5D with a file containing different
sized U, V and W grids. Using the WindNL variable, VIS-5D will only use the levels
available for all three parameters.

The following list of modification descriptions is alphabetically ordered by module, and the
modifications made to each module are listed from top to bottom. Line numbers have been
omitted, because these are subject to change. Instead modified functions are listed between
parentheses.

analysis.c:
(compute_analysis variable)

e Send a N1 value (number of levels) for each parameter instead of just one at the
beginning to the external analysis functions. The code that handles reception of
the data can be found in the module extmain.c.

e Send a variable sized grid to the external analysis function. The size (in floats) is
given by the formula Nr*Nc*NL[ip], where Nr is the number of rows of the grid, Nc
the number of columns and NL[ip] the number of levels of the current parameter
(ip)-

e Declare a new integer variable to receive an extra integer from the external function:
the number of levels in the grid it will send thereafter.

86 APPENDIX D. VIS-5D MODIFICATIONS

e The appropriate MAKECOLOR macro must be defined. For HP systems this the same
macro as for SGI and IBM systems.

extmain.c:

e On HP systems the signed keyword is invalid in the typedef for int_1.

globals.h:

e Define the symbol SINGLE_TASK.

e Define a new type int_1 as char.

graphics.c:
graphics.c contains all 3-D graphics library related code. Most changes are related to
VOGL, see appendix D.4. Currently the following parts are HP specific:

e Initialization of integers holding the current screen size,

e Setting of file format flags VIS-5D can save (X-Windows dump for HP),

main.c:

main()

e The symbol RLIMIT CORE is not defined for HP. Therefore the core dump disabling
has been turned off for HP.

e The -font command line option is available on HP, so notify the user when the
command line options are printed.

e Scan the command line arguments for the -font option.

e Call the main processing function main loop() for HP, because HP is a single-
threaded system.

matrix.h:

e Include x.h to define the Matrix type.

x.h:

e Include the graphics library and X-Windows header files.

Appendix D

VIS-5D modifications

This appendix contains high level descriptions of the modifications made to VIS-5D. The
accent lies on the reasons for the modifications. For details about the implementation of the
changes, the reader is referred to the source code of vissd. All changes have been marked by
preprocessor statements for easy finding of the changes and backward compatibility (an old
version of VIS-5D without this modifications can easily be restored this way should problems
arise due to the modifications). The changes are ordered alphabetically by module name.
The name of the modified function is listed between parentheses.

D.1 HP port modifications

D.1.1 LUI changes

lui.c:

(LUI MoveResizeWindow)

e Set XSizeHints of the window by calling XSetNormalHints and
XSetStandardProperties. The position and size must be set, but also the max-
imum size of the window. Otherwise all VIS-5D windows can be resized to full
screen size.

(LUI_ResizeWindow)

e Same as the change for LUI MoveResizeWindow, but only the size and maximum
size have to be set, not the position.

D.1.2 vis5d changes

Cw.C:

35

84

APPENDIX C. LIBRARIES

C.2. RUL LIBRARIES 83
C.2.6 grib2vis

process_cmdline_arguments: Parse the command line arguments and store the results in
global variables. If a variable is not set, a default value will be taken if appropriate,
otherwise an error is reported.

init_grid_header: Allocation and initialization (where possible) of the GRID file header.
write_grid_header: Write the GRID file header to a file.

write_grid: Write a grid to the current output file.

print_grid_info: Print selected contents of a specified grid information structure.

count_timesteps: Determine the number of time steps in a specified time range.

82 APPENDIX C. LIBRARIES

C.2.4 cutil

The headers of the cutil functions can be found in the header file cutil.h.

yymmdd2centuryday: Convert the date in yymmdd format to century day.
centuryday2yymmdd: Convert the century day to the date in yymmdd format.
hhmm2minutes: Convert time in hhmm format to minutes since midnight.
minutes2hhmm: Convert the minutes since midnight to the time in hhmm format.
ialloc: Allocate float buffer and terminate if error occured.

ifree: Free float buffer and warn if error occured.

icheck: Check if pointer equals NULL and warn when this is the case.
reorder_matrix: Reorder the input matrix from row-major to column-major.
mirror_matrix: Mirror the matrix around the horizontal axis.

sort: Sort an array of integers in ascending or descending order.
reportminmax: Calculate the minimum and maximum of data and report them.

getstring: Read a string enclosed in double quotes from buffer.

C.2.5 futil

These are functions that are not in the KNMI libraries or are a small section of functions
from the KNMI libraries.

calcq: Calculate the relative humidity.

iyyddd: Conversion from century day (days since 1 januari 1900) to the date in yyddd
format.

setfortrancommon: Set the variables to indicate the presence or absence of physical pa-
rameters. This function should first be called before using the interpolation routine
intpre. Physical variables not present will be calculated by intpre if possible.

conphys: Define the physical constants used by the interpolation routines.

abort: A routine to simulate the abort function (which is not known to the HP FORTRAN
compiler).

getarg: A routine to simulate the command line argument processing function getarg (not
known to the HP FORTRAN compiler).

C.2. RUL LIBRARIES 81

C.2.2 grib

The headers of the grib functions can be found in the header file grib.h.

grib_parnumvalid: Private test whether a passed physical variable is within the range of
the current parameter table size. Returns TRUE when the parameter number is valid,
FALSE otherwise.

grib_shortname: Return pointer to the short parameter name if the parameter number is
valid. Otherwise a pointer to "N/A” (Not Available) is returned.

grib_unit: Return pointer to the unit of the passed parameter if the parameter is within
range. Otherwise a pointer to "N/A” is returned.

grib_parname: Return pointer to the full parameter name if the parameter number is valid.
Otherwise a pointer to "N/A” is returned.

grib_listparameters: Print a list of physical variables as defined in section 2 of the grib
definition.

grib_parnumfromname: The parameter name that is passed invoking the function is re-
turned as the parameter number if it exists.

C.2.3 interpol

The headers of the interpol functions can be found in the header file interpol.h. For more
information about coordinate systems see section C.2.6.

interpolate_calecmodelparameters: Calculate the half and full model level parameters and
the n pressure half and full model level parameters.

interpolate_calcindexarray: Calculate index field that maps output gridpoints to input
gridpoints with the help of the KNMI routine defind.

interpolate_init: Initialize all global variables used for the interpolation. The information
about the gridsize is passed in the Asimof Information structure. The parameters ini-
tialized are the data grids of the surface pressure, the surface temperature and the full
level parameters temperature, U, V and the specific humidity. Also the model level
parameters are calculated. These parameters are used by the interpolation.

interpolate_destroy: Free all allocated blocks and unset all variables set by the routine
interpolate_init.

interpolate_pressure: Interpolate a 3-D data grid to pressure levels according to the passed
Asimof Variable structure input grid and output grid with the help of the KNMI routine
intpre.

80 APPENDIX C. LIBRARIES

C.2.1 asimof

The information needed for calling the functions loadfd and getfd is stored in the Asimof
Variable (AsimofVars) structure. The grid information from an ASIMOY file is stored in the
Asimof Information (AsimofInfo) structure. The exact headers of the asimof routines in this
section can be found in the file asimof.h. The following routines are implemented in the
module asimof.c:

asimof_allocvars: Allocate and initialize an Asimof Variable structure with the parameter
values. If an input parameters is —1, the default value from asimof.h is used. The
output is a pointer to an allocated and filled AsimofVars structure.

asimof_freevars: Free all blocks used by the Asimof Variable structure and memory used
by the structure itself.

asimof_open: Open the ASIMOF grib database with the help of the function loadfd from
the KNMI port library and fill the Asimof Variable structure with all relevant data from
the ASIMOF file. Returns the errorcode as returned by loadfd.

asimof _close: Close the ASIMOF grib database connected to the device described by the
Asimof Variable structure with the help of the function asimhc. Returns the errorcode
as returned by asimhc.

asimof _getfield: Get a field from the ASIMOF database file with the help of the function
getfd. Returns the errorcode as returned by getfd.

asimof_imdi: Returns the “key entry not used” indicator.

asimof_setkey: Fill the given key with imdi (key entry not used) values and insert values
given as routine parameters. The function has a variable number of arguments.

destagger: Destagger data to a grid defined by the Asimof Variable structure. Destaggering
of the data is necesssary when the grid coordinates are not the same as the grid data
coordinates used by vissd.

asimof _getdata: Extract data fields from the ASIMOF file. The actual reading of the
data in done with the function asimof_getfield. The parameter and level type of
the physical variable to extract can be specified with the function parameters. When
no level number is specified, this function extracts all data matching the parameter
and level type. When more than one level number is found, the levels are sorted from
bottom level to top level. Also the vis5d grid information structure is filled with values,
known at that point. When necessary, the data array is destaggered with the function
destagger (see section C.2.6). Optionally the data array is reordered to row major and
is mirrored across the horizontal axis (see section C.2.6).

asimof _getcoordinates: Calculate the GRIB coordinates of an input field using the integer
section 2 with the help of the function ghg2fc. Returns the number of grid points found.

C.2. RUL LIBRARIES 79

fipint: Vertical interpolation of geopotential from a hybrid model level to pressure levels.

intpre: Organization of the interpolation to pressure levels during post-processing.

omint: Vertical interpolation of OMEGA (vertical velocity).

postpp: Main routine for post-processing to pressure levels and to model levels. This routine
also handles the extraction of surface parameters. It calls at about all vertical inter-
polation routines described in this library. Because the many parameters involved in
calling this function, we prefered to call the separate interpolation functions.

tpint: Vertical interpolation of the temperature to pressure levels.

vineta: Vertical interpolation from one n-level into another n-level.

xpint: Vertical interpolation from model levels to a pressure level.

xtreta: Organization of the extraction of model level data during post-processing.

C.1.6 grwl

as2ddr: Open an ASIMOVF file and contruct the DDR from it.

grclos: Interface for the function asimhw.

gread: Read blockl and block2 from an ASIMOF file and print the DDR.
gropen: Interface to the routine as2ddr and ASIMOF.

gweclos: Interface for the routine asimhc.

gwopen: Load blockl and block2 from an ASIMOF file and contruct the DDR.

gwrite: Prints the DDR for a GRIB coded HIRLAM field file and writes the blocks to an
ASIMOYF file.

priddr: Prints the DDR for a GRIB coded HIRLAM field file.

C.2 RUL libraries

Information and definition of the GRID file header and the 3-D grid information block can
be found in the header file gridsd.h.

78 APPENDIX C. LIBRARIES

gribex: Coding and decoding of GRIB file format messages.

minmax: Calculate minimum and maximum values from an array of floating point numbers.

C.1.3 util

cd2dat: Converts century day (number of the day in this century) to day/month/year format
(ddmmyyyy).

convdt: Converts day/month/year format (ddmmyyyy) to century day (dddd).

diasim: Diagnose an ASIMOF file. diasim can be run with two options. The option -h will
print an extensive header and -s will print the statistics of the field data. No option
will just print the GRIB section 2 values of all variables.

gregor: Converts Julian day number into Gregorian (normal) date (year, month, day).
ic2ymd: Converts century day to day, month and year.

idat2c: Converts a given day, month and year into century day.

C.1.4 vari
gb2gcc: Transform coordinates described in input section 2 (GRIB format) to coordinate
system described in output section 2.

gb2llc: Transform from one latitude/longitude grid to another. This function is mainly used
to transform from or to the geographical system.

gb2lpc: Transform from geographical grid to polar stereographical grid.
gb2ple: Transform from polar stereographical grid to latitude/longitude grid.
gb2sle: Shift pole of regular latitude/longitude grid.

gb2tle: Stretch regular latitude/longitude coordinates toward the north pole.

C.1.5 prpo
defind: Definition of a pointer field to be used for the extraction of grid-point values in a
sub-area from a grid-point field defined in a larger area.

destag: Destaggering of wind components to fit the analysis program conventions. This
program is used when the grid-points of the wind components are not the same as the
grid-points of the system.

etaeta: Vertical interpolation from one 7-level into another n-level.

Appendix C

Libraries

In this appendix the most important routines from the KNMI and RUL libraries are listed.
For more detail the reader is referred to the inline documentation of the libraries.

C.1 KNMI libraries

C.1.1 port

asimhe: Close an ASIMOF file.

asimhr: Read an array from the ASIMOF file. If the key passed along does not exists in the
database an error is returned.

asimhw: Write an array into the ASIMOF file. If the key passed along is not unique an error
is returned.

getfd: Get a coded field from the ASIMOF database and decode a field from GRIB. This
function calls the functions asimhr and degrib (see appendix C.1.2).

loadfd: Open a direct-access file as GRIB database. If the file exists the contents will be
extracted, else the file will be opened with an empty table of contents.

putfd: Convert a field into GRIB format and place it in an ASIMOF database. This function
calls the functions asimhw and engrib (see appendix C.1.2).

C.1.2 gcod

degrib: Decoding of data or identification sections (section 1, 2, and 3) from GRIB format.

encode: Encoding of data in GRIB format.

7

76

APPENDIX B. VIS-5D SOURCE CODE STRUCTURE

B.4. LITTLE USER INTERFACE (LUI) LIBRARY 75

get5d: Read a GRID file to obtain the grid info structures.

iggt3d: Read a data grid from a GRID file, returning the number of data points read. This
function is used from within vis5d.

For a description of the VIS-5D utilities, see section 2.4.1.

B.4 Little User Interface (LUI) library

The LUI library contains the following modules:

browser: File browser module.

button: Provides functions to create and maintain all sorts of buttons, like toggle buttons,
one-shot buttons, etc. Buttons can be grouped in button pads.

dial: Provides functions to create and maintain dials.

dialog: Provides functions to create dialog boxes which can contain a message and OK and
Cancel buttons.

event: Event dispatcher. Each window created by the LUI library can specify events and a
call back function. This call back function is called only for the specified events.

label: Provides text labels and type-ins.

lui: Main LUI module, that contains the LUT initialization and most functions dealing with
windows. It also contains various color transformation functions.

pixmaps: Contains pixmap definitions for radio widgets.
popup: Handles pop-up menus.

slider: Slider support. The user can use sliders to adjust a value used by the program.

74 APPENDIX B. VIS-5D SOURCE CODE STRUCTURE

INTEGER*4 DATE

INTEGER*4 TIME

REAL*4 SOUTH, WEST, BOTTOM

REAL*4 DELTALAT, DELTALON,
DELTAHGT

Datestamp of variables in HHMMSS format
i.e. hours*10000 + minutes*100 + seconds.
Timestamp of variables in YYDDD format
i.e. year*1000 + century day.

Geographic location of grids (SOUTH
latitude in degrees, WEST longitude

in degrees, BOTTOM coordinate in
kilometres).

Grid increments. DELTALAT and DELTALON
in degrees, DELTAHGT in kilometres.

A user function should return 0 if completed successfully and a non-zero value if an error

occured.

The extmain module contains code to receive the input data from vis5d through a socket
and send the output grid back to visbd. The user functions is called from extmain.

B.3 Utilities

The most important utility modules include the following;:

compbd: Conversion of McIDAS GRID files to COMP files, the compressed vis5sd file for-
mat. There are several comp5d programs, one for each type of COMP file (see ap-
pendix A.4). The structure of the comp5d programs is as follows:

e Read the first time step grid info structures, checking that every physical variable
has the same number of levels, etc.

e Read the following time steps grid info structures, checking if the same physical
variables are encountered as in the first time step.

e Allocate memory to hold input grids,
e Read input grids from input GRID file(s),

e Compress grid data,

o Write grids to output COMP file,
e Write header of output COMP file.

Note that the time steps must be ordered chronologically and the order of the physical
variables must be the same for each time step.

compinfo: Read and display contents of COMP files.

The rest of the programs can only handle the McIDAS GRID file format. The most important

subroutines are:

B.2. EXTERNAL USER FUNCTIONS 73

slice: Slice handling functions. This module processes all events that occur when vis5d is
in slice mode. The most important function is to find the correct slice and moving it,
when the user drags from a specific position in the 3-D window.

socketio: Provides functions to send and receive data through a socket. These functions are
used to send to and receive from the external analysis functions.

sync: Provides semaphore functions for systems that allow multi-threaded execution.
topo: Functions for reading and drawing the topography.

traj: Trajectory module. Trajectories are traced using this module.

vtmep: Module dedicated solely to the calculation of iso-surfaces.

work: This module contains the actual routines to extract contour, color and wind slices, an
interface to the iso-surface and trajectory module.

zcont: Contouring module. Given an input slice of data and a contour interval, it calculates
the position of contours on the slice and outputs vector arrays containing the contour
positions.

The modules gui.c and cw.c contain all the user interface functions (making use of the LUI
library). For the direct reading of McIDAS GRID files, vis5d uses the McIDAS GRID file
library.

B.2 External User functions

The Fortran modules must all contain a function called USERFUNC with the following in-
terface:

INTEGER FUNCTION USERFUNC(OUTGRID, INGRID, NR, NC, NL, NP,
NAMES, DATE, TIME,
SOUTH, WEST, BOTTOM,
DELTALAT, DELTALON, DELTAHGT)

REAL*4 OUTGRID(NR,NC,NL) Output grid calculated by the function.
REAL*4 INGRID(NR,NC,NL,NP) Input grids, all physical variables,
one time step.

INTEGER*4 NR Number of latitude points (rows) in
input grids.

INTEGER*4 NC Number of longitude points (columns) in
input grids.

INTEGER*4 NL Number of levels in input grids.

INTEGER*4 NP Number of physical variables.

CHARACTER*8 NAMES(NP) Names of variables. Padded with spaces.

72 APPENDIX B. VIS-5D SOURCE CODE STRUCTURE

function of visbd needs a data grid, it must be requested from the grid module. Grids
are stored in a compressed form in memory and are decompressed when requested. The
decompression routine uses two values which are also stored in a compressed grid file:
ga and gb. These values are used to scale and map floating point values from/to 8-bit
integers. This conversion cannot be done without losing precision. visbd is able to read
the original GRID files with the floats as well (see also appendix A.4).

gui: The GUI (Graphical User Interface) module takes care of the creation and maintenance
of all windows, except for the 3-D window which is created in the graphics module.
GUI processes all user input from the mouse and the keyboard and updates appropriate
global variables contained within the globals module which determine how the data set
is displayed. GUI makes extensive use if the User Interface Library, LUI, discussed in
section B.4.

main: Entrypoint of vis5d. After initialization, processing command line parameter, reading
of the data set, etc. an eternal loop is executed processing user input.

map: Contains functions to read a map file, draw the map in the 3-D window and updat-
ing the display, if necessary. A map file usually contains a number of line segments
defining land-sea borders (and country outlines). The elevation is calculated from the
topography.

matrix: vis5d uses its own library routines of matrix operations to create and modify the
transformation and projection matrices used to map object coordinates into the 3-D
window (see section 3.1.1). Matrix multiplication, concatenation, copying, inversion,
vector normalization and vector-matrix multiplication is provided.

memory: Memory management module. vis5d functions needing large amounts of memory
should call one of the functions from this module. vis5d tries to retain all requested
graphics in memory. When allocation of a requested block fails however, the memory
management module will try to create enough free memory by deallocating the least-
recently viewed graphics. A number of functions is provided. Memory allocated using
pallocate (permanent allocate) will never be deallocated, contrary to memory allocated
by allocate.

queue: Implementation of a task queue. When only one processor is available, the requested
graphic will be calculated immediately. On systems with multiple processors, multi-
threaded execution is possible. FEach requested graphic is put into the task queue.
Processors will calculate the graphics in the queue multi-threaded. Access to graphics
is made exclusive through the use of semaphores.

render: The render module contains the drawing functions, which are all based on the graph-
ics module. The box, slices, trajectories, slice ticks, clock, etc., are drawn from within
the render module.

save: VIS-5D allows the user to save the current state of the 3-D window to a file. Data
saved includes topography colors, labels and graphics with their colors and positions.
Such a file can later be restored.

Appendix B

VIS-5D source code structure

B.1

VIS-5D main source code

visbd version 3.1 is split into several modules. The most important modules include (in
alphabetical order):

analysis: Activation of activate external user analysis functions, which can calculate new

grids from the available data. Analysis programs must reside in a special directory,
which is scanned by vis5d. When an analysis function is activated, all available data
(one time step at the time) is sent through the socket to the analysis program. The
analysis program can calculate a new grid of data, derived from the existing data. This
new grid is then sent back through the socket to the analysis module of vissd. When
successful, the new grid is installed and can be visualized as usual.

extmain: Wrapper for vis5d external analysis code. It is linked separately with every ex-

ternal analysis function. It receives the grid description and data through the socket
connection with visbd and calls the user analysis function. The grid description and
data are passed as parameters to the analysis function. The interface is described in
section B.2.

globals: Contain declarations of globally accessible variables and constants. The most im-

portant variables include the grid dimensions and the grid data pointers.

graphics: All 3-D graphics library related code is contained in the graphics module. It

grid:

contains functions to make the 3-D window, initialize the graphics module/library, draw
polylines, text, triangle meshes, quadrilateral meshes, etc. All functions in the graphics
module are based upon functions from the 3-D graphics library (XFDI for the Stellar,
GL for the SGI and IBM). Functions from other modules call functions from the graphics
module if they want something drawn in the 3-D window.

All grid management functions are contained in the grid module. grid will determine
the file format of an input file and read the data sets contained within the file. If a

71

70 APPENDIX A. FILE FORMATS

int offset Offset in 4-byte ints from start of file.
int length Length of segment data in 4-byte ints.

e Coordinate information for each segment. The position and length of the data is ob-
tained from the directory structure. The data consists of an array of length/2 (lat,lon)
pairs in 107° degrees.

A.6 VIS-5D topography file format

A VIS-5D topography file contains the surface elevation and land/sea mask of a specific part
of the earth surface. Each file starts with the following header:

char id[40] ID string "TOPO".

int westlon West longitude in 1/100’s of degrees.
int eastlon East longitude in 1/100’s of degrees.
int northlat North latitude in 1/100’s of degrees.
int southlat South latitude in 1/100’s of degrees.
int rows (nlat) Number of rows (latitude).

int columns (nlon) Number of columns (longitude).

Positive latitude degrees are north, positive longitude degrees are west.

After the header the topography data follows:

short datal[rows] [columns]

Row [0] corresponds to the north edge of the topography, Row [ROWS-1] corresponds to the
south edge, Column [0] corresponds to the west edge and Column [COLUMNS-1] corresponds
to the east edge. The shorts of the topography data consists of the surface elevation in
metres multiplied by 2 and with 1 added if the location is water.

A.5. VIS-5D MAP FILE FORMAT 69

int GRIDTIMES Maximum number of time steps.

int NumTimes Number of time steps.

int NumParms Number of parameters.

int Nr, Nc Horizontal grid dimensions (global i.e.
for all grids!).

int NL[NumParms] A number of levels for every parameter in the file.

float LatInc, Lonlne Horizontal grid increments in latitude and
longitude direction.

int LevelType Type of vertical coordinate.

float Height[NI] Levelvalues (unit depends on leveltype).

char ParmName[GRIDPARMS][8] Names of parameters.

float MinVal[NumParms] Minimum values of parameters.

float MaxVal[NumParms] Maximum values of parameters.

int TimeStamp[GRIDTIMES] Timestamp of time steps.

int DayStamp[GRIDTIMES] Daystamp of time steps.

float NorthLat[GRIDTIMES] North latitude of domain.

float WestLon[GRIDTIMES] West longitude of domain.

The data grids vary in size. The size can be calculated using the NI values from the array
and are again rounded up to a multiple of four.

for each time step:
for each parameter:

int McFile McIDAS GRID file number with original data.

int McGrid Grid number in GRID file.

float gal[NL[ip]]

float gb[NL[ip]] Decompression values for each level. ip is
the parameter index.

float griddata[*] Data for this grid consisting of Nr*Nc*NL[ip]
floats rounded up the nearest multiple of 4.

A.5 VIS-5D map file format

A VIS-5D map file holds information of land/sea borders etc. as a number of continuous
polylines (map segments). A map file has the following structure:

e Number of map line segments:

int nsegs

e Directory structure containing for every segment:

int d0, di1, d2, d3 Not used.

68 APPENDIX A. FILE FORMATS

int GRIDTIMES Maximum number of time steps.
int NumTimes Number of time steps.
int NumParms Number of physical variables.
int Nr, Number of rows (latitude points).
Nec, Number of columns (longitude points).
NI Number of levels.
float LatInc, Lonlne Horizontal grid increments in latitude and
longitude direction (in degrees).
float Height[NI] Heights of levels (in km).
char ParmName[GRIDPARMS][8] Names of physical variables.
float MinVal[NumParms] Minimum value of physical variables.
float MaxVal[NumParms] Maximum value of physical variables.
int TimeStamp[GRIDTIMES] Timestamp of time steps (HHMMSS format).
int DayStamp[GRIDTIMES] Daystamp of time steps (YYDDD format).
float NorthLat[GRIDTIMES] North latitude of domain (in degrees).
float WestLon[GRIDTIMES] West longitude of domain (in degrees).

There is now slightly more data for each grid than in the case of the old style format, due to
the extra decompression values:

for each time step:
for each parameter:
if (ID=0x80808083)

int McFile McIDAS GRID file number with original data.
int McGrid Grid number in GRID file.

fi

float gal[N1], gb[N1] Decompression values for each level.

float griddatal[*] Data for this grid consisting of Nr*Nc*N1

(rounded up to the nearest multiple of 4) floats.

A.4.3 Variable NL format

This is the new style format made to enable the visualization of single-level fields. The header

looks like:

A.4. COMP FILE FORMAT 67

e Variable NL format, new style format with layer by layer compression, GRID file read,
and a variable number of levels for each parameter.

A.4.1 OlIld style format

Grid compression is done grid by grid (entire grid at the time). The maximum number of time
steps (GRIDTIMES) is 300 for ID=0x80808080 and 400 for ID=0x80808081. The maximum
number of parameters (GRIDPARMS) is 20 for ID=0x80808080 and 30 for ID=0x808080831.

The following type-lengths are used: char is 1 byte, int is 4 bytes, float is 4 bytes.

The header looks like:

int NumTimes Number of time steps.
int NumParms Number of physical variables.
int Nr, Number of rows (latitude points).
Nec, Number of columns (longitude points).
N1 Number of levels.
float LatN, LonW Geographic location in degrees.
float HeightTop Height of highest grid level in km.
float LatInc, Lonlne Horizontal grid increments in latitude and
longitude direction in degrees.
float HeightInc Vertical grid increment in km.
int DayStamp[GRIDTIMES] Daystamp of time steps in YYDDD format.

Note that the file always contains GRIDTIMES

DayStamps, despite the number of time steps.
int TimeStamp[GRIDTIMES] Timestamp of time steps in HHMMSS format.
char ParmName[GRIDPARMS][8] Names of parameters.

Then the data follows, in the same order as the time stamps and variable names:

for each time step:
for each parameter:
float ga, gb Grid decompression values
float griddata[*] Data for this grid consisting of Nr*NcxN1
(rounded up to the nearest multiple of 4) floats.

A.4.2 New style format

Compression of the grids is done layer by layer and extra information is contained within the
file to retrace the origin of the grids (the McIDAS GRID file and grid number in the file) to
enable vis5d to read the original uncompressed grid data (only for ID=0x80808083). The
header looks like:

66 APPENDIX A. FILE FORMATS

coordinate unit to vis5d. Therefore the field pad4[] is replaced by:

int leveltype Indicator of unit of vertical coordinate system on
which grid is defined.

int pad4[30] Reserved (now one integer less).
The following values for the leveltype are currently valid:

HEIGHT_LEVELS (105) This is the default leveltype and set for old
style COMP files. The unit of the vertical
coordinate is km.

PRESSURE_LEVELS (100) Indicates equidistant pressure levels. Vertical
interpolation between levels will be done using the
logarithm of the pressure. The unit of the vertical
coordinate is Pa.

The contents of the top and topinc entries must be changed. These will contain the pressure
level of the highest level and the pressure level increment both multiplied by 1000 if the
leveltype is PRESSURE_LEVELS. Otherwise the contents will be the same as before (height
level * 1000 and height increment * 1000).

The data grids are stored as 4-byte floating points numbers. A data value greater than 1e30
indicates missing data (usually the value 1e35 is used).

A.4 COMP file format

The COMP (compressed) file format is the only format that can be read directly into vis&d.
VIS-5D is supplied with skeleton example programs for converting data into COMP file format
and utilities for converting the GRID file format (see appendix A.3)into COMP files. During
this conversion all data points in the grids are compressed from 4-byte floating points values
to 8-bit integers, hence the name of the format. Because this compression results in loss of
accuracy it is possible to read grids from the uncompressed GRID files when they are needed
for calculations by vis5d. The compression uses two floating point values: ¢, and g5. These
values are equal to ¢, = % (the range) and g, = —g, * W (the offset)

(gma.r —9min

of the input grid data. New compressed data values are then calculated using the formula
Inew = Ja * Gold T Gb-

There are several COMP file formats, which are identified by an ID field in the first 4 bytes
in the file. The following ID fields are valid:

e Old style format with grid by grid compression (ID’s 0x80808080 and 0x30808081),

e New style format with layer by layer compression and GRID file read,

and the new format

A.3. GRID FILE FORMAT 65

char ident[32] File description/identification.
int nproj Project number?
int creation_date Date created in YYDDD format.
int maxsize Number of data points in largest 3-D grid.
int numgrid Number of 3-D grids in this file.
int firstgrid Location of first grid’s data as offset
in 4-byte words from start of file.
int pad[51] Pad to 256 bytes.

The gridinfo structures contain the following fields each:

int size Number of data points / words of data
(=nr*nc*nl).

int nr Number of rows (latitude points).

int nc Number of columns (longitude points).

int nl Number of levels.

int iword Location of data as offset in 4-byte
words from start of file.

int date Grid date stamp in YYDDD format.

int time Grid time stamp in HHMMSS format.

int padl Reserved.

char name[4] 4-character name of physical variable.
char units[4] 4-character unit description.
int pad2[11] Reserved.

int itype Always 4.

int latn North latitude * 10000.

int lonw West longitude * 10000.

int latinc Latitude increment * 10000.
int lonine Longitude increment * 10000.

int pad3[4] Reserved.

int ihtype Always 1.

int top Top height * 1000.

int topinc Height increment * 1000.

Because the grid info structure contains the location of the grid data in the file, it is possible
to create files with a gap between the grid info structures and the data. This way space can
be reserved for future headers.

For an original McIDAS GRID file, the gridinfo structures are padded to 256 bytes in length
by adding:

int pad4[31] Reserved.

In order to make visbd perform the correct type of vertical interpolation depending on the
coordinate system automatically, it must know the leveltype, i.e. the unit of the vertical
coordinate on which the grids are defined. Because the conversion from GRIB to COMP
takes the indirect route via GRID (to retain the functionality of the utilities supplied with
VIS-5D) it is necessary to modify the GRID format to pass information about the vertical

64 APPENDIX A. FILE FORMATS

predetermined bit map provided by the centre that made the GRIB message. The rest of the
section contains the bit map. This section is optional.

Section 4: The binary data section starts with three octets describing the length of the
section. The next octet contains a flag setting the representation of the binary data. Octet
5-6 contain the scale factor for the binary data. Octet 7-10 are set to the minimum of the
binary data. The following octet has the number of bits containing each packed value. Then
from octet 12 on, the actual data is described, depending on the flag values in octet 4.

Section 5: The end section, ending the GRIB message, is always 4 octets long and contains
the character coded message 7777.

A.2 ASIMOF file format

The ASIMOF file format was designed as a database file system at KNMI, as a standard
interface between their numerical models and presentation systems. It was adopted as the
standard for the reference HIRLAM system. It is used at KNMI; many other HIRLAM
institutes use it or are considering its use. For more detailed information about the format,
see the inline documentation of the ASIMOF routines of the HIRLAM system. The ASIMOF
file format is computer dependent.

A.3 GRID file format

The GRID file format is used by the McIDAS system (VIS-5D is a stand alone subsystem
of McIDAS, see [Smit75]). GRID files cannot be read directly by vis5d but they can be
converted to the COMP file format (appendix A.4) which is currently the only format vis5d
can read. There exists a compile time option Read-On-Demand that enables vis5d to read
GRID files but even then the header of the COMP file that is made from the GRID file(s)
must be available.

The global structure of a GRID file is:

1. header (size is 256 bytes).

2. numtimes*numparms gridinfo headers (size of each is 256 bytes). numtimes is the number
of time steps, numparms is the number of physical variables.

3. space for future headers.

4. numtimes*numparms data grids (each data point is a 4-byte float).

The following type-lengths are used: char is 1 byte, int is 4 bytes, float is 4 bytes.

The McIDAS GRID file header consists of the following entries:

Al

GRIB FILE FORMAT

Octet No. Contents Description
1-3 46 Number of octets in section 2
4 0 No vertical parameters
5 255 No list present
6 10 Rotated latitude/longitude grid
7-8 92 Points on parallel
9-10 81 Points on meridian
11-13 —24500 Latitude first grid point
14-16 —25500 Longitude first grid point
17 128 Direction increments given
Earth assumed spherical
Positive U and V in easterly and northerly directions
18-20 15500 Latitude last grid point
21-23 20000 Longitude last grid point
24-25 500 Latitude direction increment
26-27 500 Longitude direction increment
28 64 First grid point left down bottom
29-32 0
33-35 —30000 Latitude southern pole
36-38 0 Longitude southern pole
39 0 Angle of rotation
43-46 0

Table A.3: GRIB format Section 2 example values for HIRLAM

63

62 APPENDIX A. FILE FORMATS

Octet No. Contents

1-3 Length of section
4 NV — Number of vertical coordinate parameters
5 PV — Location of list of vertical coordinate

parameters, if present; or

PL — Location of list of numbers of points in each
row (if octet 4 > 0), if present; or

255 if neither are present

6 Data representation type (grid type)
7-8 Number of points along a parallel
9-10 Number of points along a meridian

11-13 Latitude of first grid point (in millidegrees)

14-16 Longitude of first grid point (in millidegrees)
17 Resolution and component flags

18-20 Latitude of last grid point (in millidegrees)

21-23 Longitude of last grid point (in millidegrees)

24-25 Latitude direction increment (in millidegrees)
26-27 Longitude direction increment (in millidegrees)
28 Scanning mode — direction of increments

29-32 Reserved — set to zero

33-35 Latitude of southern pole (in millidegrees)

36-38 Longitude of southern pole (in millidegrees)
39 Angle of rotation

43-52 Reserved for stretched latitude/longitude grid

PV List of vertical coordinate parameters
PL List of numbers of points in each row

Table A.2: GRIB format Section 2 — grid description section for rotated latitude/longitude
grid type as used by HIRLAM

Al

GRIB FILE FORMAT

Octet No. Contents
1-3 Length of section
4 Version number, currently 1
5 Identification of centre
6 Generating proces identification number
7 Grid definition number according to
Volume B of publication WMO - No. 9
8 Flag signaling if section 2 is included (bit 1 = 1)
and if section 3 is included (bit 2 = 1)
9 Indicator of parameter
10 Indicator of leveltype
11-12 Height, pressure, etc. of levels
13 Year of century
14 Month
15 Day
16 Hour
17 Minute
18 Indicator of unit of time range
19 Number of time units
20 Same as octet 19 or time interval, undergoing
averaging or accumulation
21 Time range indicator
22-23 Number included in average (if octet 21 = 3 or 4)
otherwise set to zero
24 Number missing from averaging or accumulation
25 Century of reference time of data
26 Reserved — set to zero
27-28 Units decimal scale factors
29-40 Reserved for future use — may not be present
41-nn Reserved for originating centre use

Table A.1: GRIB format Section 1 — product definition section

61

60 APPENDIX A. FILE FORMATS

Section 0: The indicator section contains 8 octets where the first 4 octets are character
coded as GRIB, the next 3 octets contain the length of the entire GRIB message and the last
octet represents the GRIB edition number.

Section 1: The product definition section starts with three octets, describing the length of
this section. The rest of this section contains the information of when, where, by whom, etc.
the GRIB message has been made. More specific information about this section can be found
in table A.1.

While working with HIRLAM data, we encountered the following level types (octet 10):

e 100 — Isobaric surface: Grid values are given at a fixed pressure level. Octet 11-12
contain the pressure in hPa.

e 102 — Mean sea level: Grid values are given at mean sea level. Octet 11-12 are set to
zero.

e 103 — Specified altitude: Grid values are given at a specific altitude. Octet 11-12 contain
the altitude in metres.

e 105 — Specified height level (above ground): Grid values are given at on a specific height
above the ground. Octet 11-12 contain the height in metres.

e 109 — Hybrid level: Grid values are given at model levels (see section 4.3). Octet 11-12
contain the level number.

Section 2: The grid description section starts with three octets indicating the length of this
section. The rest of this section describes the grid as set in octet number 6 of section 2.
Because HIRLAM uses a rotated latitude/longitude grid (octet 6 = 10) octet 7-52 contain
specific information for that type of grid. More information about section 2 can be found in
table A.2. For HIRLAM, an example section 2 is given in table A.3.

The rotated latitude/longitude coordinate system that is used by HIRLAM, formed by a
general rotation of the earth, can be described by three parameters:

e The geographic latitude in degrees of the southern pole (a,);
e The geographic longitude in degrees of the southern pole (53,);

e The rotation of the new polar axis (positive in easterly direction). This new polar axis
can be obtained by first rotating the sphere through (3, degrees about the geographical
polar axis and then rotating through (90 4+ «,,) degrees so that the southern pole moved
along the (previously rotated) Greenwich meridian.

Section 3: The bit map section starts with three octets, used for the length of this section.
Octet 4 is used for giving the number of unused bits at the end of section 3. The next
two octets are the table reference: if they are zero, a bit map follows, else it refers to a

Appendix A

File formats

In this appendix all relevant file formats are explained. HIRLAM produces files in the GRIB
file format, which is the world standard format for storage of meteorological data. The
ASIMOF file format is used at KNMI to store several GRIB fields in one file. The remaining
file formats are related to VIS-5D (GRID, COMP, map and topography file formats.

A.1 GRIB file format

GRIB (gridded binary) as described in FM 92-1X Ext.-GRIB [WMO91] is a file format for
processed data in the form of grid-point values expressed in binary form. In this paragraph
the GRIB edition 1 format will be explained.

In GRIB the data are represented in a sequence of an even number of octets (1 octet = 8 bits).
This representation is independent of any particular machine representation. The octets of a
GRIB message are grouped in 6 sections:

e Section 0: Indicator section

e Section 1: Product definition section
e Section 2: Grid description section

e Section 3: Bit map section

e Section 4: Binary data section

e Section 5: End section

Every section contains an even number of octets. If not, the section is appended with bits set
to zero.

59

58

BIBLIOGRAPHY

Bibliography

[Baas93]

[GLman]

[GourT1]

[Hibbs5]

[Hibbs9]

[Hill90]

[LoCI87]

[Smit75]

[WMO91]

Baas, S.A.; Meteorological Visualization using apE (a toolkit for visualization),
Internal report Leiden University, 1993.

Fisher, S. ;M. Heinrich; Graphics Library programming guide, document ver-
sion 2.0, Silicon Graphics Incorporated, 1990.

Gouraud, H.; Continuous shading of curved surfaces, IEEE Computer Graphics
and Applications C-20(6), pp. 60-69, 1971.

Hibbard, W.L., R. Kraus, J.T. Young, 3-D Weather Displays Using McIDAS,
Preprints, ICIIPSMOH, Los Angeles, American Meteorological Society, 153-
156, 1985.

Hibbard, W., D. Santek; Visualizing large data sets in the earth sciences, IEEE
Computer Graphics and Applications 22(8), pp. 53-57, 1989.

Hill Jr., F.S.; Computer Graphics, Maxwell MacMillan International Editions,
1990.

Lorensen, W.E., H.E. Cline; Marching Cubes: a high resolution 3D surface
construction algorithm, Proceedings Siggraph 87, Computer Graphics 21(4),
pp. 163-169, 1987.

Smith, E.A., The McIDAS System, IEEE Transactions on Geoscience Electron-
ics, GE-13, 123-134, 1975.

Secretariat of the World Meteorlogical Organization; Manual on Codes, Volume
I (Annex II to WMO Technical Regulations), International Codes, Part B -
Binary Codes, 1988 edition, Supplement No. 3, Geneva, Switzerland, 1991.

57

56

CHAPTER 8. FUTURE WORK

It would be more realistic to insert “missing” values below the orography instead of
extrapolating the data values. This is not appropriate for all variables. In general all
full model level fields should be substituted with “missing” values below the orography,
but not the pressure at at mean sea level.

The vertical coordinate of the topography should be converted from metres to Pascal.
Because the pressure is not constant at the earth’ surface, this implies a change to vis5d
to calculate a different topography every time step.

Logarithmic interpolation of vertical slices is not yet implemented.

Enhance VIS-5D in such a way that the user can determine the place of each colormap
legends, in the same way as the labels can be positioned.

For HP hardware platforms at Leiden University, the Starbase Graphics Library can be
tested for use with VIS-5D. Starbase is a HP specific library and is probably faster than
VOGL (but not portable).

Chapter 8

Future work

The recommendations listed in this chapter can be used as a guide to future work. They
include required features (see section 1.2 for a list) that are not yet implemented.

e Extend the 1-D point probe in VIS-5D to a 2-D curve probe. A 2-D curve probe should
enable the user to manipulate a (spline) curve in the domain being visualized. The
value of the physical variables are then plotted as a function of the displacement along
the curve.

e In meteorology wind vectors are often visualized using shafts and various attachments.
The shafts (line-segment) are all equal in length and point in the opposite direction of
the wind vector. The speed of the wind is visualized by attaching several line segment
and triangles to the shaft (120 degrees rotated). This can easily be added to VIS-5D.

e When multiple vertical coordinate units are supported, it is recommended to print the
unit in the 3-D window near the height axis to avoid misinterpretation of the data. A
unit for every physical variable would be useful too.

e A visualization technique not currently supported by VIS-5D is volume rendering. Fu-
ture versions of VIS-5D will include this technique, but will use transparency blending
features from the graphics library. These are currently not supported by VOGL and
should be implemented (if the speed of VOGL allows it).

e The visualization of 2-D fields is currently restricted in the way that every 2-D slice is
placed in the bottom of the box. Slices can be visualized for arbitrary height, it is the
placement that is always at the bottom. The 2-D fields of the KNMI not positioned at
the earth’ surface include the 2 metre temperature and 10 metre wind vectors. With
the current vertical resolution of the vertical slices it is not useful to modify VIS-5D to
draw the fields at the correct place, moreso because only one equidistant set of vertical
coordinates can be used (all physical variables must be defined on the same grid points).

e The lighting model implemented in VOGL must be enhanced. For instance, spotlights
are not supported at the moment.

55

54

CHAPTER 7. CONCLUSIONS

on any hardware platform as long as a C compiler is available. Note however, that in
order to use VOGL with VIS-5D other system requirements (see section 2.2) must also
be satisfied.

Chapter 7

Conclusions

In order to visualize the output of a numerical weather forecasting model (HIRLAM), the
visualization package VIS-5D was chosen. VIS-5D is suitable, although a number of modifi-
cations were necessary. Based on our experiences with VIS-5D, the following conclusions can
be drawn:

Advantages of VIS-5D are:

VIS-5D has a very intuitive user interface and enables the user to combine all supported
visualization techniques and all available physical variables easily into one image,

VIS-5D is free (under the GNU licence),
the source code is supplied with VIS-5D,

good support. For the (growing) list of users, a mailing-list'end e-mail to Bill Hib-
bard (whibbard@vms.macc.wisc.edu) or Brian Paul (bpaul@vms.macc.wisc.edu) if you
would like to be added to the VIS-5D mailing list is available and the authors are very
responsive when presented with questions and suggestions,

VIS-5D is still in development, which means that future versions will have more func-
tionality and keep up to date with respect to new visualization techniques.

A disadvantage of VIS-5D is:

VIS-5D relies heavily on the existence of a 3-D graphics library. If such a library is not
available, VIS-5D cannot be used. This problem has been solved for HP 700 Series by
extending the library VOGL (software implementation of the SGI GL libraries) with
the functionality needed by VIS-5D. However, a software implementation of a hardware
library can never match its speed, so VIS-5D is a bit slow (the reader is referred to
chapter 6 for concrete timing values) when using VOGL. VOGL by itself can be used

g

53

52 CHAPTER 6. RESULTS

11000 lines of code, and ca. 3000 lines were added.
Images showing some of the capabilities of VOGL are included in appendix F.

Because VOGL is quite slow, a number of speed tests were executed on a HP 700/RX. The
drawing of color slices is tested because these take the longest time to render. The following
times resulted:

Rendered graphics Time [seconds]
Empty box ca. 0,04
One horizontal color slice ca. 6,5
Two horizontal color slices ca. 11,6

To determine how much time each operation performed by VOGL costs, the operations are
split into the following categories:

e drawing (the drawing of pixels on the screen and setting of colors),

e scan conversion (calculation of which pixels to draw),

polygon clipping,

miscellaneous (the remaining operations).

The same speed tests were run without execution of one of the listed categories, which resulted
in the following:

VOGL categories: Time relative to normal:
Normal operation 100%
No drawing 66%
No scan conversion, no drawing 50%
No clipping 66%
No clipping, No scan conversion 10%

From this results the conclusion can be drawn, that drawing and clipping are the categories
that should be considered first to speed up VOGL.

Colormap legends are implemented. The only restriction is currently the space of the 3-D
window. Depending on the width of the values printed next to the legends, up to ca. 7
legends can be displayed. An image displaying a colormap legend is given in appendix F.

Chapter 6

Results

This chapter presents the results obtained by using VIS-5D for the visualization of the
HIRLAM output.

The required visualization techniques (see section 1.2) are all possible with VIS-5D. To obtain
a discretized color mapping, the user must form the colored bands by changing the color map
in the RGB widget window of VIS-5D. Wind vector slices can only be visualized if the U and V'
wind components are present (if the vertical wind component W is present it is used, otherwise
it is substituted with zeros). To visualize wind trajectories, all three wind components (U, V
and W) must be present and more than one time step must be available. Currently HIRLAM
does not calculate the vertical wind component W (although the equations to do so are
present) which means that wind trajectories cannot be used for the HIRLAM data.

Of the additional required features (see section 1.2) only the 2-D data probe is not yet
available, but will be included in future versions of VIS-5D.

The HIRLAM data can be visualized using pressure for the vertical coordinate. This is
realized by interpolating the HIRLAM data from HIRLAM model levels to pressure levels
and writing the resulting data to a file that can be further processed by VIS-5D. Due to
the exponential decrease of pressure with height logarithmic interpolation must be used. For
large pressure values (10000 - 100000 Pa) the linear and logarithmic fractions are nearly equal
however.

The VIS-5D modifications described in chapter 5 are all implemented succesfully (except for
the logarithmic interpolation of vertical slices). The source code of vis5d consists of ca. 35000
lines of code. The modifications add ca. 1800 lines of code (all modifications, including the
graphics module modifications). This number of lines is exaggerated because the old code is
retained and every modification is embedded within C preprocessor statements for backward
compatability.

VIS-5D is ported to the HP hardware platform for use at Leiden University. VOGL, a software
implementation of the SGI Graphics Library is used for all graphics related functions. VOGL
is enhanced with functionality necessary for VIS-5D. The original VOGL consisted of ca.

51

50 CHAPTER 5. VIS-5D MODIFICATIONS

the gravitational acceleration at the earth’ surface. The resulting geopotential height cor-
responds with the geometrical height (height above mean sea level). The land/sea mask
(variable 81, leveltype 105, height 0) can be extracted directly from the HIRLAM climate file.
The values must be rounded to the nearest integer (0 is land, 1 is sea).

VIS-5D is adapted to display the box height coordinates in Pascal, but the vertical coordinate
of the topography is still in metres. If the vertical coordinate should be changed to pressure
coordinates, visbd should also be enhanced to calculate a new topography every time step,
because it depends on the non-constant surface pressure.

5.5 Map conversion

visbd has a built-in function to display the map of the world. This map consists only of coast
lines, not the borders between countries. The data are extracted from the default map file
OUTLSUPW, which is supplied with VIS-5D.

This map file has the same grid problems as the VIS-5D topography file, as described in
section 5.4: the data grid points are in a latitude/longitude format while the HIRLAM grid
points are in a rotated latitude/longitude format. Because the climate file does not contain
a map of the HIRLAM area, the default map file had to be converted to the correct grid.

In the standard VIS-5D package the map module handles reading and drawing of the map.
This module is the starting point to construct a function that makes a map of the HIRLAM
area in the correct grid format.

The conversion of grids is possible with the ASIMOF library routine
gb2gcc(pxold, pyold, pxnew, pynew, &k, kb2i, pb2i, kb2o, pb2o0)

where pxold and pyold denote the grid values in the longitude and latitude direction respec-
tively, pxnew and pynew the converted longitude and latitude grid values, k is the number of
longitude and latitude values, kb2i and pb2i are the values of the integer- and real-block of
the GRIB section 2 of the input grid and kb2o and pb2i are the section 2 integer and real
blocks of the output grid.

The HIRLAM map can be made by typing at the commandline:
hirlammap

or
hirlammap <input map file> <output map file>

Running hirlammap without commandline arguments assumes OUTLSUPW as the input map
file and HIRLAM.MAP as the output map file.

5.3. SCALING VERTICAL WIND COMPONENT 49

is visualized on pressure levels logarithmic interpolation must be used instead. The change
necessary to vis5d uses the same logarithmic fraction as derived for the horizontal slice
extraction (see section 5.2.1).

5.3 Scaling vertical wind component

When a vertical coordinate system different from metres is used, the scaling of the vertical
wind component W must be adjusted. Currently VIS-5D scales W from the unit m/s to
gridboxes/s. The unit of the vertical wind component (if calculated by HIRLAM) is Pa/s
instead of m/s which VIS-5D assumes. The required scaling can easily be performed by
dividing the values of the vertical wind component by the height of a grid box in Pascal.

These modifications must be performed in the trajectory and work modules, for the trajec-
tory calculation and horizontal and vertical wind slice calculation, respectively.

5.4 Topography conversion

VIS-5D has a built-in function to display the topography of the world. The VIS-5D topogra-
phy consists of two items for every grid point:

1. Surface elevation (height above sealevel),

2. Land/sea mask.

The word topography assumes that there is more information than just the height and the
land /sea mask available, for instance the flow of rivers, roads and the use of land. The correct
word should be orography but since VIS-5D refers to topography when meaning the orography
this will be used in the remainder of this section.

The topography file format is described in appendix A.6. The grid of the default topography
file EARTH.TOPO is in a standard latitude/longitude format whereas the HIRLAM grid is
a rotated latitude/longitude grid. With VIS-5D a sample file maketopo.c is supplied that
enables the user to make his own topography data file. This sample file has been adjusted
to make a correct HIRLAM topography. The topography file can be made with the program
hirlamtopo by simply typing:

hirlamtopo <input-climatefile> <outputfile>

The information necessary to create the topography (in the correct grid format) can be ex-
tracted from the HIRLAM climate file. The height above the ground is calculated by extract-
ing the geopotential (variable 6, leveltype 105, height 0) and dividing by Go = 9.80665m /s,

48 CHAPTER 5. VIS-5D MODIFICATIONS

To introduce logarithmic interpolation into the iso surface calculation, the following equation

must be modified:]
1sovalue — nodevaly

f= (5.3)

nodevals — nodevaly’

where isovalue is the value for which the iso surface is calculated, nodeval; and nodeval, are
the data values at the edge nodes between which is linearly interpolated and f is the fraction,
i.e. the position of isovalue within the interval [nodevaly, nodevals].

In order to use logarithmic interpolation a three-step calculation must be performed. First
the linear fraction f is calculated using formula 5.3. Then the pressure value corresponding
with isovalue in the given interval can be found by using the following formula for f:

B In(Pr) — In(Piso)
f N ln(Pl) — ln(Pz) ’

(5.4)

where Py and P, are the pressure levels for the edge nodes. Pj,, must be calculated, because
this value determines the location of isovalue in the interval [nodevaly, nodevaly] when inter-
polating using the logarithm of the pressure levels. Solving equation 5.4 using equation 5.3

yields:
Pi,, = etn(P)=F-(In(P)=In(F2))) (5.5)

Third and last, the values of P;,,, Py and P, are used to calculate the following fraction:

Pl - Piso
iso — 5.6
fiw = LTt (5:)

Fraction f;s, corresponds to the logarithmic intersection point between the two nodes.

The modifications necessary to vis5d use the above equations in a new macro LOGcalcNode.
This macro is used only to calculate intersections of vertical cube edges.

5.2.4 Wind trajectories

To calculate a smooth wind trajectory, VIS-5D linearly interpolated in a 4-D box (three spatial
and one time dimension). The interpolation in the vertical coordinate should be performed
logarithmically if pressure levels are used. The change necessary to vis5d uses the same
logarithmic fraction as used for the horizontal slice extraction (see section 5.2.1).

A second modification is necessary to the trajectory to scale the vertical wind component
correctly, see section 5.3.

5.2.5 Data probe

The data probe is used to obtain single values from the data grids. If the data probe is
positioned between two levels, vis5d linearly interpolated between the levels. When data

5.2. LOGARITHMIC INTERPOLATION 47

where

Papove = the pressure of the upper level of the adjoining pair,

Ppetow = the pressure of the lower level of the adjoining pair,

Pyanted = the pressure of the level that must be computed.

The new data values are now calculated in the normal way using the logarithmic fraction.
The pressure value Pyanted is calculated from the slice position and Pupope and Prejow by linear
interpolation.

5.2.2 Vertical slices

A vertical slice is calculated by horizontal interpolation of the data values nearest to the slice
for every level of data available. No interpolation between the levels is done, so a vertical
slice has the same number of data points in the vertical direction as there are levels. There
are several ways to introduce the logarithmic interpolation between the levels:

e Extract the slice as normal. For a contour slice, the contouring algorithm must be mod-
ified so that intersections of edges spanning different levels are calculated by logarithmic
interpolation. For a color slice, the graphics library must interpolate the colors between
the vertices logarithmically. For the wind vector slices no change is necessary, because
only the data values extracted from the grid points are used.

e Extract extra levels in between the levels. Calculate these extra data values in between
by the same type interpolation as described in section 5.2.1. This way the contouring
algorithm doesn’t have to be modified, provided the vertical resolution is high enough.
The color slices can be rendered as normal using linear interpolation between the ver-
tices.

The first method cannot be used, because the GL library does not support logarithmic color in-
terpolation (the GL man pages refer to possible future implementation of this feature though,
see [GLman]). Only the second option can be used, but has the disadvantage that more data
points are extracted which increases the time needed to calculate and render the slices.

Implementation of this method is not yet finished.

5.2.3 Iso surfaces

The iso surfaces are calculated using the Marching Cubes algorithm [LoCI87]. The data grid
is divided into cubes with eight data values at the corners of each cube. For every edge of a
cube iso surface intersections are determined. The iso-surface intersects an edge of the cube
if the values at the cube nodes lie on opposite sides of the iso value (the data value for which
the iso-surface is calculated). The intersections of all twelve edges together determine the
part of the iso surface that lies within the cube. A 3-D polygon is generated.

The intersections of vertical cube edges must be interpolated logarithmically, whilst the in-
tersections of horizontal cube edges must be interpolated linearly, as normal.

46 CHAPTER 5. VIS-5D MODIFICATIONS

e “Floating levels” (2-D fields at a certain altitude) are not allowed. All single level fields
are assumed to be surface fields.

e The levels must (still) be equidistant.

e Each physical variable must have the same number of levels in each time step.

For a detailed description of the changes, see appendix D.2.

5.2 Logarithmic interpolation

The coordinate system chosen for visualization uses the pressure as the vertical coordinate
unit (see section 4.3 for a description of possible coordinate systems). Because in nature
the pressure decreases exponentially as a function of the altitude, vertical interpolation of
the physical variables (between the data levels) must be performed using the logarithm of
the pressure level values. Currently vis5d can only interpolate linearly. Because the correct
interpolation method to use depends on the coordinate system, an extra entry in the vis5d
COMP and GRID file format is necessary: an integer leveltype. (The GRID and COMP
file formats and the modifications are described in appendix A.4). The leveltype variable
indicates what kind of vertical coordinate system is used. Currently these can be height
and pressure values. In the following sections the changes to visbd are described. Only the
calculation of graphics and the data probe, i.e. the extraction of data from the grids has to
be modified. In the following sections, the modifications are explained.

5.2.1 Horizontal slices

When the user selects a horizontal slice for a level that is not in the data grid but between
existing levels, visbd calculates the values on the requested slice by interpolation of the data
values of the two adjoining levels. The current interpolation function of visbd calculates
linear fractions f and (1.0 — f), which are used to calculate the data values on the requested
slice:

datavalue = f . databelow + (1 - f) . dataabove (51)

where

datapero, = data value on lower adjacent slice,

datagpepe = data value on upper adjacent slice.

This formula is evaluated for every grid point on the horizontal slice.

The most easy way to perform the logarithmic interpolation is to add an alternative way to
compute the fractions. The logarithmic interpolation can be expressed using the following
formula for the logarithmic fraction:

ln(Pbelow) - ln(Pwanted)
o 5.2
fl g ln(Pbelow) - ln(Pabove) ()

5.1. VISUALIZATION OF 2-D FIELDS 45

e No redundant data.
Disadvantages:

e Only a color mapping can be visualized, no contour or wind vector slices.

e Modification of VIS-5D is necessary.

e The 2-D fields must be stored in separate files.

e Recoloring the topography with a physical variable can be confusing to the user,

who loses his perception of the actual height of the topography.

5. Modify VIS-5D to eliminate the restriction of the trivial (height) dimension.

Advantages:

e No redundant data.

e All visualization techniques (as far as useful) are available for each physical vari-
able. Visualization techniques that are not applicable to 2-D fields can be turned
off in the control window.

o User-friendly. Everything concerning grid dimensions can be hidden from the user,
but the user can never forget the number of levels, due to the restricted slice
movement etc. (visbd can simply prohibit operations that are illegal for 2-D

fields).
e All combinations of physical variables can be visualized simultaneously.

e Each field has an unique button row in the control window and can thus be easily

identified.
Disadvantages:

e Requires the most work of all available solutions.

e The complexity of VIS-5D increases.
After examination of the source code of VIS-5D it was decided to choose solution 5, because:

o [t is the most elegant and user-friendly method.

e No redundant data needs to be stored. This is quite important because vis5d already
needs a lot of memory, it is wise to use it sparingly.

e Various changes to VIS-5D were already necessary for other reasons, see section 5.2.

The amount of work was limited in the following ways:

e Only the trivial dimension height (the number of levels) is eliminated. In other words,
all data grids must still have the same number of rows and columns. The number of
rows and columns must each be at least 2.

CHAPTER 5. VIS-5D MODIFICATIONS

e Modification of VIS-5D is not necessary.
Disadvantages:

e The user has to keep track of where the 2-D fields are positioned in the 3-D grid.
A horizontal slice must be positioned exactly on the real 2-D field, otherwise the
2-D field is interpolated with a neighbouring 2-D field which is incorrect. This
cannot be solved by inserting dummy levels with missing data indicators between
each pair of levels, because the slice interpolation will then return missing data
values for a slice adjacent to the missing value slice.

e Vertical slices and iso-surfaces are incorrect, but can still be visualized.

e Lor each time step dummy values must be used to fill the 3-D grid in which the 2-D
fields are stacked if there are not enough 2-D fields to fill the 3-D field completely.

2. A separate physical variable is used for every 2-D field and all levels in a 3-D grid are

set to the same values as in the 2-D field.

Advantages:

e All physical variables can be viewed simultaneously.
e Modification of VIS-5D is not necessary.

e The slice position is not relevant (all positions will result in the correct values being
obtained).

Disadvantages:

e A lot of redundant data.

e Vertical slices and iso-surfaces are still meaningless and incorrect.

. Split the physical variables to visualize into two separate COMP files, one with the 3-D
fields and another one with the 2-D fields. The 2-D fields are duplicated so that they
are two levels high, eliminating the trivial height dimension of one. Visualizing of the
3-D fields constructed this way can be done as normal.

Advantages:

e “Not many” redundant data (all 2-D fields are “only” duplicated).

e Vertical slices and iso-surfaces are incorrect, but less confusing because of the
reduced volume of data.

e Modification of VIS-5D is not necessary.
Disadvantages:
e Combinations of 3-D and 2-D fields cannot be visualized.

. Color the topography using one of the required 2-D fields. The 2-D fields are stored in
a separate file.

Advantages:

Chapter 5

VIS-5D modifications

In this chapter the modifications to VIS-5D are discussed which were necessary to make
VIS-5D able to visualize the HIRLAM output. The following modifications are discussed:

e 2-D field visualizations (VIS-5D could only cope with 3-D fields),

e logarithmic interpolation of the vertical coordinate when pressure levels are used,

e creation of topography and map files of the (current) domain of HIRLAM,

e creation of colormap legends.

The 1-D probe modifications have not yet been studied.

5.1 Visualization of 2-D fields

In order for VIS-5D to be useful for visualizing the HIRLAM data, a solution must be found
to visualize 2-D fields. VIS-5D has been written specifically for the visualization of 3-D data
fields. Fields with only one row, column or level cannot be visualized. Another restriction is
that every physical variable must have the same number of points in all four dimensions.

Possible solutions to visualize 2-D fields with VIS-5D are:

1. Stack all 2-D fields which must be visualized in 3-D data fields and fill the remaining
levels with (arbitrary) dummy values.

Advantages:

e All physical variables can be viewed simultaneously (remember that multiple vi-
sualizations of one physical variable are possible by cloning the variable using the
NEWYVAR option).

43

42

CHAPTER 4. INTERFACING HIRLAM WITH VIS-5D

4.6. GRID TO COMP CONVERSION 41

4.6 GRID to COMP conversion

In order to visualize the GRID files created by xg2v, they must be converted to COMP files
which can be read by vis5d. This can be done with the utility comp5d which is supplied with
VIS-5D. Due to the changes to VIS-5D which will be described in chapter 5 the standard
comp5d program can not be used anymore, because it terminates with an error if the data
grids in the input GRID file(s) do not have equal dimensions. To import the new GRID files,
a new program varNLcomp5d has been derived from the existing comp5d program with the
following modifications:

o When reading the first time step, the number of levels and height of each grid in the
time step is stored in an array and kept for later use.

o When reading the remaining time steps, the number of levels and height of each grid is
compared with the appropriate value from the arrays.

e The compression is modified to handle variable sized grids.

40

CHAPTER 4. INTERFACING HIRLAM WITH VIS-5D

109 1-16

1059 1-16

109 1-16

{SHOD

Figure 4.3: window with list of data fields

4.5. CONVERSION FROM GRIB TO GRID 39

Starting xg2v will open the main data file window (see figure 4.1). In the top of this window
the following buttons are available:

Options: Opens or closes the options window (see figure 4.2). In this window the default
conversion options can be modified.

Create: Create the output file as selected by the user.

Exit: Exit xg2v.

Under this row of buttons, the window displays a list of files found in the specified search
directories and matching the specified filename pattern.

The filenames are sorted in chronological order, which results in the time steps being written
to the output file in the correct order. Each data file has a separate button, which are all
turned off by default. The left mouse button can be used to select and deselect data files. A
highlighted button will mean that the corresponding data file is included in the output file.
The middle mouse button is used to open/close a new window displaying the contents of the
corresponding data file as a list of data fields (see figure 4.3). The names of the data fields
consist of the following information:

e GRIB variable number (according to WMO specifications),

e A short name of the variable,

Leveltype number (according to WMO specifications),

o Levelrange.

Fields of equal variable number and leveltype are grouped under one button. Using the left
mouse button, data fields can be selected and deselected. The data fields are read from the
file, the first time the user clicks on a data file button in the main window.

xg2v will make sure that the selection of files and fields remains consistent by:

e Prohibiting the selection of new data files that do not contain all the selected data fields,

e Prohibiting the selection of new data fields that are not present in every selected data

file.

If such a selection is attempted by the user, xg2v will report this in the standard output
window.

38

CHAPTER 4. INTERFACING HIRLAM WITH VIS-5D

Foco3l0271 20300
Foco3l0271503 00
Foco3l0271803 00
FocO310272103

Figure 4.1: main window of xg2v

Output Filename 1 GR3D01234

Output leveltype + 100

Output level range + 100000, 0-10000,0
MHumber of outputlevels: 10

Project name 1 grib2vis testfile
Project number 1 1234
Climate file 1 100030000

_ Interﬁolate IDestaﬁﬁer I

Figure 4.2: options window of xg2v

4.5. CONVERSION FROM GRIB TO GRID 37

More information about the RUL libraries can be found in appendix C.2.

The RUL library functions were implemented in C (except for the functions in futil.f), for
the following reasons:

e C provides dynamic memory allocation.

e C provides better string handling than FORTRANT77.

The routines in futil.f are provided because a FORTRAN common block cannot be refer-
enced from C.

In order to call FORTRAN functions from a C program, the following should be noted:

o FORTRAN passes the address of every function parameter. Therefore when calling a
FORTRAN function from C, of every parameter that is not a pointer the address must
be passed.

e FORTRAN has no string termination character. When a character string is passed to
a FORTRAN function expecting a CHARACTER* (*), the string length must be passed as
an extra parameter, after the list of remaining formal parameters.

e Arrays in C are row major opposed to arrays in FORTRAN being column major.

e The index of the first element in a C array is 0, in FORTRAN this is 1.

4.5.3 Conversion program

The program xg2v is responsible for the conversion of GRIB fields stored in ASIMOVF files to
MecIDAS GRID files. xg2v must be started with the command:

xg2v [options]

The following options are available:

Option Description Default
—file Specify (wild-carded) input filename pattern 7fc*”
—path Specify comma-separated list of directories .
—out Override the default output filename ?GR3D1234”
—climatefile Override the default climate file ”¢l00030000”
—projectname Override the default project name ?orib2vis testfile”
—projectnumber Override the default project number 1234
—outputleveltype Override the default output level type 100
—outputlevelrange Override the default output level start and

end, separated by a minus (-) sign 100000.0-10000.0
—numoutputlevels Override the default number of output levels 10
-V Increases the amount of information printed

to the screen during conversion.

36 CHAPTER 4. INTERFACING HIRLAM WITH VIS-5D

util: Provides routines for date conversion and ASIMOF information programs,

vari: Provides conversions from one coordinate system into another, as well as routines to
convert U and V to several coordinate systems,

prpo: Provides routines used for postprocessing (vertical interpolation and destaggering of
the wind components) of the data,

grwl: Provides functions that are used as an interface to ASIMOVL files. The DDR (data
description record) is the same as the keys of a GRIB message (blockl and block2). The
parameters are kept in a common FORTRAN block.

More information about the KNMI libraries can be found in appendix C.1.

Using the KNMI libraries not only reduces the work necessary, but also ensures future com-
patibility if the KNMI libraries are changed or extended.

4.5.2 RUL libraries

The RUL libraries were created to provide an interface between the KNMI libraries and
the main GRIB to VIS-5D conversion program xg2v (X-Windows GRIB to VIS-5D) for the
following reasons:

e The KNMI libraries use very cryptic function and variable names,

e The function interfaces of the KNMI libraries are sometimes very complex (88 function
parameters is no exception). The RUL libraries hide unnecessary detail but still retain
enough flexibility to provide the same functionality as the KNMI libraries. The param-
eters that need not be altered are placed in a C struct which is passed to the functions
in the RUL libraries.

The following RUL modules are implemented:

asimof: Handles the opening and closing of ASIMOF files and the extraction of data from
these files.

grib: Provides functions to convert between GRIB physical variable names and numbers.
Also a unit and short name is defined for every physical parameter, because the GRID
file format reserves only 4 characters for the names of the physical variables.

interpol: Provides functions to interpolate GRIB data from n-levels to pressure levels.
cutil: Provides general purpose utility C-functions.
futil: Provides general purpose utility FORTRAN-functions.

xg2v: Main program module providing a X-Windows based user interface for the conversion.

4.5. CONVERSION FROM GRIB TO GRID 35

level upwards. This means that when a physical variable is extracted with more than one
level from an ASIMOF file, the levels must be sorted before writing them to an output GRID
file. Because each GRIB message contains one level, is it most easy to extract the levels
in the correct order. This has the additional advantage that it is easy to extract fields in
reverse order which is necessary for vertical coordinates such as pressure, where the positive
coordinate direction is downwards. The HIRLAM model levels are also defined downwards
(level 1 is the top level).

For each field read from an ASIMOF file, two additional reordering operations must take place.
First the array has to be converted from column major to row major, because the field is read
by a FORTRAN function and is further processed by a C function. The second operation is a
mirror operation around the horizontal axis, because the origin of the HIRLAM domain is the
south-west-bottom grid point while VIS-5D expects the origin to be the north-west-bottom
grid point.

Not all physical variables within HIRLAM are calculated on the same grid points. Some
variables are translated a half grid point distance with respect to the grid for which the
surface geopotential is defined (this grid is used as a reference grid for the remaining fields
because the topo is derived from it and used as reference by the user). Because VIS-5D can
only cope with variables defined on equal grid points, the physical variables will be lineair
interpolated to the “reference” gridpoints, read from the surface geopotential field. This
process is called destaggering.

After the data fields are extracted and converted, they are written to a GRID data file. The
grid info structure (which contents is completely known after the conversions) is written also.

Since single level fields cannot be vertically interpolated, they will be written to the GRID
file without being interpolated (but reordering, mirroring and destaggering are performed on

all fields).

Variables that are already interpolated to pressure levels will also be directly written to the

GRIB file.

4.5 Conversion from GRIB to GRID

4.5.1 KNMI libraries

The KNMI has several libraries available that provide functions to manipulate the ASIMOF
files, to perform various coordinate transformations, to transform time and date formats, etc.
The following libraries are available:

port: Provides routines used for the ASIMOF file handling,

gcod: Provides GRIB related routines, such as encoding and decoding, retrieving sections
from GRIB messages, printing these sections and checking the parameters of the sections
etc.,

34 CHAPTER 4. INTERFACING HIRLAM WITH VIS-5D

e The pressure decreases exponentially with the height and therefore cannot be in-
terpolated linearly in height.

e The vertical velocity must be converted from Pa/s to m/s in order to keep the
trajectory module functioning correctly.

e Extrapolating variables below the orography takes special care.

Considering the advantages and disadvantages of these three coordinate systems, the chosen
vertical coordinate representation in VIS-5D is the pressure level coordinate system because
it is the representation that corresponds best with the meteorological practice. As a result
this means that leveltypes other than pressure levels will have to be interpolated to pressure
levels.

4.4 ASIMOF to GRID conversion specification

In order to be able to interpolate variables to pressure levels, the following physical variables
must be present in every ASIMOF file:

e Pressure at ground level,

e Temperature at ground level,

e Temperature at model full levels,

e U component of the wind at model full levels,

e V component of the wind at model full levels,

Specific humidity at model full levels.

In addition, the geopotential at ground level (variable number 6, level type 105, height 0)
must be read from a climate file, which is an ASIMOF file and contains the average of several
variables over a long period (usually a year) of time.

If one of these variables is not available, it is impossible to interpolate to pressure levels and
the conversion program will stop with an error message.

Furthermore the full model vertical level parameters A and B are needed to interpolate cor-
rectly. A and B represent the contribution of the orography and pressure to the n-coordinate,
respectively. Between the full model levels of HIRLAM half model levels are defined. There
is one half level more than there are full levels. The lowest and highest half levels correspond
with the bottom and top of the domain of HIRLAM, respectively. The half model level pa-
rameters can be calculated from the full model level parameters. From the model half and
full level parameters, the pressure at n half and full model levels can be derived.

The ASIMOF file format imposes no ordering on the GRIB fields contained within the file.
However, VIS-5D expects the grids in the GRID and COMP files to be given from the bottom

4.3. VERTICAL COORDINATE 33

e The largest change in pressure per height are in the lowest levels of the model.
This results in the highest resolution in the area of most interest.

e Pressure levels correspond best with meteorological practice.
Disadvantages:

e The orography (i.e. the surface pressure) is not constant in time.

e The vertical interpolation of variables must be done in the logarithm of the pressure
because of the exponential decrease of the pressure with height.

e The positive coordinate direction is downwards.

e Special care must be taken to extrapolate variables below the orography.

2. Model level numbers (The HIRLAM model levels are used directly as an equidistant
coordinate system).

Advantages:

e The most simple of all coordinate systems.
e The levels are equidistant so no initial interpolation is needed.

e No orography is needed (flat orography) because the bottom model level follows
this orography.

e Best representation for a model behaviour study.
Disadvantages:

e The vertical velocity is defined as the change in pressure (Pa/s). This has to be
transformed to a velocity expressed in model levels per second to be able to use
the trajectory module.

e The positive coordinate direction is downwards.

e Vertical interpolation of the physical variables cannot be done linear, but must be
done in the logarithm of the pressure.

o The effects of the orography are being masked, because the used orography is flat.

3. Geopotential height (levels with the same geopotential i.e. the same potential energy of
an air particle).

Advantages:

e Easy to calculate using the HIRLAM post processing package (postpp).
e The orography is constant and defined as the geopotential height of the surface.
e All variables (except the pressure) can be interpolated in height.

e The positive coordinate direction is upwards.
Disadvantages:

e The levels are not equidistant. The highest resolution is given and needed at
the surface of the earth. Interpolation to equidistant levels, will result in loss of
essential information in the most interesting part of the atmosphere.

32 CHAPTER 4. INTERFACING HIRLAM WITH VIS-5D

e Only a single conversion step, resulting in quicker conversion and less disc space
usage.

2. Two-step conversion: First convert GRIB data fields to a GRID file, then convert the
GRID file to a COMP file with the already existing VIS-5D utilities. This has the

following advantages:

e The VIS-5D package includes several utilities that allows the user to perform var-
ious operations on GRID files, such as interpolation between different time steps,
resampling of the grid data, etc. (see section 2.4.1 for an overview of available
utilities).

e The vis5d program includes preprocessor statements (RD_ON_DEMAND) which en-
ables the read-on-demand file access feature. vissd will read the COMP file header
information as usual but when a data grid is requested, the data is read from the
GRID file with the original uncompressed data if possible. The advantage of this
feature is that the data can be visualized without the loss of accuracy that hap-
pens when converting GRID to COMP (data values are compressed from float to
one-byte integer, see also appendix A.4).

Considering the two possibilities, the choice was made to convert the HIRLAM output to the
GRID file format, because in that way the functionality of the VIS-5D utilities and direct
GRID file access remains available.

4.3 Vertical coordinate

The vertical coordinate used in the HIRLAM system is the so called n-coordinate. The 7-
coordinate system (also referred to as hybrid coordinate system) combines the orography
(surface elevation) with pressure levels. Close to the ground, the levels follow the orography.
Going upward the relative contribution of the orography decreases while the relative contri-
bution of the pressure increases. The relative amounts of each contribution are given for each
level by the HIRLAM model vertical parameters. Furthermore, the levels of the n-coordinate
systems are not equidistant. The largest resolution is close the ground, which is the part
of the atmosphere of most interest. In order to visualize the HIRLAM data with VIS-5D a
coordinate system must be used with equidistant levels, because VIS-5D can not cope with
non-equidistant levels.

In general, possible vertical coordinate systems for visualization are:

1. Pressure levels (levels given at specific pressure values).

Advantages:

e Pressure levels can easily be calculated from the surface pressure and the vertical
model parameters, which are both directly available from the GRIB messages.

e The vertical velocity is correctly defined in Pa/s.

Chapter 4

Interfacing HIRLAM with VIS-5D

4.1 HIRLAM output

The HIRLAM output data files are available in the ASIMOF file format (see appendix A.2).
ASIMOF files consist of one or more GRIB messages (see appendix A.1l), with a directory
structure giving information about the location and characteristics of the GRIB messages.
The GRIB messages in the file contain the data. Each GRIB message can contain information
and data of one level field of a physical variable. Information such as time and date stamp of
the field, level type and value are included.

The ASIMOYF data (or history) files have a name like fc9303261200pp, where:

fe file type (fc: forecast, an: analysis, in: initialised analysis),
93032612 start of forecast (year, month, day, hour),

00 length of forecast,

PP status identifier (pp: postprocessed, not postprocessed).

In the following sections the conversion from the ASIMOF file format to the COMP file format
will be discussed.

4.2 Conversion to GRID versus COMP

To view the HIRLAM data using VIS-5D a conversion from the ASIMOV file format (the
GRIB database file format) to the VIS-5D COMP file format is necessary. Two choices can
be made for converting GRIB data to the COMP file format.

1. One-step conversion: Convert GRIB data immediately to the COMP file format. This
has the following advantages:

31

30

CHAPTER 3. PORTING VIS-5D

3.2. MISCELLANEOUS PROBLEMS 29

Fortran function call a version with and one without an underscore attached to the
function name is available.

e Due to differences in the X11 versions on the SGI/IBM/Stellar and the HP, it is neces-

sary to set the (new) position and size of a window when it is opened, moved or resized
(using X-Windows SizeHints).

The rest of the port is just a matter of following the instructions in the porting guide supplied
with VIS-5D. See appendix D.1 for a description of HP port modifications.

28 CHAPTER 3. PORTING VIS-5D

3.1.5 Scan conversion

Because every draw operation must be performed on a per-pixel basis for correct functioning
of the Z-buffer, lines and polygons must be scan converted by VOGL and for every pixel the
Z-buffer must be checked. Two types of scan conversion are necessary: Line scan conversion
and polygon scan conversion. Line scan conversion is implemented using the Bresenham line
drawing algorithm (see [Hill90]). Two versions are supplied. The first is just a pure line
drawing algorithm. The second takes extra color parameters for the start- and endpoint of
the line. The line color is interpolated linearly between these values. Polygon scan conversion
is more difficult. The algorithm used is a variant of the polygon scan conversion algorithm
as described in [Hill90]. For each scanline the intersections with the polygon edges are found
and sorted in increasing z values. Then for each pair of sorted x values a run of pixels is
filled. The color of a run is determined by the color of the start- and endpixels of the run.
Colors along the run are linearly interpolated between these values. Start- and endcolors of
each run are found by linearly interpolated the vertex colors over the polygon edges.

Due to the manner of geometry specification of the GL (points and colors are specified by a
sequence of function calls) a change to VOGL is necessary so that vertices are shaded as soon
as they are specified, because the current color and normal (used for shading) are changed by
the next color or normal specifying function call.

3.1.6 VOGL device drivers

The device dependent parts of VOGL are separated from the rest of the code into device
drivers. A device driver gives VOGL access to certain device specific features such as draw-
ing, keyboard and mouse read operations, device initialization and clean up. The use of
device drivers makes VOGL very portable, because only the device driver needs to be altered
when porting VOGL to a new system. The structure of a VOGL device driver is given in
appendix E.2.

3.2 Miscellaneous problems
The following miscellaneous problems were solved when porting VIS-5D to HP:
e The C preprocessor used at Leiden University (release 8.05) does not understand #elif,

which has been changed to #else ... #if statements.

e The HP FORTRAN compiler does not understand the type-length combination
INTEGER*1, the type BYTE must be used instead.

e For compilers on some systems, it is necessary to attach an underscore to function
names of Fortran functions that are called from C. This is not the case for HP 700
Series systems. A new preprocessor symbol has been used (underscored) and of each

3.1. 3-D GRAPHICS LIBRARY 27

Specular:

Isp = Isrs(ur o uv)fv

where I, = intensity of specular reflected light,

I, = intensity of light source,

rq = material specular reflectance coefficient,

u, = normal vector pointing in the direction of
reflected light (R),

u, = normal vector pointing in the direction of the
vertex to viewpoint vector.

f = shininess coefficient.

Because the cosine of the angle between two vectors is proportional to the dot product be-
tween their normalized versions, the latter is used to avoid cosine calculations. This has the
consequence that all vectors used in the calculations must be normalized. Normalization of
normal vectors is necessary if the supplied normal vectors do not have unit length or if the
current ModelView matrix (which is used to transform the normal vectors to eye coordinates
before doing lighting calculations) is not orthonormal. The GL can be notified by the user
when to normalize normal vectors.

Two shading models have been added to VOGL: FLAT and GOURAUD shading [Gour71].
When FLAT shading is used the shade of the last vertex of a geometry determines the shade
of the whole geometry. When GOURAUD shading is used, each vertex of a geometry is
shaded and colors are interpolated linearly between the vertices.

All lighting functions have been implemented in a new module called light. The functions of
the light module are listed in appendix E.1.3.

3.1.4 Depth-cueing

Depth-cueing has been added to VOGL, because while working with vis5d without depth-
cued lines in combination with orthogonal projections, it became apparent that it is very
hard to determine the orientation of the box. After implementation of the Z-buffer, the only
modifications necessary were to implement functions to set the depthcueing color and 7 range,
and to turn depthcueing on or off. These are described in appendix E.1.4

To simplify the implementation of the depthcueing, there are currently two restrictions to
the depthcueing. First, only lines can be depth-cued. Second, lighting and depthcueing are
mutually exclusive, that is when depth-cueing is on, lighting commands are ignored (In fact,
they are not ignored, but the colors calculated by the lightmodel are overwritten by the
depthcueing color).

26 CHAPTER 3. PORTING VIS-5D

light source light source

diffuse reflection specular reflection (highlights)

Figure 3.2: Vectors in the lighting calculations

e Light source color, scaled by the material diffuse reflection and a function of the angle
between the vertex (surface) normal and the vertex-to-light source vector.

e Light source color, scaled by material specular reflectance and a function of the angle

between the vertex-to-viewpoint vector and the reflected light vector.

For each light source two types of reflection due to the light source incident light are usually
computed:

e Diffuse reflection (scattering). This occurs when some of the incident light slightly
penetrated the surface and is reemitted uniformly in all directions.
e Specular reflection. These kind of reflections are more mirrorlike and highly directional.

These are the reflections that make the surface look shiny.

The various vectors used for lighting calculations are depicted in figure 3.2. n is the surface
normal vector, s is the vertex-to-light source vector, v is the vertex-to-viewpoint vector, and
7 is the direction of reflected (specular) light.

Diffuse and specular reflection can be expressed using the following formulas:

Diffuse:

Id = Isrd(us L4 un)v

where Iy = intensity of diffuse reflected light,
I intensity of light source,
Td
uS

material diffuse reflectance coeflicient,
normal vector pointing in the direction of s,
u, = normal vector pointing in the direction of n.

3.1. 3-D GRAPHICS LIBRARY 25

A typical GL lighting session goes as follows:

e Define properties for each material, light and lighting model wanted,
e Activate (by binding to one of the eleven resources) the definitions,

e Draw the scene, providing the surface normals and vertices for all primitives to be

lighted.

The reader is referred to [GLman] for more details. In the following sections the enhancements
made to VOGL are discussed.

3.1.2 Z-buffering

The use of a Z-buffer has a great impact on the current structure of VOGL. The calculation
has to be done on a per-pixel basis, because every pixel of a geometry can be behind or
before the existing geometry. VOGL uses high-level drawing primitives to draw lines and
filled polygons, which are implemented in the device drivers. Drawing of these primitives
must now be done on a per-pixel basis so the device driver routines cannot be used anymore.
Instead, a new device driver routine must be added to draw a single pixel (this routine did
not exist, a single pixel was drawn by drawing a line with equal start- and endpoints).

The Z-coordinate used for Z-buffering is the screen Z-coordinate of the pixel. This value is
obtained by a new function, which maps a vertex in clip coordinates to screen Z-coordinates
using the current Z-buffer depth-range. A new type typedef zbuftype is added to VOGL.
This type is used for each entry in the Z-buffer. Currently an 8-bit Z-buffer is used, but
this can be changed easily by changing the zbuftype typedef and the define for MAXZ (the
maximum possible value to store in the Z-buffer).

The reader is referred to appendix E.1.1 for a description of implemented functions.

3.1.3 Lighting

GL lighting calculates the color at each lighted vertex by summing the total ambient light
(scaled by the material ambient reflectance), the material emitted light, and the contributions
of each light source.

The total ambient light is the sum of the ambient light associated with each light source and
the ambient light associated with the scene, as given by the lighting model.

The contribution of each light source is the sum of:

e Light source ambient color, scaled by the material ambient reflectance.

24 CHAPTER 3. PORTING VIS-5D

GL lighting performs the shading calculation on vertices in eye coordinates. This has the
consequence that GL lighting calculations are only possible in multi matriz mode and not in
stngle matriz mode.

GL lighting is controlled by defining various instances of three types of resources:

e materials (surface properties),
e light sources,

e lightmodel (environment properties).

These definitions can then be bound to one of eleven light controlling resources (a material,
a backmaterial, up to eight light sources, and a lighting model). GL lighting is inactive if no
material or no lighting model has been bound.

A material definition consists of the following properties:

e transparency,

e ambient reflectance,

e diffuse reflectance,

e material emitted light,
e specular reflectance,

e specular exponent (shininess).

A light source definition consists of the following properties:

e ambient light associated with the light source,

e light source color,

e light source position,

e spotlight direction (if the light source is a spotlight),

e exponent and spread of spotlight cone.

A lighting model definition consists of the following properties:

e ambient light associated with the entire scene,

e various attenuation factors to reduce direct light on objects and make the light intensity
vary proportional to the object-light source distance.

3.1. 3-D GRAPHICS LIBRARY 23
Z-buffering

A 7Z-buffer is a set of integers associated with pixels in the framebuffer. The integers represent
the distance of the pixel to the viewpoint. When Z-buffering is activated, for each pixel (z,y)
to draw the Z-buffer is checked to see if the new pixel is closer to the eye than the pixel already
present at position (x,y). If the new pixel is closer, the pixel is drawn and the Z-buffer is
updated. VOGL does not support Z-buffering rendering.

Depthcueing

When looking at objects in real life, the eye’s ability to perceive depth gives awareness of
the 3-D nature of objects and judgement of the relative distance of objects. The illusion of
depth perception can be created on 2-D screens by depth-cued images. Depth-cueing modifies
an object’s color based on the distance to the viewer. The screen Z-coordinate is used to
determine the depth of an object. This value is translated to a corresponding Z-buffer value.
By specifying a color range and depth range, the user can determine what color the Z-values
maps to. For a proper depthcueing effect, objects farther from the viewpoint should be colored
darker. Depthcueing is not supported by VOGL.

RGB and colormap mode

The GL supports two colormodes: RGB and colormap mode. In colormap mode a Color
LookUp Table (LUT) is used. Colors are specified by entries in the LUT (single integer
values). The LUT contains the red, green and blue color values. In RGB mode true color red,
green and blue values are specified directly. Not all operations of the library are possible in
colormap mode, the most powerful of the two is RGB mode. Other operations need special
actions. For example, when drawing depthcued lines in colormap mode, the LUT must first
be loaded with a color ramp before the line can be displayed correctly. VOGL only supports
colormap mode, but VIS-5D needs RGB mode, because all colors in VIS-5D are represented
as 24-bit color.

GL lighting

In GL lighting, as in the real world, the characteristics of the light source determine the color
and intensity of incident light on a surface. The characteristics of the object geometry and
its surface material determine the direction, intensity and color of reflected light. How light
is reflected depends on the interaction between the incident light and the surface material.

The interaction between light and matter is far more complicated than can be simulated in
real-time. Lighting in the GL achieves a balance between realistic appearance and real-time
drawing speed. The GL achieves this balance by performing lighting calculations only at
geometry vertices, rather than calculating lighting for each pixel rendered.

22 CHAPTER 3. PORTING VIS-5D

The eye coordinate system is the result of transforming (through matrix multiplication) the
geometry coordinates by the contents of the modeling and viewing (ModelView) matrix. The
eye coordinate system is the system in which lighting calculations are performed internally.

Points in eye coordinates are transformed to clip coordinates by matrix multiplication with
the Projection matrix. The next system is the Normalized coordinate system which is the
result of limiting z,y and z to the range —w < z,y,z < w (clipping) and dividing 2, y and
z by w. The result are normalized coordinates in the range —1 < z,y,z < 1. The space
of normalized coordinates is called the 3-D unit cube. The z and y coordinates of this 3-D
unit cube are scaled directly into the Window coordinate system. The pixel at the lower-left
corner has window coordinates (0,0).

Window coordinates, modified by a window offset that represents the window’s location on
the screen, represents the Screen coordinate system, which corresponds to pixel values. Screen
coordinates are typically thought of as 2-D, but in fact all three dimensions of the normalized
coordinates are scaled. The screen Z-coordinate can be used for hidden-surface removal and
depth-cueing.

The coordinate systems are all present in VOGL, except for the eye coordinate system (this
is skipped because the ModelView and Projection matrices are concatenated). The eye co-
ordinate system is necessary for lighting calculations. Furthermore the incorrect term World
coordinates is used instead of Object coordinates. In fact, if the ModelView matrix would
be separated in a Model matrix and a View matrix, the coordinate system between these
matrices would be correctly referred to as the World coordinate system.

Transformation matrices

The graphics system of the GL maintains three transformation matrices: the ModelView, Pro-
jection and Texture matrices. The Modelview and Projection matrices are already discussed.
The Texture matrix transforms texture coordinates directly from object to clip coordinates.
Its transformation is unrelated to that specified by the ModelView and Projection matrices.

Operations on the matrices are performed depending on the current matriz mode. Four matrix
modes are available. In single matriz mode only one transformation matrix is maintained
which transforms points directly from object to clip coordinates. This is the only matrix
mode available in VOGL, but cannot be used when lighting calculations are necessary, because
these must be done in eye coordinates. The other three matrix modes are viewing, projection
and texture matrix mode, which specify the matrix that is modified by operations such as
loadmatrix(). Other functions will always affect the Projection matrix, disregarding the
current matrix mode. Examples are perspective() and ortho() which are used to define the
view volume that is mapped to the 3-D unit cube. Multi-matrix mode (not available in VOGL)
is necessary to obtain objects in eye coordinates which are used for lighting calculations. A
more detailed description is beyond the scope of this report, the reader is referred to [GLman]
for details.

3.1. 3-D GRAPHICS LIBRARY 21

Object coordinates

ModelView matrix

Eye coordinates

Projection matrix

Clip coordinates

Divide by w

Normalized coordinates

Viewport transform

Window coordinates

Window offset

Screen coordinates

Pixel values

Figure 3.1: Coordinate systems used by the SGI GL
3.1.1 An introduction to the SGI GL

In this section parts of the existing SGI Graphics Library (GL) are discussed that are impor-
tant in relation to the modifications and enhancements that are necessary to VOGL.

Geometry specification

Specification of the geometry to draw is done by issueing function calls, that each send a
vertex position, vertex normal or vertex color to the GL. For instance, when a line is drawn,
the GL must first be set to line drawing mode. After that separate function calls are issued
to set the color, supply normals and to supply vertices, which are used to draw and color or
shade the line. After the line is completely specified, the line drawing mode must be unset.
Geometries drawn this way include lines, triangle meshes and quadrilateral meshes.

Coordinate systems

The coordinate systems used by the GL are important because each function acting upon
geometry does so in one of the available coordinate systems. The coordinate systems used
by the GL are displayed in figure 3.1. It starts with a 3-D system defined in right-handed
cartesian floating point coordinates, called the object coordinate system. Geometry vertices
specified by the user as (z,y, z) triplets are in this coordinate system. There are no limits to
the size of coordinates in this system (other than the largest legal floating point value).

20

CHAPTER 3. PORTING VIS-5D

be written providing functions to draw lines, text, set color, etc. For a description of a
VOGL device driver, the reader is referred to appendix E.2.

VOGL resembles the SGI GL (the subset implemented), so modifications to VIS-5D are
hardly necessary.

VOGL 1.2.5 (February 26, 1993) has enough functionality to give an adequate display
of contour slices and wind-trajectories.

VOGL is free and can be modified and used for every purpose, as long as the original
COPYRIGHT notice remains intact.

Disadvantages of VOGL are:

e Slow (compared with the hardware SGI GL). The speed of the hardware GL can of

course never be matched by VOGL. This is made worse by the trade-off between porta-
bility and speed. Every geometry is drawn by device driver calls. To keep VOGL
portable, device dependent optimalizations should only be used in the device drivers
and not in the main code section.

Not all GL functionality used by VIS-5D are provided by VOGL. GL functionality used
by VIS-5D but not available in VOGL include:

— Z-buffering,
— shading,

— depthcueing,
— transparency,
— textures.

Z-buffering and shading are vital. The others are not, but can enhance the rendered
images and increase the ease with which the images are interpreted by the viewer.

It was decided to use VOGL for porting VIS-5D for the following reasons:

e Portability, which is a great advantage because VIS-5D must be ported to HP and DEC.

Using VOGL will probably also reduce the work necessary for future ports of VIS-5D.

e The resemblance to the SGI GL makes changes to VIS-5D hardly necessary, which

reduces complexity of VIS-5D. Also, in cooperation with the KNMI, we had access to
the manuals and documentation of the SGI GL.

e The subset of the GL already implemented reduces the amount of work to do.

The modifications necessary to vissd for using VOGL are described in appendix D.4. In the
following sections the enhancements made to VOGL are discussed, after a short introduc-
tion to the SGI GL which is necessary to understand why the modifications to VOGL were

necessary.

Chapter 3

Porting VIS-5D

VIS-5D does not work on HP 700 Series and DEC hardware platforms (see section 2.2 for
a list of system requirements). VIS-5D had to be ported to HP systems to be able to use
VIS-5D at Leiden University. The KNMI is interested in a port of VIS-5D to a DEC Alpha
station. The 3-D graphics library requirement is the most serious requirement for a port
to HP and DEC. VIS-5D uses the XFDI library for Stellar and the SGI Graphics Library
(GL) for SGI and IBM hardware platforms (see [GLman]). The XFDI library uses very
high-level drawing primitives like XFDIVnormPolyTri(...) which draws a poly-triangle strip
(a polygonal mesh built of triangles) using normals for lighting calculations. The GL uses
low-level primitives and draws a poly-triangle strip by separately sending the normal vectors
and vertex positions to the GL. The function calls that supply the normals and vertices must
be enclosed by function calls that notify the GL that a poly-triangle strip must be drawn.
These two examples are fairly representative for the remaining part of the libraries. The 3-D
library is further discussed in the next section.

3.1 3-D graphics library

In order to port VIS-5D to HP and DEC systems, a 3-D graphics library is necessary for both
systems. An ideal solution would be a portable graphics library, which can be used for both
target systems. A low-cost solution is available in the form of VOGL!, which stands for Very
Ordinary GL like Graphics Library. VOGL is a software implementation of a subset of the
(hardware) SGI Graphics Library (GL).

Advantages of VOGL are:

e VOGL is portable. The device dependent source code is separated from the main source
code into device drivers. To use VOGL with a new device only a device driver has to

!VOGL was written by Eric H. Echidna at the University of Melbourne (echidna@munnari.OZ.AU). It may
be freely used and modified as long as the original COPYRIGHT notice remains intact.

19

18

|

CHAPTER 2. OVERVIEW OF VIS-5D

Change Slice Positions
Mouse Buttons

rotate | zoom & | move
view | clip | slice

IIIII}R?

0

1

Figure 2.2: Control window

2.5. VIS-5D SOURCE CODE ORGANIZATION 17

06100100

e 16 7 19

VIS5-50

Figure 2.1: Example contents of the VIS-5D 3-D window

16 CHAPTER 2. OVERVIEW OF VIS-5D

e External user functions (directory userfuncs). One way of deriving new physical vari-
ables from existing ones is to have an external user function calculate the new variable.
In the userfuncs directory the user can install Fortran modules which are all compiled
and linked into separate programs. visbd scans the userfuncs directory and the user
can execute them from within vis5d. More information about external user functions
is provided in appendix B.

e Utilities for managing and analyzing five-dimensional data grids and converting data
into VIS-5D file format (directory util). In the VIS-5D package, several utilities (see
section 2.4.1) are included for various operations on GRID and COMP files (see ap-
pendix A.3 and A.4). Skeleton example programs reside also in the utilities directory.
These programs show how to import data into vis5d. The util directory also contains
a library of utility functions (McIDAS library for reading McIDAS GRID files). The
main code of vis5d makes use of the McIDAS library for the direct reading of GRID
files.

e LUI (Little User Interface) library (directory 1ui2). The LUI library is based upon X-
Windows and provides convenient functions for all sorts of manipulation and interaction
needed in a window environment. VIS-5D uses this library for all graphical user interface
functions.

The main program vis5d relies on the LUI library for all X-Windows based functions and
the McIDAS library functions for reading GRID files. For a more detailed overview of the
available source code, the reader is referred to appendix B.

2.5. VIS-5D SOURCE CODE ORGANIZATION 15

isosurfaces, horizontal contour slices, vertical contour slices, horizontal colored slices, and
vertical colored slices of the data. The buttons are arranged in a matrix. Fach row corresponds
to a physical variable in the data set. Fach column corresponds to one type of graphic listed
below.

To display the graphic, click the left mouse button on the widget button. A small control
window will appear that is different for each type of graphic. The following graphic types are
supported:

3-D contour surface (isosurface): The isosurface control window that appears is used to
set the iso-level value for the contour surface. The desired value can be selected by
dragging the slider to the correct place. When the correct value is selected, click on the
“NEW SURF” button. The right mouse button can, besides to change the colors of the
surface, be used to change the transparency. The transparency value can slide between
0.0 (invisible) and 1.0 (opaque).

Contour slice: After selecting a contour slice with the left mouse button, a contour slice
control window containing a type-in widget will appear. This type-in is used to specify
the interval between contour lines. These intervals can be typed in while pointing the
mouse to the widget. A RETURN at the end will change the values. When a negative
value is entered, all contour lines with a negative value will be dashed and all positive
values will be drawn in solid lines. Optionally, after the interval value a range of values
(a, b) can be specified which will cause only contour lines between a and b to be
drawn.

Color slice: The color slice control window that turns up contains a function graph for
red, green and blue that maps data values to colors. To change the red, green and
blue function, press the left, middle and right mouse button, respectively, and drag the
mouse to draw a new function. Also the keyboard cursor (arrow) keys can be used
to change the function curves. Press right/left to move the function right/left. Press
up/down to change the shape of the curve.

2.5 VIS-5D source code organization

In order to succesfully make modifications to VIS-5D, a clear understanding of the source
code is necessary. The source code, which is written in both C and FORTRANTT7 (total ca.
35000 lines), can be split into four parts:

e vis5d main source code (directory src). The source code of vis5d is written in a modu-
lar fashion. The first systems visbd was programmed for included the Silicon Graphics
and Stellar Stardent using multi-threaded execution. The parts of the program that
modify exclusive resources are enclosed within semaphore statements. Single-threaded
execution is also possible. Due to the speed of these systems, the source code is easy
to understand, because it is programmed in a very straightforward way. This makes
modifications and enhancements to vis5d more easy.

14 CHAPTER 2. OVERVIEW OF VIS-5D

bigger or smaller, respectively. When pressed and moved left or right, the clipping plane
(i.e. plane of invisibility) moves towards or away from the user, respectively. When the
right mouse button is pressed the box in the window can be translated.

e Trajectory. This mode is used for creating and displaying wind trajectories. This is
only possible if the data set contains U, V and W wind components and more than one
time step. First, a position for the cursor must be selected. This can be done with the
right mouse button. Then a time step must be selected with the STEP button. The
trajectory will be traced forward from the chosen time step to the last time step and
backward through time to the first time step. Finally, the middle mouse button must
be pressed to activate the trajectory. Wind trajectories can be displayed in two ways:
as line segments (2-D) and as ribbons (3-D). The trajectory window also contains two
buttons labeled STEP and LENGTH. The STEP button is used to control the step size
used in the trajectory tracing algorithm. The LENGTH value is used to control the
length of the trajectories.

e Slice. This mode is used to reposition horizontal and vertical slices (contour slices,
colored slices and wind vector slices). To move a slice, point the mouse at any slice
corner and drag the slice to its desired position while holding the right mouse button.
Horizontal slices can be positioned in any way as long as they are parallel to the bottom
of the bounding box. Vertical slices can have any orientation as long as they remain
vertical. They can be moved parallel by pointing to the middle of the top or bottom
edge and then dragging to the new position while holding the right mouse button.

o Label. This mode is used to create and edit text labels in the 3-D window. First
position the mouse pointer in the 3-D window and press the left mouse button. A
vertical bar cursor will appear where the text can be typed in. The middle mouse
button can be used to move the text to another position. To delete a text, point the
cursor at the text and press the right mouse button.

e Probe. Used to inspect individual grid values by moving a 3-D cursor through the
3-D grid. For each physical variable, the value is printed along the left edge of the 3-D
window.

Wind slice buttons

If the data set contains U and V wind component variables there will be a row of four wind
slice buttons (if the W wind component is present it is used, otherwise the W component is
assumed to be zero for all grid points).

The location of the slice plane can be changed with the mouse while in “Slice” mode. The
color of the slice can be changed by selecting the widget button with the right mouse button.
The wind slice control window contains two type-in widgets to control the scale and density
of the wind vectors. The scale parameter is used to multiply the length of the vectors drawn.
The density parameter controls how many wind vectors are being displayed.

Display buttons
The last set of widget buttons in the control window is used to control the display of 3-D

2.4. USER INTERFACE 13

ANIMATE

STEP

NEW VAR

EXIT

NEW SURF
TOP
SOUTH
WEST

TOPO

MAP

BOX
CLOCK
SAVE

RESTORE
GRID #s

CONT #s
PRETTY
REVERSE

SAVE PIC
PERSPEC

Toggle animation on or off. Left and middle mouse button

will result in forward animation, right mouse button in backward
animation.

Step ahead one time step (left mouse button), go to first time
step (middle mouse button) or step backward one step

(right mouse button).

Duplicate physical variables or invoke external analysis functions.
Two kinds of new variables can be added: Clone variables (copies
of existing variables) and external function variables (calculated
as a function of the existing variables, see also

appendix B.2).

Exit the program. The decision must be verified.

Compute a new 3-D contour surface.

Set 3-D window to a top view (left and middle mouse button) or
to a bottom view (right mouse button).

Set 3-D window to a south view (left and middle mouse button)
or to a north view (right mouse button).

Set 3-D window to a west view (left and middle mouse button) or
to a east view (right mouse button).

Toggle display of topography. Right mouse button will edit the
topography color. The commandline option -topo topographyfile
can be used to load a topography file. Default file is EARTH. TOPO.
Toggle display of map. The commandline option -map mapfile
can be used to load a map file. The default map is OUTLSUPW.
Toggle the display of the 3-D box.

Toggle clock on or off.

Save current graphics and colors (left mouse button) or only

save colors (right mouse button).

Restore the data set last saved with the SAVE button.

Toggle bounds along the edges of the box in latitude, longitude
and height coordinates or grid coordinates.

Toggle contour labeling on or off.

Toggle the 'pretty’ rendering option on or off.

Toggle white box on black background to black box on white
background.

Save picture in the 3-D window to a file.

Toggle between perspective and orthogonal viewing projections.

Mouse behaviour buttons

This group of radio buttons (only one may be selected at the time) is used to determine the
effect of pressing a mouse button while the mouse pointer is positioned in the 3-D window.
To the immediate right of these buttons the mouse button legend is displayed. The following
mouse behaviour buttons are available:

e Normal. This mode is used to view the graphics in the 3-D window. By pressing the
left mouse button and dragging the mouse, the 3-D image can be rotated. The center
mouse button has two functions. When pressed and moved up or down, the box gets

12 CHAPTER 2. OVERVIEW OF VIS-5D

2.4.2 Graphical user interface

When starting vis5d it opens two windows: a 3-D window on the right of the screen and a
control panel on the left.

The 3-D window is used to view and interact with the data. In its upper left corner a
analog/digital clock is displayed which indicates the current time step. In the center of the
window a box is drawn (when selected by the user) which depicts the domain of the 3-D data.
All graphics will be displayed in this box. To the left side on the bottom, the values of all
physical parameters are displayed when the Probe button is selected. In the right bottom
corner, the name of the program is shown. An example is shown in figure 2.1.

The control window contains several groups of buttons that are used to control various func-
tions. The graphical user interface is an X-Windows based interface that is device indepen-
dent. Another possibility is to open the 3-D window with maximum size (full screen) and to
open the control window and all other windows on a second terminal.

The control window (see figure 2.2) is used to control any graphic by clicking on its widget
button with the left mouse button. A small control window will appear. To bring up the
graphics control window without toggling the display, use the middle mouse button. To
change the color of the graphic, click with the right mouse button on the widget button.

Some functions may not be present on the control window. This can happen because the
function is not available on the hardware platform, the button does not apply to the data set
or the button conflicts with a command line option that is set.

The buttons of the control window can be divided into four groups (see figure 2.2):

control buttons,

e mouse behaviour buttons,

e wind slice buttons,

display buttons.

Control buttons
These buttons are used to toggle, activate or control various functions.

2.4. USER INTERFACE

11

visbd command line options

After producing a compressed file, the data can be visualized with the command

vis5d compfile [options]

The following command line options are available:

-map mapfile

-topo topographyfile

~box x y z

-font fontname [height]

-mbs n
-rate ms

-full
-wdpy xdisplay

-alpha

-wide w

Use a mapfile other than the default mapfile
file OUTLSUPW. This default file is a world map in
a normal latitude/longitude grid. The reader is
referred to appendix A.5

for a description of the map file format.

Use a topography file other than the default
topography file EARTH.TOPO. This default file
is a world topography in a normal
latitude/longitude grid with heights and a
land/water mask. The reader is referred to
appendix A.6 for a description

of the topography file format.

Specify the aspect ratio of the 3-D box in the
3-D window. The default ratios of this box are
22 1.

Set the font used in the 3-D window. On the
SGI system the height of the font can also be
specified.

Override the assumed system memory size of 64 Mb.
Change the default animation rate to ms
microseconds between frames. The default
animation rate is 100 ms.

Open the 3-D window as a borderless,
full-screen sized window.

Make the control window appear on a different
X display.

Use alpha blending instead of screen door
transparency. This feature is only available on
SGI systems.

Set width of line segments in pixels. The
default width is 1.0 pixels.

An overview of the command line options is given on the screen by running visbsd without

arguments.

10 CHAPTER 2. OVERVIEW OF VIS-5D
-lat XLATS XLATN

which sets the latitude range bounds (south, north) and
-lon XLONE XLONW

which sets the longitude range bounds (east, west) and
-hgt XHGTB XHGTT

which set the height range bounds (bottom, top) for the destination grid.

Before viewing the data set, the GRID files must be converted to a compressed file structure
(COMP) file. This can be done using the command

compbd N M F

where N is the first 3-D grid file number, M is the number of grid files in the data set and F is
the name of the compressed grid file.

If the data set contains wind vector components (U, V and W) the horizontal wind (SPD) can
be included in the COMP file using the command

compb5d N M F -wind SPD U

This will result in including SPD and U in the COMP file (not V and W).

To create 3-D grid file number N which allows 3-D grids of up to M points each, use the
command

igu3d make N M
To get information about the COMP file made, use the command
compinfo COMP-file

that prints the grid dimensions, number of time steps, number of variables, etc. of the COMP

file.

The command
help NAME

can be used to get a quick overview of the parameter format of the VIS-5D utilities.

2.4. USER INTERFACE 9

where grid number K is produced by interpolating between grid numbers I and I, all in 3D
grid file number N. Grid number K will be assigned day D (in YYDDD format) and time T (in
HHMMSS format). The relative weighting of grids I and J is calculated from this time and
date, assuming linear time interpolation. If grid K is not between grids I and J in date and
time, igg3d prints an error message.

The second way to interpolate in time is to use the command

igg3d int I D T -setdel S M -lag U V -gr3df N

This will put a grid in the next empty slot of 3-D grid file number N, assigned to day D (in
YYDDD format) and time T (in HHMMSS format). This grid will be interpolated from a
sequence of grids, all in file number N, at grid numbers I, I+S, I+2S,..., I+(M-1)S. This
sequence of grids should be ascending in date and time. igg3d will search the sequence and
linearly interpolate between the two consectutive grids from the sequence which bracket day
D and time T. Furthermore, the interpolation will be done in a coordinate system moving at
constant velocity (U, V), where U and V are in m/s, with V positive for motion from south
to north and U positive for motion from west to east. The two bracketing grids from the
sequence will be shifted in latitude and longitude to their positions at day D and time T, and
the result interpolated between these two spatially shifted grids. Furthermore, if the grids in
the sequence are identified in their directory entries with variable name “U” or “V”, then the
corresponding component of the velocity (U,V) will be subtracted from the grid values.

There is a built-in possibility to resample the GRID file. This is done with the commands

gg3d samp N M I J

and

gg3d ave N M I J

where a N*M grid is resampled to a I*J grid. The samp option will linear interpolate between
source grid points and is appropriate for increasing resolution. The ave option averages
multiple source grid points and is used to decrease the resolution of a grid.

Starting gg3d without keywords will do a straight copy operation. gg3d can be invoked with
the keyword

-size NLATS NLONS NHGTS

which will cause the destination grid dimensions to differ from the source grid dimensions.
NLATS, NLONS, NHGTS are the destination grid latitude, longitude and height dimension,
respectively. Other keywords that can be used are

8 CHAPTER 2. OVERVIEW OF VIS-5D

file format (see appendix A.4). 3-D GRID file names consists of GR3Dxxxx where xxxx is the
3-D GRID file number (the number is assumed to be 4 digits). A 3-D GRID file consists of
one or more 3-D data grids, which are numbered in the order in which they appear in the
GRID file (starting with 1). Grids in a particular GRID file are referenced by the utilities
using this grid number.

VIS-5D utility commands
The directory information of the grids in the GRID files can be viewed with the command
igg3d list I J -gr3df N

where N is the 3-D grid file number and I and J give the range of grid numbers to list.

A short overview of the data in the GRID files such as the minimum and maximum values,
the mean and the standard deviation and the number of grid points with missing data can
be viewed with the command

igg3d info I J -gr3df N

with I,J and N the same as above.

The igg3d command also provides options for copying and deleting 3-D grids and interpolat-
ing 3-D grids in time. Sequences of 3-D grids are copied using the command

igg3d get NI J M K

where N is the source 3-D grid file number, T and J are the range of source grid numbers, M
is the destination grid file number and K is the starting grid file number.

A single grid can be copied using the command
igg3d copy I J -gr3df N

where N is the 3-D grid file number, I is the number of the source grid and J is the number
of the destination grid. The same way a number of grids can be deleted with the command

igg3d del I J -gr3df N
There are two ways to interpolate in time. The first way is use the command

igg3d ave K I J DT -gr3df N

2.3. CAPABILITIES 7

The reader is referred to chapter 3 for information about porting VIS-5D to other hardware
platforms.

2.3 Capabilities

vis5d can handle physical variables in single time steps and multiple time steps. It is also
possible to produce a new variable as a function of the existing variables. All these data can
be easily visualized, manipulated and looked at from every possible viewpoint.

vis5d is capable of visualizing data in the following ways:

e 3-D contour surface (isosurface): a surface that shows the 3-D volume, bounded by a
particular isovalue. This is the 3-D equivalent of a 2-D contour line,

e contour slice: a slice with lines on which values in the data set are equal,
e colored slice: a slice with data values mapped to colors,

e wind vector slice: a slice that depicts the motions of the wind by drawing arrows
which point in the direction of the wind. The length of each line segment indicates its
magnitude. The tail of the line segments are all anchored within a horizontal or vertical
plane through the 3-D box,

e wind trajectories: tracing of the motion of air through the 3-D volume much like the
trailing of line smoke in a wind tunnel,

e probe: inspection of individual grid values.

All these visualization techniques can be shown simultaneously during one or more time steps.
All graphics can be manipulated interactively, even during animation.

With equal ease, text labels can be put in the 3-D window and a window dump can be made
from this window and saved to a file or printed.

2.4 User interface

In VIS-5D there are two ways of controlling the data. The first way of doing this is using
command line options when starting vis5d or making and analyzing the data with the utility
commands. The second way is with the use of the graphical user interface within the program.

2.4.1 Command line interface

With visbd additional programs are supplied that enable the user to make and analyse the
data. The grids are assumed to be in 3-D GRID file format (see appendix A.3) or in COMP

6 CHAPTER 2. OVERVIEW OF VIS-5D

VIS-5D is offered under the terms of the GNU General Public License. There is no warranty
for the VIS-5D package.

VIS-5D is being distributed as a stand alone system free of charge. However, it is also a
subsystem of a much larger (ca. two million lines of FORTRAN code) system named McIDAS
(Man-computer Interactive Data Access System, see [Smit75] and [Hibb85]).

2.2 System requirements

VIS-5D version 3.1 works on the following hardware platforms:

Stardent GS-1000 or GS-2000 with:
true-color display (i.e. 32 planes),
32MB RAM,
optional SpaceBall is supported,
Stellix version 2.3 or later is suggested.

Silicon Graphics with:
24-bit color and Z-buffer (or 8-bit Indigo),
32MB RAM,
IRIX version 4.0.1 or higher,
multiple processors are used when present.

IBM RS/6000:
model 320H or higher,
requires 24-bit color and Z-buffer (GTO desirable),
32MB RAM,
AIX version 3 or later is suggested.

To be able to use VIS-5D on a specific target machine, the following resources should be
available:

e C Compiler,
e FORTRAN Compiler,
e X-Windows,

e 3-D graphics library with Z-buffer.
And preferable:

e 32 MB of memory,

e 24-bit color display with high performance 3-D graphics hardware.

Chapter 2

Overview of VIS-5D

This chapter gives an overview of VIS-5D, as originally distributed by ftp'. The latest avail-
able version of VIS-5D (3.1, August 1993) is used as the basis of this chapter. The modifica-
tions made in order to visualize the HIRLAM data with VIS-5D are described in chapter 5.

2.1 Background

VIS-5D is a software system for visualizing data made by numerical weather models and
similar sources. VIS-5D works on data in the form of a five-dimensional rectangle. That
is, the data are real numbers at each point of a “grid” or “lattice” which spans three space
dimensions, one time dimension and a dimension for enumerating multiple physical variables.
VIS-5D works perfectly well on data sets with only one variable or one time step (i.e. no time
dynamics). However, the data should have some depth in all three spatial dimensions. This
makes visualization of 2-D fields impossible.

The VIS-5D package includes the visbd visualization program, several programs for manag-
ing and analyzing five-dimensional data grids, and instructions and sample source code for
converting your data into its file format. The VIS-5D source code is also included so it can
be modified or extended. There are also sample data sets from the LAMPS (Limited Area
Meso-Scale Prediction System) model and from Robert Schlesinger’s numerical thunderstorm
model available.

VIS-5D version 1.0 was written by Bill Hibbard and Dave Santek of the University of Wis-
consin Space Science and Engineering Center, supported by the NASA Marshall Space Flight
Center, and by Marie-Francoise Voidrot-Martinez of the French Meteorology Office. Later
version enhancements were written by Bill Hibbard, Brian Paul, and Andre Battaiola. Dave
Kamins and Jeff Vroom of Stellar Computer, Inc. provided substantial help and advice in
using the Stellar software libraries.

1VIS-5D can be obtained via anonymous ftp from visbd.ssec.wisc.eduin the directory /pub/vis5d.

4 CHAPTER 1. INTRODUCTION

e VIS-5D is restricted to height as the vertical coordinate,
e VIS-5D doesn’t support the creation of color map legends,

e VIS-5D supports only a 0-D (point) probe, instead of a 1-D (curve) probe.

Solving these problems requires a relatively small effort compared to the effort required to
implement a complete visualization package.

1.3. VISUALIZATION TOOLS 3

Furthermore, the following features should be supported:

e support for various vertical coordinate systems,

e colormap legends (for color mappings, a legend should be (optionally) displayed giving
information about the correspondence between colors and data values),

e data probe (to inspect the value of one or more physical variables along a path through
the data domain).

1.3 Visualization tools

To visualize the output of HIRLAM a visualization tool is needed. Visualization programs
can be divided into two categories. First, there are programs written with a specific purpose
in mind. These kind of programs contain specific routines to calculate and display an (often
restricted) range of images. Secondly, there are visualization toolkits. These consist of a
collection of modules all containing only a small part of the total visualization process. By
combining modules the user can construct larger applications suited to his visualization needs.
Advantages of a toolkit are flexibility and the ease with which the toolkit can be enhanced
with new modules. For this reasons the required visualizations were first attempted using
apE III, a toolkit for visualization. Due to the large number of shortcomings and bugs
(see [Baas93]), apE was abandoned in favour of another package called VIS-5D. Chapter 2
will give an overview of VIS-5D.

VIS-5D was chosen for the following reasons:

e VIS-5D is written specifically for the visualization of meteorological data,
e free (under the GNU licence),
e the source code is available,

e support (an active VIS-5D mailing-list is available),

VIS-5D is written with portability in mind,

the KNMI evaluated VIS-5D and are very enthousiastic about it.

To make VIS-5D able to visualize the HIRLAM output as described in section 1.2, the fol-
lowing problems had to be solved:

e VIS-5D only runs on SGI, Stellar Stardent and IBM RS/6000 systems,

e VIS-5D can’t read the HIRLAM output data format,

e VIS-5D can’t visualize 2-D data sets,

2 CHAPTER 1. INTRODUCTION

1.2 Project description

Currently, the physical variables produced by HIRLAM include:

wind direction and -speed,
e temperature,

e (surface) pressure,

air density,

e humidity.
For the purpose of visualization, the output variables can be divided into three categories:

e 2-D scalar fields (surface pressure),
e 3-D scalar fields (temperature, air density, humidity),

e 3-D vector fields (wind).

The wind is actually a 3-D field of 2-D vectors because the vertical component of the wind
vectors (physical variable W) is currently not present (it is not calculated by HIRLAM, but
this can easily be changed).

The following visualization techniques, stationary or as time loops, are required:

e Lor 2-D scalar variables and 2-D slices taken from 3-D scalar variables:
— contour images (lines connecting the gridpoints where the variable has the same
value, the contours labeled with corresponding values),

— color mappings (data values are mapped to colors, according to a specified col-
ormap),

— discretized color mappings (the data is first mapped into intervals using a step
function, so that colored bands are formed).

e For 3-D scalar variables:
— iso-surfaces (3-D equivalent of a contour line).
e For 3-D vector variables:

— 2-D slices with arrows representing wind vectors.

— wind trajectories (streaklines, depicting the path of particles through a stationair
point, moved by the wind).

Chapter 1

Introduction

1.1 Project background

In collaboration with the KNMI (the Royal Dutch Meteorological Institute), the High Per-
formance Computing Division of the Department of Computer Science , Leiden University
(RUL) researches efficient implementations of a numerical weather forecasting model on var-
ious parallel computer systems. This model, called HIRLAM (HIgh Resolution Limited Area
Model), is the result of a cooperative project between Denmark, Finland, Iceland, Ireland,
The Netherlands, Norway and Sweden. The purpose of the HIRLAM project is to design a
state-of-the-art weather forecasting system. HIRLAM is already used by some of the partici-
pating countries to make predictions of the weather. The horizontal domain of HIRLAM as
used at KNMI is displayed in figure 1.1.

Figure 1.1: Horizontal domain of HIRLAM

The output of the atmospheric circulation model of HIRLAM consists of large volumes of
four-dimensional data (currently several time steps each consisting of ca. 100 by 100 by 16
calculated data points) representing several physical variables. Visualization is a natural way
to obtain insight in these data.

CONTENTS v

C.2.5 futil . . . e 82

C.2.6 grib2vis L e 83

D VIS-5D modifications 85
D.1 HP port modifications 85
D.1.1 LUIchanges.« . o 0 i 85

D.1.2 wvishd changeso 85

D.2 2-D fields modifications 87
D.3 Logarithmic interpolation modifications, 97
D.4 VOGL related modifications oo 99

E VOGL implementation details 101
E.1 VOGL enhancements e 101
E.1.1 Z-buffer functions 101

E.1.2 RGB color functions 102

E.1.3 Lighting functions L oo 103

E.1.4 Depthcueing functions oo oo 105

E.2 VOGL device driver structure oo 105

F Example Images 109

iv CONTENTS
5 VIS-5D modifications 43
5.1 Visualization of 2-D fields o 43
5.2 Logarithmic interpolation o o oo 46
5.2.1 Horizontal slices e 46

5.2.2 Vertical slices e 47

5.2.3 Isosurfaces e 47

5.2.4 Wind trajectories e e 48

5.2.5 Dataprobe e 48

5.3 Scaling vertical wind component o L 0oL 49
5.4 Topography conversion L L L L e 49
55 Map conversion L e e e e e e e e 50

6 Results 51
7 Conclusions 53
8 Future work 55
A File formats 59
A.1 GRIB file format e 59
A.2 ASIMOF file formato 64
A.3 GRID file format e 64
A4 COMP file format e 66
A.4.1 OId styleformat 67

A.42 Newstyleformat e 67

A.4.3 Variable NL format 68

A.5 VIS-5D map file format 69
A.6 VIS-5D topography file format o000 70

B VIS-5D source code structure 71
B.1 VIS-5D main source code e 71
B.2 External User functions e 73
B.3 Utilities e e e e 74
B.4 Little User Interface (LUI) library 75

C Libraries 77
C.1 KNMI Libraries o e e e e e e e e e e 7
C.L.1 port o o e e e e e e e 77

C.1.2 geod . . . o o 77

C.1.3 util . . . o e e 78

C.ld varl . . . o o e e e e e e e e e e e e e e e 78

C.LB PIPO o o o o o e e e e e e e e e 78

CL.6 grwl . . Lo e e 79

C.2 RUL libraries e e e e e 79
C.2.1 asimof e e e e 80

C.2.2 grib . o 81

C.2.3 interpol e e 81

C.2.4 cutil e 82

Contents

Preface

1 Introduction

1.1
1.2
1.3

Project backgroundo
Project description
Visualization tools

2 Overview of VIS-5D

2.1
2.2
2.3
2.4

2.5

Background oo
System requirements
Capabilities
User interface
2.4.1 Command line interface
2.4.2 Graphical user interface
VIS-5D source code organization

3 Porting VIS-5D

3.1

3.2

3-D graphics library
3.1.1 An introduction to the SGI GL . . .
3.1.2 Z-buffering
3.1.3 Lighting
3.1.4 Depth-cueing
3.1.5 Scan conversion
3.1.6 VOGL device drivers
Miscellaneous problems

4 Interfacing HIRLAM with VIS-5D

4.1
4.2
4.3
4.4
4.5

4.6

HIRLAM output
Conversion to GRID versus COMP
Vertical coordinate

ASIMOF to GRID conversion specification

Conversion from GRIB to GRID
4.5.1 KNMI libraries
4.5.2 RUL libraries
4.5.3 Conversion program
GRID to COMP conversion

iii

W N = =

-~ - & Ut o

12
15

19
19
21
25
25
27
28
28
28

31
31
31
32
34
35
35
36
37
41

ii

Preface

This is a master thesis about the visualization of meteorological data on behalf
of Leiden University and the KNMI (Royal Dutch Meteorological Institute). We
would like to thank a number of people who helped us with the many problems
that arose during the research.

In the first place we would like to thank our supervisor Lex Wolters (Leiden
University) for his support during the research and the time he has spent in
correcting this thesis.

Special thanks goes to Gerard Cats (KNMI), Toon Moene (KNMI) and Ben Wich-
ers Schreur (KNMI) for their help in explaining the sometimes complex working
of meteorology. Furthermore we would like to thank Nies Huijsmans (Leiden Uni-
versity) for his advice on the subject of computer graphics.

Meteorological
Visualization

using VIS-5D

Simon Baas Hans de Jong
Leiden University

August 1993

