Universiteit Leiden

Computer Science

A Metadata Validation Process Design for an
Automated High-Throughput Screening Workflow -
Case Study in Metadata of CytomicsDB

Name: Zhihan Xia
Date: 27/08/2014

1st supervisor: Fons J.Verbeek
2nd supervisor: Enrique Larios

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

A Metadata Validation Process Design for an
Automated High-Throughput Screening Workflow -
Case Study in Metadata of CytomicsDB

Zhihan Xia (1244205) Dr. Fons. J. Verbeek (Supervisor) Enrique Larios (Supervisor)
Computer Science, Section Imaging and Bioinfomatcis, Section Imaging and Bioinfomatcis,
LIACS LIACS LIACS
Leiden University Leiden University Leiden University
The Netherlands The Netherlands The Netherlands
xzh1@live.cn f.j.verbeek@liacs.leidenuniv.nl e.larios.vargas@Iliacs.leidenuniv.nl

1/37

Table of Contents

L. INEFOAUCTION ..ttt ettt b sttt e b e b e e st ebesbesaenan 3
2. Validation STrategiesScceceevieiicieriieeee sttt ettt st esteesa e aeeaeestesreeneas 4
P20 I L T 1 T TR 4
2.2 STFALEQIES ..ottt ettt sttt ettt ae bbbt b et st ea et be e nen 5
2.2.1 “Trust Your Friends” and “Pass It On”c..ccccovvrviiniiniennenneeneesee e 5
2.2.2 Levenshtein QISTANCEocvivirierieieieeeeee ettt sttt sbe e 7
2.2.3 MUIti-0DJECTIVE DECISION ...ttt 9

3. Validation SUBJECTS.......c.coiiiiiere ettt 9
3.1 Treatment/COMPOUNGScvecvieieieiteeeecte ettt ettt et et e e e besre e s e besrsesesreennas 10
B2 SIRINA ettt sttt ettt aeeh e b et be et et et et et Rt beeteebeneens 10
4. Validation WOFKFIOW.........ocviiiiieiececeee ettt st neesneenees 12
4.1 Treatment/Compounds Validationcccocevevirinieneiieinieeeereeeeeee e 12
4.2 SIRNAS ValIALION ...ttt sbe e 17
5. TN AFCNITECTUNE ...ttt sttt ettt sesaeseeneas 24
5.1 The presentation [aYETco et 24
5.2 TNE ULHILY TAYET ...ttt 27
5.3 THE SEBIVICE TAYEN ...ttt s b e st et e ereebesreennas 27
5.4 The PErSISTENCE LAYEKccveeeeeiieiieiesteeete ettt sttt et beste et besrsebesreennas 28
5.5 THE FEPOSITONY ...c.eeeieceeeeseeee ettt ettt et e et e ss e esbesreeseesessaensesseennas 28
6. Evaluation Of the FESUITSeoiiiiieiece et 29
6.1 Accuracy of locating CONtradiCtions...........ccceeieiiiiieieececece et 30
6.2 Accuracy of locating dupliCation............c.coeeeiiiieeeni et 31
6.3 Accuracy Of giViNg SOIULIONS..........cvciiiiiiiicieecece ettt 31

T FUTUNE WOTKS. ..ottt sttt sb e sttt ettt ese bt nnes 32
7.1 Duplex detection for multi-attributes entities..........ccceeeveececieeececeeece e, 32
7.2 Multiple external data SOUICESc.ecvevieerierieiteeeete ettt sttt te et e be e eanas 32
ARG IS TeTo [T or= T oto] g (=T ox £ o] o TSP 33
7.4 MUIti-0DJECTIVE ECISIONeeeeeiieieiecteeee ettt st re e 34
7.5 SIRNA COMTECLION ...ttt ettt et e st enbesaeenseeneeneas 34
RETEIEINCE. ...ttt a b st e e et b e bt s b e st et e b e s b e s b e e beebesbenbeneas 35
AN 0] 0 L=1 0 3 TSRO 36
RNA SEQUENCE TINKS ...ttt sttt sttt ae e 36
The class diagram of SIRNA validation ProCESS.........ccevveirirerieeeieseseseese e sieseeese e ssenees 37

2137

Abstract. High-Throughput Screening (HTS) techniques are commonly
used to identify potential drug candidates by applying screening strategies
on large-scale small molecules and genome-scale RNAIi. HTS experiments
are mechanical and repetitive by nature with large volume of data involved.
Some HTS experiments management applications have been developed as
automatic data management and analysis solutions to cope with repetitive
steps and data volume. Computation and transferring of data are automated
by these systems to reduce the risk of errors which usually caused by
unnecessary repetition of researchers during these stages. However, little
attention has been paid to the consistency, integrity and reliability of preset
parameters used in experiments. However, if these metadata are not trustful,
then no matter how accurate it could be during data processing, no correct
conclusions can be retrieved. Thus, an effective progress to validate HTS
experiments metadata is highly needed to solid the foundation for the
experiments and then potential candidates can be expected.

This thesis is going to propose a process to validate metadata (SiRNA
entities and Treatment/Compound names are going to be taken as use
cases) during the pre-design stage of HTS experiments. The process is
going to be performed when Master Tables for these parameters change
(insert, update or delete entries) on CytomicsDB [1], which is a web based
HTS workflow management platform runs with a modern RDBMS (Relational
Database Management System).

1 Introduction

It is simply not possible to analyze the large amount of potential drug candidates available
in the fields of biology and chemistry today through manual labor. The process of lead
screening needs to be automated and its throughput increased if good new drug leads are
expected to be identified within reasonable time frames and at reasonable cost. Then,
using robotics, data processing and control software, liquid handling devices, and
sensitive detectors, the methods of HTS are introduced to help researchers quickly assay
and screen millions of chemical or genetic targets at a time. Through this process one can
rapidly identify active compounds, antibodies or genes which are starting points for drug
design.

Usually HTS experiments follow the steps of (1) plate preparation, (2) reaction
observation and (3) "screening". Parameters like chemical treatments, siRNAs, type of
plates, type of microscopes are pre-stored and maintained as libraries and carefully
catalogued. During the plate preparation stage, researchers design experiments by
setting metadata for each microplate. Metadata specified for each experiment (such as a
protein, cells, or an animal embryo, and the treatments conduct upon them) are selected
from the metadata libraries. Then, according to the experimental design, each well of the

3/37

plate is automatically or manually filled with specified cell populations and designed
treatments are induced into each population. After some incubation time has passed to
allow the biological matter to absorb, bind to, or otherwise react with the compounds in the
wells, measurements are taken across all the plate's wells. Using the preset parameters
as parameters, Elementary measurements are automatically conducted on time-lapse
images taken by microscopes. These images show changes or defects in embryonic
development caused by the Treatment applied in each well. Based on the measurement
result, researchers can do more assays and select liquid from wells that gave interesting
measurement results. The selected liquid will be put into other plates for following screen
experiments. By collecting further data on the narrowed set in the following experiments,
researchers can continually confirm and refine observations.

CytomicsDB system integrates the whole HTS workflow. The system relies on a modern
relational database system, MonetDB [2], to store metadata and experiments' results,
while providing a web base GUI for end-users to supervise and interact with data. During
each stage of the HTS workflow, CytomicsDB involves a validation process to normalize
metadata and intermediate data. This thesis presents the validation process which uses
external databases to check the consistency of each metadata entry. The validation
process is conducted during maintaining (adding, updating or deleting) metadata in
master tables in CytomicsDB.

Two kinds of metadata, Compound names and siRNAs, are taken as cases for the
validation process as they are representative (the Compound name is single-attribute
metadata while siRNA is a multi-attributes one) among all kinds metadata stored in
CytomicsDB. The volume of metadata vocabularies of these two categories also
determines that they mostly need the auto-validation process. The volume for each of
these two metadata is over thousands of entries which is too big to check manually. The
thesis is going to discuss this validation process from the following aspects in section 2 to
5: (1) validation strategies; (2) validation subjects; (3) Workflows of the validation process
and (4) the architecture of the validation process. An evaluation of the effectiveness of the
validation process is going to be discussed in section 6. Some future improvements are

going to be discussed in the final section.

2 Validation Strategies

2.1 Definitions

The validation process can be abstracted as a model. In this model, each object which is
objectively existed in the real world (e.g. a compound, or a siRNA) is defined as an entity
E. For each entity, several attributes are assigned to it, like the name, the ID number and
the publisher. The attributes that are used to describe one entity can be defined as a set:
A ={ay, a,..., an}, in which a; (1<<i<n) means the i attribute of the entity.

In this model, multiple data sources are involved as well. They can be categorized as two

4137

types. One set is from the lab in which researchers use CytomicsDB to manage their
experiment data. In CytomicsDB, this set is uploaded by researchers and stored as
master tables in the database. Another group of sources are from external databases.
They are used to validate the metadata uploaded by researchers. All these data sources
can be expressed as a collection S = {sy, S,..., Sm} in Which s; (1<<i<Xm) represents the i"
data source among the m data sources.

Adopted from [3], The data source s; offers a fact value f 4 for the attribute a; of an entity E.
different data sources may have different fact values for a same attribute of the entity. For the
entity E, if 3a;€ [a1,an)], fsi, aj) # fs1, 2, | # |, then a confliction or inconsistency is found between
data source s; and s, In all fact values from all data sources, those who correspond to the
attribute value in the real world are called the true value. So the validation process is in fact a

progress for identifying true values among all conflictions between data sources.
2.2 Strategies

2.2.1 “Trust Your Friends” and “Pass It On” [4]

The relationships among the entity, its attributes and fact values from different data sources in
CytomicsDB are sketched in Fig. 1. In CytomicsDB, the idea is to validate the metadata while
researchers building the metadata master tables in the system. In Fig 1, it means that the data
source S2 from the researcher needs validation. An assumption is considered that the fact
values from reliable external databases can be treated as true values. Especially when those
fact values are identical to the ones given by researchers, the possibility that those fact values
are true values becomes quite high which can be assumed as 100%. This confliction
avoidance strategy is referred as “Trust Your Friends” in [4]. The intuition behind this strategy
is to trust some data sources which are most reliable, data-rich and independent to the data
source which needs to be validated. What sources to trust is decided once and carried out for

all data values.

Data Sources

External databases @ .

Attributes Entity

Researchers provided @ .- e .

00 00

Fig. 1 the relationships between the entity, its attributes and fact values from data sources

5/37

One may have noticed that the fundamental assumption is a little bit arbitrary. Theoretically, no
data sources can be 100% accurate in describing all entities in the real world. Since the
researches should be experts to the metadata they upload, the researchers’ decisions are
involved as a part of the confliction resolving strategy. The validation result from “Trust Your
Friends” strategy is “Passed On (PASS IT ON [4])” to researchers (users, experts) to let them
decide how to handle possible conflicts. For an entity, the validation result includes the status
of its correctness and some possible solutions to handle conflicts when some conflictions are
detected in some attributes. To the entity, the "Highest Quality [5]" entries (in all attributes)
from external databases are given as recommended possible solutions to conflicts. The

researchers have the final word on the confliction resolutions.

For entities with only one unidentifiable attribute, additional fact values of identities from
external data sources should be used in the validation strategy. For entities with several
attributes, some multi-objective decision strategies can be implemented during selecting the

“Highest Quality” matchers.

The strategy can be mathematically expressed as following. [4] For a single-attribute entity,
the conflict handling strategy received n entities from external data resources beside the entity
itself. The strategy can be expressed as a function f;, defined on a domain (the single attribute
of the entity E) D and maps n+1 (the additional 1 input ¢ represented the one fact provided by
researchers) input values to one output value of the same or another domain S. Fact values (c)
conflicted from the fact value (c) provided by researchers in the entity are resolved to a

solution s:
fen: D"t > S 1)
fen(cy,) =s,s €S,¢; ED,Vi=1-n

Similarly, an n+1-ary multi-attributes conflict handling function is a function f, defined on m
domains D; and maps n input m-tuples to one output value s which is from the same or another
domain S. The idea here is that conflicts are resolved in an attribute by using additional
knowledge from other attributes as well. The correspondences between values from the

different attributes are not lost, therefore the validation function works with n m-tuples as:

fon: DM > S (2)

fch((ﬁl"“c{n); (ck,), -, (cl, -, cm), (Cl’...,cm)) =s5,5€S, Ci] ED,Vi=1-n

For a single attribute conflict handling function, additional information (e.g. one more attribute
of ID) can be given as a separate parameter A to unify the single-attribute problem into a

multi-attribute one. It can be expressed as:

foniD"™1x A - S ?3)

6/37

fen((c1,Ay) -+, (€, Ap),c) =s,s €S,¢c; ED,Vi=1-n

The number n follows the number of external data sources. Taking the simplified
single-attribute strategy as an example, if 3¢; =¢,Vi=1--n , then there is no conflict and
the function should be evaluated as f.,(cy, -, ¢y, c) = c. So the validation state of the entity
should be "OK". Otherwise a c; should be selected by some selection rules and be given as a

confliction solution to correct attributes of the entity.

2.2.2 Levenshtein distance

As mentioned before, there can be several ways (models) to select tuples with the "highest
information quality" as recommended solutions to conflictions. For the underlying quality model,
the similarity model is chosen for CytomicsDB. That is, the similarity between the entry from
external data source and the entry provided by researchers is viewed as an indicator of the
quality. The entries which are most similar to the entry provided by researchers are chosen as
recommended solutions to deal with conflictions in attributes. To compare the similarity
between two entries, first a similarity score is calculated for each attribute by comparing fact
values for the attribute separately. Then a multi-objective decision algorithm gives an overall

score on the similarity by considering similarity scores on all attributes.

The types of attributes can be varied a lot from different datasets. However, attributes still can
be categorized by their types. For most of the cases, they can be numerical, strings,
categorical or taxonomical attributes [5]. For the metadata sets to be validated in CytomicsDB,
their attributes can be viewed as strings (digit sequences). Then the task of computing the
similarity for a pair of fact values is simplified to grading the similarity between two strings. The
score of similarity is represented as the edit distance (or so called “Levenshtein distance” [6])
between a pair of fact values. The Levenshtein distance is a sensitive measure with which
distances between strings are calculated. The algorithm finds the cost of the least expensive
set of insertions (add a character to the string), deletions (delete a character from the string) or
substitutions (replace a character from the one string by a character of the other string) that
would be needed to transform one string into the other [7]. The distance between two strings is
normalized to [0, 1] range to describe the similarity between these two strings. To compare the
similarity between fact strings b and a The Levenshtein distance can be defined recursively as

following: (4)

i
dy = Z Weer(br), 1<i<m,m=length(b)
k=1

j
do; = Z Wins(ar), 1<j<n,n=length(a)
k=1

7137

di1j-1 a; = b; 1<i<ml<j<n,
4 = I di—1,j + Waer(b;)

Y min<{ dij—1 + Wins(a;) a; # b;, m = length(a),n = length(b)
L di_1,j-1 + Wsup(a;, by)

In the formula, wge, Wins and wg,, represent the weighted function to calculate the cost of

deletions, insertions or substitutions. The d.,, is the final similarity score between a and b. d,,

. 2 .
can be normalized as: d,,;,’ = 1 — arctan(d,,;,) X — This recurrence can be computed as a

matrix. An example of computing the similarity score of siRNA sequences “GAATC” and
“GATC” (the two sequences which are faked only for example are captured and cut off from
the ‘siRNAdb’ [8]) is given here. First, the two sequences are initialized in a matrix as shown in
Table 1:

Table 1: initialization of Levenshtein distance

G|A|A|T|C

0
1
2
3
4

o |4 (> |®

The number in each block in the table means the distance score. In the example, all weight
numbers for all 3 actions are to 1. The second step is filling the rest blocks following the rule
that: 1) if the two corresponded characters for the block are the same (as shown in Table 2, the
two characters for block a;; are the same “G”), then fill the block with the minimum number in
its top-left block; otherwise, fill the block with the minimum weighted number calculated from

the numbers added 1 in its left, top and top-left blocks (e.g. the value for block a;, in Table 2).

Table 2: fill in the table to calculate Levenshtein distance

G A A|T]|C

0y 1 2 31415

G 1 air = 0_:> ap = 0+1

A2
T]|3
Cc |4

As shown in Table 3, by repeating above steps until the table is full-filled, the value in the most
right-bottom block is then the final similarity score between the two sequences (still needs to
be normalized of course).

Table 3: full-filled table for calculating Levenshtein distance

L | lelalalr]c]

8/37

0/1]2|3]4]5
Gl1]o]|1]|2]3]|4
Al2]1]of1]2]3
T(3|2]1]1]1]2
cla|3|2]2 2@

As one can see, the final Levenshtein distance between these two sequences is 1 which
means deleting one “A” from “GAATC” sequence will make the two sequences identical to
each other.

2.2.3 Multi-objective Decision

As the concern of performance, the multi-objective decision strategy is designed as simple as
possible In CytomicsDB. Since the user has the final word on the solutions, the drawback
(inaccuracy) of auto-generating possible solutions can be effectively overcome. There are
several categories of multi-objective decision (Weighted Global Criterion Methods [9], Analytic
Hierarchy Processes [10], Evolution Algorithms, etc.) but the most intuitive way is to convert
the multi-objective decision problem to a single-objective decision problem by Weighted
Global Criterion Method. Then it only needs to select the biggest sum-scored ones as the
recommended solutions. For the entity E described in m domains, assuming n m-tuple entries
from external data sources are given as candidates for potential solutions, if the similarity to E;
(1=i<m) N@S been scored as S;j ;1<i<n, 1<i<m) fOr €ach fact-value in the n m-tuple entries, the strategy

can be represented as a weighted exponential sum formula:

U,':Z;n:]_W]X(SU)p 1<i<n1 S]Sm (5)

Then the i entry with max(U;) in the n candidates is going to be given as a solution to

conflicts.

3 Validation Subjects

There are usually two types of data inconsistency [4]: contradictions and duplications. For the
contradictions, they may be caused by typos, version updates, shuffle of attributes, etc.
Perceiving duplications for entities with unique identities is easily. The perceiving can be
performed on the identifier attributes. Otherwise, additional identifier attributes are needed to
perceive duplications, which add complexity to the problem. The goal of the validation process
applied in CytomicsDB is to detect and correct the inconsistent data in the entities of metadata.
In CytomicsDB, metadata attributes are mapped as fields in each table (or so called the
“‘master table”). All the metadata stored in CytomicsDB can be validated for internal
consistency to increase the accuracy and reliability of metadata for HTS Experiments. In this
thesis, Compounds (which have only one attribute without unique identifier) and siRNAs
(which have several attributes beside unique identities) are treated as test cases to implement
the validation process.

3.1 Treatment/Compounds

9/37

The Treatment/Compound is the most important factor of the experiment. In CytomicsDB, only
the name of each Treatment is adopted. The consistency of this treatment name can be
validated by using NCBI PubChem Compound database [11]. Here is an example of validating
treatment “ETOPOSIDE”. The researchers just offer the name of a compound. The validation
process needs to check if the compound’s real name is “ETOPOSIDE” and if the compound
has been registered in the master table by another name. By checking the compound with the

given name in the NCBI database, the following result is shown in Table 4.

Table 4: The query result by checking the compound name in NCBI database

Name Molecular Molecular 2D
CID Name
Type Weight Formula structure
Etoposide o0-Quinone synonym % [, i
[u
71316630 572.514120 | CougH25013 ’ '!_‘ r
Etoposide 3',4'-Quinone synonym N
Etoposide MeSHHeading Hw“ : J
59360017 588.556580 | CaoHa:O13 M
Etoposide synonym ‘ T 1 ;
Etoposide glucuronide synonym L~
W i
46173784 Etoposide glucuronide MeSHHeading 764.680700 | CazsHaoO1 l‘j" v
[
Etoposide glucuronide MeSHTerm - H 5

In Table 4 one is possible to see that the name for the compound is not a unique identifier. A
compound entity can be described with several kinds of names like the source name, the
Medical Subject Headings (MeSH) and terms, the synonym names, etc. A compound entity
can have multiple names in each category as well (e.g “71316630” compound has two
synonym names). Each of these names can be the same as the one from researchers or
contains it. Fuzzy search (e.g. searching for “ETQPOSJDE” but “ETOPOSIDE” is got.) is not
supported by the NCBI database.

The CID (PubChem Compound Identification) is a non-zero integer PubChem accession
identifier for a unique chemical structure. So it can be used as additional information to detect
duplications.

As shown in Table 4, the molecular weight and formula is the most distinguishable attributes
for the researchers. So these two attributes are included into the process to assist the
researchers to take a final decision. The 2D structure of each entity is also used in the similar
way.

3.2 siRNA

Small interfering RNA (siRNA) [13] is a class of 20-25 base pairs in length, double—
stranded RNA molecules. In common cases, the siRNA is designed as a gene knockdown
tool to interfere with the expression of specific genes with complementary nucleotide

10/37

sequences. siRNA inhibits expression from its homologous gene (i.e. the sequence of
siRNA is a sub-sequence of its homologous DNA’s sequence). The symbol, ID, accession
number and Gl number of the siRNA follows the homologous gene as well. Usually one
strand in the double strands of a siRNA sequence is recorded in the database. The
sequence of a siRNA talked in the rest of the thesis is a one strand sequence if not
specified.

For the HTS experiment, the siRNA target is of crucial importance. One example of a
siRNA provided by the researchers is listed below in Table 5.

Table 5: one siRNA example provided by the researchers

Duplex Gene Accession
Gene ID Gl Number Sequence
Number Symbol Number
D-004105-01 7272 TTK NM_003318 34303964 XXX (not disclosed)

The consistency of this siRNA can be validated using external databases like NCBI
Nucleotide [12], HGNC (HUGO Gene Nomenclature Committee) Gene symbols/IDs
database [14] and BLAST+ (Basic Local Alignment Search Tool) sequence alignment
application [15]. By searching with every attribute value (except the Duplex Number which
is an internal unique identifier attribute in the research group) of the siRNA as a keyword

in the external database, the following result is obtained (Table 6):

Table 6: the query results from all external data sources

External
Query Gene
Data Gene ID Accession Number Gl Number Sequence
Keyword Symbol
Source
100%
GenelD: 7272 HGNC IDs 7272 TTK NM_003318 262399359
Aligned
HGNC 100%
GeneSymbol: TTK 7272 TTK NM_003318 262399359
Symbols Aligned
Accession
NCBI 100%
Number: 7272 TTK NM_003318.4 262399359
Nucleotide Aligned
NM_003318
GINumber: NCBI 100%
7272 TTK NM_003318.3 34303964
34303964 Nucleotide Aligned
100%
100969041 TTK XM_008969441.1 675737708
Aligned
Sequence: 100%
BLAST+ 7272 TTK NM_003318.4 262399359
kkkkkkkkkkkkk Allgned
100%
7272 TTK NM_001166691.1 262399360
Aligned

Table 6 shows that querying with each fact value of attributes in the siRNA from

researchers in external data sources may get different results. For example, as querying

11/37

with the fact value “NM_003318" of Accession Number attribute in NCBI Nucleotide
database, the result entry of siRNA has a different Gl number (262399359”") to
(“34303964”) the one provided by researchers. It is because the siRNA has a new version
(Gl Number “34303964” corresponds to Accession Number “NM_003318.3” which means
the third version of the siRNA while GI Number “262399359” corresponds to Accession
Number “NM_003318.4" which is the 4™ version of the siRNA) stored in the NCBI
Nucleotide database. Confliction like this or other typos (e.g. the gene symbol given by the
researchers might be miss-spelled or be using a synonym name) will be detected and
presented to the user along with best matches from the external data sources and ask the
user if he wants to use his own or one of the best matches.

It is possible to notice that the result of query with some fact value from non-unique
attribute may get non-unique results (e.g. searching the short sequence against BLAST+
application). Searching with Gene ID, Gene symbol and sequence in external data
sources all may get multiple results. That’'s one of the reasons that similarity measure and
multi-objective decision are highly needed for automatically determination.

To detect the duplication of all the siRNAs in master table, only the attribute “duplex

number” is used as it is an internal unique identifier attribute.

4 the Validation Workflow

The validation workflow follows “Trust Your Friends” and “Pass It On” strategies while
using “Levenshtein distance” and “Multi-Objective Decision” algorithms. There are two
branches separately focusing on single-attribute and multi-attributes situations in the
validation workflow. The two branches follow a common principle of the validation
workflow. The principle is first parsing each fact value (the attribute value of metadata
from researchers) into a standard unique identifier value by querying it as a keyword in an
external data source, then getting the entries from an external database (which should be
reliable) which uses the unique identifier as a primary key. The validation of Compounds
and the validation of siRNAs can be viewed as two scenarios corresponding to the two
branches of the workflow, respectively.

4.1 Treatment/Compounds Validation

Validation of a Compound name is the case for validating single-attribute entities. Before
inserting compound names into the master table, a syntactic validation will check if there
are duplicated names already registered in the master table. Then later validation process
will check the internal consistency of the entry inserted into master table. As mentioned
before, since the attribute “Treatment Name” of a compound is not a unique identifier, the
first step is parsing each name into the unique identifier, “CID”, by using external data
sources. So the compound name retrieved from the master table is pushed to the parsing
stage. Two soap based web services [16] are used to do query in NCBI PubChem

Compound database. Using “Esearch” service[19] to query one compound name will get a

12/37

list of candidate “CID”s. Delivering the list of “CID”s to “Eesummary” web service[19] will
get a list of corresponded compound entries (with attributes like molecular weights,
molecular formulas, URLs to 2D structure images, etc.). The list of entries will be
candidates for similarity comparing and screening. Entries which have the highest
similarity scores among all candidates are picked up as the validation result. These
entries are delivered to the user for decision. If there is any inconsistency in the compound,
then these entries are potential solutions to them. An example of validation result which

are about to “pass on” to users for final decisions is shown in Table 7.

Table 7: a scope on treatment_validation_details table (example)

Molecular Molecular
Treald treaName Result Id CID nameType 2DStructure

Weight Formula

1714 VP 16-213 1 59360017 | synonym 588.556580 C29H32013
1714 VP 16-213 2 50989217 | synonym 588.556580 C29H32013
1714 VP 16-213 3 11758093 | MeSHTerm | 588.556580 C29H32013
2503 Etoposide 4 45356822 synonym 588.556580 Ca9H3,013
2503 Etoposide 5 59360017 synonym 588.556580 Ca9H32013

These example records are stored in a validation result table beside the master table in
the database in CytomicsDB. The “treaName” field is the fact value of compound name
from researchers. The “treald” field is an auto-generated primary identifier in the master
table. The “CID”, “MolecularWeight”, “MolecularFormula” and “2DStructure” fields are fact

values of entries retrieved from NCBI PubChem Compound database. The compound

13/37

name for each of these entries in the table is perfect matched (according to similarity
comparison) to the “treaName” from researchers. So these entries’ names are not listed in
the table. The “nameType” field indicates the type of these entries’ names. The “resultld”
filed is an auto generated primary key value in the validation result table.

It is mentioned in chapter 3.1 that query with a compound name (which may be matched
at any part in different types of names in external data sources) will get 1-to-many
corresponded “CID”s which will lead to multiple entities from external database. As one
can see, The query in NCBI PubChem Compound database with compound name “VP
16-213” (and also for compound name “Etoposide”) gets not only one perfect matched
entries. These entries have the same molecular weight and molecular formula. Only some
tiny differences on structures (location of Hydrogen bonds) are distinguishable for them.
Besides that, one entry identified (CID) as “59360017” is hit by both names in query.

So a strategy should be applied here to narrow down the choices space and to give
potential solutions considering possible duplex. The basic idea is that if only one
unregistered (by other names in the master table) perfect matched compound is found in
the external data source whose CID is not registered by other entries in the validation
result table, then the validation state of the given name is OK. Otherwise if multiple perfect
matched compounds are found in the external data source, then the lead researcher
(commonly is the administrator of the platform who might be the team leader in the lab)
should decide on which one is exactly the “real” compound matched to the given name.
Given the compound name “Etoposide” as an example, the user will be informed about
multiple hits and a duplex while browsing No. “569360017” compound as an additional
warning. Upon the decision made by the researcher, the result should be updated in the
validation result table. If one unduplicated candidate (“45356822”) compound is confirmed
as the only match to “Etoposide”, then other candidates (here is only the “569360017”
compound for “Etoposide”) should be removed from the validation result table. Meanwhile,
when the user reviews candidates for “VP 16-213”, there should no more duplication
warning for “59360017” compound. Otherwise, if the user ignores the warning and
confirms that No. “69360017” compound is the only match for “Etoposide”, then the
decision should be checked in the validation result table. If “569360017” compound has
been decided as the only match for name “VP 16-213” which logically means that
“Etoposide” and “VP 16-213” are duplicated to each other, then the name “Etoposide”
should be removed from master table along with all its validation results. If the
corresponding compound for “VP 16-213” is not decided yet, then while deleting another
candidate No. “45356822” for “Etoposide”, the state of candidate No. “59360017” for “VP
16-213” should by updated to “duplex” which will lead to a duplex warning message when
the user review the candidate to make the decision for “VP 16-213”. One occasion is that
only one perfect matched compound is found in NCBI database for the given name but

this compound is duplicated in the validation result table. In this situation, the matched
14/37

compound will be inserted into the validation result table with a duplex state and user
should make a decision on the candidate. The confirmation process is the same as talked
before in this paragraph. Assuming that the list of candidates (the list is not empty) for
Compound Name n has been retrieved as |, the strategy is expressed as the following

pseudo code:
Start
Stepl: get best matched candidates ¢ from |
Step2: if length(c) = 1 && duplexDetect(cy) = false — return Validation State = ‘OK’,
else — go to Step3
Step3: for i < Cq t0 Ciengtne) - 1
if duplexdetect(i) = true — set i.state = ‘duplex’
else — i.state = ¢
end for
goto Step 4
Step4: wait for the user’s decision among ¢
(abort for users interaction)
Step5: get the user’s decided candidate d among ¢
Step6: if d.state = ‘duplex’ — go to Step7, else — go to Step9
Step7: get entries list el by d.CID from the validation result table
Step8: for e «— elg to elenginery-1
if e is waiting for users’ decision — set e.state = ‘duplex’
else — delete the e’s corresponded treatment name in master table;
delete e
end for
goto Step 9
Step9: get entries list el with CIDs which are among all candidates of n except d from the validation result table
Step10: for e < elg t0 eljengingery-1
if e.state = ‘duplex’ — set e.state = ¢
end for
go to Stepll
Step 11: delete other candidates except d for n
end

Going back to the example, in fact the two names are all synonyms to the compound
identified as “569360017”. So they are theoretically duplicated to each other. If the user
makes a professional choice, one of the two treatment name should be removed from the
master table following the duplex detection process.

For a compound name which fails to get perfect matches among the query results from
NCBI database, the top 3 “best matched” entries will be given as potential solutions to
correct possible typos in the compound name. The entries “passed on” to users follow the
same scenario (as talked in the last paragraphs) to warn researchers about duplexes and

to update internal database according to users’ choices.

15/37

The workflow is used while the researcher inserting, updating or deleting a compound
name from the master table. So some common functions like “delete entries from
validation result table” and “mark duplex” are implemented as components for reusing.
Based on these components, the whole workflow can be divided as four stages, i.e.
“getting candidates”, “screening & marking duplex”, “updating duplex marks” and
“cleaning up the validation result table”. The following diagram shows the workflow in each
components and how they interact with each other.

get candidates Screening & marking

.

~ S “" Compound entries el, ™
< Treatment name n > ’)
. e

. >
-) Treatment name n -
(Insert m into master table [ForEach entry e in el: Calculate
\ ¢) similarity (e. name, n)
I(Set n.validationState = | v
\ ‘unknown’ \ — T
= t similarity N
E_search CIDs from PubChem Compound T
by querying n v
X g e
get all entries e/’ with Get 3 entries el” with highest
E summary compound entries from simiarity = 1 from e/ similarity from e/
PubChem Compound by querying CIDs
list v
¢ ——®» Foreach entry e in e/’
Return the compound) V‘k
entries list e/ . T
—e CID already registered by another—_
—entry in Validation Result Table —
/ i .
- i Y
A 4
e state = ‘duplex’
N
v
{ 1Inset e into Validation |‘
\ Result Table \
,_7—7-1 —
—=::i:i::j:[' e is the last entry in (.’.’:i_i:':':s
Y.
e - ~
(
AN J/
start end | | data process <.'_'_'dolerminaliuii >/ . it data from Transactions on \ User interaction
J Ny T internal database | internal database \

Fig. 2 (1) the workflow of "get Candidates" and "Screening & marking" components

16 /37

Clean up update duplex marks

- Treatment name n >
e.CID, a treald > -~ @000
.) v
v N, User select an entity e from

\ Validation Result Table for n /

/ Select entries list e/ from the
/" Validation Result Table where CID
/ <» e.CID and treald = n. treald i
£ TF
¥ = o N
Select entries list e/” from the i / Seloct enirie “ri - o/ From the
Validation Result Table where CID . .) c -
R . . Clean up: e.CID, n.treald #— / Validation Result Table where CID
in CID list of ef and treald < -
. , / = e.CID and treald <> n.treald
n treald and state duplex ; ¢ £ -
i f'umuvmﬂwp:'m‘m { L 4
" \ master table \ Foreach entry ¢’ in e/ 4——
—— »{ Foreach entry ¢’ in e/ - g
I . , v
- \
B \ Pl Select the entry em from master
Select the entry em from master / - - _
/ . p table where treald = e’ . treald
table where treald = e” . treald)
N
a —= 0K
b i I I
¥ o A4 , v
| Update e’ . state ‘typo’ | | Update e’ .state o | | Update e’ .state ‘duplex’ | N
f.,'_',’_[’l-r(" is the last entry in l']_-'_t_,."-" Clean up: “”, n.treald }4
X Y
L]

r - P T— 7 T Delete entrie n from master Table|
| Delete entries e/ from Validation Result Table | \Jelete entrie n 1rom maste e

- - ——If e’ is the last entry in el _——=
’ h o Get data from / Transactions on .
start y end data process | < determination > . / . User interaction
. y, internal database internal database

Fig. 2 (2) the workflow of "Clean Up" and "Update Duplex Marks" components in treatment validation

While the user wants to insert or update a compound into the master table, the process
starts to check whether the name has existed in the master table. If so, the name will not

be stored. Otherwise, the process will call components in the order, i.e. "get
candidates"->"screening"->"update duplex marks". If the user wants to ignore the
validation results and keep the compound in the master table as it is, the user can select
"ignore" which will call "clean up" component. If the user wants to delete the compound
from master table, then after calling "clear up" component, the deleting action in the
master table will follow.

4.2 siRNAs Validation

This is the case for validating multi-attributes entities. 5 types of siRNA attributes can be
validated with external data sources. They are: the Gene ID, the Gene Symbol, the
Accession Number, the GI number and the sequence. Since the Duplex Number (it is only
used on the master table as a unique identifier which cannot be validated with external
data source) attribute is registered on each siRNA entry in the master table, only a basic
duplex validation of siRNAs is adopted, i.e. assuming the Duplex Number of the user—
provided siRNA is reliable, then only checking if the duplex number has existed in the
master table is enough.

To do the validation, not all the 5 kinds of attribute values can be directly used as input

17/37

fields for query in external data sources. Meanwhile, not all the 5 attributes are included in
the query output for each external data source. The supported types of attributes for query

input/output in external data sources are listed below in Table 8.

Table 8: supported types of attributes (input & output) in external data sources

External Data Source Supported types of attributes for query Query Output fields
HGNC IDs GenelD GenelD, GeneSymbol, Accession Number
HGNC Symbols GeneSymbol GenelD, GeneSymbol, Accession Number
Accession Number, GINumber, GenelD,
NCBI Nucleotide Accession Number, GINumber
GeneSymbol, sequence
BLAST+ Accession Number, GINumber, Sequence Accession Number, GINumber, sequence

As shown in Table 8, each data source has some specified input fields (e.g. only BLAST+
application can search with a sequence and only HGNC databases can search with Gene
ID/ symbol, etc.). And not all five fields are available in the output siRNA entities (in fact
only NCBI Nucleotide database support all fields in the output). However, all these data
sources do have a common field, “Accession number”, in the output. The Accession
Number (or so called “GenBank Accession Number”) is a unique identifier given to a DNA
entity record to track versions and associated entities over time of the entity record in a
data repository [17]. A standard example of an accession number in table 6 is
“NM_003318.4". [18] It is a combination of an accession prefix (“NM_003318”) and a
version number (“4”). If the sequence of the DNA entity changes, the accession prefix will
remain the same but the version number will increment. GenBank Gl number, however,
will change each time the sequence changes — even if only one base is affected. So the
accession number is used as a common identifier in the validation process.

Another issue needs to be addressed is that the RNA sequence returned from external
data sources is in fact a single strand (from the original two strands of the RNA) which can
be viewed as mRNA. Although the homologous siRNA's sequence provided by users is
classified which is not authorized to be used in this thesis, just as described in chapter 3.2,
one can imagine that the sequence of the siRNA should be possibly aligned perfectly to a
part in its homologous mRNA strand (the “T” base and “U” base are equivalent for
BLAST+ application in alignment). The BLAST+ application offers a functionality to align
sequences and give a similarity score of the two sequences after alignment.

An example of a user-provided siRNA is given in table 9. Attribute values from “Oder
Number”, “Pool Catalog Number” and “Duplex Number” are not possible to be validated
with external data sources as they are only defined and used internally in the lab. So they

are not considered in the validation process. In Table 9, these fields are grey-marked.

Table 9: an example for a user uploaded siRNA

18/37

Gene ID 7272
Gene Symbol TTK

Accession Number NM_003318

Gl Number 34303964

Sequence K*kkkkkkkkkkkkkkkkkkkk

In the first step to validate this siRNA, each attribute in the entity is parsed by a separate
parser. The multi-attributes validation problem is then transformed into a single-attribute
validation problem. Following the scenario talked in chapter 4.1, the first step of the
validation process is parsing each attribute into the unique identifier, Accession Number,
by using external data sources. The resolution of returned Accession numbers varies from
databases to databases according to their settings. For example the accession number
returned from HGNC databases omits the version number suffix. For a given Accession
number without suffix queried in NCBI Nucleotide database (i.e. query with “NM_003318"),
the returned accession number is always the latest version one. The Accession number
from the user is usually without version suffix. So in the first stage, only the accession
prefix of hit accession number is collected. The example result of first stage is listed in
Table 10.

Table 10: the list of accession prefix generated from the first stage of siRNA validation

Input field & value Parsed to External data source
Gene ID: 7272 NM_003318 HGNC Gene ID

Gene Symbol: TTK HGNC Gene Symbol
Accession Number: NM_003318 NCBI Nucleotide

Gl Number: 34303964 NCBI Nucleotide

XM_008969441

Sequence: Fkkkkkkkkkkkkkkkkkkkk BLAST+

NM_001166691

The duplicated results (as those grey cells shown in Table 10) are omitted from the list
before sending the list to next step. As the example given in chapter 3.2, it is a common
sense (or an empirical assumption) that if there is some inconsistence between the siRNA
entry provided by the user and the siRNA entry found in external data source, it's highly
possible because of the version update. This means there is a comparatively higher
chance to find a perfect match in one of the versions of the siRNA. So the next step is
finding all existed version suffixes for accession numbers retrieved from the first step.
These accession numbers (with version suffixes) corresponded RNAs are used as
candidates for the next step. The latest version of accession numbers are fetched from
NCBI Nucleotide database by NCBI Eutilities EFetch web service [19]. An iterator then is

19/37

applied on the version suffix to get a list of accession numbers from version one to the
latest one. For those accession prefixes in step 1, the list of corresponded accession
numbers is put in Table 11.

Table 11: the list of accession number generated from the second stage of siRNA validation

Accession numbers Latest version
NM_003318.1 4
NM_003318.2
NM_003318.3
NM_003318.4

XM_008969441.1 1
NM_001166691.1 1

Then, RNA candidates from NCBI Nucleotide database by querying with these accession
numbers using the NCBI EFetch service. The RNA candidates are listed in Table 12.

Table 12: the list of SiRNA candidates from NCBI database

Gl Gene ID Gene Symbol Sequence
Acc-numbers
numbers

NM_003318.1 4507718 7272 TTK;MPS1L1 Appendix link.1

NM_003318.2 23308721 7272 TTK;ESK;MPS1L1;PYT Appendix link.2

NM_003318.3 34303964 7272 TTK;CT96;ESK;FLJ38280;MPS1;MPS1L1;PYT | Appendix link.3

NM_003318.4 262399359 7272 TTK; CT96;ESK;MPH1;MPS1;MPS1L1;PYT Appendix link.4
XM_008969441.1 | 675737708 | 100969041 TTK Appendix link.5
NM_001166691.1 | 262399360 7272 TTK;CT96,ESK;MPH1;MPS1;MPS1L1;PYT Appendix link.6

One may noticed that, some candidates have several names in Gene Symbol attribute
(e.g. “TTK; ESK; MPS1L1; PYT” for the “NM_003318.2” entry). It is because except one
official gene symbol (here is “TTK”), one siRNA can have several synonym names. While
retrieving candidates, all these synonym names will be collected and put behind the
official gene symbol in the Gene Symbol field. Then if the siRNA from the user uses a
synonym name, the validation process can detect it and give a warning to the user.

The fourth step is using several comparators to calculate the similarity of each attribute
between the candidate and the siRNA from the researcher. The result of this step is a
matrix of size nx5 where n is the number of candidates. Each row in this matrix
corresponds to an entry of candidates and each column corresponds to each attribute.
The similarity score is stored in each cell of the matrix. Given one candidate RNA s, the
siRNA s from the researcher and the Levenshtein distance similarity grading function
Id(attrl: string, attr2: string), the comparators used in this stage are listed below.

Gene ID & Gl number comparator: It simply calls the Levenshtein distance function to
compare the similarity of attribute values of s, and s. To calculate the similarity score of
Gene ID values, the function Id(s.geneld, s..gengld) is used. The similarity score of the

20/37

two Gl Number values equals to Id(s.GINumber, s..GINumber).

Gene Symbol comparator: The result of this comparator is a tuple because it is crucial to
calculate the similarity score between s’s gene symbol and s.’s official gene symbol
separately from the score between s’s gene symbol and s.’'s gene synonym. The tuple can

be presented as:

(

where n equals to s¢.GeneSymbol.split(*;”).length-1.

ld(s.GeneSymbol, s.. GeneSymbol. split(;)[0])
max(i: From 1 ton,ld(s.GeneSymbol, s.. GeneSymbol. split(;)[i]))>

Accession number comparator: An accession number needs to be compared in two
separated parts. As the accession number from the user usually does not have a version
suffix, the comparison between suffixes is meaningless. So the comparing of accession
numbers focus on the accession prefix part. In the prefix, there is a 2-letters-start (i.e. “NM”
in “NM_003318.4") followed by several numerical digits (i.e. “003318” in “NM_003318.4").
The two parts are separated by a “_". The 2-letters-start presents the species the gene
bellows to. The comparator returns the minimum similarity score of the two parts as output.
It can be presented as:
s.AccessNumber = s. AccessionNumber. split(.)
Sc.AccessNumber = s.. AccessionNumber. split(.)
s.AccessPrx = s.AccessNumber. split(_)[0]

Sc.AccessPrx = s.. AccessNumber. split(_)[0]

s.AccessMidx = s. AccessNumber. split(_)[1]

Sc.AccessMidx = s.. AccessNumber. split(_)[1]
simiarity score = min(ld(s. AccessPrx, s.. AccessPrx)),ld(s. AccessMidx, s.. AccessMidx))
Sequence comparator: The similarity score of two sequences is described by the
bit-score and e-value from BLAST+ application. There is a raw score S =Y, Sra; g
which is a numerical value that describes the overall quality of an alignment. Higher
numbers correspond to higher similarity. The score scale depends on the scoring system
used (substitution matrix, gap penalty). An example of calculating the raw score is shown
in Fig. 3.
T D M W T P L T L R Q H
|- - -
T

T L - - K A H L G T H
2 45 -1 +2 -4 -1 -1 -1 -2 +4 -2 -1 +8 = 12

A
B
A
w0
B
Y
+10 - W

Substitution
gap penalty (s_)

]
CLEANTVNIXFHIOMONODZIND
-
"

-

wVal

BAD UNUEENUENNUONORUNDR
ZAWM UL boMNUNOUUMDOOUMS
NCYS muNMEUNE R AW

DA QUUEHEUNE FENOBHONNEA
DA WU brdrmUUM AUMSNOUD

s
Glu 2 = i
Giy gy matrix (s,j)
His o 0o -2 ®
3 -3 -4 -3
Lew z 3 4 3
Lys 1 a1 -2 -1 i ~
ame o 2 3 2 gap opening -4
Phe -3 3 -3 1
Pra 1 -1 -2 -2 gap extension =1
Se o o (-] 3
1 1 2 x
P32 3 end gap o
-1 -2 -3 2
2 -2 -3 -3
2 = =
&8 5 =
= o -

£ Gin

wllt UsUENUORU N
Fled me e UONN A
XLy NNUROHUEG
IMIl e s OW
alhe wumnn he
L T T

M ETTTTS

SThr @w i

2T Ln

Ty mw

<Vl

Fig. 3 example of calculating the raw score in BLAST+

21/37

In the context of sequence alignments (BLAST), the bit-score S’ is a normalized score
expressed in bits that shows the estimation on the magnitude of the search space where
one would has to look through before he or she would expect to find an score as good as
or better than this one by chance. The bit-score follows the following definition:

, _ AS-In(K)
T InE@ (6)

where S is the raw score. Parameters A and K depend on the substitution matrix and on
the gap penalties. If the bit-score is 30, one would have to score, on average, about 2%=1
billion independent segment pairs to find a score could match this score by chance. Each
additional bit doubles the size of the search space (which is proportional to the product of
the query sequence length n multiplying the sum of the lengths of the sequences in the
database m. So the size of the search space is obtained by N=nxm). The bit-score is thus
a rescaled version of the raw alignment score.

The e-value or so called “Expectation value” is the number of distinct alignments, with a
score equivalent to or better than S, that are expected to occur in a database search by
chance. The lower the e-value, the more significant the score is.

The comparator calculates the final similarity score as:

2

score 2
e— value) X @)

similarity score = arctan(bit -

which will lead to a similarity score within range [0,1].
The example of resulted matrix generated from the fourth step is attached in Table 13.

Table 13: the example of similarity matrix

Gl numbers Gene ID Gene Symbol | Accession Number Sequence
similarity similarity similarity similarity similarity
Compare to: Compare to: Compare to: Compare to: Compare to:
SiRNA from user
34303964 7272 TTK NM_003318 User's Sequence
Candidatel 0.0056 1 <1,0> 1 1
Candidate2 0.1051 1 <1,0> 1 1
Candidate3 1 1 <1,0> 1 1
Candidate4 0.0792 1 <1,0> 1 1
Candidate5 0.0792 0.07 <1,0> 0.0056 1
Candidate6 0.0903 1 <1,0> 0.0056 1

The fifth step of the process is using the multi-objective decision method to screen best
candidates and feed it back to the user for decision (if a perfect matched candidate is
found then the user will get a positive feedback for instead. e.g. the candidate 3 in Table
13 scores 1 for all comparators except the Gene Symbol comparator. For the Gene
Symbol comparator, either cell in the returned tuple is 1. It is a perfect match for the
siRNA). If no perfect matched candidates are found, then an error message along with the

top 3 best matched candidates decided by the multi-objective decision method will be sent

22/37

to the user. If the perfect matched candidate is targeted, it still needs to check if a new
version of the gene exists in external database (e.g. the candidate 4 in Table 13) or if the
candidate is using a synonym name (the value of the first cell in the Gene Symbol
comparator returned tuple is less than 1 while the second cell value is 1). If so, a warning
message will be sent to the user. The user can choose to ignore solutions from the
validation process or accept one as a correction. The workflow of the whole process can

be presented in Fig. 4.
The sirna validation workflow diagram

/ cutline N\

8 Program
operations

| Insert a new Sirna $§ to the SirnaTable J

[SirnaValidator. sirnaValidate

‘ SirnaValidator. getExternalResultSet

\ | |

S. gi S. geneld 5. GeneName S. Seq

functions

SirnaValidator. subCl
ass SeqParsor Parallel

SirnaValidator. subClass
GeneNameParsor

SirnaValidator. subCl SirnaValidator. subClass
ass GiParsor GeneldParsor

| | | operations
A list ol ace 5 N\ /

SirnaValidator. getAccVesionList |

A list of acctversion

SirnaValidator. getExternalSirna
A list of sirnas

SirnaComparator. Compare |<

v v
Store validation state (0: perfect match,
1: new version or o cial gene name can be Store recommended corrections in
update to S,/2: no match) in SirnaValidationDetails table
SirnaValidationState table

The list of sirnas and §
The workflow in
SirnaComparator. Compare | —¥ —
. : Get the a sina Si from the list g
function L Loron Sst

I
Si and S

e
1751 is the
last Sirma in >
“the list—"

N
The matrix Si.gi and S. gi Sl o ol S e Si.geneld and S. geneld Si-geneName and S. geneName
v v v v
StrComparator. compare ‘ accComparator. compare strConparator. compare |1;||H|\|QCU[[|[|E|J ator. compare

Similarity Num
Y v
Store in a similarity matrix
FEach row for each Si, Each column
for the similarity of each field
(gi, acc, geneName, geneld, seq)

" exists an official geneName or-a

If_perTect match foundta—row

return state = 0

> the matrix has ls for - sion of ace number for the perf
~—__ column) T match —
N X,
v ¥
Return state - 2 and give the rows Return state = 1 and give details of

with the maximum sum of all columns as name or acc modification as
recomendations

recommendat ions

Fig. 4 the workflow of siRNA validation process

23/37

Parsers in stage one and comparators in stage four are put to multi-threads to run
parallely. The BLAST+ application itself can be set to run in a parallel way as well. When
the user adds a new siRNA to the master table or updates one the validation process will
run automatically. A detailed class diagram of this validation process can be checked in
Fig. 1 in Appendix.

5 the Architecture

The architecture is designed to support the workflow of validation described in section 4.
The performance stability, speed and pressure distribution are main concerns for the
architecture because the overhead of connecting to external web services and loading a
BLAST+ local sequence database into the ram are heavy tasks during the validation.
Besides that, since the workflow relays on external application (e.g. BLAST+ gets different
I/0 schema in Windows and Linux), it needs to concern the compatibility cross operation
systems.

The validation process consists of four main activities: retrieving candidates, screening
candidates, reporting inconsistence, and updating master table according to users’
decision. The four activities are distributed in several components which interact with each
other (The component diagram in Fig. 5 shows the interaction between these
components). These components can be categorized into a five-layer architecture which
is composed with a presentation layer, a utility layer, a services layer, a persistence layer
and a data repository.

Nebi

eutiles(efetch HGNC Gene

esearch Name/TD queries
esummary)
v v
External Soap External Soap Blast+
Web Services Web Services application
Used by
delete v
P |
v Validator Util
Web pages . o
o puse Add Mngheans ———validate Comparator Util
JSF/Primefaces
A A A
update
Display selected results
Store/update validation result
Add/update/delete a entry
v
B TS web services
Used by
x
return call
v
R Create, Update, PA Entity
EJB Facades | Create: Update JPA Entity
Read, Delete classes
'y
persistent
v

monetDB

Fig. 5 components diagram of validation workflow

5.1 The presentation layer

24137

The validation process is functionally enabled for users using a single web based
graphical user interface. The presentation layer supports the GUI for users. Coded in the
JSF 2.0 and PrimeFaces 4.0 front end framework which fully support HTML5 and
JavaScript/AJAX, the presentation layer makes it easier for users to interact with data in
master tables [20]. On the web page, users can send requests to batch-upload a list of
entries into master tables, create or update a single new entry in a master table, view
entries in master tables, or delete one entry. The validation process will be triggered by
the user's operations on the presentation layer. During uploading or creating entries in the
data repository, the validation process will be triggered to validate the new entries at the
back end. While the user viewing the detail of one entry, the validation result and
recommended solutions show synchronously. Users with privilege can direct make
decisions (choose one candidate to correct the detected inconsistence or keep his own
one in the master table) on the view dialog. The choice will be updated into the data
repository by the validation process. After the user deleting or updating an entry from the
master table, the validation process will be called to update the duplication information in
the validation result table if necessary. Besides that, the presentation layer is the first
stage of validation in the platform by considering mandatory fields for uploading
experiment metadata. The presentation layer also controls messages bubbling. Some
errors happened during the validation process will be reported to users by an alert
message on the web page. Fig 6 is a collection of screenshots of the presentation layer.

Create sima
Micranic 1D

Type:

Spacies

140465

Gene Symbol mMvo38
Order Number 191376
Pool Catalog Number. [D-004863-01
Accession Number NM_001083615
I Number 139288914
Duplex Number D-004863-01
Upload siRNA

+ Choose

test.csv

Upload siRNA
‘ 310 Bytes

Duplex Number 4

sequence 4
Close

Fig. 6 (1a) upload new entries into the master table Fig. 6 (1b) create a new entry in the master table

siRNA details

validation State: OK
sirna Details No validation detalls were found. The Sima Is OK or no modification advice is given
Micronic ID
Type:
| species
Gene ID 140469
| cene symbol w038
Order Number: 191376
Pool Catalog Number: D-004863-0
Accession Number NM_001083615
CI Number. 365733613
Duplex Number D-004863-0
Sequence 1: | semrreemreremses
Duplex Number 2
Sequence 2
Duplex Number 2
Sequence 3
Duplex Number 4
Sequence 4
Creation Date (MM/DD/YYYY) 09/29/2014 23:00:40

Registrator elarios v

Close

25/37

Fig. 6 (2) in the view dialog one of the entries passed the validation

SIRNA details x
Validation State: o
Sirna Details anew version of this sirna found. Below is a pessible correction
Micronic ID Micronic D
Type Type
Species Species
Gene ID 6850 Gene ID 6850
Gene Symbol YK Gene Symbol svk
Order Number 101376 Order Number: 191376
Pool Catalog Number D-003176-02 Pool Catalog Number D-003176-02
Accession Number NM_003177 Accession Number NM_003177.6
Gl Number. 34147655 Gl Number 631790816
Duplex Number 1 D-003176-02 Duplex Number 1 D-003176-02
Sequence 1 JESITR—— Sequencel [ETTU—.
Duplex Number 2 Duplex Number 2
Sequence 2 Sequence 2
Duplex Number 3 Duplex Number 3
Sequence 3 Sequence 3
Duplex Number 4 Duplex Number 4
Sequence 4 Sequence 4
Creation Date (MM/DD/YYYY) 09/29/2014 22:45:54
Registrator elarios M indiocoRT
Ignore Close

Fig. 6 (3) a new version was found for one entry in external database

siRNA details x
Validation State: Eror coo0 O
Sirna Details errors found in fields of this sirna. Below is a possible correction
Micronic ID: Micronic ID
Type Type
Species Species
Gene ID 80347 Gene ID 2046
Gene Symbol EPHAS Gene Symbol EPHAS
Order Number: 191376 Order Number: 191376
Pool Catalog Number: D-003120-09 Pool Catalog Number: D-003120-09
Accession Number NM_001006944 Accession Number NM_001006943.1
CI Number: 35770891 Gl Number 55770891
Duplex Number 1 D-002120-09 Duplex Number 1 D-003120-09
sequence 1 [EST—— Sequencel F e —
Duplex Number 2 Duplex Number 2
Sequence 2 Sequence 2
Duplex Number 3 Duplex Number 3
Sequence 3 Sequence 3
Duplex Number 4 Duplex Number 4
Sequence 4 Sequence 4
Creation Date (MM/DD/YYYY) | 09/29/2014 22:46:13
Registrator elarios M /aACCept
1gnore | Close

Fig. 6 (4) one entry gets a typo in the last base of Accession Number and used a wrong Gene ID

Confirm Update siRNA % |

A Update this SIRNA according to recommended correction?

wrreasrmaas| | Yes || No S—

Fig. 6 (5) the administrator can decide to "accept" the correction

26 /37

Confirm Ignore Corrections

Ignore corrections on SIRNA D-004863-017 If you do so, all validation result will be removed unless you edit or re-upload this SIRNA.

Yes No

Fig. 6 (6) the administrator can decide to "ignore" the correction

List of siRNAs

o o
Duplex Number 1 & Gene Symbol & Gene ID & Accession Number < Gl Number & validation State 2
Creation Date (MM/DD/YYYY) & e
D-004105-01 TTK 7272 NM_003318 34303964
D-003176-02 SYK 6850 NM_003177 34147655
D-003120-09 EPHAS 80347 NM_001006944 55770891 0
D-004863-01 MYO3B 140469 NM_001083815 365733613 J
o o

+ New 2 View # Edit @ Delete ¢ Refresh .+ Upload

Fig. 6 (7) the validation result can be overviewed in the grid
5.2 The utility layer
The utility layer includes manage beans and several utilities like parsers and comparators.
They work as the pivot in the validation process to control the generation of candidates,
the screening of candidates and the responding actions after the researcher makes a
choice on the presentation layer. The manage beans are controllers to request the utilities
to visit resources from external web services (or applications) and do calculations. They
also control the calling of internal web services in the service layer to do CRUD (create,
update, read and delete) actions in master tables. Running results or errors are collected
and sent back to the presentation layer. The purpose of separating those utilities from
manage beans (as independent components) is to make it easier to run those utility
instances in a parallel way.
5.3 The service layer
This layer consists of multiple web services which support every step in the HTS workflow.
These web services invoke different APIs which are in charge of the Experiment design,
Image Analysis and Data Analysis [20]. This structure allows easy extension with more
functional modules. For example, parsers in the utility layer use web services to access
external data sources. The Simple Object Access Protocol (SOAP) messages are
selected for invoking the web services and receiving results because of its approved
interoperability in web applications and heterogeneous environments. For these web
services, one big portion of work is keeping the persistence in the database by using
27137

modules from the persistence layer. The MonetDB (www.monetdb.org) database used in
CytomicsDB is not a transaction database [2]. Therefore, operations like insertions,
updates and deletions are minimized by batching them as many as possible.

5.4 The persistence Layer

This layer is based on the principle of object-relational mapping (ORM) which involves
delegating access to relational database, which in turn give an object-oriented view of
relational data, and vice versa. The Java Persistence APl (JPA) framework has been
implemented in this layer to keep a bidirectional correspondence between the database
and objects. Those Java objects used in the framework are known as Java Entities [21].
Entities are objects that live shortly in memory and persistently in the database. Besides
that, they have all the features of a Java class like instantiation, abstraction, inheritance,
relationships and so on. The entities used in CytomicsDB follow the structure of the tables
they mapped to i.e. mapping the fields as properties in the objects. Basic CRUD
(create/read/update/delete) operations are registered as named query methods which are
written in Java Persistence Query Language (JPQL). Customized queries can be attached
to entities as native queries via JPA.

5.5 The repository

The master tables are stored in an open source column-based database system,
MonetDB, which is used as the data repository. A validation process needs to use three
tables. Their structures are shown in Fig. 7. The tables in the middle (“sirna” table and
“treatment” table) are the master tables. The validation state (“OK”, “Warning” or “error”)
for each entity in the master table is stored in the validation state table. In the validation
details tables, solutions to correct inconsistencies in each entity are stored there.
Therefore, the entries in validation state table are one-to-one correspond to those in
master tables while the validation details tables have one-to-many correspondence to
master tables.

sirna
sirna_valid_details
PK |sirn id INTEGER E E
PK svd id INTEGER sirna_valid_state
micronic_id VARCHAR (100) PK |svs_id | INTEGER
FKI | sirn_id INTEGER t¥pe VARCHAR(100) |4 e
rgawnt (\{]‘jﬁ([%](]l\?e(]ﬂt)) » species VARCHAR (100) FK1 |sirn id | INTEGER
El_numoer ALy gene_id VARCHAR (100) state CHAR (1
accession number | VARCHAR (100) gene_symbol VARCHAR (100) state m
gene id \';\]{({]].‘\R(IOU? pool_catalog number VARCHAR (100)
gene symbol \.J‘\R(:H;\R(]OUJ accession_number VARCHAR (100)
sequence VARCHAR (100) gi number VARCHAR (100)
duplex number VARCHAR (100)
sequence VARCHAR (100)
sirn creation date DATETIME R R
registrator INTEGER treatment valid details
PK tvd id INTEGER
N treatment FK1 |trea id INTEGER
treatment_valid_state 3 .
— — reason CHAR(1)
PK ltvs id | INTEGER PK | irea id INTEGER P cid VARCHAR (30)
» . varciR(200) | trea name VARCHAR (200)
rea_name ARCHAR (2 ;
FK1 | trea id | INTEGER trea creation date | DATETIME dup names \".\'\Rl‘]l"\R (500)
state CHAR(1) registrator l\"“‘:(']:K trea_weight VARCHAR (50)
plstrate S trea formula | VARCHAR (50)
trea url VARCHAR (500)

Fig. 7 the database structure

28/37

MonetDB is proved to have superior performance in processing analytical queries on
large scale data [2] which is suitable for the complex data manipulation in the validation
workflow. Thus, in CytomicsDB, MonetDB is used to store the experiment metadata and
validation intermediate results.

The overall architecture of modules in CytomicsDB is shown in Fig. 8.

— N\
Presentation . . 3 .
laver Utility layer Service layer Repository
—_
7 Y
W
= ISE Utilities ['”:;?l;e" [A
=
0
—8 l PrimeFaces Managebeans [EIB [Entity classes
AIAX Externalweb
Services
|
_ Glassfish 4 Java EE Container W,

Fig. 8 CytomicsDB architecture

6 Evaluation of the results

This thesis analyses the overall performance of the validation strategy from three aspects.
The evaluation focuses more on the accuracy of the results from the validation progress
than other factors like the efficiency which could be important for a real-time web based
system.

The efficiency is indeed an important factor. Running in a multi-threads pathway with
minimized 1/O (input/output) to all web services, it will take two seconds to validate one
single-attribute entry or four seconds or so to validate a multi-attributes entry in a Linux
system with stable Internet connection. However the time overhead is not going to be
accurately measured and evaluated in this thesis. The first reason is that this validation
process is performed during the experiment prepare stage. Once the metadata uploaded
and validated, changes on metadata will be very limited (i.e. “once created, use forever”).
So the overhead of one round validation can be a less important issue than its accuracy.
The second reason is that the overhead relies on several other aspects like: 1) the speed
of the Internet, 2) the implementation of multi-threads in the core architecture of the
operation system, 3) the operation system which the BLAST+ application runs on
(BLAST+ application requires extra 1/0 operations with local file system in Windows
system). These issues are not going to be discussed elaborately in this thesis. So only the
rough estimation of time overhead is given in this thesis.

As talked in chapter 3. There are several kinds of possible inconsistencies. It's possible
that an entry has some spelling errors in some attributes or accidentally uses values from
other entries or its other attributes (i.e. has contradictions to real values of those
attributes). How good the validation process can find these contradictions will be
evaluated in chapter 6.1. It's also possible that an entry is semantically duplicated to other
entry (e.g. the entry uses a synonym name to the name of another entry). The evaluation
on the performance of targeting semantic duplications will be talked in chapter 6.2. The

29/37

accuracy of feeding solutions to fix inconsistences is evaluated in chapter 6.3.

6.1 Accuracy of locating contradictions

Based on the degree of how hard to figure semantic contradictions out, the
inconsistencies can be divided into two levels. The junior level of contradictions is simple
typos or spelling errors which should be comparatively easier to be found out. The senior
level is that the attribute itself is a valid one but appears in a wrong entry. The evaluation
wants to check the performance of detecting these two levels of inconsistencies for the
validation strategy. The F-measure which is a common measure of a test’'s accuracy is
adopted as an indicator of the performance. The F-measure considers both the precision
p and the recall r of the test to compute the score.

__tp
=0t 8)

__tp
T_tp—i-fn

2xp*r
p+r

F — measure =

Where the siRNAs involve inconsistency are considered as the positive class, and tp, fp
and fn denote the number of true positives, false positives, and false negatives,
respectively.

300 randomly chosen siRNAs are used in the evaluation. They were uploaded to
CytomicsDB by researchers and are proved to be valid by them. To do the evaluation, 200
siRNAs of the data set is selected and the value of one of the 5 attributes is slightly
changed (to a random wrong value by adding, modifying or deleting one base) for each
siRNA. To better demonstrate the performance when contradictions happen in different
attributes, the 200 siRNAs are divided in five groups, i.e., every 40 siRNAs have errors in
a respective attribute. The aim is to see if the validation strategy is able to figure out these
intentional errors.

Uploading the 300 records to the test database of CytomicsDB, the measures are listed
as following (Fig. 9). The overall F-measure is 0.96 (where the range for F-measure is [0,

1)).
4 — 0
— mr
) — F-measure

Gene Gene ID Accession Gl Number Sequence
Symbol Number

[Eny

™
1 1

o N
L L

~

~

scale for p,r and F-measure
OO0 o000 o0o0o0 o

~

oORr N WRW
L

the attribute with Inconsistency

Fig. 9 Evaluation result of the performance of detecting errors

30/37

As shown in the result figure, the validation strategy can accurately detect errors in
attributes like: Gene ID, Accessing Number and Gl Number. There are two false negative
cases when the errors are in Gene Symbols. The two are judged as warnings (instead of
errors) because the “wrong gene symbols” are accidently among synonyms. So the
validation results still make sense. However, for detecting errors in Sequence, there is still
a big space for improvement in the validation strategy.

6.2 Accuracy of locating duplication

100 compound names are adopted in this evaluation. They are from users of CytomicsDB
and proved to be inconsistent by them. In this evaluation, synonyms of the 100 compound
names are added to the data set as another 100 compounds. So in total, 200 compound
names are uploaded to the test database of CytomicsDB. In the 200 compounds, the last
100 compounds should be semantically duplicated to the first 100 ones. Another 100
consistent un-duplicated compound names are attached in the data set after the 200
names to detect possible false positive cases. The aim of the evaluation is to see the
performance of the validation strategy detecting these duplex. This evaluation still uses
F-measure as the indicator of the performance. The second 100 compound names (which
are duplicated) are viewed as positive cases. The measurement result is listed below in
Fig. 10.

1
[}
5
s 0,8
Q
£
b 0,6 -
c Hp
= 0,4 -
2 mr
20,2 -
2 F-Measure
(%]
& 0 -

treatment names
the attribute with duplexes

Fig. 10 Evaluation result of the performance of detecting duplexes
Looking into one of the failed case, treatment name “AG-K-27488” which should be a
duplex to “MEDRYSONE”, the most possible CID retrieved by the validation strategy is
“44308022” but the CID got for “MEDRYSONE” is “247839”. However, the compounds
identified by the two CIDs do have the same molecular weight and formula. The structures
of them only have slightly differences. This kind of failed cases is quite common in all the
false negatives. So it may make sense to have molecular formula as an extra condition
(i.e. if CID is same or molecular formula is same then alert the user about the possible
duplex) to do the duplex determination.
6.3 Accuracy of giving solutions
In the 185 correctly detected wrong siRNAs from the first evaluation, 162 of them get the
original correct siRNA entities as recommended solutions to correct the inconsistencies.
The real siRNA entries (i.e. the siRNAs before the intentional modifications) are missing
from the recommended solutions for 2 siRNAs with wrong Gene Symbols and 21 siRNAs
with wrong sequences. The possible improvement for correcting sequence is going to be
discussed in Chapter 7.3.

31/37

When the typos in each attribute get more severe (more than one base goes wrong) and
more attributes in one siRNA have typos, the recommended solutions from the validation
strategy make less sense. When all attribute values in one siRNA are incorrect, the
corrections do not reliable any more.

For the 69 true positive treatment names (i.e. truly detected as duplex by the validation
strategy) in the second evaluation, the validation strategy correctly points out the
treatments they duplicated to for all of them.

7 future works

7.1 Duplex detection for multi-attributes entities

For the siRNAs, now the validation process only checks the value of attribute “Duplex
Number” to determine duplexes. However, values in this attribute may not be consistent
since they are not validated as well. A similar sematic way of detecting duplex may need
to be adopted from the single-attribute entity validation process. That is, if there are two
identical candidates stored in the validation details table (where the candidates will be
recommended as corrections to users), the user should be warned while they see one of
them when they make the decisions. Similar checking and updates as the progress
described in chapter 4.1 should be performed for multi-attributes validation as well.

7.2 Multiple external data sources

Now the validation strategy is based on an assumption that the NCBI databases are inner
consistent and reliable. However, the assumption is not one hundred percent correct.
There can be some overlooked errors while audition or some data loss while backing up
or data migration. So only using the NCBI database to retrieve the list of candidates from
the list of Accession Numbers is not a quite trustful operation. It could be better to have
some other data sources as prove while retrieving candidates. There might be some
conflictions during the proving process as well (e.g. the entries from NCBI database and
entities from other databases by querying with the same Accession Number might have
conflicts). To deal with conflictions in data from multi external data sources, a handy tool
might be the Markov Logic network [3]. For example (Table 14), if several siRNA
candidates are obtained from different data sources by querying with an Accession
Number (NM_003318), the algorithm can be used to construct a candidate which is more
trustful than others. In the example, the gene symbol from S1 and S3 are correct but
presented in different ways. The gene symbol provided by S2 contains information from
S1 and S3. The gene symbol provided by S4 is wrong. The value “TTK” is going to be
selected as the trustful value for Gene Symbol attribute if the algorithm runs properly.

Table 14: example candidates from different data sources for NM_003318

Source Keyword Gl Number Gene ID Gene Symbol Sequence
S1 NM_003318 4507718 7272 TTK Seql
S2 NM_003318 34303964 7272 TTK,ESK Seq2
S3 NM_003318 262399359 7272 ttk Seq3
S4 NM_003318 675737708 100969041 MPH1 Seq4

The Markov Logic network applies Markov network to a collection of formulas from
first-order logic. In the network, the vertices of the network are atomic formulas and the
32/37

edges are the logical connectives used to construct the formula. For a set of values
X = (X1, X5, ..., Xy,), the network is trying to find the most possible one (i.e. find the most
possible Gene Symbol value for the attribute from all candidates in the example). There is
a weight number for each formula which should be learned by the network during
auto-training. The joint distribution represented by the network is:

P(X = x) = Zexp(X; w;f; (x)) ©)

The f;(x) € {0,1} is each binary formula in the network and w; is the weight number for
each formula. Z is known as the partition function [23]. Here is one example of f;(x). As a
common sense, the value appeared the most frequent in all candidates is more possible
to be the accurate value. So for one attribute a, one predicate formula can be defined as
MaxFrequence(a,x)=> isAccurate(x). The formula can be proved as true or false by each
specific test case. The formula can also be defined between data source s and value x as
well. Usually the more trustful data source may give the trustworthy value with higher
possibility. i.e. provide(s,x)"isTrustWorthy(s)=>isTrustWorthy(x). As these formulas use
common parameters (like “s” or “a@”) and logical connections between them, they can be
connected to each other as an undirected graph. The trained Markov Network can predict
the true value for each attribute from several candidates. By combining predicted true
values together, the final candidate can be generated.

7.3 Sequence correction

For now, it is only possible to check if the siRNA’'s sequence existed in its homologous
gene’s sequence. If the siRNA’s sequence has several miss-spelled bases which lead to a
low alignment score, the validation strategy can only tell the user that there might be some
typos in the siRNA's sequence and give the matched part (which might be shorter than the
siRNA's sequence or might have skips) in its homologous gene’s sequence as a possible
correction. To make the recommendation more reliable, a possible solution is involving
some siRNA design rules. Then when mismatch happens, the validation strategy may do
some guesses on the possible correct siRNA sequence by cross comparing those siRNA
sequences generated from design rules with the matched sequence clips. Constructing
siRNAs is via finding target areas on a mRNA. One common used rule to find interesting
regions (which can be used as siRNA targets) on the mRNA is “Rational siRNA design
algorithm” [22]. It identifies eight characteristics associated with siRNA functionality.
These characteristics are used to evaluate potential targeted sequences and assign
scores to them. Sequences with higher scores will have higher chance of success in RNA
interfering. The Table 15 lists the 8 criteria and the methods of score assignment.

Table 15: rational siRNA design criteria (criteria 3: T, of potential internal hairpin < 20 C)

Criteria Description Score
Yes No

1 Moderate to low (30%-52%) GC Content 1 point

2 At least 3 A/Us at positions 15-19 (sense) 1 point /per A or U

3 Lack of internal repeats 1 point

4 /A at position 19 (sense) 1 point

5 IA at position 3 (sense) 1 point

6 U at position 10 (sense) 1 point

7 No G/C at position 19 (sense) -1 point

33/37

8 No G at position 13 (sense) -1 point
A sum score of 6 defines the cutoff for selecting siRNAs. All siRNAs scoring higher than 6
are acceptable candidates. With this algorithm, several potential areas on the mRNA
sequence can be targeted. Then one of the closest regions to the matched area can be
given as a possible correction to the siRNA sequence. More criteria can be applied in the
process to narrow down the number of target areas.
7.4 Multi-objective decision
The similarity scores for a candidate of multi-attributes entity can be presented as a vector
X (for the siRNA’s 5 attributes, the dimension of the vector is 5). Accordingly, the weights
is a vector w which has the same number of dimensions as X. Then the sum formula in
multi-objective decision is simply described as U = w - X. In the case of validating SiRNA,
the weight vector is [1,1,1,1,1] by default. However, the weight vector can be tuned by
involving the user’s previous decisions. So the recommendation result will optimized
dynamically based on users selections. Assuming the vector of the user chosen candidate
is ¢, then the weight vector can be tuned as:

w'=(1—p)xw*+px|—§| (10)

where the p is an exponential smoothing parameter which controls the weight vector not
to change too violet. While validating the next siRNA entity, the tuned weight vector can be
used in multi-objective decision stage.

7.5 siRNA correction

For now, if every attribute in the given siRNA has typos, then the possible correction given
by the validation strategy tends to be random. However, for the dataset from users of
CytomicsDB, the duplex number can be an auxiliary to give potential solutions when all
decision strategies fail.

As described in the beginning of chapter 3, a RNA can have several potential regions
which can be siRNA targets. This means that in the master table of CytomicsDB, several
siRNAs may correspond to a same homologous gene. This situation has been considered
in duplex number. For example, the duplex number “D-004105-01" is actually assembled
by two parts. The first part “D-004105” is a registered identifier for the RNA in the lab. The
second part “01” means this siRNA corresponds to the first target region. In this case, if
there are some typos in attributes (excepts Sequence) which lead to the possible
corrections not making sense any more, the validation strategy may try to find a validated
siRNA in the master table where the first part of duplex number is the same but the
second part is different. Then the Gene Symbol, Gene Id, GI Number and Accession
Number from the validated siRNA can be given as a solution to correct the wrong siRNA.
This method might be helpful when there are some internal identifier attributes while doing
the multi-attributes validation.

34/37

Reference

[1] Larios E, Zhang Y, Cao L, & Verbeek, F. J., CytomicsDB: A Metadata-Based Storage and Retrieval Approach for
High-Throughput Screening Experiments[M]//Pattern Recognition in Bioinformatics. Springer International Publishing,
2014: 72-84.

[2] Boncz P A, Zukowski M, Nes N. MonetDB/X100: Hyper-Pipelining Query Execution[C]/CIDR. 2005, 5: 225-237.
[3] Yong-Xin Z, Qing-Zhong L, Zhao-Hui P. 2-Stage Data Conflict Resolution Based on Markov Logic Networks[J].
Chinese Journal of Computers, 2012, 1: 010.

[4] Bleiholder J, Naumann F. Conflict handling strategies in an integrated information system[J]. 2006.

[5] Bleiholder J, Naumann F. Declarative data fusion—syntax, semantics, and implementation[C] //Advances in Databases
and Information Systems. Springer Berlin Heidelberg, 2005: 58-73.

[6] Levenshtein V I. Binary codes capable of correcting deletions, insertions and reversals[C]//Soviet physics doklady.
1966, 10: 707.

[7] Kruskal, J. B. (1999). An overview of sequence comparison. In Sanko, D. and Kruskal, J., editors, Time Warps, String
edits, and Macromolecules. The Theory and Practice of Sequence Comparison, pages 1{44. CSLI, Stanford, 2ndedition.
1st edition appeared in 1983.

[8] Chalk A M, Warfinge R E, Georgii-Hemming P, et al. siRNAdb: a database of siRNA sequences[J]. Nucleic acids
research, 2005, 33(suppl 1): D131-D134.

[9] Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering[J]. Structural and
multidisciplinary optimization, 2004, 26(6): 369-395.

[10] Lu J, Zhang G, Ruan D. Multi-objective group decision making: methods, software and applications with fuzzy set
techniques[M]. Imperial College Press, 2007.

[11] E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant. Chapter 12 pubchem: Integrated platform of small
molecules and biological activities. volume 4 of Annual Reports in Computational Chemistry, pages 217 — 241. Elsevier,
2008.

[12] 1. Mizrachi. Chapter 1 genbank: The nucleotide sequence database. In J. McEntyre and J. Ostell, editors, The NCBI
Handbook [Internet]. Bethesda (MD): National Center for Biotechnology Information (US), 2002.

[13] Hannon G J. RNA interference[J]. Nature, 2002, 418(6894): 244-251.

[14] Bruford E A, Lush M J, Wright M W, et al. The HGNC Database in 2008: a resource for the human genomel[J].
Nucleic acids research, 2008, 36(suppl 1): D445-D448.

[15] Johnson M, Zaretskaya |, Raytselis Y, et al. NCBI BLAST: a better web interface[J]. Nucleic acids research, 2008,
36(suppl 2): W5-W9.

[16] Sayers E. The E-utilities in-depth: parameters, syntax and more[J]. 2014.

[17] Benson DA. Cavanaugh M, Clark K, et al. GenBank[J]. Nucleic acids research, 2012: gks1195.

[18] Maglott D R, Katz K S, Sicotte H, et al. NCBI’s LocusLink and RefSeq[J]. Nucleic acids research, 2000, 28(1):
126-128.

[19] Sayers E. E-utilities quick start[J]. 2013.

[20] E. Larios, Y. Zhang, K. Yan, Z. Di, S. LeD"ev’edec, F. Groffen, and F. Verbeek. Automation in cytomics: A modern
rdbms based platform for image analysis and management in highthroughput screening experiments. In Proceedings of
1st Int. Conf. on Health Information Science, volume 7231, pages 76-87, 2012.

[21] Goncalves A. Java Persistence API[M]//Beginning Java EE 7. Apress, 2013: 103-124.

[22] Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA
interference. Nat Biotechnol. 2004 Mar;22(3):326-30.

[23] Richardson M, Domingos P. Markov logic networks[J]. Machine learning, 2006, 62(1-2): 107-136.

35/37

Appendix

Link.1: the RNA sequence of NM_003318.1 (identifier: accession number)
http://www.ncbi.nlm.nih.gov/nuccore/NM_003318.1

Link.2: the RNA sequence of NM_003318.2 (identifier: accession number)
http://www.ncbi.nlm.nih.gov/nuccore/NM_003318.2

Link.3: the RNA sequence of NM_003318.3 (identifier: accession number)
http://www.ncbi.nlm.nih.gov/nuccore/NM_003318.3

Link.4: the RNA sequence of NM_003318.4 (identifier: accession number)
http://www.ncbi.nIm.nih.gov/nuccore/NM_003318.4

Link.5: the RNA sequence of XM_008969441.1 (identifier: accession number)
http://www.ncbi.nlm.nih.gov/nuccore/XM_008969441.1

Link.6: the RNA sequence of NM_001166691.1 (identifier: accession number)
http://www.ncbi.nlm.nih.gov/nuccore/NM_001166691.1

36/37

Fig. 1: the class diagram of siRNA validation process

mngbean

MngUploadSirna

-service: SirnawWs_Service
-service_1: UploadErrorWs_Service
Hogger: Logger

+MngUploadSirna()
“convertinputStreamToFie{InputStream in): File
~+handleFileUpload(FileUploadEvent event): void
~getRequest(): HtpServletRequest
+getLogger(): Logger

+setl ogger(Logger aLogger): void
~validSirnaDuplexMumber (String duplex): Sirna
-createUploadError (UploadError uperror): void

-createsSirna(String micronicid, String type, String geneld, String geneSymbol, String poolCatalogMumber, String accession, String giNumber, String duplexM 1, String seql): void

-validsirnaFields(Sirna s): boolean

~validSirnaFiled:
1

cutline

1

Package

formatCheckerutil

—rea: String

+accMumChecker (String accMumber): boclean
+getAccMum{String accMumber, int flag): String
+getAccMums(String accMumbers, String seperator): String

1

sirnaValidator

bean

-p: Process

-is: InputStream

-os: OQutputStream
-bw: Bufferedwritter
-br: BufferedReader

+setCmd(String cmd): void
+writeCmd(String cmd): void

+readCmd(): String

tor

geneldiNameParser

jame; String = nuccore —getExternalig

ryFilePath: String
ryTempFile: File
formatChedkerutl
ryTdList: StringBuffer
Type: boolean

hparator: sirnaComparator

irhaComparator()

+sirnaV]

na s): int
FxternalResultSet(Sirna s, boolean systype): List<Sirna=
iaccVersionList(String queryldlist, EFetchResult efRes): String
ExternalSirnallist<Sirna > resultlist, EFetchResult efRes): String
f fetch(EFetchRequest inpp): EFetchResult

getExbemaResjtSeﬁ
i

+sirnaValide)

-fieldType: String
-fieldvalue: String
-doneSignal: CountDownLatch

+geneldMameParser(Sirna sirna, String type, CountDownLatch countDownLatch)
+run{): voi
+fieldConvertor(): String

seqParser

-sequence: String
-systemType: boolean = false
-doneSignal: CountDownLatch

+seqgParser(Sirna sirna, boolean systype, CountDownLatch
+run(): void
+fieldConvertor(): String

untDownLatch)

accParser

-accMUmber: String
~donesignal: CountDownLatch

+accParser(Sirna sirna, CountDownLatch countDownLatch)
+run(: void

giParser

EfetchRequest: effeq
EfetchResult: effes
-doneSignal: CountDownLatch

+giParser{Sirna sirna, CountDownLatch countDownLatch)
+run(: void

comparator

sirnaComparator

-queryFileMame: String
-queryFilePath: String
-systype: boolean = true
-state: int
~cherryPickThreashaold: int = 3

+sirnaComparatr ()

+sirnaComparator (String tar 1FileName, String filePath)

+compare(Sirna inSima, List<Sirma > exSimas): int

~getSumMaxSima(double[J[] simiMatrix): int

~sumMaxRecommendation(duble][] simiMatrix): int[]

~createSimaState(int simld, int state): void

~createSimaValidDetail(String ace, String geneld, String geneName, String gi, String seq, int sirnld, int reason)

=

accComparator

~fcu: formatCheckerUtl

+accComparator ()

+compare(String tar1, String taf2): d

similarityUtil

<<T,QR>>

-oristr: String

genelameComparator

comparetti

-tarStr: String

+compare(T tarl, Q tar2): R

+getOristr(: String
+getTarStr(): String

+compare(String tar 1, String tar2): dcubleﬂ/

+setOriStr(String oristr): void
+setTarStr(String tarStr): void

strFieldComparator

-editDis(): int -su: similarityUt]

segComparator

~+calSimilarity(): double

+strFieldComparator ()

+compare(String tar 1, String tar2): double

~fw: FileWriter
-subjectFileMame: String
-subjectSeqgs: String

+seqComparator (String filePath)
-writeQueryFile(Sima tar2): void

+compare(Sirma tar 1, List<Sima> tar2): double[]
~getSubjectSegs(): String[]

+compare(String tar1, List<Simas tar2): double[] ===

37/37

