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ABSTRACT

In this paper, an approach to target region based multi-objective evolu-
tionary algorithms is proposed to incorporate preference before the op-
timization process. It aims at finding a more fine-grained resolution of
a target region without exploring the whole set of Pareto optimal solu-
tions. It can guide the search towards the regions on the Pareto Front
which are of real interest to the decision maker. The algorithm frame-
work has been combined with SMS-EMOA, R2-EMOA, NSGA-II to form
three preference based multi-objective evolutionary algorithms: T-SMS-
EMOA, T-R2-EMOA and T-NSGA-II. In these algorithms, three ranking
criteria are applied to achieve a well-converged and well-distributed set
of Pareto optimal solutions in the target region. The three criteria are:
1. Non-dominated sorting; 2. indicators (hypervolume or R2 indicator)
or crowding distance in the new coordinate space (i.e. target region) af-
ter coordinate transformation; 3. the Chebyshev distance to the center of
target region.

Moreover, by introducing a parameter ε in the algorithms to improve
the diversity and allocating a proportion of population to each target,
the proposed algorithms have been enhanced to support multiple target
regions and preference information based on a target point or multiple
target points.

On some benchmark problems, including continuous problems and
discrete problems, experimental results show that the new algorithms
can handle the preference information very well and find an adequate
set of Pareto-optimal solutions in the preferred region(s) or close to the
preferred point(s). In the paper, rectangular and spherical target regions
have been tested, while target regions in other shapes are also possible.
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Chapter 1

Introduction

The aim of solving an optimization problem is to find the optimal solution(s). Usu-
ally in the real world, it is difficult to find the optimal solution for multi-objective
optimization problems (MOPs) because they involve in optimizing two or more con-
flicting objectives simultaneously. For a solution, if none of the objective can be im-
proved without degrading some of the other objectives, then this solution is called
Pareto optimal. When solving MOPs, exact methods are not often usable because
the search space can be too large and too complex. On the contrary, evolutionary al-
gorithms (EAs) have been proven to be particularly suitable for approximately solv-
ing MOPs. As a result, numerous multi-objective evolutionary algorithms (MOEAs)
have been proposed and the research domain of evolutionary multi-objective opti-
mization (EMO) has received a great deal of attention.

Most MOEAs approximate the entire Pareto Front (PF). However, the final goal
of EMO is to help the decision maker (DM) to find solutions which match his/her
preferences most. The DM may only pay attention to a smaller set of Pareto opti-
mal solutions, instead of the entire PF. Under this condition, approximation of the
whole PF is neither computationally efficient nor requested. Therefore, integrating
preferences in solving MOPs has become the subject of intensive studies of EMO
(Deb and Miettinen, 2008). Many preference-based MOEAs in which the DM in-
corporates his/her preferences before (a priori), after (a posteriori), or during (in-
teractively) (Purshouse et al., 2014) the optimization process have been proposed in
literature (Deb and Sundar, 2006) (Molina et al., 2009) (Said, Bechikh, and Ghédira,
2010) (Brockhoff et al., 2013) (Tanigaki et al., 2014) (Yang et al., 2016) and a review
of the preference-based multi-objective evolutionary algorithms (PMOEAs) field is
given in (Li et al., 2016).

Among the well-known MOEAs, the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) (Deb, Pratap, et al., 2002) is a Pareto dominance-based approach which
finds approximation fronts as close to the PF and as diverse as possible; S-Metric
Selection EMOA (Beume, Naujoks, and Emmerich, 2007) and R2-EMOA (Traut-
mann, Wagner, and Brockhoff, 2013) are indicator-based approaches which use per-
formance measures (indicators) on the quality of the PF approximations to guide the
search. The Hypervolume (HV) (Zitzler and Thiele, 1998) used in SMS-EMOA and
the R2 indicator (Hansen and Jaszkiewicz, 1998) used in R2-EMOA are two main
approaches measuring both convergence and diversity of a PF approximation. In
the thesis, a group of algorithms have been proposed to include preference informa-
tion within MOEAs before the start of the search in order to find solutions within a
more fine-grained resolution in a predefined region of interest (ROI) (Adra, Griffin,
and Fleming, 2007) on the PF. The group of algorithms consists of three algorithms:
T-SMS-EMOA, T-R2-EMOA and T-NSGA-II. In these algorithms, non-dominated
sorting, hypervolume (in T-SMS-EMOA), R2 indicator (in T-R2-EMOA), crowding
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distance (in T-NSGA-II) and the Chebyshev distance work together to attract the
population to target region and maintain diversity simultaneously.

Besides the basic algorithms to find a preferred set of solutions in a target region,
more abilities have been added in the algorithms to make them more powerful. In-
spired by some ideas from (Deb and Sundar, 2006), by introducing a parameter ε in
the algorithms to improve the diversity, the target point can also be used to generate
a subset of preferred Pareto optimal solutions; by allocating a proportion of popu-
lation to each target, the enhanced algorithms can handle multiple target regions or
points.

1.1 Overview

The remainder of this thesis is organized as follows: Section II introduces some back-
ground knowledge and Section III presents some related works. In Section IV, the
proposed algorithms are described and the structures of them are given. The experi-
mental results on a target region are reported in Section V. The details and graphical
results of enhanced algorithms are presented in Section VI and Section VII concludes
the work with the summary and outlook.
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Chapter 2

Background

2.1 Multi-Objective Optimization Problem

A MOP is formulated as

Min f(x) = (f1(x), f2(x), · · · , fm(x))T (2.1)

subject to

gi(x) ≤ 0 i = 1, · · · , P,
hj(x) = 0 j = 1, · · · , Q,

(2.2)

where x = (x1, x2, ..., xn) ∈ S is decision vector in search space, fk (k = 1, ...,m)
are the objective functions, f(x) ∈ Z is the objective vector and gi, hj (i = 1, ..., P ; j =
1, ..., Q) are the constraint functions of the problem. In the following, some widely
known definitions are provided to understand the solutions of 2.1.

Definition 1 A feasible vector x∗ ∈ S is said to be efficient iff there does not
exist another feasible vector x ∈ S such that fk(x) ≤ fk(x

∗) for all k = 1, ...,m, and
fl(x) < fl(x

∗) for at least one index l (l ∈ {1, ...,m}). The set SE of all the efficient
points is called the efficient set or Pareto set. If x1 and x2 are two feasible points and
fk(x1) ≤ fk(x2) for all k = 1, ...,m, with at least one of the inequalities being strict,
then we say that x1 dominates x2.

Efficiency is defined in the decision space. The corresponding definition in the
objective space is as follows:

Definition 2 An objective vector z∗ = f(x∗) ∈ Z is said to be non-dominated iff
x∗ is efficient. The set ZN of all non-dominated vectors is called the non-dominated
set or Pareto front. If x1 and x2 are two feasible points and x1 dominates x2, then
we say that f(x1) dominates f(x2).

It is usually impossible for one single solution to minimize all objectives func-
tions simultaneously because objective functions are often conflicting with each other.
Therefore, solving a MOP means obtaining the whole efficient set and its corre-
sponding Pareto front, and the most common approach to solve MOPs is the use
of MOEAs.

2.2 NSGA-II

NSGA-II is a widely applied Pareto dominance-based MOEA. Its fitness evaluation
is based on an elitist strategy composed of a Pareto dominance based rank assign-
ment mechanism called non-dominated sorting and a secondary measure for diver-
sity maintenance called crowding distance. In NSGA-II, the offspring population is
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created from the parent population by selection, crossover and mutation1. There-
after, the two populations of equal size (the specified population size) are merged
to form a new population which is classified into different groups according to the
ranks assigned by non-dominated sorting. The population of the next generation are
generated by choosing the 50% best solutions from the merged population and the
new generation is filled by each front subsequently until the population size exceeds
the specified population size: starting with solutions in the first non-domination
front, and continuing with solutions in the second non-domination front, and so on.
If by adding all solutions in one front, the population size exceeds the specified pop-
ulation size, then picking solutions in the descending order of crowding distance.

2.3 SMS-EMOA

SMS-EMOA (where SMS stands for S-metric selection) is a hypervolume indicator-
based EMO algorithm with a (µ + 1) selection scheme. The hypervolume of a set
is the total size of the space dominated by the solutions in the set and is measured
relative to a reference point, usually the worst possible point in the objective space. It
is an important quantitive measure to estimate the closeness of the estimated points
to the true PF and can be computed without the knowledge of the true PF, therefore
be used also in guiding algorithms towards the PF.

In SMS-EMOA, starting with an initial population of µ individuals, a single so-
lution is generated by selection, crossover and mutation. The worst solution is to be
removed from the merged population with the size of µ+ 1 in order to maintain the
population size. SMS-EMOA selects the worst solution by using the non-dominated
sorting as the first ranking criterion and the hypervolume contribution as the sec-
ond ranking criterion. The removed solution is the one that contributes the least to
the hypervolume of the worst ranked front. Imaging x(i) is one solution in the solu-
tion set S. The hypervolume contribution of x(i) to the hypervolume of the set S is
defined as:

HC(x(i)|S) = HV (S)−HV (S\{x(i)}). (2.3)

2.4 R2-EMOA

R2-EMOA modifies SMS-EMOA by replacing the hypervolume indicator with the
R2 indicator. The Chebyshev distance between two vectors is the greatest of their
differences along any coordinate dimension. In case the standard weighted Cheby-
shev utility function with ideal point i and the objective number d, the R2 indicator
is defined as

R2(A,Λ, i) =
1

|Λ|
∑
λ∈Λ

min
a∈A
{ max
j∈{1,...,d}

{λj |ij − aj |}} (2.4)

for a solution setA and a given set of weight vectors λ = (λ1, ..., λd) ∈ Λ. Usually, the
weight vectors are chosen uniformly distributed over the weight space, for example
for m = 2 objectives,

Λk = (0, 1;
1

k − 1
, 1− 1

k − 1
;

2

k − 1
, 1− 2

k − 1
; ...; 1, 0) (2.5)

denotes k uniformly distributed weights in the space [0, 1]2 .

1By default, NSGA-II uses binary tournament selection, Simulated Binary Crossover (SBX) and
polynomial mutation.
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Chapter 3

Related Works

It is believed that the first PMOEA was proposed in 1993 (Fonseca, Fleming, et al.,
1993) and the main idea of this work is to give higher priority to objectives in which
the goal is not fulfilled. The 2004 and 2006 Dagstuhl seminars were the key points for
the development of PMOEAs when researchers in EMO and MCDM fields gathered
together to get to know each other and stimulate cooperation. Since then, large
numbers of methods and algorithms were proposed and published.

Besides the categorization by the timing the DM expresses his/her preferences:
a priori, a posteriori or interactively, in (Li et al., 2016), PMOEAs are also be classified
to Reference point-based approaches (Wierzbicki, 1980), Reference direction-based
approaches (Korhonen and Laakso, 1986) (Jaszkiewicz and Słowiński, 1999) (Deb
and Kumar, 2007), Preference region-based approaches (Cheng et al., 2016), Trade-
off-based approaches (Miettinen, Ruiz, and Wierzbicki, 2008) (Shukla, Hirsch, and
Schmeck, 2010), Objective comparison-based approaches (Rachmawati and Srini-
vasan, 2010) (Brockhoff et al., 2013), Solution comparison-based approaches (Phelps
and Köksalan, 2003), Outranking-based approaches (Fernandez et al., 2011), Knee
point-based approaches (Bechikh, Ben Said, and Ghédira, 2010).

The classical reference point method was first proposed in 1980 (Wierzbicki,
1980). In a reference point method, the DM supplies a reference point, which repre-
sents the DM’s desired values for each objective and therefore guides the search to-
ward the desired region, and/or a weight vector which provides further information
about what Pareto optimal point to converge to. Deb et al. combined the classical
reference point method with NSGA-II and proposed the preference based NSGA-II
called R-NSGA-II (Deb and Sundar, 2006) which searches the ROIs according to a
user-provided reference point set. A modified crowding distance operator based on
the distance (the normalized Euclidean distance) between preference points and so-
lutions in the objective space is used in place of original crowding distance to choose
a subset of solutions from the last front which cannot be entirely chosen to maintain
the population size of the next population. An extra parameter ε was used to con-
trol the extent and the distribution of the final obtained solutions. R-NSGA-II has
demonstrated good results on two to five objective test problems. However, the di-
versity is not well-maintained when using a single reference point. Moreover, the ε
parameter setting is also a difficulty.

A preference region in the objective space is another widely used method in
PMOEAs. Desirability Functions are a common way to reflect the objective values
and the DM’s degree of satisfaction in preference region based approaches. Wag-
ner and Trautmann integrated DFs into SMS-EMOA and proposed the Desirabil-
ity Function-based SMS-EMOA (DF-SMS-EMOA) (Wagner and Trautmann, 2010).
The main idea of DF-SMS-EMOA is to convert the objective function of the original
MOP into DFs and then optimizing these DFs instead of the original objectives. The
DF-SMS-EMOA has demonstrated its ability to bias the search towards the DM’s
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preferred region on the two objective ZDT test functions and the five objective turn-
ing process problem (Biermann, Weinert, and Wagner, 2008). However, when the
number of objectives increases, the number of border solutions outside the specified
limits of DFs increases and the hypervolume computational effort also increases. In
fact, when P = NP , it grows at a polynomial rate with the increase in the number
of objectives.

A DF-based coordinate transformation is introduced in the proposed approach to
transform the objective values based on the preference region predefined by the DM.
I combine the DF-based coordinate transformation with SMS-EMOA, R2-EMOA and
NSGA-II and propose the target region based SMS-EMOA, R2-EMOA and NSGA-
II called T-SMS-EMOA, T-R2-EMOA and T-NSGA-II. An important feature of new
algorithms compared with DF-SMS-EMOA is that new algorithms can deal with
multiple target regions simultaneously. Reference points can also be handled by
considering it as a special case of target region. Furthermore, the method of control-
ling the extent and distribution of solutions in R-NSGA-II is used in new algorithms
to allocate a proportion of population to each target.
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Chapter 4

Proposed Approach

The proposed target region based multi-objective evolutionary algorithms work re-
liably when the DM wants to concentrate only on those regions of the PF which are
of real interest to him/her. In the proposed algorithms, i.e., T-SMS-EMOA, T-R2-
EMOA and T-NSGA-II (where T stands for target region), three ranking criteria (1.
non-dominated sorting; 2. performance indicator (Hypervolume in T-SMS-EMOA
or R2 in T-R2-EMOA) or crowding distance in T-NSGA-II; 3. the Chebyshev distance
to the target region) work together to achieve a well-converged and well-distributed
set of Pareto optimal solutions in the target region using preference information pro-
vided by the DM. Non-dominated sorting is used as the first level ranking criterion,
performance indicator or crowding distance as the second and the Chebyshev dis-
tance as the third level ranking criterion. The Chebyshev distance speeds up evo-
lution toward the target region and is computed as the distance to the center of the
target region.

The hypervolume, R2 indicator or crowding distance is chosen as the second
level ranking criterion, which is used as a diversity mechanism and is measured
based on coordinate transformations using desirability functions (DFs). The concept
of desirability was introduced by Harrington (Harrington, 1965) in the context of
multi-objective industrial quality control and the approach of expressing the pref-
erences of the DM using DFs is suggested by Wagner and Trautmann (Wagner and
Trautmann, 2010). DFs map the objective values to desirabilities which are normal-
ized values in the interval [0,1] where the larger the value, the more satisfying the
quality of the objective value. The Harrington DF (Harrington, 1965) and Derringer-
Suich DF (Suich and Derringer, 1977) are two most common types of DFs and both
of them result in biased distributions of the solutions on the PF through mapping the
objective values to desirabilities based on preference information. In the proposed
algorithms, a simple type of DFs is used and it classifies the domain of the objective
function into only two classes, “unacceptable” and “acceptable”. For this approach
we have:

D(x) =

{
1 x is in the target region,
0 x is not in the target region.

(4.1)

The desirability here is for a solution. It is not necessary to consider desirability
by each objective because the goal of new algorithm is to zoom in the target region.
Therefore, we treat solutions out of the target region as unacceptable solutions and
assign their desirabilities to be 0; at the same time, we assume that all solutions
inside the target region are of equal importance, (i.e. acceptable) and assign their
desirabilities to be 1. There is no further bias on the points in the target region in
our algorithms, however, if other types of DFs are integrated in the algorithms, it
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is possible to generate solutions of different distributions in the target region with
respect to the specified preferences.

For solutions with desirability 0, their second level ranking criterion is assigned
to be 0 and for solutions with desirability 1, their second level ranking criterion need
to be calculated further. Because only solutions in the target region are retained,
a way is derived to simplify the calculation of the indicator values or to realize a
reference point free version of indicators (M. T. Emmerich, Deutz, and Yevseyeva,
2014), which is coordinate transformation. The target region is treated as a new
coordinate space of which the origin being the lower bound. For the maximization
problem in T-SMS-EMOA or the minimization problem in T-R2-EMOA, a coordinate
transformation is performed for the i-th objective as:

Cti(x) = fi(x)− LB(fi) (4.2)

For minimization problem in T-SMS-EMOA or the maximization problem in T-
R2-EMOA, coordinate transformation is performed for the i-th objective as:

Cti(x) = UB(fi)− (fi(x)− LB(fi)) (4.3)

where LB(fi) and UB(fi) are the lower bound and upper bound of the i-th ob-
jective in the target region which is predefined by the DM.

The reason of distinguishing the maximization and minimization problem in co-
ordinate transformation is that the origin of the new coordinate space (i.e. the lower
bound of the target region) is used as the reference point when calculating the in-
dicator values. In T-SMS-EMOA, the worst point in the target region is chosen as
the reference point when calculating hypervolume. On the contrary, the ideal point
is chosen as the reference point when calculating R2 indicator in T-R2-EMOA. After
coordinate transformation, the calculation of the second ranking criterion is imple-
mented only in the target region instead of the whole coordinate system. It does
make sense because the target region is the desired space to the DM. No reference
point is needed in the calculation of crowding distance, therefore, any of the two for-
mulas of coordinate transformation can be chosen in T-NSGA-II. Figure 4.1 shows
an example of obtaining solutions in target region by the proposed approach.
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FIGURE 4.1: An example of obtaining solutions in the target region
by proposed approach.

The shape of the target region does not necessarily need to be rectangular, it
could as well be a circle, an ellipse or in other shapes as long as it can be confirmed
efficiently whether or not a solution is in the target region. For instance, if the DM
wants the solutions to be restricted to a sphere, s/he can specify the center point and
radius of the sphere and new algorithms can obtain the set of the PF in the sphere.

4.1 T-SMS-EMOA

The details of T-SMS-EMOA are given in Algorithm 1.
The framework of T-SMS-EMOA is from SMS-EMOA. However, after fast non-

dominated sorting, all the solutions in the worst ranked front are separated into two
parts (acceptable and unacceptable) by the DF. Solutions in the first part have desir-
ability 0 and their hypervolume contributions are assigned to be 0; solutions in the
second part have desirability 1 and coordinate transformation is conducted on each
objective of each solution in this part. After that, their hypervolume contributions
are calculated in the new coordinate system and the origin in the new coordinate sys-
tem is adopted as the reference point. The other difference between T-SMS-EMOA
and SMS-EMOA is the involvement of the Chebyshev distance. In the early iter-
ations, the existence of individuals in the target region is unlikely, the Chebyshev
distance works on attracting solutions towards the target region.

4.2 T-R2-EMOA

The details of T-R2-EMOA are given in Algorithm 2.
R2-EMOA is extended to T-R2-EMOA in the same way SMS-EMOA is extended

to T-SMS-EMOA. The formula of coordinate transformation used in T-R2-EMOA,
however, is opposite to the formula used in T-SMS-EMOA for the same problem
since the origin of the new coordinate system is used as the reference point in the
measure of both hypervolume indicator in T-SMS-EMOA and R2 indicator in T-R2-
EMOA. In T-R2-EMOA, the number of weight vectors is set to 501 for two objective
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Algorithm 1 T-SMS-EMOA

P0 ← init( ) /∗ Initialise random population ∗/
t← 0
repeat
qt+1 ← generate(Pt) /∗ generate offspring by variation ∗/
Pt = Pt ∪ {qt+1}
{R1, ..., Rv} ← fast-nondominated-sort(Pt)
∀x ∈ Rv : compute DCh(x)/∗ Chebyshev distance to the center of the target
region ∗/
Rv1∪Rv2 ← Rv/∗solutions not in the target region→ Rv1; solutions in the target
region→ Rv2 ∗ /
∀x ∈ Rv1 : HC(x) = 0
Rv2 ← Coordinate Transformation(Rv2)
∀x ∈ Rv2 : HC(x) = HV (Rv2)−HV (Rv2\x)
if unique argmin{HC(x) : x ∈ Rv} exists
x∗ = argmin{HC(x) : x ∈ Rv}

else
x∗ = argmax{DCh(x) : x ∈ Rv}/∗ in case of tie, choose randomly ∗/

Pt+1 = P\{x∗}
t← t+ 1

until termination condition fulfilled

Algorithm 2 T-R2-EMOA

P0 ← init( ) /∗ Initialise random population ∗/
t← 0
repeat
qt+1 ← generate(Pt) /∗ generate offspring by variation ∗/
Pt = Pt ∪ {qt+1}
{R1, ..., Rv} ← fast-nondominated-sort(Pt)
∀x ∈ Rv : compute DCh(x)/∗ Chebyshev distance to the center of the target
region ∗/
Rv1∪Rv2 ← Rv/∗solutions not in the target region→ Rv1; solutions in the target
region→ Rv2 ∗ /
∀x ∈ Rv1 : r(x) = 0
Rv2 ← Coordinate Transformation(Rv2)
∀x ∈ Rv2 : r(x) = R2(P\{x}; Λ; i)/ ∗ i: ideal point∗/
if unique argmin{r(x) : x ∈ Rv} exists
x∗ = argmin{r(x) : x ∈ Rv}

else
x∗ = argmax{DCh(x) : x ∈ Rv}/∗in case of tie, choose randomly∗/

Pt+1 = P\{x∗}
t← t+ 1

until termination condition fulfilled
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problem and 496 for three objective problem as former experiments in (Trautmann,
Wagner, and Brockhoff, 2013) and (Wagner, Trautmann, and Brockhoff, 2013).

4.3 T-NSGA-II

The details of T-NSGA-II are given in Algorithm 3.

Algorithm 3 T-NSGA-II

P0 ← init( ) /∗ Initialise random population ∗/
t← 0
repeat
Qt ← generate(Pt) /∗ generate offsprings by variation ∗/
Pt = Pt ∪Qt
∀x ∈ Pt : compute DCh(x)/∗ Chebyshev distance to the center of the target
region ∗/
{R1, ..., Rv} ← fast-nondominated-sort(Pt)
for i = rank 1,...,v do
Ri1 ∪ Ri2 ← Ri/∗solutions not in the target region → Ri1; solutions in the

target region→ Ri2 ∗ /
∀x ∈ Ri1 : Dc(x) = 0/ ∗Dc: crowding distance∗/
Ri2 ← Coordinate Transformation(Ri2)
∀x ∈ Ri2 : compute Dc(x)

Pt+1 ← half the size of Pt based on rank, Dc and then DCh

t← t+ 1
until termination condition fulfilled

In T-NSGA-II, the size of the offspring population is the same as the size of the
parent population, which is the specified population size. The next population is
generated by choosing the best half solutions from the merged population: starting
with points in the first non-domination front, continuing with points in the second
non-domination front, and so on; if by adding all points in one front, the population
size exceeds the specified population size, picking points in the descending order
of crowding distance; if by adding all points with the same crowding distance, the
population size still exceeds the specified population size, picking points in the as-
cending order of the Chebyshev distance. Unlike T-SMS-EMOA and T-R2-EMOA,
no reference point is needed in T-NSGA-II.
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Chapter 5

Experimental Study

5.1 Experimental Setup

All experiments in the thesis are implemented based on the MOEA Framework
(version 2.11, available from http://www.moeaframework.org/e). The MOEA
Framework is Java-based framework for multi-objective optimization and it sup-
ports a number of MOEAs, test problems and search operators. It is also easy to be
extended to introduce new problems and algorithms.

In this section, simulations are conducted to demonstrate the performance of the
proposed algorithms. In all simulations, we use the SBX operator with an index of 15
and polynomial mutation with an index 20 (Deb, 2001). The crossover and mutation
probabilities are set to 1 and 1/N , where N stands for the number of objectives.

We conduct experiments on some benchmark problems, including ZDT, DTLZ
and knapsack problems, to investigate performance of the new algorithms. All ex-
periments were run on a personal laptop with i5-5257U @ 2.7 GHz and 8GB RAM.
The population size and the number of evaluation are chosen to be dependent on the
complexity of the test problem. Table 5.1 shows the population size and the number
of evaluations (NE) we use on different test problems.

TABLE 5.1: Population Size and Number of Evaluation

Problems Population Size NE
ZDT1 100 10000

ZDT2-3 100 20000
DTLZ1-2 100 30000

knapsack-250-2
knapsack-500-2

200 200000

knapsack-250-3
knapsack-500-3

250 500000

5.2 Two-Objective ZDT Test Problems

In this section, we consider three ZDT test problems. First, we consider the 30-
variable ZDT1 problem. This problem has a convex Pareto optimal front which is a
connected curve and can be determined by f2(x) = 1 −

√
f1(x). The true PF spans

continuously in f1 ∈ [0, 1]. Four different target regions are chosen to observe the
performance of T-SMS-EMOA, T-R2-EMOA and T-NSGA-II. The first target region
covers the entire PF with the lower bound (0,0) and the upper bound (1,1). The
second target region restricts preferred solutions to the central part of the PF and its
lower bound is (0.1,0.1), upper bound is (0.5,0.5). The third and fourth target regions

http://www.moeaframework.org/e
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take two ends of the PF respectively and have their lower bounds to be (0,0.6) and
(0.6,0), upper bounds to be (0.3,1) and (1,0.3).

FIGURE 5.1: Representative PF approximations of T-SMS-EMOA on
ZDT1.
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FIGURE 5.2: Representative PF approximations of T-R2-EMOA on
ZDT1.



16 Chapter 5. Experimental Study

FIGURE 5.3: Representative PF approximations of T-NSGA-II on
ZDT1.
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Figure 5.1 ∼ Figure 5.3 show PF approximations obtained from new algorithms
on the four different target regions in a random single run. The different target re-
gions are highlighted by gray boxes and their lower and upper bounds are: upper
left graph:(0,0)(1,1), upper right graph:(0.1,0.1)(0.5,0.5), lower left graph:(0,0.6)(0.3,1),
lower right graph:(0.6,0)(1,0.3). It is observed that all three algorithms can find well-
distributed and well-converged solutions on the PF in the target regions and no out-
liers exist. The solution set obtained by T-SMS-EMOA is more uniform than the
solution sets obtained by the other two algorithms. It is also observable from upper
left graph in Figure 5.2 that the R2 indicator has a bias towards the center of the PF.

We examine the performance of the new algorithms using the hypervolume met-
ric. The hypervolume is calculated within the target region by normalizing the val-
ues of each objective to the values between 0 and 1 and using the lower bound of
the target region as the reference point for the maximization problem and the upper
bound of target region as the reference point for the minimization problem. Ta-
ble 5.2 shows the median and variance of hypervolume over 30 runs. The statistical
results correspond to the observation that T-SMS-EMOA outperforms T-R2-EMOA
and T-NSGA-II slightly. The original SMS-EMOA, R2-EMOA and NSGA-II are also
involved in the comparison and the results of the original MOEAs are obtained by
firstly, presenting constraints in the description of problem, and secondly, presenting
no constraints in the description of problem. It is demonstrated that the new algo-
rithms obtain higher hypervolume value than original MOEAs with no constraint
descriptions in the problem. Although the results of the proposed algorithms are
not better than original MOEAs with constraints on the range of objectives, experi-
ments show that the proposed algorithms can reduce computation time dramatically
on this problem.

In the table, the symbol of “*” on the values for the same target region means
the medians of these algorithms are significantly indifferent. The Mann-Whitney
U test (also called the Mann-Whitney-Wilcoxon (MWW), Wilcoxon rank-sum test,
or Wilcoxon-Mann-Whitney test) is used to determine if the medians of different
algorithms for the same problem are significantly indifferent. The chances that the
medians of T-SMS-EMOA and T-R2-EMOA are indifferent have been observed.

Box plots are used to visualize the distribution of hypervolume indicators of orig-
inal MOEAs without constraints and new algorithms over 30 runs, as shown in Fig-
ure 5.4. In a box plot, the bottom and top of the box are the first and third quartiles.
The line inside the box is the median of the data set. Two lines extend from the front
and back of the box are called whiskers. The front whisker goes from quartile 1 to
the smallest non-outlier in the data set, and the back whisker goes from quartile 3 to
the largest non-outlier. Outliers are plotted as points.
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TABLE 5.2: The median, variance of hypervolume and average com-
putation time (Sec.) on ZDT1 with respect to different target regions

and different algorithms

New Algorithms
T-SMS-EMOA T-R2-EMOA T-NSGA-II

Target Region Metric

(0,0)(1,1)
HV(m) 0.6580 0.6566 0.6425

Variance 6.4e-06 1.4e-06 1.0e-05
Time 24.99 74.01 0.21

(0.1,0.1)(0.5,0.5)
HV(m) 0.1640∗ 0.1638∗ 0.1543

Variance 1.4e-06 1.5e-06 8.9e-06
Time 10.30 23.61 0.19

(0,0.6)(0.3,1)
HV(m) 0.8110 0.8103 0.7936

Variance 5.9e-06 6.0e-06 4.4e-05
Time 12.86 31.78 0.20

(0.6,0)(1,0.3)
HV(m) 0.6255∗ 0.6233∗ 0.6079

Variance 8.9e-06 6.7e-06 4.5e-05
Time 11.45 27.92 0.21

Original Algorithms (Constraints) SMS-EMOA R2-EMOA NSGA-II

(0,0)(1,1)
HV(m) 0.6621 0.6610 0.6609

Variance 8.9e-11 1.2e-08 5.3e-08
Time 108.57 314.99 0.25

(0.1,0.1)(0.5,0.5)
HV(m) 0.1694 0.1693 0.1690

Variance 1.6e-11 1.1e-11 6.2e-09
Time 106.32 274.05 0.23

(0,0.6)(0.3,1)
HV(m) 0.8197 0.8185 0.8191

Variance 1.6e-08 4.6e-08 2.9e-08
Time 105.73 271.00 0.21

(0.6,0)(1,0.3)
HV(m) 0.6364 0.6348 0.6356

Variance 3.2e-09 2.2e-08 3.8e-08
Time 101.82 283.3 0.22

Original Algorithms SMS-EMOA R2-EMOA NSGA-II

(0,0)(1,1)
HV(m) 0.6558 0.6566 0.6362

Variance 1.6e-06 8.5e-07 3.5e-05
Time 26.77 73.34 0.21

(0.1,0.1)(0.5,0.5)
HV(m) 0.1545 0.1585 0.1236

Variance 4.7e-06 2.2e-06 4.4e-05
Time 24.17 74.85 0.20

(0,0.6)(0.3,1)
HV(m) 0.8012 0.7972 0.7649

Variance 6.3e-06 6.4e-06 0.00013
Time 24.85 71.90 0.20

(0.6,0)(1,0.3)
HV(m) 0.6119∗ 0.6110∗ 0.5604

Variance 2.3e-05 7.4e-06 0.00014
Time 26.29 78.93 0.20
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FIGURE 5.4: Boxplots comparing the hypervolume sets of six algo-
rithms on ZDT1 with respect to different target regions.

Next, we consider the 30-variable ZDT2 and ZDT3 problem. ZDT2 has a non-
convex Pareto optimal front and ZDT3 has a disconnected set of Pareto optimal
front which consists of five non-contiguous convex parts. Circle target regions are
adopted on ZDT2 and ZDT3 problems. A circle with a center point (1,0) and radius
0.5 intersects the whole PF of ZDT2 at its one end and a circle with a center point
(0.6,0.5) and radius 0.3 intersects the whole PF at its central part. The two different
circles are chosen as examples for target regions on ZDT2 problem. Experiments for
a circle with a center point (0.3,0.1) and radius 0.3 as target region are conducted on
ZDT3 problem.

Figure 5.5 shows PF approximation of T-SMS-EMOA in these target regions. Sim-
ilar figures can also be achieved by T-R2-EMOA and T-NSGA-II. In the graph, the
target regions are purple circles and center points are red points. Orange points
denotes the results obtained from T-SMS-EMOA on provided preference informa-
tion. Approximated optimal PF of ZDT2 problem for 100 blue points are from
this page: http://www.tik.ee.ethz.ch/sop/download/supplementary/
testproblems/. Statistical results of the median of hypervolume for three algo-
rithms in 30 independent runs on each target region are shown in Table 5.3.

5.3 Three-Objective DTLZ Test Problems

In this section, we consider three-objective DTLZ1 and DTLZ2 test problems. The 7-
variable DTLZ1 problem has a linear Pareto optimal front which is a three-dimensional,

http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/
http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/
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FIGURE 5.5: Representative PF approximations of T-SMS-EMOA on
ZDT2 and ZDT3 with respect to different circular target regions.

TABLE 5.3: The median of hypervolume on ZDT2 and ZDT3 with a
circulr target region

MOEA
T-SMS-EMOA T-R2-EMOA T-NSGA-II

Target Region
ZDT2 (1,0) 0.5 0.3168 0.3167 0.3159

ZDT2 (0.6,0.5) 0.3 0.3257 0.3256 0.3234
ZDT3 (0.3,0.1) 0.3 0.3377 0.3375 0.3365
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triangular hyperplane. A sphere with the center point (0.3,0.3,0.3) and radius 0.3 is
defined as the target region for three objective DTLZ1 problem. The 11-variable
DTLZ2 problem has a three-dimensional, non-convex, Pareto optimal front. A box
with the lower bound (0.4,0.4,0.2) and upper bound (0.8,0.8,0.8) is defined as the
target region for three objective DTLZ2 problem.

Figure 5.6 shows PF approximation of three objective DTLZ1 problem. The cen-
ter point of the target region is (0.3,0.3,0.3) and radius is 0.3. The graphs in the upper
row are solutions of T-SMS-EMOA, graphs in the middle row are solutions of T-
R2-EMOA and graphs in the lower row are solutions of T-NSGA-II. Approximated
optimal PF for blue points are from the page: http://jmetal.sourceforge.
net/problems.html. The transparent sphere depicts target region and red points
are solutions obtained by T-SMS-EMOA, T-R2-EMOA and T-NSGA-II. We can ob-
serve that T-SMS-EMOA behaves best in three algorithms. Statistical results of the
median of hypervolume in Table 5.4 are coincident with our observation.

TABLE 5.4: The median of hypervolume on three objective DTLZ1
problem with a spherical target region

MOEA
T-SMS-EMOA T-R2-EMOA T-NSGA-II

Target Region
(0.3,0.3,0.3) 0.3 0.8028 0.7992 0.7823

Figure 5.7 shows PF approximation of three objective DTLZ2 problem. The lower
and upper bounds of the target region are (0.4.0.4,0.2) and (0.8,0.8,0.8). Approxi-
mated optimal PF for blue points are from the page: http://jmetal.sourceforge.
net/problems.html. The transparent box depicts target region and red points
are solutions obtained by T-SMS-EMOA. Statistical results of the median of hyper-
volume for three algorithms and original MOEAs with constraints description in 30
independent runs on cubic target region are shown in Table 5.5. It is observable
that the best result is achieved by T-SMS-EMOA and all new algorithms outperform
original MOEAs except for R2-EMOA.

TABLE 5.5: The median of hypervolume on three objective DTLZ2
problem with a cubic target region

MOEA T-SMS T-R2 T-NSGA SMS- R2- NSGA
Target Region -EMOA -EMOA -II EMOA EMOA -II

(0.4,0.4,0.2)
(0.8,0.8,0.8)

0.4632 0.4303 0.4189 0.3369 0.4351 0.4185

http://jmetal.sourceforge.net/problems.html
http://jmetal.sourceforge.net/problems.html
http://jmetal.sourceforge.net/problems.html
http://jmetal.sourceforge.net/problems.html
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FIGURE 5.6: Representative PF approximations of T-SMS-EMOA(the
upper row), T-R2-EMOA(the middle row) and T-NSGA-II(the lower
row) in a spherical target region on three objective DTLZ1 problem.
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FIGURE 5.7: Representative PF approximations of T-SMS-EMOA in a
cubic target region on three objective DTLZ2 problem.
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5.4 Knapsack Problems

Knapsack Problems have been studied first by Dantzig in the late 1950′s (Dantzig,
1957). The problem is a general, understandable, and one of the most representative
discrete optimization problem. At the same time, it is difficult to solve (NP-hard). In
the study, we use the Multi-objective 0/1 Knapsack Problems from Zitzler and Thiele
(Zitzler and Thiele, 1999) as discrete test problems. Formally, the multi-objective 0/1
knapsack problem can be formulated as the following maximization problem:

maxmize f(x) = (f1(x), f2(x), · · · , fn(x))

subject to

m∑
j=1

wijxj ≤ ci, i = 1, · · · , n,

xj ∈ {0, 1}, j = 1, · · · ,m,

where fi(x) =

m∑
j=1

pijxj , i = 1, · · · , n,

In this formulation, m is the number of items and n is the number of knapsacks,
wij is the weight of item j according to knapsack i, pij is the profit of item j according
to knapsack i and ci is the capacity of knapsack i. The Multi-objective 0/1 Knapsack
Problem is to find Pareto optimal vectors x = (x1, x2, · · · , xm) and xj = 1 when item
j is selected and xj = 0 otherwise.

Figure 5.8 shows solutions obtained in a random single run when the number
of knapsack is 2 and the number of items is 250. The results of SMS-EMOA, R2-
EMOA and NSGA-II are PF approximation without converting the target region
into constraints. The target region for T-SMS-EMOA, T-R2-EMOA and T-NSGA-
II is highlighted by the gray box. The lower bound is (9000,9000), the upper bound
is (9800,9800).

Statistical results of the median of hypervolume are presented in Table 5.6. No
additional constraints of the target region are converted in the description of the
problem for the results of original MOEAs in the table. In our experiments, two and
three objectives are taken into consideration, in combination with 250 and 500 items.
The test data sets are from (Zitzler and Thiele, 1999). The target region of knapsack-
250-2 is from (9000,9000) to (9800,9800), of knapsack-250-3 is from (8500,8500,8500)
to (10000,10000,10000), of knapsack-500-2 is from (18000,18000) to (20000,20000), of
knapsack-500-3 is from (17000,17000,17000) to (19000,19000,19000).

TABLE 5.6: The median of hypervolume on Knapsack problems with
respect to different target regions

Algorithms T-SMS T-R2 T-NSG SMS- R2- NSGA
Problems -EMOA -EMOA A-II EMOA EMOA -II
Knapsack

-250-2
0.2117 0.2160 0.2230 0.2102 0.2099 0.1821

Knapsack
-250-3

0.0295 0.0296 0.0311 0.0204 0.0293 0.0085

Knapsack
-500-2

0.3273 0.3318 0.3230 0.3225 0.3272 0.2857

Knapsack
-500-3

0.1936 0.1855 0.1713 0.1699 0.1747 0.0718
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FIGURE 5.8: Representative PF approximations on knapsack-250-2
problem.
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Chapter 6

Enhanced Algorithms and
Experiments

6.1 Algorithm Improvement

As mentioned in Chapter 4 on page 7, the second ranking criterion (Hypervolume,
R2 indicator or crowding distance) in new algorithms only works for solutions in
the target region, which means if the intersection of the target region and true PF
is empty, the second ranking criterion becomes useless. Under this condition, well-
distributed solutions can not be obtained because solutions are guided only by Non-
dominated sorting and the Chebyshev distance. In addition, if multiple target re-
gions are specified, sometimes the obtained solutions only converge to one target re-
gion. Inspired by some ideas from R-NSGA-II (Deb and Sundar, 2006), two methods
are adopted to overcome these limitations and strengthen the proposed algorithms.

6.1.1 Separate Population to Different Targets

The first method can attract the population to different targets and it is used in
the calculation of both the second ranking criterion (Hypervolume, R2 indicator or
crowding distance) and the third ranking criterion (the Chebyshev distance). The
aim of this method is to support multiple targets.

Taking R2 indicator as an example, after coordinate transformation, for all target
regions, R2 indicator values of all solutions on the worst ranked front are calculated
and the solutions are sorted in descending order of R2 indicator. Thereafter, R2 indi-
cator values are replaced by R2 indicator ranks: solutions with the largest R2 indicator
values for all target regions are assigned the same largest R2 indicator rank, solutions
having next-to-largest R2 indicator values for all target regions are assigned the same
next-to-largest R2 indicator rank, and so on, until the number of solutions which have
been assigned the R2 indicator rank for each target region reaches its proportion in
population. If the uniform distribution of solutions for all target regions is expected,
the proportion of each target region should be divided equally between all target
regions. For example, when the number of target regions is two, the proportion for
each target region should be 1/2 and the number of solutions being assigned the R2
indicator rank should reach half of the size of the worst ranked front. Lastly, for solu-
tions haven’t been assigned the R2 indicator rank, their R2 indicator values should be
mapped to values smaller than the least R2 indicator rank. One way to do this is to
calculate their R2 indicator values in the combined region of all target regions and
normalized them to values lower than all R2 indicator ranks. By this way, solutions
with larger R2 indicator values in each target region are emphasized more.

The Chebyshev rank is used in place of the Chebyshev distance when the method
is added to work with the third ranking criterion. First, the Chebyshev distances of
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each solution to the union of all targets are calculated and the solutions are sorted
in ascending order of distance. The Chebyshev rank of the solutions closest to all
targets is assigned to be the same smallest rank of zero, the Chebyshev rank of the
solutions having next-to-smallest Chebyshev distance is assigned to be the same
next-to-smallest rank of one, and so on, until the number of solutions which have
been assigned the Chebyshev rank for each target reaches its proportion in popula-
tion. Figure 6.1 shows an example of assigning Chebyshev ranks to solutions on the
current worst ranked front. In the example, red Chebyshev ranks are assigned by
sorting solutions in ascending order of the Chebyshev distance to Target Region
1 and blue Chebyshev ranks are assigned by sorting solutions in ascending order
of the Chebyshev distance to Target Region 2, solutions with lower ranks are en-
couraged to remain in the population. The worst solution will be chosen from two
solutions having the Chebyshev rank 3 randomly.

FIGURE 6.1: An example of assigning Chebyshev ranks to solutions
on the current worst ranked front.

6.1.2 Improve Diversity

Under the circumstance that the second ranking criterion (Hypervolume, R2 indi-
cator or crowding distance) doesn’t work, the diversity is lost and the solution set
would converge to one point when the number of evaluation is high enough. To
solve the problem, a parameter ε is introduced in basic algorithms and works with
the third ranking criterion (the Chebyshev distance) to improve the diversity. First,
the solution with the shortest Chebyshev distance to the target is picked out. There-
after, all other solutions having a Chebyshev distance less than the sum of the cur-
rent shortest Chebyshev distance and ε are assigned a relatively large distance to
discourage them to remain in the population. Then, another solution (not already
considered earlier) is picked and the above procedure is performed again. This way,
only one solution within a ε-neighborhood is emphasized and the diversity of the
solution set is improved.
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Figure 6.2 illustrates how the parameter ε takes effect when working in the cal-
culation of the Chebyshev distance together. The Chebyshev distance between two
vectors is the greatest of their differences along any coordinate dimension. There-
fore, in the graph, the Chebyshev distances of solutions on the current font are dis-
tances to the center point along f2. Apparently, point a is the point with the shortest
Chebyshev distance to the center point, point b has a Chebyshev distance less than
the sum of a’s Chebyshev distance and ε, thus, it will be assigned an relatively large
distance. So will point d and e. Point b, d and e are discouraged to remain in the
population.

FIGURE 6.2: Illustration of ε parameter.

6.1.3 Structure of Enhanced Algorithms

Involving above two methods in basic algorithms, Algorithm 4, 5 and 6 show the
structures of enhanced algorithms.
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Algorithm 4 T-SMS-EMOA Enhanced version

P0 ← init( ) /∗ Initialise random population ∗/
t← 0
repeat
qt+1 ← generate(Pt) /∗ generate offspring by variation ∗/
Pt = Pt ∪ {qt+1}
{R1, ..., Rv} ← fast-nondominated-sort(Pt)
for all targets:
∀x ∈ Rv : compute DCh(x)/∗ Chebyshev distance to current target ∗/
R

′
v ← Rv/∗ sort in ascending order of DCh ∗ /

for x ∈ R′
v : / ∗ x is not labelled, start from the first in R

′
v ∗ /

Label x
∀x′ ∈ R′

v \X / ∗X : the set of points have been labelled ∗/
if DCh(x

′
) < DCh(x) + ε

Label x
′

DCh(x
′
)← relatively large value

Rv ← R
′
v/∗ sort in ascending order of DCh ∗ /

for x ∈ Rv : /∗ only for assigned number of solutions ∗/
DCh(x) = DCh_rank(x)/∗ start from the smallest DCh_rank: 0 ∗/

for x(∈ Rv) without being assigned a DCh_rank:
DCh(x) = Normalized_DCh(x)/∗Normalized_DCh(x)>largest DCh_rank ∗/

Rv1∪Rv2 ← Rv/∗solutions not in the target region→ Rv1; solutions in the target
region→ Rv2 ∗ /
∀x ∈ Rv1 : HC(x) = 0
Rv2 ← Coordinate Transformation(Rv2)
∀x ∈ Rv2 : HC(x) = HV (Rv2)−HV (Rv2\x)
for all targets:
R

′
v ← Rv/∗ sort in descending order of HC ∗ /

for x ∈ R′
v : /∗ only for assigned number of solutions ∗/

HC(x) = HC_rank(x)/∗ start from the largest HC_rank : |R′
v| ∗ /

for x(∈ R′
v) without being assigned a HC_rank:

HC(x) = Normalized_HC(x)/∗Normalized_HC(x) <smallest HC_rank ∗/
if unique argmin{HC(x) : x ∈ Rv} exists
x∗ = argmin{HC(x) : x ∈ Rv}

else
x∗ = argmax{DCh(x) : x ∈ Rv}/∗ in case of tie, choose randomly ∗/

Pt+1 = P\{x∗}
t← t+ 1

until termination condition fulfilled
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Algorithm 5 T-R2-EMOA Enhanced version

P0 ← init( ) /∗ Initialise random population ∗/
t← 0
repeat
qt+1 ← generate(Pt) /∗ generate offspring by variation ∗/
Pt = Pt ∪ {qt+1}
{R1, ..., Rv} ← fast-nondominated-sort(Pt)
for all targets:
∀x ∈ Rv : compute DCh(x)/∗ Chebyshev distance to current target ∗/
R

′
v ← Rv/∗ sort in ascending order of DCh ∗ /

for x ∈ R′
v : / ∗ x is not labelled, start from the first in R

′
v ∗ /

Label x
∀x′ ∈ R′

v \X / ∗X : the set of points have been labelled ∗/
if DCh(x

′
) < DCh(x) + ε

Label x
′

DCh(x
′
)← relatively large value

Rv ← R
′
v/∗ sort in ascending order of DCh ∗ /

for x ∈ Rv : /∗ only for assigned number of solutions ∗/
DCh(x) = DCh_rank(x)/∗ start from the smallest DCh_rank: 0 ∗/

for x(∈ Rv) without being assigned a DCh_rank:
DCh(x) = Normalized_DCh(x)/∗Normalized_DCh(x)>largest DCh_rank ∗/

Rv1∪Rv2 ← Rv/∗solutions not in the target region→ Rv1; solutions in the target
region→ Rv2 ∗ /
∀x ∈ Rv1 : r(x) = 0
Rv2 ← Coordinate Transformation(Rv2)
∀x ∈ Rv2 : r(x) = R2(P\{x}; Λ; i)/ ∗ i: ideal point∗/
for all targets:
R

′
v ← Rv/∗ sort in descending order of R2 ∗ /

for x ∈ R′
v : /∗ only for assigned number of solutions ∗/

r(x) = r_rank(x)/∗ start from the largest r_rank : |R′
v| ∗ /

for x(∈ R′
v) without being assigned a r_rank:

r(x) = Normalized_r(x)/ ∗Normalized_r(x) <smallest r_rank ∗ /
if unique argmin{r(x) : x ∈ Rv} exists
x∗ = argmin{r(x) : x ∈ Rv}

else
x∗ = argmax{DCh(x) : x ∈ Rv}/∗in case of tie, choose randomly∗/

Pt+1 = P\{x∗}
t← t+ 1

until termination condition fulfilled
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Algorithm 6 T-NSGA-II Enhanced version

P0 ← init( ) /∗ Initialise random population ∗/
t← 0
repeat
Qt ← generate(Pt) /∗ generate offsprings by variation ∗/
Pt = Pt ∪Qt
for all targets:
∀x ∈ Pt : compute DCh(x)/∗ Chebyshev distance to current target ∗/
P

′
t ← Pt/∗ sort in ascending order of DCh ∗ /

for x ∈ P ′
t : / ∗ x is not labelled, start from the first in P

′
t ∗ /

Label x
∀x′ ∈ P ′

t \X / ∗X : the set of points have been labelled ∗/
if DCh(x

′
) < DCh(x) + ε

Label x
′

DCh(x
′
)← relatively large value

Pt ← P
′
t /∗ sort in ascending order of DCh ∗ /

for x ∈ Pt : /∗ only for assigned number of solutions ∗/
DCh(x) = DCh_rank(x)/∗ start from the smallest DCh_rank: 0 ∗/

for x(∈ Pt) without being assigned a DCh_rank:
DCh(x) = Normalized_DCh(x)/∗Normalized_DCh(x)>largest DCh_rank ∗/
{R1, ..., Rv} ← fast-nondominated-sort(Pt)
for i = rank 1,...,v do

Ri1 ∪ Ri2 ← Ri/∗solutions not in the target region → Ri1; solutions in the
target region→ Ri2 ∗ /
∀x ∈ Ri1 : Dc(x) = 0/ ∗Dc: crowding distance∗/
Ri2 ← Coordinate Transformation(Ri2)
∀x ∈ Ri2 : compute Dc(x)
for all targets:
R

′
i ← Ri/∗ sort in descending order of Dc ∗ /

for x ∈ R′
i : /∗ only for assigned number of solutions ∗/

Dc(x) = Dc_rank(x)/∗ start from the largest Dc_rank : |R′
i| ∗ /

for x(∈ R′
i) without being assigned a Dc_rank:

Dc(x) = Normalized_Dc(x)/ ∗Normalized_Dc(x) <smallest Dc_rank ∗ /
Pt+1 ← half the size of Pt based on rank, Dc and then DCh

t← t+ 1
until termination condition fulfilled
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6.2 Experiments on Improved Algorithms

6.2.1 Multiple Target Regions

If multiple target regions of interest can be found simultaneously, the DM can make
a more effective selection towards finding ultimate preferred solution(s). The en-
hanced algorithms in Section 6.1 can guide the search toward multiple target regions.
Three pair of spherical target regions are used on three objective DTLZ1 problems
separately to demonstrate differences of results between T-SMS-EMOA (Figure 6.3),
T-R2-EMOA (Figure 6.4) and T-NSGA-II (Figure 6.5). The center point and radius of
two target regions are shown above each graph. The first pair of target regions have
same radius and both center points are on the PF which is a three-dimensional, trian-
gular hyperplane. The second pair of target regions have same radius, but one center
point is on the PF, the other is not. The third pair of target regions have different ra-
dius, but both center points are on the PF. Experimental results over consecutive 30
runs show that all three algorithms can obtain uniform solutions in two target re-
gions, no outliers exist. When the assigned population size is 100, each target region
obtains 50 solutions for all 30 runs. While when the number of runs increases to 50,
the solution of 49 and 51 also appears once.
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FIGURE 6.3: Representative PF approximations of T-SMS-EMOA in
two spherical target regions on three objective DTLZ1.
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FIGURE 6.4: Representative PF approximations of T-R2-EMOA in two
spherical target regions on three objective DTLZ1.
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FIGURE 6.5: Representative PF approximations of T-NSGA-II in two
spherical target regions on three objective DTLZ1.
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In the above experiments for T-SMS-EMOA (Figure 6.3), T-R2-EMOA (Figure 6.4)
and T-NSGA-II (Figure 6.5), we specify that solutions are equally distributed in mul-
tiple target regions. For the population size of 100, this means that there are 50
solutions in each target region. It is also possible that we hope different proportion
of solutions for each target region. For example, we find that the real intersection ar-
eas of the third pair of target regions and the PF are obviously different. Therefore,
1/4th of population size is specified as the number of obtained solutions in the small
intersection area and 3/4th of population size is specified as the number of obtained
solutions in the larger intersection area. Figure 6.6 shows the difference between
equally distributed solutions (left graph) and solutions with specified proportion
for each target region (right graph) of T-SMS-EMOA.

FIGURE 6.6: Representative PF approximations of T-SMS-EMOA
with different solution distribution in two spherical target regions on

three objective DTLZ1.

When there is no intersection between the target region and the PF, the enhanced
algorithms can still obtain solutions close to the target region. Figure 6.7 shows PF
approximations for different target regions which don’t intersect with the PF.
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FIGURE 6.7: Representative PF approximations of T-SMS-EMOA on
three objective DTLZ2; ε=0.001.
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6.2.2 Single Target Point

The enhanced algorithms are not only capable of obtaining solutions in the target
region, but also they may belong to reference point-based approaches. When the
lower bound and the upper bound of the target region specified in the algorithms
are the same, the target region shrinks to a target point. In this section, only re-
sults of T-SMS-EMOA are presented, T-R2-EMOA and T-NSGA-II can obtain similar
results. Figure 6.8 shows PF approximations of T-SMS-EMOA for different single
target point: point around the PF, point near the border, point in the feasible area
and point in the infeasible area.

FIGURE 6.8: Representative PF approximations of T-SMS-EMOA on
ZDT1; ε=0.0001.

For three objective problem, the parameter ε plays an essential role in balancing
convergence and diversity of the solutions near the target point. Figure 6.9 shows PF
approximations of T-SMS-EMOA for one target point when the values of parameter
ε are different. The black point is the target point and red points are obtained solu-
tions; blue points indicate the PF. It is observed that when the parameter ε is smaller,
obtained solutions are denser and more concentrated.
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FIGURE 6.9: Representative PF approximations of T-SMS-EMOA on
three objective DTLZ1 problem for one target point: (0.25, 0.25, 0.25).
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6.2.3 Multiple Target Points

The enhanced algorithms can also work on multiple target points. Increasing the
number of evaluation to 20000, Figure 6.10 shows PF approximations of T-SMS-
EMOA for two target points on ZDT1 problem when the values of parameter ε are
different. The red points are the target points and blue points are obtained solutions;
purple points indicate the PF.

FIGURE 6.10: Representative PF approximations of T-SMS-EMOA on
ZDT1 for two target points.

Increasing the number of evaluation to 50000, Figure 6.11 shows PF approxima-
tions of T-SMS-EMOA for two target points on three objective DTLZ1 problem when
the parameter ε are different. The black points are the target points and red points
are obtained solutions; blue points indicate PF.
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FIGURE 6.11: Representative PF approximations of T-SMS-EMOA on
three objective DTLZ1 problem for two target points: (0.25, 0.25, 0.25)

(0.4, 0.4, 0.1).
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Chapter 7

Conclusion

In the thesis, a new target region based multi-objective evolutionary approach has
been proposed. Three algorithms named T-SMS-EMOA, T-R2-EMOA and T-NSGA-
II have been instantiated when combining the common algorithm framework with
original SMS-EMOA, R2-EMOA and NSGA-II algorithm. These new algorithms
have been applied to a number of continuous and combinational benchmark prob-
lems with two or three objectives. Experimental results show that the proposed
algorithms can guide the search toward the preferred region on the Pareto optimal
front. No outliers appear on a large number of evaluations. In addition, these basic
algorithms have been improved. Enhanced algorithms are more powerful and do
not only support multiple target regions but also target point(s). It is worth noting
that different number of solutions can be allocated to different targets by assigning
the proportion of population size for each target.

Also, the proposed algorithms presented similar performance with the original
MOEAs on several tested problems by converting the target region into constraints
in the problem description. The proposed algorithms save computational effort by
guiding the search towards the preferred region without the calculation of the sec-
ond ranking criterion in initial iterations. On the contrary, for original MOEAs, the
increase in the number of constraints leads to the decrease of the search ability.
Moreover, comparing with the original MOEAs, the proposed algorithms exhibit
the trend of behaving better with the increase in the number of objectives. More
importantly, when there is no intersection between targets and the PF, the proposed
algorithms can still find Pareto optimal solutions close to the targets.

Very recently A new approach (Cheng et al., 2016) for multiple target region
selection using sets of reference vectors. It will be interesting to compare to it in
the future work.
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