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Abstract

Domestic photography has been booming since the introduction of personal devices equipped

with cameras like smartphones. As a consequence users struggle in finding relevant pictures

in the ever growing photo collections. Content-based image retrieval (CBIR) solves this

and takes away burdens like manual tagging. CBIR methods are often inspired by text

mining techniques and concepts. In this project the gap of image and text document

semantics analogy is closed with the introduction of Spatial Visual Sentences. These visual

sentences uses the Bag-of-Words (BoW) model to construct semantically meaningful word

sequences based on segmentation techniques like Superpixels and Watershed combined with

Canny Edge detector or Otsu Thresholding. To illustrate its effectiveness Latent Semantic

Indexing (LSI) among other text retrieval techniques are applied to visual sentences against

two datasets: UKBench and MIRFLICKR. Due to composition diversity of images from

MIRFLICKR the proposed algorithm including BoW had trouble retrieving relevant results.

However recall of objects in UKBench with Spatial Visual Sentences is almost as good as

BoW. Spatial Visual Sentences essentially extends Visual Phrases with additional semantic

properties by creating semantically meaningful word groups. This has proven to be quite

effective for object recalls.

Keywords: Image retrieval, CBIR, text-based search algorithms, text retrieval, information

retrieval, Latent Semantic Indexing, Latent Semantic Analysis, K-Means, Self Organizing

Map, SURF, SIFT, Superpixels, Watershed, Canny, Otsu, Visual Phrases, Visual Sentences
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1Introduction

The amount of personal pictures has been growing rapidly over the past few decades.

Flickr.com is a popular image hosting website among the photography community. Figure 1.1

shows since the inception of Flickr how many public photos were uploaded per month 1.

In the year 2014 1.84 million photos were uploaded on average per day. By May 2015

Flickr had over 10 billion 2 images. Not just the younger generation but also elders possess

portable devices like smart-phones, tablets and dedicated cameras which enable them to

take photographs within a hand reach. As a result users end up with enormous collections

of photographs.

Fig. 1.1: Millions of public photos uploaded per month to Flickr between 2004 and 2014

Due to the sheer amount of digital media most users do not bother with manual tagging or

cataloguing. There is therefore great demand for systems that can aid users in retrieving

relevant images from big image collections with least possible input from the end-user.

This research focuses on the former: retrieve relevant images based on a sample input

image. Though this area has been researched extensively the Bag-of-Words (BoW) model as

basis has been proven to be successful [Yan+07; Mül+10; Zag+11]. Just like BoW most

derivatives [Sme+00; Liu+07; Zha+11; Yua+07; Zhe+06; Tho+10; TL12] including our

method are inspired by text retrieval concepts. Our main contribution is to complete the se-

mantic analogy between an image and a text document by introducing spatial visual sentences.

The spatial visual sentence concept introduced here fits in the analogy (Figure 1.2) between

image and text document in semantic granularity drawn by Zheng et al [Zhe+06]. Images

1https://www.flickr.com/photos/franckmichel/6855169886/in/photostream/
2http://blog.flickr.net/en/2015/05/07/flickr-unified-search/

1
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Fig. 1.2: Analogy between image and text document in semantic granularity [Zhe+06]

are encoded as a 2-dimensional array of pixels. This primitive is analog to letters of an

alphabet. First level of abstraction is feature descriptor [Des+08] like SIFT and SURF

(Section 3.1) are examples of methods which can represent a patch (pixels region) as a

feature vector. Because such vector is computed based on a collection of pixels adjacent

to each other it is similar to composing a word using letters. Phrases can be constructed

by grouping words based on some criteria like visual word co-occurrences [Yua+07] or

Euclidean distances. The final semantic gap is closed with sentence which in images context

corresponds to an object or group of words with emergent visual semantics. This grouping

method relies on image segments that are inspired by Gestalt principles [Kof13; Mal+01;

Koo+11]. We coin this approach as Spatial Visual Sentences because it decomposes an image

into meaningful group of words with respect to visual semantics using image segmentation

techniques like Superpixels and edge detectors.

This thesis is organized as follow:

• Section 2 presents an overview of relevant text mining methods and concepts inspired

by Natural Language Processing. Some of them are applied during the different phases

of the proposed Spatial Visual Sentences algorithm.

• Section 3 outlines state of the art image processing techniques that are also used by

our algorithm. Of each technique two or more variations are discussed for comparison

in section 5.

• Section 4 dives into the details on how to compute Spatial Visual Sentences from

pixels. It also addresses ways to compare visual sentences or images with each other

using three similarity measures.
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• Section 5 presents how the proposed algorithm performs in terms of recall and

precision against two popular datasets and a mixture of algorithm configurations.

• Section 6 summarizes this thesis and draws some conclusions based on the results

presented in section 5.

• Finally section 7 sheds some light on possible future work that could improve the

proposed algorithm in terms of speed and accuracy.

Full source code including subsets of the datasets are publicly available 3.

3https://github.com/xiwenc/cbir-invenio

3
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2Text Mining

Text mining or knowledge discovery from text deals with computer assisted text analysis.

Hotho et al summarized three possible definitions [Hot+05] of text mining in the research

areas: Information Retrieval, Natural Language Processing and Information Extraction. In

this article we will consider the following definition:

Text mining is the application of algorithms and methods from the fields machine

learning and statistics to texts with the goal of finding useful patterns.

The mining process can be simplified into two main phases:

• Preprocessing: Transform documents into structured data taking into account the

syntax and semantics of natural languages where possible.

• Classification: Group documents or parts of it based on a similarity measure to speed

up retrieval of similar content.

The rest of this section will describe these phases in more detail. Most text mining approaches

apply the Bag-of-Words model to represent text documents. It extracts keywords from a

document. The importance of a word within a document can be quantified using several

known models like probabilistic model, logical model and vector space model.

2.1 Text preprocessing

A text document consists of one or more pages. Each page is composed of an ordered list of

phrases separated by a punctuation mark. Multi-page documents can be easily transformed

to single-page by concatenating all pages. For the sake of simplicity we will only consider

single-page documents from now on forward. Each phrase is in turn an ordered list of words

separated by white spaces. A word is an ordered list of terminals also known as characters or

in more general: symbols.

The set of terminals specific to language is called the alphabet. And the set of words that

can be composed using the alphabet based on grammar and spelling rules of a language

is coined the vocabulary. We will use the English language as reference to illustrate some

concepts in the rest of this section.

4



2.1.1 Stop Words Removal

Stop words is a group of words used to filter out before or after processing of natural language

data. The idea is to reduce complexity of subsequent computational tasks by reducing the

vocabulary size and discarding non-important data. Examples in English are the, a, an and is.

It’s important to find a balance in what to discard in order to improve performance because it

could severe accuracy of phrase searches. Often the most frequently used words are chosen

as they do not contribute to distinctiveness of query results.

2.1.2 Synonym, Stemming and Lemmatization

In linguistic there are several ways to group/summarize multiple words into a single term

based on their semantics, syntax and context in which it is used. The word better is a synonym

of good and vice versa. These two words have no commonalities in their construction at all

yet they have similar meaning. Hence synonyms are language specific and is often presented

as a static lookup table.

Words with similar composition like cats and catty can be mapped to the root cat. This

process for reducing inflected or sometimes derived words to their stem word, base form

or root is called stemming. Most algorithms that determine the stem word of a given target

word uses lookup table that maps to inflicted forms or more flexible rules like suffix-stripping

algorithm.

A more complex form of determining the stem of a word is lemmatization. The part of speech

is first detected using the context in which the word occurs. Next the stemming rules are

applied depending on the word category. For instance the word meeting can be a base form

of a noun or the verb to meet depending on the context:

• During last meeting

• We are meeting again tomorrow

Additional linguistic preprocessing specifics to semantics add limited value to Bag-of-Words

because co-occurrence of terms serve as an automatic disambiguation for classification

purposes[LK02]. Nonetheless progress[Hot+03] is being made to exploit these concepts:

• Part-of-Speech tagging: classify the category of the word based on the context it is

used in e.g. noun, verb, adjective, etc.

• Text chunking: create groups of adjacent words in a sentence e.g. blue balloon.

• Word Sense Disambiguation: Resolve ambiguity using the context in which a word

is used. For instance bank could mean financial institution or border of a lake or river.

2.1 Text preprocessing 5



2.1.3 Keyword Selection

The words which make up the vocabulary can further be reduced by applying selection

algorithms. One way of doing this is to select keywords based on their entropy[LS89]. The

entropy of a word t is defined as:

W (t) = 1 +
1

log
2
|D|

∑

d∈D

P (d, t)log
2
P (d, t) with P (d, t) =

tf(d, t)
∑n

l=1
tf(dl, t)

(2.1)

Where:

D = the set of documents

T = the set of all different terms {t1, ..., tm} occuring in D

tf(d, t) = frequency of term t in document d

Words that occur in many documents get low entropy value. In an ideal situation all the

values are computed and sorted. The top n can then be selected to be the index terms.

Greedy approach[Hot+05] can also be applied to reduce required computational resources

for large document collections.

2.1.4 Vector Space Model

Given a computed set of index terms the original document collection can be transformed to

a more efficient data structure suitable for searching. The vector space model can represent

documents as numerical feature vector with m-dimensions: w(d) = (x(d, t1), ..., x(d, tm)).

Where m is the number of distinct terms and x(d, t) is the weighting function. The simplest

form to encode the vector is using booleans:

xb(d, t) =

{

true if t occurs in d

false if t does not occur in d
(2.2)

Salton et al[Sal+94] proposed a weighting scheme xs(d, t) which combines term frequency

tf(d, t), inverse document frequency idf(t) and length normalization factor. By normaliz-

ing the weights against the document length each document has equal chance of being

retrieved.

xs(d, t) =
tf(d, t) × idf(t)

√

∑m

j=1
tf(d, tj)2(log(N/ntj

))2

(2.3)

Where:

log(N/nt) = inverse document frequency idf(t)

N = size of document collection D

nt = number of documents in D containing term t

2.1 Text preprocessing 6



The similarity between two documents d1 and d2 can be computed using Euclidean dis-

tance:

S(d1, d2) =

√

√

√

√

m
∑

k=1

|x(d1, tk) − x(d2, tk)|2 (2.4)

As the name already suggests: large distance value means less similar. While identical

documents would yield a distance of 0. This function can be used to retrieve similar

documents based on a query encoded as another document dq. Thus a search action equals

to computing S(d, dq) for all d ∈ D.

2.2 Clustering

In data mining there are two main categories of structuring data: by means of classification

and clustering. The former method requires a predefined set of classes and optionally exam-

ple data that belongs to each class. Sebastiani [Seb02] discussed a plethora of approaches

using machine learning. Examples are Naïve Bayes Classifier, Nearest Neighbor Classifier,

Decision Trees and Support Vector Machines. Clustering algorithms tackles the issue from

the opposite direction: partition the input data into k clusters based on similarity measures.

Given the set of feature vectors described in section 2.1.4 it is possible to automatically

cluster the data. The rest of this section outlines two well known and effective clustering

algorithms namely k-means and Self Organizing Map.

2.2.1 k-means

In the field of statistics and data mining, k-means is the most popular clustering method [VS10;

Ste+00; SS12; KM13]. There are several variations [Pha+05; Sin+11] employing heuristics

in order to improve the original computational complexity of NP -hard in finding the global

optimum. The standard k-means algorithm starts by randomly initialize the centroids using

the input dataset to be clustered. Next it iteratively assigns elements to partitions based on

nearest centroid and recomputing the centroids using partition centres (Algorithm 1). The

loop ends when the centroids don’t change or after a fixed number of iterations.

Algorithm 1 Standard k-means

Input: Set D, distance measure dist, number k clusters
Output: Partition P of k disjoint subsets of D such that ∪p∈P = D and ∩p∈P = ∅

1: Initialize by randomly selecting k elements from D as starting centroids C =
{c1...ck}

2: repeat

3: Assign d ∈ D to pi if closest to centroid ci with respect to dist
4: Recalculate centroids C
5: until The centroids C are stable
6: return P = {p1, ..., pk}

2.2 Clustering 7



2.2.2 Self Organizing Map

Self Organizing Map (SOM), also known as Kohonen map [Koh82] is a special architecture

of neural networks that clusters high-dimensional data vectors. It performs well for small

datasets and relatively small number of clusters in comparison to k-means [Abb+08]. The

clusters are arranged in a low-dimensional topology such that clusters nearby each other are

more similar to each other than those further away. Unsupervised training of the network is

possible because the learning process is aided by a similarity measure. The network structure

has two layers (Figure 2.1): output and input layers.

Fig. 2.1: Kohonen network structure: output layer (top) and input layer (bottom) [Unk15]

Neurons in the input layer correspond to the input dimensions n of a document d. This

input is presented as ~I = [t1, ..., tn] where ti is a term in d. The output layer consists of k

nodes each corresponding to a cluster center. All neurons in the input layer are connected

to all nodes in the output layer. Thus each node W contains n weights ~W = [w1, ..., wn].

Algorithm 2 depicts how the learning process works.

SOM starts by randomly assigning small initial values to each ~Wi ∈ W (Line 1). For every

iteration a random input vector ~I selected from the training set D (Line 6). The Best

Matching Unit (BMU) γ is determined by computing all the Euclidean distances between ~I

and each ~Wi then select the node Wi with the lowest distance (Lines 7-10). Next a radius σ

is computed based on the iteration number y and a time constant λ which starts with σ0 and

converges to 1 over time (Line 11). Lines 12-16 updates neighbors of BMU γ within radius σ

based on influence rate Θ and learning rate L which decays exponentially. The algorithm

finishes the training when the given number of iterations m has been reached.

A trained Kohonen network classifies a new input vector ~I ′ the same way BMU is computed.

2.3 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an indexing and retrieval method that uses singular value

decomposition to identify patterns in term relationships and concepts in unstructured text. It

is based on the principle that words used in the same contexts tend to have similar meanings

2.3 Latent Semantic Indexing 8



Algorithm 2 Self Organizing Map: Learning process

Input: W nodes, training set D, max iterations m, map radius σ0, learning rate
L0

Output: trained nodes W

1: Randomly initialize each ~Wi

2: Iteration counter y = 0
3: Time constant λ = m/log(σ0)
4: repeat

5: Increase y = y + 1
6: input vector ~I = select_random(D)
7: for all Nodes Wi do

8: δi = S(~I, ~Wi) (See equation 2.4)
9: end for

10: Best Matching Unit γ = Wi with lowest δi

11: Neighborhood radius σ = σ0e−y/λ

12: for all Nodes Wi within radius σ do

13: Influence rate Θ = e−S(~γ, ~Wi)/2σ2

14: Learning rate L = L0e−y/λ

15: Update ~Wi = ~Wi + ΘL(~I − ~Wi)
16: end for

17: until y >= m
18: return W

(semantics). A good indication of the effectiveness of LSI is Google [Nam14; LL94; Dee+89;

Beh+03] relying on it for information retrieval. Because of its mathematical approach it

is independent of language and is therefore interesting to apply to images. For details and

analysis of LSI refer to other publications [WH+04; Pap+98].

2.3 Latent Semantic Indexing 9



3Content-Based Image Retrieval

Content-Based Image Retrieval (CBIR) is the application of computer vision techniques to

image retrieval problems. Unlike text-based image retrieval which exploits the availability of

textual information, CBIR purely relies on the ability to make sense of the actual content.

Visual perception of the human brain is extremely sophisticated which enables it to identify

visuals with semantics like recognizing written text or kids playing with a beach ball. The

saying "A picture is worth a thousand words" clearly highlights the short coming of annotated

images. Perceptions of one person may not be the same as someone else’s. Also nowadays the

sheer amount of personal digital imaging makes it an impossible task to properly annotate

all the data. Hence there is a great demand for good CBIR systems.

A basic CBIR system (Figure 3.1) composes of two phases. First an image collection is

preprocessed and transformed into a data structure suitable for searching. Then a user can

present to the system a query image in which it will return a list of similar images using this

data structure.

Query Image
Image 

Collection

Feature 

Extraction

Feature 

Extraction

Similarity 

Matching

Similar 

Images

Fig. 3.1: Generic Content-Based Image Retrieval system

In this section we will dive into methods used during the preprocessing phase and possible

data structure representation. The concepts and methods described were selected based on

their relevance to be building blocks of the algorithm outlined in section 4. Please consult

surveys on CBIR [TM08; Tuy+10; Liu+07; Lew+06] for more complete overview of existing

research on this topic.

10



3.1 Image Features and Detectors

Images are coloured pixels arranged in a two-dimensional plane. Examining these pixels

individually to make "sense" of them is extremely computationally expensive. Therefore

raw image information is often transformed into an abstract and compressed representation

known as image features. Image feature defined as interesting part of an image is the basis of

many computer vision algorithms. The performance of these algorithms greatly depend on

how good the features are. Feature effectiveness can be expressed in terms of the following

properties[TM08]:

• Repeatability: High probability of identifying similar parts between two images taken

of the same scene with different viewing conditions like angle and illumination.

• Distinctiveness/informativeness: Has to be descriptive enough to distinguish detected

features from each other.

• Locality: Describes an image patch taking into account the size to mitigate potential

occlusion problems.

• Quantity: Number of detected features should be sufficiently large to enable object

detection.

• Accuracy: The same feature must be detected during location or scale change.

• Efficiency: Feature must be detected and computed within reasonable time crucial for

real-time applications.

The most basic image features are based on color, texture, shape and location. Global features

try to describe the image using a single vector [Zag+11] while local features computed

per interest point in an image are capable of recognizing objects. Based on comprehensive

surveys on CBIR [Lew+06; Liu+07; Dat+05] we will focus only on more state-of-the-art

local feature descriptors which are affine invariant. This allows matching of feature vectors

under different transformations like scale and rotations.

Prior to extracting descriptors the area or point of interest (also known as salient points)

must be identified using a detector. There are four main categories of detectors: Edges,

interest points, regions of interest and ridges. Canny[Can86] and Sobel[Sob90] are well-

known examples of edge detector operators which find sets of points with strong gradient

magnitude in the image. Blob detectors[For07; Den+07] focus on regions of interest in

images which might be too smooth for corner detectors to find points of interest[Ros+08;

RD06].

Local image patches extracted from the detected features are known as feature vector or

feature descriptor. SIFT[Low99; Low04] and SURF[Bay+08] are known to perform well

in terms of repeatability[Gil+10; JG09; Rub+11; MY09; Tuy+10]. These two has been

3.1 Image Features and Detectors 11



proven to be quite effective and therefore referenced frequently [Cal+10; Rub+11; Leu+11;

Ala+12; Lou+00]. Hence the rest of this section is devoted to give a quick overview on how

these two methods work. Please refer to the original publications [Low04; Bay+08] for full

details. Juan et al [JG09] concluded SIFT is slow and doesn’t perform well with illumination

changes while it is invariant to rotation, scale changes and affine transformations. SURF is

fast and performs as good as SIFT but is not stable to rotation and illumination changes.

3.1.1 Scale-Invariant Feature Transform

This section briefly outlines the Scale-Invariant Feature Transform (SIFT) algorithm intro-

duced by Lowe[Low04]. It starts by identifying candidate locations and its corresponding

scale that are invariant to scale change. The detection uses scale-space extrema in the

Difference-of-Gaussians (DoG) function convolved with the image. Each sampled point is

compared to its eight neighbors in the current scale and nine neighbors of both scale-up and

scale-down (Figure 3.2). It is considered to be an candidate if it is a local extrema.

Fig. 3.2: Finding local extrema by comparing neighboring pixels across scales [Pro15a]

The set of found keypoints are then refined by rejecting low contrast extrema and edge

keypoints because the DoG function has strong responses along edges.

A region around a keypoint is chosen based on the scale found in previous steps. Of this

region an orientation histogram with 36 bins is created weighting the gradient magnitude

and Gaussian-weighted circular window. Top 80% highest peaks of the histogram are selected

yielding multiple keypoints of the same location and scale but different directions.

A keypoint descriptor is represented by a 4 × 4 × 8 = 128 dimensional feature vector. The

16 × 16 array around the keypoint is divided into 16 sub-regions of 4 × 4. For each sub-region

an 8 bin orientation histogram is created (Figure 3.3).

3.1.2 Speeded Up Robust Features

Bay et al [Bay+08] presented a high performance scale- and rotation-invariant interest point

detector and descriptor named Speeded Up Robust Features (SURF). SURF approximates

Difference of Gaussian with Box filter. Figure 3.4 shows an example of the approximation.

Convolution with box filter can be calculated with integral images. Therefore it is possible to

3.1 Image Features and Detectors 12



Fig. 3.3: 128 dimensional feature vector computed from image gradients [Ban15]

parallelize the computation for different scales. Furthermore SURF relies on determinant of

Hessian matrix for both scale and location.

Fig. 3.4: Difference of Gaussian approximation with Box Filter [Pro15b]

Orientation assignment is computed using wavelet responses in horizontal and vertical

directions for a neighborhood of size 6s where s is the scale. Next the wavelet responses are

weighted with a Gaussian then plotted as illustrated in figure 3.5. The dominant orientation

is estimated by the sum of all responses within a window of angle 60 degrees. The longest

vector over all windows defines the orientation of the interest point.

Fig. 3.5: Sliding orientation window to detect dominant orientation [Pro15b]

The SURF descriptor describes an interest area of 20s around the detected keypoint. This area

is divided into 4×4 subregions. For each subregion a vector v = (
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|)

is calculated based on 5 × 5 samples. Where dx and dy are wavelet responses in horizontal

3.1 Image Features and Detectors 13



and vertical directions respectively. And |dx| and |dy| are the absolute values of the responses.

By concatenating v of all 4×4 a single descriptor vector is represented with 64 dimensions.

3.2 Image Segmentation

Image segmentation is the process of partitioning an image into multiple segments. Segments

are groups of pixels which belong together based on some characteristics like colors, textures,

position, intensities, etc. Ideally each segment represents a real-world object. There are nu-

merous surveys [Yeo+05; Pen+13; LM01; Fre+02; YM12; Zha+08] on image segmentation

that give very thorough overview of existing methods. There are two main type of methods:

boundary-based use the discontinuity property of pixels in relation to its neighbors while

region-based apply the similarity property of nearby pixels. Recent proposals [YM12] in

improving segmentation performance suggest in combining both methods for more accurate

segments.

In the rest of this section the methods SLIC Superpixels and Watershed Transform are dis-

cussed. Watershed requires the aid of markers to compute the segments. These methods

compared by Al-Kubati et al [AK+12] are Canny edge detector and Otsu Threshold. To

conclude the section the mentioned methods are applied on two sample images. The code

used is based on implementations of segmentation methods in OpenCV and Scikit-image.

Other good segmentation alternatives are Graph Cut [YM12; Del+12] and Felzenszwalb’s

algorithm [FH04] based on pairwise region comparison. Due to the scope of this project we

will not discuss all of them.

3.2.1 SLIC Superpixels

Achanta et al [Ach+10] introduced Simple Linear Iterative Clustering (SLIC) which can

generate compact nearly uniform superpixels. Superpixel is a concept originally developed

by Xiaofeng Ren and Jitendra Malik [RM03]. Each superpixel is a segment obtained from

low-level grouping process.

According to Ren et al [Ren] a superpixel map has many desired properties:

• Computationally efficient: reduces complexity of images by using the pixel groups

instead of individual pixels.

• Representationally efficient: a single pixel has at most 8 adjacent neighbors while

superpixels can have many more which is more efficient to represent in models as n

relations.
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• Perceptually meaningful: all pixels in a superpixel most likely has some uniform

properties in common like color and texture.

The SLIC algorithm is summarized in algorithm 3. It is somewhat similar to k-means with

regard to the body-construction of the algorithm. It starts by initializing k cluster centers

then iteratively assign pixels to the best matching centroid and recompute cluster centers

until some acceptable residue error E is reached. The distance measure takes into account

the color and pixel position. For full details refer to the original publication [Ach+10].

Algorithm 3 SLIC Superpixels segmentation [Ach+10]

1: Initialize cluster centers Ck = [lk, ak, bk, xk, yk]T by sampling pixels at regular
grid steps S.

2: Perturb cluster centers in an n × n neighborhood, to the lowest gradient position.
3: repeat

4: for all cluster center Ck do

5: Assign the best matching pixels from a 2S × 2S square neighborhood
around the cluster center according to the distance measure.

6: end for

7: Compute new cluster centers and residual error E {L1 distance between
previous centers and recomputed centers}

8: until E ≤ threshold
9: Enforce connectivity.

3.2.2 Watershed Transform

The watershed transform method [BL79] belongs to the region-based class. It was inspired

by geography. Consider gray-scale image to be a landscape which is flooded with water. At

points where different water areas meet each other a dam is built forming watershed lines. In

order for the algorithm to perform well the marker-based variation was introduced. Markers

essentially guide the algorithm in finding the segments otherwise it would over-segment.

Listing 1 shows how watershed can be used in OpenCV. The function prototype is

watershed(image, grayed, edges, minratio, max_count):

1. image is the original input image.

2. grayed is the converted original input input to gray scale carrying only intensity

information.

3. edges is an image of the same dimension as input image of which is used as basis for

the markers

4. min_ratio is the minimal ratio of a contour in edges which must be exceeded by
contour_area

total_image_area
. A value less or equal to 0 yields all detected segments regardless of

the contour area.

5. max_count denotes the maximum number of segments to return from image giving

bigger segments more priority.

3.2 Image Segmentation 15



Sections 3.2.3 and 3.2.4 show how edges can be constructed. A markers mask is constructed

by tracing the contours in edges and drawing them on a black backgrounds. Finally the

watershed algorithm is applied to the original image together with markers.

Roerdink et al [RM00] looked into speeding up watershed transform by means of paral-

lelization. They concluded the speedup to be achieved is pretty modest because of a global

operation being the bottleneck.

3.2.3 Canny Edge Detector

The Canny edge detector operator uses multiple stages to detect a wide range of edges in

images. We will not dive into the details of the algorithm but only highlights the parameters.

Interested readers are advised to read the original publication [Can86] instead.

The function prototype of Canny edges in listing 1 is canny(image, gaussian_ksize, threshold1, threshold2).

It accepts four parameters:

1. image is the input image.

2. guassian_ksize is the filter size of the Gaussian kernel.

3. threshold1 is a threshold of hysteresis.

4. threshold2 is also a threshold of hysteresis.

Hysteresis is the thresholder used in Canny which accepts an upper and lower threshold

limit while most thresholders use a single value limit. Setting the thresholds too low will

miss details and too high will miss important information.

3.2.4 Otsu Threshold

Thresholding itself can be considered to be the simplest form of image segmentation. For

every pixel in the input image if the intensity is lower than a given threshold τ it converts

the pixel to black otherwise white. Otsu’s [Ots75; Gre10] method finds a threshold τ where

the sum of the foreground and background spreads is at its minimum.

The code in listing 1 also function prototype otsu(image, gaussian_ksize). It accepts two

arguments:

1. image is the input image.

2. gaussian_ksize is the filter size of the Gaussian kernel.
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3.2.5 Comparison

Figures 3.6 and 3.7 show the different results of two example images by applying SLIC

Superpixels; Canny and Otsu together with the watershed algorithm. For these examples the

following parameter values were used:

gaussian_ksize = (7, 7) Brush size used by Gaussian blur

threshold1 = 20 First hysteresis threhold for Canny

threshold2 = 100 Second hysteresis threhold for Canny

min_ratio = 0.0001 Minimal ratio of the segment size (Section 3.2.2)

max_count = 100 Maximum number of segments to derive

The values were chosen purely based on human trial-and-error evaluation. Each segment

is filled with a unique gray scale color (at most 255 variations). Without quantitative or

reference data it’s hard to conclude which method performs best. Hence we’ll try to judge

them based on intuition instead. In figure 3.6 the better results are computed by SLIC and

the worst with Otsu. Same ranking applies to figure 3.7. It is very unlikely there is a single

set of parameters that works perfectly for all possible input images.

(a)Original (b)Canny Edges

(c)Otsu Threshold (d)SLIC Superpixels

Fig. 3.6: Segmentation of a board game
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(a)Original (b)Canny Edges

(c)Otsu Threshold (d)SLIC Superpixels

Fig. 3.7: Segmentation of a bottle cap

3.3 Spatial Visual Phrases

If we consider a pixel of an image to be a letter in an alphabet then an image patch (being

a set of pixels) is equivalent to a word. In computer vision it’s commonly referred to as

visual word. The Bag-of-words (BoW) model using the analogy of visual words has shown to

perform pretty well as image retrieval method. It can be implemented using image features

as described in section 3.1.

A major drawback of BoW is the lack of spatial relationship information of the words in the

original image. Recent research [ZG08; Zha+09; Zha+11] has been conducted to close this

semantic gap and therefore improve search accuracy by introducing spatial visual phrases.

Spatial visual phrases are collections of k visual words. The phrases are constructed based

on the co-occurrence of two visual words. In section 4 we show how to push the text analogy

further by introducing visual sentences.
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4Spatial Visual Sentences

To apply text retrieval algorithms on images based purely on content the concept of spatial

visual sentences is introduced. A sentence can be defined 1 as:

“A sequence of words capable of standing alone to make an assertion, ask a question,

or give a command, usually consisting of a subject and a predicate containing a finite

verb.”

Each spatial visual sentence is an ordered sequence of features (words) that belong together

if they reside (spatial) in a common image segment (visual semantics). Such sentence could

be interpreted as representing an abstract object with a sequence (1-dimensional) of visual

features. The process of computing these sentences is inspired by concepts from text retrieval

(Section 2) and CBIR (Section 3). The main goal of spatial visual sentences is to capture

the semantics of images in a concise representation to allow for fast online querying. This

is achieved by reducing the vast amount of mid-level descriptors (low-level being pixels

themselves) to a higher level semantically meaningful groups.

Given a collection C of images all the points of interests and their descriptors are extracted

using a feature detector and extractor like SURF and SIFT discussed in section 3.1. Then a

sample of p descriptors are used as input for a clustering algorithm like k-means or SOM.

The resulting k cluster centers are used as the vocabulary B. For each image d in C segments

are computed using SLIC superpixels, Otsu-watershed or Canny-watershed (Section 3.2).

Each sentence is an ordered sequence of terms from vocabulary. A term (or word) is selected

if the term is within the boundaries of the segment. The order of the terms is determined

using the position the term was found in the original image. Algorithm 4 shows the full

algorithm how an album A is computed given C as input. The rest of this section dives into

the details of the main components/phases.

4.1 Visual Word Vocabulary

In order to reduce the complexity of searching through groups the descriptors in a group

is mapped to a close representation mimicking the concept of having a vocabulary of a

language. Given a collection of images all their features are detected and extracted. Feeding

these features into a clustering algorithm like k-means or SOM yields k clusters (Figure 4.1).

Each cluster center is considered to be a word (or term) in the vocabulary. The vocabulary

1http://www.wordreference.com/definition/sentence
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Algorithm 4 Spatial Visual sentences

Input: Collection C containing n images
Output: Album A

1: Create album A
2: for all Image in C do

3: Compute and extract descriptors
4: end for

5: Create list of descriptors Q by randomly selecting p descriptors from the images
6: Compute the vocabulary B with size k by clustering Q into k clusters
7: Compute and flag noisy words in B
8: for all Image d in C do

9: Compute the words in d using B
10: Identify the set of segments S in d
11: for all Segment s in S do

12: Compute sentence v by selecting word w if its position is in s and w is not
noisy

13: v is sorted by position (Starts from top-left and ends in bottom-right)
14: end for

15: Add d with augmented sentences to A
16: end for

17: return A

size depicts the discriminative level and thus the effectiveness of the library to be searched:

0 ≤ k ≤ |C| where |C| is the total number of features detected in the collection C. For

k = 0 means no discriminative and thus equals to random search. And k = |C| would be

too discriminative resulting in zero speed-up. k should be chosen such that there is a good

trade-off between accuracy and speed. We propose the following equation:

k = |C| · γ (4.1)

Where γ is the desired speed up expressed as a ratio of the original |C| count.

Image
Feature Detection 

& Extraction Descriptors

Image
Feature Detection 

& Extraction

Image
Feature Detection 

& Extraction

Clustering Word

Word

Word

Out: Vocabulary 

with k words

In: Collection 

with n images

Fig. 4.1: Computing a vocabulary from a collection of n images
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For large collections the clustering process could be slow. Existing publications [Jeo+03;

Now+06] suggest random sampling strategy is simple yet quite effective. Sampling can be

done in two phases: images or descriptors. Image sampling is faster because a fraction of

computational resources for descriptor extraction can be omitted and thus more efficient.

However descriptors sampling is better in terms of descriptiveness of the resulting vocabulary

because all descriptors have equal probability of being selected.

4.2 Visual Word Construction

Depending on the chosen feature descriptor each descriptor is represented as a vector ~v of

undefined dimensions (64 for SURF and 128 for SIFT). During the visual word mapping

phase each descriptor is matched against the provided vocabulary B to find the best matching

word w ∈ B. wi is stored as a natural number being the index of the word in B. Thus

each image at this stage is represented as a vector ~d = (w0, ..., wn) allowing duplicates of

wi in ~d because a word can occur multiple times in a document. After all images have

been mapped to their respective ~d each word in B is counted how often it occurs in the

collection C. Words with high occurrences are considered to be stop-words (Section 2.1.1)

and thus discarded from all ~d ∈ C. Rare words (low occurrence) are also discarded because

they can be considered as outliers and thus barely improve retrieval effectiveness. In the

implementation these words are flagged as noise and kept in the vocabulary for future

mappings. Efficiency is improved by skipping noisy words during construction of visual

sentences.

4.3 Visual Sentence Construction

Each image in collection C is segmented into F fragments (See section 3.2). Each fragment

fs ∈ F is defined as a set of vectors which together make up a contour. A segment is a

vector ~s = (w0, ..., wn) for all wi ∈ B if wi is within the boundaries of fs. The elements in

~s are sorted by the position of wi found in the original image. It begins with top-left and

ends with bottom-right. This representation does not work well with transformed image

like rotation or mirroring because they would yield different ordering. Depending on the

application rotation can be fixed during preprocessing of scenery photographs using the

horizon as reference. Or alternatively align with direction of main light source if there are

shadows present. Figure 4.2 shows how an image is transformed into a list of sentences.

4.4 Similarity Measures

Using the computed album A where each image d is represented as a list of sentences S =

(~s0, ..., ~sn) it is possible to apply generic sequence matching algorithm and other language

independent methods on two sequences. We will start with difflib.SequenceMatcher 2 that

implements Ratcliff/Obershelp pattern recognition algorithm. Finally TF-IDF (Section 2.1.4)

2https://docs.python.org/2/library/difflib.html
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Out: Sentences

Image

In: Vocabulary 

and collection 

with n images

Image Segmentation Mapping

Sentence

Vocabulary

Descriptors Words

Sentence

Sentence

Image

Image

Fig. 4.2: Sentences of an image are computed using a global vocabulary, feature descriptors
and segments derived from the image

and LSI (Section 2.3) implementations from gensim 3 are applied to verify the effectiveness.

Similarity values are floats in the range of [0...1]. 0 being nothing in common and 1 means

identical sequences.

4.4.1 Ratcliff/Obershelp

Ratcliff/Obershelp algorithm [Bla04] computes the similarity of two sequences. The ratio ρ

is computed with

ρ =
2M

T

where M is the number of matches and T the total number of elements in both sequences.

Matching characters are those in the longest common subsequence plus, recursively, matching

characters in the unmatched region on either side of the longest common subsequence.

Listing 2 shows how this algorithm is used to calculate the similarity of two images image1

and image2. The ratio ρs of a sentence s ∈ image1 is the maximum ratio of s against each

sentence s′ ∈ image2. The effective ratio ρ′ is the average of all the sentence ratios ρi of

image1.

4.4.2 Gensim: TF-IDF and LSI

Gensim 4 models work with a corpus. Corpus is a collection of vectors representing a

document collection. An album A as computed in section 4 can be transformed to a corpus

in two ways:

1. CorporaOfImages: all words in the image are considered to part of a single vector

3https://radimrehurek.com/gensim/tut3.html
4https://radimrehurek.com/gensim/index.html
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2. CorporaOfSentences: all words in the sentence of a particular image are considered

to part of a single vector

Both methods have been implemented in listing 3. The methods implement the function

similarity(model, image) which computes the similarity of a target image IT against the

corpus. CorporaOfImages is simple because each image is equivalent to a vector. However

CorporaOfSentences is slightly more complicated because the computation is done on sen-

tences level. It keeps a mapping of ~v → d where ~v is a vector in the corpus and d is the image

~v belongs to. The effective ratio ρ′(d) where d ∈ A is the best model M similarity value of

all sentences s ∈ IT compared against all sentences s′ ∈ d. Note that short s ∈ IT (lower

than min_length, default is 5) are ignored. Listing 3 also includes wrapper implementations

of two similarity models: TF-IDF and LSI. These models combined with a corpus can be used

to compute the similarity of each image in A against IT .
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5Results and Evaluation

This section outlines how Spatial Visual Sentences are tested. We will evaluate the effec-

tiveness with f-score (F1) of randomly selected images from 2 datasets. The measures are

defined as:

Precision =
|{relevant} ∩ {retrieved}|

|{retrieved}|

is the fraction of retrieved documents that are relevant to the search. And

Recall =
|{relevant} ∩ {retrieved}|

|{relevant}|

is the fraction of documents that are relevant to the search has been retrieved.

F1 = 2 ∗
precision · recall

precision + recall

combines both precision and recall as the harmonic mean called F-measure or F-score. In

order to compare the performance between configurations we also introduced Average

F-Score which is the average F-Score of all target images per algorithm configuration (See

section 5.2).

The rest of this section presents the possible algorithm configurations, datasets and finally

the results.

5.1 Datasets

To verify the effectiveness we will run the algorithm against 2 distinct datasets:

1. UKBench [NS06]: A collection of 10200 images. All images have dimensions 640×480.

The set contains 10200

4
= 2550 groups. Each group of 4 images (Figure 5.1) show the

same object with different lighting, orientation and/or scale. Results are evaluated by

checking if the retrieved images belong to the same group as the target image.

2. MIRFLICKR [HL08]: Dataset of 25000 Flickr 1 images. Each image is annotated with

a list of tags. Evaluation of the results is done by checking the tags of the target

image against those of the retrieved images. Figure 5.2 shows a few samples from

the set. Unlike UKBench the image sizes, illumination, sceneries and compositions in

MIRFLICKR are not uniform so it is very representative for real-world scenarios.

1https://www.flickr.com/explore
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ukbench00164.jpg ukbench00165.jpg ukbench00166.jpg ukbench00167.jpg

Fig. 5.1: A group of 4 images showing the same subject from UKBench

im6637.jpg: daffodil,
flower, fleur, yellow,
trumpet, blue, light,
sunlight, conserva-
tory, 105mm, closeup,
tripod, pictureproject,
zixi, raw

im14091.jpg:
365days, d40,
day359, nikon,
raw, wednesday, bsb

im4761.jpg: to-
honochul, flower,
impressedbeauty

im455.jpg: rome,
roma, objects, my-
favourites, life, italy,
eos350d, digital,
canon, byfotorita, bw,
white, black, 123bw,
if, mani, hands, libro,
book, candela, light,
luce, fuoco, fire, oc-
chiali, canoneos350d,
cinquantinoinoino

Fig. 5.2: Four related images from MIRFLICKR with their respective tags

The results presented do not utilize the full original set. Due to high complexity only 200

images of each set were considered. Each dataset is split into a test-set of size 50 and

training-set of size 150. The ratio of 1 : 3 is consciously chosen to accommodate UKBench

dataset described earlier. The set of relevant images from both datasets can be computed

deterministically. Therefore the number of retrieved images is equal to the expected relevant

images. By doing so both precision and recall values are somewhat normalized based on

the target image. The ground truths per data set is computed based on their characteristics:

Relevant images in UKBench are groups of 4 (one being the target image and 3 other ones are

expected in the retrieved set) and an individual image in MIRFLICKR has user-defined tags.

Sections 5.3 and 5.4 discussed these in more detail together with the acquired results.

5.2 Algorithm Configurations

Most phases of the algorithm presented in section 4 could have multiple implementations.

In this section we summarize the variations creating a list of configurations of the algorithm

to test against the datasets. Table 5.1 lists per phase and parameter which variations are

available or interesting to evaluate. Strictly there are at least 2 · 2 · 3 · 3 · 2 · 2 · 1 = 144 possible
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Phase/Parameter 1 2 3
Feature Descriptors surf sift
Vocabulary clustering kmeans som
Segmentation otsu canny slic
Similarity measure ratcliff tfidf lsi
Corpus mode images segments
Vocabulary size 1000 2000
Noise ratio (words discarded) 0.20

Tab. 5.1: Parameter value and implementation variations

Hardware Description

CPU Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz
Number of logical cores 4

Memory 12 GB
Software Version

Operating System Arch linux (Kernel 4.0.5)
Python 2.7.10

scikit-image 0.11.3
scipy 0.15.1

numpy 1.9.2
gensim 0.10.3

OpenCV 2.4.10

Tab. 5.2: Test machine specifications

configurations because there are more value ranges available for Vocabulary size and Noise

ratio. The results presented are based on 28 handpicked candidates and executed on a test

machine described in Table 5.2. As comparison 4 additional configurations are included that

implements the standard BoW algorithm varying feature descriptors and vocabulary size. So

the total number of configurations sum up to 32.

5.3 Retrieval from UKBench

A test-set of 50 images were selected from 50 distinct groups to validate the effectiveness

of the preselected configurations. The set of relevant images is derived from the file name:

every 4 images of the sorted dataset is a sample of the same object. Given the relevant

and retrieved images the three measures can be computed and shown in figure 5.3 pre-

sented as the average F-score over all target images per configuration. All of the standard

BoW’s perform almost twice as well as the best Visual Sentence configurations (0.913333

vs 0.508). Our best configurations are sift-kmeans-2000-02-canny-lsi-segments (0.508) and

sift-kmeans-2000-02-canny-tfidf-segments (0.501333). The worst configurations all used

the SOM vocabulary clustering together with SLIC and LSI. Overall most of the results are

somewhat stable around an average F-score value of 0.45.

Figure 5.4 shows the average number of correctly retrieved images of 50 target images from

UKBench. ukbench00125.jpg scored the best with an average relevant retrieval of 2.687500

out of 3. The worst one is ukbench00118.jpg with value 0.218750. The best case and worst

5.3 Retrieval from UKBench 26
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Fig. 5.3: Average F-Scores UKBench

case of retrieved images are shown in figures 5.5 and 5.6 respectively. Results from best case

are perfectly retrieved while the worst case did not even find a single matching image out of

3 candidates.

5.4 Retrieval from MIRFLICKR

The MIRFLICKR dataset is a mixture of amateur and professional photographs. Unlike

UKBench with its groups of 4 samples of the same subject this dataset is very unpredictable.

Each sample in MIRFLICKR accompanies a list of user defined tags. Using the tags as

metadata we can classify whether two pictures are related. For instance if the target image

contains the tags explore and flower any other image with either explore or flower as tag is

considered to be a candidate. This method is used to compute the set of relevant images.

The dataset of 200 items is split up as 50 test images and 150 training images. They are all

randomly selected from the original dataset. Figure 5.7 shows per target image on the x-axis

the number of tags present of that particular image and the number of expected matches

(relevant images) to be found in the training set. The images are sorted from least matches

to most matches. This ordering is kept in the rest of the graphs so it’s easier for comparison

and reasoning.

Considering the randomness of the set creation lots of the test images had very few relevant

images found in the training set (Figure 5.7). Also the diversity of the photographs makes it

extremely hard to detect similarities in visual features. So therefore we will not focus on the

absolute values but compare relative scores of the configurations.
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Fig. 5.4: Average correctly retrieved results of 50 images from UKBench

ukbench00125.jpg (Target) ukbench00126.jpg ukbench00124.jpg ukbench00127.jpg

Fig. 5.5: Overall best case: Top 3 retrieved images of sift-kmeans-2000-02-canny-tfidf-
segments configuration of target image ukbench00125.jpg from UKBench

ukbench00118.jpg (Target) ukbench00149.jpg ukbench00144.jpg ukbench00133.jpg

Fig. 5.6: Overall worst case: Top 3 retrieved images of surf-som-2000-02-slic-lsi-segments
configuration of target image ukbench00118.jpg from UKBench
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Perfect_Matches

Fig. 5.7: 50 test images from MIRFLICKR sorted by the number of relevant images found in
the training set

Average F-scores of all test images per configurations are shown in figure 5.8. The best con-

figuration (surf-kmeans-2000-02-canny-tfidf-segments) scored the best with score 0.059066.

And second best is BoW sift-kmeans-1000-02-none-bow-images with score 0.057416. The

worst one is sift-kmeans-1000-02-otsu-tfidf-segments with score 0.006267.

Figure 5.9 shows the average correctly retrieved results of all configurations per test images.

Overall it correlates with figure 5.7 because images to the right are expected to have higher

probability of being retrieved correctly. For this dataset the image im6856.jpg has the highest

retrieval value and im7959.jpg among others had zero tag correlations in the training-set.

Retrieved images of both best and worst cases are depicted in figures 5.10 and 5.11. Albeit

the best case results do show some visual similarities to the target image they had no

tags-correlation at all just like the worst case.

Furthermore the top MIRFLICKR average F-score is very low compared to UKBENCH. They

are respectively 0.913333 and 0.006267 differing by 2 orders of magnitude.
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Fig. 5.8: Average F-Scores MIRFLICKR
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Fig. 5.9: Average correctly retrieved results of 50 images from MIRFLICKR
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im6856.jpg (Target): nyc,
newyork, newyorkcity, manhat-
tan, midtown, empirestatebuilding,
esb, puddle, water, reflection,
upsidedown, pavement, yellow,
blue, tamron1750, geotagged, may-
lookbetterflipped, goldstaraward,
explore30jan08, i500, interesting-
ness172

im17565.jpg: riat2007, fairford, air-
show, military, aircraft, tattoo, riat,
spectator, redarrows, formationfly-
ing

im15691.jpg: bento, obento, asian,
lunch, tomato, roma, lobster, shell-
fish, crustacean, excapture, saku-
rakokitsa, sakurako, kitsa

im11546.jpg: sky, clouds, burbage,
valley, derbyshire, canon, eos, 400d,
interestingness, fern, redsky, ex-
plore8, tony, mangan, land

Fig. 5.10: Overall best case: Top 3 retrieved images of surf-kmeans-2000-02-canny-tfidf-
segments configuration of target image im6856.jpg from MIRFLICKR

im7959.jpg (Target): etfautorre-
trato, autorretrato, golpe, ojo, more-
ton, hinchazon, cara, exhibetusfotos

im15745.jpg: im7076.jpg: cityscape, night, road,
lighttrails, streaks, moon, clouds,
buildings, architecture, skyscrap-
ers, city, urban, cranes, bridge,
eureka, tower, eurekatower, rialto,
eifel, charlesgrimesbridge, wurund-
jeriway, worldtradecentre, 3005,
docklands, border, melbourne,
victoria, australia, nikon, d300,
1855mmf3556gii

im22709.jpg: skyline, thebund,
shanghai, pudong, china, canon,
eos, 400d, canon400d, oriental-
pearl, jinmaobuilding, 1022mm

Fig. 5.11: Overall worst case: Top 3 retrieved images of sift-kmeans-1000-02-otsu-tfidf-
segments configuration of target image im7959.jpg from MIRFLICKR
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6Conclusions

In this thesis we outlined methods related to text mining and image retrieval followed by a

proposal of applying these methods to collectively implement Spatial Visual Sentences. This

method aims to fill in the analogy of sentences in the context of text documents. While

words equal to visual descriptors we derive a limited set of dictionary from the global word

list applying concepts like stop words. Sentences are composed using this vocabulary and

proximity of visual features (vocabulary words) that are located within the same image seg-

ment. We looked into several methods like Superpixels and watershed combined with Canny

edges or Otsu threshold in partitioning an image into semantically meaningful segments.

Having closed this semantic gap in the analogy between images and text documents we can

leverage existing text algorithms like LSI and TFIDF to improve accuracy and hopefully also

speed of offline retrieval of visually identical fragments between images.

The method has been tested against two popular datasets namely UKBench and MIRFLICKR

in combination with a wide variety of configurations of the proposed algorithm. There

are several configurations available because the algorithm is split up into different phases

and each phase can be implemented independently. Overall we got promising results with

UKBench because the dataset is focused on retrieval of the same object. In contrast MIR-

FLICKR composed of user-taken photographs from all over the world posed to be quite a

challenge to retrieve relevant images. On the MIRFLICKR dataset, the best results were

found using the configuration surf-kmeans-canny-tfidf-segments, however, the significance

is unclear and should be further investigated. This could be related to the fact that the

photographs share very little visual feature similarities. Therefore we can conclude that our

algorithm is best suited to recall objects from a large collection. Although the recall results of

our method were not as good as the standard Bag-of-Words model they were able to retrieve

the candidates taken from different angles and scales just fine.

Because the scope of this project was purely closing this semantic gap hence we did not

focus on delivering a high-performance implementation1. Therefore speed has not been

investigated at all. In section 7 we describe possible continuations of this project.

1https://github.com/xiwenc/cbir-invenio
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7Future work

This project’s focus was an attempt in closing the semantic gap of the analogy between text

document and image. The results look promising for object recall however in the future we

would like to look into the following questions and possible improvements:

1. Speedup assessment and tuning: The results presented in this thesis were mainly

focused on effectiveness of the algorithm but not on the potential speedup compared

to BoW. To do this a more exploratory approach like exhaustive search needs to be

taken to identify which parameters constitute the global best. Evolutionary algorithms

could also be applied where the fitness is a function of retrieval effectiveness and/or

time required for the execution.

2. Augment word/sentence representation with metadata: Words in our vocabulary

are defined by clustering feature descriptors. Accuracy could be improved further

by extending the word vector or sentence vector with extra information like colour

histogram, geolocation of the picture if present and time period when the photo was

shot. These would increase descriptiveness and potentially reduce time complexity if

this meta information is used as a quick filter. For instance if the target picture was

taken during a road-trip through Europe in June 2014 the algorithm can narrow down

the search space within that time period and location.

3. Family photo album as dataset: We tested the algorithm against UKBench and

MIRFLICKR datasets of which fairly good results are achieved in the former but it

pretty much failed with the latter. This implies it is best suited for object recalls.

However to confirm this hypothesis we need a different kind of dataset: A perfect

candidate would be a family photo album. The balance between objects (family

members, cars, clothes, etc...) and scenery (beach, mountains, winter, house interior,

etc... ) would yield better matches because of more feature descriptor similarities.

4. Similarity measure: The current proposed similarity measure is very optimistic

because it uses similarities of best matches. As a result short sentences are more likely

to yield high similarity values. We have tackled this issue by specifying a minimal

sentence length in the algorithm. However a more weighted measure based on for

example length of the sentence could give more accurate results.

5. Relevance feedback application: Spatial visual sentences can recall objects pretty

accurately from large collections. To use this to our advantage users can query the

system by means of sub-images. For instance the user Jim is looking for a picture

of Melissa and him at the beach. A simple relevance feedback application would

be: Present 10 random images from the collection to the user. If Jim recognizes a

fragment of relevance like Melissa he marks that particular region of interest. In the
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next iteration more relevant results would be presented to Jim; hopefully more picture

rank up with Melissa in it. After a few iterations Jim would be able to identify the

picture he sought. This example shows it is possible to construct complex queries and

the sentences model fits pretty well in it.
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Appendix: Code

segmentation

Listing 1: segmentation.py

import cv2

import numpy

import operator

from logger import logger

def watershed ( image , grayed , edges , min_rat io , max_count ) :

" " " App l i e s watershed algor i thm to ’ image ’ with markers

der ived

from ’ edges ’

Args :

image : o r i g i n a l image

grayed : grayed and o p t i o n a l l y b lur red ver s ion of ’ image ’

edges : a b inary image

min_rat io : only contours in ’ edges ’ with an area b igger

are used as

markers

max_count : maximum number of segments to der i ve

Returns segments , markers , count

" " "

markers = edges . copy ()

_ , markers1 , _ = extrac t_segments (

grayed ,

markers ,

min_rat io=min_rat io ,

max_count=max_count

)

markers32 = numpy . int32 ( markers1 )

cv2 . watershed ( image , markers32 )

watersheded = cv2 . conver tSca leAbs ( markers32 )
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_ , edges = cv2 . th resho ld (

watersheded ,

1 ,

255 ,

cv2 . THRESH_BINARY_INV

)

segments , markers , count = extrac t_segments (

grayed ,

edges

)

return segments , markers , count

def canny ( image , gaus s i an_ks i ze =(7, 7) , thresho ld1 =20, threshold2

=100) :

" " " Computes Gaussian b lur red g ray s ca l e and Canny edges

Args :

image = image array ; use cv2 . imread ( . . . ) to load from

f i l e

gaus s i an_ks i ze = f i l t e r s i z e e . g . (5 , 5)

threshold1 = f i r s t th resho ld of the h y s t e r e s i s procedure

threshold2 = second thresho ld of the h y s t e r e s i s procedure

Returns ( graysca le , edges )

" " "

i f len ( image . shape ) == 3:

grayed = cv2 . cv tCo lor ( image , cv2 .COLOR_BGR2GRAY)

e l i f len ( image . shape ) == 2:

grayed = image

else :

ra i se Except ion ( " Unsupported input image " )

b lur red = cv2 . Gauss ianBlur ( grayed , gauss ian_ks ize , 0)

edges = cv2 . Canny( blurred , threshold1 , thresho ld2 )

return ( grayed , edges )

def otsu ( image , gaus s i an_ks i ze =(7, 7) ) :

" " " Computes Gaussian b lur red g ray s ca l e and Otsu thresho ld

edges

Args :

image = image array ; use cv2 . imread ( . . . ) to load from

f i l e

gaus s i an_ks i ze = f i l t e r s i z e e . g . (5 , 5)

Returns ( graysca le , edges )

" " "

grayed = cv2 . cv tCo lor ( image , cv2 .COLOR_BGR2GRAY)

b lur red = cv2 . Gauss ianBlur ( grayed , gauss ian_ks ize , 0)
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re t , edges = cv2 . th resho ld (

blurred ,

0 ,

255 ,

cv2 . THRESH_BINARY + cv2 .THRESH_OTSU

)

return ( grayed , edges )

def seg_otsu_watershed ( image , min_rat io =0.0001 , max_count=100) :

grayed , edges = otsu ( image )

return watershed ( image , grayed , edges , min_rat io , max_count )

def seg_canny_watershed ( image , min_rat io =0.0001 , max_count=100) :

grayed , edges = canny ( image )

return watershed ( image , grayed , edges , min_rat io , max_count )

def s e g _ s l i c ( image , min_rat io =0, max_count=100) :

from skimage . segmentation import s l i c

from skimage . segmentation import mark_boundaries

from skimage import img_as_ubyte

grayed = cv2 . cv tCo lor ( image , cv2 .COLOR_BGR2GRAY)

segments = s l i c ( image , sigma=5)

black = numpy . zeros ( image . shape , numpy . uint8 )

edges_sc i = mark_boundaries ( black , segments , co lo r =(1, 1 , 1) )

edges_gray = cv2 . cv tCo lor ( img_as_ubyte ( edges_sc i ) , cv2 .

COLOR_BGR2GRAY)

ret , edges = cv2 . th resho ld (

edges_gray ,

80 ,

255 ,

cv2 . THRESH_BINARY

)

segments , markers , count = extrac t_segments (

grayed ,

edges ,

min_rat io ,

max_count

)

return segments , markers , count

def ext rac t_segments ( grayed , edges , min_rat io =0, max_count=100) :

contours , h ie ra rchy = cv2 . f indContours (
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edges ,

cv2 . cv . CV_RETR_TREE ,

cv2 . cv . CV_CHAIN_APPROX_SIMPLE

)

markers = numpy . zeros ( grayed . shape , numpy . u int8 )

t o t a l _ a r e a = edges . shape [0] * edges . shape [1]

c o n t o u r s _ t o t a l = len ( contours )

contours_no_ch i ld = []

for i in range ( c o n t o u r s _ t o t a l ) :

h = hie ra rchy [0][ i ]

i f h[2] == −1:

contours_no_ch i ld . append ( contours [ i ] )

else :

logger . debug ( ’ Skipped c h i l d contour { i } ’ . format ( i=i ) )

c o n t o u r s _ f i l t e r e d = []

for contour in contours_no_ch i ld :

area = f l o a t ( cv2 . contourArea ( contour ) )

r a t i o = area / t o t a l _ a r e a

i f r a t i o >= min_rat io :

c o n t o u r s _ f i l t e r e d . append (( contour , area ) )

else :

logger . debug ( ’ Skipped contour with r a t i o %f ’ % r a t i o )

c o n t o u r s _ f i l t e r e d _ s o r t e d = sorted (

c o n t o u r s _ f i l t e r e d ,

key=operator . i t emge t t e r (1) ,

r eve r se=True

)

a s s e r t ( max_count < 255 − 2)

contours_count = min( len ( c o n t o u r s _ f i l t e r e d _ s o r t e d ) , max_count

)

contours_capped = c o n t o u r s _ f i l t e r e d _ s o r t e d [ : contours_count ]

contours_no_tuple = [ c for c , v in contours_capped ]

# c o l o r 1: border

c o l o r s = range (2 , 255)

import random

random . s h u f f l e ( c o l o r s )

for i in range ( contours_count ) :

cv2 . drawContours ( markers , contours_no_tuple , i , c o l o r s [ i

] , −1)

logger . i n f o (

’ Segments found { t o t a l } , { count } s a t i s f i e d min_rat io ’ .

format (
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t o t a l=con tour s_ to ta l ,

count=contours_count

) )

segments = contours_no_tuple

return segments , markers , contours_count

similarity

Listing 2: similarity.py

c lass SentenceDi f f ( object ) :

@staticmethod

def d i s t ance ( image1 , image2 ) :

a s s e r t len ( image1 . sentences ) > 0

a s s e r t len ( image2 . sentences ) > 0

r a t i o s = []

for s in image1 . sentences :

r a t i o s . append (max(map(

lambda x : SentenceDi f f . d i s tance_sen tence ( s , x ) ,

image2 . sentences

) ) )

r a t i o _ t o t a l = sum( r a t i o s )

count = len ( r a t i o s )

return r a t i o _ t o t a l / f l o a t ( count )

@staticmethod

def d i s tance_sen tence ( sentence1 , sentence2 ) :

sm = d i f f l i b . SequenceMatcher (

None ,

[word . value for word in sentence1 . words ] ,

[word . value for word in sentence2 . words ] ,

autojunk=Fa l se

)

return sm . r a t i o ()

gensim

Listing 3: gensim.py

from gensim import models , s i m i l a r i t i e s

def document ( sequence ) :

counts = {}
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for item in sequence :

i f item in counts :

counts [ item ] = counts [ item ] + 1

else :

counts [ item ] = 1

r e s u l t = []

for k , v in counts . i t e r i t e m s () :

r e s u l t . append (( k , v ) )

return r e s u l t

c lass LSI ( object ) :

def _ _ i n i t _ _ ( s e l f , corpus , num_features ) :

s e l f . l s i = models . LsiModel ( corpus , num_topics=

num_features )

s e l f . index = s i m i l a r i t i e s . Sp a r s e M a t r i x S im i l a r i t y (

s e l f . l s i [ corpus ] ,

num_features=num_features

)

def s i m i l a r i t y ( s e l f , doc ) :

sims = s e l f . index [ s e l f . l s i [ doc ]]

return sims

c lass TFIDF ( object ) :

def _ _ i n i t _ _ ( s e l f , corpus , num_features ) :

s e l f . t f i d f = models . Tf idfModel ( corpus )

s e l f . index = s i m i l a r i t i e s . Sp a r s e M a t r i x S im i l a r i t y (

s e l f . t f i d f [ corpus ] ,

num_features=num_features

)

def s i m i l a r i t y ( s e l f , doc ) :

sims = s e l f . index [ s e l f . t f i d f [ doc ]]

return sims

c lass CorporaOfImages ( object ) :

def _ _ i n i t _ _ ( s e l f , album) :

s e l f . album = album

s e l f . index = []

s e l f . corpus = []

def get_corpus ( s e l f ) :

i f len ( s e l f . corpus ) > 0:
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return s e l f . corpus

for image in s e l f . album . images :

sequences = []

for sentence in image . sentences :

sequence = sentence . export ()

sequences . extend ( sequence )

doc = document ( sequences )

s e l f . corpus . append ( doc )

s e l f . index . append ( image )

return s e l f . corpus

def s i m i l a r i t y ( s e l f , model , image ) :

sequences = []

for sentence in image . sentences :

sequence = sentence . export ()

sequences . extend ( sequence )

doc = document ( sequences )

sims = model . s i m i l a r i t y ( doc )

f i t n e s s = {}

for i , j in l i s t (enumerate ( sims ) ) :

f i lename = s e l f . index [ i ] . f i lename

f i t n e s s [ f i lename ] = j

return f i t n e s s

c lass CorporaOfSentences ( object ) :

def _ _ i n i t _ _ ( s e l f , album , min_length=5) :

s e l f . album = album

s e l f . index = []

s e l f . corpus = []

s e l f . min_length = min_length

def get_corpus ( s e l f ) :

i f len ( s e l f . corpus ) > 0:

return s e l f . corpus

for image in s e l f . album . images :

for sentence in image . sentences :

sequence = sentence . export ()

doc = document ( sequence )

i f len ( sequence ) >= s e l f . min_length :

s e l f . corpus . append ( doc )

s e l f . index . append ( image )
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return s e l f . corpus

def s i m i l a r i t y ( s e l f , model , image ) :

r e s u l t = None

for sentence in image . sentences :

sequence = sentence . export ()

doc = document ( sequence )

i f len ( sequence ) >= s e l f . min_length :

sims = model . s i m i l a r i t y ( doc )

i f r e s u l t i s None :

r e s u l t = sims

else :

r e s u l t = [max( i , j ) for i , j in zip ( r e s u l t ,

sims ) ]

i f r e s u l t i s None :

r e s u l t = []

f i t n e s s = {}

for i , j in l i s t (enumerate ( r e s u l t ) ) :

f i lename = s e l f . index [ i ] . f i lename

i f f i lename not in f i t n e s s :

f i t n e s s [ f i lename ] = j

else :

f i t n e s s [ f i lename ] = max( f i t n e s s [ f i lename ] , j )

return f i t n e s s
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