Universiteit Leiden

ICT in Business

Towards a Metric-based Security Model

Name: Konstantinos Vlyssidis
Student-no: s1418572

Date: 23/01/2016

1st supervisor: Dr. W. Heijstek
2nd supervisor: Prof. Dr. A. Plaat

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

This study is an initial attempt to create a methodology that assesses a
system’s software security by means of automatically-obtained vulnerability
metrics. The motivation behind this study lies on the fact that although
several security metrics already exist, relevant research is still on an early
stage, mainly due to the difficulty in defining meaningful and efficient met-
rics. Furthermore, no single quality metric or measurement is able to holisti-
cally assess the security status of a system. Due to this reason, a framework
of metrics is needed to combine multiple security measurements.

Using automated measurements provided by static analysis tools, three
metrics were created to assess the susceptibility of the software system on
different types of software vulnerabilities both on its source code as well
as on its third party dependencies. Furthermore, a fourth metric was inte-
grated which assesses the update behavior of the external dependencies of
the system.

The first two metrics, “Acute Issues” and “Latent Issues”, detect vulner-
abilities within the source code of the system and provide a rating based on
the number of vulnerabilities detected. The other two metrics detect issues
located in third-party dependencies of the system. More specifically, the
“Dependency Vulnerability” metric, as the name states, detects vulnerabil-
ities located on a system’s dependencies and returns a rating based on the
number of vulnerabilities found and their severity. Finally, the “Dependency
Freshness” metric, detects how recently the third-party dependencies of the
system were updated.

The evaluation of the framework was conducted in two parts. In the first
part, four software security consultants and developers were interviewed
to check the model against significant user acceptance determinants for
methodologies, such as usefulness and compatibility, as well as to verify
the metrics’ conformance to validity criteria such as discriminative power,
predictability and consistency. In the second part of the validation, a longi-
tudinal analysis was conducted in order to verify the tracking ability of the
source code metrics.

The results show that the framework is generally considered useful among
the interviewees, with an average of 4.5 out of 5 in a likert scale. Further-
more, the proposed methodology is compatible to the way the interviewees
currently assess the security of software systems (3.75 out of 5). Moreover,

the data gathered suggests that the metrics comply to the validity criteria
as defined by ISO 1061-1998.

Acknowledgements

The completion of this thesis brings a closure on a physically and mentally
intense, and yet mesmerizing period. During these two and a half years, in
which I followed the “ICT in Business” MSc program in the University of
Leiden, there are quite a few people I would like to thank and acknowledge
as contributing factors towards my progress.

Starting, I would like to express my gratitude to both my university
supervisors, Dr. W. Heijstek and Prof. Dr. A. Plaat for guiding me in
the making of this thesis project. Furthermore, I would like to praise my
company supervisors Dr. H. Xu, Dr. B. Vieira and Prof. J. Visser, as well
as all SIG employees in general, for trusting me to research this topic and
providing me with valuable advice and tutoring.

This period though has been much more than just an academic experi-
ence. Hence, I would like to thank Antigoni and friends such as Stefanos,
Christos, Bill, Cristian and Katia for being by my side and sharing wonder-
full moments.

First and foremost, however, I am greatly indebted to my family for
shrouding me with full support and trust.

Contents

1 Introduction 6
1.1 Research Questions 8
1.2 Thesis Structure 9

2 Background 11
2.1 Software Security 11

2.1.1 Definition oo 11
2.1.2 Vulnerabilities 12
2.1.3 Static Analysis vulnerability detection tools 15
2.2 Software Quality metrics 16
2.2.1 State of the art on software security metrics 17

2.2.2 State of the art on software Security metrics frameworks 19

3 Research Methodology 21
3.1 Requirements oo 21
3.2 Goal-Question-Metric Approach 22

3.2.1 Explanation of the metrics 22

4 Framework Design 25

4.1 Architecture of the framework 25

4.2 Metric Ratings oo 26
4.2.1 Ratings aggregation method 28
4.3 Dataset e 28
Source Code Metrics 30
5.1 Tools e 31
5.1.1 FindBugs & Find Security Bugs 31
5.1.2 “SAT” . . . o 32
5.2 Metrics 33

5.2.1 Identification of relevant Bug patterns to each metric. 33

5.2.2 Statistical Analysis 35
5.2.3 Latent issues rating method 39
5.2.4 Acute issues rating method 42
5.3 Results. 43
5.3.1 System-specific results 43
5.3.2 Results from the dataset 45
External Dependencies Metrics 49
6.1 “Dependency Vulnerability” metric 50
6.1.1 Tool 50
6.1.2 Metric o1
6.2 “Dependency Freshness” metric 54
6.3 Results. 95
6.3.1 “Dependency Vulnerability” metric results 56

7

8

6.3.2 “Dependency Freshness” metric results

6.3.3 Correlation of ratings

Validation

7.1 Validation Design o oL

7.2 Interviews L. e
7.2.1 Interview Guide.
722 Results.

7.3 Longitudinal Analysis.

7.3.1 Results

Discussion

8.1 Discussion on result sections L.
8.1.1 Discussion on results of source code metrics.
8.1.2 Results of third-party dependencies metrics.
8.1.3 Results of validation.

8.2 Threats to Validity
8.2.1 Accuracy of static analysis tools.
8.2.2 Method design.o L.

8.2.3 Validation design.

Conclusion

9.1 Contributions

9.2 Futureworko
9.2.1 Current metrics

922 Newmetrics. v v v v v vt

85

Bibliography 93

A Bug Patterns Categorization 100
B Latent Issues Rating Method 106
B.1 First level thresholds derivation 106
B.2 Second level thresholds derivation 108

C Effect of filters on the precision of the Dependency-check 110

D Longitudinal Analysis of systems 115

Chapter 1

Introduction

System and software security has been a significant area of attention in the
field of computer science. Its importance is steadily increasing as software
becomes a vital part on most aspects of everyday operations. Security-
related incidents, however, do not seem to be decreasing in number or on
impact.

If anything, recent reports indicate the contrary. The number and
size of security breaches has been on a steady rise in the previous years
[65][68][66][69]. The incidents spread across industries irrelevant of their
type and affect organizations of all sizes [65],[66]. Additionally, the attacks
can be initiated both by internal and external actors for ideological, finan-
cial, espionage or even entertainment reasons [65]. More worryingly, what
is noted on the reports is that the time needed to compromise an asset is
significantly smaller than the time needed to discover the breach; and this
difference is increasing [65].

An effective and continuous assessment of the security status of an ap-
plication during its lifecycle, in order to identify and reduce risk as soon as
possible, is vital both on correcting weaknesses before production as well as
on reducing the time to discovery of a weakness.

Eliminating vulnerabilities found in the source code or external depen-
dencies of a system is an essential way of reducing such a risk [66]. CVSS [49]
defines a vulnerability as a bug, flaw, weakness, or exposure of an applica-
tion, system, device, or service that could lead to a failure of confidentiality,
integrity, or availability. Vulnerabilities can be introduced during the de-
velopment or maintenance of the software, due to human errors, ineffective
design of the specifications of the system, non-adherence to best practices,
etc. Additionaly, they can vary significantly, ranging from an incorrect or

missing user input validation to errors in security features such as insecure
randomness. A number of attempts has been made, for that reason, to
organize vulnerabilities based on their type or severity such as the “Seven
Pernicious Kindgoms” taxonomy [73], the “19 Deadly Sins of Software Se-
curity” [35] and the “OWASP Top 10” list [57].

Testing, executing a program at a prescribed way to see whether it func-
tions properly, is vital in developing systems. However the former, by itself,
is often ineffective in detecting security errors. Attackers attempt to exploit
weaknesses that system designers did not consider, and standard testing is
unlikely to uncover such weaknesses [28].

A number of additional approaches to detect vulnerabilities exist. Code
reviews, the manual inspection of code for defects and improvement oppor-
tunities, is the most basic form of a vulnerability detection procedure. Code
review methods vary in formality, rigor, effectiveness, and cost [81], and
provide benefits on the system’s quality, on the project’s time to market
and overall cost, as well as on the spread of product, project and technical
knowledge among the team members|[81].

Manually inspecting a system, however, is a time-intensive process [81].
Furthermore, successfully and consistently identifying errors depends on the
reviewer’s skills. Automated tools exist, therefore, to minimize the human
time and complexity needed during code analysis [16]. These tools vary re-
garding the way they assess the system (static and dynamic analysis tools),
the areas of the system they assess and the techniques they use, offering
tradeoffs between the required effort and analysis complexity [28]. Research
on the tools has indicated that their use can lead to significant quality
improvement and cost savings [16], as well as reduce the programming ex-
perience required to detect security vulnerabilities [17].

The aforementioned tools, though, generate a list of potential vulnerabil-
ities. An enumeration of technical findings, however, often fails to accurately
describe and quantify the security status of a system. Such a quantification
is useful in order to provide a basis to assess the quality of coding within the
application, set objectives and thresholds that the application should align
with, determine information like the amount of work needed to improve the
system, the areas in which to focus, etc.

The concept of the software quality metric becomes relevant in this case.
A software quality metric is defined as a function whose input is software
data and whose output is a single numerical value that can be interpreted
as the degree to which software possesses a given attribute that affects its
quality [13]. Metrics are used to facilitate decision making and improve

performance and accountability through collection, analysis and reporting
of relevant performance-related data [67]. Although several security metrics
already exist ([21],[45],[27],[80]), research is still on an initial stage [56][9],
mainly because of the difficulty in defining meaningful and efficient metrics.
Additionally, as Manadhata et al. [45] notes, no single quality metric or
measurement is able to holistically assess the security status of a system.
Due to this reason, the author states, a framework of metrics is needed to
combine multiple security measurements.

1.1 Research Questions

The main research question is formulated as below:

How can software security be expressed by means of automatically-
obtained vulnerability metrics?

In order to answer the main research question the following sub-questions
have been determined:

1. How to derive metrics from a system’s software vulnerabilities?

(a) Can we assess a system’s security by deriving metrics that rely
on the severity of software vulnerabilities?

(b) Can we derive metrics from static analysis tools’ automated mea-
surements?

2. How to build a framework of metrics to assess software security?
3. Is the proposed framework useful for assessing software security?

4. Do the proposed metrics accurately express software security?

Our main goal is to quantitatively assess a system’s software security. In
order to do so, we aim at creating a framework which will consist of metrics
derived from automated measurements. These metrics will provide a rating
based on software vulnerabilities existing in the system.

In order to define the metrics we will have to classify software vulner-
abilities based on some common characteristics of the latter, such as their
severity and their location within the system. Furthermore, we wish to ex-
plore whether we can use static analysis tools to detect vulnerabilities and
derive metrics from the tools’ output.

Finally, we intend to validate the proposed framework and its metrics
to determine whether the latter measure correctly the security conditions
they should measure and whether the framework can assist in assessing a
software system’s security level.

1.2 Thesis Structure

The thesis is organized as following. Chapter 2 presents relevant to our
research background, regarding software security, software vulnerabilities
and static analysis tools, as well as related work regarding software security
metrics and frameworks.

Chapter 3 presents the methodology followed during our research, i.e. the
steps followed to derive the framework of metrics. Chapter 4 introduces the
design of the framework, concerning topics such as its architecture, generic
principles used in the rating method of its metrics and the dataset of systems
that was used during the framework’s development and testing.

Chapters 5 and 6 present specific information regarding each metric used.
Chapter 5 focuses on the source code metrics. It provides the tools that were
used, the steps followed to separate the vulnerability patterns between each
metric, as well as their rating methods. Furthermore, it provides the result
of the application of the metrics on the dataset of systems used.

Chapter 6 focuses on the external dependencies metrics. It starts by
presenting the “Dependency Vulnerability” metric, the tools that it uses as
well as its rating method. Afterwards, it provides information regarding
the “Dependency Freshness” metric and finally it gives the results of the
application of the metrics in the dataset of systems, as well as the results
of the analysis conducted to identify any correlation between the ratings of
the four metrics and maintainability characteristics of the systems.

In Chapter 7 the validation of our approach is presented. The chapter
starts by introducing the design of the validation procedure of the frame-
work, followed by a presentation of the latter’s results. Chapter 8 provides a
discussion of the findings of this study, as well as the threats to its validity.
Finally the conclusion of the thesis is drawn in Chapter 9.

Background
(Chapter 2)

.

Related Work
(Chapter 2)

'

Research
Methodology
(Chapter 3)

v

Framework
Design
(Chapter 4)

‘r"‘fff;\hi‘h“-‘

External

Source Code Metrics Dependencies
(Chapter 5) Metrics

(Chapter 8)

\/

Validation
(Chapter 7)

'

Discussion
(Chapter 8)

.

Conclusion
(Chapter 9)

Figure 1.1: Thesis Structure

10

Chapter 2

Background

In this chapter, concepts, aspects and research, relevant to this thesis, will
be presented. At the beginning it is considered beneficial to define software
security and describe fitting perspectives such as software vulnerabilities
and vulnerability detection tools. Afterwards, an elaboration is provided on
what a software quality metric is and, finally, related work is discussed, on
software security metrics and frameworks.

2.1 Software Security

2.1.1 Definition

Software security, as any quality attribute, is an intangible concept. A clear
definition of security, and thus, of important requirements that software
should align with, in order to be considered secure, is vital to successfully
assess and measure the security level of an application.

The ISO 25010-2011 [38] model specifies eight product quality charac-
teristics. Security, one of the characteristics, is defined as the degree to
which a product or system protects information and data so that persons
or other products or systems have the degree of data access appropriate to
their types and levels of authorization. Five subcharacteristics of security
are proposed: confidentiality, integrity, non-repudiation, accountability and
authenticity.

The ISO standard does not include in the definition of security the avail-
ability of the system, which is included, indeed, in the reliability charac-

11

teristic. Availability is a principle of the classic CIA triad (standing for
Confidentiality, Integrity, Availability), one of the simplest but also most
widely applied security models. Other approaches also have been made to
define software and information security like the ones contained in the CNSS
National Information Assurance Glossary [25] and the Parkerian Hexad [58].

2.1.2 Vulnerabilities

One of the main ways of affecting the security of a software system is by
exploiting vulnerabilities found in its source code or related dependencies
[65]. CVSS [49] defines a vulnerability as a bug, flaw, weakness, or exposure
of an application, system, device, or service that could lead to a failure
of confidentiality, integrity, or availability. Pfleeger [23] uses a more vague
definition of a vulnerability as a weakness in the security of a computer
system that might be exploited to cause loss or harm. Landwehr et. al [43],
finally, define a computer security flaw as any condition or circumstance
that can result in denial of service, unauthorized destruction of data, or
unauthorized modification of data.

As explained in [53], security vulnerabilities have two distinct features
when compared with other categories of bugs: they can severely affect an
organization’s infrastructure [63] and they can cause significant financial
damage to an organization [16] [72]. Additionally, a further consequence of
a vulnerability disclosure is a negative and notable change in market value
for a software vendor [71] and a harm in reputation.

There are various types of vulnerabilities, differing on how they are in-
troduced in the system (such as vulnerabilities originating from improper
user input validation and vulnerabilities caused by weak encryption mecha-
nisms), their impact once they are exploited (which can range from a mere
stylistic annoyance in the appearance of a website, to theft of personal and
financial information), or the complexity needed and probability to be ex-
ploited. CVE identifiers [51] are an effort to create unique, common identi-
fiers for publicly known cyber security vulnerabilities. Those identifiers are
then integrated in a list of information security vulnerabilities and exposures
with the goal of making the sharing of data across separate vulnerabilities
capabilities easier. Additionally, extensive research has been performed in
creating a taxonomy of vulnerabilities.

The Common Weakness Enumeration (CWE) [52] is such a taxonomy of
common software weaknesses that can occur in the architecture, design or
development of a software and can lead to exploitable security vulnerabili-
ties. The CWE list can be used as a standard for evaluating software security

12

tools and as a common baseline for weaknesses identification, mitigation and
prevention.

In the ”Seven Pernicious Kindgoms” taxonomy [73], the authors moti-
vate their work by stating that such a classification of vulnerabilities can
assist developers in easier recognition of categories of problems and identifi-
cation of existing errors during the development of software. Subsequently,
they split vulnerabilities in eight groups, seven of which are dedicated to er-
rors in the source code and one is related to configuration and environment
issues. These, in order of importance, are:

1. Input Validation and Representation: Problems resulting from
trusting input and caused by metacharacters, alternate encodings, nu-
meric representations, etc. Issues such as SQL Injection, Cross-Site
scripting and Command Injection belong in this category.

2. API Abuse: Issues resulting from improper communication with
APIs, caused by dangerous API functions, false assumptions regarding
the behaviour of APIs, etc.

3. Security Features: This category includes topics such as authen-
tication, access control, confidentiality, cryptography, and privilege
management.

4. Time and State: Defects related to unexpected interactions between
threads, processes, time, and information. These interactions happen
through shared state.

5. Errors: Errors related to error handling.
6. Code Quality: Poor code quality leads to unpredictable behavior.

7. Encapsulation: Issues originating from insecure boundaries between
components or data.

8. Environment: Issues that are outside of the source code but are still
critical to the security of the product.

The OWASP Top-10 [57], is another classification, listing the 10 most dan-
gerous types of vulnerabilities, as defined by OWASP, and ranked based on

their exploitability, prevalence, detectability and impact. The entries on the
OWASP Top-10 list are:

1. Injection: Injection flaws, such as SQL, OS, and LDAP injection.

13

2. Broken Authentication and Session Management: Not cor-
rectly implemented application functions related to authentication and
session management.

3. Cross-Site Scripting: XSS flaws occur whenever an application
takes untrusted data and sends it to a web browser without proper
validation or escaping.

4. Imsecure Direct Object References: Lack of an access control
check or other protection, which enables attackers to manipulate direct
object references to access unauthorized data.

5. Security Misconfiguration: Insecure configuration defined and de-
ployed for the application, frameworks, application server, web server,
database server, or platform.

6. Sensitive Data Exposure: Ineffective protection of sensitive data,
such as credit cards, tax IDs, and authentication credentials.

7. Missing Function Level Access Control: Applications need to
perform function level access control checks on the server when each
function is accessed. If requests are not verified, attackers will be
able to forge requests in order to access functionality without proper
authorization.

8. Cross-Site Request Forgery: A CSRF attack forces a logged-on
victims browser to send a forged HT'TP request, including the victims
session cookie and any other automatically included authentication
information, to a vulnerable web application.

9. Using Components with Known Vulnerabilities: Applications
using components, such as libraries, frameworks, and other software
modules, with known vulnerabilities may undermine application de-
fenses and enable a range of possible attacks and impacts.

10. Unvalidated Redirects and Forwards: Web applications frequently
redirect and forward users to other pages and websites, and use un-
trusted data to determine the destination pages. Without proper val-
idation, attackers can redirect victims to phishing or malware sites, or
use forwards to access unauthorized pages.

Other taxonomies consist of works like the 719 Deadly Sins of Software
Security” [36], the extended ”24 Deadly Sins of Software security” [37], the
taxonomy of Unix vulnerabilities presented by Bishop [19], etc.

14

2.1.3 Static Analysis vulnerability detection tools

Automatic static analysis tools have been an area of research for many years
and recently added to security engineering processes, such as the Security
Development Lifecycle [44] .

Any tool that analyzes source code without executing it is performing
static analysis [24]. These tools are used to detect the most common errors
in a particular coding language and assist the developer to create more
stable, reliable and secure code. There exist multiple types of static analysis
tools, offering different functionality, required effort and analysis complexity,
ranging from simple type checkers to full program verifiers that attempt to
prove complex properties about programs.

Extensive literature exists on verifying the accuracy, effectiveness and
usefulness of static analysis tools. In general, the researchers agree that
the former can detect faults (e.g [28],[16],[64],[15]) with varying conclusions
though, as to the degree of the effectiveness (e.g. the false positive rate of 30-
100% found in [42] in comparison to the false positive rate of 5-22% found in
[16]) and significance of the errors detected. Existing research, additionally,
is useful when trying to identify the advantages and disadvantages of static
analysis tools.

By automating source code inspections the human time and complexity
needed can be reduced [16]. Furthermore, since static analysis tools do not
need to execute the application, an analysis can be completed at an earlier
stage in the lifecycle of the system. The decrease of the overall cost of a
project is one of the benefits of such a move, as Baca et al. [16] demonstrate
by conducting a case study in which mature software with known vulner-
abilities was subjected to a static analysis tool. In his research the author
found that an average of 17% cost savings would have been possible by the
use of the static analysis tool. Moreover, earlier error detection can result
in less human resources and time needed to detect the problem, correct it
and apply the correction, due also to the reason that static analysis detects
the root causes of vulnerabilities rather than the symptoms [47]. Another
advantage, as noted in the same article, is that the introduction of new
vulnerabilities, caused by post-production patching, can be avoided.

The use of static analysis tools can additionally reduce the development
experience required to identify programming errors. Baca et al.[17] drew this
inference by conducting an experiment in which a combination of security
and static analysis tools experience was found to be the most effective in
detecting security vulnerabilities. Another benefit noted by Evans et al.
[28] is the capability of these tools to eliminate errors, during the code

15

review phase, caused by human oversights. Finally, as elaborated in the
same article, an important advantage of static analysis, compared to test-
case execution, is the ability to validate all possible program executions
(resulting from direct source code analysis), a significant improvement from
a security perspective.

However, the usage of static analysis tools entails certain disadvantages
as well. These tools are not able to detect conceptual errors [28] as well as
errors on the design and architecture of the system. The dubious efficiency
of the default issues prioritization decided by the tools’ author has also been
criticized by researchers [40].

The most important disadvantage, though, of static analysis tools is the
false positives rates produced [12]. A warning is considered a false positive
if its statement is considered wrong or if the developer does not believe
it needs correction [17]. The percentage of false positives varies between
different studies. In [79] the authors compared the effectiveness of three bug
finding tools with a team review inspection, concluding that bug finding
tools can find a subset of the defects found by reviews; however the types
can be detected and analyzed more thoroughly. They reported false positive
rates higher than 30% for all the tools. In [16] a 20% rate is reported whereas
in [42] false positives are claimed to reach 30-100%.

Extensive research has been made, as a result, in an effort to reduce the
effect of false positives. In [64] the author suggest an error ranking scheme
based on defect likelihood combined with a self-adaptive improvement pro-
cedure to readjust the defect likelihood of different bug patterns. In [40]
and [41] warning categories are prioritized by analyzing the software change
history, whereas in [30] and [31] Heckman et al. have introduced bench-
marks that use specific correlation algorithms and classification techniques
to evaluate alert prioritization approaches.

2.2 Software Quality metrics

Software quality is hard to specify and measure. ISO standards [38] [13]
interpret quality as a desired combination of attributes, such as security,
that need to be clearly defined in order to be assessed. Software quality
metrics can be identified and used in order to measure the state of these
attributes.

ISO 1061-1998 [13] defines a software quality metric as a function whose
inputs are software data and whose output is a single numerical value that

16

can be interpreted as the degree to which software possesses a given attribute
that affects its quality. According to George Jelen of the International Sys-
tems Security Engineering Association a good metric is Specific, Measurable,
Attainable, Repeatable and Time-dependent ("SMART”)[39]. Payne [59],
additionally, notes that security metrics should indicate the degree to which
security goals are being met, in order to be useful.

The purpose of software quality metrics is to make assessments, through-
out the software’s life-cycle, as to whether the software quality requirements
are being met [13]. In this way, subjectivity is reduced, since a quantitative
basis for decision-making is provided. Security metrics can be objective or
subjective, static or dynamic, absolute or relative, direct or indirect [74].
Another dimension is the level of abstraction of the metrics, which ranges
from high-level and risk aware (whose intended audience is management) to
low-level development oriented metrics (for developers) [33]. Relevant work
exists, as a result, towards a taxonomy of security metrics [59],[61],[74].

The capability though, of security metrics to accurately present security
phenomena has, been criticized in some contributions. In designing a secu-
rity metric, one has to be conscious of the fact that the metric simplifies
a complex socio-technical situation down to numbers or partial orders [61].
The side-effects of such a simplification and the lack of scientific proof were
also noted by McHugh [48] and McCallam [46]. Burris [20], at last, also
notes the role of luck as a source of challenge, especially in the weakest links
of information security solutions.

2.2.1 State of the art on software security metrics

In the context of this thesis we consider as relevant to our work, metrics that
are low level, quantitative and development-oriented. Metrics belonging in
this category are presented below.

Manadhata & Wing [45], propose to use a software system’s attack sur-
face measurement as an indicator of the system’s security. A system’s attack
surface is the subset of the system’s resources (methods, data, and channels)
potentially used in attacks on the system. In this direction, the authors
implemented an automated metric to measure the attack surface in a sys-
tematic manner. Furthermore, the method was demonstrated by measuring
the attack surfaces of small desktop applications and large enterprise sys-
tems, implemented in C and Java, and three exploratory empirical studies
were conducted as validation. An attack surface metric is a good indicator
of the likelihood of an attack to a system. However, such a metric alone,
can not provide information regarding the impact of an attack, or possible

17

vulnerabilities of the system.

Voas et al. [78] propose a relative security metric based on a fault in-
jection technique. Different threat classes of a system were simulated by
mutating program variables during the execution of the system and then
observing the impact of the threat classes on the behavior of the executing
system in terms of successful intrusions. Additionally, a Minimum-Time-
To-Intrusion (MTTI) metric based on the predicted period of time before
any simulated intrusion can take place was proposed. The implementation
of this metric though requires the execution of the system and thus can-
not happen in the early stages of its lifecycle. Furthermore, such a metric
does not provide information regarding the impact of an attack, or possible
vulnerabilities of the system.

Cox et al. [27] analyze the dependency update behavior of industry sys-
tems and introduced a benchmark-based security metric to quantify how
outdated a system’s dependencies are in a whole. Moreover, the author in-
vestigated the degree of relationship between a system’s dependency update
behavior and the dependencies security status. Systems with outdated de-
pendencies were found more than four times as likely to have security issues
in their external dependencies. The metric uses a form of static analysis to
investigate the update behavior of a system’s external dependencies. Fur-
thermore, this metric can be considered as a proactive metric, with a goal
to avoid the exploit of vulnerabilities that have already been corrected in
later versions of the external dependencies.

Wang et al. [80] attempt to quantify the likelihood of potential multi-step
attacks that combine multiple vulnerabilities. By using an attack graph, a
model of causal relationships between vulnerabilities, the author proposed
an attack graph-based probabilistic metric and studied its efficient compu-
tation.

Alhazmi et al. [9] investigated the possibility of predicting the number
of vulnerabilities that can potentially be present in a software system but
not found yet. In this direction, the author introduced three metrics:

1. Vulnerability density: the number of vulnerabilities in the unit size
of a code.

2. Known vulnerability density: the number of known vulnerabilities
in the unit size of a code.

3. Residual vulnerability density: defined as the difference between
the vulnerability density and the known vulnerability density.

18

By analyzing data on vulnerabilities discovered in complex software systems
the author examines the dynamics of vulnerability discovery rate to see if
models can be developed to project future trends. The results indicated
that the values of vulnerability densities fell within a range of values and
thus it is possible to model the vulnerability discovery by using a logistic
model. These metrics can, also, be used from the early stages of the sys-
tem’s lifecycle. However, this implementation does not provide a way to of
discovering a system’s vulnerabilities, but rather of predicting the existence
of future vulnerabilities, based on existing data.

Gilliam et al. [29], finally, also try to provide system admininstrators
metrics by creating a vulnerability matrix, a dataset ranking severity of
vulnerabilities against frequency of occurrence by platform, to be used by
the National Aeronautics and Space Administration. The matrix suggests
where to best expend effort in minimizing security risks in the computing
environment. The development and maintenance of the metric though is
not automated.

2.2.2 State of the art on software Security metrics frame-
works

The significance of a framework to integrate and correlate multiple security
metrics has been mentioned in a number of articles (e.g [45], [74]). At the
same time, though, a lack of such frameworks ([45],[33]) is also apparent.
Relevant work, towards this direction, is presented below.

Heyman et al. [33] proposed an approach that leverages the use of secu-
rity patterns, to improve the development of secure software, and associated
security metrics to security patterns. Such a move, the author supports, fa-
cilitates metric selection and enables the combination of low-level measure-
ments into indicators of the system’s security level. This approach though
has certain limitations as well. First, by matching security metrics to secu-
rity patterns the framework may not be able to detect vulnerabilities exterior
to the latter. Furthermore, no specific metrics were proposed, since, as the
author notes, no definitive catalogue of such metrics exists. Moreover, the
framework only provides an indication of the correct operation of the im-
plemented security functions. As such, the state of security objectives that
have not been taken into account during development is not reflected in the
measurements.

Nichols et al. [54] presented a metrics framework used to detect security
vulnerabilities that belong in the OWASP Top-10 list. Additionally the
author introduced the usage of a security scorecard to group these issues

19

together. Such an approach though doesn’t provide an accurate overall
security status of the system as it may miss issues that do not belong in
the OWASP list. Furthermore, one could argue that such an approach
doesn’t constitute a framework of correlated metrics but rather a collection
of separate ones.

Scandariato et al. [62], finally, worked towards a framework of metrics by
analyzing security principles that are relevant to the purpose of unearthing
security properties and proposing suitable metrics to measure them. How-
ever, there is vague separation between maintainability concerns affecting
security and pure security issues. Additionally, the metrics proposed are not
being implemented, or elaborated in detail, they mainly apply to the archi-
tecture and design phase, and the validity or completeness of the framework
is not validated. Furthermore, as the authors note, automation of the met-
rics is needed since some of these require high level of expertise and high
degree of manual work.

20

Chapter 3

Research Methodology

In this chapter information is provided regarding the method followed to
implement the metric-based security model. At the beginning, the require-
ments that the framework should comply to are given, as well as its purpose.
Afterwards, the goal, question, metric approach, which was applied to iden-
tify the metrics, is provided.

3.1 Requirements

As already explained in the introduction, the aim of the research conducted
within this thesis, is to develop a framework used to assess the security level
of a software system. Set conditions, to be adhered to, by the model, are:

1. Repeatability: The framework should be able to produce the same
output provided the same input is given.

2. Effectiveness: The framework should provide an accurate and as
complete as possible impression of the security status of the applica-
tion.

3. Efficiency: The framework should minimize time and human re-
sources needed to produce the assessment.

4. Objectivity: The assessment produced by the framework should ac-
curately rank the security status of different systems.

5. Ability to be used throughout the system’s life-cycle: The
framework should be able to be used throughout, most of, the system’s

21

life-cycle, namely from the development phase until the application’s
maintenance.

The model consists of automated metrics, as to satisfy these requirements.
Advantages of using metrics were elaborated in detail in chapter 2.

The purpose of the Metric-based Security Model, as the framework is
named, is to assist stakeholders in making informed decisions as to where
to concentrate their efforts. The model should prove of use to multiple
levels of an organization. For example, developers should be able to detect
where the issues are located, project managers or product owners where and
how to distribute available resources and upper management should get an
indication of the security level of the system.

3.2 Goal-Question-Metric Approach

After the definition of the requirements that the framework, and hence the
metrics, should comply to, the Goal-Question-Metric approach was followed,
in order to identify relevant metrics . The Goal-Question-Metric approach
is a top-down, goal-oriented software measurement methodology of estab-
lishing appropriate metrics, proposed by Basili[18].

The goal of our framework, as mentioned above, is to evaluate the se-
curity level of a software system from the system owners perspective (e.g.
developers, product owners, managers).

In this study we focus on software vulnerabilities as a means to mali-
ciously attack a software system, and hence breach its security. Thus, the
metrics we will define aim at assessing the security level of a software sys-
tem, based on the existence of software vulnerabilities on its source code
and external dependencies. Table 3.1 provides the approach we followed to
determine the metrics. The latter are explained in subsection 3.2.1.

3.2.1 Explanation of the metrics

The framework is consisted out of the four metrics identified on Table 3.1.
Table 3.2 presents the metrics based on the area and severity of issues each
metric detects.

The first two metrics (Acute and Latent Issues) detect vulnerabilities
within the source code of the system and provide a rating based on the

22

Goal Purpose Evaluate
Issue the security level
Object of a software system
Perspective | from the system’s owner perspective.

Question | Does the source code of the system contain vulnerabilities?
Metric | Acute Issues metric
Latent Issues metric

Question | Do any external dependencies of the system contain vulner-
abilities?
Metric | Vulnerabilities on dependencies metric

Question | Are the third party dependencies updated frequently?
Metric | Dependency Freshness metric [27]

Table 3.1: A GQM approach to define the framework’s metrics.

number of vulnerabilities detected. The difference between the two metrics
is the severity of the vulnerabilities each one is assigned with.

The Acute Issues metric detects high severity violations of secure coding
patterns. These violations require no or minimal knowledge of the applica-
tion’s internal structure and are related with issues such as injection vulnera-
bilities, unvalidated redirects, sensitive data exposure etc. The Latent Issues
metric detects and provides a rating for medium severity violations, such as
vulnerabilities for which another program should be written to incorporate
references to mutable objects, non final fields, etc.

The other two metrics detect issues located in third-party dependencies
of the system. The Dependency Vulnerability metric, as the name states,
detects vulnerabilities located on a system’s dependencies and returns a rat-
ing based on the number of vulnerabilities found and their severity. Finally,
the Dependency Freshness metric, reports how recently the third party de-
pendencies of a system were updated.

The first three metrics were developed in the context of this study. The
dependency freshness metric, developed by Cox[27], was integrated to the
metric-based Security model, to provide an as more holistic view, of the se-
curity status of the third-party components, as possible. Further elaboration
on the metrics will be given on Chapters 4, 5 and 6.

23

Source
Code.

External
Depen-
dencies.

Acute Issues.

Latent Issues.

High-severity violations of
secure coding patterns.
(Acute Issues metric)

Medium-severity violations of
secure coding patterns.
(Latent Issues metric)

Dependencies on components
with known vulnerabilities.
(Dependency
Vulnerability metric)

Update profile of
dependencies.
(Dependency Freshness
metric)

Table 3.2: Metrics based on area and severity.

24

Chapter 4

Framework Design

In this chapter a high level architecture of the framework is given, followed
by a first explanation of the rating method of the metrics. Furthermore, the
dataset of open source systems that is used in order to develop and test the
framework is presented.

4.1 Architecture of the framework

The architecture of the framework is presented in Figure 4.1. The architec-
ture of the system is divided in four levels (Input, Tools, Metrics Code, and
Output) and in two main components (“Source code Metrics”, and “Exter-
nal Dependencies Metrics”).

The source code metrics take as input the source code of the system,
which is checked for vulnerabilities by a static analysis tool (FindBugs[5])
and a plugin of it (Find Security Bugs [4]). Additionally, information regard-
ing the size of the system is extracted with the use of SAT (Section 5.1.2),
an internal tool to the organization in which the research was conducted.
The Vulnerabilities on Dependencies metric, on the other hand, takes as
input the third party dependencies of the system. Dependency Check [3] by
OWASP is the tool which is used to report known vulnerabilities existing
on these dependencies.

In the Metrics Code level, the output of the tools is processed to extract
and process relevant information, rate the security status of the system,
in regard to the focus of each metric, and present the ratings and other
findings. Furthermore, the ratings of the metrics are aggregated in order to

25

Range Stars

[0.5-1.5) 1 Star
[1.5-2.5) 2 Stars
[2.5-3.5) 3 Stars
[3.5-4.5) 4 Stars
[4.5-5.5) 5 Stars

Table 4.1: Metrics’ star ratings

acquire the overall rating of the system.

Further elaboration on the tools used, the information processing meth-
ods, and the rating calculation and aggregation methods will be given on
Chapters 5 and 6.

4.2 Metric Ratings

The rating generated by each metric shows the status of the system, in
regard to the security characteristic analyzed by the metric. The rating is
computed in a continuous scale from 0.5 to 5.5. This value can be converted
into a natural value of stars by standard, round half up, arithmetic rounding
(except for the limit value of 5.5 which is converted to 5 stars), as presented
in Table 4.1. The notion of the star rating was adopted from the existing
rating method used in SIG [10].

The rating produced by each metric is a relative rating, indicating the
security status of the system when compared to other systems scanned. Fur-
thermore the systems are assigned in the star categories by a predetermined
distribution (e.g 5%-30%-30%-30%-5%). In order to achieve this, calibrated
thresholds of each star category are used.

We use a relative rating, indicating the system’s security performance
in comparison to other systems, combined with an assignment of systems
to the star categories according to a predefined distribution. We decided to
follow this approach, since, we believe that, the result produced is easy to
explain and interpret, is representative of real systems, which allows com-
parison and ranking, and captures enough information to enable traceability
to individual measurements, allowing to pinpoint problems [10].

The exact methods of the rating calculation and benchmarking will be
further explained in the relevant chapters (Chapters 5 & 6), since variations
exist on each metric.

26

System's Overall Rating and Security Status Information

Source Code Metrics

5
.m. Source Code Metrics Rating & Information External Dependencies Metrics Rating & Information
o
. . . . Vulnerabilities On Dependencies Dependency Freshness Rating &
Acute Issues Rating & Information Latent Issues Rating & Information Rating & Information [
Rating Ratings' Information ey o OV | »
e Calculation Aggregation Presentation Statistics mnm_nﬂ"“m% Agaregstion Prasentation | Sz
Q ; | |
L& I N ! ”
(]
2
L] Information S
= Information Processin Filterin i Filtering
: 8 uzee e Dependency Freshness
Po.. Find Security FindBugs SAT Dependency Check
k: Bugs g P Cy
m. System's Source Code System's Third Party Dependencies

External Dependencies Metrics

Figure 4.1: Architecture of Metric Based Security Model

27

4.2.1 Ratings aggregation method

The ratings produced by the four metrics of the model are aggregated in
order to determine the system’s overall rating. We decided to use the power
mean as an aggregating approach (Equation 4.1). The power mean out-
classes the simple arithmetic mean in the sense that it better reflects the
weakest link principle. At the same time, though, it is more distinctive than
simply using the minimum function for aggregation, as in that case, every
system with a single serious flaw, would be treated the same. The same
approach was used by Xu et al. [82], in their Security Model.

3=

S|+

>)

k=1

((4.1)

Mpy(ai,az,....,an)

4.3 Dataset

In order to develop the framework and calibrate the star ratings’ thresholds,
we used a dataset of 27 systems, 25 of which are open-source systems and 2
are SIG’s internal systems (Table 4.2).

All the systems are developed in Java and use Apache Maven [1] to
manage their build. Both conditions were a prerequisite when creating the
dataset, since the model, at its current state, can evaluate, completely, only
such systems. FindBugs, as will be explained in the next chapter, analyzes
only Java systems, whereas Dependency Freshness requires the .pom file used
by Maven to build a system. A Project Object Model (POM) file provides
all the configuration for a single project, such as the project’s name, its
owner, dependencies on other projects, used plugins, etc.

It should be noted, here, that when creating the dataset, the context
within the systems are used, and their type, was not taken into account.
The Metric-based Security Model, detects vulnerabilities and rates systems
accordingly, but does not verify whether the reported vulnerability can be
exploited, by the current use of the system.

28

System Name

Description

Elastic Search
Ninja

Clojure

H20

Fluent-Http
MapDB
Jetserver
KeyBox

Okhttp
Guacamole-client
Libgdx
HBC
OrientDB
Oryx
Webbit
CAS
Webmagic
WebGoat
Mahout

AWS SDK

Guice
WebScarab
Jenkins

McMMO
Java-Websocket
Internal System 1
Internal System 2

Search Engine.

Web Framework.

Programming Language.
Statistical, machine learning &
math runtime for Big Data.

Web Server.

Database Engine.

Game server.

Web-based SSH administration
console.

Http Client.

Remote Desktop Gateway.

Game Development Framework.
Http Client.

Database Management System.
Machine learning infrastructure.
Websocket & Http server.

Single sign-on service.

Web crawler framework
Deliberately Insecure Web Server
Machine learning applications
framework.

Amazon Web Services Software De-
velopment Kit

Dependency Injection Framework
Analysis Framework

Continuous Integration Server
Game Modifications

Websocket client & Server

Table 4.2: Dataset Used.

Chapter 5

Source Code Metrics

The purpose of the source code metrics is to identify vulnerabilities, located
in the source code of a software system, and provide a rating, based on these
findings.

We detect the vulnerabilities through the use of a static analysis tool,
FindBugs, and an extension of it. The advantages of using static analysis,
compared to other forms, such as dynamic analysis, have already been pre-
sented in the Background chapter (chapter 2). The former, namely, allows
the detection of security issues to occur earlier in the lifecycle of the system,
since it doesn’t require an executable version of the system ([47],[17]). Fur-
thermore, static analysis can locate the source of a problem rather than the
place where its symptoms occur [17]. Moreover, as Antunes [12], notes, static
analysis tools usually have larger coverage than dynamic analysis tools.

After the detection of the vulnerabilities, the output of the tools is pro-
cessed. The separation of the security issues between the metrics is based
on their severity and type. The metrics’ rating method, also, differs, tak-
ing into account their separate characteristics. Further information will be
presented in the relevant sections.

This chapter’s structure follows the layered logic of the model’s archi-
tecture (Figure 4.1). At the beginning, information regarding the static
analysis tools used, their operation and their output, is provided. After-
wards, the implementation of the metrics’ layer is presented, elaborating on
the relevant, to each metric, bug patterns, the rating methods used and the
derived thresholds. Finally, the results of the application of the metrics, on
the dataset, are displayed.

30

5.1 Tools

In the context of this research, a number of static analysis tools have been
tested, such as SonarQube [7], PMD [6] and Yasca [8]. Currently, the acute
and latent issues metrics use FindBugs and “Find Security Bugs” to detect
vulnerabilities and SAT to acquire the size of the system’s files.

5.1.1 FindBugs & Find Security Bugs

FindBugs is an open source static analysis tool for Java, that relies primarily
in intraprocedural analysis to find known patterns of defective code [14].
Therefore, the tool uses analyzers called Bug Detectors to search for bug
patterns [34]. Various heuristics are contained in these detectors to filter out
or de-prioritize warnings that may be inaccurate, or that may not represent
serious problems. FindBugs doesn’t aim to be sound but rather tries to filter
out warnings that may be incorrect or low impact [14]. Extensive research
has been conducted in order to evaluate findBugs’ usefulness and accuracy
([14],[76],[15],[77]), improve its reporting methods, in order to reduce the
effect of false positives, ([64],]40],[41]), or evaluate other objectives through
the use of this tool (e.g [53]).

The decision to use FindBugs lies in the following facts:

e Open Source: FindBugs is an open source tool making it easy to
acquire and use for research purposes.

e Fast: When compared to other, more complicated, static analysis
tools, FindBugs can analyze a system relatively fast, making it easier
to scan a larger number of systems, as done in this research.

e Extensive use: FindBugs is used in a large scale by developers [26],
when compared with other static analysis tools, and has, also, been
used, extensively, for research purposes.

Nonetheless, it should be noted, that, FindBugs was used as a proof of
concept. The framework doesn’t eliminate the use of other tools, rather it
supports such an idea. This statement, will be further elaborated in the
Discussion chapter (chapter 8).

The tool analyzes compiled bytecode (.class or .jar files) of the system.
Furthermore, it can be run in various modes, namely, from the command
line, as was done within this research, as a stand-alone application, or as a
plugin for several popular IDEs and continuous build systems.

31

Category ‘ Description

Bad Practice Issues that violate recommended coding practices.
Dodgy Code that is confusing anomalous or error prone.
Performance Issues affecting performance, such as inefficient memory

usage/buffer allocation, usage of non static classes, etc.
Internationalization | Issues originating from use of non-localized methods.

Malicious Code Issues originating from variables or fields exposed to
classes that should not be using them.

Correctness Apparent coding mistakes.

Multithreaded Cor- | Thread synchronization issues.

rectness

Security Direct security related bug patterns.

Experimental Experimental bug detectors.

Table 5.1: FindBugs Bug Categorization.

FindBugs warnings are grouped into over 380 bug patterns which in
turn are grouped into 9 categories (Table 5.1). Out of the nine categories,
we consider the Malicious Code and Security categories as the ones contain-
ing security related bug patterns. Therefore, the source code metrics only
take into account these two categories. The same deduction was used by
Mitropoulos et al. [53]. The output of FindBugs was chosen to be a .xml
file containing the type, description and location of the reported vulnerabil-
ities, to ease further processing.

“Find Security Bugs” plugin was used in combination with FingBugs.
“Find Security Bugs” detects additional security vulnerabilities in web ap-
plications. The plugin can identify 63 different vulnerability types, which
are integrated in the Security category.

5.1.2 “SAT”

The System Analysis Toolkit (“SAT”) is a source code analysis tool devel-
oped and used by the Software Improvement Group (“SIG”). SAT’s main
purpose is to evaluate the maintainability of a software system. In that re-
spect, it identifies areas needing attention and produces a benchmarked star
rating of the system’s maintainability and its relevant subcharacteristics as
defined in ISO-IEC 25010 [38].

Within the context of the acute and latent issues metrics, we use SAT
to acquire the files size of the systems analyzed.

32

5.2 Metrics

In the second layer of the model’s architecture, the tools’ output is processed
in order to acquire the metrics’ rating and additional information. At the
beginning, the relevant data is extracted by FindBugs and SAT’s reports,
i.e the type and location of the vulnerabilities and the size of the files in
which they belong. Afterwards, the vulnerabilities are split in the suitable
metrics and the rating of the system for both metrics is calculated. Finally,
all relevant information (such as rating, and location of vulnerabilities) are
presented.

5.2.1 Identification of relevant Bug patterns to each metric.

As already mentioned, the vulnerability patterns considered relevant, belong
in the Malicious code and Security categories. With the addition of those
introduced by “Find Security Bugs”, 89 patterns can be detected.

We decided to split the security bugs in the two metrics, depending on
their type and severity level. Mitropoulos et al. [53] used FindBugs to
study specific characteristics of security bugs individually and in relation
to other software bugs. In his study, a similar approach was followed, by
defining related to security bugs, the ones that belong in the Security and
Malicious Code categories. Furthermore, the author divided security bugs
in two severity categories, “Security Low” and “Security High”.

The “Security High” category contained bugs “related to vulnerabili-
ties caused from lack of user-input validation”. Vulnerabilities of this type
include attacks such as Injection (number 1 in OWASP top 10 [57]) and
Cross-site Scripting (number 3 on OWASP top 10). As the author, of the
paper, states, no knowledge about the application’s internal structure is
required for the exploitation of these vulnerabilities.

In the definition of the metrics, we adopted the introduction of these
two categories, matching “Security High” to the Acute Issues metric and
“Security Low” to the Latent Issues metric. Additionally we conducted
some adjustments. First, the vulnerability patterns of the “Find Security
Bugs” plugin were integrated. Furthermore, we decided to use OWASP’s
Top 10 list as a standard to extend the bug patterns included in the acute
issues metric.

Specifically, the latter metric contains bugs belonging to the following
entries of the list:

33

1. Injection (number 1).

2. Broken Authentication and Session Management (number 2).
3. Cross-Site Scripting (XSS) (number 3).

4. Insecure Direct Object References (number 4).

5. Sensitive Data Exposure (number 6).

6. Missing Function Level Access Control (number 7).

7. Unvalidated Redirects and Forwards (number 10).

The acute issues metric is a superset of the “Security High” category. Out
of the ten entries of the OWASP list we cover seven with a total of 48
vulnerability patterns.

The Latent Issues metric assesses medium severity violations of secure
coding patterns. In this metric belong vulnerabilities, not included in the
OWASP Top 10 list, which require the development of an additional program
to incorporate references to objects, fields, etc, or, have, by definition of the
vulnerability pattern, a low true positive rate.

An example of a bug pattern belonging in the Latent Issues metric is
the ELEXPOSE_REP bug pattern (Table A.1). This pattern reports cases
where an object’s internal representation may be exposed by returning a ref-
erence to a to a mutable object’s value stored in one of the object’s fields. If
instances are accessed by untrusted code, unchecked changes to the mutable
object could compromise security or other important properties. Returning
a new copy of the object is better approach in many situations.

An example of a bug pattern belonging in the Acute Issues metric is the
SQL_NONCONSTANT_STRING_PASSED _TO_EXECUTE pattern (Table
A.2). The method where this vulnerability is located invokes the execute
or addBatch method on an SQL statement with a String that seems to
be dynamically generated. A prepared statement should be considered used
instead, since it is more efficient and less vulnerable to SQL injection attacks.
This bug pattern corresponds to the Injection entry of the OWASP Top 10
list.

A presentation of the vulnerability patterns used, their corresponding
metric and the OWASP Top 10 entry, in which they belong, is given in
Appendix A.

34

5.2.2 Statistical Analysis

After the allocation of the vulnerability patterns to the metrics, and the
generic definition of the rating method to be used (section 4.2), relevant
statistical information of the dataset, in respect to the two metrics, was
gathered. This was done for the following reasons:

1. To gain knowledge on some of the dataset’s properties, such as how
many bugs exist, how many distinct bug patterns are reported, etc.

2. Statistical information could help in the detailed definition of the rat-
ing methods to be used and the calculation of the star categories
thresholds. Relevant values necessary to define the thresholds are the
number of bugs per file of the system, their minimum and maximum
values, etc.

3. To test whether the number of bugs per system, for both metrics,
correlates with the system’s size. Mitropoulos et al. [53], in his study
found that the Spearman correlation of the Security Low and Security
High categories was 0.65 and 0.19 respectively. In case their findings
were confirmed in our dataset as well, this would indicate that there
is a strong connection of, mainly, the latent issues metric with the size
of the system. As a result, the calculation of the rating should take
into account the size of the system, in such a way that larger systems
can be treated equally to smaller ones.

The metrics only evaluate the security level of normal files and not test
files. This was a deliberate decision since security issues in test files are of
less significance. The statistical analysis conducted therefore, only refers to
normal files.

At the beginning the number of potential vulnerabilities, as well as the
number of different vulnerability patterns, found in the dataset was checked.
In total 3,322 bugs were found. Out of these, 3,128 (94.16%) belong in the
“Latent issues” metric and 194 (5.6%) belong in the “Acute issues” metric
(Figure 5.1).

Furthermore, out of the 89 vulnerability patterns contained in the met-
rics, 39 were present in the dataset, of which 13 belong in the “Latent Issues”
metric and 26 in the “Acute Issues” metric.

The distribution of bugs per file was examined next (Table 5.2). The
dataset contains a total of 24,981 files. Out of them 1,271 contain latent
issues whereas 130 contain acute issues. The maximum number of latent and

35

Number of Vulnerabilities found

[=]

[=

3 O Latent Issues: 3128 (94.16%)
B Acute Issues: 194 (5.84%)

(=)

o

wn

o

8 _

[Te)

(=)

(=)

wn

o - I

Latent Issues Acute Issues

Figure 5.1: Number of vulnerabilities per metric.

All files Minimum Maximum Median Mean
Latent Issues 0 22 0 0.125
Acute Issues 0 7 0 0.08

Table 5.2: Distribution of vulnerabilities in all files.

acute issues per file is 22 and 7 respectively, whereas their mean is 0.125 and
0.08.

Additionally, the distribution of vulnerabilities on vulnerable files only
(Table 5.3) was examined. A vulnerable file, concerning a metric, is defined
as one that contains at least one reported vulnerability belonging in that
metric. The median of latent issues per vulnerable file is 2 whereas the mean
is 2.461. Furthermore, the median of acute issues is 1 whereas the mean is
approximately 1.5. In figures 5.2a and 5.2b barplots of the distribution of
the number of vulnerabilities in vulnerable files are presented.

Vulnerable files ‘ Minimum Maximum Median Mean
Latent Issues 1 22 2 2.461
Acute Issues 1 7 1 1.492

Table 5.3: Distribution of vulnerabilities in vulnerable files.

36

Distribution of Acute issues in files

1 2 3 4

5

number of vulnerabilities

(a) Acute Issues.

500
L

400
L

300
1

Distribution of Latent issues in files

7 1

3 5 7 9 11 13 15 17 19 20

number of vulnerabilities

(b) Latent Issues

Figure 5.2: Distribution of issues in vulnerable files.

Size (loc) ‘ Minimum ‘ Maximum ‘ Median ‘ Mean
All files 2 6,984 42 79.211
Latent files 9 6,984 125 223.152
Acute files 13 2,412 150 247.062

Table 5.4: Size of files (in lines of code).

The size of the dataset’s files and its relation with the presence of latent
and acute issues was also examined. For all files, the minimum length is 2
lines of code (without comments and blanks) whereas the maximum is 6984.

The median, additionally, is 42 and the mean is approx. 80 (Table 5.4).

Vulnerable files are in average larger than the average of all the files com-
bined, with their mean being approximately 223 and 247 for files containing
latent and acute issues, respectively. Figure 5.3 shows the distribution of

files’ size for the different types of files.

Finally the correlation of the systems’ size with the number of vulnera-
bilities, for each metric, was also calculated. As Table 5.5 and Figures 5.4a
and 5.4b illustrate this was found to be approximately 0.97 for the latent

issues and 0.42 for the acute issues.

Acute Issues

Latent Issues

Pearson Correlation

0.415

0.966

p values

0.03116

4.441 x 1016

Table 5.5: Correlation of Systems’ size with number of vulnerabilities.

37

Vulnerabiliues

40

30

20

10

Correlation of systems' size to number of Acute issues

Density

0.006 0.008 0010 0012 0014

0.000 0002 0.004

Distribution of files' size

2 Allfiles
W Latent files
B Acute files

T T T T
1000 1500

Size of files (locs)

2000 2500

Figure 5.3: Distribution of files’ size.

Correlation of systems’ size to number of Latent issues

.
o //
=2 /
@ /

y
/
y
/
/
/
s

g

w N /

s
o “© L
7 e /
—~ -— /
- = s
_ . o yd
7 © o /
.)" = oA v
e o ¥ /
T c . e
- 2 . .~

> .
o //
b= /
N . o// .

P
v
.
28

= 4

T T T T T
1e+05 2e+05 3e+05 4e+05 5e+05

Size

(a) Acute Issues.

T T T T T T
0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

Size

(b) Latent Issues.

Figure 5.4: Correlation of systems’ size to number of vulnerabilities.

38

5.2.3 Latent issues rating method

As already mentioned in section 4.2 the metrics’ rating methods use bench-
marked thresholds, in order to define the boundaries between the star cate-
gories. The advantage of this approach is that the result produced is easy to
explain and interpret, is representative of real systems, which allows com-
parison and ranking, and captures enough information to enable traceability
to individual measurements, allowing to pinpoint problems [10].

However the specific implementation of each rating method differs, based
on what aspect each rating tries to emphasize as well as specific characteris-
tics of each metric. The acute issues metric, for instance, gives emphasis on
the number of vulnerabilities found, irrelevant of their distribution within
files. On the other hand, the latent issues metric, doesn’t calculate the rat-
ing based on the absolute number of vulnerabilities found, rather it takes
into consideration how the issues spread, i.e. their density within the sys-
tem. This rating implementation directly relates to the purpose of the latent
issues metric; specifically to find and rate medium severity violations of se-
cure coding practices, i.e. violations that indicate lack of quality coding (in
respect to security) from the developers, resulting to possible security prob-
lems in the future. Furthermore, the rating method used in the latent issues
metric takes into account the high correlation existing between the size of
the systems and the number of latent issues. This approach is necessary, in
order to treat equally differently sized systems.

For the calculation of the metric’s rating we adopt the two-stage aggre-
gation of metrics into ratings methodology, proposed by Alves et.al. [10].
Figure 5.5 presents an overview of the approach used to aggregate the mea-
surements to ratings, using benchmarked-based thresholds, as well as the
value of the thresholds that were defined. As illustrated in the picture,
the aggregation of individual measurements to ratings is done through a
two-level process.

First, individual measurements (number of latent issues for each file) are
aggregated to risk profiles based on risk thresholds (1st level of aggrega-
tion). A risk threshold indicates the boundary value between the three risk
categories we have defined:

e Moderate: Contains files with one or two latent issues.

e High: Contains files with three or four latent issues.

e Very High: Contains files with more than 4 latent issues.

39

Latent

Issues
Risk Thresholds
Moderate risk: (0,2] High risk: (2,4] 1st-level
Risk Threshold i
Derivation aggregation
Very High risk: (4,%9)
Risk Profile
Benchmark
Healthy Files Moderate Risk
. High Risk . Very High Risk
System Rating Moderate + High + very High | High + Veery High Very High
5 Stars 0.1% 0.000% 0.000% and-level
4 Stars 8% 1.8% 0.7% aggregation
Ratings'
Thresholds Calibration 3 Stars 21.9% 9.5% 3.3%
2 Stars 56.2% 21.0% 13.6%
1 Star T7.0% 26.5% 21.0%
Rating

Figure 5.5: Two-level aggregation rating method.

40

A risk profile represents the percentage of overall code that falls into each of
the three risk categories. For example, if a file contains three vulnerabilities,
the size of the file (specifically, the ratio of the file’s size to the overall size
of the system) is added in the high risk category in the risk profile of the
system.

After the calculation of the system’s risk profile, the latter is aggregated
into a rating by determining the minimum rating for which the size of the
risk profile categories doesn’t exceed a set of second level thresholds (2nd
level of aggregation). Each set of thresholds is calibrated in order to achieve
a 5%-30%-30%-30%-5% distribution of systems in the star categories. More
information on how we acquired the values of the first and second level
thresholds can be found on Appendix B.

A system’s rating can be represented both in a discrete and a continuous
scale. The discrete scale is achieved by comparing the values of the system’s
risk profile with the set of second level thresholds. The continuous scale
is achieved by using an interpolation function between the lower and upper
threshold of the star category the system belongs. The interpolation function
is presented in Equation 5.1.

(u — to)

= 0.5 —
s(u) so + PR—

Where s(u) is the final rating, u the Percentage of volume in the risk
profile, sg the initial discrete rating, to the lower threshold for the risk profile,
and t1 the upper threshold for the risk profile

The final interpolated rating R e [0.5, 5.5] is then obtained by taking
the minimum rating of all risk categories, as follows:

R = min (s(RPyym+vu),s(RPgyvh),s(RPyr))

The choice of range from 0.5 to 5.5 is so that the number of stars can be
calculated by standard, round half up, arithmetic rounding. In the possible
situation, though, that a system achieves a continuous rating of 5.5 (there
are no latent issues in the system), the rating should be trancated rather
than rounded.

41

Category Thresholds Proposed Distribution
5 Stars -

4 Stars (0,2} 30%

3 Stars (2,6] 30%

2 Stars (6,28] 30%

1 Star (28,36] 10%

Table 5.6: Thresholds of “Acute issues” rating method.

5.2.4 Acute issues rating method

A different approach is followed to calculate the rating of the acute issues
metric. Specifically, a single level aggregation, based on the number of
the acute issues, is performed. Acute issues have different properties than
the latent issues. For that reason, the number of vulnerabilities per file is
not considered relevant, but rather we take into account only the absolute
number of issues in the system. Furthermore, we found out, in the statistical
analysis, that there is only low correlation between the number of acute
issues and the size of the system. Therefore, normalization on the system
size is not conducted.

In order to calibrate the thresholds the number of acute issues per system
was identified for all the systems in our dataset, and then we calculated the
minimum thresholds that can categorize those systems based on a given
distribution.

This method is similar to the second level of aggregation of the latent
issues rating method. However, in this case we decided to apply the distribu-
tion only on the four lower star categories, i.e the “5 Stars” category doesn’t
have a calibrated threshold, rather systems take five stars only if they don’t
have any acute issues. This decision was taken, in order to emphasize the
increased severity that acute issues can have on a system.

Table 5.6 presents the derived thresholds, used on the aggregation of
acute issues to a rating, as well as the defined distribution of systems to
star categories. As is the case, also, on the latent issues rating method, the
ratings can be represented both by an integral and a decimal number. Fur-
thermore, for the calculation of the decimal rating the interpolation function
of Figure 5.1 is used. Due to the fact, though, that we do not include the
5 star category in the defined distribution, a continuous rating for systems
with 5 stars can not be calculated. Furthermore, systems that exceed the
lower limit of the 1 star category receive a default continuous rating of 0.5
stars.

42

5.3 Results

The results section is divided in two subsections. The first presents an
example of how a single system is processed by the metrics, the calculation
of its ratings and the output produced. The second subsection provides the
results of applying the metrics to all the systems of the dataset, i.e. the
ratings of the systems and the distribution of systems to the star categories
of the metrics.

5.3.1 System-specific results

The results of Jenkins, a continuous integration server, will be presented
as an example. The software consists of 964 files with total size of 82,148
lines of code (without blanks and comments). After scanning the system
with FindBugs we identified 192 reported vulnerabilities, 163 of which are
latent issues and 29 are acute issues. The latent issues were concentrated
in 84 files, with total size of 23,759 lines of code, and 16 files of total size of
4,921 lines of code, contained acute vulnerabilities. Table 5.7 summarizes
the findings.

Overall Latent Acute
Vulnerabilities 192 163 29
Files 964 84 16
Size (in LOC) 82,148 23,759 4,921
Rating \ | 2.029 (2 Stars) | 1.375 (1 Star)

Table 5.7: Results of Jenkins.

In order to produce the rating of the latent issues metric, the system’s
risk profile was calculated (Figure 5.6). Approximately, 71% of the overall
size of the system contains no vulnerabilities. Files consisting the 16,7% of
the overall size of the system belong in the moderate risk category, whereas
the other two categories, of high and very high risk, contain around 4% and
8,1%.

Next, Jenkin’s cumulative risk profile was compared with the second
level thresholds of Figure 5.5. Table 5.8 presents the system’s cumulative
risk profile that is directly compared with the thresholds.

43

Risk profile of jenkins

W Very High: 0.081
= High: 0.041

O Moderate: 0.167
B Healthy: 0.711

Figure 5.6: Risk profile of Jenkins.

M+ H+ VH |H + VH | VH
Jenkins | 0.289 | 0.122 | 0.081

Table 5.8: Cumulative risk profile.

We notice that the system belongs in the 2 Stars category. In order to
calculate its continuous rating the metric uses the interpolaration function of
Equation 5.1, with a result of 2.029. An example of the traceability provided
by this rating method is given below. In case we wanted to increase the
rating to 3 stars we would have to reduce the Very High risk category by at
least 4.8%. and the cummulative size of all the risk categories by at least
7%. By noticing the distribution of reported vulnerabilities in the files, we
notice that we would have to correct issues in two files of the Very high
risk category with cummulative size of 4,237 lines of code. Furthermore, in
order to reduce the cummulative size of all the risk categories by at least
7% we could focus on correcting issues in just four files with cummulative
size above 7% of the overall size of the system.

The calculation of the acute issues rating is simpler. Jenkins contains
29 issues. Based on Table 5.6 it belongs in the 1 Star category. The in-
terpolaration function of Equation 5.1 is used to calculate its continuous
rating.

The output of the metrics, additionally, includes information regarding
the location of the vulnerabilities in the system, their type, and their distri-
bution between files, in order to prioritize the files needing correction.

44

5.3.2 Results from the dataset

The ratings produced, from the application of the metrics on all the systems
of the dataset, are given on Table 5.9. The distributions of the systems in
the star categories are presented in Figure 5.7 and on Table 5.10. As we can
notice the distributions approach the defined distributions (in percentages)
of 5%-30%-30%-30%-10% and 30%-30%-30%-10% for the latent and acute
issues (without the five stars category) respectively. Any variations from
the defined distributions are caused due to the small size of our dataset and
the few unique values of acute vulnerabilities existing, making it impossible
to achieve a perfectly aligned distribution.

We additionally checked to verify whether the ratings produced by the
Latent and Acute Issues metrics correlate with the size of the systems (Table
5.11 and Figure 5.8a & 5.8b). As a result, of the rating methods used, there
seems to be no significant correlation between the ratings produced by the
metrics and the size of the systems (-0.053 for the Latent issues and -0.377 for
the Acute). Furthermore, as seen in Table 5.11 and Figure 5.9 there seems
to be no significant correlation between the ratings of the two metrics, as
well (0.144).

45

System Latent Issues Acute Issues
AWS SDK 2.831 1.818

CAS 4.684 2.5

Clojure 1.746 5.5

Elastic Search 3.185 3.5
Fluent-Http 3.069 4.0
Guacamole-client 4.036 3.0

Guice 4.429 4.0

H20 0.506 2.318

HBC 4.399 5.5

Jetserver 4.046 5.9
Java-Websocket 0.5 3.5

Jenkins 2.029 1.375
KeyBox 2.196 3.5

Libgdx 2.499 3.0

Mahout 3.101 4.0

MapDB 1.618 5.5

McMMO 2.059 2.75

Ninja 3.540 5.5

Okhttp 4.029 3.0

OrientDB 2.433 2.5

Oryx 3.510 4.0
WebScarab 2.535 2.181

Webbit 2.498 3.5

WebGoat 2.499 1.375
Webmagic 2.940 2.454
Internal System 1 - Confidential - Confidential
Internal System 2 - Confidential - Confidential

Table 5.9: Ratings of systems.

Stars Latent (in %) | Acute (in %) | Acute for four
Categories (in
7o)

5 Stars 3.7 18.5 -

4 Stars 25.9 29.6 36.4

3 Stars 29.6 25.9 31.8

2 Stars 33.3 14.8 18.2

1 Star 7.4 11.1 13.6

Table 5.10: Distribution of systems in Star Categories.

46

2 4 1

. O 5 Stars

o 7 O 4 Stars
@ 3 Stars

o | | 2 Stars

= B 1 Star

M~

L=

o

o

uw =

o

=

T -

o

L=

o]

L=

; —

=]

e -

Latent Acute Acute (four Categorias)

Figure 5.7: Bar plot of distribution of systems.

Systems Size | p-value | Acute Issues p-value
‘ (loc) ‘
Latent Issues -0.053 0.79 0.144 0.47
Acute Issues ‘ -0.377 ‘ 0.052 ‘ - ‘ -

Table 5.11: Correlations of Metrics’ ratings.

47

Correlation of Latent issues Ratings to System Size

Correlation of Acute issues Ratings to System Size

. .
n 0
=] S
T T
o o
n w
n 0
=] o
T T
o)
< <
3 3
o 9 | o 9 |
N @ N o
ne . ne .
) 0
=] . s | *
T . + .
o ©
[~ ~
. .
3 . 3 .
A4 =
R e 8 . .
. . .
o . . o . . "
. . .
1 . . e o * . < T el o — 1
))
3 T T T T 8 T T T T
1 2 3 4 1 2 3 4

Latent Issues Ratings

(a) Correlation of Latent Issues ratings to (b) Correlation of Acute Issues ratings to

system size.

Acute Issues Ratings

system size.

Figure 5.8: Correlation of metrics’ ratings to system size.

Correlation of Acute issues Ratings to Latent Issues Ratings

.
* .
=+ . .
n
o
c . .
= . .
©
5 . —
3 . I
[4}] .
a - * * e . .
. .
- o . .
: .
: .
(0]
-
* .
T - I | |
1 2 3 j ;

Acute Issues Ratings

Figure 5.9: Correlation of Latent Issues ratings to Acute Issues ratings.

48

Chapter 6

External Dependencies
Metrics

In modern software development, systems consist of multiple components,
which can be developed independently of one another. Components have
been described as the Lego blocks of software engineering [22]. More for-
mally, Taylor, Medvidovic & Dashofy[70] define a software component as
an architectural entity that encapsulates a subset of the system’s function-
ality and/or data, restricts access to that subset via an explicitly defined
interface, and has explicitly defined dependencies on its required execution
context.

Components developed by third party organizations, either proprietary
or open-source, are often integrated in software systems, providing benefits
on cost, time and even performance. However, vulnerabilities contained
on these components can endanger the security of the whole system. The
OWASP Top 10 list, as mentioned in the background chapter (chapter 2.1.2),
draws attention to this problem, in its 9th entry, “Using components with
known vulnerabilities”.

The metrics described in this chapter, aim at discovering vulnerabilities
on these external dependencies of a system (section 6.1) or discovering non
up-to-date external dependencies which could result in security issues (sec-
tion 6.2). Additionally, the results of the application of these metrics on the
dataset is given in section 6.3.

49

6.1 “Dependency Vulnerability” metric

The “Dependency Vulnerability” metric aims at identifying known vulnera-
bilities on the external dependencies of the system. At the beginning of this
section, the tool that is used to identify these vulnerabilities is described.
Afterwards, the processing of the output of the tool, as well as the rating
method applied on the metric, are presented.

6.1.1 Tool

OWASP’s Dependency-check [3] is used to identify external dependencies
with known vulnerabilities. The tool can currently be used to scan Java,
.NET, and Python applications to identify known vulnerable components. In
addition, Dependency-check can be used to scan some source code, including
OpenSSL source code and source code for projects that use Autoconf. In
the context of this thesis, we use it to scan the external dependencies (in the
form of .jar files) of the open-source Java systems contained in our dataset.

Dependency-check uses analyzers to collect information about the files it
scans. The information collected is called evidence; there are three types of
evidence collected: vendor, product, and version. For instance, the JarAna-
lyzer will collect information from the Manifest, pom.xml, and the package
names within the .jar files scanned and by using heuristics it places the
information gathered into one or more types of evidence.

The three types of evidence collected, originate from the Common Plat-
form Enumeration (CPE) naming scheme [50]. CPE provides a standard
machine-readable format for encoding names of IT products and platforms
and includes a formal name format, a method for checking names against a
system, and a description format for binding text and tests to a name. A
Uniform Resource Identifier binding of the CPE follows the format “cpe :
/ [EntryType] : [Vendor]| : [Product] : [Version] : [Revision] : ---”.

The National Vulnerability Database’s (NVD) [55] Common Vulnerabil-
ities and Exposures (CVE) Database [51] uses the CPE naming scheme to
report software which contains vulnerabilities. An example of a CVE entry
is given in Figure 6.1. Dependency-check uses the evidence collected by its
analyzers and attempts to match the entries with entries contained in the,
locally downloaded by the tool, CVE database.

The tool uses confidence levels to rate the evidence found - low, medium,
high and highest. These confidence levels are applied to each item of evi-

50

<entry id="CVE-2012-5@55">

<vuln:vulnerable-software-list>
<vuln:product>cpe:/a:vmware:springsource_spring_security:3.1.2</vuln:product>
<vuln:product>cpe:/a:vmware:springsource_spring_security:2.0.4</vuln:product>
<vuln:product>cpe:/a:vmware:springsource_spring_security:3.0.1</vuln:product>

Figure 6.1: Example of a Common Vulnerabilities and Exposures entry.

dence. When the CPE is determined it is given a confidence level that is
equal to the lowest confidence level of evidence used during identification.
If only highest confidence evidence was used in determining the CPE then
the CPE would have a highest confidence level.

Output of the tool

We configured Dependency-check to output a .xml report of the findings
produced, in order to facilitate easier processing on the metric layer. The
top of the report contains information regarding the version of the CVE
database that is used. Afterwards, general information is given, about the
scan conducted, such as the name of the system and the date of the scan.
The main body of the report presents the dependencies found on the system.
Among the information provided is the name of the file of the external
dependency, the directory where the file was found, the related dependencies
found in the scan, the maven identifier of the dependency (if maven was
used), the evidence that were collected and possibly a description of the
dependency, if existing.

Furthermore, if the dependency is found to contain vulnerabilities addi-
tional entries are provided, such as the CPE identifier of the dependency,
the confidence level of the CPE identifier, and an enumeration of the known
vulnerabilities existing. This enumeration contains, for each vulnerability,
the CVE identifier of the vulnerability, its CVSS score!, references where the
issue is reported, the CWE identifier of the issue, all the software vulnerable
to this vulnerability, as well as a description of the vulnerability.

6.1.2 Metric

After the scan of the software system with Dependency-check is complete,
the output of the tool is processed in order to produce the final rating of the

!The Common Vulnerability Scoring System (CVSS) is an open framework for com-
municating the characteristics and severity of software vulnerabilities [2].

o1

system. First, the needed information, for the dependencies of the system,
is extracted. Afterwards, simple filters we developed, try to reduce the effect
of false positives and inaccurate confidence levels of CPE identifiers. Finally,
the system is rated, based on the severity and number of the vulnerabilities
identified.

Processing of tool output

We produce two tables from the report of Dependency-check. The first table
contains the filename of all the dependencies found on the system, as well
as the number of related dependencies of each dependency. An example of
the first table is given in figure 6.2.

The second table contains information regarding the dependencies that
were found to contain known vulnerabilities. The fields of the table contain
the filename of the dependency, the number of related dependencies, its
maven identifier if existing, its CPE identifier, the confidence level of the
CPE identifier, the CVE identifier of the vulnerability and its CVSS score.
An example of the second table is given in figure 6.3.

Due to how dependency-check identifies libraries, false positives may oc-
cur (a CPE was identified that is incorrect). Furthermore, the dependency
that was identified may be used for testing purposes and hence not be rele-
vant for the rating of the system. For that reason, we developed some basic
filters to try and increase the precision of the confidence levels produced,
based on observations we made during manual inspection of the tool’s re-
ports. It should be noted though, that these filters were developed as a
proof of concept and hence further research on their effectiveness should be
done.

The first filter excludes dependencies located in directories of the system
used for testing purposes or whose filename suggests that they are used for
testing. The second filter reduces the confidence of the HintAnalyzer 2 of
Dependency-check in case the evidence of the analyzer appear not to be
related to the dependency’s filename or increases it if they are. The third
filter, reduces the confidence level of CPE identifiers that do not appear
to share any common words with the maven identifiers of the dependency.
Finally, the fourth filter increases the confidence of specific CPE identifiers
that were observed to be most of the times true positives but had a low
confidence level. At the moment the fourth filter identifies only one such

2The HintAnalyzer uses knowledge about a dependency to add additional information
to help in identification of identifiers or vulnerabilities. At the moment the hint analyzer
identifies dependencies contained in the Spring Framework.

52

Dependency Number_of_related_dependencies

1 aws-java-sdk-autoscaling-1.9.18.jar 4
2 commons-codec-1.6.jar 46
3 commons-logging-1.1.3.jar 45
4 httpclient-4.3.4.jar 46
5 httpcore-4.3.2.jar 46
& jackson-annotations-2.3.0.jar 46
7 jackson-core-2.3.2.jar 46
8 jackson-databind-2.3.2.jar 46

Figure 6.2: Example of the table containing the dependencies of a system.

Dependency Related Dependencies Maven Identifier CPE Identifier Confidence Vulnerability Severity
1 httpclient-4.3.4.jar 46 (org.apache.httpcomponents:httpclient:4.3.4) (cpe:/a:apache:httpelient:4.3.4) HIGHEST CVE-2014-3577 5.8
2 original-aws-java-sdk-osgi-1.9.18.jar 1 (com.amazonaws:aws-java-sdk-0sgi:1.9.18) (cpe:/a:springsource:spring_framework:1.9.18) LOW CVE-2014-1904 4.3
3 original-aws-java-sdk-osgi-1.9.18.jar 1 (com.amazonaws:aws-java-sdk-0sgi:1.9.18) (cpe:/a:springsource:spring_framework:1.9.18) LOW CVE-2014-0054 6.8
4 original-aws-java-sdk-osgi-1.9.18.jar 1 (com.amazonaws:aws-java-sdk-0sgi:1.9.18) (cpe:/a:springsource:spring_frameworl 8) LOW CVE-2013-7315 6.8
5 original-aws-java-sdk-osgi-1.9.18.jar 1 (com.amazonaws:aws-java-sdk-0sgi:1.9.18) (cpe:/a:springsource:spring_frameworl 8) LOW CVE-2013-5429 6.8
6 original-aws-java-sdk-osgi-1.9.18.jar 1 (com.amazonaws:aws-java-sdk-0sgi:1.9.18) (cpe:/a:springsource:spring_framework:1.9.18) LOW CVE-2013-4152 6.8

Figure 6.3: Example of the table containing the vulnerable dependencies of
a system.

external dependency but more can be added through observation.

Effect of filters

In order to verify the precision® of Dependency-check and the effect of the
developed filters, we conducted a small scale experiment on our dataset of
systems. More specifically, we manually checked the reported vulnerable de-
pendencies of 9 open source systems to determine whether they were true or
false positives and verify whether there is an improvement after the applica-
tion of the filters. A complete table of the reported vulnerable dependencies
together with the indication of whether these are true or false positives is
given on Appendix C.

Table 6.1 presents the results of the experiment. We identified 63 file-
names of dependencies. The precision of the tool for all CPE confidence
levels is 65.08%. When we take into account only the high and highest
confidence level the precision increases to 89.96%, containing 45.45% of the
total true positives found. After the application of the filters, the precision
for the high and highest confidence level increases to 96.77% with a recall
of 73.17%.

‘ Precision ‘ Recall
All confidence levels 65.08% -
> High confidence 89.96% 45.45%
> High confidence after filters | 96.77% 73.17%

Table 6.1: Precision of Dependency-check.

True positives
All reported vulnerabilities

3 As precision we define the ratio of

53

Rating Method

We use a single level aggregation of measures to ratings, similar to the one
used for the calculation of the source code acute issues metric (section 5.2.4).

In order to produce a more accurate rating we decided to take into
account during its calculation, only the dependencies whose CPE identifiers
are of high and highest confidence. Furthermore, we do not rate the number
of vulnerable dependencies found in the system, but rather the total number
of individual® vulnerabilities contained in these vulnerable dependencies. We
define three severity levels of vulnerabilities:

e Medium: a vulnerability whose CVSS score is < 4.5.
e High: a vulnerability whose CVSS score is < 5.9.
e Very High: a vulnerability whose CVSS score is > 5.9.

The defined thresholds are presented in table 6.2. The thresholds were
acquired from additional research conducted within [21].

Category M+H+VH H+VH VH
5 Stars 0 0 0
4 Stars 1 1 0
3 Stars 4 4 0
2 Stars 10 7 2
1 Star 14 10 2

Table 6.2: “Dependency Vulnerability” thresholds.

6.2 “Dependency Freshness” metric

Dependencies have to be updated to ensure the flexibility, security, and sta-
bility of the system. Software vulnerabilities, existing on external dependen-
cies of the system, may be repaired in subsequent releases of the component.
However, without proper updating of the external dependencies, these fixes
will not be applied to the system using these dependencies. Indeed, Cox et.
al. [27] found that systems with outdated dependencies are more than four
times as likely to have security issues in their external dependencies.

‘By “individual” we mean that in case a CVE of a vulnerability appears more than
once on the system, we take it into account only the first time.

54

For that reason, the “Dependency Freshness” metric, aims at assessing
the update profile of the third party components used in a system. In that
direction we adopt the benchmarked-based metric developed by Cox et. al.
[27].

The author, in his thesis, presented several measurements to quantify
how outdated an individual dependency is, as well as a benchmark-based
metric to rate a system as a whole. To determine which measurement
method will be applied in order to quantify the update behavior of de-
pendencies, he assessed several methods based on the criteria defined by
Heitlager et.al.[32]. As a result, the version sequence number distance®
selected as the measurement. The author defended this choice by noting that
this measurement discounts dependencies on quick release cycles (which are
thus more subject to change), rather than mature projects which only see
minor updates.

was

The metric produces a benchmarked star rating using the same approach
as the latent issues metric applied in the source code of the system (section
5.2.3). The distribution of systems in the star rating categories aims at being
at 5%-30%-30%-30%-5%. A dataset of 75 systems was used to develop and
test the metric.

The latter, in its current implementation, assesses Java systems which
manage their dependencies through Maven. To determine the dependen-
cies of a system and their exact versions, the manifest file (pom.xml) of
the system is being read. Furthermore, to complete the database of depen-
dency versions, and be able to determine the version sequence distance, the
Maven.org repository is used.

6.3 Results

In this section the results from the application of the metrics on the dataset’s
systems will be provided. At the beginning the ratings and additional output
of each metric is given. Afterwards, we examine whether there is any cor-
relation between the ratings produced by all four metrics of the framework.
Finally, we check whether there, additionally, exists any correlation between
the ratings produced by our metrics and ratings assessing maintainability
properties of the dataset’s systems.

5
°The version sequence number distance is defined as the difference of the version se-
quence numbers of two releases.

55

6.3.1 “Dependency Vulnerability” metric results

The ratings of the systems belonging in our dataset are given in Table 6.3.
The metric, additionally, produces, for each system, the tables presented in
Figures 6.2 and 6.3. The aim of these tables, is to assist systems’ stakehold-
ers to identify all the external dependencies that are used in the system, as
well as the ones containing known vulnerabilities.

The distribution of systems to star categories is given on table 6.4. We
notice that the latter doesn’t comply with the proposed 5%-30%-30%-30%-
5% distribution. This is due to few possible reasons. First the thresholds
were developed by using a larger number of systems, so the size of our dataset
may not be big enough to act as an appropriate representation of systems.
Furthermore, the systems used in our case are open-source systems, which
differs to the systems used in [21].

6.3.2 “Dependency Freshness” metric results

The ratings of the systems belonging in our dataset are given in Table 6.5.
Furthermore, the metric outputs a report containing the found dependencies
and their version sequence number distance to their latest versions.

The distribution of our dataset’s system on the star categories is given
on table 6.6. The distribution is 19.23% - 34.62% - 19.23% - 19.23% - 7.69%.
The difference between this percentages and the proposed 5% - 30% - 30% -
30% - 5% can be explained by the limited size of our dataset and the different
origin of the systems consisting our dataset and Cox et. al.’s dataset.

6.3.3 Correlation of ratings

Since all four metrics of our framework have been explained, we examine
whether their ratings correlate with each other. Through this, we can de-
termine whether there exist any relationships between the areas our metrics
assess.

Furthermore, we check for correlation between the metrics’ ratings and
characteristics of source code that affect the maintainability of a system.
These characteristics are the volume of a software system, the duplication
existing on the system’s code, the size of its units, as well as their complexity
and interfacing, the system’s module coupling, and its components’ balance
and independence.

56

System Rating
Clojure 5.5

Elastic Search 5.5
Guacamole-client 5.5

Jetserver 5.5
Java-Websocket 5.5 - No dependencies -
Keybox 5.5

MapDB 5.5
OrientDB 5.5

AWS SDK 4.0
Fluent-Http 4.0

HBC 4.0

Libgdx 4.0

Ninja 4.0

Okhttp 4.0

Webbit 4.0
Webmagic 4.0

CAS 3.17
WebGoat 2.5

Oryx 2.17

H20 1.84

Guice 0.5

Jenkins 0.5

Mahout 0.5

McMMO 0.5
WebScarab 0.5

Internal System 1 -Confidential
Internal System 2 -Confidential

Table 6.3: “Dependency Vulnerability” ratings.

Star Category Percentage
5 Stars 29,63%

4 Stars 29,63%

3 Stars 7,41%

2 Stars 7,41%

1 Star 25,93%

Table 6.4: Distribution of systems on “Dependency Vulnerability” ratings.

57

System Rating
Clojure 5.5

Keybox 5.5

MapDB 5.5
Fluent-Http 5.9

Libgdx 5.5

Elastic Search 4.22

Ninja 4.19

Okhttp 4.0
OrientDB 3.87

Oryx 3.85
WebScarab 3.76

Mahout 3.76

Jenkins 3.27

Webbit 3.15
WebGoat 3.02
Guacamole-client 2.58

Guice 2.58

CAS 2.45
Webmagic 2.05

H20 1.97
Jetserver 1.90

HBC 1.64
McMMO 14

AWS SDK 1.13
Java-Websocket - No dependencies
Internal System 1 -Confidential
Internal System 2 -Confidential

Table 6.5: “Dependency Freshness” ratings.

Star Category Percentage
5 Stars 19.23%

4 Stars 34.62%

3 Stars 19.23%

2 Stars 19.23%

1 Star 7.69%

Table 6.6: Distribution of systems on “Dependency Freshness” ratings.

58

Latent Dependericies

7 0.24 -0.23 0.24

- I~ —~ 0.02 047

Figure 6.4: Correlation of ratings between metrics.

Our main motivation behind this activity is the discovery of new metrics
that can, possibly, be integrated in our framework. Moreover, we could
perhaps determine development approaches that could result in more secure
software systems.

To acquire the systems’ ratings of the maintainability characteristics we
used the SAT tool (subsection 5.1.2).

Metrics correlation

Figure 6.4 presents the correlation between the ratings of the four met-
rics in our framework. We notice a considerate and statistically significant
(p = 0.014) correlation (Correlation = 0.41) between the ratings of the “De-
pendency Vulnerability” and the acute issues metric. All the other metrics
don’t seem to have a considerate or statistically significant correlation.

59

Correlation of metrics with maintainability aspects

Figure 6.5 presents the correlation between the ratings of the four metrics in
our framework and the maintainability characteristics. There seems to be no
considerate correlation between the maintainability characteristics and the
ratings of the external dependencies’ metrics. Although there is not enough
statistical significance to extract conclusive results, this could be explained
by the fact that these metrics and the metrics that assess the maintainability
characteristics measure different parts of the system, namely the external
dependencies of the system and the system’s source code, respectively.

The source code metrics and mainly the latent issues metric’s rating,
seem to have some correlation with specific maintainability characteristics.
Particularly, we notice a considerate correlation between the latter and the
systems’ unit size and unit complexity (Correlation = 0.56 , p = 0.027 and
p = 0.003), as well as the systems’ module coupling (Correlation = 0.62 ,
p = 0.0007).

Furthermore, the ratings produced by the acute issues metric present
a considerate correlation (Correlation = 0.42 , p = 0.032) with the rat-
ings of the metric assessing the systems’ volume (as we've already seen in
subsection5.3.2 9). Moreover, negative correlation seems to exist between
the rating of the acute issues metric and the unit interfacing of the systems
(Correlation = 0.40 , p = 0.044).

6 Attention should be paid not to get confused by the fact that these correlations appear
to be opposite (-0.377 and 0.42). The first is the correlation between the acute issues
metric and the absolute number of the systems’ volume in terms of lines of code. The
second refers to the correlation of the acute issues metric rating and the rating given to
the systems’ volume. The smaller the volume of a system, the larger the rating.

60

Latent

0.033 o018 -0.13 0026 -0.32 -0.28 -0.28 -0.20

1z s

0.082 -0.068 0.084 -0.29 -0.10 -0.16 0.028 00036

** ** * %X .

021 we | 056 | 056 | 033 | 0.62 | o | 035

* *
0.42 -0.28 -0.12 -0.40 0.17 0.13

Volume .

*%k
A0 0.30 0.20 0.33 0.087 0.20 0.61 -0.26

19

Tz a4

P . * *%
0.36 0.21 0.20 015 0.40 -0.52

* %X

2 oa o4 s

‘s300dse A[Iqeurejuren Yim sSuIjes SOLIJRU JO UOIYR[IIO)) :G'Q 9InSI]

. %ew
o o N P .° 8 . \
O ook Tyt e . 0.17 0.13
R 5 et o ., oo
— o o c, = SR i o %o —_ © e e
. =t R _;/v/; N ~ — - e 0.086 0084

* %K

o5 | 0.64

i S iy
.
U - -0.24
B R — '\
N =
L H . .
o o/, o - ~e o ®
H S . :
[L 5 30 33 40 43 50 s 20 25 30 35 40 43 50 R N

Vo214 s

25 30 35 40 45 50 55

20 1w a0 s

T T

Chapter 7

Validation

This chapter provides details about the design that was used to validate
the developed framework of metrics. Moreover, the results of the validation
procedure are presented.

7.1 Validation Design

To validate the method and assumptions used to develop the framework,
two validation techniques were used.

1. Interviews. Semi-structured interviews were conducted to verify the
degree of user-acceptance of the proposed model, as well as the met-
rics conformance to validity criteria such as discriminative power, pre-
dictability and consistency.

2. Longitudinal analysis. Multiple versions of systems were scanned
to identify whether the security ratings of the systems change through
time.

The framework is evaluated based on the metrics’ validity criteria set by the
ISO 1061-1998 standard [13] and for user acceptance determinants proposed
by C.K. Riemenschneider [60]. ISO 1061-1998 provides a methodology for
establishing quality requirements and identifying, implementing, analyzing
and validating process and product quality metrics. The validity criteria
defined by the ISO 1061-1998 standard are:

1. Correlation. The degree with which the metric rating correlates with

62

the actual quality factor of the system.

2. Tracking. If the quality factor of the system changes through time,
the metric value should change. The change should be in the same
direction, except if the metric value is inversely related to the quality
factor.

3. Consistency. If quality factors of systems have distinct relationships
then the metric values should also have the same distinct relationships
(e.g if Fy > Fy > F3 are quality factor values for the systems 1,2 and
3, then their metric values should also be My > My > M3).

4. Predictability. A metric should be able to predict a quality factor
value with the required accuracy.

5. Discriminative power. A metric should be capable of separating
a set of high-quality software components from a set of low-quality
components.

6. Reliability. A metric should be able to pass the validity test over a
sufficient number of applications, so that there is confidence that the
metric can perform its function consistently.

In addition we will check the framework against significant user-acceptance
determinants for methodologies, as elaborated by C.K. Riemenschneider[60].
By examining five theoretical models, of individual intentions to accept in-
formation technology tools, the author concluded that the following four
determinants were found significant in at least one model:

1. Usefulness. A methodology should be regarded as useful by the team
members in order to have a successful deployment. For a methodology
to be useful, it should increase the team members’ productivity and
quality of work.

2. Compatibility. The methodology should be consistent with the ex-
isting needs, values and past experiences of potential adopters.

3. Subjective Norm / Social Factors. The intention of team mem-
bers to use a methodology at workplace is dependent in a large degree
in the conceived support that this methodology has from their cowork-
ers and supervisors.

4. Voluntariness. Venkatesh and Davis [75] have shown that perceived
voluntariness significantly moderates the direct effect of subjective
norm on intention to use.

63

Category

Question

Usefullness

a. Using the framework would improve my productivity.
b. Using the framework would enhance the quality of my
work.

¢. The advantages of using the framework outweigh the

disadvantages.
d. The framework would be useful in my job.

Compatibility a. The framework is compatible with the way I assess the

security of systems.

Subjective Norm a. People who influence my behavior would think I should

use the framework.

Voluntariness a. Although it might be helpful, using the framework

would certainly not be compulsory in my job.

Table 7.1: Questionnaire of User Acceptance determinants.

7.2 Interviews

Four interviews were conducted to verify the degree of user-acceptance of
the proposed model, as well as the metrics conformance to validity criteria
such as discriminative power, predictability and consistency. By establishing
the type of the interviews to semi-structured, we aimed at gaining further
insight on the approach of the interviewees to security.

At the beginning of the interview, prior to the presentation of the frame-
work, we chose to focus on the present situation of security assessments and
on important properties that a new solution should possess. That was done
in order to qualitatively check whether our solution is compatible to the
present methodology, potential improvements our solution introduces and
important aspects it should conform to. We chose not to present our frame-
work first, since we wanted to avoid bias from the interviewees.

Afterwards, a presentation of the “Metric-based Security Model” was
given, describing its goal, its operation, its current state as well as possible
future work. That was done as a preface for the next phase, the handing of
a questionnaire to the interviewees to quantitatively verify the participant’s
acceptance of the proposed framework.

The questionnaire used a Likert scale; the questions are presented in
Table 7.1.

After the completion of the questionnaire the interviewees were asked

64

to elaborate on their answers as well as name any missing aspects from the
presented framework.

Finally, in the last phase of the interview, the participants were asked to
rank five systems based on how they perceived the systems’ security level. In
order to do so they were presented with material produced by the tools used
in the framework. We chose to use unknown to the interviewees systems as
to avoid bias.

The last phase was split in two parts. In the first part, output produced
by FindBugs was handed to the interviewees, to verify the “Acute” and
“Latent Issues” metrics discriminative power. We chose not to, also, verify
separately the discriminative power of the external dependencies metrics as
similar work was done in [27] and [21].

In the second part, additional material produced by Dependency Check
and the Dependency Freshness metric, were handed and the interviewees
were asked to re-estimate their judgment. This was done in order to verify
the discriminative power of the framework in its entirety.

Four interviews were conducted, of approximate duration of 45 minutes
each. The interviewees were all technical consultants, working at SIG. The
participants are considered highly experienced software developers, having
also performed a number of software security assessments. Subsection 7.2.1
covers in detail the questions that were asked in each phase.

7.2.1 Interview Guide.

As explained in section 7.2, the content phase of the interview was divided
in four stages:

Insight into current approach.
1. How do you approach the security assessment of a software sys-
tem?

2. Which steps could be considered as the bottleneck in your current
procedure?

3. Which steps could produce more effective results?

4. What properties do you consider vital in a framework assessing
software security?

Introduction of the framework.

65

In the current phase a presentation of the framework was given, de-
scribing its goal, its operation, its current state as well as possible
future work.

Questionnaire of acceptance determinants

1. In light of the previous presentation, could you fill in this ques-
tionnaire?

2. (Interviewee is asked to elaborate on his answers).

3. Could you name any aspects you think are missing from the
framework?

Discriminative Power

1. Given the following material, if you were to rank the five following
systems, regarding their security level, what rank would you give?

2. Given additionally the following material (reports from Depen-
dency Check and Dependency Freshness sub-metrics), would you
change this ranking, and if yes, how?

End of Interview.

7.2.2 Results.

In this section the results of the interviews will be provided. First the
answers of the participants will be given, regarding the current approach
followed. Afterwards the answers on the questionnaire of the acceptance
determinants, will be presented, followed be the ranking of the systems,
as done by the interviewees. A discussion of the results of the validation
process, as well as threats to its validity will be provided in Chapter 8.

Insight into current approach answers

Question 1: How do you approach the security assessment of a
software system?

Interviewee A: We have a specific product, called “Security Risk As-
sessment” for that and there is a process that is really simple but there is
a number of topics that we typically address there. It depends a little on
the exact questions that the customer asks, we may look on everything or
sometimes just a specific area. We have a number of areas that we look at,
which ranges from technical aspects, such as implementation, source code,

66

configuration, etc, to architecture, meaning how the system was designed,
to process, how it is maintained and developed. Above that there is the
governance, the risks on an organization level, that are accepted or not ac-
cepted, how the system is managed. So these are typically the areas that
we look at a software risk assessment. Our company has a guide for that,
and it, fortunately, matches with what we do.

-Regarding source code, how would you approach the issue of security on
the source code of a system?

First of all I typically try to understand the architecture of the system,
before I actually go to look at the source code, because that helps me under-
stand why certain things were done this way. Sometimes it can be a decision
not to secure against a problem which can be a valid decision maybe, be-
cause it is an internal application or maybe because it costs too much based
on what the harm would be if it was circumvented.

If then we move to the actual source code, I try to see if the architecture
that was planned, was actually implemented. We have a security model
which is sort of a long list of best practices and it checks if they are applied,
that is a very thorough look at the source code, but there is also stuff that
is not in there, like it does not check if the project actually implements the
designed architecture, or some deliberate design decisions, that the security
model may interpret as bad. So the security model is very important. It
helps you to look at the source code at a very structured way, so if you apply
that you learn a lot.

— As I understood it is not quite often that you search for actual vulner-
abilities on the source code, like on a line level?

No, that is right. Well you can do that but that would take forever, on
a reasonably sized system. A tool like Checkmarx does try to do that of
course but it does have a limited set of vulnerabilities and limited capacity
to do that. Well we could spend like two years and review every line and say
here is a vulnerability, but that is not very effective. So what we do with
the model is to see if the written best practices are applied.

Interviewee B: We look for vulnerabilities originating from relevant to
the system threats, which are system-dependable. When we scan the source
code, we do not do it randomly; we look in a number of checks that are in
our security model, but we also look at how those tests relate in performing
those kinds of attacks (that relate with the plausible threats to the system).
So basically, we check from a scenario point of view, not a technical point
of view.

67

Interviewee C: It depends on what is important for the client. For
example we may look at the process that the developers follow, e.g what
kind of secure development methodology do the developers follow, or what
coding guidelines they follow. And only a very minor part of our work is to
look on the source code. If we had to look on the source code we would do a
best effort approach, so we would spend a certain, large, amount of time on
code reviews trying to locate issues, after interviewing the developers, trying
to understand of the most important transactions through the system, and
we would start with those, so we would start from the input, work our way
back to a database if its there, and then work to the front again, to basically
check whether everything is in place, like escaping, input validation, output
encoding. And so, that would be pretty labor intensive, depending also on
the quality of the system.

Interviewee D: We typically do manual reviews of the code, based on a
checklist of best practices and, on occasions, source code analysis, depending
of the requirements of the clients. Additionally, we conduct interviews,
trying to locate security problems in the system’s architecture and other
aspects.

Question 2: Which steps could be considered as the bottleneck
in your current procedure?

A: For the source code specifically or for the entire process?
— Source code.

The security model itself. Applying that to a reasonably sized system,
just takes very long. So, currently we plan about one to two weeks, de-
pending on the system’s size and the technology for applying the full model.
There exist basically two things that make it take so long. One of them is
that the model is quite detailed, all in all there are like 80 to a 100 points
that you should check. Even if you take 100,000 lines of code, which is not
that big, that is just a lot of work to make sure that you understand each
of these things for that system. And the second part is that even if it is a
technology that you are quite familiar with, then they are using frameworks
that you have never hear of, or old versions, so you just need to figure out
how things work with that technology.

B: I would put it quite differently. I think the biggest bottleneck we
have is knowledge. With security there is so much knowledge you need to
accumulate before you start doing this, that is not good for people to send
them for a security assessment in their first year, because it is too much
stuff that you have to pay attention to. So another thing is that it is not
objective and it is not automated, it depends heavily on who is doing the

68

assessment. So, it relies too much on the person doing it.

C: In general code inspections are labor intensive, you really need to
understand the application well, so before you can even start doing a code
inspection you really need to have a really good understanding of its archi-
tecture, of the technology stack that is being used, if it is something you
are not familiar yourself then you need to investigate as well. So number
of bottlenecks: it requires a lot of knowledge, a lot of technology specific
knowledge, the code review itself is time-demanding, depending on the size
of the system, and how many symptoms you have found, if you find a lot
of issues then it is easy, but if you do not find a lot, especially with a large
system, then it is harder. Usually also, you do not want to only report the
findings but you want to report solutions as well. So, actually all of those
can be pretty labor intensive.

D: The source code analysis could be considered as a bottleneck in our
current process.

Question 3: Which steps could produce more effective results?

A: What might be problematic, which we have tried to accommodate a
bit, is that I might find things that you would not find and you might find
things that I would not find, just because of our background, our knowledge
maybe the amount of time you put in. So yes, applying the model could be
much more effective either by ensuring that everybody does the same thing
and maybe having some tools to speed it up.

B: The finding stuff can be more effective. How to make something less
dependent to individuals, to standardize the process, to standardize what
you look at and automate it, to have some quality checks. Something like
your model, a more product-characteristic-based; that is the way we want to
go for, because that is objective. Looking at the context will always depend
on expert opinion; purely the underlying function though, i.e whether the
product is indeed secure or not, that can be automated.

C: It would be nice to have some kind of a repository of code samples
in all software technologies. We have some coding guidelines we wrote for
customers, but they are pretty mainstream and not technology specific. So a
kind of repository technology combined with a countermeasure, that would
help a lot, so you immediately knew what you should be doing.

D: The manual review of the source code. Automation could provide
better results in terms of repeatability. However, static analysis misses con-
ceptual mistakes that human experts can find.

69

Question 4: What properties do you consider vital in a frame-
work assessing software security?

A: T think one of the properties you would want from a new model is,
on one hand it should of course be correlated to actual security but another
thing we are, of course, looking for is that it should be more automated at
least, maybe fully.

B: The outcome should be in a way, that someone who owns the system
could understand it. The level of risk, acceptable for a system, should be
clear.

C: Automation, having a fully automated security model.

D: A new model should provide easy to communicate results, speak in
terms of urgency, not by simply listing vulnerabilities. As a result, it should
prioritize the findings.

Answers on questionnaire

Table 7.2 presents the answers on the questionnaire of the acceptance deter-
minants (Table 7.1), the third phase of the interview process. The answers
of the questions used a likert scale of 5 points. The point with number 1
meant that the interviewee completely disagreed with the question, whereas
the point with number 5 meant that the interviewee completely agreed with
the question.

In general, the framework is considered useful by the participants (with
an average of 4.5 out of 5) with a potential to enhance their quality of work
(3.5 out of 5) and increase their productivity (3.5 out of 5). Furthermore,
the participants believe that the proposed solution is compatible with the
way that they assess the security of systems (3.75 out of 5). Finally, the
answers regarding the subjective norm and the voluntariness of use of the
framework were close to the median.

After the presentation of the “Metric-based Security Model” the par-
ticipants were asked to mention if there are, in their opinion, any missing
aspects from the framework. Their answers are given below.

Could you name any aspects you think are missing from the “Metric-
based Security Model?

A: Some metrics that we do not have yet, in new research areas such as
the attack surface of a software system. Furthermore, files with historically,

70

Question A B o D Mean

1. Using the framework would im- 2 5 4 3 3.5
prove my productivity.
2. Using the framework would en- 4 2 5 4 3.75
hance the quality of my work.
3. The advantages of using the 3 2 4 5 3.5
framework outweigh the disadvan-
tages.

4. The framework would be useful 4 4 5 5 4.5
in my job.
5. The framework is compatible 4 2 5 4 3.75
with the way I assess the security
of systems.

6. People who influence my be- 2 2 3 4 2.75
havior would think I should use the
framework.

7. Although it might be helpful, us- 5 4 1 3 3.25
ing the framework would certainly
not be compulsory in my job.

Table 7.2: Answers of interviewees on questionnaire of acceptance determi-
nants.

many detected vulnerabilities of the system, could be detected by the commit
file, or the number of changes or bug trackers. Basically we could look at
circumstantial evidence that point to the fact that something is not secure.

B: It is impossible to get it into the model but exploitability, how much
could go wrong in practice if I exploit this kind of stuff. Another thing that
is also not very practical to put in there is also consistency, whether similar
problems are solved in similar ways in the code, because if they do not,
then there is more likely chance there is a mistake. But it is also a broad
topic. Also, authentication checks, for example authorization checks, you
also want them to be implemented in the same way. But in terms of the
material that is there I think it is pretty good, but it is not a complete set
yet, all of the other stuff though is very difficult to have. Furthermore, error
handling could be added, how do people deal with errors in general.

C: I can not think of any missing aspects right now.

D: I tend to say that it is missing the presentation part, a way to com-
municate the problem.

71

Discriminative power of metrics

The participants were, additionally, asked to rank five systems based on
measurements provided by the tools used in our framework. This was done
in two stages.

First, the interviewees were given output provided by FindBugs and
“Find Security Bugs” plugin. The target of this stage was to verify the dis-
criminative power of the source code metrics combined, i.e. how accurately
they can distinguish systems. The results are presented in Table 7.3. As
it can be seen the average ranking of systems by the interviewees is similar
to the ranking of the systems as done by the framework. Indeed, in Table
7.5 we see that the Spearman correlation of the interviewees answers to the
framework’s ranking is 1.

In the second part, additional material produced by the external depen-
dencies metrics, were handed and the interviewees were asked to re-estimate
their judgment. This was done in order to verify the discriminative power
of the model in its entirety. The results are presented in Table 7.4. Again
the interviewees’ ranking is similar to the framework’s ranking, except for a
same average ranking of the first two systems. The Spearman correlation of
the interviewees answers to the framework’s ranking is 0.974.

The power mean of the metrics’ ratings (Equation 4.1) was used to get
the framework’s combined ranking of the systems. On the first part, the
ratings produced by the source code metrics where aggregated, whereas in
the second part the ratings produced by all the metrics of the framework,
were used.

System Rank of Systems A B o D | Average
(By framework)

HBC 1 1 2 1 1 1.25

Ninja 2 2 1 2 2 1.75

CAS 3 5 3 3 3 3.5

WebScarab 4 3 4 4 5 4

H20 5 4 5 5 4 4.5

Table 7.3: Answers of interviewees on ranking of systems based on source
code static analysis tools output.

72

System Rank of Systems A B o D | Average
(By framework)

Ninja 1 2 1 2 1 1.5

HBC 2 1 2 1 2 1.5

CAS 3 5 3 3 3 3.5

WebScarab 4 3 4 4 5 4

H20 5 4 5 5 4 4.5

Table 7.4: Answers of interviewees on ranking of systems based on output
of all the tools used in the framework.

Part Spearman Correlation
Output from tools used in source 1

code metrics

Output from all the tools used by 0.974

the framework

Table 7.5: Spearman correlation of interviewees ranking of systems to frame-
work’s rankings.

7.3 Longitudinal Analysis.

The second part of the validation procedure is consisted of a longitudinal
analysis of the source code metrics, on five systems of the dataset. The
target of the analysis is to identify whether the metrics’ ratings change
through time. Through this we aim to verify whether the metrics conform
with the “Tracking” validity criterion of ISO 1061-1998. We decided not to
include the external dependencies metrics in the analysis, since similar work
has been done in [21] and [27].

The tracking criterion states that if the quality factor of the system
changes through time, the metric value should change. The change should
be in the same direction, except if the metric value is inversely related to
the quality factor.

In the analysis we used 40 snapshots of 5 systems, 8 per system. The
systems, their versions and the release dates of the versions can be seen in
Table D.1 of Appendix D.

73

7.3.1 Results

The ratings for both the “acute” and “latent” issues metrics, for each sys-
tem’s version, can be seen in Table D.2 of Appendix D. Furthermore, Figures
7.1a and 7.1b show the change of the “acute” and “latent” issues metrics
respectively, per system’s version.

We notice that the ratings can vary per version, especially in regard to
the latent issues metric. This change is caused by the addition or removal
of code containing potential vulnerabilities. Table 7.6 shows the variance of
ratings for each system. For the latent issues the system with the highest
variance is Webbit (0.3310) whereas Ninja has the lowest variance between
its ratings for each version (0.1182). Ninja and Fluent-http show no variance
between their acute issues ratings. Webbit, on the other hand, has also the
highest variance of its acute issues ratings (0.0714).

In general, the ratings produced by the latent issues metric show higher
variance than those produced by the acute issues metric. Table 7.7 presents
the median and mean of the variances for each metric. The median and
mean for the latent issues ratings are 0.1369 and 0.1681, whereas for the
acute issues they are 0.0078 and 0.0266 respectively.

As a next step we examined whether the degree of change of ratings
per version of a system is dependent on the difference of volume between
the two versions. Figure 7.2 and Table D.3 (located in Appendix D) show
the size difference, in terms of lines of code, between subsequent versions
of the systems. To identify whether a larger change of volume between two
versions could result in a larger change of ratings, we checked for the Pearson
correlation between the absolute value of the size difference between the two
versions and the absolute value of the difference of their ratings. The results
can be seen in Table 7.8. Although the p-values are quite high to allow
for statistically significant results, we notice that there is very low to no
correlation (0.1101 for the latent issues and 0.0419 for the acute issues).

74

System

Variance of Latent
Issues Rating

Variance of Acute
Issues Rating

Guacamole 0.1505 0.0078
Webbit 0.3310 0.0714
Ninja 0.1182 0.0000
OkHttp 0.1369 0.0536

Fluent-Http 0.1038 0.0000

Table 7.6: Variance of rating changes.
Rating Median Mean
Latent Issues 0.1369 0.1681
Acute Issues 0.0078 0.0266

Table 7.7: Median and mean of variance of rating changes.

Rating Pearson Correlation with size p-value
Difference
Latent Issues 0.1101 0.4986
Acute Issues 0.0419 0.7974

Table 7.8: Correlation between absolute size difference and absolute rating

change, between versions of the systems.

75

Latent Rating

Acute Rating

Change of Latent Issues rating through versions

! -

1 2 3 4 5 6 T 8
Versions
Systems
—+— fluent guacamole * ninja - okhtp —O— webbit

(a) Latent Issues Ratings of systems.

Change of Acute Issues rating through versions

* . v . . v * .
-1 = L] L] -x - - * -
-~
-
-
Qe=-=- -o._ O———-O0———-0———-0
— @ s @ e e e @ e s @ e e o
T T T T T T T T
1 2 3 4 5 6 7 8
Versions
Systems
—+— fluent guacamaole * ninja T - okhttp —0— waebhit

(b) Acute Issues ratings of systems.

Figure 7.1: Ratings of systems.

76

Size difference between versions

=
2
=
-
S
e 3 |
g B
w
3
2 .0,
— " N1
2 o de et T g O :Qﬁzﬂq,_'—"‘—‘—'—éﬁ___.g
—-n =
g .
=
§
=
=
8 8 |
B
T T T T T T T T
1 2 3 4 5 6 7 8
Versions
Systems
—— fluent guacamole ninja T - okhttp —— wabbit

Figure 7.2: Size difference between subsequent versions of systems.

7

Chapter 8

Discussion

In the current chapter we provide our interpretation of the results produced
by the application of the framework in the dataset of open source systems
we used, as the former were presented in sections 5.3 and 6.3. Furthermore,
we comment on the results of the validation procedure (Chapter 7), and
finally, we state the factors that act as threats to the validity of our study.

8.1 Discussion on result sections

8.1.1 Discussion on results of source code metrics.

On the results section of the “Source code metrics” chapter (Section 5.3)
we provide an example of how a system is rated by both the “Acute” and
“Latent Issues” metrics. Furthermore, we present the distribution of the
systems of the dataset in the star categories as well as the effect of the
rating methods used, in the correlation of the ratings and the systems’ size.

As it can be seen, the rating methods used are efficient both in regards
to the distribution of the systems in the star categories, where the actual
distributions were close to the targeted ones, as well as on providing little
correlation between the rating of a system and its size (-0.053 for the “Latent
Issues” and -0.377 for the “Acute Issues”). The reason that we consider
important that little correlation should exist can be seen in Section 5.2.2.
There, by conducting a statistical analysis of the systems in our dataset
we proved that the correlation of the number of potential vulnerabilities
reported by FindBugs and the systems’ size is 0.966 for the “Latent Issues”
and 0.415 for the “Acute Issues”. Therefore, in the case of the “Latent

78

Issues” metric we decided to take into account the size of the system in the
rating method, in order to avoid larger systems having a lower rating than
smaller systems.

On the contrary, regarding the “Acute Issues” metric we chose not to
normalize by system size. This decision was taken for two reasons. First the
correlation we found in the statistical analysis of the section 5.2.2, as well as
the correlation reported by Mitropoulos [53] of the “Security High” category
(where our categories originate from) is not as high as the correlation of
the reported vulnerabilities of the “Latent Issues” metric with the systems’
size. Furthermore, we believe that, due to the severity of the vulnerabilities
belonging in the “Acute Issues” metric, a rating method that would assess
the absolute number of vulnerabilities found would be more appropriate.

8.1.2 Results of third-party dependencies metrics.

In Section 6.3 we present the results from the application of the external
dependencies metrics on the dataset. At the beginning the ratings and
additional output produced by each metric are provided. Afterwards, we
examine whether there is any correlation between the framework’s ratings.
Finally, we check whether any correlation exists between our metrics rat-
ings and ratings from metrics that assess maintainability properties of the
systems’ source code.

On both metrics of the external dependencies we used thresholds that
were found through research that was already conducted prior to ours. In
the case of the “Dependency Vulnerability” metric the thresholds used were
identified in the context of the research conducted by Cadariu [21], whereas
as already explained, the “Dependency Freshness” metric was created by
Cox [27]. We chose to use the authors’ thresholds rather than identifying
our own as the number of system that were used to define the thresholds were
considerably more, which could result in more accurate thresholds. Further-
more, in the case of the “Dependency Vulnerability” metric, we were enabled
to use these thresholds since in both our research and in Cadariu’s research
the same tool, “Dependency Check”, was used to detect the vulnerabilities
in the third party dependencies of the systems.

We notice, though, that for both metrics the distribution of our dataset’s
systems, in the star categories, did not fully comply with the targeted dis-
tributions. As we explained, we believe that a reason for this is that, due to
its limited size, our dataset was not representative enough.

Furthermore though, in the case of the “Dependency vulnerability” met-

79

ric we should also consider that there are differences between both the
version of the “Dependency Check” that was used in ours and Cadariu’s
research, the location from where the tool was acquiring the third party de-
pendencies used by a system (in the case of Cadariu’s research the .pom file
was accessed whereas in our research the tool was using the .jar files of the
dependencies), and the further classification of the reported vulnerabilities
to confidence levels that was conducted in our research (and through which
only the high and highest confidence vulnerabilities were taken into account
in the rating of the systems).

In the same section we also check for correlation between the ratings of
the framework’s metrics. The results are given in Figure 6.4. We notice that
the ratings produced by the “Acute Issues” metric and the “Dependency
Vulnerability” metric have a correlation of approximately 0.47. That could
mean that in systems with severe security violations in their source code
there is also not proper control for known vulnerabilities in their external
dependencies. On the other hand, we notice that there is no significant
correlation between the other ratings that were produced by the metrics.
We believe that this can indicate that, indeed, the characteristics that each
metric assesses are separate and the performance of a system in one metric
doesn’t affect its performance in another. That fact, in turn, indicates the
usefulness of our framework, since as already noted in related literature [45]
no metric by its own can produce conclusive results about the security level
of a software, so a framework that assesses a system from multiple sides is
needed.

We additionally checked whether certain maintainability characteristics
can indicate the security status of a system. Our motivation behind this ex-
periment is the addition of more metrics and as a result of more sources of
information, which can provide a more complete view to the stakeholders of
a system. The results are presented in Figure 6.5. As we notice the metrics
of the external dependencies show no correlation with the maintainability
characteristics of the systems. This can be explained by the fact that the
two sides assess different parts of a system, namely its external dependencies
and its source code respectively. On the other hand, the source code metrics
and mainly the “Latent Issues” metric’s rating, seem to have some corre-
lation with specific maintainability characteristics. Particularly, we notice
a considerate correlation between the latter and the systems’ unit size and
unit complexity (Correlation = 0.56 , p = 0.027 and p = 0.003), as well as
the systems’ module coupling (Correlation = 0.62 , p = 0.0007). That can
indicate that as a system becomes harder to maintain it becomes easier to
introduce latent vulnerabilities on it.

Furthermore, the ratings produced by the acute issues metric present

80

a considerate correlation (Correlation = 0.42 |, p = 0.032) with the rat-
ings of the metric assessing a system’s volume. That was expected and this
issue was already addressed in Subsection 8.1.1. Moreover, negative cor-
relation seems to exist between the rating of the acute issues metric and
the unit interfacing of the systems (Correlation = 0.40 , p = 0.044). The
later indicates that units with more parameters defined in their signature or
declaration are more possible to have an acute issue vulnerability.

8.1.3 Results of validation.

Chapter 7 presents the design and results of the validation of the frame-
work. The aim of this chapter, specifically, is to assess the framework’s
conformance to user acceptance criteria, as well as check the metric against
the validity criteria specified by ISO-1061-1998 [13].

Two validation techniques were used. First, four semi-structured inter-
views were conducted. The interviewees were all, experienced developers,
as well as consultants internal to the company where the research was con-
ducted, with wide experience in software security assessments. The second
part of the validation procedure was consisted of a longitudinal analysis of
the source code metrics, on five systems of the dataset.

Interviews.

The interviews were split into four parts. At the beginning questions regard-
ing the participants current approach of security assessments were asked.
The purpose of these questions was to, qualitatively, assess whether our
proposed framework is compatible with the way the experts assess the secu-
rity of a system. Namely, whether it addresses the disadvantages that their
approach currently has and whether it adds features that they consider vital.

The first question asked the participants on what is their current ap-
proach towards assessing the security of source code. The participants are
conducting, if needed, manual code reviews based on a set of guidelines that
they use. These guidelines, mainly assess whether best practices are gener-
ally applied but they do not look on a source code level to identify whether
actual vulnerabilities are present. Their approach possesses both advantages
and disadvantages. Namely, the interviewees include the architecture and
design of the system in the aspects that they assess as well as the context
within the system is used. Furthermore, they overall check more aspects
than our framework does. For both these reasons their approach can po-

81

tentially provide a more holistic view of the security status of a software
system.

However, on the other hand, this approach does not (with the exception
of the occasional use of a static analysis tool) look in depth whether specific
vulnerabilities are present in an application, which could result in a potential
loss of vital information. Moreover, these manual reviews are time consum-
ing, dependent on the expert’s opinion and knowledge and their results are
hard to reproduce.

These disadvantages were the subject of the next two questions. More
specifically in the second question the participants were asked which step was
the bottleneck (in terms of time) in their current approach. Our rational
behind this question was that we consider, as an advantage of our framework
the fact that it is automated which could result in a significant decrease of
the time needed to conduct an assessment. Indeed, the participants verified
that these manual code reviews were highly time-consuming, both due to
the number of separate issues that had to be checked as well as due to the
time needed for the person that conducts the assessment to become familiar
with the system and the technologies used.

The third question asked the participants which steps of their process
could produce more effective results. This question differs from the previous
one since it does not focus on the time needed to complete the assessment but
rather in the end quality of the results produced. A number of factors has
been given. The participants, more specifically, believe that the end quality
of the assessment is dependent on the level of knowledge and experience of
the assessor. Furthermore, they think that if their process was supported
by automated tools, the discovery of results could become more efficient.
Moreover, they note that further standardization of the process could only
be achieved by further automating it. Another advantage of introducing
automation in their process, they mentioned, would be the improvement in
terms of repeatability of the results. Their answers prove, hence, that our
framework can prove useful for improving their current methodology.

The fourth question of the interview focused on aspects that the partic-
ipants consider vital in a new methodology that would assesses the security
level of a software. The participants believe that a new methodology should
be as automated as possible and its results should, evidently, correlate to
the actual security of the system. Furthermore, the interviewees believe
that the results should be easy to communicate, support a prioritization of
findings and set an acceptable level of risk for an application. We consider
that our methodology satisfies these demands. The framework was designed
to use automated metrics in order to reduce the time needed to complete an

82

assessment and enable easy repeatability. Furthermore, by using the current
rating method, we consider that the results of the assessments are easy to
communicate and by having a separate rating for each metric we believe
that the findings can be prioritized.

In the second part of the interviews a presentation of our framework was
given. The latter was followed by a completion, from the participants, of
a questionnaire assessing the framework’s conformance to user acceptance
criteria. The participants answered, in total, seven questions regarding the
framework’s usefulness, compatibility to their current approach, subjective
norm and voluntariness of use. It should also be noted that the interviewees
were asked to rate the framework based on its condition at the time that
the interviews were conducted, rather than its perceived condition when the
framework would be completed. This fact, as the participants mentioned,
resulted in a lower rating.

In general though, our solution is considered useful by the participants
(with an average of 4.5 out of 5) with a potential to enhance their quality of
work (3.5 out of 5) and increase their productivity (3.5 out of 5). Further-
more, the participants believe that the proposed solution is compatible with
the way that they assess the security of systems (3.75 out of 5). Finally, the
answers regarding the subjective norm and the voluntariness of use of the
framework were close to the median, although the participants noted that
the current condition of the model affected their reply.

We consider that the participants’ answers on the questionnaire confirm
our beliefs that the framework is useful in order to assess the security status
of an application. On another note though, possibly, the advantages of using
the model should have been communicated better. The participants, also,
consider as a disadvantage of the framework the number of false positives
that the tools produce, a point that will be described further in the next
section.

The participants were, afterwards, asked to name any missing aspects
from the framework. Their answers provided a number of new metrics that
could be added in the framework. Furthermore, it became understood that
more work could have been done in the presentation of the findings since an
interviewee thought that this part could be improved.

In the final part of the interviews the participants were asked to rank five
systems based on measurements provided by the tools used in our frame-
work. This was done in two stages. First, the interviewees were given output
provided by FindBugs and “Find Security Bugs” plugin. The target of this
stage was to verify the discriminative power of the source code metrics com-

83

bined, i.e. how accurately they can distinguish systems.

In the second part, additional material produced by the external depen-
dencies metrics, were handed and the interviewees were asked to re-estimate
their judgment. This was done in order to verify the discriminative power
of the model in its entirety.

From the results we notice that, in general, the interviewees judgment
was close to our framework’s especially from distinguishing the highest rank-
ing systems from the lowest ones. We contribute some variations from the
exact order of the systems in the following factors. First, certain systems
had only slight differences in their findings, which could make it harder for
an individual to rank them. Furthermore, we noticed that the interviewees
took into account the context within these systems are meant to be used,
something that is not yet addressed by the framework. Finally, the par-
ticipants mentioned that there was provided a large amount of information
which made its processing harder. In fact, we consider the final comment as
another issue that an automated solution can address.

Longitudinal Analysis

The second part of the validation procedure was consisted of a longitudinal
analysis of the source code metrics, on five systems of the dataset. The
target of the analysis was to identify whether the metrics’ ratings change
through time.

Through the analysis we verified that, indeed, the ratings of the metrics
can show variation between consecutive versions. We noticed, though, that
this variation is significantly larger for the “Latent Issues” metric’s ratings
than for the “Acute Issues”. We consider that this difference is caused by
the small number of acute issues per system for our dataset, the increased
difficulty that there is (in comparison with the latent issues) in introducing
new acute vulnerabilities in a system and in the limited size of our dataset
which made the effect of outliers larger during the calculation of the thresh-
olds in our rating method. The latter resulted in smaller rating differences
between different distinct values of acute issues.

We also identified that the difference in size between versions doesn’t
affect the difference in their ratings. Although a person could support that
the bigger the changes are, the larger the chance for an issue to be introduced
in a system, on the other hand we consider that new vulnerabilities can be
created to a system even from a small change to its source code. Moreover,
during our analysis we noticed that the more mature a system is, it presents

84

smaller rating changes. However, since the purpose of our analysis was
different, further research is needed in order to produce a conclusive result
on that field.

8.2 Threats to Validity

During our research we encountered a number of potential threats to the
validity of our work. Those are summarized below.

8.2.1 Accuracy of static analysis tools.

The accuracy of our results depends on the accuracy of the static analysis
tools we use. One of the major disadvantages of the latter is the number
of false positives they produce. As already stated in section 2.1.3 there is
a considerate amount of false positives produced by the tools, which varies
from 20% to even 100%. Although some minor work has been done, within
our research, to limit the effect of false positives on the validity of our
framework (such as the filters designed and the rating of only the high and
highest confidence level vulnerabilities in the “Dependency Vulnerability”
metric), it should be noted that it is not a goal of our research to evaluate
the accuracy of the static analysis tools used and hence we didn’t distinguish
between false and true positives before producing a rating for the systems of
our dataset. As it can be understood then, the accuracy of the final ratings of
the systems and of their reported vulnerabilities can be significantly affected
by this fact.

We should also note that the tool we used for the source code metrics, i.e
FindBugs, is not a specialized tool in identifying security vulnerabilities. It
could be suggested, hence, that a security specific static analysis tool could
produce findings of higher quality. The reasons though that we chose this
specific tool are explained in section 5.1.1. These include the fact that it is
an open source tool, opposite to most security static analysis tools which
are commercial, it is faster in analyzing a system and it has been used
extensively in previous research.

Another disadvantage of automated source code scanning, in general,
is its inability to take into account, during the analysis of a system, the
context within the latter is used. As a result, a static analysis tool can report
vulnerabilities which are not possible to be exploited or which have limited
or no impact in the security of the system and its information. Furthermore,
we should also note that automated tools of this type do not assess security

85

flaws originating from flawed architectural design of a system, as well as
implicit mistakes from misconceptions of how a system should operate.

Finally, although, static analysis tools can detect vulnerabilities on ex-
isting source code, they do not have the ability, and hence neither does our
framework, to detect complete absence of security controls or other security
specific functions of a system.

8.2.2 Method design.

We consider as a constraining factor to the validity of our research the limited
size of our dataset. As already mentioned in our thesis, the latter causes
implications in the accuracy of the thresholds produced, where 27 systems
could be considered as a limited sample. Moreover, as we have seen in the
statistical analysis conducted in section 5.2.2, we were able to identify only
24 out of the 46 distinct acute vulnerabilities and 15 out of the 43 latent
vulnerabilities, within our dataset.

The generalizability of our research is also limited by the type of the ap-
plications our framework can rate. More specifically, as explained in section
4.3 all the systems in our dataset are Java systems and Maven compilable.
This fact is caused due to the implementation details of our metrics and
tools used, since FindBugs and “Dependency Check” can only scan Java
systems, whereas “Dependency Freshness” reads the .pom files needed in
maven-compilable systems.

8.2.3 Validation design.

The limited number of participants, in the interviews conducted during the
validation of the framework, could also introduce variations of the results
produced from the actual acceptance of our solution. Furthermore, the
fact that the interviewees were all employed within the company that the
research was conducted could introduce bias in their answers. Finally, more
types of stakeholders of an application could have been interviewed such as
full-time developers and managers, in order to evaluate different aspects of
our framework and each category’s distinct acceptance to our solution.

In defence of our validation design we should note that its target was to
extract qualitative information regarding the framework’s acceptance and
validity. In that context we consider that the number of the participants
is adequate. Furthermore, by interviewing experienced consultants we were
able to harvest information addressing multiple sides of interest regarding a

86

software system and its level of security.

87

Chapter 9

Conclusion

In the given study we demonstrated how a framework of metrics can be cre-
ated in order to assist a system’s stakeholders into acquiring a quantitative
basis of its security status.

The main research question of this study, as presented in section 1.1, is:

How can software security be expressed by means of automatically-
obtained vulnerability metrics?

In order to answer the main research question the following sub-questions
have been determined:

1. How to derive metrics from a system’s software vulnerabilities?

(a) Can we assess a system’s security by deriving metrics that rely
on the severity of software vulnerabilities?

(b) Can we derive metrics from static analysis tools’ automated mea-
surements?

2. How to build a framework of metrics to assess software security?

We followed a Goal-Question-Metric approach to identify a set of metrics
that enable us to assess the security level of a software (Section 3.2). As
can be seen in Table 3.1, the metrics that consist the framework, address
different aspects of a system’s security.

The first two metrics, “Acute” and “Latent Issues”, detect vulnerabilities
within the source code of the system and provide a rating based on the
number of vulnerabilities detected.

88

The “Acute Issues” metric detects high severity violations of secure cod-
ing patterns. These violations require no or minimal knowledge of the ap-
plication’s internal structure and are related with issues such as injection
vulnerabilities, unvalidated redirects, sensitive data exposure, etc. The “La-
tent Issues” metric detects and provides a rating for medium severity viola-
tions detected, such as vulnerabilities for which another program should be
written to incorporate references to mutable objects, non final fields, etc.

The other two metrics detect issues located in third-party dependencies
of the system. More specifically, the “Dependency Vulnerability” metric de-
tects vulnerabilities located on a system’s dependencies and returns a rating
based on the number of vulnerabilities found and their severity. Finally, the
“Dependency Freshness” metric, detects how recently the third party de-
pendencies of the system were updated.

The first three metrics were developed within this research. The “De-
pendency Freshness” metric, developed by Cox [27], was integrated to the
metric-based Security model, to provide an as more holistic view, of the
security status of the third-party components, as possible.

In order to identify vulnerabilities on the software system we used static
analysis tools. FindBugs and its security-oriented plugin “Find Security
Bugs” were used to locate vulnerabilities on the source code of the system,
whereas Dependency Check was used to locate external dependencies with
known vulnerabilities. Furthermore, SAT (Section 5.1.2) was used to provide
information regarding the size of the software system as well as ratings of
maintainability characteristics of the systems in our dataset. The reasons
we chose FindBugs are stated in Section 5.1.

The rating generated by each metric shows the status of the system,
in regard to the security characteristic analyzed by the metric. In order to
define the thresholds of each rating category we used a dataset of 27 systems
of which 25 were open-source and 2 were internal systems of the organization
within this study was conducted. The rating methods used by each metric
are explained in Sections 5.2.3, 5.2.4, 6.1.2 and 6.2.

3. Is the proposed framework useful for assessing software security?
4. Do the proposed metrics accurately express software security?

The validation procedure of our framework was carried in two parts.
In the first part we conducted four interviews to identify the framework’s
conformance to acceptance criteria for new methodologies as identified by
Riemenschneider [60] as well as to evaluate the framework’s metrics against
validity criteria set by the ISO 1061-1998 standard [13]. More specifically

89

during the interviews we checked whether the metrics conformed with the
“consistency” and “discriminative power” validity criteria.

In the second part of the validation procedure we conducted a longitu-
dinal analysis on five systems of our dataset. The goal of the analysis was
to identify whether the source code metrics conformed with the “tracking”
and “reliability” validity criteria of ISO 1061-1998. Eight snapshots of each
system were selected and their ratings’ variance was measured.

Through the creation of such a framework we aimed to prove that mul-
tiple gains can be achieved, such as a decrease in time and human resources
needed to perform an analysis, an increase in the quality and quantity of
the results, as well as a valid representation of the security level of a system.

Our claims are supported through the findings of the Validation chap-
ter (Chapter 7), where the usefulness and validity of our framework were
evaluated. Hence, although we acknowledge that an automated method is
not yet able to perfectly identify all security risks present in a system, it is
our belief that further research towards this direction could lead to more se-
cure systems, based on the enabling of system stakeholders in making more
informed decisions.

Concluding this document, we plan to address the contribution this the-
sis brings to the already existing work conducted in the relevant fields. Fur-
thermore, we will present possible directions towards the continuation of our
research.

9.1 Contributions

Our motivation behind conducting the present research lies on the fact that,
although several security metrics already exist such as the ones of Cadariu
[21], Manadhata [45], Cox [27] and Wang [80], relevant research is still on an
initial stage [56][9], mainly because of the difficulty in defining meaningful
and efficient metrics.

Furthermore, as Manadhata et al. [45] noted, no single quality metric
or measurement is able to holistically assess the security status of a system.
Due to this reason, the author states, a framework is needed to combine
multiple security measurements.

Through our research we tried to make a contribution on both issues.
In that direction, we created three metrics that interpret automated mea-
surements and enable stakeholders, based on quantitative data, to make

90

informed decisions regarding the security status of their applications.

Moreover we created a framework of metrics, with the additional inte-
gration of the work of Cox [27]. Our proposed framework aims in providing
a multi-sided view of the security level of an application. The significance
of a framework to integrate and correlate multiple security metrics has been
mentioned in a number of articles (e.g [45], [74]). At the same time, though,
a lack of such frameworks ([45],[33]) was also apparent, a limitation, towards
the resolve of which, we believe that we contributed.

9.2 Future work

We distinguish two main directions towards the continuation of our research.
More specifically, we believe that progress can be made both by introducing
improvements in the already developed metrics, as well as by adding new
metrics in our framework.

9.2.1 Current metrics

Regarding the current metrics, we consider that reducing the effect of false
positives could significantly improve the accuracy of our framework. Notable
work, such as the one already conducted by Kim ([40],[41]) and Heckman
[30] could be adapted and integrated in our solution.

Another means for improvement could be the acquisition of more mea-
surements through the concurrent use of additional static analysis tools. The
latter could benefit our model both by limiting the number of false positives
through cross-checks of measurements between tools as well as by producing
a larger number of reported vulnerabilities and hence more effective results.

Further research should also be conducted in order to generalize our
framework to be able to assess systems developed in more programming
languages than only Java. Moreover, additional validation of the metrics
that consist our framework, and of the latter in its entirety, should take place.
The validation should be conducted with external to the company, where
the research was conducted, participants. Through this we aim to verify the
generalizability of our findings, in regard to the framework’s validity and
user acceptance.

Extending the number of systems that we use as a dataset is also con-
sidered as a future step. The latter will increase the accuracy of the ratings

91

produced, since we will have more datapoints to define the thresholds of the
star categories. Moreover, improvements should be made in the presentation
of the findings, as was suggested in the validation of the framework.

9.2.2 New metrics

Another direction of future work could be the addition of new metrics. Those
could belong either in the four areas that our metrics currently assess or in
new ones.

An implementation, for example, of the attack surface metric, originally
proposed by Manadhata [45], could be integrated in the latent issues of the
source code. Furthermore, by using the taxonomy of the “Seven Pernicious
Kingdoms” [73], as described in section 2.1.2, to group the vulnerabilities
both in the latent and acute issues of the source code, we could introduce
specialized metrics that would assess the status of the system in regards to
these seven categories (we consider that the environment category would be
covered in other areas of the framework).

The framework, though, could also be extended by creating methods
to assess areas that are currently not covered. In the validation chapter
(Chapter 7), we mentioned the significance of the design and architecture of
a system to its security status. There we supported, based on responses from
the interviewees, that fundamental mistakes on the security of an application
can be caused by mistakes introduced in the design phase of a system. The
creation, hence, of a metric to validate the design and architecture of a
system could be of high value.

92

Bibliography

1]
2]
3]
[4]

8]
[9]

[10]

[11]

[12]

Apache maven website (https://maven.apache.org).
Cvss website. https://www.first.org/cvss.
Dependency check website.

Find security bugs website (http://h3xstream.github.io/find-sec-
bugs/).

Findbugs website (http://findbugs.sourceforge.net).
Pmd website https://pmd.github.io.

Sonarqube’s website http://www.sonarqube.org.
Yasca website http://www.scovetta.com/yasca.html.

Omar H Alhazmi, Yashwant K Malaiya, and Indrajit Ray. Measuring,
analyzing and predicting security vulnerabilities in software systems.
Computers € Security, 26(3):219-228, 2007.

Tiago L Alves, José Pedro Correia, and Joost Visser. Benchmark-
based aggregation of metrics to ratings. In Software Measurement, 2011
Joint Conference of the 21st Int’l Workshop on and 6th Int’l Conference
on Software Process and Product Measurement (IWSM-MENSURA),
pages 20-29. IEEE, 2011.

Tiago L Alves, Christiaan Ypma, and Joost Visser. Deriving metric
thresholds from benchmark data. In Software Maintenance (ICSM),
2010 IEEE International Conference on, pages 1-10. IEEE, 2010.

Nuno Antunes and Marco Vieira. Comparing the effectiveness of pen-
etration testing and static code analysis on the detection of sql injec-
tion vulnerabilities in web services. In Dependable Computing, 2009.
PRDC’09. 15th IEEFE Pacific Rim International Symposium on, pages
301-306. IEEE, 2009.

93

[13]

[14]

[15]

[16]

[22]

IEEE Standards Association et al. Ieee standard for a software quality
metrics methodology. IEEE Std, pages 1061-1998, 1998.

Nathaniel Ayewah and William Pugh. The google findbugs fixit. In
Proceedings of the 19th international symposium on Software testing
and analysis, pages 241-252. ACM, 2010.

Nathaniel Ayewah, William Pugh, J David Morgenthaler, John Penix,
and YuQian Zhou. Evaluating static analysis defect warnings on pro-
duction software. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages

1-8. ACM, 2007.

Dejan Baca, Bengt Carlsson, and Lars Lundberg. Evaluating the cost
reduction of static code analysis for software security. In Proceedings
of the third ACM SIGPLAN workshop on Programming languages and
analysis for security, pages 79-88. ACM, 2008.

Dejan Baca, Kai Petersen, Bengt Carlsson, and Lars Lundberg. Static
code analysis to detect software security vulnerabilities-does experience
matter? In Awvailability, Reliability and Security, 2009. ARES’09. In-
ternational Conference on, pages 804-810. IEEE, 2009.

Victor R Basili. Software modeling and measurement: the
goal/question/metric paradigm. 1992.

Matt Bishop et al. A taxonomy of unix system and network vulnera-
bilities. Technical report, Technical Report CSE-95-10, Department of
Computer Science, University of California at Davis, 1995.

Peter Burris and Chris King. A few good security metrics. METAGroup,
Inc. audio, 11, 2000.

Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen.
Tracking known security vulnerabilities in proprietary software sys-
tems. In Software Analysis, FEvolution and Reengineering (SANER),
2015 IEEE 22nd International Conference on, pages 516-519. IEEE,
2015.

Luiz Fernando Capretz, Miriam AM Capretz, and Dahai Li.
Component-based software development. In Industrial Electronics So-
ciety, 2001. IECON’01. The 27th Annual Conference of the IEEFE, vol-
ume 3, pages 1834-1837. IEEE, 2001.

P Charles and Shari Lawrence Pfleeger. Analyzing Computer Security:
A Threat/vulnerability/countermeasure Approach. Prentice Hall, 2012.

94

[24]

[25]

[26]

[31]

[33]

Brian Chess and Jacob West. Secure programming with static analysis.
Pearson Education, 2007.

No CNSSI. 4009,“. National Information Assurance (IA) Glossary, 26,
2010.

Brian Cole, Daniel Hakim, David Hovemeyer, Reuven Lazarus, William
Pugh, and Kristin Stephens. Improving your software using static anal-
ysis to find bugs. In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications,
pages 673-674. ACM, 2006.

Joél Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. Measur-
ing dependency freshness in software systems. 2014.

David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. software, IEEE, 19(1):42-51, 2002.

David P Gilliam, John D Powell, John C Kelly, and Matt Bishop.
Reducing software security risk through an integrated approach. In
Software Engineering Workshop, 2001. Proceedings. 26th Annual NASA
Goddard, pages 36-42. IEEE, 2001.

Sarah Heckman and Laurie Williams. On establishing a benchmark
for evaluating static analysis alert prioritization and classification tech-
niques. In Proceedings of the Second ACM-IEEE international sympo-
sium on Empirical software engineering and measurement, pages 41-50.
ACM, 2008.

Sarah Heckman and Laurie Williams. A model building process for
identifying actionable static analysis alerts. In Software Testing Ver-
ification and Validation, 2009. ICST’09. International Conference on,
pages 161-170. IEEE, 2009.

Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for
measuring maintainability. In Quality of Information and Communica-
tions Technology, 2007. QUATIC 2007. 6th International Conference
on the, pages 30-39. IEEE, 2007.

Thomas Heyman, Riccardo Scandariato, Christophe Huygens, and
Wouter Joosen. Using security patterns to combine security metrics.
In Availability, Reliability and Security, 2008. ARES 08. Third Inter-
national Conference on, pages 1156-1163. IEEE, 2008.

David Hovemeyer and William Pugh. Finding bugs is easy. ACM
Sigplan Notices, 39(12):92-106, 2004.

95

[35]

[36]

37]

[38]

[39]

[40]

[44]

[45]

Michael Howard, David LeBlanc, and John Viega. The 19 Deadly Sins
of Software Security. McGraw-Hill/Osborne California, 2005.

Michael Howard, David LeBlanc, and John Viega. The 19 Deadly Sins
of Software Security. McGraw-Hill/Osborne California, 2005.

Michael Howard, David LeBlanc, and John Viega. 24 deadly sins of
software security: Programming flaws and how to fix them. 20009.

SO ISO. Iec 25010: 2011 (2011). Systems and software engineering—
Systems and software Quality Requirements and Evaluation (SQuaRE)-
System and software quality models.

George Jelen. Sse-cmm security metrics. In NIST and CSSPAB Work-
shop, 2000.

Sunghun Kim and Michael D Ernst. Prioritizing warning categories by
analyzing software history. In Proceedings of the Fourth International
Workshop on Mining Software Repositories, page 27. IEEE Computer
Society, 2007.

Sunghun Kim and Michael D Ernst. Which warnings should i fix first?
In Proceedings of the the 6th joint meeting of the European software en-
gineering conference and the ACM SIGSOFT symposium on The foun-
dations of software engineering, pages 45-54. ACM, 2007.

Ted Kremenek and Dawson Engler. Z-ranking: Using statistical anal-
ysis to counter the impact of static analysis approximations. In Static
Analysis, pages 295-315. Springer, 2003.

Carl E Landwehr, Alan R Bull, John P McDermott, and William S
Choi. A taxonomy of computer program security flaws, with examples.
Technical report, DTIC Document, 1993.

Steve Lipner. The trustworthy computing security development lifecy-
cle. In Computer Security Applications Conference, 2004. 20th Annual,
pages 2-13. IEEE, 2004.

Pratyusa K Manadhata and Jeannette M Wing. An attack surface
metric. Software Engineering, IEEE Transactions on, 37(3):371-386,
2011.

D McCallam. The case against numerical measures of information
assurance. In proceedings of the Workshop on Information-Security-
System Rating and Ranking held in Williamsburg, VA, 2001.

Gary McGraw. Testing for security during development: Why we
should scrap penetrate-and-patch. In Computer Assurance, 1997.

96

COMPASS’97. Are We Making Progress Towards Computer Assur-
ance? Proceedings of the 12th Annual Conference on, pages 117-119.
IEEE, 1997.

John McHugh. Quantitative measures of assurance: Prophecy, process
or pipedream. In Workshop on Information Security System Scoring
and Ranking (WISSSR), ACSA and MITRE, Williamsburg, VA, 2002.

Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide
to the common vulnerability scoring system version 2.0. In Published by
FIRST-Forum of Incident Response and Security Teams, pages 1-23,
2007.

MITRE. Common platform enumeration website.
https://cpe.mitre.org/about/.

MITRE. Common vulnerabilities and exposures website.
MITRE. Common weakness enumeration website.

Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Georgios
Gousios, and Diomidis Spinellis. Dismal code: Studying the evolution
of security bugs. In Proceedings of the LASER Workshop, pages 37-48,
2013.

Elizabeth Nichols, Gunnar Peterson, et al. A metrics framework to
drive application security improvement. Security & Privacy, IEEFE,
5(2):88-91, 2007.

NIST. National vulnerability database website.
https://nvd.nist.gov/home.cfm.

OWASP. Types of application security metrics, June 2009.

Top OWASP. Top 10-2013. The Ten Most Critical Web Application
Security Risks, 2013.

Donn B Parker. Toward a new framework for information security.
FLY, page 501, 2002.

Shirley C Payne. A guide to security metrics. SANS Institute Informa-
tion Security Reading Room, 2006.

Cynthia K. Riemenschneider and Bill C. Hardgrave. Explaining soft-
ware developer acceptance of methodologies: A comparison of five
theoretical models. IFEE TRANSACTIONS ON SOFTWARE EN-
GINEERING, 28(12):1135-1145, December 2002.

97

[61]

[62]

[63]

[64]

[73]

Reijo Savola. A novel security metrics taxonomy for r&d organisations.
In ISSA, volume 8, pages 379-390, 2008.

Riccardo Scandariato, Bart De Win, and Wouter Joosen. Towards a
measuring framework for security properties of software. In Proceedings
of the 2nd ACM workshop on Quality of protection, pages 27-30. ACM,
2006.

Hossain Shahriar and Mohammad Zulkernine. Mitigating program se-
curity vulnerabilities: Approaches and challenges. ACM Computing
Surveys (CSUR), 44(3):11, 2012.

Haihao Shen, Jianhong Fang, and Jianjun Zhao. Efindbugs: Effective
error ranking for findbugs. In Software Testing, Verification and Vali-
dation (ICST), 2011 IEEE Fourth International Conference on, pages
299-308. IEEE, 2011.

Verizon Enterprise Solutions. Verizon 2014 data breach investigations
report. verizon. com, 2014.

Verizon Enterprise Solutions. Verizon 2015 data breach investigations
report. Technical report, Verizon Enterprise, 2015.

Marianne Swanson. Security metrics quide for information technology
systems. National Institute of Standards and Technology, Technology
Administration, US Department of Commerce, 2003.

Symantec. Internet security threat report. Technical report, Symantec
Corporation, 2014.

Symantec. Internet security threat report. Technical report, Symantec
Corporation, 2015.

Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software
architecture: foundations, theory, and practice. Wiley Publishing, 2009.

Rahul Telang and Sunil Wattal. Impact of software vulnerability an-
nouncements on the market value of software vendors-an empirical in-
vestigation. Awailable at SSRN 677427, 2005.

Jay-Evan J Tevis and John A Hamilton. Methods for the prevention,
detection and removal of software security vulnerabilities. In Proceed-
ings of the 42nd annual Southeast regional conference, pages 197-202.
ACM, 2004.

Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious
kingdoms: A taxonomy of software security errors. Security & Privacy,
IEEE, 3(6):81-84, 2005.

98

[74]

[75]

[76]

[78]

Rayford B Vaughn Jr, Ronda Henning, and Ambareen Siraj. Infor-
mation assurance measures and metrics-state of practice and proposed
taxonomy. In System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, pages 10—pp. IEEE, 2003.

Viswanath Venkatesh and Fred D. Davis. A theoretical extension of the
technology acceptance model: Four longitudinal field studies. Manage-
ment Science, 46(2):186-204, February 2000.

Antonio Vetro, Maurizio Morisio, and Marco Torchiano. An empirical
validation of findbugs issues related to defects. In Evaluation & Assess-
ment in Software Engineering (EASE 2011), 15th Annual Conference
on, pages 144-153. IET, 2011.

Antonio Vetro, Marco Torchiano, and Maurizio Morisio. Assessing the
precision of findbugs by mining java projects developed at a univer-
sity. In Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 110-113. IEEE, 2010.

Jeffrey Voas, Anup Ghosh, Gary McGraw, FACF Charron, and KAMK
Miller. Defining an adaptive software security metric from a dynamic
software failure tolerance measure. In Computer Assurance, 1996.
COMPASS’96, Systems Integrity. Software Safety. Process Security.
Proceedings of the Eleventh Annual Conference on, pages 250-263.
IEEE, 1996.

Stefan Wagner, Jan Jiirjens, Claudia Koller, and Peter Trischberger.
Comparing bug finding tools with reviews and tests. Lecture Notes in
Computer Science, 3502:40-55, 2005.

Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajo-
dia. An attack graph-based probabilistic security metric. In Data and
applications security XXII, pages 283-296. Springer, 2008.

Karl E Wiegers. Seven truths about peer reviews. Cutter IT Journal,
15(7):31-37, 2002.

Haiyun Xu, Jeroen Heijmans, and Joost Visser. A practical model for
rating software security. In SERE (Companion), pages 231-232, 2013.

99

Appendix A

Bug Patterns Categorization

The bug patterns, of FindBugs and Find Security Bugs, contained in the
Latent and Acute Issues metrics are given below. More information regard-
ing each bug pattern can be found in the static analysis tools websites [5],

[4].

FindBugs Category

Bug Pattern

Malicious Code

DP CREATE CLASSLOADER IN-
SIDE DO PRIVILEGED

DP DO INSIDE DO PRIVILEGED

EI EXPOSE REP

EI EXPOSE REP2

FI PUBLIC SHOULD BE PRO-
TECTED

EI EXPOSE STATIC REP2

MS CANNOT BE FINAL

MS EXPOSE REP

MS FINAL PKGPROTECT

MS MUTABLE ARRAY

MS MUTABLE COLLECTION

MS MUTABLE COLLECTION
PKGPROTECT

MS MUTABLE HASHTABLE

100

FindBugs Category

Bug Pattern

Malicious Code

MS OOI PKGPROTECT

MS PKGPROTECT

MS SHOULD BE FINAL

MS SHOULD BE REFACTORED
TO BE FINAL

Find Security Bugs

Untrusted Servlet Parameter

Untrusted Content-Type Header

Untrusted Hostname Header

Untrusted Session Cookie Value

Untrusted Query String

HTTP Headers Untrusted

Untrusted Referer Header

Untrusted User-Agent Header

Found JAX-WS SOAP Endpoint

Found JAX-RS REST Endpoint

Found Tapestry Page

Found Wicket Page

Regex DOS (ReDOS)

Found Struts 1 Action

Found Struts 2 Endpoint

Found Spring Endpoint

Bad hexadecimal concatenation

External File Access (Android)

Broadcast (Android)

World Writable File (Android)

WebView with Geolocation Acti-
vated (Android)

WebView with JavaScript Enabled
(Android)

WebView with Javascript Interface
(Android)

Table A.1: Latent Issues Bug Patterns.

101

FindBugs Category

Bug Pattern

OWASP Top 10 En-
try

Security

DMI CONSTANT DB
PASSWORD

A2 Broken Authen-
tication and Session
Management

DMI EMPTY DB
PASSWORD

A2 Broken Authen-
tication and Session
Management

HRS REQUEST
PARAMETER TO
COOKIE

A3 Cross-Site Script-
ing (XSS)

HRS REQUEST
PARAMETER TO
HTTP HEADER

A3 Cross-Site Script-
ing (XSS)

PT ABSOLUTE
PATH TRAVERSAL

A4 Insecure Direct
Object References

A7 Missing Function
Level Access Control

PT RELATIVE PATH
TRAVERSAL

A4 Insecure Direct
Object References

A7 Missing Function
Level Access Control

SQL NONCON-
STANT STRING
PASSED TO EXE-
CUTE

A1 Injection

SQL PREPARED
STATEMENT GEN-
ERATED FROM
NONCONSTANT
STRING

A1 Injection

XSS REQUEST PA-
RAMETER TO JSP
WRITER

A3 Cross-Site Script-
ing (XSS)

XSS REQUEST
PARAMETER TO
SEND ERROR

A3 Cross-Site Script-
ing (XSS)

XSS REQUEST
PARAMETER TO
SERVLET WRITER

A3 Cross-Site Script-
ing (XSS)

102

FindBugs Category

Bug Pattern

OWASP Top 10 En-
try

Find Security Bugs

Potentially Sensitive
Data in Cookie

A6 Sensitive Data Ex-
posure

Potential Path Traver-
sal (File Read)

A4 Insecure Direct
Object References

A7 Missing Function
Level Access Control

Potential Path Traver-
sal (File Write)

A4 Insecure Direct
Object References

A7 Missing Function
Level Access Control

Potential Command

Injection

Al Injection

FilenameUtils Not Fil-

A6 Sensitive Data Ex-

tering Null Bytes posure

TrustManager Imple- | A6 Sensitive Data Ex-
mentation Empty posure

MessageDigest Is | A6 Sensitive Data Ex-
Weak posure

MessageDigest Is Cus- | A6 Sensitive Data Ex-
tom posure

Tainted Filename | A4 Insecure Direct
Read Object References

A7 Missing Function
Level Access Control

XML Parsing Vulner-
able to XXE (SAX-
Parser)

A6 Sensitive Data Ex-
posure

XML Parsing Vulner-
able to XXE (XML-
Reader)

A6 Sensitive Data Ex-
posure

XML Parsing Vulner-
able to XXE (Docu-
mentBuilder)

A6 Sensitive Data Ex-
posure

Potential XPath Injec-
tion

A1 Injection

Potential SQL/HQL
Injection (Hibernate)

A1 Injection

Potential
SQL/JDOQL
jection (JDO)

In-

A1 Injection

103

FindBugs Category

Bug Pattern

OWASP Top 10 En-
try

Potential SQL/JPQL
Injection (JPA)

Al Injection

Potential LDAP Injec-
tion

Al Injection

Potential code injec-
tion when using Script
Engine

A1 Injection

Potential code injec-
tion when using Spring

A1 Injection

Expression

Hazelcast Symmetric | A6 Sensitive Data Ex-

Encryption posure

NullCipher Unsafe A6 Sensitive Data Ex-
posure

Unencrypted Socket A6 Sensitive Data Ex-
posure

DES / DESede Unsafe | A6 Sensitive Data Ex-
posure

RSA NoPadding Un- | A6 Sensitive Data Ex-

safe posure

Hard Coded Password

A2 Broken Authen-
tication and Session
Management

Struts Form Without
Input Validation

A1 Injection

XSSRequestWrapper
is Weak XSS Protec-
tion

A3 Cross-Site Script-
ing (XSS)

Blowfish Usage with

A6 Sensitive Data Ex-

Weak Key Size posure
RSA Usage with Weak | A6 Sensitive Data Ex-
Key Size posure
Unvalidated Redirect | A10 Unvalidated Redi-

rects and Forwards

Potential XSS in

Servlet

A3 Cross-Site Script-
ing (XSS)

XMLDecoder usage

A1 Injection

104

FindBugs Category

Bug Pattern

OWASP Top 10 En-
try

Static IV A6 Sensitive Data Ex-
posure

ECB Mode Unsafe A6 Sensitive Data Ex-
posure

Cipher is Susceptible | A6 Sensitive Data Ex-

to Padding Oracle posure

Cipher With No In- | A6 Sensitive Data Ex-

tegrity posure

Usage of ESAPI En-
cryptor

A6 Sensitive Data Ex-
posure

Table A.2: Acute Issues Bug Patterns.

105

Appendix B

Latent Issues Rating Method

B.1 First level thresholds derivation

In order to identify the benchmarked risk thresholds, used in the first level
of aggregation (Figure 5.5), we have followed the approach of Alves et. al.
[11], as illustrated in figure B.1. The six steps of the methodology were:

1. metrics extraction: the number of latent issues, for each file of our
dataset of systems, was identified. Additionally, the size of the files
was calculated, to be used as the files’ weight.

2. weight ratio calculation: for each file we computed its weight per-
centage within its system, i.e. we divided the file’s size to the overall
size of the system. For each system, the sum of the all its files Weigh-
tRatio must be 100%.

3. file aggregation: we aggregate the weightRatios of all files per metric
value. For each system, therefore, the sum of the weightRatios of all
metric values must be 100%.

4. system aggregation: we normalize the weights for the number of
systems and then aggregate the weights for all systems. Normalization
ensures that the sum of all the metric values would result to 100% of
the overall size of the dataset.

5. weight ratio aggregation: we order the metric values in ascend-

ing weight and take the maximal metric value that represents 1%,
2%,....,100%.

106

1. metrics extraction

System —(File — Metric x Weight)

2. Weight Ratio Calculation

Legend

System —(File — Metric x WaightRatio) map relation (one-to-many relationship)

X
product (pair of columns or elements)

3. File ation
Aggreg System

Represents individual systems

System —(Metric — WeightRatio) Metric)
Represents the number of latent issues.

Weight

Represents the weight value (lines of code per
4. System Aggregation file)

WeightRatio

. Represents the weight percentage inside of
Metric — WeightRatio he system (Flle's LOC divided by system LOGC).

5. Weight ratio Aggregation

WeightRatio — Metric

6. Thresholds derivation

2 4
¥ %
Metric Metric

Figure B.1: Identification of Risk Thresholds methodology.

6. thresholds derivation: thresholds are derived by choosing the per-
centage of the overall code we want to represent.

The derived thresholds are 2 and 4 respectively, representing 70% and
88% of the vulnerable code. That means that we treat 70% of the overall
vulnerable code (code that contains 1 or 2 latent issues per file) as code of
moderate risk, the following 18% (which contains 3 or 4 latent issues per
file) as code of high risk and the rest as code of very high risk. That aligns
to the 70-10-10-10 principle applied at SIG with some changes due to the
size of the dataset and the limited number of bugs per file.

In order to choose these thresholds the variability between systems was
taken into account. As it can be observed in the Quantile plot of figure B.2a,
systems differentiate the most in the last quantiles (quantiles higher than

107

or to 70%). Choosing a quantile for which there is very low variability will
result in a threshold which would not allow to distinguish quality between
systems. On the other hand, choosing a quantile for which there is too much
variability might fail to identify code in many systems [11].

To investigate if the thresholds are representative of those percentages
of code in the dataset, we computed the quality profiles for each system.
Ideally, for each system we expect to identify around 70% of the vulnerable
code in the moderate risk category, 18% in the high risk category and 12% in
the very high risk category. Figure B.2b depicts a box plot for all systems per
risk category. The x-axis represents the three risk categories and the y-axis
represents the percentage of volume of each system per risk category. The
size of the box is the interquartile range (IQR) and is a measure of variability.
The vertical lines indicate the lowest/maximum value within 1.5 IQR. The
crosses in the charts represent systems whose risk category is higher than
1.5 IQR. In the moderate risk category, we observe large variability which
is explained because it is considering a large percentage of code. In the very
high risk category, additionaly, we observe that the variability is increasing
compared to the variability of the high risk category. This increase was also
expected since we have observed that the variability of the metric is higher
for the last quantiles of the metric. Moreover, there are only two crosses in
the high risk category, which means that most of the systems are represented
by the box plot. Finally, looking in the median of the observations for all
risk categories (the middle of the boxes), we observe that indeed the median
are near to our expectation. For the moderate risk category the median
is near 70%, whereas for the high risk and very high risk the median are
approaching 15%. The variation, from the proposed median of 18% and
12% respectively, can be explained by the limited systems in our dataset
and the few discrete values that most of the latent issues per file have, as we
identified in the statistical analysis of the previous subsection. Summarizing,
the box plot shows that the derived thresholds allow to observe differences
between systems in our dataset.

B.2 Second level thresholds derivation

In order to acquire the set of second level thresholds, which are used for the
aggregation of risk profiles to ratings, we applied the proposed calibration
algorithm of Alves et. al. [10]. The algorithm works by taking the risk
profiles for all the systems in our dataset and searching for the minimum
thresholds that can divide those systems based on the given distribution of
5% - 30 % - 30% - 30% - 5% of systems in each star category.

108

Quality Profiles variability

1.0

| .
g -
,IE -
g & 2 .
o i 8 :
N s < | H |
g a o ' —_— :
° o i 3 :
i ;‘ :\
o o
T T T T T T T T
0.2 04 0.8 08 1.0 Moderate Risk High Risk Very High Risk
Quantiles (% of LOC) Risk category
(a) Distribution of latent issues in the dataset (b) Quality profiles variability.
of systems.

Figure B.2: Defining the risk thresholds.

109

Appendix C

Effect of filters on the
precision of the
Dependency-check

In this Appendix we present the results of the small scale experiment con-
ducted on our dataset of systems. More specifically, we manually checked
the reported vulnerable dependencies of 9 systems to determine whether
they were true or false positives and verify whether there is an improvement
after the application of the filters.

The columns of the tables provide:

1. the name of the system,
2. the maven identifier of the dependency,
3. the CPE identifier of the dependency,

4. the confidence level produced by Dependency Check (of whether the
reported vulnerability is a true or false positive),

5. the confidence level after the application of the filters and,

6. whether, after manual examination, the dependency identification is a
true or false positive.

110

~FBEHBHBE H

e3

9AT)
-1s0q
d/L

T gyuatpdiyy T guatpdyy

USIyg MO -suotod:arpede:e /:odo -SUOWWO9: JUSI[od}}[-SUOW WO
170 T:£31amoas 10’ T:A91Inoas
1So 31 1o ST -1800r: Ajumooestdooe:e /:odo -1399%: A111M09S1399%" 310
1Sy STH 189U STH ¢ ¢ pruerpdyyyeyoede:e/:odd ¢z faustodiyy:sjusnoduoodyyy-oyoede 310
¢ 6°0:opt
MO MO -osdrpooe:esdrpoe:e/:add 0°6°0:1ds-IotjoR: 1o jor 9sdI[09 310
1SoY S 1o ST ¢ g pauerpdippetpede:e/:odd ¢ g fraustpdiy:syusuoduoodyyy-oypede 310
0°G’ T:suomruod-1o
1SoYSTH 1S9 STH 0°G T:91qqeryorel:oyoede:e /:odo -j1qqenoel:yiqqenye(-oyoede 810
8L6€°0°¢ €-9109
MO MO 816€°0°¢ g:spaze[q:oqope:e/:add -Spaze[q:Spaze[q aqope o9
T'gruarpdiyg TgruarpPdyyg
USTH Mo -suotwod:erpede:e /:odo -STOWIUIO: JUdI [0 N[-SUOUTUI0D
MO MO ¢ ¢ ¢:10doaxooz:otprde:e/:odo -
1SoYSTH 1o 3T g ¢:rod:apede:e/:ado g ¢:rod:1od ayprede 310
MO mo7 grorg o g dureSol:dureSol:e /:ado C191-g 0 g:1o0l: ool durego(-310
CII-g0cH
MO mo7 gIorg (g duredol:duredol:e/:odo -uoBon[3:uodon(3-duresol 310
8071
-1dew-1 ¥ g:0100-jusI[o-aonpaidea
1SoY ST 1o ST 1'% g:dooper:atypede:e/:ado -doopey:doopey-ayoede 310
1SoY 31 1o ST 0°0'1:doopertj:etpede:e/:odo -
V'€C0:sJPY
1SoYSTH 189U STH ¥-¢g 0:doopey:aypede:e/:odo -doopery:doopey aypede 310
1S9 STH 189U STH 1T pryuerpdyyy:eyoede:e/:odo 1T p:quetodyyy:syueuodmoodyyy oyoede:310
IPYVY
2ouUsapyuo) 2ouULapyuo) Jay1yuapl 4dD JI9YIJUOP] ULARIA

“payp-Aouspuado(] 1) Jo uorsald 1) U0 SI0Y[Y Jo 1_PH 1D 9[qRL

supjuar
I9AIDG
-ourex)
-eaer

0CH

wo)sAg

111

Table C.2: Effect of filters on the precision of the Dependency-check.

System Maven Identifier CPE Identifier Confidence Confidence T/F
After Posi-
tive
Jenkins org.jruby.ext.posix:jna-posix:1.0.3- cpe:/a:jruby:jruby:1.0.3 Highest Highest F
jenkins-1
javax.mail:mail:1.4.4 cpe:/asun:javamail:1.4.4 Low Low T
org.springframework:spring- cpe:/a:vimware:springsource- Low High T
core:2.5.6.SEC03 spring-
framework:2.5.6.sec03
org.springframework:spring- cpe:/a:vmware:springsource- Low High T
dao:1.2.9 spring-framework:1.2.9
org.springframework:spring- cpe:/a:vimware:springsource- Low High T
core:2.5.6.SEC03 spring-
framework:2.5.6.sec03
org.springframework:spring- cpe:/a:vmware:springsource- Low High T
jdbc:1.2.9 spring-framework:1.2.9
Keybox com.google.code.gson:gson:2.3.1 cpe:/a:google:v8:2.3.1 Low Low F
org.apache.struts:struts2- cpe:/a:apache:struts:2.3.20 Low Low T
core:2.3.20
org.apache.struts.xwork:xwork- cpe:/a:apache:struts:2.3.20 Low Low F
core:2.3.20
org.apache.struts:struts2- cpe:/a:apache:struts:2.3.20 Low Low T
core:2.3.20
LibGDX org.apache.httpcomponents:httpclient:4.3.1 cpe:/a:apache:httpclient:4.3.1 Highest Highest T
org.apache.httpcomponents:httpmime:4.3.1 cpe:/a:apache:httpclient:4.3.1 Highest Highest T
- cpe:/a:freetype:freetype:- Low Low F
- cpe:/a:freetype:freetype:- Low Low F
com.badlogicgames.gdx:gdx- cpe:/a:freetype:freetype:1.5.4 Low Low F
freetype-platform:1.5.4-
SNAPSHOT
com.badlogicgames.gdx:gdx- cpe:/a:freetype:freetype:1.5.4 Low Low F
freetype:1.5.4-SNAPSHOT
- cpe:/a:freetype:freetype:- Low Low F
- cpe:/a:freetype:freetype:- Low Low F

112

d

L

QATY)
-1s0d
a1/ L

159U STH

Mo
Mo

MO
MO
MO

159U STH

189USTH
159U STH
189U STH

JSOUSTH
MO

159U STH
MO

1S9YSIH
MO
MO
MO

189U STH

PPV
aouLapyuo)

189U STH

MO
MO

Mo
Mo
MO

189U STH

1S9USIH
159U SIH
189U STH

189USTH
Mo

189U STH
MO

159U SIH
Mo
MO
Mo

MO

2ouLpyuo)

1°1'T:ourtuo1og:otpede:e /:odo

0¥ g:10deaxooz:otprede:e/:0do
1z 8 0:uoyyfd:uoryidie/:ado
0°1:359%
-otpede:aypede:e/:odo
0°T:959%
-otpede:ayoede:e/:odo
0°1:959%
-otppede:atpede:e/:ado

0°¢ g:doopert:eypede:e/:odo
0°¢ g:doopey:eyoede:e/:odo
0°¢ g:dooper:etpede:e /:odo
0°¢ g:dooper:eypede:e/:odo
99 ¢:£)ou:qoofoxd
-Aypou:e /:odd

¢'§¢:10doax00z:01pedR: R /:0dD

0'0°'T:10s:0tede:R /:0do
9¢'1°9:4130(:4390(e /:0do

0°'g g:dooper:ayede:e/:ado
1 .mngmmmmﬂwnﬁufo“m\“omo
¢ 1z ysysse[3:oorio:e/:ado
1 .mugmmmmﬁwumﬁufc“m\“oQo

T guLrpdyyg
-suotwod:erpede:e /:odo

Jognuepy HdD

[T T:09ds-T -8l
-owuoI93:s00ds owrruoo38 oypoede- 310
0% g:Iomaurey
-I0%RIND:10jRIND OyoRede 310
1'¢'8°0:[yAd:[pAd Js jou
LOHSVNS-0'T:42e3s[rt
-jnoyeur:jnoyeur-aypede 310
LOHSdVNS-0'T-qysm
-jnoyeur:jnoyewr-srpede 310
LOHSdVNS
-0’ T:0gy-1moyewr:jnoyewr-ayoede 310
0'g g:uomrmod
-doopey:doopey-oyoede 310
0°¢ ¢ yuotp
-dooper:doopey-syoede 310
0¢eyme
-doopey:doopey-ayoede 310
(' g:suoljejouue
-dooper:doopey orpede 310

[RUL 9°9 ¢:£)ou: L))o Ol
¢ '3 ¢:10doox00z: 1odoax 0oz oyprede 310
0°G'¢IASD
-SUOWWI0D-10s: 1[0s dyoede 310
97 T'9:T1m-A30(: A0 AeqIoun 310
0°g g:9109-judtO-0onpaidewt
-doopey:doopey-ayoede 310
A A1)
-A12Z2118: A[2Z118 [Sysse[3° 310
AR AP YN ET
-d99-£[zz113: £]zZ113 ysysse[3 310
2T g Iomaurey
-A[2Z118: A[2Z118 [Ssse[3° 310
Tgruarpdyyg
-STOWIUI0:JUdI [0 N[-SuOUWTU0D

JIOYIJUSPT USARIAI

“pay-Aouspuado(] o) Jo uolsaId 9} U0 SIY JO 12FH €D 9[qRL,

INoYeIN

wa)sAg

113

System

Internal
Sys-
tem

Ninja
OkHttp

Table C.4: Effect of filters

on the precision of the Dependency-check.

Maven Identifier CPE Identifier Confidence Confidence
After
com.atlassian.security:atlassian- cpe:/a:vmware:springsource- Highest Low
cookie-tools:3.0 spring-security:3.0.0
commons-httpclient:commons- cpe:/a:apache:commons- Low Highest
httpclient:3.1 httpclient:3.1
org.javassist:javassist:3.18.1-GA cpe:/a:springsource:spring- Low Low
framework:3.18.1
org.glassfish.jersey.core:jersey- cpe: /a:springsource:spring- Low Low
common:2.13 framework:2.13
mysql:mysql-connector-java:5.1.32 cpe:/a:mysql:mysql:5.1.32- Highest Highest
bzr
taglibs:standard:1.1.2 cpe:/a:apache:standard- Low Low
taglibs:1.1.2
org.apache.struts:struts2- cpe:/a:apache:struts:2.3.16.3 Highest Highest
core:2.3.16.3
javax.mail:mail:1.4.5 cpe:/a:sun:javamail:1.4.5 Low Low
io.airlift:airline:0.6 cpe:/a:git:git:0.6 Highest Low
com.squareup.okhttp:okcurl:2.3.0- cpe:/a:curl:curl:2.3.0 Low Low
SNAPSHOT
com.squareup.okhttp:okhttp- cpe:/a:apache:httpclient:2.3.0 Low High

apache:2.3.0-SNAPSHOT

T/F
Posi-
tive

SR

114

Appendix D

Longitudinal Analysis of
systems

Appendix D presents the systems used in the longitudinal analysis of Chap-
ter 7. Table D.1 provides the systems, their versions and the release dates
of the versions. Table D.2 provides the “Acute” and “Latent Issues” rat-
ings for each version of the systems. Furthermore, Table D.3 shows the size
difference (in terms of lines of code) between the subsequent versions of the
Systems.

115

System Version Release Date
Guacamole 0.8.2 15/07/2013
0.9.0 28/03/2014
0.9.1 23/05/2014
0.9.2 21/07/2014
0.9.3 30/09/2014
0.9.4 07/01/2015
0.9.6 31/03/2015
0.9.7 11/06/2015
Webbit 0.2.13 01/11/2011
0.4.6 23/02/2012
0.4.11 27/06/2012
0.4.14 13/07/2012
0.4.15 26/04/2013
0.4.16 17/07/2014
0.4.18 14/11/2014
0.4.19 08/01/2015
Ninja 1.6.0 07/08/2013
2.2.0 13/11/2013
2.5.0 06/01/2014
3.1.4 06/04/2014
3.3.0 31/07/2014
4.0.0 03/11/2014
4.0.68 27/02/2015
5.1.2 08/06/2015
OkHttp 1.2.0 12/08/2013
1.3.0 12/01/2014
1.5.0 07/03/2014
2.0.0 21/06/2014
2.1.0 12/11/2014
2.2.0 31/12/2014
2.3.0 17/03/2015
2.4.0 23/05/2015
Fluent-Http 1.28 01/02/2014
2.0 20/05/2014
2.0.9 19/07/2014
2.14 17/10/2014
2.50 13/01/2015
2.80 10/03/2015
2.90 01/04/2015
2.98 08/06/2015

Table D.1: Systems examined in the longitudinal analysis.

116

System Version Latent Rating Acute Rating
Guacamole 0.8.2 4.4138 3.0
0.9.0 4.4458 3.0
0.9.1 4.3321 3.0
0.9.2 4.3326 3.0
0.9.3 4.3407 3.0
0.9.4 4.0362 3.0
0.9.6 3.5995 3.0
0.9.7 3.4536 3.25
Webbit 0.2.13 4.0840 4.0
0.4.6 3.2712 4.0
0.4.11 3.2345 4.0
0.4.14 3.2063 4.0
0.4.15 2.5288 3.5
0.4.16 2.4983 3.5
0.4.18 2.5010 3.5
0.4.19 2.4983 3.5
Ninja 1.6.0 2.8715 5.5
2.2.0 2.9632 5.5
2.5.0 2.9048 5.5
3.14 3.0066 5.5
3.3.0 3.5957 5.5
4.0.0 3.6833 5.5
4.0.68 3.5406 5.5
5.1.2 3.4289 5.5
OkHttp 1.2.0 3.3081 3.5
1.3.0 3.3314 3.5
1.5.0 4.0291 3.0
2.0.0 4.1092 3.0
2.1.0 4.1226 3.0
2.2.0 4.1339 3.0
2.3.0 4.0296 3.0
2.4.0 4.2227 3.0
Fluent-Http 1.28 2.6393 4.0
2.0 2.3742 4.0
2.0.9 2.4500 4.0
2.14 2.3997 4.0
2.50 2.4612 4.0
2.80 3.0699 4.0
2.90 3.0823 4.0
2.98 3.0529 4.0

Table D.2: Ratings of the systems used in the analysis.

117

System Version Size Difference with
previous version
(Lines of Code)
Guacamole 0.8.2 0

0.9.0 2797
0.9.1 63
0.9.2 13
0.9.3 236
0.94 1020
0.9.6 1551
0.9.7 1227

Webbit 0.2.13 0
0.4.6 975
0.4.11 257
0.4.14 38
0.4.15 187
0.4.16 -264
0.4.18 -1
0.4.19 1

Ninja 1.6.0 0
2.2.0 47
2.5.0 426
3.14 1048
3.3.0 754
4.0.0 1827
4.0.68 9396
5.1.2 -8166

OkHttp 1.2.0 0
1.3.0 1083
1.5.0 2725
2.0.0 305
2.1.0 579
2.2.0 1338
2.3.0 341
2.4.0 1857

Fluent-Http 1.28 0
2.0 1754

2.0.9 1443
2.14 -818
2.50 734
2.80 505
2.90 131
2.98 -89

Table D.3: Size difference between subsequent versions.

118

	Introduction
	Research Questions
	Thesis Structure

	Background
	Software Security
	Definition
	Vulnerabilities
	Static Analysis vulnerability detection tools

	Software Quality metrics
	State of the art on software security metrics
	State of the art on software Security metrics frameworks

	Research Methodology
	Requirements
	Goal-Question-Metric Approach
	Explanation of the metrics

	Framework Design
	 Architecture of the framework
	Metric Ratings
	Ratings aggregation method

	Dataset

	Source Code Metrics
	Tools
	FindBugs & Find Security Bugs
	``SAT"

	Metrics
	Identification of relevant Bug patterns to each metric.
	Statistical Analysis
	Latent issues rating method
	Acute issues rating method

	Results
	System-specific results
	Results from the dataset

	External Dependencies Metrics
	``Dependency Vulnerability" metric
	Tool
	Metric

	``Dependency Freshness" metric
	Results
	``Dependency Vulnerability" metric results
	``Dependency Freshness" metric results
	Correlation of ratings

	Validation
	Validation Design
	Interviews
	Interview Guide.
	Results.

	Longitudinal Analysis.
	Results

	Discussion
	Discussion on result sections
	 Discussion on results of source code metrics.
	Results of third-party dependencies metrics.
	Results of validation.

	Threats to Validity
	Accuracy of static analysis tools.
	Method design.
	Validation design.

	Conclusion
	Contributions
	Future work
	Current metrics
	New metrics

	Bibliography
	Bug Patterns Categorization
	Latent Issues Rating Method
	First level thresholds derivation
	Second level thresholds derivation

	Effect of filters on the precision of the Dependency-check
	Longitudinal Analysis of systems

