
Internal Report CS Bioinformatics Track 16-03 October 2016

Leiden University

Computer Science

Bioinformatics Track

Improving Sequence Alignment through
Population Graph Inference.

 Tom Mokveld

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Acknowledgments

I would like to thank my supervisors Marcel Reinders and Jasper Linthorst for their continued
support, guidance, and advice during my time working on this project.

II

Contents

1 Introduction 1

1.1 Related work . 2
1.2 Contribution of this work . 5

2 Methods 7

2.1 Graph specification . 7
2.2 Topological ordering . 8
2.3 Indexing k-length paths in a DAG . 9

2.3.1 Subsequence extension . 11
2.3.2 Vertex and edge duplication . 13
2.3.3 Vertex collapsing . 16

2.4 Read alignment to an edgeless graph . 17
2.5 Projection to input DAG . 18
2.6 Path inference . 19
2.7 Measuring performance . 22

3 Results 23

3.1 Data specification . 23
3.2 Indexing k-length paths . 24
3.3 Evaluation on synthetic data . 25

3.3.1 Performance of genome inference . 25
3.3.2 Alignment of reads to reference representations 26
3.3.3 Influence of coverage on genome inference 30

3.4 Evaluation with experimental data . 31
3.4.1 Performance of genome inference . 31
3.4.2 Alignment of reads to reference representations 31
3.4.3 Influence of coverage on genome inference 34

4 Discussion and future work 35

References 37

5 Appendix 40

III

1 Introduction

Over the past twenty years high throughput sequencing technology has greatly advanced our
understanding of genetics [1, 2]. This has lead to insights in areas such as gene functionality,
expression, regulation, and structural information of the genome [3–5]. The availability of
reference genomes, constructed by projects like the Human Genome Project [6–8], have played
a key role in this success.

To this day, the importance of these reference genomes has not diminished. The main purpose
of a reference genome in this setting is that it serves as a target for read alignment; the mapping
of fragmented genome sequences (reads) against it. It provides the coordinate system by which
reads can be related to the reference in order to identify genetic variants and put them into the
context of genes and other functional elements.

In principle, sequence variation can also be addressed by the comparison of whole-genome
assemblies. However, the construction of high quality de novo assemblies is costly and therefore
often infeasible in practice (especially for genomes as large and complex as the human genome).
For this reason, reference based approaches are often the only practical solution for detecting
sequence variations.

The process of read alignment is not without difficulties, as errors introduced by different se-
quencing technologies introduce ambiguity in the placement of reads. In downstream variant
detection this may result in incorrectly calling or altogether missing variations. Further com-
plications can also be attributed to the simplicity of using a single reference genome. If we
consider the variation seen in a population, every new instance of a studied genome may contain
sequence that is not encoded or highly diverged with respect to the reference genome. This leads
to difficulties resolving variants in these regions [9].

One can account for these difficulties by incorporating previously observed sequence variations
into the reference. Such a representation may be referred to as a multi-genome. It is expected
that the alignment of reads to a multi-genome would result in more accurate read placement and
therefore improved variant detection.

1

1.1 Related work

With the availability of population variation annotations, a number of attempts have been made to
include this information to guide the process of alignment and variant calling. For example, these
annotations are available from a number of databases, which includes the Genome Reference
Consortium (GRC). They not only host the latest build of the human reference genome but
also track alternate loci; long sequences (~54 Kb) that provide an alternate representation of a
locus found in an otherwise haploid assembly. These loci are mapped onto the assembly with
matching flanking sequences, whereas all sequence between these flanks diverge. Such alternate
loci may serve as additional alignment targets for any mapping tool that is aware and capable
of using such information, e.g. BWA [10]. Utilization of these loci can lead to more accurate
mappings, effectively improving variation detection.

Similar to the GRC, there are also databases that track common and smaller variants, such as
dbSNP and SNPedia [11, 12]. The application of variation information from databases has been
used to aid in the detection of variants. These methodologies require an initial alignment through
conventional means, and subsequently matching mismatches with respect to the reference onto
one of the variation databases, identifying the common variants [13]. However, this approach
may still bias the results towards the reference that was used. Furthermore, any errors generated
by the read alignment may be propagated to the succeeding step of variation detection, further
limiting the applicability [14].

One of the first applications to represent variations in a multi-genome representation with the
purpose of read alignment was GenomeMapper [15]. In their approach a fixed length hash-
based index is build from one reference genome and a list of known variants obtained from
other sampled genomes, where positions that are not explicitly annotated are assumed to be the
same between genomes. The index maps subsequences of sequences that are approximately 10
nucleotides long, relative to their positions on the genomes. Alignment follows from sampling
these subsequences in the reads, after which the index is scanned to identify exact matches to
acquire seeds. These seeds are subsequently extended to obtain potential target sequences, and
finally banded Needleman-Wunsch dynamic programming is used to align the sampled read
against these targets, where the best scoring alignment is returned. At the time only a solution
was presented for alignment against the small A. thaliana genome, and further scalability of the
method has not been shown, which can partially be attributed to the high memory footprint.

2

1.1 Related work

The first multi-genome alignment implementation shown to be scalable up to human genome
scale was BWBBLE [14]. They build a multi-genome representation from an initial reference
genome and a supplied list of variations that describe edits upon this reference. In their notation,
single nucleotide polymorphisms (SNPs) are generalized into separate characters using the IU-
PAC (16 letter encoding) alphabet, allowing any SNP to be encoded by a single character. Other
types of variations such as indels are encoded as alternatives sequences in separate branching
contigs alongside the reference. Although this encoding offers more flexibility and attempts to
linearize as much sequence as possible for which most search algorithms are optimized. The
most significant drawback also stems from this encoding, which increases the alphabet size 4-
fold. This becomes apparent in the alignment itself for which a modification of Burrows-Wheeler
transform (BWT) read alignment is used [16], generalized to support IUPAC encodings. Given
this alphabet, the number of suffix array interval computations that have to be performed when
backward searching becomes far higher, and leads BWBBLE to be on the order of a hundred
times slower than traditional single reference BWT aligners. The discrepancy in speed makes it
seem that adaptation of the method is questionable. Yet, the authors of BWBBLE do show that
while the number of actual novel variants in the multi-genome increases linearly when including
more variants from samples, this growth eventually subsides. Suggesting that at one point a
break-point is reached where the use of BWBBLE would be more advantageous than using an
aligner on each individual genome.

A more recent and still developing methodology is VG [17]. VG models a population variant
aware reference system as a directed graph with sequence annotations. In this graph one ref-
erence genome forms the backbone while a supplied list of variants are encoded as edits upon
this reference. Aside of handling the alignment of short reads against such a graph, they also
support graph construction, variant calling, and general modification of the graph itself. Core
components that form the driving force behind VG include: XG index, generalized compressed
suffix array (GCSA2) index, graph to directed acyclic graph (DAG) conversion, and partial order
alignment (POA).

The standard data representation of graphs in VG is optimized to allow efficient runtime for
editing and transformation operations on the graph. To do this effectively a dynamic version of
the graph is required by using a hash structure, which is not optimized for memory overhead.
Consequently, loading the entire graph into memory is not feasible, hence another index is
required to reflect a static and succinct representation of the dynamic graph. For that they
introduce the XG index, which is based upon the Succinct Data Structures Library [18].

3

1.1 Related work

In the early development of VG, alignment relied on indexing the graph using GCSA [19–21].
This is a generalization of the extended Burrows-Wheeler transform (for labeled trees), extended
for labeled DAGs, allowing for the indexing of arbitrary length paths. More recent work by the
authors of GCSA has further generalized this indexing for de Bruijn graphs (GCSA2) [22]. A
caveat being that rather than indexing all full length paths, only paths up to 128 bp long are
indexed. This begins with paths that are  16 bp long, where these paths may be extended
through a maximum of three doubling steps to generate a de Bruijn graph up to an order of 128,
in which path queries of up to this length are supported in the input graph. Limiting the path
length to 128 bp was necessary given the extension to allow for cyclicity in the graph which
significantly increases the number of possible paths. However even in DAGs limiting the path
length becomes a necessity to constrain the number of possible paths, otherwise leading to a
combinatorial explosion of paths in complex graphs.

To allow for local alignment of reads onto graph structures VG uses POA. POA is a general-
ization of traditional pairwise sequence alignment methods based on Smith-Waterman (S&W)
dynamic programming with support for graph alignments [23, 24]. In S&W deriving the best
trace relies on considering all possible inbound positions in the recursion that determines the
score for a new cell. In the current setting this implies that rather than considering nucleotides
in a sequence which always have a single predecessor, vertices in graphs can have multiple and
should therefore all be evaluated. Alignment with POA is only possible if the graph is linearly
orderable, which can only be done in DAGs. This to ensure that all the cells of predecessors
have been computed beforehand.

Sequence query matching in VG is driven by finding maximal exact matches (MEMs). These
are matches between a query and a reference that cannot be extended in either direction along
the query while still matching some sequence in the reference system. Super-maximal exact
matches (SMEMs) are MEMs that are not contained by any other MEM. A seed-and-extend
approach is used to perform local alignments, in which SMEMs are used for seeding. Given a
set of sequencing reads, the first step is to derive SMEMs for a query relative to the GCSA2
index. Highly abundant SMEMs are filtered out by counting the number of occurrences in the
index, avoiding those that have thousands of hits without extracting the specific hits from the
index. SMEMs are consequently clustered by using an approximate distance metric on the
graph. i.e. if the vertex id space is locally ordered, then vertices with nearby ids are likely
to lie closer together in the graph. From each cluster a subgraph is extracted that includes a
small neighborhood around it from the static XG index. These subgraphs serve as targets for
the local alignment of a sampled read using POA. As was mentioned, POA is only possible
if the subgraphs are DAGs, meaning that prior to the actual alignment the subgraphs are first
transformed from cyclic graphs into DAGs by duplicating vertices and edges until the subgraph
is fully unrolled.

4

Paired end reads may also be handled by using an approximate locality metric based on the
vertex ids. For very long reads POA becomes prohibitive, to resolve this the reads are broken
apart into bands of a fixed length with overlap between successive bands. These bands are
aligned independently after which overlaps are trimmed from the alignments and the results are
concatenated.

1.2 Contribution of this work

In this work we present a solution that exploits the additional information that is offered in multi-
genome reference representations, while using established alignment methods that are available
for single reference strings. Given a DAG representation of a multi-genome, the population
graph, we reconstruct a path through this graph, which is best supported by the sampled reads.
This path then represents a personalized linear reference genome, which can then ultimately be
used to call variations.

As opposed to building a reference graph from a single backbone genome and a set of known
variants, graphs are constructed based on assembled genomes using REVEAL [25, 26]. This
way, graphs, retain information on haplotypes. Consequently, genomes that were used to build
the graph may all be reconstructed by walking vertices that represent these genomes. This is
not possible when building graphs based on a backbone genome and variants alone, offering the
opportunity to exploit this information for alignment.

In the discussed alignment methods, one recurring step is the indexing of the reference system.
Indexing a graph is more complicated than indexing a single string. This is due to the fact
that the number of possible paths increases exponentially with length of paths. For this reasons
arbitrary length indexing such as through the use of FM-indices and the BWT are not an option
for graphs that are not trivially sized. Therefore, to make graph indexing tractable, it is essential
to limit the length of paths. Determining the optimal length for these paths is dependent on the
resolution that is required to capture enough overlap between vertices to be able to place reads
accurately. Note that the maximal feasible path length to be indexed can vary between input
graphs and is influenced by the number of variants encoded in the graph as well as the length
and density of these variants.

A schematic overview of the procedure from input DAG to personalized genome is given in
Figure 1. The approach used to index arbitrary length paths in DAGs relies on a process where
overlap is captured between neighboring vertices by assigning subsequences. Such assignment
is in some cases not possible without introducing ambiguity in the index, requiring local graph
modifications. Novel in this indexing is that rather than capturing all paths, it is possible to
restrict paths to remain in haplotype blocks. This is computationally favorable as it reduces
the number of possible paths, while enabling longer paths to be indexed. This approach is
also biologically supported since it retains the paths that were actually observed while omitting
unlikely combinations of subsequences observed in the input genomes.

5

1.2 Contribution of this work

The index that is obtained captures all paths of a given length and may consequently be used
as a target for read alignment. During this mapping we determine where a read may be best
placed, and a read can either be contained in a single vertex or span multiple vertices. The
alignment onto this index can then be projected back onto the input DAG, obtaining a read
coverage distribution over the vertices and edges in it. This distribution is then used to guide the
process of genome inference, and the generated genome can then be used as a target for read
alignment.

Figure 1: a): An input DAG which represents a multi-genome or population graph. b): Indexing of the
DAG transforms it into an edgeless graph, a representation in which all paths up to a given
length are captured. c): Alignment of reads onto the edgeless graph, wherein mappings of
reads can be contained in a single vertex or traverse a path of vertices. d): The read alignment
can be projected back onto the input DAG, yielding a coverage distribution of the reads over
the graph. e): Given the coverage distribution of reads on the graph, the most covered path
can be inferred. f): Reads can now again be aligned, this time to the inferred path, after which
variants may be called.

6

2 Methods

2.1 Graph specification

A directed acyclic graph (DAG), G = (V,E) is defined as a set of vertices V = {v1, . . . ,vN},
where N = |V |, and a set of edges E, where N � 1  |E|  (N�1)N

2 . Each of these edges is an
ordered pair of vertices (u, v) 2 E, defined as an edge from vertex u 2V to vertex v 2V .

A graph is directed if all edges are ordered pairs, in which a source vertex connects to a target
vertex. This implies that any edge (u, v)2 E is distinct from its complement (v, u)2 E, whereas
in undirected graphs (u, v) and (v, u) describe the same edge. For each vertex v 2V the number
of incoming edges of this vertex is defined as the in-degree; in(v), the number of distinct edges
(u, v) 2 E for any u 2V . Conversely the number of outgoing edges of vertex v is defined as the
out-degree; out(v), the number of distinct edges (v, u) 2 E for any u 2V .

If a graph is labeled, a string S = S[0, n� 1] is assigned to each vertex v 2 V , as v.S, where
n = |v.S|, and each string is a sequence of characters over an alphabet S. The length of any such
string in any vertex v2V is 1� |v.S|<=N, where N is the length of the largest genome encoded.
Any subsequence of a string S is denoted as S[i, j], important types of subsequences are prefixes
S[0, j] and suffixes S[i, n�1], which capture the boundaries of any string S. Substrings of the
form S[i, j] with a length of k are defined as k-mers.

Any sequence of vertices is defined as a path P = u1 . . .u|P| where (ui, ui+1) 2 E for all i < |P|.
The string P.S of a path P is defined as the concatenation of strings contained in the vertices,
as P.S = u1.S . . .u|P|.S. A cyclic graph is a graph containing at least one graph cycle, where a
cycle in a graph is a path P where the first vertex of the path also corresponds to the last. Any
graph that does not contain such cycles is acyclic. A graph is connected when there is a path P
between every pair of vertices, i.e. there are no unreachable vertices in a connected graph.

An edgeless graph is defined as GE = (V, /0), and shares all defined vertex properties of a DAG.
The interval u.I of any vertex u 2V in GE is defined as the mapping of contained vertices in u.I
to their subsequences in the string u.S = uI[0].S[i, j] . . .uI[|I|].S[i, j], relating the subsequences in
u to their vertices of origin.

7

2.2 Topological ordering

The properties of a DAG allow for the determination of a topological sorting of the vertices
in the graph. This sort yields a linear ordering of vertices such that for all edges (u, v) 2 E,
vertex u always precedes v in the ordering, as shown in Figure 2. Determining this ordering
follows from the notion that in a DAG there should always be at least one source; a vertex that
has an in-degree of 0. It may happen that there are multiple sources and in such cases the final
ordering of these respective vertices is equivalent, i.e. there are multiple valid solutions for the
topological ordering in the same DAG. The process by which the remaining vertices are sorted
can best be thought of as process of eliminating source vertices. As the removal of all source
vertices in a DAG along with their corresponding edges results in a new set of source vertices (as
long as vertices remain in the graph). Gradually adding vertices to the ordering and removing
them from the graph is guaranteed to result in a topological ordering of vertices that satisfies the
aforementioned requirement. Acquiring such an ordering in a graph is favorable as it allows for
linear time determination of longest/shortest paths in (un)weighted DAGs.

(a) Directed acyclic graph G (b) Topological sorting of G

Figure 2: a): An input graph G with vertices V = {v1,v2, · · · ,v10}. G has two sources {v4,v9} and one
sink v7. b): The resulting topological sorting T s displays the linearized (left-to-right) ordering
of the vertices in G as: v4.T s = 0, v9.T s = 0, v8.T s = 1, v5.T s = 2, v3.T s = 2, v2.T s = 3,
v1.T s = 4, v1.T s = 5, v6.T s = 5, v10.T s = 6, and v7.T s = 7.

8

2.3 Indexing k-length paths in a DAG

Read alignment is complicated in a population graph representation because depending on the
vertices that are walked, different arrangements of sequence are possible (paths). Although the
alignment of reads onto sequence that is contained in vertices is straightforward, depending on
the variation modeled in the graph, many reads will match sequence that stretches two or more
vertices. To efficiently map reads, the indexing should therefore capture all such paths.

We propose a method that is capable of indexing all k-length paths in a DAG, i.e. it ensures
that all overlaps across vertices and over edges are supported up to a length of k (see Figure 3).
This is accomplished in a process where a DAG G (3I) is transformed into an edgeless graph GE

(3III). This transformation is made possible through the application of three distinct operations:
extension, duplication, and collapsing. Capturing overlap between connected vertices is realized
by extending the sequence on a vertex with a k-length prefix from a neighboring vertex (3IIa).
Conversely, here we also use the term extension to refer to the operation in which subsequence
is prepended with the suffix of a neighboring vertex, depending on the directionality of the edge.
The introduction of overlap into the graph occurs on a per edge basis. Each time overlap has been
introduced, an edge can be removed, resulting in a simplified graph structure, until ultimately
we end up with an edgeless graph GE .

Simplification of the graph is crucial, because it allows for the extension of subsequence between
pairs of vertices that could initially not be resolved without introducing ambiguity. This ambigu-
ity refers to situations in which a vertex has multiple neighbors to which it can extend (3IIb). To
ensure that all vertices have a single candidate neighbor for extension it is necessary to modify
the local graph structure by means of duplication. The duplication operation creates a copy
of a vertex for each incoming edge, while keeping it connected to all of its previous outgoing
neighbors (3IIb). Although this operation increase the number of vertices and edges in the graph,
it simplifies the local graph structure, such that extension can be performed again.

It may happen that after duplication subsequence extension is still not possible because the
sequence length contained in the vertices of a pair is shorter than the path length for which is
indexed (3IIc). In those situations, a collapse operation is performed, merging the vertex pair,
and concatenating the defined sequence.

Since the input graph is modified during the indexing it is necessary to track the origins of
sequences S, the subsequences, and the respective vertex intervals therein to allow for a one-to-
one mapping of indexed paths in GE to G. This is made possible by initializing an interval tree for
each vertex in the graph and consequently updating these trees as the indexing progresses.

9

2.3 Indexing k-length paths in a DAG

Through repeated rounds of extension, duplication, and collapsing a graph is simplified until all
edges are resolved. Resolving all edges is also the stopping condition of the indexing, signifying
that an edgeless graph is generated that indexes all k-length paths. To ensure that the number
of duplications and collapses are minimized during indexing, an initial pass is made over the
edges of the input graph where only extension is allowed. Edges are evaluated, which either
leads to extension or skipping of a particular edge. All further passes over the edges allow for
the full modification of substructures in the graph through duplication and collapsing. Whenever
a modification is performed, the first order neighbors of the respective vertices in the current
edge are evaluated. This is because any simplication of the graph can simplify the operations
necessary to resolve neighboring edges.

Figure 3: Indexing k-paths transforms an input DAG G into a edgeless graph index GE , in this example
k = 4. I): Input DAG with sequence annotations on the vertices. II): The k-path indexing
procedure is based on three subroutines. IIa): Extension; subsequence extension from one
vertex to another to capture overlap. IIb): Duplication; the duplication of vertices to eliminate
ambiguity for extension. IIc): Collapsing; the collapsing of chain-like graph motifs when
subsequence extension is not possible. III): The output edgeless graph index captures all
4-length paths in the original graph, colored lines denote the origin of assigned prefixes (green)
and suffixes (red). A step-by-step guide of this process can be found in the appendix in
Figure A1.

10

2.3 Indexing k-length paths in a DAG

2.3.1 Subsequence extension

The extension of subsequence is only allowed if two requirements are fulfilled, these are the
k-length and degree-requirement, which for a given edge (u, v)2 E are defined as follows:

• if k  |u.S| then in(v) = 1 or k  |v.S| then out(u) = 1

To elaborate on this extension consider Figure 4, here the vertices u and v both capture enough
sequence to allow for extension. This means that to capture the k-length overlap between the pair
and resolve the edge (u, v), two configurations for extension are possible. The first is to extend
vertex v with a prefix originating from vertex u yielding v.S = (u.S [|u.S|� k�1, |u.S|] , v.S).
The second is to extend vertex u with a suffix originating from vertex v, and is defined as
u.S = (u.S, v.S [0, k�1]). In situations where both a prefix or suffix extension is allowed, the
choice of extension is arbitrary.

Figure 4: A pair of vertices u and v, where |{u,v}.S| = 2k. In this example two overlap extensions are
possible. For clarity the starting and ending index positions are given for each subsequence
relative to their sequence of origin.

11

2.3 Indexing k-length paths in a DAG

Details of the degree requirement can be put into context of Figure 5a. In this example a network
motif is given in which extension is only possible between the edges (u, w) and (w, v). Extension
is not allowed between (u, v), because out(u) = 2 and in(v) = 2. This means that there is no
unambiguous assignment of subsequence between these vertices, which would otherwise lead to
missing paths in the indexing. If one of either vertex fulfills this degree requirement (out(u) = 1
or in(v) = 1), this ambiguity would be resolved and extension becomes possible. The only way to
accommodate for that is to either resolve edge (u, w) first or (w, v), as shown in Figure 5b.

(a)

(b)

Figure 5: a): Given the edge (u, v) immediate extension is not possible unless either edge (u, w) or
(w, v) are resolved first. b): By solving either (or both) edges (u, w) and (w, v), it becomes
possible to solve (u, v). This can be done by assigning a prefix originating from vertex u to w
or by assigning a suffix to w originating from v.

Extension for a given edge (u, v) 2 E in G can be generalized as:

12

2.3 Indexing k-length paths in a DAG

2.3.2 Vertex and edge duplication

There are situations where extension is not possible, even if neighboring edges are resolved.
In such cases multiple edges enter or exit a vertex, causing the subsequence extension to be
ambiguous. This means that there are multiple subsequences that can be assigned to a single
vertex (see Figure 6).

Figure 6: A subgraph in which there are three ways to assign a prefix to the target vertex, for k = 3.
Assigning one of the prefixes to the target, leaves two edges unresolvable.

To overcome such situations it is necessary to modify the local graph topology through duplica-
tion of vertices and edges, shown in Figure 7. The example can be resolved by duplicating the
target vertex twice and then assigning two of the edges connected to the original vertex to these
duplicates.

Figure 7: Resolving ambiguity follows from duplicating the target vertex and distributing the edges, as
such that each duplicate has one incoming edge.

13

2.3 Indexing k-length paths in a DAG

The duplication can be generalized as follows, where for a given edge (u, v) 2 E the direction of
duplication and the total number of duplicates is decided by min(in(u)�1, out(v)�1), where
in(u)�1 � 1 or out(v)�1 � 1. Duplicates inherit all properties of their parent and also remain
connected to the edges in the opposing direction. For more details refer to Figure 8.

Figure 8: a): A subgraph where subsequence extension is not possible in any configuration without
introducing ambiguity in the paths. This ambiguity is caused by the lack of sequence contained
in vertex d, and must therefore be duplicated. Vertex d can either be duplicated in the incoming
or the outgoing direction, requiring in(d)� 1 = 2 or out(d)� 1 = 1 duplicates respectively.
For completeness both directions of duplication are shown. b): Resolving d in the incoming
direction requires two duplicates, denoted as d0 and d00. The incoming edges (v, d) and (w, d)
are reassigned to these duplicates, whereas the outgoing edges of d are all inherited. After this,
the ambiguity in incoming direction is resolved and prefixes can be assigned to d, d0, and d00.
c): Resolving d in the outgoing direction requires 1 duplicate, denoted as d0. The outgoing
edge (d, f) is assigned to this duplicate, whereas the incoming edges of d are all inherited.
After this, the ambiguity in incoming direction is resolved and suffixes can be assigned to d
and d0.

One can argue that it is also possible to duplicate a vertex in both directions simultaneously to
resolve ambiguity. In the example above this would require in(d) · out(d)� 1 = 5 duplicates
after which all extensions can be completed. However, by doing this unnecessary duplication
operations are performed. If we consider duplications by direction, we simplify the graph and
may make further duplications unneeded or less expensive. For instance, in Figure 8c, the
subgraph can be resolved after the first duplication of d, by duplicating two of the vertices in
{u,v,w} once, requiring 3 duplications in total.

14

2.3 Indexing k-length paths in a DAG

Note that if haplotype information is available, only the k-length paths supported by haplotypes
have to be captured. In terms of graph operations this can have a significant influence on the
number of duplications required to index the graph. The intuition here is that if duplication is
necessary there should be as many duplicates as there are haplotype paths traversing a given
vertex. This contrasts the extension with duplication, in the sense that the former is unaffected
by the inclusion of haplotype information. This is obvious because the haplotype relation is
already implicit in vertex pairs, where the set of haplotypes contained in the source is always
a subset of those in the target. In duplication this is different, since the ambiguous vertex is
a junction wherein haplotypes come together and consequently diverge again in the outgoing
direction. This divergence will often group haplotypes together, because there is high similarity
in the sequence of genomes. Furthermore, the variants in them often have linkage if they
are in proximity, making this grouping more likely. The grouping can be used as a means
of constraining duplication, ensuring only haplotype supported paths are indexed. Groupings
can be identified through the intersection of the sets of haplotypes contained in the incoming
edges with those on the outgoing edges. This may be better understood given the example in
Figure 9.

Figure 9: a): Subgraph with the haplotypes: {1,2,3}. In this situation vertex d causes ambiguity in the
extension, meaning it has to be duplicated to resolve this. The duplication can be simplified,
because there is a grouping of the haplotypes (1,2) in vertex e, which were previously disjoint
in vertices u and v.b): The duplication is guided by this grouping, identifying the groups by
intersecting the sets of haplotypes on the incoming edges with those that are outgoing. This
yields two groups (1,2) and (3), hence only one duplication of d is required to isolate them. c),

d): Following duplication the subsequence extension is possible again, resolving the subgraph.

15

2.3 Indexing k-length paths in a DAG

2.3.3 Vertex collapsing

It may happen that after duplication an edge (u, v) 2 E where out(u) = 1 and in(v) = 1 can still
not be resolved, because u.S > k and v.S > k, (as shown in Figure 10). If there is not enough
sequence in either vertex, an overlap can not be expressed through subsequence extension. The
solution is to collapse one of either vertex into the other, concatenating or prepending their
sequences together. The receiving vertex inherits all properties of the transmitting vertex, which
is removed from the graph. Direction of collapsing is guided by minimizing the number of edge
reassignments required to complete it, given by min(in(u), out(v)).

Figure 10: a, b): The duplication of vertex d is insufficient to resolve the edges, because there is not
enough sequence to capture an overlap between the vertex pairs. c): To solve these chain
substructures a collapse operation is performed which merges each pair into a single vertex.

16

2.4 Read alignment to an edgeless graph

With the construction of index GE it now becomes possible to directly align reads with estab-
lished mapping methods. Such an alignment can be interpreted as a one-to-one mapping of
reads to k-paths in the input graph G that are embedded in index GE . To clarify, GE captures all
overlap between vertices in graph G, meaning that any read may be aligned onto a single vertex
or on a path, spanning vertices. Vertices in GE no longer describe single vertices with sequence,
but now represent intervals over which sequence is distributed on neighboring vertices, where
the sequence length that an interval describes is always � k. We know what subsequence belongs
to which vertex in the interval, because of the associated interval tree that is constructed for each
vertex in GE .

To clarify the interpretation of intervals consider Figure 11, in which a subgraph of GE is given,
and an interval of it is projected to G.

Figure 11: a): Edgeless graph GE . b): Vertices v2 and v3 are both prefix and suffix extended by v1 and
v4 respectively. This means that the interval contained in vertex v2 describes the sequence in
vertices v1, v2, and v4 as k�1, |v2.S|, and k�1. c): Projecting the interval on vertex v2 onto
the graph G, describes the path v1 ! v2 ! v4.

The read alignment onto GE relies on the application of BWA-MEM to map single-end reads,
for which the index is first converted to a format that is readable by BWA. Standard parameters
were used with BWA, there being no constraint in the number of mismatches allowed in reads.
Multi-mapping reads (multiple locations on the reference with equivalent alignment scores given
a read) are handled by random selection, furthermore only the primary alignment of a read is
considered.

17

2.5 Projection to input DAG

Given a mapping of reads against each interval in GE , we are now interested in projecting that
information back to the original graph G, to obtain a coverage distribution of reads on edges and
vertices. This is possible, because each interval in GE has an associated interval tree that maps
the relative positions of the vertices in that interval back to G. Figure 12 describes how this read
mapping can be translated back to the original graph G.

Figure 12: a): Four k = 100 reads R1,2,3,4 are found to be aligned to the same interval of vertices
v1,v2,v5,v7,v8 at different start and ending positions within this interval. Only one of the
reads (R1) is fully contained in a single vertex, whereas the others all describe paths between
vertices of varying edge traversals: R2: 1 edge, R3: 2 edges, and R4: 3 edges. b): A sub-
graph of G, wherein the reads can according to their relative positioning within the interval
alignment in a) be placed to their respective locations in G.

As noted in the above Figure, a read that covers an interval may be contained entirely in a single
vertex or span multiple vertices. The contribution of a read is tracked as coverage on each
vertex and edge, where the relative contribution on vertices is assigned based on the number of
nucleotides that are spanned in each vertex. For example, in Figure 12 read R2 contributes 85
and 15 nucleotides to v1 and v2 respectively, which given a read length of 100 scales this to 0.85
and 0.15.

Weighting the contributions on edges is approached differently, given that if a read maps, the
sequence is only contained on the vertices it spans and not on the edges. Meaning that the
mapping of reads on paths has a different significance. For a given edge (u, v) 2 E over which a
read spans both vertices, it describes the transition from u to v. This means that the contribution
that reads have on edges, should be indicative on how often particular vertex pairs are observed
together. Which is why the contribution of a read on edges remains constant regardless of how
many are crossed.

18

2.6 Path inference

After all alignments are projected back onto G, a coverage distribution is obtained across the
graph, which allows for the inference of a path through it that best reflects the sampled reads.
Because G is a DAG, it is possible to obtain a topological ordering of the graph which can be
used to obtain the most supported path of the graph in linear time. This is possible through a
simplification of the Bellman Ford algorithm modified for longest paths and DAGs, where for a
DAG it is only necessary to traverse each edge only once.

The workings of this method can be better explained in context of Figure 13, in which the
inference is based on the premise of finding the longest ‘distance’ between source and sink.
Yet this is only possible if the distance between the source and the predecessors of the sink
are known, and recursively the distance to the predecessors of these predecessors. Where the
distance between any two vertices is a summing over the coverage contained in the targeted
vertex and connecting edge with the distance of the source vertex. For example, if the most
supported path between v1 and v4 in Figure 13 has to be obtained, only two paths have to be
considered: v1 ! v2 ! v4 and v1 ! v3 ! v4. To know whether one path should be chosen over
the other, the distances from v1 to v2 and v3 should first be determined. After which the distances
from v2 and v3 to v4 have to be found. Since v4 has two predecessors, we need to maximize over
them to obtain the predecessor with the greatest summed distance.

Figure 13: a): The result of projecting aligned reads back onto G, where every edge and vertex has
coverage from reads. b): Determining the most supported path is based on evaluating the
distance between source and sink and all vertices that precede this sink, which are all co-
dependent. Distance between u and v is defined as the sum of the coverage on v and (u, v)
and the current distance on u. In the event that v has multiple predecessors a maximization is
performed to find the highest scoring predecessor, which is then tracked as a trace. Obtaining
the distance between source and sink allows for a traceback of the most supported path based
on following the traces.

19

2.6 Path inference

This displays that a topological ordering is necessary to ensure that dependencies on distances
in predecessors are evaluated beforehand, meaning that calculation of distances should start at
the source vertex of the graph. When maximizing for distance, the highest scoring predecessor
is always tracked as a trace. This is to ensure that after finding the distance between source and
sink, a traceback can be performed to obtain the most supported path.

Path extraction can finally be generalized as follows, here the distance and trace are consid-
ered attributes for any vertex v 2 V , and W denotes the observed coverage in both edges and
vertices. WE and WV are introduced as a means of obtaining a weighted sum of vertex and edge
coverages.

20

2.6 Path inference

Although a path may now be obtained efficiently, there are still problems in doing so in multi-
genomes. This is especially the case in highly repetitive regions, where the coverage of uniquely
mappable reads is sparse and distributed over parallel paths, in which the path extraction biases
towards dense regions in the graph. To illustrate this, consider Figure 14 in which two parallel
paths are shown, where one is enriched with variants and the other skips over this variation.
Incorrect paths may be inferred in situations like this if cumulatively the coverage is higher than
the shorter correct path, even if in this dense region there are portions that are uncovered.

Figure 14: Graph topology in which the source vertex branches into a number of parallel paths, only to
join again in the sink. The green path is noted as the ground truth for a given genome, the red
path is what is inferred.

To account for this bias, a scheme is introduced that penalizes coverage on vertices and edges
that diverge too much from an expected read (R) coverage distribution (C), where |R| is the
read length. This is guided by the deviation of the observed coverage u.R and (u, v).R in a
vertex or edge obtained from the coverage u.W and (u, v).W given an expected coverage expu
and exp(u, v). The latter being derived from the theoretical coverage that a aligned read set
could provide on the longest path in the graph. Vertices and edges are penalized if u.R < expu
and (u, v).R < exp(u, v). The degree of penalization is determined by the height of deviation,
penalizing more stringently if the difference is larger.

For each vertex u 2V and each edge (u, v) 2 E the observed coverage is defined as:

u.R = u.W · |R|
|u.S| · C and (u, v).R = (u, v).W · |R|

(k�1) · C

Where the coverage is penalized when obs < exp in vertices and edges respectively as:

u.W = u.W � |u.S| · (expu �u.R) and (u, v) .W = (u,v) .W � (k�1) ·
�
exp(u, v)� (u, v).R

�

21

2.7 Measuring performance

To evaluate the performance of path inference and read alignment, a number of measurements
are taken. The quality of an inferred path can be expressed in terms of its deviation from a given
ground truth. Meaning that if a reference assembly is available, that is build from the reads used
to sample a path in graph G, a direct comparison is possible. This difference is indicated by the
presence or absence of (un)expected sequence in the path relative to the assembly, as:

• True positive: a sequence that is expected to be in the path.

• True negative: a sequence that is expected to not be in the path.

• False positive: a sequence that is included in the path, but is foreign from the ground truth.

• False negative: a sequence that is not in the path but is expected in the ground truth.

These four measures are determined on a per nucleotide basis for each inferred path. The false
positives and negatives are related, given that if there is an over-representation of the former it
implies that in the inference the longest path is taken rather than the shorter at certain points.
The opposite of this holds true for an over-representation of false negatives.

The read alignments generated by BWA are summarized in more general terms, for which
we use the number of mismatches, unmapped reads, and multi-mapping reads. The number of
mismatches reflects how often a mismatch has to be introduced to allow for the mapping of a read
to the reference. This can only be given in absolute counts, given that the number of mismatches
required for a read to be mappable is variable. The number of unmapped reads represent the
reads for which no sequence context is found on the reference, making their contribution null.
Along with the number of mismatches they give an indication of the divergence of sequence
content in the reads relative to the reference system. Where the mismatches describe smaller
variations which may still be resolved by reads, and the unmapped reads refer to larger structural
variations. The number of multi-mapping reads, describe reads for which multiple equally good
mappings have been found on the reference, making alignment ambiguous. Whenever there
is a multi-mapping of a read in BWA, one of the mappings is chosen randomly. The number
of multi-mappings does therefore not denote the total multi-mappings found for each read, but
rather the reads for which at least more than one mapping is found. This can be used as an
indicator for the relative ambiguity in the alignment against a reference.

22

3 Results

3.1 Data specification

M. tuberculosis (TB) was chosen as a subject given its small genome size of ~4.4Mb. For this
purpose a number of assembled genomes were available which could function as benchmarks.
A population graph was build from 20 TB genome assemblies using REVEAL with standard
parameters generating a graph with 25,008 vertices, 34,311 edges and 4.8Mb of sequence. Out
of these genomes H37Rv_BR was selected as a reference to be used as a baseline in analyses.
The reads used to assemble these genomes were not available. In place of that, error-free 100
nucleotide reads were sampled from the 20 genomes in the graph, and also from 5 other genome
assemblies, obtaining for each an average coverage distribution of ~100. Note that the read
alignment relied on matching 100 bp length reads, hence the index size may from this point
onward be assumed to be k = 100 unless otherwise specified. The experimental data (Illumina)
that was used is accessible from the NCBI Sequence Read Archive by identifier: PRJNA183624
[27], from which the read sets of 7 samples were used. Two indexes were build given the input
graph G, one that captures all k-length paths denoted as GE , and another that is restricted by
including haplotype information, GE

H .

23

3.2 Indexing k-length paths

The difference between indexing of GE and GE
H can be expressed in terms of the graph opera-

tions required to fully index the graph, the total sequence in the index, and the distribution of
subsequence extensions over vertices. To better describe the relation of path length and indexing
complexity, the same indexes were build again but now for k = 20. The measurements of both
path lengths indexes are shown in table 1.

Table 1: Statistics of the 20 genome graph G before and after indexing 100- and 20-paths for GE and GE
H .

100-paths 20-paths

G GE GE
H GE GE

H

Vertices 25,008 +895.96%, 249,070 +14.74%, 28,694 +3.94%, 25,994 +1.72%, 25,438

Edges 34,311 0 0 0 0

Nucleotides 4,766,011 60,066,776 8,623,685 5,466,142 5,431,370

Duplication op. - 229,627 4162 1022 433
Collapse op. - 5565 476 36 3

Prefix - 15.53%, 38,670 42.23%, 12,118 31.19%, 8107 32.35%, 8228

Suffix - 0.88%, 2196 4.15%, 1190 2.79%, 725 3.40%, 864

Prefix and Suffix - 82.08%, 204,438 41.84%, 12,005 51.95%, 13,503 49.96%, 12,710

No extension - 1.51%, 3766 11.78%, 3381 14.07%, 3659 14.29%, 3636

The number of graph operations required to index 100-paths decreases by a factor of 55 and
12 for duplication and collapse operations respectively in GE

H . This is also reflected in the
increase of vertices, where in GE there is almost an order of magnitude increase in vertices with
respect to the input graph, whereas this increase is only marginal in GE

H . The amount of vertices
translates into the number of paths, and by extend the amount of sequence that is indexed by
both approaches, where GE captures much more sequence than GE

H . This gives an indication on
why indexing longer paths is more difficult in graphs, where through combinatorics an explosion
is observed in the number of paths. The skewed distribution seen in the assignment of both
prefixes and suffixes in GE can be attributed to the increase in duplications. Because after a
duplication is completed, it generally becomes possible to perform subsequence extension in at
least one direction, if not both.

24

The effect of path length in indexing becomes clear when comparing k = 100 to k = 20, wherein
the differences between GE and GE

H become marginal. Important to note is that while an increase
in path length is directly related to the exponential growth in paths, the root cause of this is
actually the size of variants and their densities. To put this into context, consider if a graph is
build where all the vertices are guaranteed to exceed the length of k and there is never ambiguity
in extension, duplication would then never be necessary. Meaning GE

H would become equivalent
to GE .

In principle, it is possible to index paths equivalent to the longest sequence encoded in the graph.
This would generate an index that contains all possible path combinations of the original graph,
encoded in a number of vertices equivalent to this number of combinations. Building such an
index without a haplotype constraint is intractable given the problem of exponential growth,
yet it was possible when including haplotypes. This generated an index with 20 vertices each
describing one of the input genomes, and displays that the indexing can be interpreted as a
reversal of the genome alignment used to build graphs, which may be better understood in the
context of haplotype constraints. Because as the path length increases, the more substructures in
the graph are pulled apart into parallel paths describing single genomes, effectively simplifying
the graph.

3.3 Evaluation on synthetic data

3.3.1 Performance of genome inference

Before the path performance in synthetic data was evaluated, three parameters where first op-
timized. Two of which are the cutoff values for penalization of coverage expu and exp(u,v) in
vertices and edges respectively, and the last being the weighting of vertex and edge coverages
when determining the distance in neighboring vertices for path inference, as WE ,WV . An esti-
mate of these three parameters was obtained through a grid search on [0,1] with step size 0.1,
minimizing the sum of false positives and negatives. This search yielded the parameter set
expu = 1.0, exp(u,v) = 0.6, and WE = 0.9, WV = 0.1 for both GE and GE

H . Of note is the 9 to 1
weighting for edges and vertices. Indicating that if a read aligns, it is more informative if the
mapping is on an edge, given that this actually provides support of a short path through the graph
rather than describing a single vertex in it.

The read sets of all 25 genomes were aligned to both GE and GE
H . Given the estimated parameters,

paths were inferred from the alignments, where for 20 of the samples the ground truth could be
compared to the paths in terms of the defined performance metrics. The results of this can be
found in Figure 15, where the deviation of the ground truth with respect to H37Rv_BR is also
included.

25

3.3 Evaluation on synthetic data

Figure 15: Evaluation of inferred path quality by false positives and negatives for 20 genomes, comparing
the paths obtained from aligning reads of a sample to GE and GE

H to the ground truth of this
sample. Additionally, the difference between ground truth and H37Rv_BR is included for
each sample, which also decides the ordering in the figure.

The performance of inferred paths from the alignments on GE and GE
H are always better than the

reference (excluding H37Rv_BR against H37Rv_BR). The reason that path reconstruction is
not perfect in any of the samples, is related to both the length of reads and paths. The inference
can in some cases not be resolved correctly because alignment is ambiguous in regions with
repeat content, in which reads cannot span these repeats.

GE and GE
H offer similar performance, although GE

H does better on average, which may attributed
to the increase in multi-mapping reads on GE as a result of indexing more paths. In some samples
path inference is more difficult, an example of this is F11, which has the worst performance.
The complicating factor has already been mentioned, which is the repeat content of the target
genome, and the read length.

3.3.2 Alignment of reads to reference representations

To better understand the differences between the paths that were obtained from the index map-
pings, the alignments themselves were investigated. The read sets of all 25 samples were aligned
to 6 targets, these are: the sampled genome (self), the reference H37Rv_BR, the indexes GE and
GE

H , and the paths obtained from the alignments of these two indexes. The results of which are
shown in Figures 16, 17, 18, 19 in terms of the number of mismatches, unmapped reads, and
multi-mapping reads.

26

3.3 Evaluation on synthetic data

Figure 16: The total number of mismatches for a read set given each of the 6 reference systems. Input
and hold-out genomes are separated by the black vertical dotted line.

Figure 17: Same measurements as in Figure 16.

27

3.3 Evaluation on synthetic data

Figure 18: The number of reads for which no mapping was found.

Figure 19: The number of reads for which there are multiple positions in the reference system with
equally good mappings.

28

3.3 Evaluation on synthetic data

Alignment of reads to the reference H37Rv_BR again provides an indication of the relative
variation in the graph, where mismatches describe small variations, and unmapped reads do this
for variants larger than the read length. As expected, the indexes GE and GE

H both provide the
same statistics in terms of mismatches and unmapped reads for the 20 input genomes. Differ-
ences between GE and GE

H only become apparent for mismatches and unmapped reads in the
5 hold-out genomes, where of both fewer are found in GE . This is also expected, given that
GE indexes more paths, increasing the likelihood of finding a match for a read. This advantage
in GE is offset by an increase in the number of multi-mappings, resulting in more ambiguity
in the alignment and consequent path inference. Comparing the alignments to inferred paths
displays that the GE

H path always has fewer mismatches, but that in terms of unmapped reads
they are almost always equivalent. Similar trends are observed with the 5 hold-out genomes,
where alignment against the indexed graphs and by extension the inferred paths are always better
than using the reference as a target.

However, there are two samples in the hold-out set that deviate from the norm, these are: Kurono
(in terms of unmapped reads) and KIT87190 (multi-mappings). Both cases can be explained in
the context of repetitive sequence. For Kurono we see a disproportionate amount of unmapped
reads in the paths, given that there are none in the alignments on the indexes. This can be
attributed to the 9 to 1 weighting of edges and vertices, which can in one specific situation lead
to problems. This problem occurs in a branching of vertices that have the same starting and
ending subsequences (that are longer than any overlap can capture) and that diverge between
these identical flanks. Given the weighting, evaluating such cases is often ambiguous and may
lead to missing sequence. In KIT87190 a higher rate of multi-mapping is expected than found
in the alignments on the inferred paths, meaning the incorrect multiplicity of repeats is inferred.
Both of these problems may be resolved by using longer reads, since those offer more unique
mappings and are more likely to span repeats.

To test whether longer reads can help improve the path inference, we build graph indexes with
increasing k-sizes, along with appropriately sized read sets. Where with an increase from k = 100
to k = 200 it was now possible to properly resolve certain substructures, as shown in appendix
Figure A2. However, perfect reconstruction of paths required far longer reads to span the repeats.
Where only a fourth of the genomes could be perfectly inferred with k = 500, and this only
increased to the majority when k = 1000.

29

3.3 Evaluation on synthetic data

3.3.3 Influence of coverage on genome inference

The influence of coverage on path inference was also evaluated to get an intuition of how
little coverage is needed to still reconstruct a path acceptably. This was done for the reference
H37Rv_BR, the result of which is shown in Figure 20.

Figure 20: False positive and false negative nucleotides at varying degrees of coverage in H37Rv_BR,
where for each measurement 10 samples were taken.

Note that no additional grid searches were performed for each point of coverage, hence the
same parameters are used everywhere, which explains why the performance is best at maximum
coverage. Overall, a steady decline in performance is observed as the coverage drops, mostly
affecting the number of false negatives.

30

3.4 Evaluation with experimental data

3.4.1 Performance of genome inference

Experimental data was used to determine how well the methods generalize in a realistic setting,
in which noise, sequencing specific biases, and contaminations starts playing a role. Of the
7 read sets, one represents the reference genome H37Rv, this is not the read set used to build
H37Rv_BR, but they are used here interchangeably. A new estimate was made of the parameter
set given this reference through a grid search, which yielded expu = 0.0, exp(u,v) = 0.3, and
WE = 1.0, WV = 0.0, with a total of ~17,000 false positives and negatives nucleotides. Although
the contributions of vertex coverage was already restricted with artificial data, it is now ruled
out. Notable is the difference of path quality when compared to the artificial data, where for
the same strain only ~2000 nucleotides were incorrectly assigned. This may be attributed to
the noise in the sequencing data, but that can only be verified by investigating the alignments
themselves.

3.4.2 Alignment of reads to reference representations

The same alignment analysis as in artificial data is performed. Here the read sets of all samples
are aligned to 5 targets, which include: the reference, H37Rv_BR, the indexes GE , GE

H , and the
paths obtained from the alignments against these indexes. The results of which are shown in
Figures: 21, 23, 22. Note that the number of reads available for each sample differs, for example.
there are 16.2 million reads for H37Rv and 3.5 million for XDR_KZN_605. This is why the
absolute values are shown for the unmapped and multi-mapping reads, the relative values are
shown for the mismatches since these are quantified on a per nucleotide level.

31

3.4 Evaluation with experimental data

Figure 21: The total number of mismatches.

Figure 22: The number of reads for which no mapping was found.

32

3.4 Evaluation with experimental data

Figure 23: The number of reads for which there are multiple positions in the reference system with
equally good mappings.

Interpretation is more difficult in experimental data given that we now have to deal with noise.
Regardless of this, we observe the same trends as in the artificial data although these may in
proportion not be as apparent. Again, the number of mismatches and unmapped reads is lowest
when aligning to the indexes GE and GE

H , where the inferred paths do slightly worse given that
they cannot be reproduced perfectly with the given read length.

What was unexpected is that there are more unmapped reads and mismatches in the alignment
of H37Rv reads to the reference H37Rv_BR, than on the graph indexes. To investigate this, the
reads that mapped on the indexes and are unmapped on H37Rv_BR were extracted, yielding
40,000 reads. These were consequently realigned to the graph to determine on which intervals
they matched. What we found was surprising, as more than 32,000 of the reads were found to
be mapped on the exact same interval, the coverage on these edges and vertices exceeding 5000
while 350 was expected. Closer inspection of these mappings showed that 62 of the nucleotides
in these reads were soft clipped and only 38 of the nucleotides actually mapped to the interval.
To determine the origin of these reads, a number of them were used as queries in BLASTN, and
resulted in best matches in the common carp genome. It is unclear whether this is a case of
contamination in the sequencing, or a chance event given that the match is only 38 nucleotides
yet this does not explain the high recurrence of this particular read. The remainder of this set
of unmapped reads map on entirely different strains of TB than the reference, which possibly
indicates that there is also some population variation between the H37Rv_BR assembly and the

33

3.4 Evaluation with experimental data

H37Rv reads.

3.4.3 Influence of coverage on genome inference

Variable coverage is again evaluated but now for the H37Rv reads, the result of which is shown
in Figure 24.

Figure 24: False positive and false negative nucleotides at varying coverage samplings in H37Rv, where
for each measurement 10 samples were taken.

The trend of performance is not entirely consistent with what was observed in the artificial data,
where it is not clear what happens between [128, 335] coverage. This may be attributed to
insufficient samplings required to overcome the noise in experimental data. Starting and below
100 read coverage the same decrease in performance is observed as in the synthetic data.

34

4 Discussion and future work

The presented indexing strategy captures all k-length paths in directed acyclic population graphs,
and can through the integration of haplotype encodings, constrain paths within haplotype blocks.
The use of such constraints is crucial to make scalability of graph alignment possible, since it
avoids the exponential growth of paths that occurs when trying to capture all combinations of
paths and therefore allows for longer paths. It ensures that fewer paths are indexed, the resulting
index becomes smaller, and only contains sequence that has been previously observed. Which
is beneficial for read alignments as it reduces the size of the search space, and decreases the
number of multi-mappings. This fact is also recognized by the authors of VG, which have
recently expressed interest in reducing the complexity of the GCSA2 indexing, which they are
planning to base on a graph generalization of genotype inference methods [28, 29].

In the experiments it was always better to align to the graph index rather than the reference,
where the use of haplotype information often yielded better results, given that there are more
unique mappings of reads than when all paths are indexed, which introduces more ambiguity.
By inferring a path from the graph index we solve the problem of multi-mapping reads on the
population graph, now providing a target on which rapidly reads may be mapping using existing
alignment tools. The perfect reconstruction of paths is impossible if the reads are shorter than
the repetitive content contained in the genomes encoded in the graph. The obvious solution to
this problem is to use longer reads. However, a significant improvement can already be made by
using paired-end reads rather than the single-end reads that are currently used for path inference.
Using paired-end reads on graphs is not immediately straightforward, as it requires some sort of
locality metric in the graph to estimate the distances between read pairs.

This locality metric is also necessary for the support of long reads; reads that are longer than
the k-paths that are indexed. With such reads a seed-and-extend approach is necessary to align
them. Meaning that k-mers are extracted from these reads and mapped onto the graph index,
where the spatial positioning of subsequent k-mers has to be consistent to allow for accurate
mapping, i.e. there must be cohesion in the intervals that are mapped. By doing this the effect
of multi-mapping can also be reduced, since in the context of neighboring k-mers the likelihood
of a particular k-mer to be mappable elsewhere in the genome becomes much lower.

35

Tuberculosis as a model organism may have been a poor choice, given the low amount of
variation found between strains, which may make the advantage of using a graph representation
not as apparent as it could be. This was further complicated by the experimental data for
which there was only one that somewhat represented a ground truth. Neither can we show
the scalability, which can further be improved by introducing parallelization of the indexing
which is easily implemented, since during the process of indexing the graph is simplified into
disjoint substructures, which can consequently be detected and be solved individually. Ideally
the scalability is tested on the major histocompatibility complex of the human genome, a region
where there is a high degree of variation found between populations. The evaluation of the
path extraction is also difficult to quantify from the read alignments themselves, where ideally
variation detection and recall of variants should be used as a benchmark for quality.

It may be possible to infer a diploid path or at least a simplified graph that closely describes a
provided read set. Given the read distributions on the graph we can prune vertices and edges
from it that are not sufficiently covered. Generating a simplified graph that only includes the
vertices and edges actually supported by the reads.

36

References

[1] Nicholas Loman, Raju Misra, Timothy Dallman, et al. Performance comparison of bench-
top high-throughput sequencing platforms. Nature biotechnology, 30(5):434–439, 2012.

[2] Jason Reuter, Damek Spacek, and Michael Snyder. High-throughput sequencing technolo-
gies. Molecular cell, 58(4):586–597, 2015.

[3] Teri Manolio, Francis Collins, Nancy Cox, et al. Finding the missing heritability of
complex diseases. Nature, 461(7265):747–753, 2009.

[4] 1000 Genomes Project Consortium et al. A map of human genome variation from
population-scale sequencing. Nature, 467(7319):1061–1073, 2010.

[5] 1000 Genomes Project Consortium et al. An integrated map of genetic variation from
1,092 human genomes. Nature, 491(7422):56–65, 2012.

[6] Eric Lander, Lauren Linton, Bruce Birren, et al. Initial sequencing and analysis of the
human genome. Nature, 409(6822):860–921, 2001.

[7] International Human Genome Sequencing Consortium et al. Finishing the euchromatic
sequence of the human genome. Nature, 431(7011):931–945, 2004.

[8] Deanna Church, Valerie Schneider, Tina Graves, et al. Modernizing reference genome
assemblies. PLoS Biol, 9(7):e1001091, 2011.

[9] Yu Liu, Mehmet Koyutürk, Sean Maxwell, et al. Discovery of common sequences absent
in the human reference genome using pooled samples from next generation sequencing.
BMC genomics, 15(1):685, 2014.

[10] Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics, 26(5):589–595, Mar 2010.

[11] Stephen Sherry, Minghong Ward, M. Kholodov, et al. dbSNP: the NCBI database of
genetic variation. Nucleic acids research, 29(1):308–311, 2001.

[12] Michael Cariaso and Greg Lennon. SNPedia: a wiki supporting personal genome annota-
tion, interpretation and analysis. Nucleic acids research, 40(D1):D1308–D1312, 2012.

[13] Robert Handsaker, Joshua Korn, James Nemesh, and Steven McCarroll. Discovery and
genotyping of genome structural polymorphism by sequencing on a population scale. Na-
ture genetics, 43(3):269–276, 2011.

[14] Lin Huang, Victoria Popic, and Serafim Batzoglou. Short read alignment with populations
of genomes. Bioinformatics, 29(13):i361–i370, 2013.

37

REFERENCES

[15] Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, et al. Simultaneous alignment
of short reads against multiple genomes. Genome Biol, 10(9):R98, 2009.

[16] Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm.
1994.

[17] Erik Garrison, Adam Novak, Glenn Hickey, et al. Variation graph tools. https://github.
com/vgteam/vg, 2016.

[18] Simon Gog, Matthias Petri, et al. Succinct Data Structure Library (SDSL). https:

//github.com/simongog/sdsl-lite, 2016.

[19] Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In String Processing and
Information Retrieval, pages 164–175. Springer, 2009.

[20] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing finite language representation of
population genotypes. arXiv preprint arXiv:1010.2656, 2010.

[21] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with
applications in genome research. Computational Biology and Bioinformatics, IEEE/ACM
Transactions on, 11(2):375–388, 2014.

[22] Jouni Sirén. Indexing variation graphs. CoRR, abs/1604.06605, 2016.

[23] Christopher Lee, Catherine Grasso, and Mark Sharlow. Multiple sequence alignment using
partial order graphs. Bioinformatics, 18(3):452–464, 2002.

[24] Mengyao Zhao, Wan-Ping Lee, Erik Garrison, and Gabor Marth. SSW library: an SIMD
Smith-Waterman C/C++ library for use in genomic applications. PloS one, 8(12):e82138,
2013.

[25] Jasper Linthorst, Marc Hulsman, Henne Holstege, and Marcel Reinders. Scalable multi
whole-genome alignment using recursive exact matching. bioRxiv, 2015.

[26] Jasper Linthorst. REVEAL (REcursiVe Exact-matching ALigner). https://github.

com/jasperlinthorst/reveal, 2016.

[27] Keira Cohen, Thomas Abeel, Abigail McGuire, et al. Evolution of extensively drug-
resistant tuberculosis over four decades: whole genome sequencing and dating analysis of
Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med, 12(9):e1001880,
2015.

[28] Richard Durbin. Efficient haplotype matching and storage using the positional burrows–
wheeler transform (pbwt). Bioinformatics, 30(9):1266–1272, 2014.

38

https://github.com/vgteam/vg
https://github.com/vgteam/vg
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://github.com/jasperlinthorst/reveal
https://github.com/jasperlinthorst/reveal

REFERENCES

[29] Adam M Novak, Erik Garrison, and Benedict Paten. A graph extension of the positional
burrows-wheeler transform and its applications. bioRxiv, page 051409, 2016.

39

5 Appendix

(a) Input graph (b) (c)

(d) (e)

(f)

(g) (h)

(i)

40

(j)

(k)

(l)

(m)

Figure A1: Step by step indexing of the graph in figure 3, which is completed in 12 subsequence exten-
sions from b) to m) (no duplications or collapses are required), line coloring indicates prefix
(green) or suffix (red) extension.

41

(a) k = 100

(b) k = 200

Figure A2: Subgraph in the 20 genomes graph where for k = 100 the incorrect branch is inferred for a
given genome, denoted as the red vertices in a). By increasing the path length to 200, it was
now possible to properly resolve this subgraph as shown in b).

42

	Introduction
	Related work
	Contribution of this work

	Methods
	Graph specification
	Topological ordering
	Indexing k-length paths in a DAG
	Subsequence extension
	Vertex and edge duplication
	Vertex collapsing

	Read alignment to an edgeless graph
	Projection to input DAG
	Path inference
	Measuring performance

	Results
	Data specification
	Indexing k-length paths
	Evaluation on synthetic data
	Performance of genome inference
	Alignment of reads to reference representations
	Influence of coverage on genome inference

	Evaluation with experimental data
	Performance of genome inference
	Alignment of reads to reference representations
	Influence of coverage on genome inference

	Discussion and future work
	References
	Appendix

