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Abstract

When companies go through large-scale changes it is important for them to assess
the effects and perception of said changes. One way by which one can measure
these effects is surveying employees and collecting information about their per-
ception of a change directly from the source. This will provide us with a large
collection of data which we can use for the purpose of better understanding the
way the change is being adopted and allowing this understanding to influence
decision-making in a meaningful way.

We apply clustering using several clustering algorithms to multiple data sets.
Analysis of detected clusters yielded a highly positive and moderately negative
cluster. Additionally, we gained valuable insight into the concept of employees
shifting between clusters from one survey round to another.
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1 Introduction

Modern companies tend to have a necessity of being maintained like a well-oiled
machine in order to keep up with day to day operations. This oftentimes entails
the implementation of changes on a large scale that affect the entirety of the
employees such as a company-wide workflow adaptation. These employees will
undoubtedly have an opinion about the way they experience changes and may
present themselves as a valuable source of insight into the perception of changes.
Requesting employees to take part in surveys about the way a change affects
them may help in gathering useful information about the adoption of a change.

What if we could deduce even more valuable insights from survey results like
these by approaching the problem in a smarter way? If so, we may find results
embedded in our available data that might help us directly influence the success-
ful adoption of a company-wide change. This could be advantageous with regard
to picking up on potential problem areas or opportunities that haven’t been used
to their fullest extent. Perhaps it is even within the realm of possibility to ex-
trapolate findings from early results. This is essentially what we will be trying
to find out (chosen as this facilitates later plotting).

Data sets with an individual sample size of between 50 and 70 employees from
multiple companies where surveys as described above were carried out will be
analysed. For this purpose we will apply several clustering algorithms and veri-
fication methods. Additionally the application and impact of anomaly detection
will be assessed and multiple ways of visualising our medium/high-dimensional
data will be explored.

Essentially, the question that will be answered is as follows: “How much and
what kind of useful information can we deduce from the automated analysis of
employee survey data as to positively influence decision-making?”

2 Related work

The application of cluster analysis to Likert scale data is largely commonplace
and is often used for the purpose of identifying segments within survey response
data. An example of this is the factor analysis clustering applied to survey data
acquired from the Swiss service sector by Hollenstein [1]. Rice & Slaney [2] used
cluster analysis to identify adaptive and maladaptive perfectionists and nonper-
fectionists.

As the current research will be focusing on the application of cluster detection
to Likert scale data it is important to take the peculiarities of this field of re-
search into account. Jain [3] went into some of this with regard to K-means, e.g.
the pitfalls concerning clusters of arbitrary shape. The implication that various
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algorithms and approaches tend to differ in efficacy leads to the fact that the
current research will explore multiple algorithms and compare their merits.

3 Research design

This chapter will outline the considerations that went into the current research’s
preparation and design. Several of the main building blocks of the eventual im-
plementation will be discussed here.

3.1 Available data and goals

Available survey data primarily consists of the answers to a series of questions
answered on a Likert scale from 1 (strongly disagree) to 5 (strongly agree). Ad-
ditionally each series of answers is accompanied by a unique user ID. Although
available data differs somewhat between data sets, there is a base set of 15
questions divided up into three categories (must, want, can). This results in a
15-dimensional data set available for analysis. As this will allow for the greatest
number of comparable samples, the primary focus will lie on these specific ques-
tions. For each of these sets, multiple survey rounds are carried out at different
points in time and as such at different points in the process of change adoption.

Broadly speaking, the goal is to analyse the available data in order to find valu-
able patterns within. All survey data relates to a specific change within a com-
pany and questions focus on how employees within that company are influenced
by said change. Ultimately, we would like to be able to use this data as effectively
as possible. This entails a decision making oriented approach. We would like to
be able to assist in the interpretation and extrapolation of available data. This
includes but is not limited to finding useful patterns and generalizations and
even the prediction of trends based on early surveys. The ability to draw conclu-
sions from a first survey would be tremendously useful as a way of influencing
the successful adoption of a company-wide change. Potential pitfalls could be
avoided by quickly getting the right information from the right people by casting
a spotlight on employees of particular interest.

3.2 Clustering

The questions we are interested in answering are particularly suitable for an
unsupervised learning approach (clustering specifically) as we do not yet know
what we’re looking for exactly. This makes it unfeasible for us to characterize
data points. Additionally, sample size is quite limited. This will negatively influ-
ence the initial reliability of any supervised learning approaches.

Multiple significantly different methods of clustering will be explored to verify
which of these methods manages to deal well with the problem at hand. In
order to test the quality of resulting clusters we will use a way of calculating
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a silhouette coefficient which we can then use to assess the merits of a certain
clustering. Outliers will be detected using the LOF algorithm.

3.2.1 K-means

The input for K-means is a set of data points x1 . . . xn of an arbitrary dimen-
sion. The user selects a number k that will decide how many centroids c1 . . . ck
will initially be placed at the start of the algorithm. Then, iteratively, for each
point the nearest centroid to that point is determined by computing the distance
between said point and each cluster. The point is subsequently assigned to the
nearest cluster.

Afterwards, we run over each cluster and for each centroid, we re-centre its po-
sition. To accomplish this we take all vectors currently assigned to its respective
cluster and take the average of all these vectors. The resulting vector is the new
location of our centroid. This is achieved by means of the following formula:

ci = (1/ki)

ki∑
j=1

xi

Here C is defined as the set of centroids c1 . . . ck and X as the set of data points
x1 . . . xk. ki represents the total number of data points in cluster i.

Theoretically, the algorithm ends when the solution converges. However, practi-
cally speaking it is more feasible to set a finite number of iterations beforehand
at which point the execution of the algorithm is halted and results are presented.

K-means is a relatively simple and straightforward algorithm that deals well with
large volumes of data due to its relatively low complexity. It is also reasonably
versatile and works on numerical data of arbitrary dimensionality.

We also explore MiniBatchKMeans, which converges more quickly than K-means.

3.2.2 Affinity Propagation

This clustering method as described by Redmond et al. [4] and Frey et al. [5]
works on the basis of a similarity function and two matrices. These two matrices
contain ’availability‘ and ’responsibility‘ data. The algorithm functions by con-
sidering data points as exemplars for other data points. Messages are iteratively
passed between data to aid in the search of these exemplars until a final cluster-
ing presents itself. This allows for the discovery of clusters without the definition
of a pre-specified parameter to represent the desired number of clusters.

3.2.3 Spectral Clustering

As described by Xing et al. [6], for this method to be used a similarity matrix and
a desired number of k clusters need to be provided. Eigenvectors are then used
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to reduce the dimensionality of the matrix. Subsequently, K-means is applied to
the reduced matrix in Rk. This method can be advantageous when applied to
data of high dimensionality and is oftentimes applied in image processing due
to the application of eigenvalues. The fact that spectral clustering is based upon
the concept of connectivity and not that of proximity means it can be applicable
in situations where proximity based algorithms like K-means tend to fail.

3.2.4 Density-Based Spatial Clustering of Applications with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN ) [7], as
the name suggests, is a density based clustering algorithm. Contrary to K-means
it determines the number of clusters on availability of highly dense data points
in an area. The neighbourhood in which the algorithm looks for data points to
cluster together is one of the parameters that can be influenced by the user.

This algorithm is especially well-equipped for dealing with outliers as it does not
assign every data point to a cluster. The user is also able to state a minimal
number of required points for a dense region to be detected. If this number
of points in a sufficiently small area is not found the points in that area are
disregarded in the resulting clustering. This leads to the fact that DBSCAN can
be exceptionally useful for implementation on noisy data sets. Due to its nature
it is also strong at finding any number of clusters of an arbitrary shape.

3.2.5 Silhouette Coefficient

Once we have the resulting clustering from the implementation and usage of
an unsupervised learning algorithm, it would be useful for us to analyse the
quality of the detected clusters. As we do not have the ability to test our results
against the “true” situation, our options are somewhat limited in this regard.
The silhouette coefficient method [8] is however a good method to aid us in this
task.
Essentially, the silhouette coefficient allows us to measure the degree to which
clusters are well-defined and contrast against other clusters. This is based on
internal cohesion inside a cluster and the way in which clusters are separated
from one another.
The way in which this is achieved (and as it is done by scikit-learn [9]) is fairly
simple. In order to calculate the silhouette coefficient we need two things for each
sample:

� Mean intra-cluster distance (a)
� Mean nearest-cluster distance (b)

Once we have these, we can calculate the silhouette coefficient as follows:

(b− a)

max(a, b)
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At this point we can take the mean silhouette coefficient for all samples and de-
termine how well-defined the resulting clustering is. Additionally, we can use the
silhouette coefficient of individual samples for a multitude of purposes depending
on how we apply them. This will be further elaborated upon later.

3.3 Local Outlier Factor

For the purpose of outlier detection we apply the Local Outlier Factor (LOF)
algorithm [10]. This algorithm allows for the discovery of anomalous data points.
More specifically it does this by assigning a value to each data point representing
the degree to which said point is considered an outlier. The algorithm takes
local density into account, meaning outliers can be identified more accurately
in regions where they otherwise would not. A data point located at a relatively
small distance from a very dense cluster may be an outlier while this same point
in a region with less density might not have been an outlier.

3.4 Visualisation

For the purpose of effectively displaying results we need a method to plot our
high-dimensional data points on a 2D canvas. Several different methods are used
to achieve this.

3.4.1 Conventional plotting

The most conventional method we used for plotting our results was by means
of a 2D scatter plot. The horizontal axis represents the different questions that
make up the survey. On the vertical axis, we find an employee’s response on a
Likert scale ranging from 1 to 5. Using this method, we can plot each occurring
combination of a question and a response on this 2D grid. In order to effectively
display the frequency of each of these combinations, the size of a point on the
scatter plot is defined in relation to its frequency. This allows us to quickly gauge
response patterns within clusters.

3.4.2 Andrews Curves

For the purpose of cluster verification we applied the concept of Andrews curves
[11]. We can use Andrews curves to represent multivariate data by generating a
line for each data point in our set. Said curves are generated using the concept
of Fourier series. We can plot each of the resulting curves together in order to
form an Andrews plot. Although this kind of plot requires some interpretation,
we can use it to verify the existence of well-defined clusters.

3.4.3 RadViz

Our final visualisation method, RadViz [12], facilitates the plotting of individ-
ual multivariate data points on a conveniently interpretable 2D plot. Essentially
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we evenly spread out our numbered questions on a circle. Each question is rep-
resented by a point on this circle. Imagine all of these points having a certain
attraction on data points plotted into the circle. The higher the response to a
specific question, the higher its attraction on the respective data point. This
allows us to plot all of our data points within the circle and interpret their posi-
tion. Although this method allows for the generation of very intuitive plots, its
outcome is also highly dependent on the distribution of questions on the circle.
This has implications for its usefulness, especially on multivariate data with a
very high degree of dimensionality.

4 Implementation

During the implementation phase several choices and considerations have been
made. This chapter will outline and elaborate upon these.

4.1 Preprocessing

Due to the fact that we use two separate data sets from different points in time
it is possible for each data set to contain responses from employees who did not
participate in the other survey. We account for this by filtering both data sets
and disregarding any employees whose responses are not present in either data
set. To do this, we build one list of employee ID’s for each data set which we
subsequently take the intersection of. Once we have a list of employees in both
data sets we scrape each data set for responses from said employees and store
these in two Numpy arrays, one for each data set.

As employee IDs are not an interesting metric to base our clustering upon we do
not store these for usage during our clustering phase. In order to make sure we
can re-identify employees, we keep a list of employee IDs available for retrieval
at a later point in time.

4.2 Clustering

For clustering purposes we primarily make use of Python’s scikit-learn and SciPy
libraries. More specifically we will be using the K-means implementation provided
by SciPy, and the DBSCAN, MiniBatchKMeans, Spectral Clustering and Affin-
ity Propagation implementations provided by scikit-learn. All of these are fairly
straightforward in their usage and easily applied to our data sets.

In the case of K-means, we apply the kmeans2 method to our first data set
and specify the desired number of clusters to determine cluster centroids. Sub-
sequently we assign all samples to one of these centroids using SciPy’s vq method.

DBSCAN is implemented using scitkit-learn’s dbscan method. Once again we
pass our first data set as an argument, but in this case we also pass an ε value
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for DBSCAN to operate on. Assigned cluster labels are then gathered from the
resulting output.

MiniBatchKmeans, Spectral Clustering and Affinity Propagation are implemented
using the methods scikit-learn provides for this with mostly default parameters.

4.3 Cluster quality analysis

We need a way to assess the quality of the clustering resulting from our selected
algorithm. The approach we use for this is the silhouette coefficient which al-
lows us to determine how well-defined and separated from other clusters in an
individual cluster is by assessing the proximity of each data point to its assigned
cluster and other clusters. This approach is easily applied to our implementation
of K-means.

We use the silhouette samples method from scikit-learn to calculate the sil-
houette coefficient for each individual sample in our clustering. Additionally we
use the silhouette score method to determine the silhouette coefficient for the
entire clustering, essentially taking the mean silhouette coefficient of all individ-
ual samples. A higher silhouette coefficient tells us that a clustering is very likely
of higher quality than one with a lower silhouette coefficient. Silhouette scores
range from −1 to 1 (higher implies a better and more meaningful clustering).
This will primarily be used for quality analysis, but we will also apply some fil-
tering based on the silhouette coefficient.

As an additional means of verifying our results we will make use of a silhouette
plot as implemented by Amro [13]. In a silhouette plot, each sample is represented
by a horizontal line of a length that is proportional to its silhouette coefficient.
The line corresponding with every individual sample is plotted, grouped by as-
signed cluster. This allows us to visually interpret the quality of our clustering
and gives us the ability to easily notice samples with an exceptional silhouette
coefficient.

4.4 Shifter detection

Using our initial clustering based upon the first survey we are able to assign all
samples from the second survey to an existing cluster as well. Given our ability
to follow employees between the first and second survey, we can then determine
whether employees are assigned to the same cluster for both survey rounds or
not. This will give us valuable insight into employee response patterns and which
employees are likely to switch between clusters. What exactly this means will de-
pend on the characterisation of the clusters that emerge.

When an employee switches between clusters from one survey round to the other,
we will define this employee as a shifter. Employees who don’t switch between
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clusters are defined as non-shifters.

A problem that arises with the detection of shifters as described above is a
potential lack of significance. Instances may occur where an employee’s responses
change very minimally, yet still enough to switch clusters due to being on the
outer edge of a cluster and close to another one. To eliminate this problem we
will also apply the silhouette coefficient method mentioned earlier to disregard
samples with an exceptionally low silhouette coefficient when detecting shifters.

4.5 Outlier detection

The pylof [14] implementation of LOF by D. Kužnar will be used to detect
outliers. This implementation allows us the use of its readily available outlier
detection functionality which we will apply to calculate the local outlier factor
of potential outliers. We will consider these points outliers when the local outlier
factor crosses a certain threshold.

5 Results

This chapter covers the established results of the current research. We used two
separate data sets for the purpose of gathering our results. These will be indi-
vidually referred to as set 1 and set 2.

5.1 Clustering

In this section, the construction of clusters and verification thereof will be dis-
cussed. Several methods of visualisation are used for this purpose.

5.1.1 Algorithm selection

For the purpose of algorithm selection several well-known and extensively stud-
ied clustering algorithms were compared, namely K-means, MiniBatchKmeans,
Affinity Propagation, Spectral Clustering and DBSCAN. In order to objectively
compare these algorithms we applied them to our data sets and used the silhou-
ette coefficient method where applicable to measure the resulting cluster quality.
In order to allow for optimal results, we varied some of the input parameters to
the selected algorithms In the case of K-means we varied the number of requested
clusters. For DBSCAN the supplied ε value was varied and two different distance
metrics (Euclidean and Cityblock) were used.

DBSCAN did not perform very well on our data. For most supplied ε values,
DBSCAN only constructed a single cluster. Although results varied slightly de-
pending on the distance metric used, the situations in which DBSCAN identified
more than 1 cluster were scarce and seemingly arbitrary.

11



Iterating over several options for number of clusters as a parameter of K-means,
the following table clearly demonstrates that we get an optimal result for two
clusters based on the silhouette coefficient for each of these iterations.

Additionally Affinity Propagation, Spectral Clustering and MiniBatchKmeans
were compared. Resulting clusters from these were all very comparable as can be
seen below. Mean Shift was also considered in this phase, but failed to provide
more than a single cluster.

Figure 1: Clusters detected by several different clustering algorithms

Due to the fact that no significant differences seem to be present in the character-
isation of resulting clusters (with the exception of Affinity Propagation resulting
in slightly more overlap between clusters), we will choose to use K-means for
the remainder of our analysis in the favour of the other algorithms that have
been discussed. This is based on the fact that K-means is the least complicated
of these options and the other algorithms do not seem to provide significantly
better results overall.

5.1.2 Resulting clusters

Applying K-means to our data with a supplied number of clusters of two results
in the formation of two clusters. Averaging responses from all samples in each
of these clusters tells us that one of these clusters has a significantly higher
average response than the other cluster. The figures below further confirm this
assumption.
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Figure 2: Detected clusters (Data set 1)

Figure 3: Detected clusters (Data set 2)

From the above figures we can conclude that one of the clusters can be char-
acterised as highly positive whilst the other cluster is moderately negative. The
results based upon our data sets seem to be very comparable, suggesting that
our results might be generalizable. However, we can’t draw this conclusion with
certainty due to our limited sample size.

5.2 Cluster validation

We will be using several methods to validate the quality of our resulting clusters.
All of these will help us to determine the significance of our clustering.

5.2.1 Silhouette Plots

The silhouette plots based on our clustered data from the first data set is dis-
played below.
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Figure 4: Unfiltered silhouette plot

We can clearly see that for the largest part the silhouette score of our data points
implies well-defined clusters where data points tend to show a much larger degree
of equivalence towards their assigned cluster than the other cluster. However, we
can also see a number of data points with a reasonably lower silhouette coeffi-
cient. This implies that these data points are not necessarily strongly grouped
with the other data points in their cluster and/or show a significant degree of
similarity to data points from the other cluster.

As described in section 4.3, the problem that we might expect to run into is the
fact that these data points are highly likely to switch between cluster assign-
ments with minor adjustments to their values. As this might skew our results on
the topic of shifter detection, we decide to filter these data points from our data
set. We apply a cut-off threshold based on individual data points’ silhouette co-
efficients in relation to the mean silhouette coefficient. This allows us to counter
the effect of a minor change in a data point showing up when we explore the
concept of shifter detection. Figures showing the results of this filtering may be
seen below.

Figure 5: Filtered silhouette plots (left: set 1, right: set 2)

Filtering using our silhouette coefficient threshold has the desired effect of allow-
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ing us to disregard the data points that will not be representative of employees
significantly shifting between clusters. This is apparent from the fact that data
points with lower silhouette coefficients, which are likely to be of little signif-
icance as potential shifters are no longer included in our plot. It is important
to remain careful not to cut off too large of a number of data points as to not
disregard too much valuable information we can use for the purpose of shifter
analysis.

5.2.2 Andrews Curves

The Andrews plots based on our clustered data are displayed below. The legend
refers to the individual clusters as 0.0 and 1.0 while outliers are referred to as 2.0.

Figure 6: Andrews plot (Data set 1)

Figure 7: Andrews plot (Data set 2)

We can safely conclude that the different clusters are individually identifiable in
a number of regions in our plot, mainly at the minimum and maximum values
around the middle of the Andrews plots. This leads to the conclusion that judging
by the data points’ Andrews curves both clusters are indeed distinct and well-
defined. Interestingly we can also easily spot several instances where the curve
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corresponding to an outlier differs significantly from all of the other curves. This is
mainly obvious to the right of the middle where yellow lines representing outliers
are visible significantly above and below the lines representing instances from
both clusters. This implies the validity of the characterisation of the respective
data point as an outlier.

5.2.3 RadViz

The RadViz plots based on our clustered data are displayed below. As before,
the legend refers to the individual clusters as 0.0 (positive) and 1.0 (negative)
while outliers are referred to as 2.0.

Figure 8: RadViz plots (left: set 1, right: set 2)

Although results differ slightly between the different data sets it is immediately
obvious that there are some significant similarities visible between both visual-
isations. First and foremost, cluster 0 is more dense than cluster 1, implying a
larger amount of internal variance for data points belonging to cluster 1. This
is unsurprising given the results from our conventional plotting method, which
display a more varied response pattern among employees assigned to cluster 1.

Additionally, this method allows us to easily identify most of the outliers we
earlier characterised as such using LOF. These data points are all reasonably far
away from both of the identified clusters, especially in the case of the first data
set.

Furthermore we can see a reasonable degree of separation between the two clus-
ters, especially with regard to the first data set. The brownish points representing
cluster 0 are located more to the upper left whereas the green points representing
cluster 1 are located more the the bottom right. Given the high dimensionality
of our data however, this is highly likely to be mostly arbitrary.
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5.3 Shifter detection

Shifter detection was carried out on the filtered data sets where data points with
a silhouette coefficient below a certain threshold were taken out. This allows us
to only take significant changes between cluster assignments into consideration
as minor differences resulting in a cluster shift would not necessarily lead to the
deduction of useful insights. Response patterns for shifters as well as non-shifters
were plotted as shown below in order to gain an understanding of shifter be-
haviour.

Figure 9: Non-shifters (Data set 1)

Figure 10: Non-shifters (Data set 2)

As can be deduced from these figures, non-shifters in the negative cluster primar-
ily answer to most questions with a 2-4 response on the Likert scale. Non-shifters
in the positive cluster primarily answer with a 3-5 response on the Likert scale.
This is mostly representative for the clusters as a whole (as presented in section
5.1.2), where we can see comparable response patterns. This is unsurprising given
the fact that non-shifters are likely characterised by their assigned cluster fairly
well and as such are unlikely to shift between clusters.
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Figure 11: Shifters (Data set 1)

Figure 12: Shifters (Data set 2)

A number of interesting findings can be deduced from the figures displayed above.
With regard to the first data set, as is to be expected, there are very few instances
of shifters from positive to negative where questions were answered with a ‘5’
response on the Likert scale. We also see most shifters from the negative to the
positive cluster can be found within the upper regions of the negative cluster.
This implies the fact that employees who are highly positive or highly negative
about a certain situation are unlikely to change their opinion over the course of
time. This should be taken into consideration when trying to influence change
adoption over the course of its implementation. Employees who did in fact shift
from the negative to the positive cluster became significantly more positive. It
could be very interesting from a business perspective to find out what triggered
this.

In the second data set we can see something very interesting happening, namely
the fact that there are no instances of employees shifting from the negative to
the positive cluster. Previous findings do still apply to this data set as employees
shifting from the negative cluster to the positive cluster tend to be located around
the neutral range in the first round and become significantly more positive overall.
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The fact that there are no shifters from positive to negative reinforce the idea
that from a business perspective, this type of analysis can be a powerful tool
to measure and analyse change adoption. After all, when a significantly larger
amount of shifters from the negative to the positive cluster are detected than the
other way around, we can safely assume that the success of a change’s adoption
is increasing.

6 Conclusions

The current research suggests that it is highly viable to analyse high-dimensional
workforce survey data using data clustering methods. This is based on the fact
that distinct and well-defined clusters arise from analysis by the methods we
used and these clusters can be used to investigate the degree in which a change
is currently being adopted as discussed in the section 5.3. Highly positive and
moderately negative clusters are consistently found in multiple data sets. The
verification of clusters established from these data sets carries some challenges
with it. However, several visualisation methods including Andrews curves and
more conventional plotting methods have proven to be successful tools for the
verification and characterisation of detected clusters.

The analysis of employees shifting between opposing clusters from one survey
round to another allows for valuable insights into the perception of large-scale
change adoption through the interpretation of these results. This is very inter-
esting from a decision-making oriented perspective as these findings provide a
wealth of knowledge upon which decisions can be based. Additionally, the suc-
cess of the implementation of a certain change can be judged fairly intuitively
using the established clusters and the demonstrated concept of shifter detection.
Taking all these factors into consideration, the presented findings imply the fact
that this type of analysis can be hugely beneficial in a variety of ways.

6.1 Future work

Several choices have been made in the current research regarding algorithm selec-
tion, methods of visualisation and interpretation of results. Further research may
look to expand upon these choices, possibly applying optimisations to selected al-
gorithms in order to increase specificity and potentially achieving greater results.

Additionally it would be interesting to research the scalability of the current
research by applying our methods to data sets with larger sample sizes. Perhaps
this could even include collective data sets combining comparable surveys and
studying the resulting sets as a whole. Although this would decrease specificity,
the increased sample size might lead to valuable new insights and provide a
chance to increase the degree of generalisability. Examples of this might include
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insights into intra-response patterns as to gain a greater understanding of how
to potentially influence employee perception to large-scale changes.
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