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Abstract

In this paper we implement and compare textural analysis methods, for 3D medical
image segmentation and texture visualization. We implement and evaluate an unsuper-
vised system that makes use of these features in order to automatically segment 3D
medical images. There are many algorithms that try to extract features that represent
the texture of an image. Moreover due to technological advancement, the use of 3D
imaging for medical purposes is wide spread. Thus there is a need for robust automated
methods that segment those images. Due to the different nature of different imaging
techniques (MRI, Ultra Sound, CT et cetera) the resulted images have different charac-
teristics and produce different textures. Thus for every application and image acquiring
technique, different features work. In this paper, we use features that describe 3D tex-
ture and feature selection techniques in order to create a general method to segment
3D medical images. The algorithms developed in this project are evaluated on MRI and
Ultra Sound images. Moreover, we show the importance of the produced clustering in
the visualization of the different textures in an image.

1 Introduction

Accurate image segmentation is a very important step in medical image analysis [1], since it
is usually required for computer-aided diagnosis. For example it is very important for detecting
tumors, edema and necrotic tissues [2]; quantification of white matter lesions is important for
drug treatment estimation in Multiple Sclerosis [3]; volumetry of gray matter, white matter
and cerebro-spinal fluid is used for characterization of morphological differences between sub-
jects with schizophrenia and epilepsy. Magnetic Resonance imaging (MRI), is a very powerful
diagnostic imaging technique, since it has high contrast resolution for different tissues [2].
For applications, such as prostate cancer segmentation, computer-aided diagnosis and ther-

apy planning, breast cancer segmentation and more, Ultrasound images are used. Although
Ultrasound images suffer from speckle noise, and low-contrast organ tissues, they are widely
used, for several reasons. The hardware needed to obtain Ultrasound images is much smaller
in size than other methods (MRI and CT scanners) and the cost to acquire it, as well as obtain
images, is much lower. Thus Ultrasound is a much more accessible technique. Moreover, since
it is not ionizing, it is not invasive to patients like other methods.
There are two types of image segmentation, manual segmentation and automated segmenta-

tion. In manual segmentation a trained expert classifies each voxel of the image. This procedure
is very time consuming, and prone to errors [1]. Thus researchers turn their focus to automated
methods. Supervised segmentation methods are in need of datasets with good ground truth
in order to be able to segment new images and as a result, they rely on manual segmentation.
Since only trained experts are able manually segment these images accurately, building such
a data set is very time consuming. In recent years there has been an effort of researchers to
build big datasets with well defined ground truth so that methods can be universally compared
[64, 65]. Unfortunatelly, these datasets have restricted access, since they can only be used for
the purposes of specific chalenges for which they are developed.
In this paper, an unsupervised method that tries to segment 3D medical images is proposed

and tested on two MRI datasets and an Ultrasound dataset. One MRI dataset is (BrainWeb
[58]) is composed by simulated images, and one by real MR Images (IBSR [63]). These two
datasets are commonly used for white matter, gray matter and cerebro-spinal fluid segmen-
tation. The BrainWeb is used because since the images are simulated, they have excellent
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ground truth. The second dataset has provided manual segmentation. Although many re-
searchers point out that the ground truth is not very accurate [1, 7], it is still being used for
method comparison and evaluation, since real datasets with ground truth provided are very
difficult to acquire. The Ultrasound data set is constructed for the purpose of this project. It
contains images with agar-agar with flower texture in different concentrations. Since agar-agar
scans simulate the texture of different tissues accurately [67], being able to segment those
images shows the capabilities of the method to differentiate different tissues on a real scan.

1.1 MRI

1.1.1 Methods, Applications and Challenges

The are a few challenges that MRI segmentation methods have to overcome. These include,
but are not limited to, the inhomogeneity of MR Images (or bias field), which is a low fre-
quency noise, which slowly changes the average gray level intensity of tissues within the image.
Moreover, many methods suffer from different kind of deformations of the brain of different
subjects. This affects mostly methods that take into account the spatial position of a voxel
to derive tissue probabilities, based on historical data. One more difficulty that such methods
have to overcome is spatial movement of the subject, which results in misaligned consecutive
‘slices’ of two dimensional images.
There are many studies that try to do automatic MRI segmentation. Mainly they fall into

five categories [1], namely:

1) Manual Methods

2) Intensity Based Methods

3) Atlas-Based Methods

4) Surface Based Methods

5) Hybrid Methods

Manual Segmentation is the oldest type of segmentation methods, where trained professionals
try to classify each voxel in the image depending on their expertise, often aided by imaging
tools. Usually manual segmentation is done in a ‘slice-by-slice’ manner [1]. Since this is very
time consuming, researches try to create automated methods to do accurate segmentation of
2D and 3D MR Images. Although there is a lot of inter and intra-observer variability on the
produced segmentation [3], manual segmentation is still considered as ‘golden standard’ and
it is used in order to validate and compare automated methods [1].
There are various types of Intensity based methods. These methods, are very popular due to

their computational efficiency and their accurate segmentation. The intensity of a voxel on an
MR Image depends mostly on the tissue type, as well as developmental processes, the amount
of progress of diseases and some artifacts that are introduced by the scanner [5]. When the
level of noise in an image is low enough, the intensity histogram of different tissue types in the
brain is discriminative enough for a good segmentation. Some intensity based method types
are thresholding, region growing, classification and clustering [1]. These methods usually try
to segment a brain image in three categories, white matter (WM), gray matter (GM) and
cerebro-spinal fluid (CSF). This is for two main reasons; the structure of the head is very
complex and there is a great overlap of the intensities between different types of tissues [1].
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Figure 1: Intensity histogram of White Matter (WM), Gray Matter(GM) and Cerebro-
spinal fluid (CSF) on T1-Weighted MR Image of adult human brain. Image source [1].

Moreover, segmentation of these three types is one of the most important segmentation for
various applications. Thus many researchers focus on accurate segmentation of these three
categories, since even that is quite difficult task [1, 3, 6, 7, 8]. An example of the intensity
histogram of WM, GM and CSF in an MR Image can be seen on figure 1, provided by [1].
Thresholding is one of the most simple segmentation methods. It uses intensity thresholds

in order to classify the voxels to the desired tissues [1]. Due to its simplicity, thresholding is
very sensitive to noise and intensity inhomogeneities [1]. Due to the fact that it is very fast,
it is usually used in order to separate the brain tissues from background as well as a rough
initialization for other methods, such as C-means clustering [1, 9]. Region growing, starts the
process from a seed point, and by checking if the intensity of the neighboring voxels is similar
enough (depending on predefined uniformity or homogeneity criterion) it either adds them to
the region or not. The process continues until there are no more voxels to add to the region.
Region growing has been used in order to segment several organs, for example it has been
used to segment brain vessels [1, 10] or brain tumor [1, 11].
There are many classification techniques for segmenting the human brain. These techniques,

based on prior knowledge of the intensities of each tissue as well as their position in space, try to
classify the voxels of new images. For example Warfield et al. [12], used k-NN classifier, together
with template matching to segment several MR images of several parts of the body. Other
classification methods use the Bayes theorem incorporated in the expectation maximization
(EM) framework [1, 6, 7]. Ashburner et al. used the aforementioned technique and incorporated
prior probabilities from an atlas to classify the voxels. Fischl et al. used probabilities from a
training set for class intensities, in combination with probabilities from an atlas and a ‘relaxed’
Markov Random Field (MRF) [8]. Leemput et al. also used the EM framework, in which they
incorporated prior probabilities from an atlas and from a MRF [3].
Many unsupervised techniques have also been proposed. For instance Zhang et al. used the

EM framework in which they incorporated a hidden Markov random field (HMRF) [7]. A very
popular clustering algorithm is Fuzzy C Means (FCM). Ahmed et al. [13] proposed a variation
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of the objective function of FCM where the degree of cluster membership of the immediate
neighbors of a voxel is also taken into account. Such a variation make sense for clustering
applications such as image segmentation, where clusters are expected to contain neighboring
pixels/voxels. Chen and Zhang [14] proposed a modification of the aforementioned algorithm
in order to make it more computationally efficient. They also proposed kerneled versions of
the algorithm. In similar work, Shen et al. [2] introduced a variation of FCM were the degree
of membership of neighboring voxels is incorporated in the distance measurement. The degree
of influence is then optimized with an artificial neural network.
Atlas based methods use prior knowledge of the anatomy of the human brain in combination

with segmented historical data in the form of a probabilistic map. The map represents prior
probabilities for each voxel to be of a tissue type. Atlas based methods depend a lot on the
manually segmented images. Moreover due to the large variability and possible deformations
on different subjects, they become very unstable when segmenting images from non healthy
subjects. Still, a lot of clustering and classification methods use probabilistic atlases in order
to increase the accuracy of their own system. This can be done in several ways, for example
the probabilities produced by atlases can be introduced in the density function of an EM
clustering algorithm. In other cases the segmentation produced by a probabilistic atlas is used
as a initialization technique in clustering algorithms.
Some surface based methods are active contours and surfaces [15] and multiphase active con-

tours [1, 16, 17]. Active contours use parametric curves and surfaces to outline the boundaries
of a region. Finally hybrid methods, are methods that combine several of the aforementioned
techniques for better accuracy, usually for specific applications. For example Masutani et al.
[18] used morphological information of local shape with model based region growing in order
to segment cerebral blood vessels.
Until now, the only features mentioned are the gray level intensity as well as the spatial position

of voxels, used in atlas based methods. Together with these two other features have been used
as well. For example Ahmed et al. [13] also used the mean image in order add neighborhood
attraction to FCM. Deformable models [1, 19] use intensity gradients as “external forces”.
Xue et al. [20] use the median and mean images , as well as a wavelet based filter, in order to
reduce noise in the image.
In this project, textural features are going to be used for unsupervised segmentation of 3D

brain MR Images. Such features have already been used for tumor classification[21]. By using
such features, we hope to implement a robust system, able to segment brain tissues not only of
healthy brains but also in case of deformation, for example in the presence of tumor. Although
we are going to use them in an unsupervised method (clustering) they can also be used with
most of the aforementioned methods, i.e. region growing, atlas based methods, surface based
methods, classification methods, et cetera.
Before most of the aforementioned approaches, as well as ours, can be applied preprocessing

of an MR Image needs to be done.

1.2 MRI Preprocessing

As mentioned above, MR Images suffer from various types of noise. Thus some preprocessing
steps need to be done in order for automated segmentation methods to be able to produce high
quality results. The most common preprocessing steps are image registration, brain extraction
and bias field correction.
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1.2.1 Image Registration

Image registration is the process of aligning medical images, so that same features are aligned
[1]. Alignment is used for example in atlas based images were the features of different sub-
jects need to be spatially consistent in order to produce as accurate as possible probabilities.
Alignment is also used for motion correction within the same subject. For the scope of this
project, alignment between different subjects is not needed. Motion correction though is very
important because if two consecutive 2D slices are not aligned, 3D textural features are not
reliable, since they represent the intensity relationship between neighboring voxels. The most
common approach for spatial alignment is rigid transformation [1]. In this project, we are not
going to implement a transformation tool, but the images with which the system is going to
be tested, are already aligned.

1.2.2 Brain Extraction

During this procedure, the voxels that belong to brain tissue are extracted from the image.
This step is important for most segmentation methods, because other tissue types like bone,
fat and muscles have intensities that overlap with the intensities of the brain tissues, i.e. white
matter (WM), gray matter (GM) and cerebro-spinal fluid (CSF). Due to the fact that all the
aforementioned methods, except atlas based methods, depend solely on the intensity values
of the voxels to segment the image, the existence of these tissues confuse them. In our case,
although we try to segment the image before brain extraction, our experiments show that the
extra tissue types also confuse our method.
The most common method for brain extraction is the use of a template image [1, 22].

Unfortunately using a template image suffers a lot in cases of deformation and of different
developing stage of the brain. Stephen Smith developed an alternative method, brain extraction
tool (BET) [23, 24]. This method first finds the center of gravity of the brain and then inflates
a sphere, until it finds the brain boundary. This method is publicly available within the software
package FSL [23, 24].

1.2.3 Bias Field Correction

The bias field, or intensity inhomogeneity is a within-image artifact created by MR Image
acquisition. Its effect is a slow and smooth spatial change in the signal intensity within tissue
of the same physical properties. It is mainly caused by the inhomogeneity of the magnetic
field, inhomogeneity of the radio frequency pulse, the interaction between magnetic field and
human body, as well as nonuniform sensitivity of the receiver coils [1, 25, 26]. This effect can
be in the order of 10%-30%. This field can cause significant amount of misclassification in MR
Image segmentation, especially with methods depended on gray level intensities. An example
of bias field can be seen in figure 2, produced by [1].
Most state-of-the-art bias correction methods assume a multiplicative model of the field.

When the intensities are log-transformed, this field becomes additive [1, 13, 6, 7, 3, 25, 26].
Many methods, incorporated the bias field estimation in the segmentation algorithm as a
post-processing step[13, 6, 7, 3]. On the other hand, Lewis and Fox [25] proposed a method
that works as a preprocessing step. In their work a differential bias field is estimated between
consecutive 2D slices and based on that the slices are corrected. Sled et al. [26] also proposed
a nonparametric approach that corrects the bias field independent of the tissue classes, and
as a result, it can also be used as a preprocessing step.
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Figure 2: (a) original T1-weighted MR Image (b) brain tissue, after removing nonbrain
structures (c bias field (d) brain after bias field correction). Image source [1].

1.3 Ultrasound

As mentioned above, Ultrasound Images are widely used for medical applications, for two
main reasons. They are not invasive to the patients and the time needed to acquire Ultrasound
images is much less than other imaging techniques. Although they have these strong benefits,
they suffer a lot from speckle noise. The growth of Ultrasound Images, moves the focus of
researchers towards segmenting them.
Many methods have been proposed that try to segment Ultrasound Images. H. Akbari et al.

[27] proposed a system to segment prostate from Ultrasound Images. Their system applies 2D
biorthogonal wavelets in three different planes, sagittal, coronal and transverse. From these it
extracts textural features with which they train Kernel Support Vector Machines. There are a
lot of KSVM’s used, each responsible for a different plane and sub-region of the image. Finally
they register the image with the database images and get a probabilistic model for the prostate.
Each SVM classifies the voxels as prostate or non-prostate voxels. Each voxel has labels from
the three SVM’s and the probabilistic model. They combine these with a weighted function to
get the final prediction. The weights for each plane and the probabilistic model are set through
optimization. In similar work, J. Yang and B Fei [28] use Gabor filters to extract features for
the voxels and use these features to train a KSVM. Y. Zhan and D. Shen [29] also developed a
similar method to the two aforementioned. A deformable model approximates the boundaries
of the prostate. Then Gabor filters are applied in order to extract features from the boundaries
of the model. Several K-SVMs, each responsible for a different patch of the boundary, are used
in order to classify tissues as prostate or non-prostate. J. Olivier and L. Paulhac [30] developed
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an interactive process to perform skin segmentation. Their system computes textural features
that are easily understandable by non-experts, i.e. granularity, contrast and roughness. The
user is responsible for identifying the important features for the specific image. Then K-Means
algorithm is applied to produce the segmentation. J.D. Quartaro [31] proposed a system which
uses active contours to get the shape of the prostate. His system was tested on simulated
images as well as phantom images and real Ultrasound images. J. Anquez et al. [32] developed
a system that makes use of prior class probabilities based on gray-level intensity coupled with
deformable models in order to segment a fetus from the uterus.
As with MR Images, Ultrasound images can go through preprocessing. For example, images

that get statistical models from a database need to register the new image first. J.D. Quartaro
[31], also tried out a lot of de-noising preprocessing steps, but concluded that the only one
able to boost his system performance is intensity normalization, meaning that the values of
the gray-level intensity of the voxels are normalized in a way that the whole range of intensities
(0 - 255) is used.

2 Textural Features

The exploration of the capabilities of 3 dimensional textural features for the purpose of
segmentation of MR Images is the main goal of this project. Textural features try to describe
the intensity relationship between neighboring pixels/voxels. There are many methods that
try and describe this relationship [33, 34]. Some examples are Local Binary Pattern (LBP)
[35], Gray Level Co-occurrence Matrix (GLCM) [36], Run Length Matrix (RLM) [37], Markov
Random Fields (MRF) [38] and many more [33, 34].
In previous work [33], we researched the capabilities of such methods in the purpose of unsu-

pervised three dimensional image segmentation. During that project, we tested the following
methods:

• First Order Statistical features (FOS) [34]

• Gray Level Co-occurrence Matrix (GLCM) [36]

• Gray Level Aura Matrix (GLAM) [39]

• Run Length Matrix (RLM) [37]

These methods produce features that are able to discriminate different textural properties
in very noisy data sets [33]. The downside is that these methods can produce a very large
number of features, each able to differentiate different textural properties. Thus in a completely
unsupervised problem, one has to extract as many features as possible, which consists the
algorithm inefficient. The same methods are going to be tested in this project, so that we can
see whether they can accurately segment 3D MRI brain scans and 3D Ultrasound Images.
First order statistical features are quite self explanatory. Given a neighborhood of a voxel,

they are the mean gray level intensity of the neighborhood, the standard deviation of it, the
first order gradient, its mean and standard deviation. Gray level Co-occurrence matrix is a
matrix that represents the probability of a voxel with gray level intensity ‘A’ having a neighbor
with intensity ‘B’ in a specific direction. From this matrix several features can be computed
[36, 33]. From the previous work we concluded to the following subset.
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• Second Moment provides the sum of squares of all the elements in the GLCM

Sec.Moment =
∑
i

∑
j

p(i, j)2 (1)

• Contrast measures the intensity contrast between neighboring pixels/voxels.

Contrast =
∑
i

∑
j

|i− j|2 p(i, j) (2)

• Homogeneity or Inverse Difference moment measures the closeness of the distribution
of elements of the GLCM to the GLCM diagonal

Homogeneity =
∑
i

∑
j

1

1 + |i− j|2
p(i, j) (3)

• Entropy measures the ‘randomness’ in the image (neighborhood)

Entropy = −
∑
i

∑
j

p(i, j) log (p(i, j)) (4)

• Dissimilarity is a measure of distance between pairs of pixels/voxels within the neigh-
borhood

Dissimilarity =
∑
i

∑
j

|i− j| p(i, j) (5)

• Maximum probability measures the maximum likelihood of a pixel/voxel relationship
(intensity wise)

Max.Prob = max.p(i, j)forall(i, j) (6)

• Cluster shade and cluster prominence characterize the tendency of clustering of the
pixels/voxels in the neighborhood.

ClusterShade =
∑
i

∑
j

(i+ j − µx − µy)3p(i, j) (7)

• Cluster Prominence

ClusterProm. =
∑
i

∑
j

(i+ j − µx − µy)4p(i, j) (8)

Run length matrix represents the number of consecutive runs, as well as their length, one can
do in a neighborhood around a voxel with constant intensity. Like with GLCM a number of
features can also be computed from this matrix [37, 33]. Finally Gray Level Aura matrix is
a generalization of GLCM [39], were the matrix does not represent probabilities in a specific
direction, rather than all possible immediate neighbors. The same features with GLCM can
be extracted from this matrix. The down side of GLAM is that in case of directional texture,
meaning that the properties that can differentiate different elements lie in a specific direction,
features extracted from it might not be able to capture the difference. On the other hand,
since it does not compute different features for each direction, the computations needed are
less, and the features produced smaller in number, which makes the segmentation algorithm
to converge faster.
When dealing with such a number of features, from which only some are considered as ‘good’

for a specified image, one has to use feature selection algorithms in order to discard irrelevant
to clustering features, as well as redundant features for computational efficiency.
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3 Feature Selection

Feature selection is a very important step for any data mining problem with big amount of
data. The reason is that a lot of the information given is not relevant to the task in hand. In
our case, as stated above, there are only a few features, for each image, able to discriminate
the different textures appearing in the image. On top of that, objects in different images,
may be discriminated better with different features. Thus, we can not know beforehand which
features have valuable information. As a result a good unsupervised feature selection technique
is needed, in order to discard irrelevant to the task features. For supervised problems, i.e. there
is a training set with class information to train the prediction algorithm, most methods use the
class information given and discard features that are not able to discriminate the data which
belong to different classes [40]. In unsupervised learning, since no class information is given,
the task is more complicated.
Many methods have been developed in order to discard features on an unsupervised manner.

Generally these methods can be categorized as filter approaches, wrapper approaches or em-
bedded approaches [41, 42]. Wrapper approaches wrap around a clustering algorithm and try
to select features in order to increase the quality of clustering. In other words, they select a
subset of features, cluster with a clustering algorithm the data and get feedback on the qual-
ity of the features by measuring the quality of clustering. These kind of methods are highly
computationally expensive, since for every subset of features that has to be tested they cluster
the data. For example, Dy and Brodley [43] used a wrapper method called FSSEM (Feature
Subset Selection with EM), where the selection algorithm is wrapped around the Expecta-
tion - Maximization (EM) algorithm. They tried two different clustering evaluation metrics,
namely scatter separability and maximum likelihood while for searching the feature subset
space they used sequential forward search. Dash and Liu [44] introduced a search algorithm,
namely RANK, used for exploring the feature subset space, and used scattering criterion as
quality metric. The whole system is wrapped around k-means clustering algorithm.
Filter approaches try to tackle the problem in a different manner. The feature selection step,

is considered as a preprocessing step and does not get feedback from the final clustering.
Many researchers have developed filter methods. Mitra et al. [45] developed an algorithm to
discard redundant features. Using k-NN algorithm they try to find the most similar features and
discard them. Dash et al. [46] developed a method to measure approximately the entropy of a
feature subset and use that as quality metric for the subset. Boutsidis, Drineas and Mahoney
[47] developed a randomized method using top-k right singular vectors to choose features for
the k-means algorithm. Basak, De and Pal [48] designed an A-NN to compute Fuzzy Feature
Evaluation Index(FFEI) and with back propagation optimize the weights of the features in
order to minimize FFEI. Velayutham and Thangavel [49] developed a method (Quick Reduct)
based on rough set theory. Li, Lu and Wu [41] proposed a two layer approach, in order to
get the advantages of two different methods, i.e. one method is responsible for discarding
redundant features and an other to discard irrelevant to clustering features. Their idea was
also used by [50], where the final implementation consists of three layers of filters.
In this project the two layer filter approach is going to be adapted to our needs. This is because

all the aforementioned methods have at least one short coming, i.e. too computationally
expensive for big datasets, discard only redundant features, discard only irrelevant features
[41]. Some of the above filter methods and variations of them will be tested in order to find
the best set up for the needs of this project. The rest of this section is organized as following.
First the methods tested are going to be presented and then the variations of them will be
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described.

3.1 RANK, SRANK

As mentioned above Dash and Liu [44] proposed a feature subset space search algorithm,
namely RANK. The main idea is to rank and sort all the features, based on a quality for
clustering metric. Then the ranked list of features can be used for faster search of the feature
subset space, i.e. instead of choosing features blindly there is a preference on the features that
have good ranking.
The metric they used is the loss of entropy when the feature in question is removed from the

dataset. The entropy for a dataset with N points is given by the following formula [44]:

E = −
N∑
i=1

N∑
j=1

(Si,j ∗ logSi,j + (1− Si,j) ∗ log (1− Si,j)), (9)

where Si,j is the similarity of instances i and j and its given by the following formula:

Si,j = e−a∗Di,j , (10)

where a a parameter and Di,j the normalized distance between instances i and j.

Algorithm 1 RANK

1: for every feature Fi do
2: Pi = CalcEnt(Fi)
3: end for
4: Return P

Since RANK needs to go through all pairs of instances, multiple times (one for every feature)
for big datasets it is very computationally expensive. In order to tackle this, SRANK was
introduced. SRANK takes p random samples of n data points and calls RANK on each sample.
The final ranking of a feature is the summation of the individual rankings.

Algorithm 2 SRANK

1: for all features Fi, Overall Rank (ORi) = 0
2: for l = 1 to p do
3: take sample Ll
4: Pl = RANK(Ll)
5: for every feature k do
6: ORk = ORk + Pl,k
7: end for
8: end for
9: Return OR

Although [44] wrapped RANK around k-means clustering, it was incorporated as a feature
subset space search method to the second filter of the two layer filter approach [41], responsible
for discarding irrelevant to clustering features.
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3.2 Mitra’s et al. algorithm

Mitra et al. [45] developed an algorithm, based on the k-NN algorithm in order to discard
redundant features. The k-NN algorithm has as distance measurement the similarity of the
features. As a similarity metric they used Maximal Information Compression Index (MICI). For
two random variables x and y, MICI is given by the following formula:

λ2 =
1

2
(var(x) + var(y)−

√
(var(x) + var(y))2 − 4var(x)var(y)(1− ρ(x, y)2)), (11)

where var(x) and var(y) are the variances of variables x and y and ρ(x, y) is the correlation
coefficient between the random variables x and y.
The algorithm initially computes the nearest neighbors for all features. The feature for which

the distance from the kth neighbor is minimum they discard the k nearest neighbors. Then
they define similarity threshold (ε) equal to the distance of the aforementioned feature to its
kth neighbor. Continue with the rest of the features, picking them with the same manner, and
discarding only the features with similarity smaller than ε.

3.3 Neuro-Fuzzy Approach

Basak, De and Pal try to incorporate ANN with fuzzy set theory [48] in order to not only
find the best subset of features, but also weight them for optimal results. They achieve that
by introducing a fuzzy feature evaluation index (FFEI).

E =
2

s(s− 1)

∑
p

∑
q 6=p

1

2
[µTpq(1− µOpq) + µOpq(1− µTpq)], (12)

where µOpq is the degree that both pth and qth data points belong to the same cluster in the
original data space and µTpq in the evaluated subset. The degree of membership, µpq is given
by the following formula:

µpq =

{
1− dpq

D
, if dpq ≤ D

0, otherwise
, (13)

where D is proportional to the maximum distance in the dataset.
FFEI decreases as the degree of membership increases/decreases, meaning that the boundaries

of clusters become better defined. In order to find the optimum feature subset, they designed
an Artificial Neural Network that computes FFEI from the dataset by weighting the features
and using back propagation to optimize them. Since for very large datasets, the computation
of FFEI becomes very expensive, random sampling is applied.

3.4 Two Layer Filter Approach

Li, Lu and Wu [41], argued that all existing methods have at least one of the following short-
comings. Only remove redundant features, only eliminate irrelevant features, low performance
on high dimensional data set, expensive computation cost for high dimensional data or sensi-
tive to noisy data. In order to overcome this issue, they proposed a two layer filter approach.
Use one method that is very efficient at discarding redundant features and one at irrelevant
to clustering features. The filter that is less computationally expensive will be used first. In
order to eliminate redundant features, they used the method proposed by Mitra et al. [45]. For
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discarding irrelevant to clustering features, they proposed a method that not only does that,
but also weights the remaining features for optimized results.
The method consists of three main components: feature subset space search, feature subset

evaluation and subset selection. For searching the feature subset space, they used RANK
(Algorithm 1) and for big datasets SRANK (Algorithm 2). Instead of the entropy, they use a
slightly different metric, called ranking index and is given by the formula:

H =
N∑
i=1

N∑
j=1

(Si,j ∗ eSi,j + (1− Si,j) ∗ e(1−Si,j)), (14)

Again Si,j is the similarity between instances i and j and is given by equation 2.
Once all features are ranked, a weighting scheme is applied, based on the rankings. The weight

of each feature is equal to its contribution on the overall H-value difference. More specifically,
the overall H-value difference is defined as the summation of the difference of the H-value
for each feature to the one ranked lowest. In algorithm 3, m is the total number of features,
and assumed that they are sorted in decreasing order based on the value of H. The Difference
value of the last feature (DHm) is set to one, so it has a minimum value different than zero.

Algorithm 3 CalcWeight

1: Overall Difference of H (ODH) = 0
2: Difference of H for feature m(DHm) = 1
3: for k = 1 to m - 1 do
4: DHk = Hk −Hm

5: ODH+ = DHk

6: end for
7: ODH+ = DHm

8: for k = 1 to m do
9: wk = DHk/ODH

10: end for

To select the feature subset, they use forward selection. For evaluation of a feature subset,
FFEI (Equations 4, 5) is used. After defining a threshold φ for minimum decrease of FFEI, an
iterative process is executed where features are added to the chosen subset until the difference
of FFEI before and after the addition of a feature is less than φ.

3.5 Proposed variations of Mitra’s et al. Algorithm

Mitra’s et al. algorithm works very well and has very low computational cost. Whilst this
is true, it has one drawback, which for our case is quite essential. This algorithm takes as a
parameter the number of nearest neighbors k, which does not reflect the similarity threshold
for all datasets. Meaning, for every dataset the similarity threshold will be different for the
same k. In a situation where there are no redundant features Mitra’s et al. algorithm will still
discard a number of them. There is an equivalent behavior for the opposite situation. If most of
the features are redundant, there is a high probability that many of them will not be discarded.
In order to avoid this behavior, two variations of this algorithm, are proposed, both with the
same principle, instead of defining k, the similarity threshold ε is defined instead.
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The first variation works as following. Find for every feature, the number of features closer
than ε. Starting with the feature that has the most, discard all the features with similarity less
than ε.

Algorithm 4 1st Variation

1: Define ε
2: for every features k do
3: Find all features li 6= k, with Slk < ε
4: Add li to Lk
5: Ck = count(li)
6: end for
7: sort(C, L)
8: for every feature k do
9: Discard ∀li ∈ Lk

10: end for

In algorithm 5, Lk is a vector of features containing all features li that have similarity with
feature k Slk smaller than the threshold ε.
The second variation is very similar to the first. The difference is the decision mechanism for

choosing the order of features. Instead of looking which feature has the most neighbors, we
start from the feature with the smallest entropy. The entropy is calculated with an approximate
method developed by Dash et al. [46].

Algorithm 5 1st Variation

1: Define ε
2: for every features k do
3: Calculate Approximate Entropy of k
4: end for
5: Sort features based on Approximate Entropy
6: for every feature k do
7: Discard all features li 6= k, with Slk < ε
8: end for

For both variations, also the similarity measurement is slightly modified. MICI, is a very good
similarity measurement for features, since it is invariant to rotation, it is symmetric, and it is
equal to zero when the two features are linearly related [45]. Unfortunately the upper bound
is 0.5 ∗ (var(Feature1) + var(Feature2)). This means that it is not invariant to scaling. If
two features have high variances the MICI will be larger than in the case of features with small
variances. In order to avoid this factor, we calculate the following similarity measurement:

Similarity =
2 ∗MICI(Feature1, Feature2)

var(Feature1) + var(Feature2)
(15)

Now the similarity takes values from zero to one. The behavior of these two measurements
is presented with the help of a simple example. Given the features in table 1, table 2 shows
the calculated MICI and our similarity measurement. Clearly for clustering purposes, features
1 and 2 should be similar.
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Point α Point β Point γ
feature1 0,2 0,3 0,9
feature2 0,8 0,7 0,2
feature3 0,2 0,8 0,3

Table 1: The values of three data points for
features 1,2 & 3.

features 1,2 features 1,3
MICI 0,000325 0,118354

Our Similarity 0,001822811 0,719608105

Table 2: The values of MICI and our sim-
ilarity’s measurement for pairs of features
1,2 and 1,3.

Both similarity measurements are able to discriminate the similar features from the not similar.
The difference is that due to the dependence of MICI on the sum of the variances of the
features, the value of MICI for features 1 and 3 is quite small. Thus it will make it very hard to
come up with a threshold that is universal for all possible pairs of features. Thus our similarity
measurement is going to be used.

3.6 Simplification of Irrelevance Filter

For this project, a simplified variation of the irrelevancy filter described in section 5.4 is going
to be used. Due to the large time complexity of the computation of FFEI, the last part of
the algorithm is going to be changed. Instead of adding features until the FFEI does not drop
more than the predefined threshold, a weight threshold is going to be used. Meaning that
after the features are weighted, if the weight that is assigned to a feature is less than the
predefined threshold, the feature is going to be discarded. Moreover, through the experiments,
a limitation of the weighting scheme is identified. The last feature (the one with the worst
ranking) has a very low weight, almost zero. In order to avoid that factor a slightly different
weighting scheme is proposed. Instead of setting the DH value of the last feature to one,
a new virtual feature is introduced with score equal to last minus the average difference of
rankings of the features. The weights given are the difference of each feature from the virtual
feature divided by the difference of the best feature with the virtual feature. It should be noted
that the average distance is not computed for all combinations of features, rather than the
consecutive pairs after sorted by their rankings.

Algorithm 6 CalcWeightNew

1: calculate average difference AV G
2: Ranking of virtual feature V(Hv) = Hm − AV G
3: Calculate Maximum difference DHmax = H0 −Hv

4: for k = 1 to m do
5: wk = (Hk −Hv)/DHmax

6: end for

With this weighting scheme there are still some downsides. For example the smallest weight
given is always 1

Nfeatuers
.

4 Clustering

There are many algorithms that can be used for clustering, such as K-means, Expectation
Maximization (EM), Fuzzy C-means (FCM) and many more. For the purpose of MRI segmen-
tation the most popular are EM and FCM [1, 6, 7, 3, 4, 20, 14]. Zhang et al. [7] proposed a
method that incorporates probabilities drawn from a Hidden Markov Random Field (HMRF)
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and probabilistic distribution for the bias field in the EM’s objective function, for the purpose
of segmentation of WM, GM and CSF in healthy human brain. The HMRF model serves the
purpose of representing neighborhood attraction. Ashburner and Friston [6] added to the EM’s
objective function a model for the bias field, but also incorporated prior probabilities from an
atlas, making the method supervised. Xue et al. [20] used a wavelet based filter to de-noise the
image. Then with intensity thresholding initialize the clusters which are then optimized with
the help of FCM. In order to get rid of the ‘salt and pepper’ noise of the clustering, the image
goes through median and weighted average filters, with the help of class labels. Finally with
the new image and as initial centers the centers from FCM, FCM is triggered again to produce
the final result. Ahmed et al. [13] modified the objective function of FCM in order to take
into account the class labels of the neighboring voxels and Chen and Zhang [14] modified the
latest method in a way that it is more computationally efficient and included kernel distance
measure. It is important to mention that all the aforementioned methods use only the intensity
values of the voxels in order to cluster an image and also that they focus on clustering WM,
GM and CSF, from healthy human brains using 3D MR Images.
In this project K-Means++ [51] is going to be used for most of the experiments, due to its

known robustness and computational efficiency. FCM, as well as Chen and Zhang’s variation,
are going to be tested to see whether they can boost the performance of the system.

4.1 K-Means++

K-Means++ is a variation of the original K-Means. The sole difference of the two methods
is the initialization technique of the centroids. In the case of K-Means, K (number of clusters)
data points are picked at random to serve as the centroids, with a uniform probability for all
points. In the case of K-Means++ although the centroids are also picked at random from
the data set, the probability of a point being chosen is proportional to its distance from the
closest, already picked, centroid. As a result, the initial centroids are more likely to be better
distributed along the data, resulting in faster convergence and higher probability of avoiding
local minimum.

4.2 Fuzzy C-Means (FCM)

The FCM algorithm is a generalization of K-Means [52, 1], based on fuzzy set theory [53]. It is
a generalization because it allows points to belong in several clusters, based on a membership
function. The objective function of FCM is:

Jm =
C∑
i=1

N∑
j=1

umij ∗ ||xj − vi||2, (16)

where N is the number of data points to be clustered, C is the number of clusters, uij is the
membership function of point xj for cluster i and m is a parameter that controls the level of
fuzziness of the resulting clustering. If m is set to one, the algorithm is the same with K-Means
clustering. Given the constraints:

uij ∈ [0, 1],
C∑
i=1

uij = 1,∀j, 0 <
N∑
j=1

uij < N, ∀i (17)
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and setting to zero the partial derivatives of Jm with respect to uij and vi, one will get two
conditions for minimizing Jm:

uij =

[
C∑
k=1

(
Dij

Dkj

) 1
m−1

]−1
, (18)

vi =

∑N
j=1 u

m
ij ∗ xj∑N

j=1 u
m
ij

(19)

The algorithm, given initial centers, calculates the membership function uij. Given that mem-
bership function, it recomputes the centers. FCM iterates between these two steps until the
maximum relocation of a center is smaller than a user specified threshold ε. Finally in order
to get the crisp version of the clusters, each point is assigned to the cluster to which its
membership (uij) is maximum.

4.3 FCM modification, including neighborhood attraction

As mentioned above, Ahmed et al. proposed a variation of FCM so that the classes of neigh-
boring voxels can affect the membership function. This make sense in image segmentation,
because the clusters within an image are expected to contain neighboring pixels/voxels. In
order to do so, they introduced an extra term in the objective function Jm:

Jm =
C∑
i=1

N∑
j=1

umij ∗ ||xj − vi||2 +
α

NR

C∑
i=1

N∑
j=1

umij

∑
xr∈Nj

||xr − vi||2
 , (20)

where Nj is the set of neighbors of voxel j, NR is the number of neighbors and α is the
parameter that controls the importance of the neighboring attraction. By computing the partial
derivatives of Jm we get the new formulas for updating the centers and membership functions:

uij =

 C∑
k=1

Dij + α
NR

(∑
xr∈Nj

||xr − vi||2
)

Dkj + α
NR

(∑
xr∈Nj

||xr − vi||2
)


1
m−1


−1

, (21)

vi =

∑N
j=1 u

m
ij ∗

(
xj + α

NR

∑
xr∈Nj

xr

)
(1 + α)

∑N
j=1 u

m
ij

(22)

Like with the original FCM, this algorithm iterates between updating the centers and computing
the membership function. The process stops with the same criterion as before.

5 Experiments

5.1 Experimental Setup

In order to test our system and the different methods that can be used within it, the exper-
iments are divided in three sections. First an exhaustive search of the different methods and
their parameters is going to be done in order to get insight of the performance of different
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methods on different images. Based on the results the second stage is designed in which the
redundant filters are going to be tested. Finally, filters that discard irrelevant features are going
to be tested. From these experiments a final system is going to be defined. In order to get a
clear image of the approach, the work flow of the proposed system is presented in figure 3.

Figure 3: Proposed system work flow.

5.2 Validation

In order to validate our results, an accuracy measurement is needed. Manning et al. [54]
introduce four metrics for clustering, namely Purity, Normalized mutual information, Rand
Index and F measure. According to them Purity and Normalized mutual information suffer
from the same drawback; they do not penalize high values of the number of clusters produced.
Meaning that if a class from the data set is split to two clusters, but there are no points from
different classes in these clusters, purity and normalized mutual information will output the
maximum value (1). Random Index on the other hand, will equally penalize false positive as
well as false negative examples. It accomplishes that by measuring the amount of pairs of data
points that are clustered correctly or wrong to the same or different cluster. Random Index is
given by the following formula:

R.I. =
TP + TN

TP + TN + FP + FN
, (23)

where TP refers to the true positives, which are the pairs of data points that were clustered in
the same cluster and belong to the same class, TN refers to the true negative, which are the
pairs of data points that are clustered in different clusters and belong to different classes. FP
refers to the false positive and FN refers to the false negative. The F - measure is a variation
of Random Index, which allows different weighting of false negatives and false positives. The
F - measure can be computed using the following formulas:

P =
TP

TP + FP
, R =

TP

TP + FN
, Fβ =

(β2 + 1) ∗ P ∗R
β2 ∗ P +R

(24)

Other evaluation measurements that are used in medical bibliography are the Dice index
[55, 1, 56, 57], the Jackard Similarity [1], sensitivity and specificity [56, 57]. The Dice index
is given by the following formula:

ρi =
2|Ai ∩Bi|
|Ai|+ |Bi|

(25)

These similarity measurements require classification of the volumes. Sensitivity measures the
true positive rate whilst specificity the true negative rate. Due to the unsupervised manner
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of our approach, these measurements are not very sufficient as we need to also incorporate a
way to classify the resulted volumes. Thus, the Rand Index and F measurement seem more
appropriate. Since we do not want any bias in favor of false negatives or false positives, the
Rand Index measure is going to be used.

5.3 MRI

5.3.1 Data Set

In order to test the proposed system and optimize it, we had to obtain a dataset with as
accurate ground truth as possible. Given the difficulty and time needed to label a 3D image
manually, such a dataset is not easy to find. There are four data sets that came to our
attention, namely BrainWeb [58, 59, 60, 61, 62], IBSR [63], BraTS [64] and MRBrains [65].
BrainWeb is a collection of MRI simulated 3D images for healthy brains as well as brain with

multiple sclerosis (MS). The simulator is a complex system. Starting from a digital phantom,
it performs modeling based on the Bloch equations in order to build the simulated image [59].
The dataset is composed by two phantoms, one of healthy brain and one of a brain with MS.
For each phantom there are 18 different simulated images. Each image has a different level
of Gaussian noise and intensity non-uniformity (bias field), i.e. the level of Gaussian noise can
be 0, 1, 3, 5, 7 or 9 percent while the intensity non-uniformity level 0, 20 or 40 percent.
Since the data set is composed by simulated images, it has excellent ground truth. As such,
it is widely used by researchers in order to validate their methods, although simulated images
might not have the same artifacts, noise distribution and intensity histograms as the real
images [1, 6, 56, 57]. Example T1 weighted and T2 weighted simulated images, as well as
their ground truth for CSF, WM and GM, can be seen in Figure 4.
The Internet Brain Segmentation Repository (IBSR) is provided by the Center for Morphome-

tric Analysis at Massachusetts General Hospital [63]. It is composed by two data sets. The first
contains twenty T1 weighted 3D MRI scans, whose manual segmentations are provided. All
MRI scans have 1mm x 1mm x 3mm resolution. The second contains 18 scans whose resolu-
tion is (.84mm - 1mm) x (.84mm - 1mm) x 1.5mm. For these images manual segmentation is
also provided. The set contains scans from juveniles to a seventy year old person. The images
provided have gone through bias field correction by the CMA ‘autoseg’ routines. Unfortunately
many papers point out that the ground truth is not very accurate [1, 7]. Although this is the
case, due to lack of other datasets with well specified ground truth for segmentation, it is
widely used for method comparison and validation.
MRBrains and BraTS are composed by real and simulated images of brains with tumor.

Manual segmentation is provided, for the tumor and edema and in some cases also other
volumes such as white matter, gray matter, scull, muscles et cetera. Unfortunately they have
restricted access. In order be able to use them the administrator has to grand access. MRBrains
can only be used for the purpose of the MRBrain challenge, thus we were not able to obtain
these two datasets.

5.3.2 Textural Method Comparison

In order to compare the methods that are explored in this paper, as well as understanding
how parameters such as step size (GLCM and RLM), neighborhood size and neighboring
element size (GLAM) affect the results some initial experiments are done. For this initial
experimentation, six images from the BrainWeb Repository are used. More specifically three
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Figure 4: Example T1-weighted and T2-weighted images from BrainWeb with their ground
truth. Both images have inhomogeneity level 20% and 9% noise.
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Figure 5: Segmentation produced by FOS on T2 Weighted image, Noise = 9%, Bias Field
= 20%.
Neighborhood Radius = 4

T1 - weighted and three T2 - weighted, with different combinations of noise and inhomogeneity
level. The combinations are nine percent noise with twenty and forty percent inhomogeneity
level and five percent noise with forty percent inhomogeneity level. Every method is used alone,
only with feature rescaling, so that no feature is weighted more that the others due to different
scaling. The clustering is done by K-Means++.
First order statistical features (FOS) are tested for neighborhood size from two to five. They

are not tested for neighborhood radius one, because in order to compute the absolute gradient
value there is the need of at least neighborhood radius 1. In order to measure its mean and
standard deviation the minimum possible radius becomes two. The upper bound was chosen
due to the results. As seen in figure 6, experimentation for larger values of neighborhood radius
seems unnecessary.
It is clear that FOS performs better on T1 weighted images, as the difference in accuracy

reaches even twenty percent. Moreover when dealing with T1 weighted images the bias field
significantly affects the results whilst Gaussian noise does not. This effect does not appear
with the same magnitude when dealing with T2 weighted images. In that case, the general
behavior looks quite different. That is because the difference in intensity level between gray
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Figure 6: FOS success rate for neighbor-
hood size from two to five, for six simulated
images from BrainWeb.

Figure 7: Success rate for neighborhood
size from one to five, for RLM, GLCM and
GLAM when clustering T1-Weighted im-
age with Noise = 9%, Bias Field = 20%.

mater and white mater is much smaller than in the case of T1 weighted images. As seen in
figure 5, although the algorithm is able to cluster CSF quite accurately, it completely confuses
white matter and gray matter, while assigning them to the same cluster and having as a third
cluster their boundaries with CSF. The confusion of WM and GM is probably the reason of
the different behavior. While the neighborhood size increases, the ‘boundary’ cluster becomes
larger. Since most of the voxels that are close to the boundary with CSF belong to GM, when
the ‘boundary’ cluster becomes bigger it starts representing GM. This effect stops for big
enough neighborhood sizes, as voxels that belong to white matter start being clustered in the
‘boundary’ cluster as well. The resulted clustering for T1 weighted image can be seen in figure
8.
The other three methods are tested for neighborhood radius from one to five and step size

(in case of RLM and GLCM) or neighboring element size (in case of GLAM) from one to
neighborhood radius. Figure 7 shows the accuracy of these methods for different neighborhood
sizes. All three methods produce very similar results. For the rest of the images the behavior
recorded is also very similar. Since GLAM produces slightly better results, the rest of the plots
shown are for GLAM. If an other method shows different behavior it will be specified.
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Figure 8: Segmentation produced by FOS on T1 Weighted image, Noise = 9%, Bias Field
= 20%, Neighborhood Radius = 2

Figure 9 shows the accuracy of GLAM for all six images. It is clear that its behavior is different
than the one of FOS. When dealing with T2 weighted images, performs better than when
dealing with T1 weighted. It is important to notice that when the Gaussian noise increases,
the performance also increases, whilst when the inhomogeneity level increases, the performance
decreases. That is to be expected since all textural methods depend on high frequency noise
that depends on the objects, in order to be able and discriminate them. Thus when dealing
with T1 weighted images, in which the intensity is more homogeneous than T2, or with low
level of Gaussian noise, the only texture that they “see” is around the boundaries between
tissue types. Thus they cluster the image to homogeneous regions (not boundary regions) and
non-homogeneous region (boundary regions).
Figure 10 shows the accuracy for GLAM, for all six images for different neighboring element

sizes. The neighborhood radius is set to five. The size of the neighboring element, does not
affect much the performance of the method. In most cases it doesn’t affect it at all, whilst
in the cases that it does, the difference is almost negligible. For different neighborhood sizes
the behavior is the same. Since GLAM has time complexity O(N3

S), where NS is neighboring
element size, and the performance is not affected by it, small values of it seem more appropriate
for an application. An example of GLAM segmentation can be seen in Figure 11.
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Figure 9: GLAM Success rate for neigh-
borhood size from one to five for all six
images.

Figure 10: GLAM Success rate for neigh-
boring element size from one to five for all
six images. Neighborhood radius is five.

Figure 11: GLAM segmentation for T2-Weighted image, Noise = 9%, Bias Field = 20%.
Neighborhood Radius = 3, Neighboring element size = 2.
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Figure 12: Example real MR Image with Ground truth from IBSR v2.0

Except the simulated images, the above methods are also tested on a database of real MR
Images. The images are collected from the Internet Brain Segmentation Repository (IBSR)
[63]. Five images from the second version are used. That is due to their higher resolution.
Since the methods used use all three dimensions in order to extract features, if the resolution
in one of the three dimensions is reasonably lower than the other two, then the methods
are “confused”. Two images are chosen, from 41 year old people, one from 37 and two from
juveniles. Unfortunately the ground truth of this dataset is not very accurate [1, 7]. An example
image can be seen on figure 12. Especially in the case of CSF (comparing also with anatomical
models) big parts are missing, or misclassified as Gray Matter. For example in the image (and
generally the brain structure, see figure 4) there is a layer of CSF around the brain (white
matter and gray matter). Part of this layer is not present in the segmentation, whilst an other
part classified as Gray Matter. Moreover usually there are small volumes of CSF between gray
and white matter which, in this case, are either classified as gray or white matter. As mentioned
before, all five images have gone through bias field correction by the CMA ‘autoseg’ routines.
First order statistical features show the same behavior as with the simulated T1 images, with

much lower accuracy (Figures 6, 15). As the neighborhood size increase, the performance
decreases. One of the reasons for the lower performance is the poor ground truth of the
dataset. An example segmentation can be seen in Figure 13.
GLAM, RLM and GLCM also show the same behavior with T1 simulated images. Due to the

homogeneity within the tissues, the features produced by these methods are able to discriminate
boundary with non boundary clusters. As the neighborhood size increases, boundary clusters
become larger whilst non-boundary clusters become smaller (Figure 14). The change in the
measured accuracy is not related to actual recognition of the tissues, rather than the proper
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Figure 13: FOS segmentation for T1 weighted real image, Male, Juvenile

Figure 14: GLAM segmentation for T1 weighted real image, Male, Juvenile.
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Figure 15: FOS segmentation for T1-Weighted real images

boundary cluster to contain as much GM in combination with minimum White matter.
Through these experiments, it is shown that textural features do not perform well on this

task, i.e. segmenting White matter, Gray matter and cerebro-spinal fluid using MR Images.
As also mentioned above this is probably due to the similarity in texture of different tissues,
and the more discriminative feature being the gray level intensity. Thus features that describe
texture can differentiate the boundary regions from homogeneous regions. In this case also
the rest of First Order Statistical features should not perform well with these images. In order
to test this hypothesis, T1-weighted image is clustered using First Order Statistical features
independently. The results can be seen in table 3.

Average Gray-Level Intensity(GLI) Standard Deviation of GLI Absolute Gradient Value (AGV)
0.816522 0.527546 0.538247

Average AGV Standard Deviation of AGV Combination
0.564737 0.531014 0.802324

Table 3: F.O.S. features accuracy when segmenting T1 weighted image from BrainWeb,
Noise = 9%, Bias Field = 40%.

The results shown on table 3 strengthen the hypothesis. From all the above experiments we
can conclude that when dealing with healthy brain MR Images, the intensity of the voxels
is the most powerful feature. In order to have a visual comparison of the methods with the
average intensity, resulted clustering is shown in figure 16. It is only natural that all the existing
methods are intensity based whilst sophistication plays part in the segmentation methods and
not the features. Since most of the features (if not all) tested in this paper are not helpful for
this task, no more experiments are going to be done here, since these datasetscan not provide
any more insight on the behavior of the features.
Nevertheless, it is noticeable that the textural features tested can help in the visualization

of the different textures in the image. The fact that the performance of the methods with
respect to the ground truth is low, is true given that the task in hand is not to identify
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Figure 16: Average gray level intensity, FOS and GLAM segmentations for T1-Weighted
image from BrainWeb, Noise = 9%, Bias Field = 40%.
(a) is the Original Segmentation, (b) is the Segmentation of Average Gray Level Intensity,
(c) is the Segmentation of FOS features and (d) is the GLAM segmentation.

different textures. The results shown in figures 5, 11, 14 show that the features tested can
discriminate the different textures and help visualizing them.
In order to test the feature selection methods Ultrasound Images are going to be used since

textural features are more useful for them since they have a lot of speckle noise. Once features
selection algorithms are compared, the final system is going to be tested with the MR Images
again to see whether the feature selection algorithms will be able to discard and weight features
accordingly, so that the final clustering is as close to the one from average intensity as possible.

5.4 UltraSound

5.4.1 Data Sets

As mentioned before, in order to test the system proposed in this project, as well as the
3D textural feature extraction methods, there is a need of 3D datasets with ground truth.
Regarding Ultrasound, such a dataset proved to be very hard to obtain. Thus the focus turned
to phantom images. There are many proposed methods in creating ultrasound phantom images,
using several material, like Gelatine, agar, flower, water and more [66, 67, 68]. Usually one
is the main compound and there can be several additives. According to [67], the phantoms
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created using Agar-Agar, are very good approximations of real tissues. Thus in this project
Agar-Agar phantoms are created with flower as additive. The phantoms were created by Pr.
E.M. Bakker, using a Terason T2000+ with 12L5-V Linear Array Transducer from Terason
US Scanner [69].
In order to have as general conditions as possible, many blocks with different textures are

created. Each block contains 75ml of Agar-Agar. Eight different blocks are created, each with
different mass of flower in it. The weight of the flower in each case is a multiplicative of
0.2gram. As a result we have the following blocks.

Block Name fl1 fl2 fl3 fl4 fl5 fl6 fl7 fl8
Flower Density (gram/75ml) 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

Table 4: Flower Concentration of created blocks.

Some example slices from each block can be seen in figure 17.

Figure 17: Example 2D slices from each 3D building block.

In addition to these blocks, a Model 539 Multipurpose US Phantom created by ATS labo-
ratories, Inc., USA, is used. The blocks of Agar are put on top of the phantom and a 3D
ultrasound scan is produced. In order to have known ground truth, blocks of size 64x64x64
are “cut” from the image and are used as building blocks with which a few sets of images are
created. One block for each flower density and four different blocks of the Multipurpose US
phantom. With these blocks three sets of images are created. The first has only blocks with
Agar-Agar texture, in different combinations. Each image has two different concentrations of
agar and each block is used twice. They are placed in an square and the same blocks are on
opposite corners of the square. The name of the images comes from their building blocks.
In total six images are created with resolution 128x128x64, namely fl1fl3, fl1fl6, fl2fl4, fl2fl7,
fl3fl5, fl3fl8. Some example slices from the images as well as their ground truth can be seen
in figure 18.
The second set of images is created using combinations of blocks of agar and blocks of the

Multipurpose US Phantom. Again four blocks in total, two from the phantom and two from
the agar blocks. The two phantom blocks are positioned in opposite corners of a square while
on the other two corners are the agar blocks. In this set eight images are constructed, namely
ph12fl2, ph12fl5, ph34fl1, ph34fl4, ph56fl3, ph56fl6, ph78fl7 and ph78fl8.
Finally the third set of images consists of more combinations of the agar blocks and the

phantom blocks. Six images are constructed in total. Three only with agar blocks, two of
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Figure 18: Example 2D slice from fl2fl4.

which have four different blocks and have size 128x128x64 and the third with all eight blocks.
Its resolution is 128x128x128. Three more images belong to this set, which have combinations
of Multipurpose US Phantom blocks and agar blocks. Again two images have four blocks,
two different agar blocks and two different Multipurpose US Phantom blocks. The third has
eight blocks, the four Multipurpose US Phantom blocks and four agar blocks. It should be
mentioned that the Multipurpose US Phantom blocks have all the same label, i.e. we want to
cluster them in the same cluster. The constructed images are fl1357, fl2468, flall, ph1234fl48,
ph5678fl26 and phallfl1537.

5.4.2 Textural Method Comparison

The goal of the first part of the experiments, with the Ultrasound dataset, is to compare
the methods individually and see how they behave with different parameters. According to
previous research, the difference in clustering using different neighboring element sizes of
GLAM is negligible. Thus for these experiments it is set to a small value (two), since the
time complexity of GLAM is O(N3

S), where NS is the neighboring element size. In the case of
GLCM and RLM, as the step size increased, the accuracy of the system slightly dropped. Thus
the step size for these two is set to one. Moreover, GLAM is a generalization of GLCM, and
previous experiments, as well as our previous research show that they have similar behavior.
Thus for most of the experiments, where the behavior of the algorithms is tested, only GLAM
is going to be used since it has lower time complexity and produces much less features than
GLCM, resulting in faster clustering. After choosing the final setup, GLCM is also going to
be tested, with the parameters for which GLAM produced the best results. All methods are
tested for neighborhood radius from five to nineteen.
Before the results of the experiments are presented, it is important to mention that the

accuracy measurement used does not have the same behavior as others. More specifically,
when the number of clusters increases, random accuracy increase as well. So in order to avoid
any confusion, table 5 shows the accuracies of a random generator, for the set of images
constructed in section 5.4.1.
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Figure 19: Success rate for neighborhood
size from five to nineteen for FOS, for all
combinations of flower concentration

Figure 20: Success rate for neighborhood
size from five to nineteen for FOS, for
all combinations of flower with phantom
blocks.

Image/ set of Images Random Accuracy
set 1&2 0.5

fl1357, fl2468 0.625001
flall 0.78125

ph1234fl48, ph5678fl26 0.541668
phallfl1537 0.59375

Table 5: Random Generators accuracy for all constructed images.

First, the algorithms are tested on the different combinations of flower concentration in the
agar. Figure 19 shows the results for First Order Statistical Features. Almost in all cases, FOS
features show the same behavior, with a different maximum. For small neighborhood sizes
the accuracy is relatively low, and once the maximum accuracy is reached, it starts dropping
again with the increase of the neighborhood size. In two cases the method seems to behave
differently. First and most different are the results for the image fl1fl3, i.e. one cluster with
flower concentration 1*0,2 and 3*0,2 (gram/75ml). Although the method did fail to capture
the difference intended, it was able to differentiate the parts were the flower dropped (and
as a result higher concentrate), due to gravity, before it froze (right part of each block). The
resulted clustering for neighborhood radius nine can be seen in figure 21.
It is interesting to see that, as expected, images with blocks whose difference of the flower

concentration is small are more difficult to segment properly, i.e. the algorithm produces
the worst results for fl1fl3, fl2fl4 and fl3fl5 whilst for the other three images in which the
difference in flower concentration is larger, the accuracy reported is also larger. Besides the
small difference in texture, one more reason for this behavior is that when the difference of
the flower concentration is small, the difference caused by the movement of the flower to
the one side, before it froze, causes bigger difference in the concentration within the blocks
than between the blocks. Thus, for these images, the actual performance of the method is
better than the one shown in these figures. The strongest example is the one mentioned in
the previous paragraph, the results for fl1fl3.
The second set of images is composed by combinations of phantom blocks and flower blocks of

different flower concentration. The results for FOS features can be seen in figure 20. Although
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Figure 21: FOS segmentation for fl1fl3 with neighborhood size nine

Figure 22: FOS segmentation for ph56fl3
with neighborhood size five

Figure 23: FOS segmentation for ph34fl1
with neighborhood size six
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the behavior is more unstable, it looks like it follows the same trend with the first set of
images. Again there are two examples which show different behavior, the ph56fl3 and ph34fl4.
Even though their performance is a lot worse than the others, the difference in accuracy even
exceeds 20%, still FOS features are able to see some difference. Example segmentations can
be seen in figures 22, 23. The same effect with the first set of images can be seen with this
set as well. The left part of the flower blocks (z-view) have smaller concentration of flower
and are clustered with the phantom block. The effect is even visible with the ph34fl1 image
(Figure 23) for which the accuracy reaches the highest value, 89,1532%.
It can be noted that, similarly with the MRI segmentation, the clustering of the image pro-

duced by the methods can help in visualizing the different textures in the images. In both
figures 22 and 23 the clustering of the voxels help to show the difference in texture were the
flower “dropped” due to gravity.
In order to compare the difference of the importance of the average intensity with the MR

Images, the last experiment done with the MR Images, is repeated. All FOS features are
used independently and in combination to cluster an image. Two images are used for this
experiment, one that maximized difference in color between the clusters (fl1fl6) and one that
minimized it (fl2fl4). The success rates can be seen in tables 6 and 7. Although still the
average gray level intensity is the most useful, when combined with the rest of the features
the overall accuracy increases a lot. The difference is maximized in the case of fl2fl4, in which
the difference in the intensities between the clusters is small and the average value of it seems
incapable of discriminating the two clusters.

Average Gray-Level Intensity(GLI) Standard Deviation of GLI Absolute Gradient Value (AGV)
0.81143 0.500069 0.503145

Average AGV Standard Deviation of AGV Combination
0.697436 0.500484 0.861742

Table 6: F.O.S. features accuracy when segmenting fl1fl6 image.

Average Gray-Level Intensity(GLI) Standard Deviation of GLI Absolute Gradient Value (AGV)
0.649274 0.500024 0.501108

Average AGV Standard Deviation of AGV Combination
0.681854 0.512458 0.805399

Table 7: F.O.S. features accuracy when segmenting fl2fl4 image.

As mentioned above, GLAM is also tested for neighborhood sizes from five to nineteen, for
the same sets of images. The results are shown in figures 24 and 25. When dealing with the
first set of images, GLAM also shows a specific behavior similar to FOS features. On the other
hand, when dealing with the second set of images, for some of them, there are two local
maximum, something that did not occur in any other experiments. It is also interesting to
see that the order of difficulty of the images is the same with FOS features, i.e. the order of
the images with respect to the accuracies of the segmentations is almost the same for both
methods.
The same setup is also used for RLM. The general behavior is similar to the one of GLAM,

but there are some exceptions (Figures 26, 27). Especially for images that GLAM does not
seem to be able to cluster properly, RLM shows more robustness and the success rate of its
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Figure 24: Success rate for GLAM for
neighborhood radius from five to nineteen,
for all combinations of flower concentra-
tion.

Figure 25: Success rate for neighborhood
size from five to nineteen for GLAM, for
all combinations of flower with phantom
blocks.

produced clustering does not fall as low as the one of GLAM. Still there is one exception. RLM
seems completely incapable of segmenting the fl2fl4 image, as we would want it to (Figure
28). On the other hand, there are cases were RLM produced the best clustering of all three
methods. These are the ph56fl6 and ph78fl7.

Figure 26: Success rate for RLM for neigh-
borhood radius from five to nineteen, for
all combinations of flower concentration.

Figure 27: Success rate for neighborhood
size from five to nineteen for RLM, for
all combinations of flower with phantom
blocks.

For the next experiment, GLCM is used for some of the images, with the step size one and
neighborhood size the one that GLAM performed best. As mentioned above, the more detailed
experiment is avoided due to the large time complexity of GLCM, as well as the similarity in
its behavior with GLAM. The images chosen are such so images that GLAM is not segmenting
well and images that it does are tested. The images chosen are fl1fl6, fl2fl4, fl1fl3, ph78fl7
ph34fl1 and ph78fl8. Table 8 shows the results for these six images for GLCM, as well as the
best configuration of FOS, GLAM and RLM.
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Figure 28: RLM segmentation for fl2fl4 with neighborhood size eight

FOS RLM GLAM GLCM
fl2fl4 0.805399 0.503078 0.689067 0.705634
fl1fl6 0.861742 0.827873 0.812884 0.802762
fl1fl3 0.541458 0.642769 0.594645 0.568048

ph78fl7 0.857200 0.888358 0.862222 0.85492
ph78fl8 0.846393 0.831083 0.847825 0.813007
ph34fl1 0.891532 0.698958 0.690863 0.714349

Table 8: Best performance of all methods for images, fl2fl4, fl1fl6, fl1fl3, ph78fl7, ph78fl8
and ph34fl1.
The method with the highest accuracy for each image is marked with blue.

Although in some cases GLCM is able to perform better than GLAM, these are only two
(fl2fl4 and ph34fl1) and the difference in accuracy is much lower then in the cases where
GLAM performed better. For fl2fl4 and ph34fl1 the difference in favor of GLCM is a bit more
than 1% whilst the difference exceed even 3% in favor of GLAM for ph78fl8. Considering
also the smaller time complexity of GLAM and the great difference in the number of features
produced, GLAM seems to be a more interesting approach.
The above experiments show that different features and different methods work better on

different images. Even with this set up of images, where the images have the same type
of differences in texture (Agar with flower and Phantom image with agar and flower), on
different examples different methods and features seem to perform better. Thus, in order to
have a system that can perform on many different images, a combination of GLAM, RLM and
FOS features should be used. For each method, features for two different setups are extracted
and these features are used for segmenting the image, after they go through the redundancy
filter and the irrelevancy filter. The setups used are based on the results shown in figures 19,
20, 24 - 27. For GLAM the neighborhood sizes chosen are ten and sixteen whilst for FOS
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features and RLM eight and fifteen. It is important to mention that for different applications
different setups should be used. For example in the MRI datasets one setup of each method
should be used, and with much smaller radii.
The methods and setups, defined in the previous paragraph, are used on the third set of

images, which has more combinations of flower concentrations and phantom images than the
previous two. The results for these images, for the combination of the methods and setups as
well as the methods used independently can be seen in table 9.

FOS FOS RLM RLM GLAM GLAM Combination
NS = 8 NS = 15 NS = 8 NS = 15 NS = 10 NS = 16

fl1357 0.737397 0.757823 0.708975 0.757800 0.734656 0.775311 0.773662
fl2468 0.709346 0.768114 0.657740 0.754852 0.705196 0.747729 0.765773

flall 0.793944 0.803784 0.765232 0.789245 0.766251 0.802790 0.794024
ph1234fl48 0.642598 0.665933 0.663425 0.670354 0.611121 0.624573 0.686684
ph5678fl26 0.678107 0.693932 0.665791 0.698915 0.659556 0.664971 0.693944
phallfl1537 0.744530 0.770819 0.723215 0.742285 0.699199 0.722342 0.644232

Table 9: Performance of all used setups, independently and in combination for the third
set of images.
The method with the highest accuracy for each image is marked with blue.

The behavior of the algorithms is similar to the one from the previous experiments. It can be
noted that in most cases, the combination of the methods and their setups produce similar
results to the best performing setup. Only in one case the results of the combination were
the best of all. The reason behind it is probably the large number of irrelevant features that
confuse the clustering. This is the effect that we want to tackle with the feature selection
step. Its goal is to discard the redundant and irrelevant features so the data are as separable
as possible. It is noticeable that the more different textures the system needs to segment, the
closer its accuracy to the one produced by the random generator (Table 5). Especially in the
case of eight different flower sets (flall) for some set ups the accuracy is even lower than the
one produced by the random generator. Although the resulted clustering usually looks quite
random, thats not always the case. For example RLM with neighborhood size fifteen, even
though it has slightly higher accuracy than the random generator, it is able to identify some
clusters with reasonable performance (Figure 29). Some resulted clustering can be seen in
figures 30, 31. Note that these figures show only the clustering of the best performing method
for the specific image.
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Figure 29: RLM segmentation for flall with neighborhood size fifteen

Figure 30: GLAM segmentation for fl1357 with neighborhood size sixteen
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Figure 31: RLM segmentation for ph5678fl26 with neighborhood size fifteen

5.4.3 Unsupervised Feature Selection Filters

In this section, experiments are done in order to explore the behavior as well as the performance
of feature selection techniques. Since most of them have very high computational complexity,
most of the experiments are done with small images and small number of features. The
experiments are organized as following. First, using the third set of images while using all
the textural feature extraction methods and their setups decided by the previous section, the
variations of Mitra’s et al. algorithm are tested for several threshold values. The goal of this
experiment is to measure the percentage of features remaining for a specified threshold. The
results are not meant to show the quality of the filters results, rather than using the resulted
value in order to have a general enough experiment for the irrelevancy filters, without having
to test them with an insufficiently large number of features, since the time complexity of most
of the methods discarding irrelevant features is O(d ∗N2), where d is number of features and
N is the number of data points. The second experiment is meant to show how good estimation
of the rankings of RANK, can SRANK produce for different number of patch sizes. For this
experiment a small dataset is used, one image with two classes and FOS features.
The results of the first experiment, for the first variation of Mitra’s et al. algorithm can be

seen in figure 32. The results show a specific behavior of the algorithm. For all images, there is
a great number of very similar features with similarity less than 0.01. The number of features
left after this filter with threshold 0.01 is on average 72.5 with a minimum 62 and maximum
85.
In order to see whether the sets of features kept for each image are similar, the similarity

between the sets of features kept is measured. The similarity is defined as the ratio of the
features kept for both tested images over the number of all the occurrences of features, for
both images.
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Figure 32: Number of features left after the variation of Mitra’s et al. algorithm is applied
for different threshold values, for the third set of images.
The value for threshold zero is the initial number of features.

Similarity =
Number of Same features

Number of unique features in both images
(26)

The results shown in table 10 are what was expected. For every image the redundant features
are not only different in number but also there is a difference in which features are discarded
and not. For small values of the threshold, the sets features that are kept seem very similar.
The reason behind this is that for these values of the threshold, on average, more than half of
the features are kept and thus it is expected for different images to have a big number of the
same features. Moreover, it is worth mentioning that the sets of features kept for images that
contain similar building blocks (fl1357 with flall or fl2468 with flall), on average, have higher
similarity than pairs of images with different building blocks.

threshold 0.01 0.012 0.014 0.018 0.02
Similarity 0.745± 0.083 0.737± 0.071 0.749± 0.106 0.717± 0.122 0.701± 0.109
threshold 0.024 0.028 0.035 0.04 0.07
Similarity 0.692± 0.116 0.686± 0.118 0.655± 0.132 0.63± 0.175 0.447± 0.204
threshold 0.1 0.15 0.2 0.25
Similarity 0.365± 0.179 0.254± 0.128 0.276± 0.155 0.286± 0.216

Table 10: Average similarity of kept features for all combinations of images for all tested
thresholds.

The goal of the second experiment is to show us how good approximation of the results
of RANK does SRANK provide, for different patch sizes. For this experiment the number of
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patches has been set to Patch−1size, where the Patchsize is the proportion of the number of
data points in the Patch to the number of points in the data set. Thus, the total number of
random data points chosen is the same with the number of data points in the data set. Given
that the time complexity of the algorithm is O(Patch2points ∗Npatches), the smaller the patch
size the faster the algorithm. Given our use of RANK and SRANK, what we are interested
in, is not the absolute values of the rankings, but their relationship, since the weights given
to the features is proportional to the difference of the rankings. Thus the results shown are
the weights calculated from the rankings produced by the experiment. For each Patchsize the
experiment is done ten times and the results given are the average results. The image used for
this experiment is fl1fl6, since the results of clustering of the individual FOS features for this
image are already available from previous experiments (Table 6). The results for the weighting
scheme proposed in this paper can be seen on table 11, and the results for the weighting
scheme proposed by Li et al. [41](≡ original) on table 12.

Feature1 Feature2 Feature3 Feature4 Feature5
0.001 1± 0 0.2± 0 0.9098± 0.0021 0.3793± 0.0018 0.2425± 0.0017
0.005 0.9331± 0.0035 0.2± 0 1± 0 0.4411± 0.0016 0.241± 0.0015
0.01 0.9109± 0.0027 0.2± 0 1± 0 0.4509± 0.0012 0.2396± 0.0008
0.02 0.9054± 0.0024 0.2± 0 1± 0 0.4582± 0.0016 0.2393± 0.0018

Table 11: Average Weights for the proposed weighting scheme for different Patchsizes of
sRank. The columns represent each feature and the rows the different Patchsizes. The
order of the features is the same with Table 6.

Feature1 Feature2 Feature3 Feature4 Feature5
0.001 0.462± 0.0012 ≈ 10−8 0.4099± 0.0008 0.1035± 0.0008 0.0246± 0.0009
0.005 0.4039± 0.0017 ≈ 10−9 0.4407± 0.0006 0.1328± 0.0009 0.0226± 0.0008
0.01 0.3946± 0.0007 ≈ 10−9 0.4441± 0.00097 0.1393± 0.0005 0.02198± 0.00042
0.02 0.3913± 0.001 ≈ 10−10 0.4437± 0.0009 0.1432± 0.0007 0.0218± 0.00097

Table 12: Average Weights for the weighting scheme proposed by [41] for different
Patchsizes of sRank. The columns represent each feature and the rows the different
Patchsizes. The order of the features is the same with Table 6.

Unfortunately, the results for RANK are not available, since for one image it needed more than
24 hours to finish, which is the time limit for processes on the machine that all the experiments
are done. The machine has 32 cores, each having its clock speed at 3.3GHz. Since that time
limit is exceeded for a small image for only five features, RANK is considered as extremely
expensive and inefficient. Unfortunately the computation of FFEI has similar computational
complexity and thus the Neuro-Fuzzy approach for discarding irrelevant features, as well as
the complete approach (not the simplification introduced here) for the irrelevance filter of the
two layer filter approach are as well considered as inefficient and unable to be tested properly.
Moreover, similar time complexity has the second variation of Mitra’s et al. algorithm which
computes the entropy for every feature. Since the first variation has only time complexity
O(N) (instead of O(N2)) and its results are satisfying, experiments for the second variation
are avoided.
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Since it is not possible to compare the results of SRANK with the ones of RANK, the results
for Patch size 0.02 are considered as the closest to the RANK results and the rest are compared
to them. For all Patch sizes, except the 0.001, the order of the features is the same. Moreover,
with the exception of feature 3 (Absolute Gradient Value) the order of the features and their
weights are consistent with tables 6 and 7, i.e. features that produce clustering with high
accuracy, with respect to the ground truth, get higher weights than features that produce
clustering with low accuracy. Regarding the Absolute Gradient Value, the difference between
its performance recorded by tables 6, 7 and the very high weight it gets from the filter is caused
by the fact that it is the only feature not computed in a neighborhood around the voxel, rather
that the immediate neighbors of the voxel. Although it produces highly separable clusters int
the feature space, these clusters are not separable in the image space. Thus, although it should
be considered as a “bad” feature, the algorithm is not capable of differentiating between the
two. Since the rest of the features are computed for a neighborhood radius 7 (Neighborhood
size = (2 ∗ 7 + 1)3), their values will change much smoother while we “move” in the image.
Considering the completely different behavior of this feature from the rest, as well as the
fact that it “confuses” the irrelevance filter, and does not produce a quality clustering, it is
discarded completely.
Regarding the stability of the algorithm, in every separate “run” of the algorithm (the results

are averaged over 10 “runs”), the order of the features is always the same (the standard
deviation is three to four orders of magnitude smaller than the actual values). Although this is
the case, the “bad influence” of the small value of the Patch sizes is visible. For both weighting
schemes the weights vary a lot, almost 10% in the proposed weighting scheme and 6% in the
original. Considering the different scale of the weights (the maximum value of the proposed
weighting scheme is 1 whilst the maximum value of the original weighting scheme is 0.462)
the variation of the weights is very similar. Since the original weighting scheme always weights
a feature with an extremely small value (no matter how worse or not from the other features
it is), the weighting scheme proposed in this paper is chosen for the rest of the experiments.
The next and final experiment of this section has as goal to provide an insight on the threshold

of the first filter, responsible for discarding redundant features, for which the features discarded
are truly redundant. In order to do that, the whole system, with the methods and parameters
decided from the previous experiments, is going to be used on some images of the first, second
and third set of images with varying thresholds of the first filter. The images used are fl1fl6,
fl3fl5, ph56fl6, ph56fl3, fl1357 and ph5678fl26. For this experiment the Patch size of the sRank
algorithm is set to 0.005 and considered fifty patches in total. The smaller number of patches
is chosen due to the fact that for large images with many features, even with a patch size so
small sRank needs a lot of time to finish. Given that the standard deviations of the weights
of the previous experiment are much smaller than the actual weights, it is considered as an
acceptable approximation, given the trade off with the time complexity of the system. The
results of the experiment can be seen in table 13.

fl1fl6 fl3fl5 ph56fl3 ph56fl6 fl1357 ph5678fl26
0.07 0.821824 0.798668 0.690129 0.555909 0.762047 0.682975
0.1 0.841162 0.825185 0.691261 0.566535 0.736425 0.70144

0.15 0.835845 0.816565 0.701919 0.853661 0.709364 0.825097
0.2 0.779208 0.65205 0.738894 0.853738 0.738654 0.800996

Table 13: Success Rate for different thresholds of the redundant filter, for images fl1fl6,
fl3fl5, ph56fl6, ph56fl3, fl1357 and ph5678fl26.
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The table above shows inconsistency of the behavior of the filters with respect to the accuracy
measured for each image. Although threshold 0.15 seems to demonstrate the best performance
over all, still for image fl1fl6 it produces the worst results of all. Moreover, in some cases the
filters seem to rescale the features in a way that the data are no longer separable, even in
cases that the features usually work well. The most extreme example is ph56fl6, for which,
with small value of the threshold the accuracy of the resulting clustering is even 30% lower
than for greater values of it and the individual methods. In other cases they are even capable
of improving the accuracy of clustering up to 10.6% on ph56fl3 and 12.62% on ph5678fl26.
Based on these results the threshold of the redundancy filter is set to 0.15

5.4.4 Validating Two Layer Filter

In order to validate the two layer filter, with input methods and parameters the ones decided
in by the previous experiments, one last experiment is done. In this experiment the accuracy of
the clustering produced by the resulted system, is compared with the individual performances
of the methods and their setups involved as well as their combination, without the use of
filters. The results can be seen in table 14.

FOS FOS RLM RLM GLAM GLAM Combo Overall
NS = 8 NS = 15 NS = 8 NS = 15 NS = 10 NS = 16

fl1fl6 0.861331 0.795643 0.826415 0.785667 0.811305 0.764938 0.500000 0.835845
fl3fl5 0.723041 0.784788 0.625583 0.765159 0.646198 0.695791 0.522856 0.816565

ph56fl3 0.619796 0.616701 0.650175 0.718919 0.504925 0.513483 0.538315 0.701919
ph56fl6 0.808422 0.847512 0.887659 0.855643 0.844839 0.833073 0.565468 0.853661
fl1357 0.737397 0.757823 0.708975 0.757800 0.734656 0.775311 0.773662 0.709364

ph5678fl26 0.678107 0.693932 0.665791 0.698915 0.659556 0.664971 0.693944 0.825097

Table 14: Success Rate for different methods, as well as their combination without filters
and with filters, for images fl1fl6, fl3fl5, ph56fl6, ph56fl3, fl1357 and ph5678fl26.
Blue is the overall best accuracy for an image, yellow between the combination without
and with filter and green if both previous are true.

The system proposed, when using two different scales from each textural feature extraction
method and the two layer filter, although not always capable of producing the best result,
its result is still comparable to the best accuracy measured. For most images that it did not
produce the best result, the difference with the best is 1% - 3%. Only for one example, the
accuracy of this system is lower than the accuracy of the combination of textural feature
extraction methods without filters. It should be noted that the image for which this is true, is
the image that contains blocks that maximize the within blocks textural difference due to the
gravity effect, explained before. This image is the fl1357. With respect to the results from the
individual experiments, we can conclude that the system demonstrates a level of robustness
when dealing with different sets of images, as for most images, the results are comparable to
the best individual method, and in some cases are even better. Some examples segmentations
can be seen on figures 33, 34.
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Figure 33: Segmentation of ph5678fl26 for RLM with Neighborhood radius 15 and the
two layer filter
(a) is the original image, (b) is the original segmentation, (c) is the segmentation produced
by RLM and (d) the segmentation produced by the two layer filter.

Figure 34: Segmentation of fl3fl5 for FOS features with Neighborhood radius 15 and the
two layer filter
(a) is the original image, (b) is the original segmentation, (c) is the segmentation produced
by RLM and (d) the segmentation produced by the two layer filter.
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5.5 Two Layer Filter on MR Image

The last experiment of the previous section is also done on one of the MRI phantom images
from BrainWeb, a T1-weighted image with inhomogeneity level 40% and Gaussian noise 9%.
Due to the big difference of behavior of the textural feature extraction methods on MRI and
UltrSound, the setups, of each method used are different, i.e. one setup from each method is
used, all with radius two.

FOS RLM GLAM Average Intensity Combo Overall
NS = 2 NS = 2 NS = 2

0.802324 0.575625 0.575375 0.816522 0.584268 0.564531

Table 15: Success Rate for different methods, as well as their combination without filters
and with filters, for T1 weighted MR Image from BrainWeb, Noise = 9%, Bias Field =
40%.
Blue is the overall best accuracy for an image, yellow between the combination without
and with filter and green if both previous are true.

The above table shows that the overall system was not only incapable of producing results as
close as possible to the performance of the average intensity, but also the performance is even
lower that the combination of methods without the use of filters. One possible explanation
is that although the features of RLM and GLAM, are not capable of producing the desirable
segmentation, still they are very “confident” about the segmentation they produce, i.e. the
difference in feature values between the homogeneous regions and boundary regions are quite
clear. Thus, since the filters are developed for unsupervised feature selection, they don’t “know”
the difference between the desired result and an other, also clear, segmentation. For that
reason, one more experiment is done, using the filters, but this time using only FOS features.
The resulted accuracy is 0.818102, which is even higher than the accuracy of the average
intensity, which until this point produced the best performance measured. As a result we can
conclude that with smart decision of the textural methods and their parameters, the system
developed can provide a steady in quality performance. Still, as seen from previous experiments,
for every image not only different parameters of the methods are needed but also different
threshold of the filter responsible for removing redundant features and different Patchsize of
sRank produces optimum results. Some example slices of the produced clusterings of the final
experiment can be seen in figures 35 - 37.
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Figure 35: Example Segmentation of Average intensity on BrainWeb image, Noise = 9%,
Bias Field = 40%.

Figure 36: Example Segmentation of FOS features and the Two Layer Filter applied on
FOS features on BrainWeb image, Noise = 9%, Bias Field = 40%.

44



Figure 37: Example Segmentation of Combination of methods with and without the Tow
Layer Filter on BrainWeb image, Noise = 9%, Bias Field = 40%.

5.6 Unsupervised Voxel Clustering

As mentioned above there are more than one clustering algorithms considered in this project.
All the above results are produced using K-Means++. Nevertheless, all the experiments done
until now also produced results for Fuzzy C-Means (FCM) with no modifications. As initial
centers, the best centers of K-Means++ are provided. The behavior of the algorithm is quite
unstable. There are a lot of examples were the accuracy either did not change, changed a
little (higher and lower) and in many cases it significantly dropped, with respect to the results
of K-Means++. An example figure that demonstrates the above observation can be seen in
figure 38. More examples are not presented since the FCM algorithm demonstrates very similar
behavior for the rest of the experiments.
One of the reasons of the unstable behavior, is that FCM is extremely sensitive to the initial

centers. Thus in order to make it more stable, instead of just providing one set of initial centers,
the best that K-Means++ produced, more sets should be provided, and the set that minimizes
the cost function should be chosen. Since even in the good scenario FCM does not provide
much improvement on the K-Means++ algorithm, it is avoided since the risk of getting far
worse results, is not eliminated.
The FCM with the modification of the neighborhood attraction, is avoided for two reasons.

One, the dependency of FCM to the initial centers remains on this variation as well. Moreover,
since our features are calculated for a neighborhood around the voxel, the speckle noise that
this variation tries to tackle, is in most cases not present and in most cases that is present it
is negligible (See all figures with example segmentations).
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Figure 38: Accuracy for FCM and K-Means on T1-weighted images from BrainWeb, using
FOS features.

To conclude, KMeans++ demonstrates the best average performance for all images, and
proved to be the most robust. Thus, KMeans++ is our choice for unsupervised image seg-
mentation using the textural features tested in this project, considering the algorithms explored.

6 Conclusion

In this paper several texture analysis techniques were studied, in order to examine how they
behave in different images and textures. Then, the findings of the experiments were used
in order to build an unsupervised system that segments 3D medical images. According to
the results, different textures are better discriminated by using different methods, as well as
different setups, i.e. different scales. In order to be able to build a generic system many of the
feature extraction methods need to be used, with many different setups, making as certain
as possible that the methods and setups best qualified for the specific image are used. After
experimentation we concluded that for Ultrasound images, FOS features, GLAM and RLM
need to be used, each for two different scales. Our experiments showed that these methods
can provide close to the best performing individual method of each image. For different images,
i.e. different textural differences, the method and scale closer to the best is different and thus
all of them have to be used for a more generic system. For clustering White matter, Gray
matter and Cerebro-Spinal Fluid using MR Images, the best performance is achieved using
only FOS features with radius two, i.e. one scale. This set of features (FOS features) is the
only set capable of separating these tissue types, as there is very small difference in texture
and as a result the other methods separate boundary from non-boundary regions.
Moreover, we show how the produced clusterings help visualize different 3D textures in an

image. For example, when segmenting 3D MRI scans the segmentation produced by GLCM,
GLAM and RLM show the different textures within the brain. When dealing with 3D Ultrasound
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images, of Agar with flower blocks, the visualization of the segmentation help to show the
difference when the flower “drops” due to gravity to the bottom side of the block.
Due to the large number of features that this approach produces, many of them are irrelevant

and different for each image. Thus a need arises for an unsupervised feature selection algorithm
that can tackle this problem and discard the irrelevant features. There are many proposed
methods that try to do feature selection in an unsupervised manner. Some of these methods,
were studied and variations of them, that tackle very specific problematic behaviors of them,
according to our needs, were proposed and tested. The results showed the strengths as well
as the weaknesses of these methods. Our variation of Mitra’s et al. algorithm coupled with
our variation of the Irrelevancy filter in a Two Layer Filter seems to have the overall best
performance, with respect to time complexity as well as the performance of the features kept.
Moreover the resulted filter is able to produce comparable results to the best individual method
and in some cases even better. The accuracy of the segmentation with respect to the ground
truth is 1-3% lower than the accuracy of the best performing individual method and in some
cases it achieves even 12.65% higher accuracy. Additionally, it produces better results than the
combination of textural feature extraction methods without the use of filters. Thus, with smart
decision of the textural feature extraction methods and their parameters, the system proposed
in this provides a level of robustness, with respect to the individual textural feature extraction
methods. The experiments show that this system (the feature extraction methods described
in the previous paragraph with the Two Layer Filter) using KMeans++ for the unsupervised
clustering of the voxels, achieves the best, on average, performance. Although this is the case,
for different types of images a generic selection of textural feature extraction methods and
their setups is still needed. For example, different setups of the textural feature extraction
method performs better for MRI and different for Ultrasound.

7 Future Work

The textural methods studied in this paper show potential in discriminating different textures.
These findings can be used with other supervised and unsupervised, as well as application
specific, systems in order to raise their performance. Moreover, regarding the system developed,
it would be interesting to try and make use of the fact that the segmentation purpose is
image segmentation in the feature selection step. As the feature selection algorithm computes
a measurement similar to entropy for the features, an extension of it, that makes use of the
aforementioned fact, can be introduced and as a result have a more application specific feature
selection algorithm. An example use of that fact can be the incorporation of the spatial distance
of points in the image to the measurement. This might work due to the fact that different
objects in an image are expected to be composed by neighboring voxels.
In terms of trying to make the system more generic, a method that tries to find the optimal

number of clusters can also be used. In such a case, the system would be able to decide how
many objects it can see with reasonable cluster separability.
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