
Opleiding Informatica

Neural Networks

for

Clobber

Teddy Etoeharnowo

Supervisors:

dr. W.A. Kosters & dr. H.J. Hoogeboom

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 26/01/2017

Abstract

Clobber is a strategic board game played on a chequered board with black stones on all black squares and

white stones on all white squares. The game is played with two players and each of them is assigned to

a color. Players take turns into capturing stones from the opponent, but only in adjacent squares, either

horizontally or vertically. The winner is the player who makes the last move.

For this thesis we have developed different strategies to play Clobber with. These algorithms are Random,

Monte Carlo, Monte Carlo Tree Search and a Neural Network. The focus lies on creating a Neural

Network that can play better than any other algorithm and hopefully can play optimally.

After training our Neural Network by playing against all other algorithms and even itself, Monte Carlo

Tree Search still manages to win most games against the Neural Network, especially when it has a large

playout depth.

ii

Acknowledgements

Many thanks to my supervisor dr. W.A. Kosters for guiding me throughout my thesis and for the weekly

meetings that kept me motivated and inspired. I also thank dr. H.J. Hoogeboom for being my second

supervisor.

And since this is my last project for my bachelor‘s degree, I would also like to take this opportunity to thank

every teacher that has taught me throughout my years here at Snellius. They have equipped me with the

necessary tools that a computer scientist needs to possess.

Finally, I thank my family and friends for being there for me.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

2 Game rules 3

3 Related Work 5

4 Strategies 6

4.1 Random . 6

4.2 Monte Carlo . 6

4.3 Monte Carlo Tree Search . 7

4.4 Neural Network . 9

5 Results 12

5.1 Random vs Random . 12

5.2 MC vs Random . 13

5.3 MCTS vs Random . 13

5.4 MCTS vs MC . 13

5.5 Neural Network tuning . 14

5.6 Neural Network vs Random Learning . 16

5.7 Neural Network vs MCTS learning . 16

5.8 Neural Network vs Neural Network learning . 17

5.9 Neural Network vs MCTS . 17

6 Conclusions 19

6.1 Future work . 19

v

Bibliography 19

A System 21

B Tables 22

vi

Chapter 1

Introduction

Clobber is an abstract strategy game invented in 2001 by combinatorial game theorists Michael H. Albert, J.P.

Grossman and Richard Nowakowski. It has also been investigated by the same people at Games-at-Dal 2001.

It was then introduced at the 2002 Dagstuhl Seminar on Algorithmic and Combinatorial Game Theory [1].

Since 2005, it has also been one of the events in the Computer Olympiad.

Clobber is a board game in which two players have to take turns to capture pieces from their opponent. The

player that can no longer make any moves is the one that loses the game.

The problem that we try to solve in this thesis is to play Clobber as good as possible. Different algorithms

will be developed and compared to each other. These algorithms are Random, Monte Carlo, Monte Carlo

Tree Search and a Neural Network. With these algorithms, the focus lies on creating a Neural Network

that can hopefully play Clobber optimally. Inspired by AlphaGo, which is a computer program that which

also uses Neural Networks, we hope to find similar results with our own algorithms for Clobber.

1

2 Chapter 1. Introduction

Figure 1.1: The ICGA Computer Olympiad 2011 took place in the city of Tilburg (NL). Clobber was part of the Computer
Olympiads [2].

In Chapter 2 we will introduce the game rules. In Chapter 3 we will discuss papers that are related to this

thesis. In Chapter 4 the strategies we have used will be discussed in detail. In Chapter 5 we will show the

results of the experiments carried out. And lastly, in Chapter 6 conclusions will be drawn and future work

will be discussed.

This paper is written as a bachelor thesis at the Leiden Institute of Advanced Computer Science (LIACS), the

computer science institute of Leiden University. This thesis has been supervised by dr. W.A. Kosters and dr.

H.J. Hoogeboom.

Chapter 2

Game rules

Clobber is usually played on a chequered board with black stones on all black squares and white stones on

all white squares. Usually, in competitions, this board is of size 5× 6 and when played with computers even

of sizes 8× 8 and 10× 10.

Figure 2.1: Computer Clobber start position.

There are two players. Each of them is assigned to a color. Players take turns and they have to move one of

their own stones. A move is when a player takes his or her stone and captures a stone from the opponent

directly adjacent, either vertically or horizontally, to the square the stone is on. The stone of the opponent has

3

4 Chapter 2. Game rules

to be removed from the board and the stone, that was used to capture, will move to this square. The player

who cannot make a move loses the game. Because there is no position in which one player can move and

the other cannot, since both players have a move if and only if there are adjacent stones of opposite colors,

Clobber is an all-small game [3]. And this also means there is always exactly one winner.

Figure 2.2: A possible game on a 2× 3 board. White wins.

There exist a multitude of variations of the game Clobber. One variation is when players are allowed to hit

their own stones.

Another variation would be to begin with a different initial board. Instead of a chequered board, a random

initialized board may be used.

And lastly Clobber can also be played with more than only two colors. Although this comes with problems,

like how the board must be initialized and how to determine who actually wins.

Chapter 3

Related Work

A paper by Albert et al. introduced the game Clobber. This paper shows that the rules easily generalize

when playing on an arbitrary graph. The authors show that determining the value of the game is NP-hard [1].

Griebel and Uiterwijk have applied both a general NegaScout search with many possible enhancements

and techniques from Combinatorial Game Theory (CGT) to show that these methods can be combined by

incorporating endgame databases filled with CGT values into a NegaScout solver. Ultimately a database with

exact CGT values was built for all (sub)games of up to 8 connected pieces. Reduction depends on board size,

going down from 100% for the boards in the database to 75% for the 3× 6 board [4].

A survey by Browne et al. of the literature to date about Monte Carlo Tree Search (MCTS), provides a snapshot

of the state of the art of MCTS research. The authors outline the core algorithm’s derivation, analyze the many

variations and enhancements that have been proposed, and summarises the results from the key game and

non-game domains to which MCTS methods have been applied [5].

5

Chapter 4

Strategies

In this chapter we will take a look at different strategies that were developed to play Clobber.

4.1 Random

The first algorithm used in this research is the Random algorithm. This algorithm is used for other algo-

rithms, but is also used in the first stages of this research to make sure the Clobber program is working

properly. Also, this sets a base line of how a game may look like when a person plays Clobber for the first

time.

The algorithm works by firstly analyzing the current board to determine all legal moves it may make. The

program does this by going through every square and checking whether this square has a stone of the player

that currently has to make a move. It then checks if it can capture opponent stones. Then it uses a random

number generator to choose between all legal moves.

4.2 Monte Carlo

For our next method, an algorithm was needed that can actually play this game at a respectable level. Con-

sidering the large state-space of a Clobber game, especially on larger boards, an algorithm like Minimax

would take too many resources. The number of nodes increases exponentially and since one needs to get all

the way to the end of a game to determine who will win, this method is considered infeasible for this problem.

6

4.3. Monte Carlo Tree Search 7

Monte Carlo (MC) should be a significant better player than a Random player. It uses the Random algo-

rithm explained previously to approximate the best move at a given time with a given board.

The algorithm works by trying each possible move from a given state. Each possible move gets to be played

until the end for a set number of times (hereafter referred to as ”playouts”). So this means that for each move

made by MC, the algorithm actually plays the games playouts× number of possible moves times. This is done

by using the Random algorithm. After a few playouts, the strength of each possible move can be roughly

determined. At the end of each playout, the winner of each simulation will be determined. The move with

the most wins in all of its playouts, for the player currently playing, is considered as the best move to do.

4.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) has been considerably popularized recently by Computer Go programs,

most notably AlphaGo which was able to beat Lee Sedol, a 9-dan professional, in a five-game match [6].

MCTS should in theory be better than the conventional Monte Carlo method. MCTS uses a search tree to keep

track of moves, giving MCTS the precision of a search tree and still the generality of random simulations.

MCTS, like MC, also uses playouts, by selecting random moves. After a playout the tree will be updated, in

order to make better nodes more likely to be chosen in the future. There is a difference between the number

of actual game simulations in MC and MCTS; in MC it is: playouts × number of possible moves, whereas in

MCTS the number of simulations is actually equal to the value of playouts. The ratio between exploration

and exploitation is controlled by a special parameter.

The implementation used in this research is the most popular algorithm in the MCTS family, the Upper Con-

fidence Bound for Trees (UCT) algorithm [5]. Figure 4.1 shows the UCT algorithm in pseudocode. Each node

v has pieces of data associated with it: the game state s(v), the associated action a(v), the total simulated

number of wins Q(v) and the visit count N(v). The term ∆(v, p) denotes the reward ∆ associated with player

p at node v.

The UCT algorithm can be divided into its functions used in our implementation:

• UCTSearch

• TreePolicy

• Expand

• BestChild

8 Chapter 4. Strategies

• De f aultPolicy

• Backup

UCTSearch starts of by creating a root node for the state the program is currently using the algorithm for.

Each node contains a certain amount of data to keep track of game states, this will be discussed in the

explanation of Expand. Within the computational budget that is given to the algorithm, UCTSearch calls the

following functions: TreePolicy, De f aultPolicy and Backup. Subsequently, it uses the BestChild function one

more time to determine which move the program should make next.

Figure 4.1: This figure shows the UCT algorithm in pseu-
docode from [5].
This code is a summary of UCT descriptions from several
sources, notably [7].

TreePolicy is used to return a node for UCTSearch

to use. It checks whether a node, which starts at

the root node, is a non terminal node. If it is, it

returns the current node. If it is not, then it will

either Expand or go to a child, until it finds a non

terminal. If a node is not fully extended, it will sim-

ply add another child using Expand and returns that

particular node. If the node is fully extended it will

use BestChild to choose one of its children and then

returns this child back to UCTSearch.

Expand adds a child to a node, which is not fully

extended yet. Each node will contain:

• pointers to its children and parent

• the game state: strings which describes the

board and which player is currently playing

• the number the node has been visited

(playouts) and how many times these resulted

in a win.

BestChild returns the best child. It does this by using

the formula:

Wins(v′)
playouts(v′)

+ c

√
2 ln playouts(v)

playouts(v′)

The child associated with the highest result from this

formula will be returned. c is the tunable bias pa-

4.4. Neural Network 9

rameter which regulates the ratio of exploration and

exploitation. A smaller c means less exploration and more exploitation; nodes with the highest simulated

reward will be chosen, while a bigger c forces relatively less frequent visited nodes to be expanded also. In

this case, c is usually 1√
2

which was shown by Kocsis and Scepesvári [8] to satisfy the Hoeffding inequality

with rewards in the range [0;1]. But when UCTSearch calls BestChild it uses a c of 0, because we do not want

BestChild to use exploration at all at this stage.

De f aultPolicy makes moves at random until the game ends. And will return whether the current player will

win this simulation.

Backup receives a node that was returned by TreePolicy and the score returned by De f aultPolicy. And it up-

dates the search tree accordingly; every ancestor node will have their number of playouts incremented. And

if De f aultPolicy simulated this node to a win it will also increment the number of wins for every ancestor.

4.4 Neural Network

After MC and MCTS, the Neural Network (NN) is ready to be developed. In the hope it will play better

than both MC and MCTS, the Neural Network has to train against either of these methods beforehand. The

steps that will be taken could look like this:

• Firstly, the Neural Network learns from games against a Player that selects its moves randomly.

• Then it should learn from MCTS.

• Then against itself.

The main Neural Network that is used in this research is a feedforward Neural Network. The Neural

Network takes the state of the game as the input. The Neural Network has one output node. This node

should give an estimation on how good a given state is, and depending on these numbers for all possible

moves on a given state, the next move should be made.

The input nodes are connected to the next layer of nodes. This layer is called the hidden layer. In theory

multiple layers are possible and can have an added value when looking at complex problems. These connec-

tions between nodes have weights which ultimately determine how each node interacts with each other to

come up with the end value. Usually we start with randomly initialized weights, but in this project we also

have a few instances where we use weights from other Neural Networks, to give the Neural Network a

head start. When the Neural Network has been initialized with random weights, the Neural Network

10 Chapter 4. Strategies

is already able to return a result value after a state has been given to it. Though not reliable, the Neural

Network gets its result by doing the following:

• First it receives the state of a game. The state of a game consists of the current board and whose turn

it is. The Neural Network takes the board by mapping each square to one input node. If there is a

black piece on a square, the node will get a value of 1. If the piece is white, the node will get a −1. And

when it is empty it will get a 0. After that an extra node will be assigned to represent those turn it is.

• Next is to determine what the values will be of the hidden nodes. This is done by using a logistic

sigmoid function as the activation function of, what we will refer to as, the invalue of a node. The

invalue of a node is the sum of all input nodes multiplied by their corresponding weight to the given

hidden node. The sigmoid function used is g(x) = 1
1+e−βx with β dictating the slope of the sigmoid.

• In the same manner the output value will be determined using the hidden nodes and their weights in

relation with the output node.

The strength of a Neural Network lies in its abilities to learn. This is where Backpropagation comes into

play. Backpropagation is a method to update the weights of a network. The calculated output from the

network will be compared to the desired output and this error value will be used to change the weights of

the Neural Network. How the desired output is being determined will be discussed later. The weights will

be updated accordingly:

• a value called ∆ will be calculated for the output node. For this it also needs to know the error. The

error is how much the output differs from the desired output.

∆ = error× g′(invalue o f the outputnode)

with

g′(x) = βg(x)(1− g(x))

• the ∆s will also be calculated for the hidden nodes

∆i = g′(invalue o f a hidden nodei)×Wi × ∆

with

Wi ↔Weight o f hidden nodei to the output node

4.4. Neural Network 11

• finally the weights will be updated

Wi ←Wi + α× value o f hidden nodei × ∆

Wj,i ←Wj,i + α× inputj × ∆i

with α being the learning rate.

As for the training of the Neural Network, we use the following method: We let the Neural Network play

against its opponent. During this game we will save the game states, which consist of both the board and

whose turn it is. And when the game is over we will use these game states to learn from. We will send each

game state, from beginning till the end, to the Neural Network for Backpropagation. When the game was

won, each game state will receive a 1 as a target value when it is sent to the NN for Backpropagation, and

−1 when it is a losing game. Every time a state is sent to the Neural Network to learn, the α value, within

a game, will increase by 10%. This is done so that the last few rounds have a bigger impact on the Neural

Network than the first few ones.

Chapter 5

Results

5.1 Random vs Random

In our first set of tests we let Random play against Random on various boards. This is to test whether starting

a game may give a significant advantage to the player starting. Although the winner can be determined

beforehand in games on smaller boards when the player plays perfectly, this cannot be done (yet) on larger

boards.

Board sizes used are:

• 4× 4; this is the largest square board used in the paper of Albert et al. [4].

• 5× 4; this is the smallest board not included in the paper of Albert et al. [4].

• 8× 8; standard board for computer players.

• 10× 10; standard board for computer players.

We let the two Random players play against each other for 120,000 milliseconds.

The results are shown in the Table B.1 in the Appendix.

The chance of winning is at each board still around 50%. Beginning a game does not seem to give a huge

advantage when Random players are playing.

12

5.2. MC vs Random 13

5.2 MC vs Random

For our second test we measured the strength our Monte Carlo (MC) algorithm. MC should be a better

player than a Random player. But how much better MC is in comparison to a Random player should also

be measured. For this MC was let to play against our first algorithm, Random. MC was left to play against

Random, with different depths and different boards. Also we let MC play both as the black player and the

white player.

The results are shown in the Table B.2 in the Appendix.

In the case of MC with 10 playouts, it can already manage a better win rate than 88.4% on every board size

that was given to it. With 100 and 1000 playouts, MC can reach 93.9% and 95.9% respectively. The win rate of

MC generally increases with the number of playouts. But also when the number of playouts is high enough,

the win rate increases for larger board sizes.

5.3 MCTS vs Random

For our next test we measured the strength our Monte Carlo Tree Search (MCTS) algorithm, by comparing

it to our Random algorithm. We let MCTS play against Random, with different depths and different boards.

Also we let MCTS play both as the black player and the white player.

The results are shown in the Table B.3 in the Appendix.

MCTS with playouts 10, 100 and 1,000 have winning rates above 92.4%, 97.7% and 96.8%. Again the win rate

generally increases with playouts. The minimum winning rate may have decreased with 1,000 playouts, but

this could be an imprecision due to the lack of a larger number of games.

5.4 MCTS vs MC

To make sure the results above are correct we let MCTS play against MC, with different depths and different

boards. Both MCTS and MC were able to play as both black and white players.

The results are shown in the Table B.4 in the Appendix.

With the same number of playouts, MCTS wins from MC in most cases. The only cases in which MC won

more times than MCTS were on 4× 4 when MCTS was white and on a 10× 10 with 1,000 playouts.

14 Chapter 5. Results

Lastly for our MCTS against MC comparison we let each algorithm calculate its next move for only 100

milliseconds. MCTS is a bit slower per playout, because it has to make new nodes and has to make a few

more calculations. So, both algorithms were taken to play against each other with the same time resources to

make it more fair.

The results are shown in the Table B.5 in the Appendix.

When giving both the same amount of time, 100ms, to calculate their best move, MCTS plays considerably

better, with the exception of on a 4× 4 board when MCTS was white.

5.5 Neural Network tuning

Before the Neural Network (NN) starts learning, it firstly has to be tuned to a moderately degree. The

Neural Network‘s α, β and the number of nodes are tuned before it trains.

Firstly we take our NN with a 5× 4 board, β = 1.0 and number of hidden nodes is equal to 20. And then the

initial values of α is varied between the values 0.01, 0.02, 0.05, 0.10 and 0.20.

Figure 5.1: The comparison of NNs, with different initial α, learning against Random. On the y-axis is the win rate per
1000 games. On the x-axis is the number of games played in total.

According to the results, shown in Figure 5.1, there is not a huge difference between the chosen α values,

although a value of 0.02 for α was by a little bit better than the rest at the end. Therefore, the value 0.02 was

chosen as the initial value of α that will be used for further research. With the NN adjusted with the right α,

5.5. Neural Network tuning 15

it now was taken with various βs to determine the best value for β.

Figure 5.2: The comparison of NNs, with different β, learning against Random. On the y-axis is the winrate per 1000

games. On the x-axis is the number of games played in total.

Board # of hidden nodes wins by NN

4× 4 10 946

20 987

30 971

5× 4 10 821

20 923

30 913

40 956

6× 6 20 537

30 551

40 477

50 484

60 522

8× 8 20 489

40 460

60 453

80 462

100 451

120 488

Table 5.1: Comparison of different number of hidden nodes on
different board sizes.

In the case of β it clearly shows (Figure 5.2) that

choosing the right beta has a significant impact.

The values for β 0.10 and 10 clearly is worse. But

there is not a huge different between the values

0.50, 1.0 and 2.0. But the value of 2.0 is just a bit

better than the other values at the end. Therefore,

the value 2.0 was chosen as the initial value of α

that will be used for further research.

Both α en β wave now been set the only vari-

able remaining is the number of nodes. For this

we tried various nodes on different board sizes

which were going to be used in the next few ex-

periments. The board size 10× 10 has been dis-

missed from the experiments, because this board

seems to be too big for our Neural Network’s

capabilities. Instead games on a 6× 6 board have

been analyzed.

16 Chapter 5. Results

These results, demonstrated in Table 5.1, shows

us that having 20 hidden nodes resulted in the

best outcome, with exception of on a 6× 6 here the optimum lies on 30 nodes. So these are the numbers of

hidden nodes used for each NN.

5.6 Neural Network vs Random Learning

For first part of the Neural Network’s training we let it play against the Random player for 900,000 mil-

liseconds. The purpose of this is to give the NN a rough idea of how the game works. After every 1,000 a

Neural Network will be outputted for further research.

Board size NN’s color ratio of wins (black) first set # completed games ratio of wins (black) last set

4× 4 b 0.679 3,692,000 0.970

w 0.524 5,242,000 0.180

5× 4 b 0.567 2,683,000 0.900

w 0.555 3,501,000 0.213

6× 6 b 0.469 605,000 0.490

w 0.499 645,000 0.527

8× 8 b 0.510 151,000 0.465

w 0.540 151,000 0.518

Table 5.2: Neural Network vs Random Learning. The first set is the the first 1,000 games. And the last set concerns the
last 1,000 games.

As the results show (Table 5.2) learning from playing against a Random player make the NN, particularly on

boards 4× 4 and 5× 4, play a lot better, e.g. on a 4× 4 the black player increases its win rate from 67.9% to

97.9% after 3,692,000 games. With an 8× 8 board the NN actually plays worse at the end than when it never

trained against a Random player.

5.7 Neural Network vs MCTS learning

After learning against the Random player, the NNs were chosen to play against MCTS with playout depth of

10.

The results (Table 5.3), looking at “first set“ comparing Pre- and Post-training in particular, show that learning

from Random does not give an head start on learning the play patterns of MCTS, except for the black player

on a 4× 4, in this instance the NN increases its win rate from 3.4% to 30.9%. The board size 8× 8 did not

have enough plays (<1,000) in our experiments to be usable.

Also, when comparing the first set with the last set, the results demonstrates the NN actually does not learn

well from playing against MCTS. In most cases this actually resulted in a lower win rate, e.g. the black

Post-Training player on a 4× 4 decreases its win rate from 30.9% to 5.1%.

5.8. Neural Network vs Neural Network learning 17

Board size NN color ratio of wins (black) first set # completed games ratio of wins (black) last set

Pre-Training 4× 4 b 0.034 40000 0.037

w 0.99 30,000 0.984

5× 4 b 0.052 26,000 0.072

w 0.983 29,000 0.988

6× 6 b 0.021 4,000 0.012

w 0.972 3,000 0.984

8× 8 b 0.016 562 N/A
w 0.984 557 N/A

Post-Training 4× 4 b 0.309 89,000 0.051

w 0.960 66,000 0.998

5× 4 b 0.030 36,000 0.026

w 0.977 26,000 0.989

6× 6 b 0.023 4,000 0.010

w 0.964 3,000 0.975

8× 8 b 0.022 593 N/A
w 0.983 538 N/A

Table 5.3: Neural Network vs MCTS learning. The first set is the the first 1,000 games. And the last set concerns the
last 1,000 games. ”N/A” in the last column shows there is not enough plays to reach 1000.

5.8 Neural Network vs Neural Network learning

After learning from both Random and MCTS. The NN has to play against another NN.

Board size ratio of wins by black in the first set number of completed games ratio of wins by black in the last set

4× 4 0.413 125,000 0

5× 4 0.451 104,000 1

6× 6 0.779 21,000 0.991

Table 5.4: Neural Network vs Neural Network learning. The first set is the the first 1,000 games. And the last set
concerns the last 1,000 games.

These results (Table 5.4) tell us which NNs actually win, after a few games against another NNs. Only the

winning NN was saved for the last comparison. When we look at the instance on the 4× 4 board, both the

NN playing black and the NN playing white are about as good as each other, since their win rates are 41.3%

and 58.7% respectively. But at the end white wins every game of the last 1,000 games. This could mean the

white NN gets better, but this also could mean the NN playing as black gets worse. To test this we have our

last test set.

5.9 Neural Network vs MCTS

For our last set of experiments we compare NNs from different learning levels against MCTS with a playout

of 100, to test the strength of the NNs. All of these NNs were collected from previous experiments described

above.

These results (Table 5.5) show that learning from Random has the highest success rate, when looking at

winning from MCTS with a playout depth of 100.

18 Chapter 5. Results

NN’s color black wins in the first set ratio of wins by black in the first set

NN0 b 1 0.01

w 100 1

NN1 b 6 0.06

w 99 0.99

NN2 b 3 0.03

w 99 0.99

NN3 b N/A N/A
w 99 0.99

Table 5.5: In this table the results are shown of the plays of different NNs from different levels. NN0 is a Random

initialized NN. NN1 has been learning for 900,000 milliseconds. NN2 is the same as NN1 plus it has been learning
from playing against MCTS with playout depth of 10 for 300,000 milliseconds. NN3 is the same as NN2 plus it has been
learning from playing against a NN2. There is only 1 NN3 in this table, because only the winner of our Neural Network

vs Neural Network learning comparison was saved.

Chapter 6

Conclusions

We have developed and compared different strategies for playing the game Clobber. These strategies were

Random, Monte Carlo, Monte Carlo Tree Search and a Neural Network. The algorithms have been

compared to each other and nothing seems to defeat Monte Carlo Tree Search, particularly when it has a

large playout depth.

Although we tried to make the Neural Network play as good as possible, the Neural Network could

not learn good enough from other strategies. The Neural Network, using our method, does not learn

particularly well after playing against either MCTS or another Neural Network, which is most likely why

our Neural Network could not defeat our Monte Carlo Tree Search.

6.1 Future work

While training some kind of Simulated Annealing, e.g., lowering α the more the Neural Network has

played, might have a positive impact.

Giving the Neural Network more resources than was given to it in this research could definitely improve

performance

For future work a bigger Neural Network would be the next step. This can be done with more layers and

thus will accommodate more complex systems, in particular for larger boards.

An option would be to use a different kind of Neural Network. A good example could be a Convoluted

Neural Network, which is also used in Deep Learning programs which plays Go [9]. Altogether, much

research can still be done in this field.

19

Bibliography

[1] M. Albert, J. Grossman, R. J. Nowakowski, and D. Wolfe, An Introduction to Clobber. Integers: Electronic

Journal of Combinatorial Number Theory 5, 2005.

[2] I. Althöfer, Computer Olympiad 2011 - Clobber. http://www.althofer.de/clobber/

clobber-2011-mcjena+pan.jpg, [accessed 10/01/2017].

[3] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays. A K Peters, Ltd.,

2nd ed., 2001.

[4] J. Griebel and J. Uiterwijk, Combining Combinatorial Game Theory with an α-β Solver for Clobber. Proceedings

BNAIC, 2016, pages 48–55.

[5] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. P.

Liebana, S. Samothrakis, and S. Colton, A Survey of Monte Carlo Tree Search Methods. IEEE Trans. Comput.

Intellig. and AI in Games 4, 2012, pages 1–43.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,

I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, Mastering the Game

of Go with Deep Neural Networks and Tree Search. Nature 529, 2016, pages 484–503.

[7] S. Gelly and D. Silver, Monte-Carlo Tree Search and Rapid Action Value Estimation in Computer Go. Artif.

Intell. 175, 2011, pages 1856–1875.

[8] L. Kocsis, C. Szepesvári, and J. Willemson, Improved Monte Carlo Search. University Tartu, Estonia, Tech-

nical Report, 2006.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

20

Appendix A

System

All tests in this thesis were run on the same system:

• Operating system: Ubuntu 14.04 LTS 64-bit

• Processor: Intel R© CoreTMi7-3610QM CPU @ 2.30GHz × 8

• Graphics: NVIDIA R© GeForce R©
610M with 2GB DDR3 VRAM

• Memory: 7,7 GiB DDR3 @ 1600 MHz

21

Appendix B

Tables

This appendix will provide supplementary tables.

Board size # of games wins (black) ratio wins (black)
4× 4 6,518,800 3,342,954 0.512

5× 4 4,927,263 2,768,973 0.562

8× 8 769,984 382,272 0.496

10× 10 348,574 170,402 0.489

Table B.1: Random vs Random

Playouts board size MC’s color # of games # of wins (black) ratio of wins (black)

10 4× 4 b 69,252 66,476 0.960

w 110,453 12,764 0.116

5× 4 b 36,066 34,167 0.947

w 50,256 5,310 0.106

8× 8 b 560 521 0.930

w 655 40 0.061

10× 10 b 111 104 0.937

w 123 14 0.114

100 4× 4 b 7,940 7,870 0.991

w 12,143 737 0.061

5× 4 b 3776 3,721 0.985

w 5,151 185 0.036

8× 8 b 63 62 0.984

w 67 4 0.060

10× 10 b 11 11 1

w 12 0 0

1000 4× 4 b 789 784 0.994

w 1,104 46 0.041

5× 4 b 330 330 1

w 552 12 0.022

8× 8 b 6 6 1

w 7 0 0

10× 10 b 2 2 1

w 2 0 0

Table B.2: MC vs Random

22

23

Playouts board size MCTS’s color # of games # of wins (black) ratio of wins (black)

10 4× 4 b 60,798 59,819 0.984

w 93,677 7,080 0.076

5× 4 b 29,389 28,622 0.974

w 41,528 2,563 0.062

8× 8 b 555 526 0.948

w 625 24 0.038

10× 10 b 107 104 0.972

w 110 4 0.036

100 4× 4 b 6,824 6,819 0.999

w 10,371 240 0.023

5× 4 b 3,106 3,099 0.998

w 4,690 57 0.012

8× 8 b 58 57 0.983

w 65 0 0

10× 10 b 10 10 1

w 11 0 0

1000 4× 4 b 742 742 1

w 1,119 36 0.032

5× 4 b 309 309 1

w 476 4 0.008

8× 8 b 6 6 1

w 7 0 0

10× 10 b 2 2 1

w 2 0 0

Table B.3: MCTS vs Random

Playouts board size MCTS’s color # of games # of wins (black) ratio of wins (black)

10 4× 4 b 36,936 30,835 0.835

w 37,937 22,710 0.599

5× 4 b 18573 13502 0.727

w 19,027 8,466 0.445

8× 8 b 279 183 0.656

w 321 121 0.377

10× 10 b 56 39 0.696

w 58 27 0.466

100 4× 4 b 4,548 4,408 0.969

w 4,405 2,875 0.653

5× 4 b 1,968 1,673 0.850

w 2,062 667 0.323

8× 8 b 33 25 0.758

w 32 10 0.313

10× 10 b 6 4 0.667

w 6 3 0.500

1000 4× 4 b 472 472 1

w 468 424 0.094

5× 4 b 184 179 0.973

w 206 57 0.277

8× 8 b 4 3 0.750

w 4 0 0

10× 10 b 1 0 0

w 1 1 1

Table B.4: MCTS vs MC with the same playout

Time board size MCTS’s color # of games # of wins (black) ratio of wins(black)

100ms 4× 4 b 399 399 1

w 314 160 0.510

5× 4 b 259 247 0.954

w 264 69 0.261

8× 8 b 76 67 0.882

w 76 8 0.105

10× 10 b 45 34 0.756

w 46 6 0.130

Table B.5: MCTS vs MC with the same amount of time resources

