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Abstract

The Virtual Machine Placement (VMP) problem is the problem of finding an optimal assignment of virtual

machines (VMs) to physical server clusters. Platform as a Service (PaaS) providers - companies that rent out

server space - try to fit as many VMs as possible on the available physical servers, but need to consider a

risk of overload on these servers. Therefore, when an assignment is made, the (highly dynamic) utilization of

VMs should be considered. This work will characterize the utilization of VMs as accurately as possible while

considering the needs for real-time adjustment and assessment of current configurations, limiting the complexity

of the proposed solutions. We will characterize the utilization for 1) pre-existing VMs and 2) new VMs. These

characterizations will be used to implement a model for quick risk assessment for possible assignments of VMs

to server clusters. The proposed method will be evaluated on real life utilization traces provided by the Dutch

IT company KPN.
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Chapter 1

Introduction

We are observing server cluster (SC) configurations in KPN1 server parks. KPN is a telecommunications,

internet service and IT services provider, with a large division focused on corporate clients. These corporate

clients rent server space in the KPN data centers where they can run their own IT operations - also known

as “Platform as a Service” (PaaS). The server parks that contain these servers span around 160 physical SCs,

managed through the VMware vSphere [VMw15] server management software. Every SC runs the VMware

vSphere Hypervisor [VMw16] for deploying and controlling virtual machines (VMs). This software manages

around 14.000 VMs, which are all separately rented out to customers as servers. KPN constantly monitors the

performance of these VMs and the SCs they run on, to maximize customer satisfaction and minimize operational

costs.

The vSphere managing software allows KPN to assign more resources to VMs on an SC than physically available.

We will illustrate this concept using CPU capacity (it can, and usually will, also be applied to memory and

storage) in SCs: it would mean that an SC with 30 CPU’s can run 30 machines all with 4 virtual CPU’s (a total

of 120), under the assumption that these 30 machines will not all be utilizing their full capacity at the same

time. We see a ratio of the virtual resources versus the physical resources of 4, called the consolidation factor.

When the consolidation factor for any resource is greater than 1, we call an SC overcommitted with respect to

that resource.

Overcommitment is a simple and efficient policy to maximize the utilization of hardware. When handled

correctly, a lot less hardware needs to run idle, while the end-experience for the users should not change.

Overcommitment does, however, incur a risk for the performance of the individual VMs. Whenever the VMs try

to claim more resources from their SC than physically available, the vSphere software needs to apply aggressive

resource reclamation techniques or temporarily pause the VMs. We will not delve too deep into challenges
1This thesis is the result of a cooperation between the University of Leiden and Royal KPN N.V.
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2 Chapter 1. Introduction

imposed by running these configurations, as they are discussed extensively by Soundararajan et al. [SG10], but

it should be clear that a shortage in resources causes performance issues.

If we could predict the use of any VM at any point in the future, we could make sure that enough resources

are available at any time. However, these VMs are used by customers, and there is little to no information on

the applications that run on these servers. Even if we did know the exact contents of any server, the programs

running on it would still be unpredictable and subject to external influences.

Right now, an arbitrary consolidation factor is used for all SCs. An SC is usually filled until the consolidation

factor reaches 4, after which it will be adjusted on an as-needed basis. An adjustment is commonly caused by

inspection of utilization charts or complaints over performance issues. The first of these causes usually means

hardware has been running idle, which is wasteful, and the second is bad for customer satisfaction, which could

cause revenue-loss.

The configurations of SCs are maintained by employees (capacity managers) who have some very large server

parks to attend to. It is nearly impossible to constantly monitor all SCs and if a problem is identified it is

essential that they come to a solution instantly. It is therefore essential to find a framework that not only

provides the capacity managers with quick insight into SCs that are at risk of overload or under-utilization, but

is also able to predict the risk of overload in a changed configurations.

As discussed in Related Work, Chapter 2, most earlier works have addressed this problem - known as the

Virtual Machine Placement (VMP) problem - by implementing automatic detection of overloaded hardware

and determining a new (pseudo-)optimal placement of VMs without human interaction. This makes the VMP

problem a two-part problem: the detection of overload and the optimal placement. However, the placement of

most VMs in the observed server parks is dependent on business ruling, so we are not able to make changes

on-the-fly. In this thesis we will not implement a solution to the whole VMP problem, but we will focus on the

first part of this problem: implementing heuristics to determine the risk of overload in SCs, to inform capacity

managers of the impact of their placement decisions.

We will make a characterization of utilization of every individual VM by, as a basic tool, an estimate of normally

distributed variables2. Since the utilization of an SC is the sum of utilizations of all VMs on that SC, we can

characterize the utilization of the SC as the sum of these normally distributed variables. Since this method

can be applied to an arbitrary collection of VMs, it provides us with a way to determine the risk of overload

in any SC that may be changed. The main contributions of this thesis will be methods to characterize VMs as

accurately as possible, since that will directly allow us to more correctly predict the risk of overload in SCs.

2The normal distribution is defined on R, while the utilization of a VM is in the interval [0, V cpucrj ] for VM Vcrj and capacity
V cpucrj (see Section 3.3). However, for a small enough standard deviation the normal distribution will largely be restricted to this
interval.
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A change of an SC will usually happen in one of two ways:

1. A VM (or group of VMs) can be migrated from one SC to another;

2. A new VM, or multiple new VMs, can be added to an SC.

In the first scenario we know the previous utilization of all VMs in the changed SCs, so we only need to

accurately characterize their behavior. For a new VM this is not applicable, so we will have to characterize

them based on other information. For the moved VMs we will, as a basis, characterize the utilization of a VM

as a single, time-independent, normally distributed variable to compare with earlier works, and as an extension

model the utilization at every point in time as a time-dependent normally distributed variable. For new VMs

we will group them by relevant contextual features - like the renting customer, operating system, etc. - and use

these groups to deduce a characterization for the new VMs in the same group. We will also apply a predictive

clustering algorithm to see whether this provides us with a more accurate characterization.

These methods will be compared to each other in terms of the accuracy of the results. If we disregard the

previous utilization of a moved VM we have the same information as for a new VM, so the methods for new

VMs can be applied to moved VMs. However, we expect to be able to provide a better prediction based on

previous use than on contextual features, so we can use the results for moved VMs as a benchmark for new

VMs. We will implement a general method for calculating the expected time an SC experiences overload, which

will allow us to incorporate the best methods for both previous mentioned changes 1) and 2). This method

should be applicable to any changed SC configuration, but will be evaluated using current configurations.

The remainder of this thesis is organized as follows: In Chapter 2 we will review earlier work and applicability to

our objectives, and Chapter 3 will introduce the available data, observed configurations, notation and machine

learning problems. In Chapter 4 we will determine the periodicity of the utilization of the observed system,

which will be used to create utilization characterizations for (groups of) existing machines in Chapter 5 and new

VMs in Chapter 6. Chapters 4 through 6 will be brought together in the risk assessment method in Chapter 7.

In Chapter 8 we will evaluate the implemented methods and Chapter 9 will conclude the thesis.



Chapter 2

Related work

The issue of finding an optimal assignment of VMs to physical SCs is mainly referred to as the Virtual Ma-

chine Placement (VMP) problem. Extensive research has been performed on the VMP problem, as described

in [LPB15]. As a result, multiple approaches and a variety of platforms have been identified and characterized.

Most works propose an online approach (one with real-time monitoring and adjustment), because the workload

generated by VMs is usually highly dynamic.

According to the definitions provided by [OF16] the platform that we observe, is a platform characterized as one

with overcommitment, but without horizontal or vertical elasticity. About 50% of the works reviewed by [OF16]

concern a similar platform. Through this characterization a notation has been proposed which will be the basis

for the notation introduced in Chapter 3 of this thesis.

There have been two distinctive approaches to the VMP problem. One of these is reactive in nature. The works

using this approach have used an online formulation of the VMP problem which constantly or periodically mon-

itors the utilization of hardware configurations and makes changes as soon as an overload has been detected.

Once a configuration needs to be changed, a bin-packing [CD14,FDH11], pseudo-boolean [RSM+13], reinforce-

ment learning [Ven07] algorithm or a variation on these is applied to find the best new configuration. However,

depending on the thresholds for reconfiguration, these methods will not prevent an overload of hardware when

the threshold is too progressive or can still waste space when when the threshold is too conservative.

The methods in the previous paragraph rely on the freedom to move VMs when necessary. We do not have

this much freedom, since the observed platform in this thesis is dependent on business ruling that is hard

to implement in VMP solutions. However, there have been other works that have taken a more proactive

approach in determining the risk of current or objective configurations, as most of these rely on forecasting.

They characterize the utilization of a VM as a random variable [HP13,CZS+11,WMZ11] or combine methods of

time-series forecasting [GP12,BKB07]. When the future utilization has been estimated, this is used to determine

4
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the best configuration for the near future.

To the author’s knowledge most earlier works seem to use a deterministic (fixed) value for the resources a VM

needs, as in [MN08,RSM+13]. This usually means that the configuration is evaluated on the worst-case scenario

where all VMs are at their maximum utilization. It is better to consider the utilization of a VM as a stochastic

process to take into account the fact that most VMs will usually utilize far less than their capacity, as proposed

in [CZS+11, KZL+10, WMZ11]. In [CZS+11] the utilization of a VM is regarded as a single time-independent

random variable with a mean and a standard deviation with an unknown distribution. In [HP13,GP12] however,

they are regarded as a normally distributed variable or a Poisson random variable.

We determined that the mean and variance of the utilization of VMs are not nearly equal after preliminary

inspection. We will therefore not model the utilization as Poisson random variables. In this thesis, we will

make use of the periodicity that VMs show (see Chapter 4) to create a characterization by normally distributed

variables depending on the period. The utilization of VMs will first - for reference - be modeled as a single

time-independent normally distributed variable, as proposed in [HP13]. To improve the accuracy of the charac-

terization, the possibilities and strengths of using multiple time-dependent normally distributed variables will

be investigated as well.



Chapter 3

System model

This chapter will describe the data, notation and problems used and discussed in this thesis. Throughout the

following chapters we will use one pool of data out of which we will extract more specific data sets. We will

first describe this data. We will then describe the SC configurations we are to observe. Subsequently, we define

a notation we will use for the rest of this thesis and, to conclude, we will define the machine learning problems

we have effectively worked on.

3.1 Available data

The available data mainly describes the individual CPU utilization of every VM. This means that, over the

past year, we have a data point for every five minute interval containing average CPU usage in that interval.

To observe the current configurations we also know the current resource pool (RP) any VM is deployed in and

which server cluster (SC) this RP is on. To accompany this information, we know the configured maximum

capacity, current operating system, current renting customer and managing department within KPN for every

VM. Table 3.1 shows some extra information regarding the available features. We know, for example, that

there are 34 different Server Clusters and for each VM which SC it is on. That means we have 100% coverage

and 34 categories. We have this information on most of the VMs in SCs with the standard configuration (see

Section 3.2), which amounts to 6.852 VMs.

3.2 Standard configuration

Within vSphere the user is very free in the configuration of an SC. This configuration can be seen as a tree with

the root node being the SC, the internal nodes the RPs, and the leaf nodes being the VMs. It is even possible

6



3.3. Notation 7

Data Type Data points per VM coverage range/number of categories
Server Cluster Categoric 1 100% 34
Resource Pool Categoric 1 100% 157
Customer Categoric 1 100% 38
Operating System Categoric 1 > 99% 48
CPU Capacity Numeric 1 100% 0-40.000
CPU Usage Temporal ±105120 > 90% 0-40.000

Table 3.1: Available attributes per VM.

to have RPs as leaf nodes (empty RPs) or a configuration without RPs (VMs directly on an SC).

Within KPN the most frequently used form of a configuration, is one where there are two layers of RPs: one

layer with only a RP named “Flex” and one layer with a RP for any customer on an SC containing all VMs

of this customer on this SC, as pictured in Figure 3.1. We will further refer to this form of configuration as

a standard configuration. When SCs do not adhere to this standard configuration, it will usually mean that

specific business ruling is applied to them, which could imply that our methods are not directly applicable to

them.

SC1

Flex

RP1,1 RP1,2 RP1,3

VM1,1,1 VM1,1,2 VM1,2,1 VM1,2,2 VM1,3,1 VM1,3,2

Figure 3.1: Standard configuration of an SC in KPN vCenters.

3.3 Notation

We will introduce a notation to describe the server park and all contained entities with their relations to each

other and their CPU usage in time. We will extend the notation suggested in [OF16] to fit our situation. Say

we have

- mSP : number of Server Clusters in all server parks;

- SCc: Server Cluster c, where c ∈ {1, ...,mSP};
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- mSCc: number of Resource Pools in SCc;

- RPcr: Resource Pool r in SC c, where r ∈ {1, ...,mSCc};

- mRPcr: number of Virtual Machines in RPcr;

- Vcrj : VM j on RP r in SC c, where j ∈ {1, ...,mRPcr}.

We can then define the contextual features of VMs and SCs as

- SCcpuc: CPU capacity of SC c;

- V cpucrj : CPU capacity of VM j in RP r on SC c;

- mC,mO,mD: the number of customers, operating systems and departments, respectively;

- V Ccrj ∈ {1, ...,mC}: renting customer of VM j in RP r on SC c;

- V Ocrj ∈ {1, ...,mO}: operating system of VM j in RP r on SC c;

- V Dcrj ∈ {1, ...,mD}: managing department within KPN of VM j in RP r on SC c.

We consider the CPU utilization of a VM on the time points between tinit to tend, where we model the time

points as t = 1, ...,T with T the number of 5 minute intervals between tinit and tend, as

- V Ucrj(t): CPU utilization at time t of VM j in RP r on SC c.

and define a representation of RPs, SCs or the server park as

RPcr = {Vcrj}, j ∈ {1, 2, ...,mRPcr},SCc =
mSCc⋃
r=1

RPcr and SP =
mSP⋃
c=1

SCc (3.1)

we can define the CPU usage of a whole SC c at a timepoint t ∈ {1, ...,T} as

SCUc(t) :=
∑

Vcrj∈SCc

V Ucrj(t). (3.2)

We now know the utilization SCUc(t) of the SC for the time points t ∈ {1, ...,T}. The goal is to analyse the

expected time an SC is in overload in the next S ∈N time points, or

E

[
T+S∑

s=T+1
1SCUc(s)>SCcpuc

]
. (3.3)
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Figure 3.2: The utilization of an SC over a two week period, split by VM.

3.4 Machine learning

We will introduce three machine learning problems to be addressed in this thesis. The first two will be approaches

to characterize the utilization of a VM, either using the previous utilization of an existing VM, or characterize

a new VM using the previous utilization of multiple equivalent VMs where equivalency needs to be assessed

using contextual features of the machine. The characterizations of utilization will be used to predict the risk

of overload in an SC in the encompassing machine learning problem where we have a different objective: to

identify an SC’s risk for overload as accurately as possible.

3.4.1 Utilization of an existing VM

We want to characterize the utilization of an existing VM based on its previous utilization. We usually have tens

of thousands of data points in a time series for any VM, so the difficulty lies in finding a representation small

enough to remain usable in applications, yet large enough to hold most information necessary to characterize

the VM.

The data we will use to solve this problem is the time series of five minute averages of VM utilization for up to

a year in the past. We want to characterize the VM’s utilization to apply to a period in the future. So, say we

have all data for time points for last year {1, ...,T} where tinit represents ‘a year ago’ and T = 105120 is the

amount of five minute intervals in a year, we want to find an approximation for the utilization in the coming S

time points where we define V U∗crj(s) as the approximation for utilization on time point s, with T < s ≤ T +S.

To be able to validate the accuracy of our methods we will not use all available data for training. The training

set will be the CPU utilization of the VM at the time points 1, ...,T − S, with S a positive integer to be

determined at a later stage. The test set will then be the data for the time points T − S + 1, ...,T .

Since large errors at single time points can immediately cause an error in the greater picture, we want to use a
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performance measure that penalizes these errors, and not necessarily one that penalizes multiple smaller errors.

We will therefore use the Mean Squared Error, a performance measure with, as described by [AA13]:

- Low tolerance for extreme errors;

- No distinction for the direction of the overall error. However, the directions of error will be expected to

cancel out in the greater picture since we will usually be assessing a great number of VMs;

- Sensitivity for scale and data transformations. However, within this problem we will not be applying data

transformations, and the scales (e.g. capacities of VMs) do not differ significantly.

We can then define as performance measure P1:

P1 :=
1

mSP

mSP∑
c=1

1
mSCc

mSCc∑
r=1

1
mRPcr

mRPcr∑
j=1

1
S

T∑
s=T−S+1

(
V Ucrj(s)− V U∗crj(s)

)2 . (3.4)

3.4.2 Utilization of a new VM

We want to predict the utilization of a new VM. Since the proposed solution to the problem in Section 3.4.1

will provide us with a characterization of the utilization of existing VMs, we can use these characterizations

together with contextual features of VMs to predict a characterization for the utilization of the new VM.

The data we will use to solve this problem will be the characterizations of utilization of all VMs produced

from the data between tinit and tend. The characterizations will be represented as a set of S (see Section 3.4.1)

attributes later referred to as the behavioral attributes, present for every existing VM. For every VM we also have

some contextual attributes, like the department controlling the VM, the customer renting the VM, et cetera.

For validation we will split the data set into a training set and a test set, where a random sample of 90% of the

VMs will be in the training set and the remaining 10% of the VMs will be the test set. We will then use the

contextual attributes of the VMs in the test set to create a prediction for the behavioral attributes, based on

the contextual and behavioral attributes of the training set.

For a performance measure of the proposed methods we have equal conditions to the machine learning problem in

Section 3.4.1. Consequentially we will use the Mean Squared Error between the predicted behavioral attributes

and the actual behavioral attributes as a performance measure. So if we had a test set N of VMs, with N ⊂ SP ,

the performance measure P2 can be defined as

P2 :=
1
T

∑
Vcrj∈N

(
V U∗crj(t)− V U∗crj(t)

)2 (3.5)
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3.4.3 Probability of overload in an SC

We not only want to be able to find the probability of overload in a current SC configuration, but also want

to apply this process to new configurations. This encompasses the two preceding problems in this section. We

will define a new configuration as a subset of all existing machines united with a set of new machines. The data

used will thus be all data mentioned in Sections 3.4.1 and 3.4.2, for all VMs in scope.

We will use two methods for validation. For the situations where no new VMs are added to the new configuration

(a subset of all existing machines in the server park) we will directly produce a probability of overload for all

existing SC configurations through the characterization of the utilization of VMs. For the situations where new

VMs are added to the new configuration, we will regard a few existing VMs in every SC as a new machine,

provide them with a prediction for behavior and subsequently produce a probability of overload.

We will define the error ec for SC c as the absolute difference between the predicted probability f∗c of overload

and the actual frequency fc of overload in the test set, so ec = |f∗c − fc|. Because a single large error has much

more impact on business (this implies a serious over- or underload frequency that goes unnoticed), we will use

the mean error over the error of all SCs {SCc|c = 1, 2, ...,mSP} as a performance measure P3 for this problem,

e.g.

P3 :=
1

mSP

mSP∑
c=1

ec =
1

mSP

mSP∑
c=1
|f∗c − fc|. (3.6)

We will use the Mean Absolute Error - not the Mean Squared Error - for this performance measure, since this

provides us with more insight in the errors. For the previous problems (Section 3.4.1 and 3.4.2) we had a base

model to compare the results to. Since we do not have a reference model for this problem more insight is needed

to assess the effectiveness of the proposed solutions.



Chapter 4

Periodicity in behavior of VMs

If VMs show a repeating pattern of utilization (periodicity), we can summarize their behavior in this pattern. To

determine if VMs show periodicity and if so, with which period, we have applied autocorrelation. Autocorrelation

produces a second-order [Gra03] summary of time series data that shows the degree in which a time series

correlates with itself after any lag l. This entails that, if we have a time series X = {Xt}t=1,...,n for a certain

n with variance Var[X ] > 0 and we define the (empirical) mean of a stochastic process Z as Z̄ :=
∑n

i=1 Zi

n , we

can calculate for lag l ∈ {0, ...,n} [VR02]:

cl =
1
n

n−l∑
s=1

[Xs+l − X̄ ][Xs − X̄ ] and rl =
cl

c0
. (4.1)

We will try to provide insight into these entities:

cl: For l = 0, we see that c0 = 1
n

∑n
s=1[Xs − X̄ ]2 = Var[X ] and for l ∈ Z\{0} we see that this is almost the

formula for the covariance of the stochastic processes {Yj}; j = 1, 2, ...,n− l) and {Zk}; k = l, ...,n− 1,n

with Yj = Xj and Zk = Xk except that the divisor is n instead of n− l. The divisor is changed to ensure

that the sequence of autocovariances for increasing l is positive-definite [VR02] for certain applications.

rl: For l = 0, we clearly see that r0 = 1. For l ∈ Z\{0}, we divide the autocovariance of X with lag l by the

variance of X. The intuition here is that if the autocovariance is as large as the variance there is perfect

correlation between the function and itself at a later time.

In our case we define these entities for a VM j on SC c in RP r with V Ucrj :=
∑T

s=T−n
V Ucrj

n as

covcrj(l) :=
1
n

T−288l∑
s=T−n+1

[
V Ucrj(s+ 288l)− V Ucrj

]
·
[
V Ucrj(s)− V Ucrj

]
; (4.2)

12
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corcrj(l) :=
covcrj(l)

covcrj(0)
, (4.3)

for l ∈ {0, 1, ..., b n
288c}.

We then have covcrj(l) and corcrj(l) the estimated autocovariance and autocorrelation, respectively, as described

in [VR02]. We use the scalar 288 for l as we want the lag to be calculated in days, and there are 288 time points

(12 per hour, 24 hours in a day) in a day. The method described is exactly the estimate of the autocorrelation

used in R [R C14].

We applied autocorrelation to the time series data of the CPU utilization of a random sample of 15 VMs using

R. For each VM in the random sample we have created a data set showing the average CPU usage every two

hours over a span of one month. This data was imported into R, where autocorrelation was performed for a lag

0 ≤ l ≤ 14 specified in days. This produced graphs like in Figure 4.1a, with every peak showing the strength of

periodicity on the time span (in days) specified on the x-axis. The resulting 15 graphs (see Appendix A) were

(a) Weekly periodicity (b) Daily periodicity

Figure 4.1: Autocorrelation on the CPU usage of VMs showing weekly (a) and daily (b) periodicity. The x-axis shows
lag l specified in days and the y-axis shows the autocorrelation corcrj(l).

inspected. Most of them showed a high autocorrelation factor on a period of a week, or at least on a period of

a day with a slight increase on the 7 day mark as in Figure 4.1b. We can thus conclude that characterizing the

CPU in the period of a week should produce the most accurate results in determining their behavior.

This periodicity is the key for modeling the characterization of the utilization of a VM as multiple time-dependent

normally distributed variables, as it allows us to model one full week from multiple weeks and apply the model

to new weeks. In Chapter 8 we use the data of 18 weeks of utilization, which provides us with 18 observations

for every time point in a week, to be considered as samples from the same random variable. If we then apply
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the Central Limit Theorem [Dur10, p. 106-110] we know the characterizing random variables tend to normally

distributed variables.



Chapter 5

Characterizing the utilization of an

existing VM

We will propose two methods to characterize the utilization of a pre-existing VM using normally distributed

variables, as an extension of the heuristic of [HP13]. In the earlier works (see Section 2) the characterization

has not taken more freedom than a single time-independent random variable per VM, which will be our base

implementation. To try to implement a more precise characterization of a VM we will create a normally

distributed variable for every five minute interval of a week (that is 12 · 24 · 7 = 2016 variables), since we

determined periodicity of a week in Chapter 4.

5.1 Normal distribution

The data on utilization of VMs is collected on a five minute interval, where the value given on a time point

is the average utilization within the previous five minute interval. vSphere [VMw15] takes a snapshot of CPU

utilization every 20 seconds, and our observations are averages of 15 snapshots in every 5 minute interval. Even

though the workload of a VM will usually not drastically change within a five minute interval, we still see that

the utilization within an interval will highly fluctuate. We will therefore assume that the 20-second snapshots

within a 5 minute interval can be modeled as random variables with similar means and standard deviations.

We can then apply the Central Limit Theorem [Dur10, p. 106-110], which states that the average of a great

number of random variables with equal means and standard deviations tends to a normally distributed variable.

If we add the fact that we use observations from multiple weeks (17 in Chapter 8), every normally distributed

variable has been formed on 17 observations of measurements nearing normally distributed variables, as these

are based on 15 snapshots. This does require the assumption of independence between weeks, which we cannot

15
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falsify after inspection of the utilization of VMs.

5.2 Time-independent normally distributed variable

To create a single normally distributed variable to characterize a VM Vcrj , we need to calculate the mean

µ∗crj =
1
T

T∑
t=1

V Ucrj(t) (5.1)

and the standard deviation

(σ∗crj)
2 =

1
T

T∑
t=1

(V Ucrj(t)− µ∗crj)
2 (5.2)

of the utilization of the VM, to create a normally distributed variable V U∗crj ∼ N (µ∗crj , (σ∗crj)
2).

5.3 Time-dependent normally distributed variables

In Chapter 4 we concluded that most VMs show strong periodicity on a period of a week or (in some cases)

a day. Since daily periodicity can still be captured in a characterization spanning a week, we will provide a

characterization of the utilization of a VM over a week.

Periodicity over a week implies that the utilization of a VM over a five minute span V Ucrj(t) highly correlates

with the utilization of the same VM w weeks earlier V Ucrj(t− 2016w). We could then extrapolate that the

values of utilization at the set of time points

Nt := {t+ 2016k |k ∈ Z, 0 < t+ 2016k ≤ T } (5.3)

are all samples of the normally distributed variable that can be represented by

V U∗crj(t̂); t̂ ∈ {1, ..., 2016}. (5.4)

We can then approximate the representative normally distributed variables V U∗crj(t); 0 ≤ t < 2016 as

V U∗crj(t) ∼ N
(
µ∗crj(t), (σ∗crj(t))

2) (5.5)

with

µ∗crj(t) =
1
|Nt|

∑
s∈Nt

V Ucrj(s) (5.6)
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and

(σ∗crj(t))
2 =

1
Nt

∑
s∈Nt

(
V Ucrj(s)− µ∗crj(t)

)2 . (5.7)

5.4 Implementation

In this section we will show how we can implement the proposed methods in the Splunk [Spl16b] big data

software. Since the data used is stored in Splunk, this implementation can quickly provide results without a

need for data manipulation or transfers. We have implemented the above methods to create a single normally

distributed variable or a set of 2016 normally distributed variables. To this end we have created queries in the

Search Processing Language (SPL) [Spl16a] used by Splunk to directly model the behavior of VMs.

For a single random variable this query is shown in Listing 5.1. In the first two lines of this query we select the

data we want to use, e.g., the five minute averages of CPU utilization of all VMs for the past 18 weeks. We

then restrict the data to all VMs in scope in lines 3-4, where the scope is all VMs that are in SCs that conform

to the standard configuration as defined in Section 3.2. Finally, in line 5, we calculate the mean µ∗crj(t) and

variance (σ∗crj(t))
2 of all representative random variables for all VMs.

1 index=v c e n t e r s c r i p t host=v c e n t e r s t a t i s t i c s Metr icId=cpu . usagemhz . average

2 Type=VM e a r l i e s t=@w−18w l a t e s t=@w−w

3 | lookup t h e s i s c o n f i g u r a t i o n s i n s c o p e . csv VMName OUTPUT i n s c o p e

4 | search i n s c o p e=1

5 | s t a t s mean( Value ) as mu, var ( Value ) as sigma by VMName

Listing 5.1: SPL query determining mean and variance of utilization of VMs.

For multiple random variables this query is shown in Listing 5.2. In the first two lines of this query we select the

data we want to use, e.g. the five minute averages of CPU utilization of all VMs for the past 18 weeks. We then

restrict the data to all VMs in scope in lines 3-4. Following this, in lines 5-6, we map each five minute average

to a time point between 0 and 2015 and to conclude we calculate the mean µ∗crj(t) and variance (σ∗crj(t))
2 of

all representative random variables for all VMs in line 7.

The queries in Listings 5.1 and 5.2 result in we get a result for every VM in scope (for every time point)

with the mean and standard deviation of the single time-independent normally distributed variable or multiple

time-dependent normally distributed variables.
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1 index=v c e n t e r s c r i p t host=v c e n t e r s t a t i s t i c s Metr icId=cpu . usagemhz . average

2 Type=VM e a r l i e s t=@w−18w l a t e s t=@w−w

3 | lookup t h e s i s c o n f i g u r a t i o n s i n s c o p e . csv VMName OUTPUT i n s c o p e

4 | search i n s c o p e=1

5 | eva l date wday=s t r f t i m e ( time , ”%w” )

6 | eva l t imepoint =288∗date wday+12∗date hour+(date minute /5)

7 | s t a t s mean( Value ) as mu, var ( Value ) as sigma by timepoint , VMName

Listing 5.2: SPL query determining mean and variance of utilization of VMs for all time points 0-2015.



Chapter 6

Predicting the behavior of a new VM

We have implemented two methods to create a prediction for the characterization of utilization of new VMs

based on their contextual features. The first one is a general grouping by the available features, and the second

is by applying a predictive clustering algorithm. We will discuss both methods and their implementation in this

Chapter. We will first describe what data we will use as behavioral attributes for VMs before describing the

methods of k-means clustering and Principal Components Analysis and their results.

6.1 Attributes

Since we have determined periodicity of a week in Chapter 4 and created a characterization of virtual machines

in Chapter 5, we will use these characterizations of behavior in a week as behavioral attributes and try to find

correlation between them and the available contextual attributes. We have prepared a dataset of VMs with

their contextual attributes (V Dcrj ,V Ccrj ,V Ocrj and V cpucrj) and their behavioral attributes - the variables

µ∗crj(t); t = 1, ..., 2016 as defined in 5.3.

6.2 Grouping

The base method for characterizing a new VM will be to group them on contextual features. For example, it

could be expected that all VMs of the same company show relatively similar behavior. If any of the known

contextual features have a strong correlation with behavior of a machine, then combining all of those could

improve the association. To apply this method we first need to find which contextual features correlate highly

with behavior of VMs. We have implemented two methods to gain insight in this correlation.

19
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6.2.1 k-means clustering

In an attempt to find relevant contextual attributes, we have applied k-means clustering to the data set. The k-

means clustering algorithm places the p components of the behavior of all n VMs on a p-dimensional coordinate

system and tries to find positions of k cluster (not to be mistaken for Server Clusters/SCs) centroids in this

coordinate system to associate these n VMs with.

It accomplishes this in the following way. Say we have n observations x1,x2, ...,xn, where xi = (xi1, ...,xip).

We place k centroids c1, ..., ck where cj = (cj1, ..., cjp) with cjl; j = 1, ..., k; l = 1, ..., p chosen at random on the

p-dimensional plane. We then:

1. Assign each observation i to the centroid j with the smallest squared euclidean distance between them

ai = argminj=1,...,k


√√√√ p∑

l=1
(xil − cjl)2

 ; i = 1, ...,n. (6.1)

2. Calculate the new location of each centroid as

c′j =

∑
i=1,...,n;ai=j xi∑
i=1,...,n;ai=j 1 ; j = 1, ..., k. (6.2)

3. If |c′j − cj | < r; j = 1, ..., k with r a certain threshold: We have found an assignment of the n observations

to k clusters. Else: cj := c′j ; j = 1, ..., k, go to step 1.

The k-means clustering algorithm can thus find an assignment of all n observations to k clusters without

supervision, where all observations assigned to a cluster are assumed to have small distances between them.

This algorithm could have a problem of local optima, as stated in [Mac67], which is usually resolved by running

the algorithm multiple times with different initial placements of centroids and using the best of the results. If

we apply this algorithm to the behavioral attributes of VMs we could, by inspection, assess whether VMs with

equal contextual attributes are assigned the same clusters. This could give some clues for a correlation between

contextual and behavioral attribues.

The k-means has been applied to the behavioral features for different values of k. The values of k were

determined by the number of distinct values for each contextual feature. We know for instance that there are

only two departments within KPN, so if the department managing a VM has high influence on the behavior of

the machine we expect two distinct clusters after running the k-means clustering algorithm with k = 2. When

inspecting these clusters we would expect a lower entropy with respect to the department.

We have run the k-means clustering algorithm for the values k = 2, k = 3, k = 20, and k = 40 for the attributes

department, operating system, capacity, and company respectively. This was done using the Splunk [Spl16b]
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big data software, which has a built-in [PVG+11] k-means clustering algorithm. This was achieved using the

SPL [Spl16a] query in Listing 6.1. This query selects the values µ∗crj(t); t ∈ [0, 2015] as obtained in Section 5.4,

to transform the data points for all time points to the behavioral attributes. It then applies the k-means

clustering algorithm to the behavioral attributes, and to conclude it adds the contextual attributes for further

inspection.

1 index=summary search name=t h e s i s n o r m a l l y d i s t r i b u t e d

2 | eva l t imepoint=”T” . subs t r ( ”T000” . t imepoint , −4)

3 | chart l i m i t=0 va lues (mu) OVER VMName BY timepoint

4 | f i t KMeans T∗ k=2

5 | f i e l d s VMName, c l u s t e r

6 | lookup t h e s i s c o n f i g u r a t i o n s i n s c o p e VMName

7 OUTPUT Department , company , os , capac i ty

Listing 6.1: k-means clustering in SPL

Upon inspection we see that most VMs will be placed in a single cluster, which would imply that most VMs

behave similarly. For example in Table 6.1 we see the amounts of VMs in each cluster, after applying the k-

means clustering algorithm with k = 2 for each of the two departments. We then see that most VMs are placed

in cluster 0, irregardless of their department. We get equivalent results for the different operating systems with

k = 3 (as shown in Table 6.2), and for the other contextual attributes with their associated values for k.

Department CT2 UH
Cluster 0 346 3973
Cluster 1 53 125

Table 6.1: Number of VMs of each department per cluster.

Operating system Linux Other/Unknown Windows
Cluster 0 971 26 2549
Cluster 1 9 1 8
Cluster 2 95 0 155

Table 6.2: Number of VMs of each operating system per cluster

From these results we could concludes that - when regarding all behavioral attributes - most VMs in scope show

too much similarity when placed on a 2016-dimensional coordinate system to distinguish them based on the

contextual attributes that we can distill. It could however be the case that these VMs are very similar on most

behavioral attributes, but can still be distinguished when regarding only some more varying features. We will

therefore apply a Principal Components Analysis in the following section to try to find these features.
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6.2.2 Principal Components Analysis

In the previous section we concluded that most VMs are too similar, when plotting their behavioral attributes

on a 2016-dimensional coordinate system. This could be the result of a big subset of these behavioral attributes

with high correlation. A Principal Component Analysis is a variable reduction procedure that can help us

with precisely that problem. This procedure will create an orthogonal base for a new coordinate system with

p dimensions on which the original data with q ≥ p dimensions shows the highest variance, retaining as much

information on the data as possible and leaving out most of the attributes that show high correlation with

others.

Say we have a vector of variables x = (x1,x2, ...,xp) of p dimensions, where we have n observations for each of

these variables. We want to find a vector α of weights with α>α = 1 which maximizes the variance of

α>x =

p∑
j=1

αjxj . (6.3)

As derived in [Jol02, p. 5-6], the normalized eigenvector α̂1 corresponding to the largest eigenvalue λ1 of the

covariance matrix Σ of x is the vector we are looking for. So if we have µj = E[xj ] for j = 1, 2, ..., p we can

find covariance matrix

Σ =


E[(x1 − µ1)(x1 − µ1)] . . . E[(x1 − µ1)(xp − µp)]

... . . . ...

E[(xp − µp)(x1 − µ1)] . . . E[(xn − µn)(xn − µn)]

 . (6.4)

If we then find all p eigenvalues of Σ and order them as λ1,λ2, ...,λp, where λ1 is the largest eigenvalue, λ2 is

the second to largest eigenvalue, et cetera, we can find the corresponding eigenvectors α̂1, α̂2, ..., α̂p such that

Σα̂j = λjα̂j . (6.5)

As a result, we will see that the component of x in the direction of α1

α̂>1 x =

p∑
j=1

α̂1jxj (6.6)

shows the highest variance [Jol02] on the n samples that we have, and α̂2 will give us the component of x in

the direction of α̂ which shows the second highest variance, et cetera.

We will apply a Principal Components Analysis to gain insight in the influence of contextual attributes on the

behavior of VMs. The objective is to gain insight in the power of the available attributes to predict the behavior

of new VMs. Because of the large feature set, we have applied a principal component analysis to the data set
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to reduce the behavioral data from 2016 dimensions to 2.

The Splunk [Spl16b] big data software has a built-in method [PVG+11] for performing a Principal Components

Analysis. We can thus find the first two principal components of our data - the characterizations of all virtual

machines in scope - using the SPL [Spl16a] query as shown in Listing 6.2.

1 index=summary search name=t h e s i s n o r m a l l y d i s t r i b u t e d

2 | eva l t imepoint=”T” . subs t r ( ”T000” . t imepoint , −4)

3 | chart va lue s (mu) OVER VMName BY timepoint

4 | f i t PCA T∗ k=2

5 | f i e l d s VMName, PC 1 , PC 2

6 | lookup t h e s i s c o n f i g u r a t i o n s i n s c o p e VMName

7 OUTPUT Department , company , os , capac i ty

Listing 6.2: Performing PCA on the dataset of all characterizations of existing VMs

The first line of this query selects the characterizations in normally distributed variables of virtual machines

that we have created as described in 5.4. We then rename the time points to be usable as attribute names, and

fill all behavioral attributes. We can then apply the Principal Components Analysis and add the contextual

attributes.

We have plotted the two principal components on a box plot with colors that represent groups that differ

on the available attributes. Upon inspection of the box plots it does not seem possible to distinguish the

different groups. As seen in Figures 6.1 and 6.2, all groups overlap around the point where the first two

principal components are around zero, so we cannot find significant differences between groups, even on the

linear combinations of attributes with maximum variance.

We will create a group of machines for every unique combination of department, operating system, company and

capacity (254 groups) and use a combination of the behavior of all VMs in a group to determine the behavior

of any single machine, since we cannot directly distinguish influence of individual attributes on the behavior

of virtual machines. This would be a very quick way to associate new VMs with existing ones and creating a

prediction. However, a problem could arise if we do not know all features of a new machine or if very small

groups occur. If we do not know all contextual attributes for a new VM we are not able to create a prediction,

and if small groups occur over-fitting could arise.
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(a) First 2 principal components by department. (b) First 2 principal components by operating system.

Figure 6.1: Scatterplot visualization of first two principals components of behavior of VMs, with the first PC on the
x-axis, the second PC on the y-axis and color depicting the different departments (left) or operating systems (right).

(a) First 2 principal components by capacity. (b) First 2 principal components by company.

Figure 6.2: Scatterplot visualization of first two principals components of behavior of VMs, with the first PC on the
x-axis, the second PC on the y-axis and color depicting the different capacities (left) or companies (right).

6.3 Predictive clustering

Another way to associate new VMs with existing ones is by applying a predictive clustering algorithm. Such

algorithms can create a search tree based on contextual features with a prediction for the behavioral attributes

on the leaves of the tree. Say we have n observations of vectors x1, ...,xn of p behavioral attributes, where

xj = (xj1, ...,xjp); j = 1, ...,n. This algorithm makes use of a distance between instances, in our case the

euclidean distance

d(x,y) =

√√√√ p∑
j=1

(xj − yj)2, (6.7)
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and a prototype p(C) for a cluster C ⊂ {x1, ...,xn}, in our case the mean of the vectors in the cluster

p(C) =

∑
j=1,...,n;xj∈C

|C|
. (6.8)

The goal of the algorithm is to split the observations into clusters with a low distance d(x,y) between observa-

tions x,y ∈ {x1, ...,xn} within clusters and a high distance d(p(Ci), p(Cj)) between the prototypes of clusters

Ci,Cj ⊂ {x1...,xn}.

It will try to achieve this by creating boolean conditions on descriptive (contextual) attributes. For categoric

attributes (department, company, os) this is a set comparison, e.g.

company IN D ⊂ {1, ...,mC} (6.9)

and for numeric attributes (capacity) this is an inequality, e.g.

capacity <= 11.000. (6.10)

The algorithm will:

1. Start with one cluster C containing all observations;

2. If
∑

x∈C

∑
y∈C d(x,y) > r for a certain threshold r and |C| > k for a certain minimum size of a cluster

k: Go to step 3.

Else: Go to step 5;

3. Find the splitting comparison to find clusters C ′ +C ′′ = C that maximizes the distance d(p(C ′), p(C ′′))

between C1 and C2 based on the available descriptive attributes. This essentially minimizes the distance

within the clusters [BDR98].

4. Apply Step 2. to C ′ and C ′′;

5. The prediction x∗j for the observations xj ∈ C is the prototype of C: x∗j := p(C).

The predictive clustering algorithm was implemented with:

- Descriptive/contextual attributes: the four available features department, company, operating system and

capacity;

- Target/behavioral attributes: the 2016 mean values µ∗crj(t) for any VM j in RP r on SC c, one for every

time point in a week t = 1, ..., 2016, as described in 5.4;

- Distance measure: the euclidean distance;
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- Cluster prototype: the mean between the vectors of behavioral attributes of VMs in the cluster.

We used the Splunk [Spl16b] big data software to create a data set and exported it to the .arff format, the

format that is used by predictive clustering program [Str11], using the SPL [Spl16a] query in Listing 6.3. This

query first creates the header of the .arff file with a name for the relation and all attributes, including their

(for categoric attributes) categories. It then places the data set in the file. When we export the results of this

query to the .csv format, we only need to remove the strings ‘”&&’ and ‘&&”’ from the beginnings and ends of

the lines - a process that can be automated - before Clus can interpret the .arff file.

1 | makeresu l t s | eva l t ex t=”&&@re la t i on ’ P r e d i c t i v e C lu s t e r i ng ’&&”

2 | append [

3 search index=summary search name=t h e s i s p r e d i c t i v e c l u s t e r i n g Try=3

4 | t a b l e VMName, Department , company , os , capac i ty

5 | eva l t=1 | untable t , ” F i e ld ” , ” Value ”

6 | s t a t s va lue s ( eva l ( i f ( isnum ( Value ) , n u l l ( ) , Value ) ) ) as Values by F i e ld

7 | eva l t ex t=”&&@attr ibute ” . F i e ld . i f ( i s n u l l ( Values ) , ” numeric ” , ” {” .

8 mvjoin ( Values , ” , ” ) . ”}” ) . ”&&”

9 ]

10 | append [

11 | makeresu l t s count=2016 | s t r eamsta t s cur rent=f count

12 | eva l t ex t=”&&@attr ibute T” . subs t r ( ”T0000” . count , −4). ” numeric ”

13 ]

14 | append [ | makeresu l t s | eva l t ex t=”@data” ]

15 | append [

16 search index=summary search name=t h e s i s p r e d i c t i v e c l u s t e r i n g

17 | f i e l d s VMName, Department , company , os , capac i ty , i n f o

18 | eva l t ex t=”&&” .VMName. ” , ” . Department . ” , ” . company . ” , ” . os . ” , ” .

19 capac i ty . ” , ” . i n f o . ”&&”

20 ]

21 | t a b l e t ex t

Listing 6.3: SPL query of output of predictive clustering data set to the for Clus usable .arff format.

We then ran the predictive clustering algorithm using Clus [Str11], with 10 cross-validations and a minimal

cluster size of 30. The predictions can then be imported into Splunk, where they are incorporated into the

model described in Chapter 7. We will later refer to these predictions as ν∗crj(t) for VMs j in RP r on SC c at

time points t = 1, ..., 2016.



Chapter 7

Risk assessment of a configuration

The preceding three chapters lay the basis for the method described in this chapter. In Chapter 4 we determined

periodicity of a week or a day for most VMs, which led us to believe the behavior of a VM can be characterized

by creating a model for a full week which should repeat itself. In Chapter 5 we characterized the behavior of

any VM by either

1. a single normally distributed variable;

2. multiple normally distributed variables,

representing any point in time, or all time points in a week, respectively. In Chapter 6 we implemented two

methods for creating a characterization of new VMs based on their supposed similarity to other VMs with the

same contextual attributes. We created

3. characterizations for groups of VMs with the same department, customer, operating system, and capacity

in multiple normally distributed variables;

4. predictions for the characterization of behavior of new VMs based on department, customer, operating

system, and capacity using predictive clustering.

Methods 1-3 provide us with normally distributed variables characterizing the behavior of VMs. Even the

deterministic values ν∗crj(t); t = 1, ..., 2016 produced by method 4 can be viewed as normally distributed variables

V U∗crj(t) ∼ N (ν∗crj(t), 0). We will therefore use an important characteristic of normally distributed variables to

produce the expected time an SC is in overload. Say we have n normally distributed variables x1, ...,xn where

xj ∼ N (µj ,σ2
j ); j = 1, ...,n, we then know that the sum of these variables X =

∑n
j=1 xj is normally distributed

X ∼ N (µ,σ2) with mean

µ =
n∑

j=1
µj (7.1)

27
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and variance

σ2 =
n∑

j=1
σ2

j . (7.2)

If we now want to predict the expected fraction of time an SC configuration - a subset of all machines in the

server park - SCc ⊂ SP is in overload, we can model the utilization of the SC at time points t = 1, ..., 2016 in

a week as

SCU∗c (t) ∼ N (µ∗(t), (σ∗(t))2), (7.3)

where

µ∗c(t) =
∑

Vcrj∈SCc

µ∗crj(t) (7.4)

and

(σ∗c (t))
2 =

∑
Vcrj∈SCc

(σ∗crj)
2. (7.5)

We can then calculate the probability of SC overload at every time point t = 1, ..., 2016 as [Wei16]

P(SCU∗c (t) > SCcpuc) = 1− 1
2

(
1 + erf

(
SCcpuc − µ∗c(t)

σ∗c (t)
√

2

))
(7.6)

and the expected time an SC is in overload in a week

E

[2016∑
t=1

1SCUc(s)>SCcpuc

]
=

2016∑
t=1

(
1− 1

2

(
1 + erf

(
SCcpuc − µ∗c(t)

σ∗c (t)
√

2

)))
. (7.7)

The expected frequency of overload can then be found as

f∗c =
E
[∑2016

t=1 1SCUc(s)>SCcpuc

]
2016 . (7.8)



Chapter 8

Evaluation

This chapter will evaluate the proposed methods in Chapters 5 through 7. To this end we ran evaluation queries

in the Splunk [Spl16b] big data software containing vCenter vSphere [VMw15] configuration and utilization data

over the past year of all KPN vCenters.

We have created a scope of SCs, RPs and VMs, where we only consider those that conform to the standard

configuration as described in Section 3.2. This scope contains 34 SCs, that facilitate 157 RPs that span 6.852

VMs.

A single VM provides us with 2016 data points every week, so even the 6016 VMs within our scope generate

around 12 · 106 data points every week. With the performance of the Splunk platform in mind, we have only used

the data between 13-02-2016 (tinit) and 18-06-2016 (tend) for our validation, spanning 18 weeks (approximately

one third of a year). This has the auxiliary advantage that, considering a data retention time of a year in the

KPN Splunk platform, the experiments are repeatable in the foreseeable future.

We then have T = 18 · 7 · 288 = 36.288, where t = 1 is the first 5 minute interval after midnight of 13-02-2016

and t = 36.288 is the last 5 minute interval before midnight of 18-06-2016. In this time range we determined

4333 VMs in scope to be active, where we see an active machine as one that has given data points for at least

the points {T − 2 · 2016, ...,T}. This definition of active is necessary because we need at least one week of data

to create a characterization and at least one more week of data to evaluate this characterization.

8.1 Existing VM

We have implemented two ways of characterizing the behavior of a VM in Chapter 5. The first uses a single

normally distributed variable with mean µ∗crj representing the CPU utilization of the VM Vcrj , the second
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takes advantage of the periodicity that VMs show over a week and characterizes a VM as a collection of 2016

independent normally distributed variables with means µ∗crj(t); 0 < t ≤ 2016, each representing the mean use

of a five minute interval in the week.

We have a training set of the utilization of all active VMs captured on timepoints T1 = {1, ...,T − 2016}. Based

on this training set we have deduced characterizations of all active VMs where a normally distributed variable

U∗crj with mean µ∗crj and σ∗crj characterizes the utilization in a single variable and the normally distributed

variables U∗crj(t); t ∈ {1, ..., 2016} characterize the utilization in multiple independent variables.

For comparison we have a test set of the utilization of these VMs captured on timepoints in T1, defined as

Ucrj(t); t ∈ T1. We can then apply the performance measure P1 as defined in Section 3.4.1. For a single

time-independent normally distributed variable this gives us

Psingle1 :=
1

|T1| ·mSP

mSP∑
c=1

1
mSCc

mSCc∑
r=1

1
mRPcr

mRPcr∑
j=1

∑
s∈T1

(
V Ucrj(s)− µ∗crj

)2 (8.1)

and for multiple time-dependent variables

Pmultiple1 :=
1

|T1| ·mSP

mSP∑
c=1

1
mSCc

mSCc∑
r=1

1
mRPcr

mRPcr∑
j=1

∑
s∈T1

(
V Ucrj(s)− µ∗crj(s)

)2 . (8.2)

We then find the performance measures

Psingle1 = 490, 690.04 and Pmultiple1 = 368, 172.54, (8.3)

so we can conclude a model with multiple random variables provides considerably better characterizations, a

20% decrease in error. This was expected, as we create a more refined characterization of utilization when we

use more variables.

If we apply the mean square error to every single machine, e.g.

Ecrj,1,1 =
1
|T1|

∑
s∈T1

(
V Ucrj(s)− µ∗crj

)2 ,Ecrj,1,2016 =
1
|T1|

∑
s∈T1

(
V Ucrj(s)− µ∗crj(s)

)2 (8.4)

and plot these as an error distribution (see Figure 8.1) we see some overfitting has taken place, as for a few

VMs the error on a single random variable is smaller than for multiple random variables. However, on most

VMs a significant improvement has been achieved using multiple variables.

Since we can apply this performance measure to any subset of VMs N ⊂ SP as

PN ,1,2016 =
1

|N ||T1|
∑

Vcrj∈N

∑
s∈T1

(
V Ucrj(s)− µ∗crj(s)

)2 , (8.5)
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Figure 8.1: Performance measure on individual VMs for both a single random variables and multiple random variables,
sorted by the size of Ecrj,1,1. The calculated error is on the logarithmical scaled y-axis.

we have determined performance on the distinctions in the contextual attributes mentioned in Chapter 6. We

observed that the height of the performance measure is highly dependent on the renting company (Figure 8.2a)

and the capacity (Figure 8.2b) of the VM. A higher error on a VM with higher capacity was expected, as a

higher capacity allows for larger variation, but at this point we cannot provide an explanation for a higher error

on specific companies.

(a) Performance measure on all VMs of a renting company.
(b) Performance measure on all VMs with the same ca-
pacity.

Figure 8.2: Performance measure on groups of VMs, grouped by (left) company and (right) capacity

8.2 New VM

In Chapter 6 we proposed two methods to predict the behavior of a new VM. The first groups the VMs on all

available contextual attributes, the second is an implementation of the predictive clustering algorithm. We will

evaluate the accuracy of these methods as described in 3.4.2 in this section.

For evaluation we used the characterizations of VMs derived in Chapter 5. Out of these characterizations we

randomly picked 10% (approximately 380 VMs) as a test set. The remaining 90% (approximately 3500 VMs)
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was used as a training set. For the VMs in the training set we used both their contextual and their behavioral

attributes, while we regarded the VMs in the test set as new machines where only the contextual attributes

were known.

The method of grouping the VMs provided us with a way to predict the behavior of new VMs based on the

similarity within groups. We created normally distributed variables U∗crj(t); t = 1, ..., 2016 with means µ∗crj(t)

and standard deviations σ∗crj(t) for every group in the training set. The means µ∗crj(t) of the associated would

then predict the behavior of the new VMs in the test set. The predictive clustering algorithm applied to the

training set provided us with deterministic predictions ν∗crj(t); t ∈ [0, 2015] for the behavior of VMs in the test

set.

We can then apply the performance measure P2 as described in 3.4.2. For the grouping method this evaluates

to

Pgrouping2 =
1
n

∑
V ′′crj∈N

(
V Ucrj(t)− µ∗crj(t)

)2 (8.6)

and for predictive clustering

Ppredclus2 =
1
n

∑
V ′′crj∈N

(
V Ucrj(t)− ν∗crj(t)

)2 (8.7)

We then find for our test set that

Pgrouping2 = 1, 074, 347.11 and Ppredclus2 = 825, 888.84, (8.8)

where predictive clustering gives us the best results, but still performs 125% worse than the characterization of

existing VMs. It should be noted that this error was calculated on a much smaller test set (10% of all active

VMs) than the errors Psingle1 and Pmultiple1. We could, however, conclude that we do not have enough

contextual information on new VMs to predict a characterization for their utilization.

8.3 Risk of SC configuration

We have proposed a method to assess the risk of any (changed) SC configuration in Chapter 7. This method was

based on the results obtained in the previous Chapters 4-6, where we distilled characterizations for existing VMs

and predicted the behavior of new VMs. As most proposed methods rely on normally distributed variables, the

risk assessment was based on summing these variables at every time point and determining the risk of overload

based on these summed variables. Even the predictions obtained by predictive clustering can be applied to

this method, since we can view those as normally distributed variables with as means the obtained values and

zero-valued standard deviations.
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Since the characterization of behavior is expected to be more accurate than the prediction of behavior of a new

VM, the accuracy of this model should be assessed for two different scenarios, as described in Section 3.4.3. At

first we will evaluate the risk assessment method as if all machines in all new configurations are existing, so

we will only apply the characterization techniques. Afterward, we will regard the machines in the test set of

Section 8.2 as new VMs. We will apply the performance measure described in Section 3.4.3 to both scenarios.

Because most current configurations do not regularly experience overload, we will use fractions x ∈ (0, 1) ∈ R

of the actual CPU capacity of SCs. We can then define the frequency of overload as

fc(x) =

∑T
t=T−2.016 1SCUc(s)>x·SCcpuc

2016 (8.9)

We have chosen x to be in {0.25, 0.5, 0.75} to be able to identify the effectiveness of our method on several levels

of overload. For x = 0.25 most configurations will have a very high frequency of overload, nearly 1, while for

x = 0.75 this should be near zero.

We have used all utilization data for all existing VMs on timepoints T1 = {1, ...,T − 2.016} as the training set.

From this data we obtained:

- A characterization defined by 2016 normally distributed variables as described in Section 5.4;

- For the test set of Section 8.2: a prediction of the characterization as described in 6.3. This prediction will

give deterministic values, but we will interpret them as normally distributed variables with as means the

values given and as standard deviations 0. For the training set of Section 8.2: a characterization defined

in 2016 normally distributed variables as described in Section 5.4.

We then used these characterizations to assess expected frequency f∗c (x); c = 1, ...,mSP of overload in every

current SC configuration for x ∈ {0.25, 0.50, 0.75}.

The data points T2 = {T − 2015,T} were used as a test set. We determined the utilization SCc(t) for all SCs

c = 1, 2, ...,mSP for all time points in the test set t ∈ T2 and determined the frequency of overload fc(x) for

x ∈ {0.25, 0.50, 0.75}.

We can then apply the performance measure as described in 3.4.3 to determine the quality of our method, where

in this case we have

P3(x) =
1

mSP

mSP∑
c=1
|f∗c (x)− fc(x)|.

We present the heights of the performance measure in Table 8.1. We then see that on theoretical high risk

configurations the method for SC configurations with only existing VMs performs reasonably well, but with

new VMs the method deteriorates quickly. On lower risk configurations the performance is (surprisingly) better

when new virtual machines are in the configuration.
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Existing New
x P3(x) x P3(x)
0.25 0.0344 0.25 0.1145
0.50 0.0344 0.50 0.0418
0.75 0.0345 0.75 0.0345

Table 8.1: Performance measures for risk assessment with and without new VMs for values x ∈ {0.25, 0.5, 0.75}.

In Table 8.2 the errors for individual SCs are shown. For every SC c we show the values ec(x) = |f∗c (x)− fc(x)|

for x ∈ {0.25, 0.50, 0.75} for the scenarios without (ec(x)) and with (ec(x) new) new machines. The value

’Fraction of VMs new’ is the fraction of the VMs on that SC that were regarded as new. If we look at the

errors in the table we see that new VMs usually vastly (negatively) influence the performance of the prediction

method.

SC c ec(0.25) ec(0.50) ec(0.75) Fraction of VMs new ec(0.25) ec(0.50) ec(0.75) new
1 0.0126 0.0000 0.0000 0.066 0.5424 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.060 0.0392 0.0000 0.0000
3 0.0000 0.6143 0.8814 0.066 0.0402 0.8057 0.8814
4 0.0000 0.0000 0.0000 0.091 0.0000 0.0000 0.0000
5 0.0000 0.0036 0.0000 0.087 0.0400 0.0040 0.0000
6 0,0000 0,0000 0,0000 0.067 0,0000 0,0000 0,0000
7 0,0004 0,0000 0,0000 0.082 0,0004 0,0000 0,0000
8 0,0000 0,0000 0,0000 0.148 0,0000 0,0000 0,0000
9 0,0000 0,0000 0,0000 0.000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.229 0.0000 0.0000 0.0000
11 0.0000 0.0000 0.0000 0.097 0.0000 0.0000 0.0000
12 0.0004 0.0000 0.0000 0.099 0.0093 0.0000 0.0000
13 0.0000 0.0000 0.0000 0.082 0.0000 0.0000 0.0000
14 0.0100 0.0004 0.0000 0.118 0.0101 0.0004 0.0000
15 0.0030 0.0005 0.0000 0.097 0.0271 0.0005 0.0000
16 0.0073 0.0001 0.0000 0.082 0.0421 0.0001 0.0000
17 0.0000 0.0000 0.0000 0.148 0.0000 0.0000 0.0000
18 0.0146 0.0000 0.0000 0.122 0.0010 0.0000 0.0000
19 0.0689 0.0000 0.0000 0.056 0.3182 0.0000 0.0000
20 0.0080 0.0000 0.0000 0.129 0.0355 0.0000 0.0000
21 0.0002 0.0000 0.0000 0.098 0.0000 0.0000 0.0000
22 0.0000 0.0000 0.0000 0.062 0.0000 0.0000 0.0000
23 0.0000 0.0000 0.0000 0.119 0.0000 0.0000 0.0000
24 0.0000 0.0000 0.0000 0.133 0.0000 0.0000 0.0000
25 0.0000 0.0000 0.0000 0.122 0.0000 0.0000 0.0000

Table 8.2: Prediction error on SCs with or without new VMs.

If we plot the expected (predicted) overload frequency against the (actual) overload frequency in Figure 8.3, we

see that for a frequency smaller than 0.10 the prediction usually comes out at near zero, while for larger than

0.10 the prediction does give a high probability. This is exactly where we want the turning point to be. A low

risk (0 ≤ f∗c ≤ 0.10 for SC c) is acceptable for a configuration, and a high risk should be signaled by the model.
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Figure 8.3: The expected overload frequency of an SC configuration for different actual overload frequencies.



Chapter 9

Conclusions

Physical server clusters can be overcommitted with respect to their resources to maximize utilization of the

available infrastructure. When a server cluster is overcommitted it is possible that the virtual machines will

request more resources than physically available. Therefore, when managing server cluster configuration, a line

is constantly tread between too much overcommitment (causing overload and performance issues) and too little

overcommitment (causing under-utilization of the hardware).

Earlier works have proposed solutions to this (Virtual Machine Placement) problem. The solutions usually

consist of two parts: first a heuristic is chosen for the risk of overload in a server cluster configuration, thern

this heuristic is used in, for example, bin-packing problems to find an optimal placement of virtual machines.

Where most works focus on the placement, this work focused on the heuristics.

In this thesis, first we proposed models that characterized virtual machines in their utilization over a week,

since they showed periodicity in weeks. Second, we proposed two methods to predict the (characterization of)

utilization of new virtual machines where no previous utilization was know. Both these methods resulted in

multiple normally distributed variables that model the behavior of the virtual machines at every time point

(five minute interval) of a week. Finally, we used these characterizations to find the expected time that a server

cluster configuration would experience overload, in essence the time in a week that the virtual machines in the

configuration requested more virtual resources than physically available.

We evaluated the proposed methods using real life utilization traces provided by KPN1. A vast improvement was

shown when using multiple normally distributed variables versus a single variable to characterize the utilization

of a pre-existing virtual machine. The available contextual data was insufficient to predict the characterizations

of new virtual machines. The proposed method for risk assessment of a server cluster configuration was sufficient
1A telecommunications, internet service and IT services provider, with a large division focused on providing Platform as a

Service to corporate clients.
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to correctly classify configurations with very high and low risk, but lacked some accuracy when the expected

frequency of overload was around 0.05, in essence the critical area.

Future work could implement the proposed heuristic as a heuristic for methods solving the VMP problem, to

determine if it improves performance. It is also possible that the proposed methods are more effective on other

platforms or in a more controlled (simulated) environment.



Appendix A

Autocorrelation results

(a) Autocorrelation results for VM
V24,4,17.

(b) Autocorrelation results for VM
V25,2,108.

(c) Autocorrelation results for VM
V30,1,52.

(d) Autocorrelation results for VM
V28,8,36.

(e) Autocorrelation results for VM
V2,1,13.

(f) Autocorrelation results for VM
V7,9,46.
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(g) Autocorrelation results for VM
V8,2,13.

(h) Autocorrelation results for VM
V10,1,20.

(i) Autocorrelation results for VM
V12,8,34.

(j) Autocorrelation results for VM
V12,12,6.

(k) Autocorrelation results for VM
V12,12,20.

(l) Autocorrelation results for VM
V15,1,122.

(m) Autocorrelation results for VM
V16,1,96.

(n) Autocorrelation results for VM
V18,1,5.

(o) Autocorrelation results for VM
V18,1,26.
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