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Abstract

In this paper an imitating system is proposed that enables humanoid robots to imitate full-body human

motions in real-time while keeping balance. The Windows Kinect 2.0 device has been used to acquire the

coordinates of the joints of the human skeleton in real-time. Through a process of Inverse Kinematics the joint

angles of the humanoid robot corresponding to the imitated human posture are calculated. This is done by

minimizing an evaluation function that calculates the distance between the human posture and a robot posture

calculated with Forward Kinematics. The process is similar to the process used in Ou et al. [8]. The resulting

joint angles are called the target angles. The robot iteratively rotates its joints towards the latest obtained

target angles. In each iteration balance maintenance is applied to ensure the stability of the robot during the

imitation process using the qpOases [2] library in which all joints of the robot are considered. qpOases also

ensures the supporting feet stay fixed to the ground. This balance maintenance system differs from the balance

maintenance systems used in previous works. The process of calculating the target angles and the process of

moving the robot towards the target angles run in parallel on separate threads of the processor. As in previous

works, three different support modes are considered: Left-foot support mode, right-foot support mode and

double-foot support mode. The experiments show the imitation system is capable of imitating complex human

motions while keeping the robot in balance.
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Chapter 1

Introduction

Robot imitation has multiple useful purposes in practise. Human-like humanoid movement is normally hard

to achieve. Imitation can be used to learn a humanoid to move like a human. Furthermore, imitation can be

used for entertainment purposes. Humanoid imitation can also be used for tele-operation between a human

and a robot. An example of tele-operation through imitation is the robot in the movie Avatar. This robot

performs human-like military movement, while the commander is located inside the robot. This robot is being

developed in reality in South-Korea by the company Hankook Mirae Technology and is shown in Fig. 1.1.

Figure 1.1: Avatar-like robot developed in South-Korea by Hankook Mirae Technology
Retrieved August 3, 2017 from
http://leagueoftechnicalvoters.org/2017/01/01/giant-avatar-style-robot-takes-first-steps-in-south-korea/.

There are multiple difficulties that have to be considered while developing a humanoid imitation system. First

of all the desired joint angles of the robot’s limbs have to be calculated to imitate the current human posture in

real-time. As the range of motion of humanoids differs from the range of motion of humans, certain human

motions might not be reachable for the humanoid. In this case a posture close to the human posture should be

calculated and adopted by the robot. Moreover balance has to be maintained by the robot during the imitation

process while standing on one foot or both feet. The balance maintenance system of the robot differs from

that of the human: The robot has no muscles to maintain balance and its weight is distributed in a different

way. Because of this the robot motion cannot be mapped one-to-one with human motion. Finally self-collision

avoidance of the robot should be considered to prevent the robot from damaging itself.
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The organization of the paper is as follows: In chapter 2 the relevant work is described and compared to our

work. In chapter 3 the imitation process is explained, including the calculation of the target angles of the

imitated posture and the balance maintenance system. In chapter 4 the setup that has been used to develop the

imitation system is described. Finally in chapter 5 the experiments are shown and in chapter 6 the conclusions

are drawn.
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Chapter 2

Related Work

In this chapter an overview of related work is given and its relevance is compared and discussed relative to

our method. Koenemann et al. [4] presented a human imitation system for humanoids in which whole-body

motions are imitated in real-time. An Xsens MVN motion capture system was used to capture the human

motions. This motion capture system consists of inertial sensors that are attached to the human body. This

capture system is very accurate, but also expensive. The positions of the endeffectors, i.e. the hands and the feet,

and the position of the center of mass of the robot were considered in the imitation process. The joint angles

of the imitated posture of the robot are calculated through a process of Inverse Kinematics (IK). Afterwards,

these angles are adjusted to match the position of the center of mass of the human. The supporting state of the

robot is determined by a finite state machine, depending on the position of the center of mass of the robot, the

human posture and the current support state. The support state can be either left foot, right foot or both feet.

In order to shift the center of mass to the desired position in the double-foot support state, one of the feet is

repositioned. In the single-foot support phase the joint angles of the corresponding leg of the supporting foot

are adjusted to achieve a stable posture. The desired angles are calculated through Inverse Kinematics. The

velocity of the center of mass is constrained. Their system was the first to imitate human motion sequences on a

NAO robot, while balancing on a single foot for a longer period of time. Also experiments with tele-operation

have been successfully performed. Ou et al. [8] developed a real-time full-body human imitation system

with the use of the Microsoft Kinect 1.0. The Kinect is an easy-to-use motion capture system, of which the

retrieved motion data can be processed with the Kinect for Windows SDK. Due to its user-friendliness and low

pricing, it is an attractive choice. The angles of the imitated posture are calculated with Inverse Kinematics

by minimizing an evaluation function. The robot moves iteratively towards the imitated posture. For each

step balance control and collision avoidance are applied. In order to maintain the balance of the robot, the

ankle strategy has been used in the single-foot support phase and the ankle-hip strategy has been used in the

double-foot support phase. These balancing methods are explained in [9]. The process of calculating the joint

angles and the balance maintenance system run in parallel on separate threads of the processor. The results

of the experiments show the system is capable of imitating various complex human motions, in double-foot

support phase as well as in single-foot support phase. Lei et al. [7] also developed a real-time full-body human
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imitation system using the Kinect 1.0. When the supporting state is changed, a transient pose is transferred

to the robot. There are three different transient poses: Standing straight, leaning to the left and leaning to

the right. While this results in safer support mode changes, it is at the expense of the similarity between the

motions of the human and the robot. The target robot posture is first calculated by a quadratic optimization

process through Inverse Kinematics, similar to the optimization process in [8]. Next, the distance between

the center of mass and the center of the current support polygon is minimized by modifying the angle list

corresponding to the target posture through Inverse Kinematics. The angle list corresponding to the resulting

stable posture is then transferred to the robot. This differs from article [8] in which balance control is applied

iteratively during the movement of the robot towards the target pose. A latent structure model is used to study

shared information between human motion space and robot motion space. This information is used to create a

similarity function. The experiments show multiple human postures in single-foot support mode as well as in

double-foot support mode have been successfully imitated.

In our work the Kinect 2.0 is used to capture human motion, which can track 26 skeleton joints in contrast to

the Kinect 1.0 which can track 20 skeleton joints. Furthermore the field of view of the Kinect 2.0 is greater

than the field of view of the Kinect 1.0. The XSens MVN motion capture system used in Koenemann et al. [4] is

more accurate than the Kinect 2.0, however this motion capture system is expensive and harder to use than

the Kinect 2.0. A similar process to calculate the imitated posture of the humanoid is used in our work as

in the work of Ou et al. [8]. The Inverse Kinematics process in which an evaluation function is minimized

proved to be accurate and efficient. The implemented balance maintenance system differs from previous work.

The qpOases [2] library has been used to adjust the calculated imitated posture such that after modification

the center of mass is positioned in the support polygon and the supporting feet stay fixed to the ground.

This library considers all the joints of the humanoid to provide stability, similar to Lei et al. [7]. The balance

maintenance system consists of multiple steps from the current posture towards the next imitated posture,

similar to Ou et al. [8]. In the other two articles the balance maintenance system consists of only a single

adjustment by modifying the target posture to provide stability. As in the previous works, both the double-foot

support state and single-foot support state are considered. Thus at least one foot is fixed to the ground at

any point. As in Ou et al. [8] multi-threading has been used to calculate the imitated postures and to move

the robot towards the latest obtained angles corresponding to the imitated posture. In the other two articles

these processes run in sequence. Finally, in our work the free foot is kept parallel to the ground as long as it is

feasible by the range of motion of the humanoid. This makes it easier to put the foot back on the ground when

requested and prevents collision of the free foot with the ground.
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Chapter 3

The imitation process

The imitation process can be illustrated as shown in Fig. 3.1. Two repeating sequences can be seen in the

diagram. In the first sequence, the digital skeleton of the human posture is acquired and the target angles of

the corresponding imitated posture of the robot are calculated. The calculated target angles are sent to the

second sequence. In the second sequence small steps are made by the robot to move the robot closer to the

desired target angles. Each step results in a closer posture of the robot relative to the human posture. For

each step, balance control is applied to ensure the stability of the robot. The two sequences run in parallel on

separate threads of the CPU. In the following chapters the imitation process will be explained in detail.

Figure 3.1: The imitation process.
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3.1 Obtaining the digital human skeleton

The Microsoft Kinect 2.0 has been used to acquire digital human skeletons of the human posture in real-time

at a frequency of 30 frames per second. An example of an acquired skeleton is shown in Fig. 3.2. The software

development kit of the Kinect 2.0 is then used to extract the coordinates of the joints from the skeleton,

visualized as white dots in Fig. 3.2. Thereafter, the extracted coordinates of the skeleton are transformed to

the torso coordinate system. In the torso coordinate system, the torso is positioned upright and faces directly

forwards. Finally, the resulting coordinates of the joints in the torso coordinate system are stored. If the human

stands too close to the Kinect, the human skeleton might be deformed. Thus the imitation process is paused to

prevent unwanted movements of the robot.

Figure 3.2: The digital human skeleton in the torso coordinate system.

3.2 Calculation of the target angles

The angles of the imitated posture of the robot are called the target angles. The target angles are calculated

individually for each limb of the robot. The considered limbs are:

• The left arm.

• The right arm.

• The left leg.

• The right leg.

The head of the robot is not considered. The target angles are calculated through a process of Inverse

Kinematics by minimizing an evaluation function. The evaluation function calculates the distance between the

human posture and a robot posture. The coordinates of the posture of the robot in the torso coordinate system

are calculated with Forward Kinematics from a list of joint angles and the lengths of the limbs. During the

minimization process, a list of joint angles starting with predefined values is iteratively adjusted, such that the

posture of the robot corresponding to the angles in this list will be closer to the human posture after each step.
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When the minimization process ends, the resulting angle list contains the target joint angles. The previous

target angles are replaced by the new target angles and the robot starts moving its joints towards the latest

obtained target angles.

3.2.1 Evaluation function

The evaluation function calculates the error between the coordinates of a certain limb of the acquired human

posture and those of the corresponding limb of the robot. The coordinates of the limb of the robot are calculated

with the use of Forward Kinematics from the joint angles (Θ). Both coordinates of the human and the robot

are located in the torso coordinate system. The coordinates of the joints of the human and the robot must be

normalized, as the size of the robot differs from the size of the human. Normalization causes the Euclidean

distance from the zero point to the concerning joint to be one. For the arms, the shoulder is the zero point

and for the legs, the hip is the zero point. The proportions of the lengths of the body parts of the robot are

similar to those of a human being and thus an accurate comparison between the postures can be made after

normalization. The error is now calculated by the following formula:

E = (
joints

∑
i=1

dist(T H[i],T R[i]))2 (3.1)

Where T H[i] is the normalized coordinate of joint i of the given limb of the human skeleton in the torso

coordinate system and T R[i] the corresponding coordinate of the robot. E is the error, which is the summation

of distances between all pairs of corresponding coordinates of the given limb, to the power of two. The

pseudo-code of the evaluation function is shown below.

Algorithm 1 The evaluation function

procedure evaluate(Θ)
TR← f orwardKinematics(Θ)
TR ← normalize(TR)
TH ← normalize(TH)
E← 0
for each joint ∈ Θ do

E← E + dist(TH[joint],TR[joint])
end for
return E2

end procedure

3.2.2 Minimizing the error

The minimizing problem can be defined as follows: find for each limb of the robot a list of joint angles for

which the evaluation function returns a minimal error. In order to solve this problem, the Inverse Kinematics

Levenberg-Marquardt (LM) algorithm is used, also known as damped least-squares (DLS) [1]. This algorithm

was also used in article [8]. The algorithm starts with a list of joint angles of a specific limb with predefined
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values and is iteratively adjusted with the aim to reduce the error returned by the evaluation function. In each

step of the algorithm, the list of angles is adjusted by applying the following formula:

Θi+1 = Θi + (JT · J + λ · I)−1 · JT · −E (3.2)

Where Θi is the current list of joint angles and Θi+1 will be the new list of joint angles. The angles are limited

to stay within the range of motion of the corresponding joint angle values. JT is the transpose of the Jacobian

matrix. λ is the convergence variable. λ also prevents matrix singularities to occur, in which case it is not

possible to calculate the matrix inverse [1]. I is the identity matrix of the result of JT · J. E is the error value of

the concerning limb returned by the evaluation function. The Inverse Kinematics process ends when the error

is below a certain fixed minimum or when a maximum number of iterations have been executed.

Obtaining the Jacobian matrix

The Jacobian matrix contains the first-order partial derivatives of a certain function. In our case, the first-order

partial derivatives are approximated by calculating the local velocity of the error with respect to a change in

joint angle value:
∆E
∆α

. The process of filling the Jacobian matrix is demonstrated by the following pseudo-code.

Algorithm 2 Calculating the Jacobian Matrix

procedure fillJacobian(Θ)
Ecurr ← evaluate(Θ)
for each joint ∈ Θ do

α← Θ[joint]
Θ[joint]← Θ[joint] + β
Enew ← evaluate(Θ)
Θ[joint]← α
J[joint]← Enew − Ecurr

end for
end procedure

Θ is the list of current joint angle values of the corresponding limb. β is a small value that indicates the change

in joint angle value, which is set to 0.5 degrees.
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The Inverse Kinematics process

The Inverse Kinematics error minimization process is demonstrated by the following pseudo-code.

Algorithm 3 The Inverse Kinematics process to calculate the target angles

procedure inverseKinematics(Θlimb
start)

λ← λstart
Ecurr ← evaluate(Θlimb

start)

Θi ← Θlimb
start

f ill Jacobian(Θi)
for i← 0 to maximum iterations do

Θi+1 ← Θi + (JT · J + λ · I)−1 · JT · −Ecurr
Enew ← evaluate(Θi+1)
if Enew < Ecurr then

Θi ← Θi+1
if Enew < ε then

break

end if
λ← λ/2
Ecurr ← Enew
f ill Jacobian(Θi)

else
λ← λ · 2

end if
end for
Θlimb

target ← Θi
end procedure

ε is a fixed value, in our case it is set to 10−5. If the error gets below this value, the Inverse Kinematics process

is stopped. In our work, λ starts with a value of 0.02. The maximum number of iterations is set to 100 to

ensure low calculation time. Θlimb
start is first set to the joint angles of the current limb of the robot posture. The

LM algorithm only finds a local optimum, which is not necessarily the global optimum. If the retrieved error

corresponding to the local optimum is greater than a certain threshold, the algorithm is restarted with a list of

angles with different predefined values.
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3.2.3 Summarizing the target angles calculation process

The process of acquiring the human skeleton and calculating the corresponding target angles is summarized

by the following pseudo-code.

Algorithm 4 The process of acquiring the target angles

procedure calculateTargetAngles

while true do
humanFrame← nextHumanFrame()
if dist(humanFrame) < minAllowedDist then

continue
else

TH ← trans f ormToTorsoCoordinateSystem(humanFrame)
for i← 0 to TOTALLIMBS do

inverseKinematics(Θi
curr)

end for
updateTargetAngles(Θtarget)

end if
end while

end procedure

3.3 Moving the robot towards the target angles

The second part of the imitation process consists of moving the robot towards the target angles iteratively

while keeping balance. In this process small steps are made from the current posture of the robot to the desired

posture of the robot. For each small step the desired amounts with which the angles should be rotated are

stored in an angle list. A maximum joint velocity is maintained to guarantee safe motion and stability. The

proportions between angle velocities of the joints are maintained when a modification has to be made to

achieve the maximum velocity. Hereafter, the list of angles is modified by the balance controller to ensure the

resulting posture of the current step of the process is stable. The modification guarantees several conditions:

• The supporting feet stay fixed to the ground.

• The modification is minimal such that the similarity between the human posture and the robot posture

is maintained.

• The calculated posture is within the range of motion of the robot.

• In the projection of the coordinate system onto the xz-plane, the center of mass is located inside the

support polygon.

Finally, the resulting list is sent to the robot, which will rotate its joints accordingly. Three support modes are

considered by the balance controller: The double-foot support mode, left-foot support mode and right-foot
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support mode. The left-foot support mode and right-foot support mode comprise the single-foot support

mode. The balancing process will be explained in the next chapter.

3.4 Balance control

3.4.1 The considered support modes

Single-foot support mode

In the single-foot support mode, the robot balances on a single leg. The projection of the center of mass of

the robot on the ground is forced to stay within the support polygon of the supporting foot. An example of a

balanced posture in single-foot support mode can be seen in Fig. 3.3. If the projection of the center of mass on

the ground is located outside of the supporting foot, the robot will tilt. The supporting foot is constrained to

stay fixed to the ground.

Figure 3.3: Balance maintenance in the single-foot support mode.

Double-foot support mode

In the double-foot support mode, both legs are used to maintain balance. The support polygon is the entire

area between the two feet, as shown in Fig. 3.4. The projection of the center of mass on the ground has to stay

within the support polygon at all time, or the robot will tilt. The robot is most stable when the center of mass

projects on the straight line that connects the two ankles of the robot [8]. Both feet are constrained to stay fixed

to the ground.
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Figure 3.4: Balance maintenance in the double-foot support mode.

3.4.2 Modification of the angle list

The process of Inverse Kinematics is used to modify the angle list to maintain the balance of the robot. The

Inverse Kinematics process can be written as a quadratic program, which is solved every 20 milliseconds using

the open source library qpOases [2]. The classical form of a quadratic program is:

min
1
2

∣∣∣∣Y−Ydes∣∣∣∣2
Q s.t.

AY + b = 0

CY + d ≥ 0
(3.3)

Where Ydes is the desired solution. Y is the solution to be calculated such that the requirements described in

chapter 3.3 are met. Y and Ydes contain the joint angles of the robot. Q is a given real symmetric matrix. A, b, C

and d are the matrices and vectors that express the linear equality and inequality constraints respectively.

In this case, the equality constraint is keeping the concerning feet fixed to the ground and the inequality

constraints are keeping the projection of the COM on the ground inside the support polygon and keeping the

joint values within the joint value limits. The coordinates of the center of mass can be calculated with Forward

Kinematics from the joint angles, total mass of the robot, mass of the parts of the robot and lengths of the parts.

The process of calculating the coordinates of the center of mass is explained in article [5]. Additionally, in the

single-foot support mode, the foot of the free leg is kept parallel to the ground by adjusting the angles of the

ankle, as long as it is feasible by the range of motion of the ankle. This makes it easier to safely put the free

foot back on the ground when requested. The angles of the free foot relative to the ground can be calculated
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from the joint angles in the kinematic chain from the support foot to the free foot. With this information, the

needed modification of ankle joint angles in the current angle list can be calculated. The final modified angle

list is sent to the robot, which rotates its joints accordingly.

3.4.3 Transitions between support modes

The next support mode of the robot is determined by the desired support mode, derived from the last obtained

human skeleton, the current support mode of the robot and the positions of the feet of the robot. If the

difference in height between the left foot and right foot of the human skeleton is greater than a certain

threshold, in our case 15 centimetres, the desired support mode is set to be single-foot support mode. This will

be left-foot support mode if the left foot is positioned lower than the right foot and right-foot support mode in

the opposite case. Otherwise the desired support mode is set to be double-foot support mode. The diagram

shown in Fig. 3.5 shows how the next support mode of the robot is determined. When a transition is made

from double-foot support mode to one of the single-foot support modes, the COM of the robot is first shifted

to the concerning support foot. This is done by applying the double-foot support mode balance control, with

the COM constrained inside the support polygon of the concerning supporting foot. A transition from one of

the single-foot support modes to the double-foot support mode can only be done when both feet of the robot

are on the ground. There are a number of requirements that have to be satisfied before the free foot is put back

on the ground:

• The free foot is four centimetres or less from the ground.

• The current support mode differs from the desired support mode.

• The polygons of the feet projected onto the xz-plane do not intersect.

Figure 3.5: Determination of transitions between the support modes of the robot.
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Chapter 4

The setup

4.1 The NAO robot

The humanoid robot that has been used to imitate the human is the NAO robot. The robot is described in the

following chapters.

4.1.1 The robot in general

NAO is a robot made by the company Aldebaran Robotics. NAO has a total height of 58 centimetres, which is

approximately one-third of the average height of an adult human being. The robot weighs 4.3 kilograms. NAO

is an advanced robot with 25 degrees of freedom (DOF), as can be seen in Fig. 4.1. The HipYawPitch actuators

are coupled. In other words, the NAO robot can perform 25 independent motions. This makes it possible for

the robot to imitate complex human postures.

4.1.2 Sensors

NAO is equipped with many sensors. The location of the sensors are shown in Fig. 4.2. The robot contains

two HD cameras, which are located in the forehead. The cameras can be used for object recognition. Four

microphones are located in the head of the robot, which are used to capture sound in the environment. This

makes it possible for the robot to recognize human voices and to be commanded by human spoken text. A

loudspeaker is located in each ear, which enables the robot to speak. Two sonar sensors are located in the torso,

with which the distance to obstacles in the environment can be measured. This can be used to prevent the

robot from colliding against objects and possibly damaging itself. NAO also contains two infra-red emitters

and receivers, located in the eyes. This makes it possible to use NAO as a remote control or receive orders

from another remote control, which can be another NAO robot. An inertial board is located in the torso. This

inertial board contains two gyrometers and an accelerometer. Furthermore, NAO contains nine tactile sensors.
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Figure 4.1: Actuators of NAO
Retrieved May 22, 2017 from http://doc.aldebaran.com/2-1/family/nao_dcm/actuator_sensor_names.html.

For example, the tactile sensors in its hands enable the robot to know when its hand is touched. Finally, four

pressure sensors are located in each foot to measure the distribution of the weight on its feet.

Figure 4.2: Sensors of NAO
Retrieved May 22, 2017 from http://doc.aldebaran.com/1-14/family/nao_h25/index_h25.html.

4.1.3 NAOqi Framework

NAO comes with an extensive framework that is used to program the robot. The framework is cross-platform

and cross-language. It contains both a C++ API and a Python API. The API’s contain functionality for motion,

audio, vision, people perception, sensor communication, balance maintenance and more.
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4.2 Programming setup

The programming language that has been used to write the imitation program is C++. The Windows SDK 2.0

has been used to acquire the human skeleton data from the Kinect data. The Eigen library [3] has been used

for the matrix calculations. The NAOKinematics library [6], written by N. Kofinas, has been used to solve the

Forward Kinematics of the NAO robot. As this library does not support Forward Kinematics of joints that

are not located at the end points of the limbs, i.e. the knees and the elbows, modifications had to be made.

The Whole Body control API of the NAOqi framework has been used for the balance maintenance of the robot,

which uses the qpOases open source library described in chapter 3.4.2.

4.3 Simulators

The simulator Choregraphe, made by Aldebaran Robotics, has been used while developing the imitation system,

before the balance maintenance system had been implemented. This simulator does not contain gravity. During

the development of the balance maintenance system, a simulator that contains gravity was needed. The chosen

simulator that meets this requirement is Webots, made by the company Cyberbotics. Webots is a professional

simulator used in business as well as in research and education. The two simulators are shown in Fig. 4.3

below.

Figure 4.3: Simulators Choregraphe (left) and Webots (right).
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Chapter 5

Experiments

5.1 Experiments on a virtual robot in simulator Webots

Similarity between human motion and robot motion

Four poses, shown in Fig. 5.1, have been chosen to measure the similarity between the human motion and

robot motion. These postures cover the biggest part of the range of motion of the NAO robot in the double-foot

support state. First the angle trajectories of the robot and the human are measured during the consecutive

Figure 5.1: The four poses that have been selected to evaluate the similarity between the human motion and robot motion.

performance of poses A, B, C and D. The robot starts from the zero posture, in which all its joint angles are set
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to zero. The results are shown in Fig. 5.2. Additionally the offsets of the arms, elbows, knees and ankles of the

robot from the desired location are measured for the same motion sequence. The results are shown in Fig. 5.3.

As can be seen in the graphs in Fig. 5.2, the angle trajectories of the limbs of the robot closely follow the angle

Figure 5.2: The angle trajectories of the left elbow, the hip and the left knee of the human and the robot during the
consecutive performance of the four poses illustrated in Fig. 5.1 over time.

trajectories of the limbs of the human over time. The Levenberg-Marquardt algorithm effectively calculated the

imitated postures of the humanoid by minimizing the evaluation function allowing the robot to imitate the

human by rotating its joints. In the graph of the angle trajectory of the hip, one can observe the robot reaches

its hip joint angle value limit while imitating posture C at circa 13000 ms and is thus not able to reach the

hip joint angle value of the human. Also in the graph of the left knee, at circa 18000 ms one can observe the
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robot reaches its maximum joint angle velocity and is not able to follow the human with the same velocity.

The delay between the human angle and robot angle is caused by maximum joint angle velocities, balance

control modifications and computation time. The graphs in 5.3 show the imitation system effectively reduces

Figure 5.3: Offsets of the hands, elbows, knees and ankles of the robot in centimetres from the desired locations during the
consecutive performance of the four poses illustrated in Fig. 5.1 over time.

the offsets of the joint locations from the desired locations during the imitation of postures A, B, C and D. The

desired locations are the normalized coordinates of the human joints relative to the zero point of the limb.
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When another posture is adopted by the human, the desired locations change from position, resulting in an

increase of the offsets between the robot joints and the desired locations. At the end of each execution of the

postures, shown by the dotted lines, the offsets have been effectively reduced.

Effect of the balance controller

To measure the effect of the balance controller on the stability of the robot, five poses illustrated in Fig. 5.4

have been selected. Balance is important during the consecutive performance of these five poses to prevent

the robot from falling. During the consecutive performance of the poses, the distance between the left ankle

Figure 5.4: The five poses that have been selected to evaluate the effect of the balance controller.

and the center of mass and the right ankle and the center of mass is measured. Also, the minimal distance

between the center of mass and the line between the two ankles is measured which is the distance from the

center of mass to the optimal position in the double-foot support state. The coordinate system is projected

onto the xz-plane, as the height of the center of mass does not influence the stability of the robot. The three

measurements are performed in parallel on a robot with balance control and a robot without balance control.

The results are shown in Fig. 5.5 and Fig. 5.6.

The graphs in Fig. 5.5 and Fig. 5.6 show the balance controller is effective. During the single-foot support

phases, the balance controller successfully shifts the center of mass to the supporting foot by reducing the

distance from the COM to the supporting ankle to zero. The graph that corresponds with the robot without

balance control shows this distance was around 15 centimetres at the maximum during the performance of

posture D in which the robot is in the right-foot support mode, which would make the robot fall when gravity

is enabled as the center of mass lays outside of the support polygon. The graph in Fig. 5.5 shows the maximum

minimal distance from the COM to the optimal location, the line between the two ankles, is only approximately

five centimetres at the maximum when the balance controller is enabled. The corresponding maximum distance
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Figure 5.5: Distance between the COM and the line between the two ankles, the left ankle and the right ankle in centimetres
with balance control enabled during the consecutive performance of the poses illustrated in Fig. 5.4. The coordinate system
is projected onto the xz-plane.

Figure 5.6: Distance between the COM and the line between the two ankles, the left ankle and the right ankle in centimetres
with balance control disabled during the consecutive performance of the poses illustrated in Fig. 5.4. The coordinate system
is projected onto the xz-plane.

of the robot with the balance controller disabled is circa 17 centimetres during the performance of posture C in

which the robot is in the double-foot support mode. This would make the robot fall as the center of mass is

located outside of the support polygon.

5.2 Experiments on the real robot

Several postures in the single-foot support phase and double-foot support phase have been performed by

a real NAO robot. Four complex postures are shown in Fig. 5.7. Transitions between support modes could

sometimes cause a fall of the robot. Putting the free foot back on the ground sometimes happens with a too

high velocity, however this is done by using the NAOqi framework in which the velocity cannot be changed.

Thus improvements can be made when putting a free foot back on the ground and when lifting a foot from
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the ground to make the system more robust. When the robot has successfully switched from support mode it

is able to imitate very complex postures, for example the fourth posture shown in Fig. 5.7.

Figure 5.7
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Chapter 6

Conclusion

In this paper a human motion imitation system for humanoids has been proposed. The imitation process

consists of two parallel sequences. In the first sequence, human motions are captured with the Kinect 2

motion capture system. The coordinates of the human joints are extracted from the Kinect data. Finally the

desired target angles of the robot corresponding to the human joint coordinates are calculated through Inverse

Kinematics. This is done by minimizing an evaluation function which calculates the distance between the

human posture and a robot posture. In the second sequence, small steps are made by the robot towards

the target angles. For each such step, balance maintenance is applied with the use of the qpOases library.

Experiments on a NAO robot have been performed. The experiments on the virtual NAO robot in simulator

Webots show the robot closely follows the human motion. The angle trajectories of the limbs of the robot

closely follow the angle trajectories of the limbs of the human over time with little delay. The delay is caused by

maximum joint angle velocities, balance control modifications and computation time. In some cases an angle

cannot be reached because it is outside of the range of motion of the robot. The imitation system also effectively

reduces the offsets from the current joint location to the desired joint location over time. Experiments of the

balance control show the balance control is effective as the distance from the center of mass to the desired

location is significantly lower when balance control is enabled as compared to the case in which balance

control is disabled. The experiments on a real NAO robot show the system is capable of imitating complex

human motions in reality. Future work would be improving the balance maintenance of the robot during the

transitions between support modes, as the transitions could sometimes cause a fall of the robot. A system

that puts the free foot of the robot back on the ground at a lower pace could be implemented to make the

transition of single-foot support state to double-foot support state more stable. To improve the lifting of the

foot from the ground, a fixed motion could be implemented for the leg that has to be lifted from the ground,

after which the normal imitation process is continued. Furthermore, code of other imitation systems could be

requested to compare the systems by performing simultaneous experiments.
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