

Agile Maturity and Quality Metrics

Name: Mohsen Rezai

Student-no: s1330446

Date: July 2015

1st supervisor: Dr. Werner Heijstek

2nd supervisor: Dr. Christoph Johann Stettina

Master Thesis
Leiden Institute of Advanced Computer Science

(LIACS) Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Universiteit Leiden
Master ICT in Business

1

ACKNOWLEDGMENTS

First of all I want to express my gratitude to everyone involved in supporting this thesis research

project. I would like to thank the management of involved organizations in Netherlands, United

Kingdom and Israel for their support and brining me in touch with the relevant people in their

organization. The individuals of the representing organizations have really contributed to shape this

study, I am thankful for your effort.

I would like to thank my first supervisor, Werner Heijstek for his support, guidance and helping me

through the chosen path of this thesis. And finally, I would like to thank my second supervisor,

Christoph Johann Stettina for his feedback and support.

2

ABSTRACT

Implementing agile methodologies according to the principles (Agile manifesto, 2001) can be

challenging. Agile maturity and ensuring high software quality are imperative aspects to software

development organizations. Agile development promises to provide quality assurance (Sirshar & Arif,

2012), but how is agile maturity related to software quality metrics? We conducted a multiple case

study in three countries across 11 organizations to answer this question. With aid of semi-structured

interviews and surveys, we collected the necessary data to support our research. We measured the

teams on agility aiming on multiple dimensions including software quality, testing process, agile

practices, software deliveries and organizational strategy. Using this, we analyzed what quality

metrics are implemented and how they affect agile maturity.

We concluded that the relation between agile maturity and quality metrics is most apparent in low

and high mature organizations, considering that the use of quality metrics is not very popular. The

focus of low mature organizations is mainly to improve on existing agile practices and the use of

quality metrics is neglected. Organizations with higher maturity are focused to increase quality, using

quality metrics related to testing aspects. As a result, agile maturity leads to higher software quality,

indicated by effective implementation of agile practices related to software quality.

3

Table of Content

Acknowledgments ... 1

Abstract ... 2

1 Introduction ... 8

1.1 Motivation ... 8

1.2 Research subject ... 9

1.3 Research scope .. 11

1.4 Relevance .. 11

1.5 Thesis outline .. 11

2 Theoretical framework .. 12

2.1 Agile vs waterfall method .. 12

2.2 Maturity ... 12

2.3 Literature - Agile maturity models .. 14

2.3.1 Overview of Agile maturity models ... 14

2.3.2 Agile software solution framework (ASSF) .. 15

2.3.3 Agile maturity model ... 16

2.3.4 The agile maturity map (AMM) ... 18

2.3.5 A maturity model for software development organizations ... 20

2.3.6 Agile adoption framework (AAF) ... 20

2.3.7 Scrum maturity model (SMM) ... 22

2.4 Quality ... 24

2.4.1 Software quality .. 24

2.4.2 Quality metrics .. 24

2.5 Literature - Software Quality metrics .. 25

2.5.1 Overview of metrics .. 25

2.5.2 Review of literature ... 25

3 Methodology ... 33

3.1 Research design ... 33

3.2 Literature review ... 33

3.3 Research question design .. 33

3.4 Case selection strategy .. 38

3.4.1 Interview and survey ... 38

3.5 Method .. 38

3.6 Data analysis .. 39

3.6.1 Maturity score calculation ... 39

4 Results ... 42

4

4.1 Participating organizations .. 42

4.2 Agile maturity score .. 45

4.2.1 Total score ... 51

4.3 Effective quality metrics .. 53

4.3.1 Collected measures/metrics .. 53

4.3.2 Measure software quality ... 54

4.3.3 Most important quality metrics .. 55

4.3.4 Effective quality metrics .. 56

4.3.5 Outcome .. 57

4.4 Effective agile practices to support maturity .. 59

4.4.1 Applied practices in organizations .. 59

4.4.2 Agile practices to determine maturity .. 61

4.4.3 Necessary agile practices... 63

4.4.4 Extra elements ... 64

4.4.5 Outcome .. 64

4.5 How do organizations measure agile maturity ... 66

4.5.1 Agile assessment ... 66

4.5.2 Agile training/workshops .. 67

4.5.3 Agile experience of the team .. 68

4.5.4 Agile certifications ... 69

4.5.5 Improvement areas for teams ... 70

4.5.6 Missing agile practices ... 71

4.5.7 Organizational focus points to improve on agile .. 71

4.5.8 Outcome .. 72

4.6 Impact of successful or failed projects on quality metrics .. 73

4.6.1 Rate of successful projects .. 73

4.6.2 Customer feedback ... 74

4.6.3 Measures derived from poor quality .. 77

4.6.4 Outcome .. 78

4.7 Maturity levels and quality metrics ... 79

4.7.1 Outcome .. 80

5 Discussion .. 81

5.1 Reflection on research questions .. 81

5.2 Agile maturity .. 84

5.2.1 Organizational strategy ... 85

5.2.2 Agile maturity vs experience in agile ... 85

5

5.3 Quality metrics, necessary and neglected ... 86

5.3.1 Measuring software quality .. 86

5.3.2 Introducing new quality metrics ... 86

5.4 Challenging questions ... 87

5.5 Agile practices ... 88

5.5.1 Difficult practices ... 88

5.6 Team experience ... 88

5.7 Roles in teams ... 88

5.8 Recommendations .. 89

6 Conclusions .. 90

6.1 Future work ... 92

7 Strenghts and weaknesses .. 92

7.1 Validity considerations .. 92

8 Bibliography ... 94

9 Appendix .. 98

9.1 A – A sample of survey .. 98

9.2 B – Interview questions ... 102

9.3 C - Improvement areas for teams ... 103

9.4 D – Overview all quality metrics in literature .. 104

10 Glossary ... 106

11 About the Author .. 107

6

LIST OF FIGURES__

Figure 1: AAIM by Qumer and Henderson-Sellers .. 15

Figure 2: 5 levels of AMM.. 17

Figure 3: Agile maturity map (AMM) .. 19

Figure 4: Agile Adoption Framework ... 22

Figure 5: Research design .. 33

Figure 6: Research questions design ... 34

Figure 7: Organization A .. 46

Figure 8: Organization B .. 46

Figure 9: Organization C .. 47

Figure 10: Organization D .. 47

Figure 11: Organization E .. 48

Figure 12: Organization F .. 48

Figure 13: Organization G .. 49

Figure 14: Organization H .. 49

Figure 15: Organization I ... 50

Figure 16: Organization J ... 50

Figure 17: Organization K .. 51

Figure 18: Total maturity score ... 51

Figure 19: Maturity vs experience ... 52

Figure 20: Occurrence of metrics .. 54

Figure 21: How is software quality measured ... 54

Figure 22: Most important quality metrics ... 55

Figure 23: Maturity vs most important quality metrics .. 56

Figure 24: Overview of agile practices occurrence in organizations ... 61

Figure 25: Agile practices that are considered necessary ... 63

Figure 26: Assessment in organizations .. 66

Figure 27: Training and workshop ... 68

Figure 28: Agile certifications in organizations ... 69

Figure 29: Improvement areas indicated by teams .. 70

Figure 30: Types of feedback... 75

Figure 31: Feedback time .. 76

Figure 32: Feedback impacted different areas.. 77

7

LIST OF TABLES__

Table 1: Agile maturity models and frameworks ... 9

Table 2: Overview of maturity models with corresponding characteristics .. 14

Table 3: Specific details of maturity levels ... 15

Table 4: Overview of categorized metrics .. 25

Table 5: Software quality metrics ... 26

Table 6: Metrics to measure implementation process of XP ... 29

Table 7: CK suite metrics .. 30

Table 8: JAPS metrics .. 30

Table 9: Metrics based on three categories ... 32

Table 10: Interview and survey questions .. 37

Table 11: Maturity level calculation ... 39

Table 12: Maturity dimensions and related questions .. 39

Table 13: Score definition ... 41

Table 14: Agile maturity table .. 52

Table 15: Applied metrics in organizations .. 53

Table 16: Most important quality metrics .. 55

Table 17: Effective quality metrics ... 56

Table 18: Current quality metrics vs most important quality metrics ... 58

Table 19: Agile practices applied in organizations ... 59

Table 20: legend ... 61

Table 21: Agile practices in organization J, E, F .. 62

Table 22: Agile practices that indicate growth ... 62

Table 23: Necessary agile practices in organizations ... 63

Table 24: Implementation of continuous delivery and test automation ... 64

Table 25: Summary of four dimensions of agile practices ... 64

Table 26: Effective agile practices to support maturity ... 65

Table 29: Team member’s experience with agile ... 69

Table 30: Desired agile practices that are not in place .. 71

Table 31: Organizational focus point to improve ... 72

Table 32: Rate of successful projects in agile organizations .. 74

Table 33: Customer feedback based on three dimensions .. 75

Table 34: Implementing of new quality metrics in organizations .. 79

Table 35: Quality metrics and its relation to maturity levels ... 80

Table 36: Overview of research questions ... 90

Table 37: Improvement areas in teams .. 103

Table 38: Current metrics vs characteristics of effectiveness .. 104

Table 39: Overview of all quality metrics discussed in literature... 105

8

1 INTRODUCTION

The broad introduction of agile methods such as XP and scrum (Dyba & Dingsøyr, 2008) has triggered

many organizations to implement these methods and benefit from it. It’s been a few years that agile

methodologies have won territory from the waterfall method. This is mostly related to the fact that

agile methods can be implemented fast, and is flexible due to frequent feedback loops, iterative

reviews and close contact with the business (Stettina & Hörz, 2015).

The most popular agile method is scrum, with a majority of 73% (State of agile survey, 2014). Scrum

aims to replace command-and control management with collaborative self-managing teams (Moe,

Dingsøyr, & Røyrvik, 2009). The team autonomy is an important subject within scrum.

1.1 Motivation

Within agile and specifically scrum, is empowering teams an important factor. Agile implementation

and self-organizing teams can be helped by increased development team self-awareness (Stettina &

Heijstek, 2011). This is very much related to growth of team in agile development. But how is this

growth determined and what factors are crucial for agile growth? And the question remains how this

growth affects software quality.

Measuring organization’s agility based on the teams seems to be a challenge. Organizations want to

discover what the improvement areas are to grow in agile development. As a result, there are many

agile maturity models (Ozcan-Top & Demirörs, 2013) that provide insight regarding how to measure

maturity. It is interesting to discover what the relation is between agile maturity and software

quality. Organizations that have been implementing agile for a couple of years can be considered

becoming mature. But how will this maturity affect the software quality? Particularly, what is the

effect of agile maturity on software quality metrics? These are the interesting questions that we

want to answer with this research.

From the quality perspective, agile development promises to provide quality assurance (Sirshar &

Arif, 2012). But on the other hand, these methodologies do not explicitly provide practices for

managing and measuring quality and reliability, as described in ISO/IEC 9126 (Jinzenji, Williams,

Hoshino, & Takahashi, 2013). In this study we want to discover how this quality assurance is realized

with use of particular quality metrics. And are these agile or traditional metrics? Approaches from

traditional Quality Assurance are independent from the underlying Development Methodology, and

if combined well, agile software development may benefit from these (Janus, Schmietendorf, Dumke,

& Jäger, 2012). This study will discover the applied quality metrics in organizations, and will spot any

relation to agile maturity of organizations.

9

1.2 Research subject

The use of Agile methods have increasingly attracted interest in the current software industry

environment (Cardozo & Neto, 2009). Lack of experience in agile methods is one of the leading

causes that agile projects fail (State of agile survey, 2014).

Agile maturity can be measured using models and frameworks (Packlick, 2007; Patel &

Ramachandran, 2009; Qumer & Henderson-Sellers, 2009; Sidky & Arthur, 2007; Yin & Figueiredo,

2011; Soares & Meira, 2013). See below for a list of few popular selected models and frameworks.

Model/framework Authors Number of levels

Agile maturity model (AMM) Patel & Ramachandran (2009) 5

Agile maturity map (AMM) Packlick (2007) 5

Agile Adoption and
Improvement Model (AAIM)

Qumer & Henderson-Sellers
(2008)

6

Sidky Agile Measurement Index
(SAMI)

Sidky (2007) 5

Scrum maturity model (SMM) Yin & Figueiredo (2011) 5

Table 1: Agile maturity models and frameworks

In all described models there is a consensus that achieving higher maturity results in higher quality

software. In addition, metrics play an important role in establishing maturity: The higher levels of

maturity require many metrics - depending on the model used.

More mature agile development practices are expected to result in higher quality software. Software

quality metrics are therefore expected to play a role in determining agile maturity. However, there is

no clear indication what the role of software quality metrics is in achieving a higher maturity.

Consequently, we propose the following (main) research question:

How are the maturity of an agile software development approach and the use of software quality
metrics related?

Research sub-questions:

● RQ1: What are the most effective quality metrics that are being used in agile organizations?

● RQ2: What are the most effective agile practices that support maturity?

● RQ3: How do organizations measure the maturity of their agile software development?

● RQ4: What is the impact of successful or failed projects on quality metrics?

● RQ5: At what maturity levels are which software quality metrics implemented?

10

Agile software development differs from traditional software development. Enhancing quality is a

reason for organizations to adopt agile, and according to agile survey, 66% of the organizations have

prioritized this as very important (State of agile survey, 2014). Quality plays an essential role in the

fast pace software development environment (Imreh & Raisinghani, 2011). It is interesting to find out

how agile organizations cope with the fast pace development and ensuring high quality and its

relation to maturity. The ISO/IEC 9126 standard intends to ensure the quality of all software products

and it consists of four parts: quality model, external metrics, internal metrics and quality in use

metrics (ISO/IEC 9126, 2001).

See below for few possible quality metrics that can be used in agile organizations and are relevant to
this research. This list will not represent the actual selected quality metrics, it is purely stated to
provide an example which can be used in this research.

● Customer satisfaction (external quality)
● Code complexity (internal quality)
● Reported defects (external quality)
● Coverage (internal quality)
● Level of refactoring (internal quality)
● Lines of code (internal quality)

There are many quality metrics that organizations can apply to measure quality. An example can be

customer satisfaction (external quality), this can be measured by post-release quality, it includes the

number of defects delivered to and reported by the customer (Layman, Williams, & Cunningham,

2006; Sfetsos & Stamelos, 2010). A study on quality metrics showed that implementing agile

software development and measuring post-release quality can contribute to a similar or better

productivity than the industry average (Layman, Williams, & Cunningham, 2006).

Another quality metric can be refactoring, that leads to a higher code reuse and better quality

(Moser, Abrahamsson, Pedrycz, Sillitti, & Succi, 2008; Kunz, Dumke, & Schmietendorf, 2008).

However, (Moser, Abrahamsson, Pedrycz, Sillitti, & Succi, 2008) discusses that “the majority of

software developers and researchers agree that refactoring has long-term benefits of the quality of a

software product (in particular on program understanding) there is no such consensus regarding the

development productivity” (Moser, Abrahamsson, Pedrycz, Sillitti, & Succi, 2008). All the

aforementioned software quality metrics are used in agile development methods and can be related

to agile maturity.

11

1.3 Research scope

This study will only be focused on organizations that are implementing agile methodologies. Any

agile method can be part of this study, there is no selection made between the popular methods.

Due to the increased interest of organizations in agile methodologies, this study will only focus on

the agile maturity of the organizations and the use of particular quality metrics in agile teams.

This study will be based on a multiple case study in 11 organizations in total. We have selected

organizations that just started implementing agile, and organizations that have been implementing

agile methodologies for seven years already. This range should provide a low, medium and high level

maturity.

1.4 Relevance

This research has relevance to science and the practical use of agile methods with regards to agile

maturity and software quality metrics. On the scientific base, there are no significant studies

conducted on the relation of these aspects. The aim of this study is to contribute to the practical use

of software quality metrics in agile projects and provide ways to measure agile maturity within

organizations. In addition, this study aims to provide a general overview of the agile maturity levels

of organizations and the corresponding imperative aspects of quality related to that specific maturity

level.

1.5 Thesis outline

The structure of this study consists of six chapters. In chapter 1, Introduction, we introduce the topic,

research subject, and the research questions.

In chapter 2, Theoretical Framework, the related work is reviewed based on the topics of agile

maturity models and software quality metrics. This chapter provides the necessary knowledge and

base for this study.

In chapter 3, Methods, all the methods applied in this research are described. This includes research

design, data collection, and case selection strategy methods. Furthermore we describe the data

analysis approach.

In chapter 4, Results, the findings of this study will be described.

In chapter 5, Discussion, we discuss the results by further elaborating these and trying to find out

what these means.

In chapter 6, Conclusion, we conclude the findings and the main research contributions are outlined.

Furthermore, the future research will be described.

12

2 THEORETICAL FRAMEWORK

In the following sections the literature based on the related work is reviewed. First we will look into

maturity and study agile maturity models in order to understand how agile maturity is measured and

how it aids this study. A summary of each agile maturity model is provided in section 2.3.

Subsequently, in section 2.4 we will focus on quality, and in section 2.5 we will specifically review

literature related to quality metrics.

2.1 Agile vs waterfall method

Software development has undergone a transformation in the past years. Agile methodologies have

found their place in most of the software development practices and are replacing popularity of

traditional software development methods such as the waterfall method. Based on a survey

conducted by (Begel & Nagappan, 2007), agile methodology is popular due to rapid releases,

flexibility of design and improved communication between team members.

Agile methodologies have gained popularity in the past years (Yin & Figueiredo, 2011) and many

organizations are moving towards this emerging method. Agile methodologies have been around for

some years, and organizations are trying to react in the fast pace environment of IT. IT organizations

are required to deal with the fast technological changes and adapt to the extremely fluid

environment, become more efficient and responsive in relationship to continuously rapidly changing

environment, ensuring continuous future growth and prosperity (Kassim & Zain, 2004).

2.2 Maturity

Maturity in software development can be measured by implementing Capability Maturity Models

(CMM) or Capability Maturity Model Integrations (CMMI). CMM is developed by Software

Engineering Institute (SEI) and is probably the best known model to improve software processes

(Paulk, 1999). CMM consists of five levels to improve the maturity of software processes (Paulk,

Konrad, & Garcia, CMM Versus SPICE Architectures , 1995). The five levels are defined as:

1. Initial:

The software process is characterized as ad hoc, and occasionally even chaotic. Few

processes are defined, and success depends on individual effort and heroics.

2. Repeatable:

Basic project management processes are established to track cost, schedule, and

functionality. The necessary process discipline is in place to repeat earlier successes

on projects with similar applications.

3. Defined:

The software process for both management and engineering activities is

documented, standardized, and integrated into a standard software process for the

organization. All projects use an approved, tailored version of the organization's

standard software process for developing and maintaining software.

4. Managed:

Detailed measures of the software process and product quality are collected. Both

the software process and products are quantitatively understood and controlled.

5. Optimizing:

Continuous process improvement is enabled by quantitative feedback from the

process and from piloting innovative ideas and technologies.

Capability Maturity Model Integration (CMMI) is developed by the Software Engineering Institute

(SEI) in 2006 to integrate and standardize the separate models of CMM. CMMI models are

13

implemented by organizations to improve development, acquisition and maintenance processes

(Alegria & Bastarrica, 2006). CMMI models are generally used to establish improvement objectives,

improving the processes, offering guidelines to create stable and mature processes. Like the agile

maturity models, there are many CMMI models available that are designed for specific organizations.

Based on the organizational structure, a proper CMMI model can be identified and implemented. The

processes of CMMI models are staged in five maturity levels to enable support and improvements.

Standardized Process Improvement for Construction Enterprises (SPICE) is a process improvement

framework that is implemented in the construction industry (M.Sarshar, et al., 2000). SPICE is an

integration of CMM quality models and ISO/IEC 15504 (Alegria & Bastarrica, 2006). SPICE has been

identifying the benefits of CMM to develop a construction specific framework.

These models are hard to implement in an agile environment, as a result, agile maturity models have

been introduced. In section 2.4 we review agile maturity models.

14

2.3 Literature - Agile maturity models

This section focuses on agile maturity models specifically mentioned in the literature. According to

(Kohlegger, Maier, & Thalmann, 2009), maturity models are instruments used to rate capabilities,

and based on this rating, initiatives can be implemented to improve the maturity of an element—a

person, an object or a social system. We have been studying the most popular maturity models and

listed these in the following sections. Initially we provide an overview of each agile maturity model,

then every model is reviewed in detail.

2.3.1 Overview of Agile maturity models

Table 1 provides an overview which summarizes the reviewed literature and presents an overview of

all maturity models and their relation to specific characteristics. We analyzed how many levels a

model provides, and does the level indicate what the characteristics of this levels are. The core

characteristics should provide the overview of the level in order to differentiate between the levels.

We analyzed whether the model is derived from the Capability Maturity Model Integration (CMMI).

The level objective should provide the necessary goals to achieve in order to rise to the next level.

Furthermore, we analyzed on which agile method the model is applicable. And finally, we looked if

the model provides any naming convention for the levels.

Maturity model characteristics

Model #levels Detailed level
characteristics

CMMI
related

Level
objectives

Agile
method

Definition
of levels

Levels
naming

Agile adoption
and
improvement
model (AAIM)

6 Yes No Yes All Yes Yes

Agile maturity
model (AMM)

5 Yes No Yes All Yes Yes

Agile maturity
map (AMM)

5 No No No All Yes Yes

Maturity model
for SD
organizations

5 No Yes No All Yes No

Agile adoption
framework
(AAF)

5 Yes No Yes All Yes Yes

Scrum maturity
model (SMM)

5 Yes No Yes Scrum Yes Yes

Table 2: Overview of maturity models with corresponding characteristics

In table 3 we present the summary of all maturity models with their content related to specific levels.

We analyzed each model and their corresponding level and described what the levels are consisted

of. This table shows the differences and similarities in maturity levels, according to each level.

Level focus points

Model Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Agile
adoption and
improvement
model (AAIM)

Speed,
flexibility,
responsiveness

Communication

Artifacts,
documentation

People-oriented Learning Lean
production,
keep agile

Agile maturity
model (AMM)

Process
improvement,
goals

Communication Customer
relationship,
development
practices and
quality

People
orientation,
project
management
practices

Performance
management,
defect
prevention

15

Agile maturity
map (AMM)

Goals and
values

Development
practices

Agile practices Continuous
improvement
and innovation

Coaching,
mentoring,
learning

Maturity
model for SD
organizations

Initial, no
methodology
used

Planning and
monitoring
projects

Standard
processes

Manage
processes with
agile metrics

Continuous
improvement
and lean SW
development

Agile
adoption
framework
(AAF)

Communication
and
collaboration

Early and
continuous
delivery

High quality
and
continuous
improvement

Documentation,
customer
relationship

Sustain agility

Scrum
maturity
model (SMM)

Process
improvement,
goals

Agile practices,
quality
satisfaction

Customer
relationship,
iteration
management

Standard
processes,
process
performance
management

Performance
management

Table 3: Specific details of maturity levels

2.3.2 Agile software solution framework (ASSF)

Agile software solution framework (ASSF) is developed by (Qumer & Henderson-Sellers, 2009) in
order to assist managers in assessing the degree of agility they require and how to identify
appropriate ways to introduce this agility into their organization. This model contains three
conceptual aspects: knowledge, governance and method core.

Figure 1: AAIM by Qumer and Henderson-Sellers

Furthermore, this model (Qumer & Henderson-Sellers, 2009) is developed to assess agility, adoption
and improvements of agile processes. This model is called the Agile Adoption and Improvement
Model (AAIM) and is method independent. The degree of agility of an agile process is measured
quantitatively by using the agility measurement modelling approach (the 4-DAT tool) which is a

16

toolkit created to measure level of agility. This model consists of three blocks. There are six levels
available, spread over three blocks; prompt, crux and apex. These blocks represent the agility from
basic to advance.

The prompt block consists of a single level AAIM 1, called agile infancy. At this level the software
development organizations don’t implement standard agile methods, they rather apply basic parts of
agile properties (speed, flexibility and responsiveness). Release and iteration planning are part of this
level. The major goal at this level is to remain flexible and apply responsiveness to changes.
The second block is called crux and contains of three levels; agile initial, agile realization and agile
value. At AAIM 2 level, which is the agile initial, the focus point is to create an internal
communication pipelines between all the stakeholders. This means a good communication line
between the co-workers, teams, and within the organizations itself. Establishment of external
communication is required, which means communication with the customers and relevant external
stakeholders.
Level 3 (AAIM 3) is the agile realization. This level aims to reduce the amount of documentation
during the production of artefacts. The belief is that; if there is a good communication form e.g. face
to face, verbal or other types of it, the need for documenting materials will be minimized. AAIM 4
focuses on agile values. At this point, the practices are established and the focus has also been
pinpointed at people. Both, people within the organization and people outside of the organization
(customers) are valued without ignoring the software development tools and processes. It is notable
to mention that AAIM 1, 2 and 3 create the platform to achieve AAIM 4.
The last block is the apex, this block contains two levels; agile smart and agile process. This block
focusses on learning and quality aspects. At this point, the stress on quality will be increased with a
focus on minimal use of resources with continuous improvement of the agile environment. AAIM 5 is
the fifth level and is called agile smart. This level focuses to establish a learning environment or the
organization, teams and products. The learning engages all the stakeholders in the software
development process (before, during and after the execution of a software process). Use of new
tools and technology are part of this level and all together and will improve the organization. AAIM 6
focusses on creating a lean production environment with high quality and minimal use of resources
and time frame.

2.3.3 Agile maturity model

The AMM is a model that has been created by Patel and Ramachandran and is a generic process that
focusses on agile software development values, principles and practices (Patel & Ramachandran,
2009). It examines the agile practices conducted within an organization and links this to maturity
levels. However, it’s not a complete representation of agile software development practices.

17

Figure 2: 5 levels of AMM

As depicted above, this model consists of five levels. The first level is the initial, at this point there is
no clearly defined agile software development process and most of the practices are very slim and
non-repeatable. According to this model, the main problems at this level relate to overtimes,
schedule slips, communication, software quality and development costs. Success at this level
depends on certain people that play a very important role in the team or organization.
Level two (explored) has a more structured software development practices than level one. The main
problems at this level are communication, coding standards, overtime and customer satisfaction.
According to the model, in order to complete this level and move to the next level, the following
goals should be achieved:

 Project planning

 Improve agile requirements engineering

 Customer and stakeholders’ orientation practices

 Enhance value, collaboration and planning practices
At this level, the current processes can be assessed and the development team will analyze these
processes to identify the weaknesses and improvement areas. Learning from previous failures and
successes can help the team to improve and address these issues.

Level three (defined) establishes a platform where customer relationship is very important and well
maintained. The crucial aspects of this level are customer relationship, coding standards, frequent
deliveries, testing, software quality, pair programming and communication. If these aspects are
mastered, the organization can find itself at defined level. The problem that exists at this level are
overtime, no controllable development pace for the teams and project management. At this level,
there are hardly any technical issues, however, not all the problems related to the teams remain
unsolved.
The goals to be achieved for this level are:

 Customer satisfaction

 Communication improvement

18

 Software quality

 Enhancement of coding practices and coding standards

At level four (improved), the focus on is on people and project management practices. At this level,
organizations are able to collect data related to their practices and product quality. Self-organizing
and empowered teams are part of this level. The teams come up with initiatives and take
responsibility instead of giving to them. The teams conduct a proper risk assessment and focus on
smart work instead of hard work.
The goals to be achieved for this level are:

 Empowered team and rewards

 Project management

 Risk assessment

 No overtime

 Simplicity

At level five (mature level), the focus area is on continuous improvement. There is a wealth of data
related to the processes, product quality that can be analyzed in order to improve the current
processes. These data can be used for defect prevention. Testing new ideas and technology are also
part of this level. At this point not only the customer satisfaction is addressed, but also the
developer’s satisfaction. Project performance is being measured and improved through the collected
data. The goals to be achieved at this level are:

 Context improvement

 Uncertainty management

 Tuning project performance

 Defect prevention

2.3.4 The agile maturity map (AMM)

The agile maturity map is a model that assists agile teams to change their mindset regarding agile
development and achieve goals in a better and structured manner (Packlick, 2007). This model has
been created closely with multiple teams in order to gain a better understanding what the
perceptions of teams are regarding agile processes and agile practices. According to the model, it will
help the teams to overcome the plateau in realizing the full potential of agile development. AMM will
aid teams to improve and gain a higher maturity step by step. Furthermore, the findings from the
paper suggest that: “team members value and respect a process that works and do so far more
rather than having something imposed to them” (Kunz, Dumke, & Schmietendorf, 2008).

19

Figure 3: Agile maturity map (AMM)

AMM consist of five levels, each level represents the current state of an agile team. This model is
highly goal oriented and does not dive into detailed agile practices. Each level of the model can be
filled with user stories and each level represents one of the different stages of learning a team
progresses through each of the five AGILE goal areas. This model is in fact a roadmap that displays
the goals to be achieved by the teams and the progress of it.

Level one is the awareness. At this level, the team has an understanding of the goals to be achieved
and their value. Awareness of “better” existing practices around the goals exists. Basic activities are
conducted to address the goals with their related acceptance criteria. Level two is related to
transformation of knowledge into practice. The theoretical knowledge is used to gain a better
understanding of practices and making use of them. A clear commitment both from the leaders and
the team is present at this point. The task are estimated and are broken down into smaller pieces
which are easier to implement.

After the transformation, at level three the teams are working towards a breakthrough. The goals
with the related acceptance criteria are achieved through consistently using agile practices. The
teams are ready to break the barriers and work towards the adoption of agile practices. At this point
there is significant improvement in productivity. Communication with the end-user (customer) has
been increased. Developer’s satisfaction has increased and automated builds have been
implemented. The retrospectives are now taking place more regularly with effective implementation
of outcomes. At level four optimizing, continuous improvement is taking place in order to achieve the
goals. There is a clear indication that team members are creating innovative improvements. This level
has no end state and is continuously implemented to ensure improvements.
The last level is related to mentoring. High performance teams have the responsibility to mentor and
coach teams at lower levels in order to help them achieve higher levels. This process is conducted
organization wide and is to ensure a higher level of improving software engineering.

20

2.3.5 A maturity model for software development organizations

The paper written by Furtado Soares and Lemos Meira provides a guide to set up and run agile
methodologies based on Capability Maturity Model Integration (CMMI) (Soares & Meira, 2013). This
model consists of five levels, each level provides the current state of an organization. This model is
very abstract and compared to other maturity models it does not provide any detailed description of
agile practices. However, every level does contain a brief description in order to understand the
current state of an organization at a high level. This model will help software organizations achieve a
higher rate of success when agile development values, principles and practices are adopted (Soares
& Meira, 2013). According to the paper, this model contains five levels that are described below:

Level 1: initial stage where organizations do not use any methodology and their processes are
unpredictable and reactive;

Level 2: the stage where processes are characterized by project. There are processes for planning and
monitoring a project, but the organization's vision is by project, i.e., there is no portfolio management
of projects. At this level of maturity, setting up agile methodologies starts with Scrum (a focus on
managing projects and prioritizing requirements) and a part of the methodology of FDD;

Level 3: the stage where the processes are well defined and characterized by the Organization. There
is a standard process with well-defined criteria to instantiate them at every context of a new project.
Engineering processes are implemented with the focus on XP, FDD and Kanban;

Level 4: the stage where the processes are managed quantitatively with the focus on the agile metrics
defined in Kanban and FDD;

Level 5: the stage where the process is often optimized, with the focus on continuous
improvement of the processes using the principles of Lean Software Development.

2.3.6 Agile adoption framework (AAF)

Sidky and Arthur propose a framework called agile adoption framework (AAF) that provides guidance
for organizations in order to adopt agile methodologies (Sidky & Arthur, 2007). The AAF provides
insight to what extent an organization can become agile and whether this agility is suited for a
particular organization. This framework consists of two components: a measurement index to
measure the agility and a 4-stage process that employs the measurement index that provides insight
in what way agile practices can be introduced within an organization.
The measurement index used in this framework is the actual maturity model that assesses the
maturity of an organization. This model consists of four components that forms the measurement
index. The four components are:

 Agile levels

 Agile principles

 Agile practices and concepts

 Indicators

Each level is linked to all the principles used in the model. The levels and principles can be filled in
with related characteristics. The model contains of five levels. Each level has its own characteristics
and covers a different perspective. The five levels are shown below with several related
characteristics:

 Level 1: Collaborative. The main aspect of this level is communication and collaboration
between all stakeholders.

o Collaborative planning

21

o Empowered teams
o Coding standards
o Knowledge sharing
o Working closely with customer

 Level 2: Evolutionary. Early and continuous delivery of software are the main characteristics
of this level.

o Continuous delivery
o Tracking iteration process
o No design upfront

 Level 3: Effective. High quality software produced in an efficient and effective way is the
main aspect of this level.

o Plan features, not tasks
o Backlog
o Refactoring
o Unit test

 Level 4: Adaptive. This level covers issues related to responsiveness to change.
o Continuous customer feedback
o Small and frequent releases
o User stories
o Daily stand-ups

 Level 5: Ambient. The focus at this level is to establish a vibrant environment needed to
sustain and improve agility organization wide.

o Idea agile physical setup
o Test driven development
o Pair-programming

The principles used in this model are “the essential characteristics that must be reflected in a process
before it is considered agile” (Sidky & Arthur, 2007). The model has outlined five principles that are
derived from the 12 principles of the agile manifesto that characterizes agile development processes.

 Embrace change to deliver customer value

 Plan and deliver software frequently

 Human centric

 Technical excellence

 Customer collaboration

22

Figure 4: Agile Adoption Framework

2.3.7 Scrum maturity model (SMM)

Scrum maturity model focusses completely on the scrum approach. According to (Schwaber &

Sutherland, 2013), scrum is a framework which people can address complex adaptive problems,

while productively and creatively delivering products of the highest possible value. Scrum maturity

model (SMM) is developed to assist organizations with process improvement, encourage self-

improvement and adopting scrum on a stage and incremental approach (Sidky & Arthur, 2007). This

model introduces five levels of maturity for scrum, each with its perspective goals, objectives and

suggested practices. SMM is constantly aligned and renewed with best practices such as CMMI.

The first level of SMM is initial. At this level, organizations don’t have any specific goals for process

improvement, and there is no explicit definition of agile development with scrum. The problems that

exists at this level are:

 Overtime

 Over-budget projects

 Poor communication

23

 Unsatisfactory quality

 Organizations that find themselves at this level are highly dependent on skilled individuals instead of

skilled teams. They operate in their own unique way and lack of having capable and skilled teams.

Level two of SMM is called managed and organizations. At this level, team has a better

understanding of scrum processes. Organizations at this level, practice scrum meetings such as daily

scrum and sprint planning. Furthermore, there is a clear definition of scrum definitions and roles.

However, there is no indication that these practices are executed correct and effectively, therefore

there might be need for process improvement. Backlog management is a part of this level and

aspects such as communication with the customer, meeting deadlines, budget and schedule remain

areas of improvement.

Level three of SMM is labeled as defined. This level has two focus points; customer relation

management and iteration management. For the customer relation management there are three

objectives to be achieved.

 Definition of “done” exists

 Product owner available success

 Sprint review meetings

The main objective of customer relation management is to maximize the collaboration with the

customer. As for the iteration management, the goal is to establish a satisfactory level for the

customer by delivering projects on time and within the budget. Level three will increase the success

rate of the projects, however, there will be lack of standardized management.

Level four is called quantitatively managed and the focus is on standardized project management and

process performance management. At this level, organizations strive to standardize all the

development process for all the projects and deliver high quality products and performance levels.

The second goal of this level is process performance management, the emphasis is on monitoring of

all suggested practices up to level 4 of scrum maturity. Monitoring practices will give insight on the

actual performance and will highlight the areas of improvement. Most of the projects are successful

at this level, there is only need for improvement of the current processes.

The last level of scrum maturity is called optimizing. Organizations that are at this level have top

performing teams that focus on continuous self-improvement and achieving high customer

satisfaction. The main goal related to this level is performance management. This goal has four

objectives to achieve:

 Successful daily scrum

 Successful sprint retrospective

 Casual analysis and resolution

 Positive indicators

24

2.4 Quality

2.4.1 Software quality

In this section we define quality and software quality metrics for clarity. In section 2.5, we will review
the papers based on these definitions.

Quality in software development is focused on satisfying the customer’s need for the software
product (Sfetsos & Stamelos, 2010).
According to (ISO 8402, 1986), quality is defined as: ‘The totality of characteristics of a product or
service that bear on its ability to satisfy stated and implied needs’.
The Institute of Electrical and Electronics Engineers (IEEE), defines quality as ‘the degree to which a
system, component, or process meets specified requirements and customer/user needs or
expectations’ (IEEE, 1998).

The ISO/IEC 9126 is considered as the most widespread standards and it embraces both quality

models and metrics (Botella, et al., 2004). The ISO/IEC 9126 makes a distinction between the external

and internal quality and is constructed with a set of characteristics each with corresponding sub

characteristics and associated metrics. The standard provides a framework for organizations to

specify the target values for specific quality metrics (Sfetsos & Stamelos, 2010).

According to (Imreh & Raisinghani, 2011), quality and emphasis on quality are must have ingredients

for an organization to be successful. Quality plays an imperative role in IT environments. In order to

achieve high quality, organizations need to find out what quality methods and software development

methods can contribute to a higher quality. Currently, agile methodologies seems to be able to

provide an answer to that. The research conducted in this area suggests that agile methodologies

have a positive impact on quality comparing to other software development methods (Imreh &

Raisinghani, 2011; (Kumar & Bhatia, 2012; Ambler, 2005; Jyothi, Srikanth, & Rao, 2012; Moser,

Abrahamsson, Pedrycz, Sillitti, & Succi, 2008). Therefore, with use of agile development methods

organizations can increase quality of their products and processes. In this study, we focus on quality

metrics used in software development.

2.4.2 Quality metrics

The ISO/IEC 9126 consist of four parts: quality model, external metrics, internal metrics and quality in

use metrics (Sfetsos & Stamelos, 2010). The external metrics are associated with running software

and the internal metrics are statics measures and non-related to software execution. And quality in

use metrics is related to aspects when the system is running in a live environment.

Software quality metrics are categorized into: product metrics, process metrics and project metrics

(Kan S. H., 2002). Product quality metrics are related to mean to time failure, defect density,

customer problems and satisfaction. Process metrics are implemented to improve development and

maintenance, examples are effectiveness of defect removal during development, response time of

the fix process (Kan S. H., 2002). Project metrics are related to project characteristics and execution,

these include cost, schedule, number of staffing and productivity.

25

2.5 Literature - Software Quality metrics

In this section we describe the reviewed literature with regards to software quality. Each paragraph

contains a title which describes the title of the paper and the author. First, we provide an overview of

all papers and the described metrics converted in five categories. Then, in the following sections,

every paper will be reviewed in detail. As a result, an overview is developed with all the metrics

discussed in literature, this overview can be found in the Appendix, section D.

2.5.1 Overview of metrics

The metrics have been divided in five categories as described in table below, the corresponding

author of the paper where the metrics are described is shown on the vertical axis.

The category product quality relates to defects in general. Examples are; defects found during

production or testing, defect arrival patterns.

Code quality metrics are related to specific code measures, such as code complexity, number of

classes, lines of code.

Customer related metrics are aspects concerned with customer satisfaction, complains in terms of

defect reporting and metrics such as fix response time.

Testing metrics measure aspects such as number of test cases, test success rate, number of

acceptance tests.

Finally, before and after release metrics category, are metrics such as defects found before the

release, defects reported by the customer and defects coming from previous release.

Paper/book

Product Quality
(defects)

Code
quality

Customer
related metrics

Testing
metrics

Before and after
release metrics

Moser et. al X

Sfetsos &
Stamelos

X X X X X

Cheng & Jansen X X X

Quality in agile
world

 X

Yael Dubinsky et.
al

X

Walter Ambu et.
al

 X

Danilo Sato et. al X

H. Kan X X X X
Table 4: Overview of categorized metrics

2.5.2 Review of literature

In this section we describe the reviewed literature in detail. Every review starts with the title and the

author of the paper or book.

A case study on the impact of refactoring on quality and productivity in an agile team by Moser and
Abrahamsson
The case study performed by (Moser, Abrahamsson, Pedrycz, Sillitti, & Succi, 2008) is related to the
impact of refactoring in software development. Refactoring is a part of agile development that
stands for continuous improvement and improving quality. According to (Fowler, 2000), refactoring

26

is: “a change made to the internal structure of software to make it easier to understand and cheaper
to modify without changing its observable behavior”. This paper mostly focuses on the assessment of
the effect of refactoring on some quality characteristics that are related to software maintainability.
According to (Moser, Abrahamsson, Pedrycz, Sillitti, & Succi, 2008), only few empirical studies
analyze the impact of refactoring on code quality. According to (Moser, Abrahamsson, Pedrycz,
Sillitti, & Succi, 2008), refactoring provides the following advantages:

 Refactoring helps developers to program faster

 Refactoring improves the design of the software

 Refactoring makes software easier to understand

 Refactoring helps developers to find defects

Mainly the last three advantages are imperative to the topic of software quality metrics. The impact

of refactoring in this study is concerned with internal product metrics. The metrics are used to

measure the typical quality attributes such as complexity, coupling and cohesion. External quality

metrics such as number of defects are required to better understand and generalize the findings of

this study. The study suggests that there is need of hard data from the industry verify a better and

deeper understanding of the effect and impact of refactoring.

Furthermore, the metrics used in the study are selected based on generally accepted both by

practitioners and researchers, and in addition used in several previous studies (Moser, Abrahamsson,

Pedrycz, Sillitti, & Succi, 2008). The process and product metrics that are part of the research

conducted in this study are shown in the table below.

Metric Level Definition

CBO Class Coupling Between Objects

LCOM Class Lack of Cohesion in
Methods

WMC Class Weighted Methods per
Class

RFC Class Response For a Class

LOC Method Number of Java source code
statements per method

Effort Method Time in seconds spent for
coding a method

Table 5: Software quality metrics

Empirical Studies on Quality in Agile Practices: A Systematic Literature Review by Sfetsos & Stamelos

In agile practices, quality is built into the products through a combination of best practices that

provide a different perspective on quality management (Sfetsos & Stamelos, 2010). This study is a

systematic literature review and its main purpose is to provide an evaluation according to ISO/IEC

12207 and ISO/IEC 1926 standards and present the empirical findings. The study has selected 123

articles that seemed to be relevant according to the research method and 46 of them were empirical

studies that focused on the agile methods such as test driven development (TDD), pair programming

and other agile methods. This concludes that the results of this study are based on the quality of the

aforementioned agile methods.

The results related to external quality in TDD that were conducted as an experiment showed that,

external quality was usually measured by:

27

 Number of acceptance tests

 Total number of defects

 Number of defects/KLOC

In another type of studies such as case studies or mixed studies (experiment and case study) the

external quality was usually measured by:

 Number of the defects found before the release

 Number of defects reported by the customer

The findings related to external quality showed that case studies provided a strong improvement in

external quality than in experiments.

The findings related to improvement in internal quality are not consistent and vary. In some cases

improvements have been acknowledged related to decrease in code and design complexity in

smaller units and code reusability has been increased. While in other cases, no significant differences

has been experienced. Internal quality was usually measured by using these code metrics:

 Code size

 Cyclomatic complexity

 Coupling and cohesion

Pair programming has led to significant improvements. The quality has been increased in the

following areas:

 Design and code quality

 Teamwork

 Communication

 Code spreading and understanding

 Information and knowledge transfer

 Efficient programmers

Other agile methods included XP (extreme programming) and scrum. Applying agile practices such as

planning game has led to a better work estimation and quality has been increased using refactoring.

Improvement in customer satisfaction has been reported as well.

Controlling and Monitoring Agile Software Development in Three Dutch Product Software Companies
by Cheng & Jansen

This paper is based on a case study of three Dutch software companies and it describes what the

necessary measurements and actions are in order to steer the development process successfully.

According to (Cheng, Jansen, & Remmers, 2009), successful steering is reached by using Key

Performance Indicators (KPI) and interventions.

A list of KPI’s and interventions are constructed to measure and monitor the development process.

The KPI’s will provide measurements based on 4 categories; teams, person, task and quality. The

KPI’s that will provide insight related to quality are the following:

 Total reported defects

 Number of critical defects

 Outstanding defects

 Fixed/solved defects

28

 Defects coming from previous release

 Hours spent on bug

 Test success rate

 Test failure rate

The metrics mentioned above are both based on internal and external quality and are used to

provide the managers and teams with useful information regarding the quality of their products.

Interventions are used when the KPI’s indicate that certain goals are in danger. At this point

managers can intervene by using the interventions that are related to the KPI’s. Interventions that

are related to quality KPI’s are in place to create the awareness of the quality of the software. These

interventions are:

 Set criteria for working software

 Let customers test the software

 Make a visible chart for the whole organization

Furthermore the paper suggests that more work is required for the extension and validation of the

list of KPI’s and interventions.

Quality in agile world

This paper is an introduction to common agile software development methods and implies that agile

development leads to software of a much higher quality than the traditional method (Ambler, 2005).

According to (Ambler, 2005), “It is common to say that agilist are quality infected” and the role of the

quality professionals has changed.

Many of the agile development techniques are focused on delivering and creating high quality

software. According to this paper, these techniques and concepts that contribute to higher quality

are:

 Refactoring

 Test-driven development (TDD)

 Tests replace traditional artifacts

 Agile model driven development (AMDD)

Refactoring is a method that is used in many agile development techniques. By implementing

refactoring, small changes are applied to the source code to improve its design and make it easier to

work with (Fowler, 1999).

The paper suggests that there are several implications for quality professionals related to agile

software development. These implications include:

 Greater quality implies less need for quality assurance activities

 Get used to “incomplete” artifacts such as models, documents, source code

 Become a generalizing specialist

Agile Metrics at the Israeli Air Force by Yael Dubinsky, David Talby, Orit Hazzan, and Arie Keren

Accurate metrics are the essential aspects in order to take professional decisions (Dubinsky, Talby,

Hazzan, & Keren, 2005). The study performed by (Dubinsky, Talby, Hazzan, & Keren, 2005) focuses on

29

implementation of extreme programming into a software development team of Israeli’s air force.

The study takes into account the metric mechanism that was established during the kick-off of the

project and uses a subset of metrics to measure the implementation process. These metrics should

provide information regarding:

 Effectiveness of the process

 Decision making

 Analyze long-term effects

 Increase confidence on all management levels

The quantitative data has been gathered through the team reports and automated reports that are

output by the development environment. According to the study (Dubinsky, Talby, Hazzan, & Keren,

2005), metrics can be used for three purposes:

 Communication to the team

 Faster decision making

 Reports to upper management

In general, there are four metrics that have been used to measure the implementation process of

extreme programming at Israeli’s air force. These metrics include:

Metric Description

Product size The amount of completed work

Pulse Measures the continuous integration

Burn Presents the remaining work versus the
remaining human resources

Faults The number of faults per iteration
Table 6: Metrics to measure implementation process of XP

Studying the Evolution of Quality Metrics in an Agile/Distributed Project by Walter Ambu, Giulio
Concas, Michele Marchesi, and Sandro Pinna. 2006

This paper is based on an empirical study of agile teams that evolved into a distributed context and

analyzes the development of the project. According to (Ambu, Concas, Marchesi, & Pinna, 2006),

there are several studies conducted based on the experiences in applying agile practices in a

distributed context, however, there are no analysis regarding the source code quality metrics. Lack of

defects and maintainability are usually the measures to define the quality of a project (Ambu,

Concas, Marchesi, & Pinna, 2006). The source code analysis performed in (Ambu, 2006), adopted the

Chidamber and Kemerer (CK) suite that contains six metrics. These metrics are related to measuring

source code quality. According to the study, the following metrics represent the CK suite:

Metric Description

Weighted Methods per Class (WMC)

A weighted sum of all the methods defined in a class

Coupling Between Object Classes
(CBO)

A count of the number of other classes with which a given
class is coupled

Depth of Inheritance Tree (DIT) The length of the longest path from a given class to the root

30

 class in the inheritance hierarchy

Number of Children (NOC)

A count of the number of immediate child classes inherited
by a given class

Response for a Class (RFC)

A count of the methods that are potentially invoked in
response to a message received by an object of a particular
class

Lack of Cohesion of Methods (LCOM)

A count of the number of method-pairs with zero similarity
minus the count of method pairs with non-zero similarity

Table 7: CK suite metrics

There are reports regarding the implementation of CK suite in commercial settings (Ambu, Concas,

Marchesi, & Pinna, 2006). One of the reported findings concluded that applying CK suite has reduced

productivity and increased the rework/design effort (Ambu, Concas, Marchesi, & Pinna, 2006).

Another study reported that the measures of CK suite introduced class defect density.

Furthermore the study analyzed the JAPS project, which was initiated by several web developers.

JAPS is a solution to build web portals, integrate services and handling content through content

management system (CMS). In the development process of JAPS, the research group selected the CK

suite metric and an extra set of metrics to analyze. The extra set of metrics is shown in the table

below.

Metric Description
Number of Classes Total number of classes
Class Size The size of a class has been measured by

counting the lines of code (LOC)
Number of Test Cases The number of test cases may be considered as

an indicator of testing activity
Number of Assertions The number of test methods

Table 8: JAPS metrics

The CK suite quality metrics were used to monitor the project. By applying the metrics, final findings

conclude that initially the system complexity has been increased. However, after applying effective

implementation of agile practices, the systems were simplified. Furthermore, the teams were unable

to improve all the metrics to the same extent.

Tracking the Evolution of Object-Oriented Quality Metrics on Agile Projects by Danilo Sato, Alfredo

Goldman, and Fabio Kon. 2007

The study conducted by (Sato, Goldman, & Kon, 2007) is based on an analysis of seven projects that

tracks and evaluates the evolution of Object-Oriented (OO) quality metrics. From these seven

projects, there are five projects that have been executed in an academic environment and the other

two are governmental projects. Most of the projects were implementing agile methods (XP) and

some of them introduced it later.

This paper has reviewed other studies that claim the use of object-oriented quality metrics can aid

developers to understand complex design, detecting design flaws and preventing defects. The

metrics that have been used to analyze the source code are a mixture of CK’s suite (Ambu, Concas,

Marchesi, & Pinna, 2006) and from Martin’s suite (Sato, Goldman, & Kon, 2007). In addition to

aforementioned metrics, the study also chose for extra metrics (LOC and v (G)).

Metrics analyzed in this study are listed below. The CK’s metrics have been already described in the

former study (Ambu, Concas, Marchesi, & Pinna, 2006) and table 7.

31

 Weighted Methods per Class (WMC)

 Depth of Inheritance Tree (DIT)

 Lack of Cohesion of Methods (LCOM)

 Number of Children (NOC)

 Afferent Coupling (AC): the total number of classes outside a package that depend on classes

inside the package.

 Efferent Coupling (EC): the total number of classes inside a package that depend on classes
outside the package

 LOC: the total number of non-blank, non-comment lines of source code in a class of the
system

 McCabe’s Cyclomatic Complexity (v(G)): measures the amount of decision logic in a single
software module

According to (Sato, Goldman, & Kon, 2007), several studies have shown that classes with higher LOC

and WMC are more error prone. In one of the projects that was analyzed by (Sato, Goldman, & Kon,

2007), there was a decrease in size and complexity of the source code. This study concludes that the

decrease in size and complexity is related to automated tests and refactoring. In addition, based on

the other six projects that were analyzed in this study, the conclusion is that projects with less agile

practices have resulted in higher size and complexity, more error prone required more testing and

maintenance effort.

Metrics and Models in Software Quality Engineering by Stephen H. Kan, 4th chapter: Software quality

metrics overview

The fourth chapter of the book (Kan, 2002) provides an overview of software quality metrics that are
used in software development. The focus of software quality metrics can be divided into three
subjects: quality of the product, process and project. According to (Kan, 2002), the aforementioned
metrics can be grouped into three categories: end-product quality metrics, in-process quality metrics,
and maintenance quality metrics. Table 9 summarizes the categorized metrics and the related
description.

Metric Description

Product quality

Mean time to failure Measures the time between failures

Defect density Measures the defects relative
to the software size (lines of code, function points, etc.)

Customer-reported problems The problems customers encounter when using the product

Customer satisfaction Measures customer satisfaction through survey data based on a
five-point scale: Very satisfied, Satisfied, Neutral, Dissatisfied, Very
dissatisfied

In-process quality

Phase-based defect removal
pattern

The pattern of phase-based defect removal reflects the overall
defect
removal ability of the development process

Defect removal effectiveness Measures the effectiveness of defects both during the
development and defects latent in the product

Defect density during formal
machine testing

Defect rate during formal machine testing

Defect arrival pattern during
formal machine testing

Measures the pattern that related to defect arrivals that stabilize at
a very low level, or times between failures that are far apart,
before ending the testing effort and releasing the software to the
field

32

Maintenance quality

Fix backlog Fix backlog is a workload statement for software maintenance, it’s
a simple count of reported problems that remain at the end of each
month or week

Backlog management index Provides a ratio of the number of closed, or solved, problems to a
number of problem arrivals during the month

Fix response time and fix
responsiveness

It measures the agree-to fix time and the ability to meet one’s
commitment to the customer

Percent delinquent fixes For each fix, if the turnaround time greatly exceeds the required
response time, then it is classified as delinquent

Defective fixes A fix is defective if it did not fix the reported problem, or if it fixed
the original problem but injected a new defect
Table 9: Metrics based on three categories

In addition to discussed metrics, according to (Kan, 2002), the list below is only related to quality

metrics.

 Overall customer satisfaction as well as satisfaction with various quality attributes such as
CUPRIMDS (capability, usability, performance, reliability, install, maintenance,
documentation/information, and service)

 Post-release defect rates

 Customer problem calls per month

 Fix response time

 Number of defective fixes

 Backlog management index

 Post-release arrival patterns of defects and problems (both defects and non-defect-oriented
problems)

 Defect removal model for the software development process

 Phase effectiveness (for each phase of inspection and testing)

 Inspection coverage and effort

 Compile failures and build/integration defects

 Weekly defect arrivals and backlog during testing

 Defect severity

 Defect cause and problem component analysis

 Reliability: mean time to initial program loading (IPL) during testing

 The stress level of the system during testing as measured in level of CPU use in terms of the
number of CPU hours per system per day during stress testing

 Number of system crashes and hangs during stress testing and system testing

 Models for post-release defect estimation

 Various customer feedback metrics at the end of the development cycle before the product
is shipped

 S curves for project progress comparing actual to plan for each phase of development such
as number of inspections conducted by week, LOC integrated by week, number of test cases
attempted and succeeded by week, and so forth.

33

3 METHODOLOGY

3.1 Research design

The research was primarily based on data collection of multiple agile organizations. The first step is

to review the relevant literature to construct an understanding of the topic. Next, the literature will

be reviewed to prepare the survey and interview questions. Then we will perform a multiple case

study in agile organizations using the survey and interview questions. Due to the number of desired

organizations and people to research, a fast and simple data collection method is required. Survey is

the best approach because it requires less time to conduct and offers a variety of choices and

simplicity. The rest of the questions which are mainly the open questions, are constructed in an

interview form. The goal of the interviews and surveys is to provide a more in depth knowledge and

information related to certain agile activities and practices. The figure below depicts the approach.

Figure 5: Research design

3.2 Literature review

The literature has been conducted with the focus mainly on agile maturity models and software

quality metrics. We have used Google scholar and University Library Catalogue to find the relevant

literature. These sources provided access to papers, articles and books related to the topic of this

study.

We have used the following keywords:” agile maturity”, “agile maturity models”, “software quality”,

“agile quality metrics”, ”quality metrics”. Based on the outcome we have selected the most popular

papers based on the relevancy to the topic. We aimed to select only papers, articles and books that

have been published since 2005 to avoid very outdated information related to the topics of agile

maturity and software quality metrics.

3.3 Research question design

The figure below shows how we constructed the interview and survey questions for the case study.

In order to construct the questions both for the survey and the interviews, we need to analyze the

sub-research questions. The first step is to identify what the necessary questions are that can provide

an answer to a sub-question. Following this approach, a set of questions is constructed that are

related to a research sub-question. The total set of questions will eventually aid to answer the sub-

question. As a result, based on the research questions, we will use the relevant literature to

construct Interview and survey questions are constructed with the aid of the relevant literature.

34

Figure 6: Research questions design

In the table below we present the survey and interview questions related to specific research

question. The research questions are displayed in bold and indicated as “RQ”. In addition, the

relevancy of the questions is described, and what possible variable can come out of it. This variable is

used later for data analysis.

Table definition:

 #: question numbers

 Interview/survey: indicates whether the question is used in the survey or the interview

 Question: lists all the questions implemented in survey and interviews

 Why: elaborates why this question is relevant to the research

 Variable: indicates the form of the expected output that can help to answer the research

question

Abbreviations:

 QM: Quality metric

 RQ: Research question

 Dev: Developer

 QA: Quality assurance

35

Q# Interview/survey Question What does it contribute? Variable

A RQ What are the most effective quality
metrics (QM) that are being used in
agile organizations?

1 Survey – Open
question

What measures or metrics do you
collect? Please also specify all the
measures that you take but are not on
this list

More QM increases chance
finding effective QM’s

#metrics and
popularity

2 Survey – multiple
choice

How do you measure software quality? Verifies if QM’s are correctly
collected and are valid

Using tools,
Manually,
None

3 Interview What are the most important quality
metrics? Why these?

Important QM’s can be
effective

List of metrics

4 Interview Do you change the quality metrics
often? Why?

Changing QM’s can help to
find better QM’s

Yes/No

5 Interview When is a quality metric effective? Effective QM’s will be used
more than other QM’s

Customer
satisfaction

6 Survey – Open
question

How much is the source code covered
by unit testing?

Higher coverage leads to less
defects

Coverage

 Verification questions

7 Survey – Scale 1-7 Does the code often need maintenance? Use of effective QM can
increase code quality

8 Survey – Scale 1-7 Is there any "extra time" given for
cleaning up and re-factoring the source
code?

9 Survey – Scale 1-7 Is the test engineer always testing the
latest build?

B RQ What are the most effective agile
practices that support maturity?

10 Survey – Multiple
choice

What agile practices does your team
apply? (List)

Popular practices are used the
most, therefore can be
effective

#practices

11 Interview Is there a continuous delivery pipeline?
How does it look like?

Continuous delivery belongs
to higher level of agile
maturity

Yes/No, to
what
extent(initial-
mature)

12 Survey – Scale 1-7 Do the test engineers make use of
automated test scripts?

Automated tests can define
higher agile maturity

Yes/No

13 Survey – Open
question

What percentage of test scripts are
automated?(Link to A)

More automated tests can
increase quality

Percentage

14 Interview What agile practices are really
necessary?

Highlights Important practices List of
practices

 Verification questions

15 Survey – Open
question

Please specify all the participants in the
planning session (e.g. Dev. QA, info
analyst etc.).

Validates if all relevant roles
are attending

#roles

16 Survey – Scale 1-7 All members of the team actively
participated during iteration planning
meetings

Validates if all team members
are attending the planning

All team
members or
some

17 Survey – Scale 1-7 All the tasks for the sprint were
estimated

If the team works with
estimation

36

18 Survey – Scale 1-7 The team never missed the sprint
deadline

19 Survey – Scale 1-7 Working software was the primary
measure of project progress

Link to A

20 Survey – Scale 1-7 The team rather reduced the scope than
delayed the deadline

21 Survey – Scale 1-7 At the end of the iteration, we delivered
a potentially shippable product

22 Survey – Open

question

How frequently do you release working

software? E.g. Weekly, monthly.

23 Survey – Scale 1-7 Scrum master was always present
during the stand-up.

24 Survey – Scale 1-7 Stand up meetings were extremely
short (max. 15 minutes)

25 Survey – Scale 1-7 All relevant technical issues or
organizational impediments came up in
the stand-up meetings

26 Survey – Scale 1-7 In the retrospectives (or shortly
afterwards), we systematically assigned
all important points for improvement to
responsible individuals

27 Survey – Scale 1-7 The team was always sitting together in
the same room

C RQ How do organizations measure
maturity of their agile software
development?

28 Survey – Open
question

What is currently the focus point of the
organization to improve on agile?

Shows awareness of the
current state and next steps
to improve (high level)

List of
goals(strategi
c)

29 Interview What is the area of improvements for
you and your team to use agile methods
better?

Shows awareness of current
state and next step to
improve(lower level)

List of
improvement
s

30 Interview Is the company performing any agile
assessment? How? What measures?

Provides metrics to measure
agile maturity

#assessments
,
#measures,
List of
measures

31 Interview How familiar are the team members
with agile methods? Experience in
years?

More experience in agile
could lead to higher maturity

#Years

32 Survey – Open
question

Do any of the team members have any
form of agile certification? E.g. SM, Exin
Scrum etc.

Certification can be metric #certification
s

33 Survey – Open
question

What agile practices/techniques would
you like to conduct that are currently
not in place?

There is understanding of
current state and limitations

#practices

34 Interview Is there any agile training/workshop
provided by the company? How often?
For who?

There is understanding of the
current state and limitations,
improvement is needed

#trainings/wo
rkshops

 Verification questions

35 Survey – Scale 1-7 Is there any freedom by the
organization to allow implementation of
agile practices?

37

36 Survey – Open
question

How much does the team make use of
this “freedom” to implement (new) agile
practices?

D RQ What is the impact of successful or
failed projects on quality metrics?
What factors do influence this?

37 Survey – Open
question

How long after the sprint ends, you
receive feedback from the customer?

Info about project success or
failure

Time

38 Interview What feedback do you receive regarding
the quality?

Verifies if good quality was
delivered, else quality metrics
were not good

Customer
satisfaction

39 Survey – Open
question

What percentage of projects is
successful?

High percentage has less
effect on quality metrics

#%

40 Interview

Why is the success rate like this? (Link
to A)

Success can be linked to use
of right quality metrics

List of
activities
related to
success

41 Interview What measures did you take when
projects failed due to poor quality?

Provides list of measures, e.g.
increase #quality metrics

List of
measures

42 Interview How does the customer feedback
change the test or the development
process?

If poor quality was delivered,
the Dev/QA process should
change

Customer
satisfaction

 Verification questions

43 Survey – Open
question

How often do you measure customer
satisfaction?

44 Survey – Open
question

How do you measure customer
satisfaction?

 Quality
metric

E RQ At what maturity levels are which
software quality metrics implemented?
*Can be answered better after data
analysis*

45 Interview When do you introduce new quality
metrics? Why?

Indicates at what stage new
QM’s are used

46 Interview How often do you implement new
quality metrics?

New QM’s can indicate
continuous improvement and
agile growth

Time

47 Survey – Open
question

What artefacts are created specifically
for people outside of the team?

Table 10: Interview and survey questions

38

3.4 Case selection strategy

After finalizing the structure of the survey and interview, data collection phase can be started. For

this purpose we have chosen to perform a multiple case study in organizations that are

implementing agile development. We will study small, medium and large organizations. The objective

is to study organizations with multiple range of experience. This means, organizations that just

started implementing agile methodologies, organizations that have been implementing agile for 1-3

years and organizations that have been implementing agile for more than five years. Using this

strategy, this study will look into organizations from low to high experience with agile

methodologies.

3.4.1 Interview and survey

From each organization two team members will be interviewed and asked to fill in the survey. The

session will start with filling in the survey and after that the interview part will start. A team member

is someone that is a member of the agile team. Preferably the first choice is to interview a developer

and a software tester. A developer knows the all the practices related to software development and

can provide answers to technical development questions. A software tester can answer all the

questions related to the testing and software quality process. To have at least two persons from each

organization interviewed, will provide a more general perception of the organization, and in addition,

it provides more solid data. If there is no possibility to speak to a developer or a tester, different

roles within an agile team can be used.

An agile team can consist of the following roles:

 Developer

 Tester

 Product owner

 Scrum master

 Agile coach

 Information/business analyst

 Team lead

 Architect

The survey consists of 32 questions in various forms; open questions, multiple choice and answers

based on a certain scale. The scale is based on the Likert scale (University of Connecticut, sd) and

offers a choice between “never” and “always” with a score of 1 to 7 accordingly.

The scale is defined as follows:

 Never

1

☐

2

☐
Not usually

3

☐
Rarely

4

☐
Occasionally

5

☐
Often

6

☐
Usually

7

☐ Always

The complete survey and the interview questions can be found in the appendix section A and B.

3.5 Method

Due to the developments on the topic of this research, we need to base our research on data

gathered from organizations in order to understand certain aspects related to agile maturity and

quality metrics. The results of this study are a combination of theory, interviews and observations.

Therefore a qualitative approach will be taken in this research. Qualitative research will help us

understand the underlying developments and highlight important insights found in our samples.

39

3.6 Data analysis

In order to answer the main research question we need to categorize the maturity level of each team

from every organization and perceive the related quality metrics.

It’s imperative to mention that the representing team from an organization will not account for the

entire organization and therefore will not represent the maturity level of the organization but solely

the maturity level of a specific team within that organization. The study aims to provide a general

perception of implementation of agile methodologies within an organization without trying to

determine the agility of the entire organization.

We will classify the maturity scores in three categories (low, medium and high). The low maturity

category consists of organizations that scored less than 150 points. Organizations in this category are

considered low mature and are in the beginning stage of agile implementation. The medium maturity

level is representing organizations that have implemented agile methodologies for some years, but

there is no substantial growth. The score range for the medium level is 150-210. These organizations

need to improve on certain areas where they scored a lower score to become high mature. The

specific area to improve is presented in section 4.5.5. The high maturity level consists of

organizations with a score higher than 210. As a result, we classified the studied organizations in

table 11 with the corresponding maturity level.

Low maturity level Medium maturity level High maturity level

Score less than 150 Score between 150-210 Score between 210-301
Table 11: Maturity level calculation

3.6.1 Maturity score calculation

The adopted approach to determine agile maturity is to evaluate the scores from the survey and the

interviews based on pre-determined score list. The evaluation is divided in two parts, survey and

interview evaluation. As for the survey, each question can have a maximum score. In particular cases,

a question can provide more points due to the relevancy and therefore will have an alternate score.

The evaluation of interviews is determined differently, only a selected number of interview questions

can score points. In both, the survey and the interview questions, the weight is evaluated differently.

Some of the questions are more important and therefore will have a higher maximum score. As a

result, the weight of all the questions is diverse and the score depends on the responses. In table 12

we have defined the score calculation.

In order to calculate a precise maturity score, we need to analyze organizations from five

dimensions. These dimension are described in the table below. In addition, the table presents the

corresponding questions of every dimension.

Dimension Software
quality

Testing
process

Agile practices Software
deliveries

Organizational
strategy

Related question 1, 2, 4, 34 3, 6, 8, 9 5, 7, 11, 12, 18, 19,
20, 21, 22, 36

13, 15, 16, 17 27, 39, 41

Total points 47 61 122 43 28
Table 12: Maturity dimensions and related questions

40

A complete list with questions and the corresponding maximum score to calculate is shown in table

12. This table displays only the question numbers, to find the corresponding questions, please refer

to the appendix, section A and B. The questions are categorized in the five respective dimensions.

Question

number

Maximum

points to

score

Calculation Justification

Quality 47

1 26 Every quality metric accounts for

2 points

More quality metrics can indicate

more quality insight and increased

use of agile aspects

2 7 Manually=3, automatically= 7 Automatic data collection excludes

human error

4 7 Survey score 1-7

34 7 Survey score 1-7

Testing 61

3 20 Every 5% accounts for 1 point High unit test coverage indicates

good implementation of this

practice

6 7 Survey score 1-7

8 14 Scale 1-7. Score is multiplied by 2 Automated testing is important

aspect of agile

9 20 Every 5% accounts for 1 point Automated testing is important

aspect of agile

Agile

practices

122

5 7 Survey score 1-7

7 52 Every practice accounts for 2

points

Use of many agile practices can

indicate maturity

11 7 Survey score 1-7

12 7 Survey score 1-7

18 7 Survey score 1-7

19 7 Survey score 1-7

20 7 Survey score 1-7

21 14 Scale 1-7. Score is multiplied by 2 Good implementation of this

practices indicates maturity

22 14 Scale 1-7. Score is multiplied by 2 Sitting together is very important

aspect of agile

SW

deliveries

43

13 7 Survey score 1-7

15 7 Survey score 1-7

16 7 Survey score 1-7

17 15 Continuously/daily=15 points,

weekly=10, monthly=5

Fast software release indicates

agility

41

27 7 Survey score 1-7

Org

strategy

28

36 14 Started = 3, half implemented =

7, complete implementation = 14

points

Continuous delivery is an indication

for agile maturity

39 7 Survey score 1-7

41 7 Survey score 1-7

Total 301
Table 13: Score definition

42

4 RESULTS

In the following sections the results of this study are described. The data collection, which consisted

of interviews and surveys, is performed in 11 organizations worldwide (Netherlands, United

Kingdom, Israel), resulted in 22 interviews and 22 surveys. At the end of each section, there is a

preliminary conclusion given based on the results of that section.

4.1 Participating organizations

The organizations that have pledged their cooperation and have contributed to this research are

listed below. A short description is provided based on the studied environment and the general

information regarding the organization.

Organization Participants Role Location

A 3 Agile coach
Software developer/scrum master
Information analyst

Netherlands

B 3 Product owner
Business analyst
Software developer

Netherlands

C 2 Designer/tester
Software developer

Netherlands

D 2 Scrum master
Software developer

Israel

E 2 Software developer Netherlands

F 2 Software developer
Scrum master/operations

United Kingdom

G 2 Software developer
Team lead/software developer

United Kingdom

H 2 Tester
Architect/software developer

Netherlands

I 2 Product owner/tester
Software developer

Netherlands

J 2 Scrum master/software developer
Software developer

Netherlands

K 1 Software developer Netherlands

Gibbon is a startup located in Leiden and has six employees. Gibbon has gained various investment

rounds and is growing. The startup is now active for more than two years and is offering online

learning content to thousands of users worldwide. Gibbon is not following a strict software

development, but since its beginning, the startup has been implementing a software development

method that is similar to agile.

43

NICE Systems (NASDAQ: NICE), is the worldwide leader of intent-based solutions that capture and

analyze interactions and transactions, realize intent, and extract and leverage insights to deliver

impact in real time. Driven by cross-channel and multi-sensor analytics, NICE solutions enable

organizations to improve business performance, increase operational efficiency, prevent financial

crime, ensure compliance, and enhance safety and security. NICE serves over 25,000 organizations in

the enterprise and security sectors, representing a variety of sizes and industries in more than 150

countries, and including over 80 of the Fortune 100 companies (NICE.com, sd). NICE Israel has started

implementing agile methodologies three years ago.

The Alkmaar site of NICE systems is the formerly known as Cybertech International. The leading

provider of call recording solutions mainly focused on the trading floors. In 2011 NICE Systems

acquired Cybertech. The top financial organizations and banks are implementing the recording

solutions realized in Alkmaar. There are 80 employees working in NICE Alkmaar. Since 2010 the

company has been implementing agile methodologies (Scrum).

Fizzback is a company that has been acquired by NICE Systems for $80 million in 2011 and is offering

solutions for customer analytics. Fizzback sends consumers requests for feedback relating to a

specific interaction or transaction via mobile, web or social media. The feedback is then analyzed by

Fizzback to determine a relevant response, and the company subsequently engages the consumer at

the point of experience, for example, in the contact center, branch, point of sale, mobile app, or on

the Web. Fizzback is located in London and the IT development is also operating from London

(TechCrunch.com, sd). Since three months ago Fizzback started implementing agile methodologies

(Scrum).

Causata, Inc. is a leading provider of Customer Experience Management (CXM) software. Causata has

been acquired by NICE in 2013. Built on an HBase big data architecture, the predictive analytics and

real-time omni-channel offer management applications enable B2C companies to create meaningful

customer experiences through data. The industry-specific applications help companies increase

cross-selling and customer acquisition while reducing churn. Founded in 2009 and funded by Accel

Partners, Causata’s headquarters are in San Mateo, California with a development office in London,

England (CrunchBase, sd). Agile methodologies (Scrum) have been introduced in Causata 1,5 years

ago.

44

Bank Mendes Gans (BMG) is part of the ING group and is worldwide known as a niche player in the

area of liquidity and information management for large organizations. BMG is one of the most

important specialist in the field of cash management. BMG is located in Amsterdam and is

independently operating business unit of ING commercial banking. BMG started implementing agile

methodologies (Scrum) 1,5 years ago.

TomTom is a company that manufactures navigation and develops mapping products. TomTom’s

headquarter is in Amsterdam and has more than 4000 employees worldwide. TomTom is mostly

known for its navigation products and is active in 41 countries. TomTom has been implementing agile

methodologies (Scrum) since 2008.

ING is a global financial institution with headquarters based in the Netherlands. With 53,000

employees in 40 countries is ING a global player. ING is the market leader in the Benelux and has a

strong position in retail and commercial banking. ING is very active in IT development and has its own

software development houses where teams are working according to agile methodologies (Scrum)

since 2011.

ABN AMRO is a leading bank within the Netherlands and serves clients across the globe with a

comprehensive range of products and services. Internationally is ABN AMRO active in areas which

the bank has substantial expertise such as private banking, energy and commodities &

transportations (ECT) and clearing. Most of the IT development in ABN AMRO is outsourced to

external suppliers such as IBM. One of the fewer locations of ABN AMRO that implements in house

development is the software factory division. This division is responsible for the IT products that are

part of the ABN AMRO’s “Hypotheken Groep”. The division is subject to the data collection and has

been implementing agile methodologies (Scrum) for eight years already.

45

Bol.com is the most visited retail website in the Netherlands serving 5 million active customers. It

offers a broad range of products in various non-food categories including books, entertainment,

electronics and toys. The main office of Bol.com is located in Utrecht where 750 employees are

working. From the IT perspective, Bol.com is generally known for its experience in implementation of

agile methodologies. Bol.com has been implementing agile methodologies (Scrum) since 2008.

The Dutch tax office is a governmental organization that has about 30,000 employees, which are

responsible for various activities. The IT department is responsible for the digital processing of

people’s assets and administrations and enabling the convenient IT environment for the citizens. The

Dutch tax office has different offices across the country. The IT department is mainly based in

Apeldoorn and Utrecht in the Netherlands. The Dutch tax office started implementing agile

methodologies (Scrum) in 2011.

4.2 Agile maturity score

This section presents the results of the participating companies with regards to their maturity score

in random order. We will not reveal the organization’s name related to the results, therefore their

anonymity will be preserved. In order to generate a score from all the participants of an organization,

the scores will be summed up and generate an average score. The total score of the average is

eventually the maturity score for the team. In the following paragraphs each organization is

presented with the related maturity score. The score is outlined on the vertical axis of each figure.

The horizontal axis represents the question numbers. The question numbers are based on the survey

and interview question numbers used. The survey and the interview questions can be found in the

appendix section A and B. The maturity is determined on the basis of 25 questions that are

representing different maturity dimensions. The dimensions are listed below.

 Software quality

 Testing process

 Agile practices

 Software deliveries

 Organizational strategy on agile

46

Organization A

The figure below presents the results with regard to the maturity score of organization A. The data is

accumulated results from two participants from the organization. Participant 1 has been working for

eight years at the company and has experience with agile methodologies since she started working at

this firm. Participant 2 has been working for 6,5 years at the company and has experience working

according to agile methodologies since his previous job.

Figure 7: Organization A

Organization B

The participants in organization B have experience with agile methods for two years already. The

company started implementing Scrum organization wide 2,5 years ago.

Figure 8: Organization B

0

5

10

15

20

25

30

35

40

45

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 36 13 15 16 17 27 39 41

Quality Testing Agile practices Software
deliveries

Org strategy

Total score = 239

Participant 1 Participant 2 Average score

0

5

10

15

20

25

30

35

40

45

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 36 13 15 16 17 27 39 41

Quality Testing Agile practices Software
deliveries

Org strategy

Total score = 199

Participant 1 Participant 2 Participant 3 Average score

47

Organization C

This organization is not strictly following any agile methods, but instead they make use of best

practices. These best practices are combinations of Scrum, XP and a method that is generated in

house and works locally. This organization is a start-up company and the employees are familiar with

agile methods only from the theory without any previous experience.

Figure 9: Organization C

Organization D

The development teams of this organization have been implementing agile methodologies for three

years. The first respondent has been working for 4,5 years at the company. The second respondent is

working 2,5 years at the company. The results from the surveys and the interviews from the two

respondents are displayed in the table below.

Figure 10: Organization D

0

5

10

15

20

25

30

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 36 13 15 16 17 27 39 41

Quality Testing Agile practices Software
deliveries

Org strategy

Score = 143

Participant 1 & participant 2 Average score

0

5

10

15

20

25

30

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 36 13 15 16 17 27 39 41

Quality Testing Agile practices Software deliveries Org
strategy

Score = 155

Participant 1 Participant 2 Average score

48

Organization E

The participants of organization E have gained their experience at this organization 5 years ago. The

company stated implementing Scrum in 2009.

Figure 11: Organization E

Organization F

This company has been started implementing Scrum for three months already. Both participants

have started working according to Scrum at this company. They have no previous experience with

agile methods.

Figure 12: Organization F

0

5

10

15

20

25

30

35

40

45

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 13 15 16 17 27 36 39 41

Quality Testing Agile practices Software deliveries Org strategy

Score = 185

Participant 1 Participant 2 Average score

0

5

10

15

20

25

30

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 13 15 16 17 27 36 39 41

Quality Testing Agile practices Software deliveries Org strategy

Score = 131

Participant 1 Participant 2 Average score

49

Organization G

This organization has been implementing Scrum for 1,5 years. Participant 1 had no prior experience

with agile methods and has become familiar with it at this company. Participant 2 has three years of

experience with agile methods.

Figure 13: Organization G

Organization H

About a year ago this company started implementing Scrum. Participant 1 has four years of

experience with agile methods and participant 2 has been working with agile methods since 2006.

Figure 14: Organization H

0

5

10

15

20

25

30

35

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 13 15 16 17 27 36 39 41

Quality Testing Agile practices Software deliveries Org strategy

Score = 205

Participant 1 Participant 2 Average score

0

5

10

15

20

25

30

35

40

45

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 13 15 16 17 27 36 39 41

Quality Testing Agile practices Software deliveries Org strategy

Score = 183

Participant 1 Participant 2 Average score

50

Organization I

Participant 1 from this organization has been working according to Scrum principles since 2008. This

company has been implementing agile methods since 2008.

Figure 15: Organization I

Organization J

Participant 1 has experience with agile methods since he joined this company 2 years ago. The

company has been implementing Scrum for four years already and participant 2 has been part of one

of the first Scrum teams in this organization.

Figure 16: Organization J

0

5

10

15

20

25

30

35

40

45

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 13 15 16 17 27 36 39 41

Quality Testing Agile practices Software deliveries Org strategy

Total score = 216

Participant 1 Participant 2 Average score

0

10

20

30

40

50

60

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 13 15 16 17 27 36 39 41

Quality Testing Agile practices Software deliveries Org strategy

Total score = 255

Participant 1 Participant 2 Average score

51

Organization K

This organization has been implementing agile methods for eight years already and participant 1 has

four years of experience with agile methods.

Figure 17: Organization K

4.2.1 Total score

The total score of each organization has been calculated and presented below. The scores are

generated by summing up the average score of 25 questions. The maximum score that can be

achieved is 301. The results show that organization J has scored most of the points and can be

considered the most mature one. Organization J has been implementing agile methodologies since

2011. In contrary, organization F scored the least amount of points and can be considered the least

mature. This organization has been implementing agile methodologies for three months.

Figure 18: Total maturity score

0

5

10

15

20

25

30

1 2 4 34 3 6 8 9 5 7 11 12 18 19 20 21 22 13 15 16 17 27 36 39 41

Quality Testing Agile practices Software deliveries Org strategy

Score = 156

Participant 1 Average score

239

199

143
155

185

131

205
183

216

255

156Score

52

Based on the results of total score, we distributed the maturity scores into three maturity levels. We

have classified the maturity scores in three categories (low, medium and high). The low maturity

category consists of organizations that scored less than 150 points. Organizations in this category are

considered low mature and are in the beginning stage of agile implementation. The medium maturity

level is representing organizations that have implemented agile methodologies for some years, but

there is not substantial growth. The score range for the medium level is 150-210. These organizations

need to improve on certain areas where they scored a lower score to become high mature. The

specific area to improve is presented in section 4.5.5. The high maturity level consists of

organizations with a score higher than 210. As a result, we classified the studied organizations in

table 14 with the corresponding maturity level.

Low maturity level Medium maturity level High maturity level

Organization F Organization B Organization A

Organization C Organization D Organization I

 Organization E Organization J

 Organization G

 Organization K
Table 14: Agile maturity table

In the figure below we present the scores of each organization versus the experience in agile

methods. The experience accounts since the start of implementation of agile methods in the

company. The graph can highlight any correlation between the maturity and agile experience.

Figure 19: Maturity vs experience

Earlier in this section we have evaluated the scores and generated a maturity score for each

organization. This maturity score is only accountable for the specific team and not for the entire

organization. We have developed an overview of all the organizations with their corresponding

K A I E J D B C G H F

Maturity score 156 239 216 185 255 155 199 143 205 183 131

Experience in years 8 8 7 5 4 3 2,5 2 2 1 0,3

0

1

2

3

4

5

6

7

8

9

0

50

100

150

200

250

300

A
st

it
el

M
at

u
ri

ty
 s

co
re

Organization

Maturity score Experience in years

53

maturity scores. This analysis will be used later in this study to find any correlations between the

maturity levels and the use of particular quality metrics.

4.3 Effective quality metrics

Quality metrics are indicators to define quality in agile environment. Organizations use a range of

various quality metrics in order to deliver high quality products and services. However, it’s not clear

what actually the effective quality metrics are in agile environment. In this section we will analyze

quality metrics in order to answer the following research question: “What are the most effective

quality metrics (QM) that are being used in agile organizations?”. In order to discover the answer to

our research questions, we will analyze the questions that are listed below. The participants are

requested to answer these questions, then we will present the results related to respondents.

1. What measures or metrics do you collect? Please also specify all the measures that you take

but are not on this list.

2. How do you measure software quality?

3. What are the most important quality metrics? Why these?

4. When is a quality metric effective?

4.3.1 Collected measures/metrics

The following table displays the answers given to the question “What measures or metrics do you

collect”. On the vertical axis the metrics are shown, and the horizontal axis represents the

organization.

Metrics A B C D E F G H I J K

Number of failed/succeeded auto test X X X X X X X X X X X

Code coverage X X X X X X X X X X

Unit test coverage X X X X X X X X X X

Number of open customer problems X X X X X X X X X

Total number of automated test cases X X X X X X X

Test case count X X X X X X X

Defect count during production X X X X X X X

Compile failures and build defects X X X X X X

Weekly defect arrivals X X X X X X

Fix response time X X X X X X

Defect count reported by customer X X X X X

Lines of code (LOC) X X X

Accuracy of estimates X X X

Others Sig Tics Cc
Table 15: Applied metrics in organizations

Abbreviations:

 Sig = Sig meter

 Tics = TIOBE Coding Standard Framework (TICS)

 CC = Code Complexity

In the next phase, we classified the quality metrics in number of occurrences, the results are shown

in figure 20. A metric can have a maximum occurrence of 11 times. In such a case, the metric is used

54

in all organizations that are part of this study. The vertical axis is the total number of organizations

and the horizontal axis displays the metrics.

Figure 20: Occurrence of metrics

Based on the results above, we acknowledge that there are four metrics that have the highest

number of occurrence and are the most popular ones. These metrics are:

 Code coverage

 Unit test coverage

 Number of failed/succeeded automated tests

 Number of open customer problems

4.3.2 Measure software quality

In figure 21 the responses are displayed regarding the question: “How do you measure software

quality?” In 53% of the cases, organizations measure software quality using data that is generated by

tools. In 41% of the cases organizations use data that is generated manually. And in one case, the

data is collected but nothing is done with it.

Figure 21: How is software quality measured

11
10 10

9
8

7 7
6 6 6

5

3 3
2

0

2

4

6

8

10

12
N

u
m

b
er

 o
f

o
rg

an
iz

at
io

n
s

Quality metrics

53%41%

6% Auto generated data using tools

Manually generated data

We collect data but do nothing with
it

55

4.3.3 Most important quality metrics

The following question to be answered is: “What are the most important quality metrics?” The data

analyses based on this question concluded the results shown in the table below. The quality metrics

that are found the most important for every organization, are selected and linked to the

corresponding organization. In some cases, an organization had several choices as the most

important quality metric, therefore the extra metrics are also added to the table.

Organization Most important quality metrics

A Critical issues (defects)

B Code coverage

C Defects

D Code coverage, defects, test coverage

E Code coverage, test coverage, code complexity and defects

F Defects

G Code coverage, code review, performance test, critical defects, customer
feedback

H Customer satisfaction, defects, acceptance test, unit test

I Unit test, test case count

J Unit test, code complexity, defects, secure code scan

K Defects
Table 16: Most important quality metrics

The collected quality metrics have been further analyzed in order to discover the number of

occurrence and popularity. In figure 22 the data regarding these findings are displayed. Nine

organizations have found defects or critical issues as the most important quality metric. Four

organizations find code coverage as the most important quality metric. The quality metrics with the

lowest number of occurrence are: performance test, test case count, acceptance test and code

review.

Figure 22: Most important quality metrics

In order to discover the relation between most important quality metrics according to the

organizations and the corresponding maturity level of those organizations, an overview is created in

figure 23. In this graph, organizations A-K are displayed on the horizontal axis with their most

important quality metrics. Some of the organizations had multiple choices in order to choose the

most important quality metrics, therefore in some of the cases an organization has multiple quality

metrics.

0 1 2 3 4 5 6 7 8 9 10

Defects

Code coverage

Unit test

Test coverage

Code complexity

Customer feedback

Code review

Acceptance test

Test case count

Performance test

56

Figure 23: Maturity vs most important quality metrics

4.3.4 Effective quality metrics

During the interview sessions, the participants were asked: “When is a quality metric effective?”.

The responses to this question are subjective and are based on the experience of the specific

individuals. The results are displayed in table 17. The objective of this question is to provide

characteristics for a quality metric that can be implemented in organizations. In addition, we can

evaluate whether the existing quality metrics have these characteristics. As it is evident from the

results, the responses vary between the organizations. However, there are characteristics that are

mentioned more than once by the participants and can be considered as important characteristics,

these are:

 Provides improvement

 Quick insight/overview

 Be (easy)measureable

 Proven it works

Organization When is a quality metric effective?

A Can be automated and provides 100% guarantee (assurance)

B Provides improvement

C N/A

D Should be useful, provides overview and improvements

E Fast results and its proven that it works, quick insight, engage to improve

F Detailed overview, quick insight regarding what’s wrong

G Provides a range(good-bad), be measureable, easily obtained, quick insight

H Smart, related to non-functional

I Can be compared with baseline

J Proven it works, easy to measure, must show weaknesses

K If customer satisfaction is high
Table 17: Effective quality metrics

0

50

100

150

200

250

300

A B C D E F G H I J K

M
at

u
ri

ty
 S

co
re

Organization

Maturity score Defects Code coverage Unit test

Test coverage Code complexity Customer feedback Code review

Acceptance test Test case count Performance test

57

4.3.5 Outcome

In this section we focus to answer the formulated research question: “What are the most effective

quality metrics (QM) that are being used in agile organizations?”. To answer this, we have analyzed

effective quality metrics according to the following questions representing different dimensions:

1. What metrics are used in organizations?

2. How is software quality measured?

3. What are the most important quality metrics?

4. When is a quality metric effective?

Based on the data collected from 11 organizations, there is a variety of metrics collected by

organizations. We have selected the top four popular metrics that are being implemented in more

than nine organizations. These metrics are:

 Code coverage

 Unit test coverage

 Number of failed/succeeded automated tests

 Number of open customer problems

In the next phase, we analyzed how these metrics are collected with regards to measuring software

quality. In almost all of the organizations the data is collected using the two combinations of

automatically and manually generating data. In only once case the data was ignored and it was not

further processed or turned into something useful.

Subsequently, we needed to identify what are the most important quality metrics according to the

organizations. The results derived from this analysis concluded in the following three quality metrics:

 Defects

 Code coverage

 Unit test (coverage)

Finally, we focused on fourth dimension that will identify the characteristics of effective quality

metrics. During the interview sessions, experts were requested to provide their opinion related to

this question. Many characteristics have been derived from this analysis with a wide range of

variety. The four popular responses are presented below:

 Provides improvement

 Quick insight/overview

 Be (easy)measureable

 Proven it works

58

According to the results in table 18, we can conclude that the popular quality metrics that are

currently implemented in organizations, can be considered effective. These metrics match three out

of four characteristics for a quality metric in order to be effective. These characteristics are: provides

improvement, quick insight/overview and be measurable. When we compare the current metrics

with the most important metrics, we can acknowledge that there is a match of 75% in total. In

general we can conclude that the most effective quality metrics are code coverage, unit test

coverage, defects and the number of failed/succeeded automated tests.

Current quality metrics used Most important quality metrics

Code coverage Code coverage

Unit test coverage Unit test coverage

Open customer problems (defects) Defects

Failed/succeeded automated test
Table 18: Current quality metrics vs most important quality metrics

59

4.4 Effective agile practices to support maturity

Agile methodologies consist of various techniques and frameworks. The data outcome of the study

demonstrates results from 11 organizations have been studied, all of these organizations are

implementing scrum. In this section, the study will target agile practices that are necessary in order

to determine agile maturity of an organization. This study will only determine the agile maturity level

of a certain team within that organization. The goal of this section is to analyze and evaluate the data

in order to identify effective agile practices that can define agile maturity. In order to achieve this, we

will focus on these three aspects.

 Which agile practices are applied

 Which agile practices can determine maturity

 Which agile practices are necessary

4.4.1 Applied practices in organizations

In table 19 we present the results with regard to applied agile practices in studied organizations. On

the horizontal axis, we have defined the organizations from A-K and on the vertical axis the list of

agile practices is displayed.

Practices A B C D E F G H I J K Total

Automated builds X X X X X X X X X X X 11

Daily standup X X X X X X X X X X X 11

Coding standards X X X X X X X X X X X 11

Release planning X X X X X X X X X X X 11

Continuous integration X X X X X X X X X X X 11

Unit testing X X X X X X X X X X 10

Digital task board X X X X X X X X X X 10

Refactoring X X X X X X X X X X 10

Retrospectives X X X X X X X X X X 10

Scrum poker X X X X X X X X X 9

Open work area X X X X X X X X X 9

Iteration planning X X X X X X X X X 9

Burn down estimation X X X X X X X X X 9

Velocity X X X X X X X X X 9

Dedicated PO X X X X X X X X X 9

Test-driven development X X X X X X X X 8

Pair programming X X X X X X X 7

Collective code ownership X X X X X X 6

Continuous deployment X X X X X X 6

Integrated QA/Dev X X X X X X 6

Automated acceptance
test

X X X X X X 6

Story mapping X X X X X 5

Kanban X X X X X 5

Customer acceptance test X X X X X 5

Agile games X X X 3

Cycle time X X 2
Table 19: Agile practices applied in organizations

60

As presented in table 19 we can perceive the implementation of agile practices in all organization. In

total there are 26 practices that are assessed based on their implementation in agile organizations. In

order to construct a more specific analysis based on the popularity of the practices, we summed up

the number of occurrence of each practice in each organization and generated the following

overview in figure 24. There are five agile practices that are implemented in all studied organizations.

These practices are:

 Continuous integration

 Release planning

 Coding standards

 Daily standup

 Automated builds

The top five practices with the least number of occurrences are listed below. The cause of the low

occurrence of these practices is not related to their ineffectiveness or unpopularity, in contrary,

these practices can be an indication of growth towards higher maturity level.

 Custom acceptance test

 Kanban

 Agile games

 Cycle time

 Story mapping

61

Figure 24: Overview of agile practices occurrence in organizations

4.4.2 Agile practices to determine maturity

The goal of this section is to construct a model that evaluates agile practices in order to determine

agile maturity and present effective agile practices that can determine maturity. In order to achieve

this goal, the following approach will be followed:

1. Select three organizations with three different maturity levels:

a. Highest maturity score (Organization J, 255 points)

b. Medium maturity score (Organization E, 185 points)

c. Lowest maturity score (Organization F, 131 points)

2. Demonstrate agile practices and their implementations in a table

3. Search for correlation between every agile practice and the three organizations

Practices that belong to low level maturity

Practices that belong to medium level maturity

Practices that belong to high level maturity
Table 20: legend

11

11

11

11

11

10

10

10

10

9

9

9

9

9

9

8

7

6

6

6

6

5

5

5

3

2

0 1 2 3 4 5 6 7 8 9 10 11 12

Automated builds

Daily standup

Coding standards

Release planning

Continuous integration

Digital task board

Refactoring

Retrospectives

Unit testing

Scrum poker

Open work area

Iteration planning

Velocity

Burn down estimation

Dedicated PO

Test-driven development

Pair programming

Automated acceptance test

Continuous deployment

Integrated QA/Dev

Collective code ownership

Story mapping

Customer acceptance test

Kanban

Agile games

Cycle time

OCCURENCE

62

Organization J (score = 255) Organization E (score = 185) Organization F (score = 131)

Scrum poker Scrum poker Scrum poker

Open work area Open work area Open work area

Iteration planning Iteration planning Iteration planning

Automated builds Automated builds Automated builds

Daily standup Daily standup Daily standup

Coding standards Coding standards Coding standards

Digital task board Digital task board Digital task board

Refactoring Refactoring Refactoring

Release planning Release planning Release planning

Dedicated PO Dedicated PO Dedicated PO

Continuous integration Continuous integration Continuous integration

Test-driven development Test-driven development Test-driven development

Retrospectives Retrospectives Retrospectives

Unit testing Unit testing

Pair programming Pair programming

Integrated QA/Dev Integrated QA/Dev

Burn down estimation Burn down estimation

Velocity Velocity

Collective code ownership Collective code ownership

Story mapping Story mapping

Continuous deployment

Cycle time

Automated acceptance test

Customer acceptance test

Test automation
Table 21: Agile practices in organization J, E, F

As aforementioned, for this analysis we have selected three organizations with different maturity

levels (high, medium and low). As presented in table 21, there are 13 agile practices that take place

in all three organizations. These are shown in green color. There are seven practices that are only

implemented in two organizations, these practices are presented in yellow. Finally, there are five

agile practices that are only implemented in organization J, this organization has scored the highest

maturity score according to our study.

Based on the results in table 21, organization F has to implement six agile practices in order to

achieve the medium maturity level. As for the organization E, it that has medium maturity level, this

organization has to implement six agile practices in order to promote to a higher maturity level. An

overview is presented in table 22 below.

From low to medium level From medium to high level

Unit testing Story mapping

Pair programming Continuous deployment

Integrated QA/Dev Cycle time

Burn down estimation Automated acceptance test

Velocity Customer acceptance test

Collective code ownership Test automation
Table 22: Agile practices that indicate growth

Based on the results in table 22 we can consider these agile practices to be necessary in order to

grow in maturity. On the other hand, we can see similarities in the use of agile practices in the lower

level of maturity. As already mentioned, these similarities are based on the implementation of 13

63

agile practices that take place in all three organizations. In the medium level we acknowledge the

similarities in implementation of agile practices between two organizations (organization J and E).

This implies that, organizations with medium level are implementing the practices that organization J

and organization E have in common.

4.4.3 Necessary agile practices

In order to identify effective agile practices, we investigate the necessary agile practices in

organizations. The participants are experts with knowledge and practical experience in the area of

agile implementation. They have been requested to indicate the necessary agile practices, according

to their beliefs and experience. The list of necessary agile practices is a strong indication for

determining the first level of agile maturity. These practices are seen as essential practices that will

differentiate agile organizations from non-agile. In table 23 we have listed all organizations with their

corresponding response on necessary agile practices.

Organization Necessary agile practices

A Daily stand-up, retrospective

B Retrospective, backlog refinement, openwork area, demo, continuous deployment

C N/A

D Daily stand-up, retrospective, code review, planning

E Daily stand-up, retrospective, planning, backlog refinement, burn-down chart

F Daily stand-up, retrospective, planning, openwork area

G Daily stand-up, retrospective, code review, planning, burn-down chart

H Daily stand-up, retrospective, backlog refinement

I Daily stand-up, planning, openwork area, pair programming

J Daily stand-up, retrospective, backlog refinement

K Retrospective, planning
Table 23: Necessary agile practices in organizations

To gain a more detailed analysis of necessary agile practices based on their implementation and

popularity, we have presented these in figure 25. This figure presents all necessary agile practices,

according to experts and agile practitioners based on the number of occurrences. It is evident that

retrospective has the highest popularity, followed by daily stand-up and the planning session.

Figure 25: Agile practices that are considered necessary

9
8

5
4

3
2 2

1 1

0

2

4

6

8

10

N
u

m
b

er
 o

f
o

cc
u

re
n

ce

Necessary agile practices

64

4.4.4 Extra elements

In addition to the existing agile practices that mostly identify organizations with lower maturity, we

pay attention to the agile practices that are generally considered to be residing in the higher maturity

levels. We specifically analyzed the implementation of test automation and continuous delivery in

organizations. The results show that, the top three organizations with the highest maturity score

have successfully implemented continuous delivery and test automation. On the test automation

subject, we evaluate two aspects: 1) test automation implementation, 2) test automation coverage.

Organizations with medium level of maturity have started implementing continuous delivery and test

automation. And organizations with the lowest maturity score are not performing any activities

related to both aspects.

The extra elements are specifically evaluated in detail for organizations J, E and F which represent

the three maturity levels.

Organization Continuous delivery Test automation Test automation coverage

J Yes Yes 90%

E Started Started 5%

F No No 0%
Table 24: Implementation of continuous delivery and test automation

4.4.5 Outcome

In section 4.4 we analyzed results in order to discover effective agile practices that support maturity.

In this section we explore the findings and provide a short summary. Subsequently, we provide the

suggested answer for RQ2: “What are the most effective agile practices that support maturity?”.

Initially we investigated the applied agile practices in organizations, identified agile practices that can

support maturity, then listed all necessary agile practices and finally evaluated the extra elements.

We combined the results of four aforementioned subjects and mapped them below in table 25.

Top 5 popular
practices

5 least popular
agile practices

Agile practices that can
determine maturity

Necessary agile
practices

Extra elements

Continuous
integration

Agile games Unit testing Retrospective

Daily stand-up Kanban Pair programming Daily stand-up

Coding
standards

 Integrated QA/Dev Planning

Release planning Burn-down estimation Burn-down
estimation

Automated
builds

 Velocity Backlog
refinement

 Collective code ownership Open work area

 Story mapping Story mapping Code review

 Continuous deployment Continuous
deployment

Continuous
deployment

 Cycle time Cycle time Demo

 Automated acceptance
test

 Customer
acceptance test

Customer acceptance test

 Test automation Test automation
Table 25: Summary of four dimensions of agile practices

65

Agile practices that appear more than once are shown in the same color. There are in total seven

agile practices that are mentioned in more than one subject. These practices are considered as

effective agile practices to support maturity.

Based on the results in table 22 and table 25, the answer to our research question of this section is

described in table 26. These practices are categorized into three levels to provide a better overview.

Low level Medium level High level

Daily stand-up
Burn down estimation
Integrated QA/Dev

Unit testing
Pair programming
Velocity
Collective code ownership

Continuous deployment
Story mapping
Cycle time
Automated acceptance test
Customer acceptance test
Test automation

Table 26: Effective agile practices to support maturity

66

4.5 How do organizations measure agile maturity

Organizations strive to excel in different areas, especially in agile development. But in order to excel,

organizations need to become aware of their performance and development. They need to apply

measures and assessments in order to understand what their current position is in agile

development and what the improvement areas are. To perform this, organizations should have the

commitment to improve and focus on agile excellence. Therefore, in this section we focus how

organizations assess and measure agile. To compute the related results, different dimension of the

topic has been investigated in order to develop a more in-depth analysis. The following dimensions

are considered:

 Agile assessments

 Agile training/workshops

 Agile experience of the team

 Agile certifications

 Improvement areas for teams

 Missing agile practices

 Organizational focus points to improve on agile

4.5.1 Agile assessment

Information related to the current state of implementation of agile developments provides

organizations awareness with regards to agile growth. The question remains whether the

organizations are interested in such a data and how much effort is invested to acquire it. This section

describes data related to agile assessment in 11 organizations.

The studied organizations have been asked whether they have executed any form of agile

assessment in order to get knowledge related to their current state of agile implementations. Any

form as assessment is acceptable if it provides knowledge of the current state of agile

implementation. We will not differentiate between in-house assessments or external. In-house

assessment is conducted by the company itself using their own staff or experts, and external

assessment is conducted by an external party, this could be a company that is specialized in assessing

organizations on agile.

In figure 26 we present the studied organizations and their approach on agile assessment. As it’s

evident from this graph, only four organizations are conducting agile assessments.

Figure 26: Assessment in organizations

0

1

A B C D E F G H I J K

Organization

In-house assessment

External party assessment

67

Organization A is according to our study considered to be an organization with a high maturity level.

This organization scored 239 points from the agile maturity test. This organization is mainly

performing in-house assessment by their own agile coaches. These assessments are conducted on a

regular basis and are based certain models used, one of these models is the Tuckman model (Bruce

W. Tuckman, 1977). The teams are assessed according to the four stages of the model described

below and then it’s decided how to improve these teams.

1. Forming

2. Storming

3. Norming

4. Performing

Organization B scored test 199 points and is considered to have a medium level maturity. This

organization is performing agile assessments based on the new projects and products. Agile experts

and their own staff are responsible for conducting these assessments.

Organization I is considered to possess a high maturity level with 215 points. This organization

conducts assessments from time to time by own staff and agile experts active in this company.

Organization J is also considered to have a high maturity level with 255 points. The assessments are

conducted on a regularly base by own staff and agile experts working in this company.

We can conclude that in general, organizations with a low and medium agile maturity level are not

focusing on agile assessments. They are mainly occupied implementing new agile practices and

improving the existing ones. However, organizations that are considered mature in agile, are

conducting assessments in order to continuously improve. These assessments are conducted by

sending out surveys and meetings with the teams. In organization A, teams are sometimes during the

retrospective sessions assessed.

4.5.2 Agile training/workshops

Training and workshops can be essential to improve in agile implementations. Based on the

investigations conducted in 11 organizations, it is evident that team maturity plays an important role.

Therefore, some of the teams might need more assistance to improve on certain areas. Workshops

and trainings are the solutions to increase the team maturity. Agile training and workshops can also

be implemented to increase the level of expertise and knowledge of individuals within the

organization. In this section we present results with regard to agile training and workshops in

organizations.

Nearly all investigated organizations have provided training and workshops in the beginning when

agile development was introduced. We will not account these trainings and workshops as a valid

result of our research question. We only focus on training and workshops that are provided

afterwards to improve agile development in a later phase. The training and workshops in the initial

state of implementation are excluded from the results.

As depicted in figure 27, agile training and workshops are neglected or not applied in 64% of the

cases. Only 36% of the organizations are providing training or workshops to improve agile

development. These trainings and workshops are provided on a regular basis. Organizations that are

providing these services are:

 Organization A

 Organization B

 Organization I

68

 Organization J

Figure 27: Training and workshop

From the four organizations that do provide agile training and workshops, three of them are

considered to have a high maturity level according to our assessment, the other one has medium

maturity level.

Based on the results, only organization A is providing extensive agile training for the teams by agile

coaches. There are 36 scrum teams in this organization with different maturity levels. On a regular

basis, the teams that are struggling with certain agile practices are put under scrutiny. Subsequently,

these teams receive the necessary knowledge and training to achieve the desired level.

Organization B provides trainings on a regular basis and is mainly implemented on the kick-off of new

projects. These trainings are provided by agile coaches and the focus point is mainly SAFE

implementation.

The trainings provided in organizations I and J are mainly meant for product owners and scrum

masters. Other team members are not involved in these trainings.

The results derived from this section concludes that agile training and workshops are provided by

nearly all organizations when agile development is introduced. At a later stage when agile

development has been implemented, trainings and workshops are not provided in low and medium

mature organizations. Although some of medium mature organizations provide trainings, these are

only provided for scrum masters and product owners. The results show that not all the mature

organizations provide training or workshop for the team, only in some of the cases it occurs.

4.5.3 Agile experience of the team

In this study, we analyzed the agile experience of representing teams. The experience of every team

member of each team is considered to calculate the total experience of the team. The participants

have indicated their team member’s experience in order to define the total team experience working

according to agile principles. In some cases, she participants have indicated that they don’t know the

exact experience of their team members, but they can provide a general estimation what the

experience of their team members is. Below we describe how experienced the teams are working

with agile development. We evaluate the experience of the teams in the following categories:

 Poor – on average the team has few months experience

 Fair – on average the team has 1+ year experience

36%

64%

Training/workshop

No training/workshop

69

 Good – on average the team has 2+ year experience

The team experience from the corresponding organization is described in table 29.

Organization Team experience in agile

A Good

B Good

C Poor

D Fair

E Good

F Poor

G Fair

H Fair

I Good

J Good

K Fair
Table 27: Team member’s experience with agile

Teams with “good” experience are derived organization A, B, E, I and J. Three out of these five

organizations have already scored a high maturity score in this study, these are organization A, I and

J. Maturity scores can be found in section 3.3.1. Teams that have “fair” experience in agile, are

representing organizations with a medium maturity level. Organization C and F have “poor” team

experience and according to our maturity test, these organizations scored a low maturity score.

4.5.4 Agile certifications

The study investigated the level of expertise of agile teams based on agile certifications. The teams

were asked which of the team members has any form of agile certifications. The results are

presented in figure 28.

Figure 28: Agile certifications in organizations

Nearly all organizations have a certified scrum master except organizations A and C. Organization A is

considered as a high level agile maturity. The scrum masters in this organization are trained in house

by agile coaches. There are no formal agile certifications for these scrum masters. According to agile

A B C D E F G H I J K

C
er

ti
fi

ed

Organization

Certified scrum master Certified PO Other members certified

70

coaches of this organization, certification does not improve the capabilities and performance of

scrum masters. In addition, agile coaches believe that the training provided by them has a

significantly more quality and is tailor made than the training provided by an external company. As

for organization C, it’s a start-up company and there is no emphasis on following practices by the

book. The scrum master has developed his knowledge individually be self-learning.

4.5.5 Improvement areas for teams

Implementing agile methods are typically associated with hurdles that teams undergo, even the most

mature teams could have small issues to deal with. The teams have to tackle these struggles in order

to resolve it. Improvement areas are typically derived from the issues that teams have in

implementing agile methodologies. These improvement areas could be an indicator to discover the

difficult practices in agile.

The teams studied in this research have highlighted their possible improvement areas in order to

perform better. The representing teams of each organization are listed below in figure 29 with the

improvement areas that have been pointed out by the teams self. The list of improvement areas

linked to each organization can be found in the appendix section A.

Figure 29: Improvement areas indicated by teams

As described in figure 29, the most mentioned improvement is planning. The data analysis has shown

that teams find it hard to perform a good sustainable planning session for their iterations. The issues

related to planning sessions are often:

 Planning takes too long

 Planned too tight

 Cannot plan certain issues (bugs)

 User stories are not defined properly, cannot properly plan

0 1 2 3 4 5 6 7 8

Planning

Retrospective

User stories

Communication with other teams

Test (automation)

Changes during sprint

Estimates

Backlog refinement

Team responsibility

Communication with business

Communication in team

Administrations

Skills

Heroes in team

Pair programming

Trying to be perfect

Code review

Product range

Clear processes

Team authority

Dedication

Continuous builds

Amount

A
re

a
o

f
im

p
ro

ve
m

en
t

71

The second most mentioned improvement areas are users stories and retrospective. The teams have

indicated that user stories are often incomplete or not well defined. As a result, it’s hard for the team

to understand the user story and create sensible tasks. Consequently the sprint is started with those

user stories and the team is struggling to understand and adjust the user story during the sprint. This

effect will sometimes result in a failed sprint due to not meeting the vague requirements.

As for the retrospectives, four out of 11 teams have indicated the necessity to improve on this.

Opening up and following up on action points are often the issues that are related to retrospectives.

In some cases, it takes some time for the team to express their underlying feelings about the sprint

and really contribute to retrospectives. In other cases, the retrospective sessions are successfully

conducted and useful issues have been highlighted. However, after the retrospective, the created

action points are often neglected and forgotten.

4.5.6 Missing agile practices

Studied organizations often offer teams and individuals the freedom to implement agile

methodologies. Although there is freedom, sometimes there are some agile practices that teams

would like to do but these are lacking. We will focus on the team’s view and highlight the missing

agile practices according to the teams studied.

Organization Missing practices according to team

A None

B Devops, continuous delivery

C N/A

D Pair programming, test driven development

E Continuous delivery, test automation

F Code review, unit test, code quality tools, continuous builds, integration tests

G Pair programming

H Test automation, acceptance criteria, risk analysis

I None

J None

K Metrics, velocity
Table 28: Desired agile practices that are not in place

Based on the results in table 30, three teams representing from organization A, I and J have indicated

that there are no agile practices or techniques that they would like to conduct that are not in place.

Furthermore, continuous delivery, pair programming and test automation are agile practices that are

missing in some organizations.

4.5.7 Organizational focus points to improve on agile

In the previous section we presented results with regards to preferences of agile teams and agile

practices that they would like conduct that are not in place. The next phase is to analyze the

organizational point of view on agile development and discover the possible correlations. Specifically,

what are the focus points of organizations to improve agile development? Some organizations are

successful in implementing agile in such a way that there is no significant need for improvement.

Whereas other organizations have a wish list of certain goals related to agile to achieve.

In table 31, an overview is provided representing organizations and the desired focus point to

improve.

72

Organization Focus point

A Autonomy, reduce team dependency

B Continuous delivery, SAFE

C Test quality

D Agile roles, shippable products, empowering teams

E Continuous delivery, test automation

F Code production, continuous product improvement

G Estimates, UI test automation

H Test quality(risks and automatic acceptance test)

I -

J Bi-monthly epics live, bi-weekly small release

K Introduce QA role, feature teams
Table 29: Organizational focus point to improve

Comparing table 30 and 31 has shown that, there is a small number of correlations between the

team’s point of view and the organization on agile. Organization B indicated to focus on continuous

delivery, the team indicated that continuous delivery is missing or not fully implemented. The same is

seen in organizations E, F and H. For these organizations the focus point is related to continuous

delivery, continuous improvement and test quality. As for the other organizations, we can conclude

that there are no correlation or similarities. For the high performing organizations or the ones with

high maturity, we assume this doesn’t indicate a negative view, however, for the low maturity

organizations, this could have a negative effect as it is related to slower growth in maturity. For the

low maturity organizations this could have various unknown reasons, the assumption is that the

message is not well communicated to the teams, or the commitment of the team is lacking.

4.5.8 Outcome

In sections 3.6.0 to 3.6.7 we analyzed dimension related to how organizations measure agile

development. Now we provide a short summary with a suggested answer for RQ3: “How do

organizations measure the maturity of their agile software development?”

Generally, most organizations that implement agile methods don’t perform any assessments within

the company to understand their level of agile implementation. However, some of the mature

organizations do assess teams in order to continuously improve. Typically, every studied organization

has indicated that training and workshops are provided in the initial stage of agile implementation. In

the later stage, only a selected number of mature organizations are providing training and workshops

to improve teams.

We studied the experience of individuals within an agile team. It is evident that team formation in

mature agile organizations is consisted of people with fair to good experience with agile methods.

The experience with agile methods in organizations with lower maturity are in most of the cases very

little and considered poor. Nearly all organizations have a certified scrum master except for two

organizations.

The results indicate that agile certifications are not a guarantee for successful guidance and

implementation of agile methods. This specific evidence derives from organization A. This

organization is considered very mature, however, there are no certified scrum masters active in this

organization. All the scrum masters have been developed and trained in-house by internal agile

coaches.

We analyzed the improvement areas suggested by the teams, this indicated that planning is the most

difficult practice in seven organizations and certainly needs improvements. Subsequently,

73

retrospective and defining proper user stories are the second most difficult practices that need

improvement.

The next phase was to investigate the missing agile practices and possibly discover correlations with

the organizational focus points. This analysis showed that generally the mature agile organizations

are not missing agile practices, all the desired agile practices are implemented. The correlation found

is related only to low and medium agile mature organizations. The similarities are seen between the

missing practices described by the team and the organizational focus points.

Finally to answer how organizations measure agile maturity, we have to evaluate the

aforementioned dimensions. Based on the results presented, from the mature organizations, only a

few organizations are assessing the teams. The assessment is conducted by sending out surveys,

creating meeting with the teams and requesting input from the team during the retrospective

meetings. One organization makes use of theoretical models and frameworks in order to measure

maturity. Organizations in the range of low and medium agile maturity are not investing any effort in

assessing teams on agility. Organizations in the low and medium range of agile maturity are not

measuring their maturity.

4.6 Impact of successful or failed projects on quality metrics

In general, agile methodologies are adopted because of delivering fast software delivery and

increased the chance of successful projects. However, implementing agile methodologies can lead to

failed projects and is not always a guarantee for success. This failure can be based on different

aspects, for instance; low skilled individuals, no structural guidance for implementing agile methods

and many other aspects. In this section we focus on successful or failed projects and the impact on

quality metrics.

First, we need to define what is meant by successful or failed projects. Successful projects is derived

from satisfaction, functionalities, but also from quality attributes such as performance, usability and

reliability (Jeon, Han, Lee, & Lee, 2011). Successful project stands for a successful delivery of a

complete product the way the customer had desired, the customer should be happy. In contrary,

failed projects means that the product is not complete and the customer is unhappy about the

delivered product. In some cases the projects can be terminated half way due to customer’s

feedback or the solution is not realistic for the market.

To understand the impact of successful or failed projects on quality metrics, we investigated

organizations on the following topics:

 Rate of successful projects

 Customer feedback

o When received

o What feedback

o Impact of feedback

 Measures due to poor quality

4.6.1 Rate of successful projects

Experts and representatives from 11 organizations have been requested to indicate the success rate

of the projects in their organizations that they have been involved with. We specifically requested

the success rate of the projects that the team has been involved with, the results are not

representing the organization as a whole. Using this, we try to find a relation between the rate of

success of projects, customer feedback and measures initiated based on failed projects. Customer

74

feedback is described in section 3.7.2, and in section 3.7.3 we find the results based on measures

taken due to failed quality.

The results of success rate are presented in table 32.

Organization Rate of successful projects in percentages

A 90

B 73

C 100

D 80

E 70

F 80

G 85

H 90

I 90

J 100

K 90
Table 30: Rate of successful projects in agile organizations

The study clarified that generally participants find it hard to measure project success, these results

are based on rough estimations. The results showed that in some cases, organizations are running

projects for a long period of time, this varies between one to three years. Organizations that run the

same project for a couple of years, have indicated that the success rate remains 100% if there are no

failures within the project. An example is organization C, it’s a start-up company and is running the

same project for two years. The project has been successful until now without any failures, therefore

the success rate is 100%.

It is evident that in general the success rate of the projects is relatively high. It is interesting to find

out why the success rate is as provided by the participants. Therefore, the representing participants

were requested to elaborate why the success rate is as they described. As for the organization with a

high success rate, the underlying motive was related to the adoption of agile methods, following

short iterations, good collaboration between business and IT and having small teams. Furthermore,

code reviews and many aspects of testing were mentioned. Especially the test coverage and

automated testing were described as factors related to this success rate. Organizations with the

relatively lower success rate, related this number to over-commitment of the teams. As a result the

success rate dropped in these organizations.

4.6.2 Customer feedback

Customer feedback is an indicator for software quality. When the customer is happy, the feedback is

positive and software quality is high and satisfying. In this section we study organizations specifically

on what customer feedback is received, when it’s received and what the impact was on development

or the testing process.

Organization What feedback When Impact

A Issues
Customer satisfaction

1 month Listen more to stakeholders
Involve customer early in process

B Customer satisfaction

2 weeks No

C Issues
usability of product

After sprint
release

Only impacts if many customer
complain

D Customer satisfaction - More test automation

75

 Code reviews

E Issues
Usability
Performance
Documentation

Few months Change of scope
Increase test coverage

F Delivery status
System stability
Customer satisfaction

1 week

More time for testing
UI design

G Issues
Adding features

1 month Delivery time
Change of scope

H Issues
Functional feedback

After release
to couple of
weeks

More and broader view on testing
Test coverage improvement

I Issues
Customer satisfaction
Compliments

1 month Refactoring
More testing

J Customer satisfaction
Adding features

2 months Faster acceptance test
Test coverage
Assess our environment

K Customer satisfaction 1 week No
Table 31: Customer feedback based on three dimensions

According to the results of table 33, most of the feedback provided by the customers is related to

customer satisfaction and the issues reported. Customer satisfaction is often expressed by indicating

whether the release was good or bad. In some cases, organizations receive feedback in terms like “it

works fine”. Other form of feedback is the reported issues by the customer. In case of malfunction or

an error, organizations are notified by the customer and request immediate fix. The results show that

only the critical issues reported by the customer are seen as a form of feedback. Other forms of

feedback provided by the customers are usability of the product and feature requests. Figure 30

presents the aforementioned feedback types and its distribution.

Figure 30: Types of feedback

Issues (bugs)
26%

Customer
satisfaction

30%

Usablity of product
9%

Feature request
9%

Other
26%

Feedback by customer

76

The feedback provided by the customer can be immediately after the sprint release or it can take

months before any feedback is given. Figure 31 displays when the feedback is provided by the

customers in studied organizations.

Figure 31: Feedback time

Finally, we analyzed the feedback provided by the customers and its impact on the development or

testing process according to the studied organizations. In most of the cases, the customer feedback

has impacted various areas related to testing. Six out of 11 organizations have indicated that the

feedback provided by the customer usually impacts the test aspects. These aspects include increasing

the test coverage, more test automation and more time allocated for testing. The distribution of

impacted areas is presented below in figure 32.

Subsequently, two organizations have indicated that the feedback impacts the development process.

Specifically the implementation of code reviews and refactoring are mentioned. Furthermore,

change of scope and collaboration with the stakeholders have been identified as areas that are

impacted by customer’s feedback.

After sprint release
18%

1 week
18%

2 weeks
9%

1 month
28%

2 months
9%

few months
9%

Other
9%

Feedback time

77

Figure 32: Feedback impacted different areas

4.6.3 Measures derived from poor quality

In order to identify the impact of project success on quality metrics, we will investigate measures

taken by organizations in case of project failure. Organizations can try to minimize the chance of

failure by taking specific measures. In this section we want to discover whether the taken measures

have any relation to implementing quality metrics. This could be introducing more quality metrics,

changing or excluding some.

The investigation revealed that some participants could not associate any failed projects with their

organizations. As a result, due to lack of failed projects in some organizations, we don’t have

complete data based on measures taken.

Studied organizations have reported various types of measures taken by them in order to prevent

the project failures. Based on the data analysis, areas reflecting testing have been mentioned the

most. Increasing the testing time and coverage are measures that many organizations have taken.

Subsequently, the team size is a measure that is considered imperative. Adding extra resources to

the team and increasing the team size are measures taken by studied organizations. A summary of

topics related to these measures is listed below.

 More testing (unit test)

 Team size

 Reduce environment dependency

 Fix quickly

 Reduce complexity

 Refactoring

 Better product design

 Create stable teams

 Better requirement analysis

The results related to measures presented above relate to different areas of increasing the quality.
However, we found two measures that are related to two quality metrics. One organization has
indicated to fix the issues reported quickly. This measure is related to the quality metric fix response

37%

12%13%

38%

Impacted areas

Testing

Development

Change of scope

Other

78

time. The second identified quality metric is related to unit testing. As mentioned already, many
organizations have indicated to increase different aspects of testing including unit testing.

4.6.4 Outcome

In this section we focus to answer the RQ4: “What is the impact of successful or failed projects on

quality metrics?”. In the previous sections we analyzed the project success rate within the

organization and focused on the successes. Then we identified the types of feedback provided by the

customer and finally we investigated the measures taken by organizations when projects failed.

The study clarified that generally participants find it hard to measure project success. It has become

evident that the success rate is in general above 70%, the underlying motive for this success rate is

mainly related to different aspects of agile development. These aspects include implementing short

iterations, small teams, good collaboration between business and IT and many more. In general, this

success rate has not triggered organizations to change or implement new quality metrics.

The feedback provided by the customers is in the most cases related to customer satisfaction and

critical issues found that needs to be fixed immediately. The timeframe that the feedback is reported

varies from immediately when the sprint ends until a few months after the sprint. We acknowledge

that fix response time is a very important quality metric for customer feedback. The customer

feedback impacts in most of the cases the testing process. These include increasing the test time,

test coverage and implementing automated testing.

We analyzed what measures organizations take when projects fail. The results show that there are a

variety of measures that organizations take, in most of the cases the testing area is affected.

Finally to conclude, based on the three dimensions, generally, failed projects are definitely impacting

the use of quality metrics. Typically, quality metrics are improved or introduced to prevent future

failures on projects. Organizations are implementing more testing, including automated tests to

reduce project failure. There are no reports regarding stopping the use of certain quality metrics. We

have not perceived any evidence that successful projects impacts quality metrics. This study

identified quality metrics that can impact successful or failed projects. These quality metrics are: fix

response time, unit test coverage, number of automated test coverage.

79

4.7 Maturity levels and quality metrics

We have researched when and how often organizations introduce new quality metrics. In addition,
we will analyze the results in sections 3.3 and 3.4 to formulate the answer. The outcome will aid to
answer the following research question: “At what maturity levels are which software quality metrics
implemented?”.

In the table below we present the results based on when and how often new quality metrics are

introduced in organizations.

Organization When new quality metrics introduced How often

A When management needs it, now code
coverage

Rarely

B No changes Rarely

C No changes No changes

D Rather improving, it depends on the period,
right now focus is satisfaction (unit testing)

Rarely

E No changes No changes

F No changes No changes

G No changes No changes

H No changes No changes

I Rarely, last year TICS Rarely

J Triggered from retrospectives and ING Rarely

K No changes No changes
Table 32: Implementing of new quality metrics in organizations

According to the results, introducing new quality metrics seems not be a highly exercised activity in

organizations. From the 11 researched organizations, only three have been introducing new quality

metrics with a limited focus, these are organizations A, I and J. Organization D is merely improving

the existing quality metrics instead of introducing new ones. In organization A, the need for new

quality metric is derived from the management. In this case, code coverage was introduced. In

general, organization A does not introduce quality metrics very often. In organization D, rather than

introducing, organization is more or less improving existing quality metrics. However, this is very

much related to the period. At this point, the focus is on improving the customer satisfaction and

quality, and therefore the implementation of unit testing is improved. Organization I has been

introducing TICS last year. TICS is a software solution developed to improve quality by providing

insight regarding the source code and other attributes related to code optimizations. Except the TICS,

the introduction of new quality metrics or tools happens rarely in organization I. Organization J has

indicated that introducing new quality metrics occurs rarely, but if it occurs, it comes from the

retrospectives or imposed by the management.

It’s notable to mention that the three organizations that do introduce new quality metrics, are

belonging to the high maturity level organizations according to our study. These results can be found

in section 3.3.1.

Except the aforementioned four organizations that are involved in introducing new quality metrics in

a limited way, the other seven organizations do not introduce any new quality metrics. As it’s evident

from the table 34, we have labeled them with “no changes”. The implementation of new quality

metrics or modifying the existing ones, is very much neglected. These organizations have indicated

that they stick to existing quality metrics without modifying them.

80

The results of table 33 could not aid to answer our research question in full. Therefore, we will

analyze the results in section 3.3 where we have evaluated the maturity levels of the teams, and in

section 3.4 where we identified quality metrics used in organization.

4.7.1 Outcome

To conclude and answer the research question, in table 35 we present the maturity levels and the

corresponding quality metrics. The levels are categorized in low, medium and high maturity. The low

maturity level consists of quality metrics derived from organizations C and F. The medium maturity

consists of quality metrics in organization B, D, E, G, H and K. Finally, quality metrics in high mature

organizations are collected from organizations A, I and J.

As it’s evident from table 35, organizations with low maturity are collecting fewer quality metrics.

During the data collection, the study offered a choice from 13 quality metrics, in addition,

organizations could add extra quality metrics. From the standard provided quality metrics in our

study, low mature organizations are missing seven quality metrics, these fields are presented in pink

color. In the medium and high maturity level, we acknowledge that the quality metrics collected, are

almost similar. As a result, we can conclude that, there is a relation between the use of specific

quality metrics and maturity levels. This relation is only based between low and high maturity

organizations. As presented, specific quality metrics are only applied in medium and high maturity

levels and are missing in low maturity level.

Low maturity Medium maturity High maturity

Organizations: C and F Organizations: B, D, E, G, H, K Organizations: A, I, J

 Defect count during production Defect count during production

 Defect count reported by
customer

Defect count reported by
customer

Fix response time Fix response time Fix response time

 Test case count Test case count

 Lines of code (LOC) Lines of code (LOC)

Code coverage Code coverage Code coverage

Unit test coverage Unit test coverage Unit test coverage

Compile failures and build
defects

Compile failures and build
defects

Compile failures and build
defects

Weekly defect arrivals Weekly defect arrivals Weekly defect arrivals

Number of failed/succeeded
auto test

Number of failed/succeeded
auto test

Number of failed/succeeded
auto test

 Total number of automated
test cases

Total number of automated
test cases

Number of open customer
problems

Number of open customer
problems

Number of open customer
problems

 Accuracy of estimates Accuracy of estimates

 (extra) SIG meter

 (extra)TICS

 (extra) Code complexity
Table 33: Quality metrics and its relation to maturity levels

81

5 DISCUSSION

5.1 Reflection on research questions

In the results section, we generated an outcome for every RQ discussed. In the outcome sections, we

answered the research questions according to these results. In this section, we will evaluate the

research questions and assess the answers and discuss specific findings.

RQ1: What are the most effective quality metrics that are being used in agile organizations?

The empirical findings for RQ1 show that in general the use of quality metrics is not very popular. As

(Hall & Fenton, 1997) argues, organizations favor a typical set of core metrics, dominated by size and

effort metrics, primarily used for resource estimation and productivity, rather than for quality. The

metrics found popular in a study conducted by (Hall & Fenton, 1997) are: resource estimation, lines

of code, design review data and code complexity. According to our study, we have identified

effective quality metrics that are used in agile organizations, these are not similar metrics as found by

(Hall & Fenton, 1997). We focused on four dimensions to discover the effective quality metrics.

These dimensions are:

 What metrics are used in organizations?

 How is software quality measured?

 What are the most important quality metrics?

 When is a quality metric effective?

The four dimensions have contributed to discover effective quality metrics. As a result, the answer to

RQ1 is a set of identified quality metric used in agile context. These metrics are: code coverage, unit

test coverage, defects and the number of failed/succeeded automated tests.

RQ2: What are the most effective agile practices that support maturity?

To answer RQ2 and find the relevant data, we focused on the following three aspects:

 Which agile practices are applied?

 Which agile practices can determine maturity?

 Which agile practices are necessary?

These three aspects have output a list of practices that are found effective to support agile maturity.

We have not found any relevant literature that can support or oppose our findings. The answer to

RQ2 is a list of practices shown below. The practices are categorized in three maturity levels. For

each level, we describe what the most effective agile practices are in order to support maturity for

that level.

High maturity practices

 Continuous deployment

 Story mapping

 Cycle time

 Automated acceptance test

 Customer acceptance test

 Test automation
Medium maturity practices

 Unit testing

 Pair programming

 Velocity

82

 Collective code ownership
Low maturity practices

 Daily stand-up

 Burn down estimation

 Integrated QA/Dev

RQ3: How do organizations measure the maturity of their agile software development?

As the literature suggests, agile maturity can be measured by using models (Ozcan-Top & Demirörs,

2013). In our study, we acknowledged that four organizations are measuring maturity. However, only

one organization makes use of models and frameworks in order to assess maturity for their teams.

This organization is mainly performing in-house assessment by their own agile coaches. These

assessments are conducted on a regular basis and are based on certain models. One of these models

is the Tuckman model (Bruce W. Tuckman, 1977). The teams are assessed according to the four

stages of the model, and then, it’s decided how to improve these teams. Other organizations assess

their teams by sending out surveys, creating meeting with the teams and requesting input from the

team during the retrospective meetings. As a result, the answer to RQ3 is, organizations don’t

measure their agility unless they are more mature, and maturity is measured by analyzing teams

through meetings, surveys and models – this is only conducted by organizations with higher maturity.

Organizations in the range of low and medium agile maturity are not investing any effort in assessing

teams on agility. We also acknowledged that organizations introduce agile training and workshops in

the initial stage of agile implementation. However, in the later stage, there is no assessment on agile

maturity and progress, except for organizations in the higher maturity.

We acknowledge that there is a correlation between team’s average experience and the

organization’s maturity level. Agile experience in low and medium maturity organizations are

considered to be balanced between poor and fair. Organizations in the low and medium range of

agile maturity are not measuring their maturity. However, the average experience of the team could

be an indication for organizations to measure agile maturity. This way, organizations could measure

agility by evaluating the average team experience on agile. In our study, we acknowledged that

organizations with higher maturity consists of teams with relatively high experience in agile.

RQ4: What is the impact of successful or failed projects on quality metrics?

We analyzed the research question from different dimensions. The dimensions are; success rate of

the projects, aspects related to customer feedback, and what measures have been taken when

projects failed due to poor quality. We acknowledged that in general, the success rate is high in

organizations due to implementation of agile methodologies. Our study shows that the impact

quality metrics is most perceived when projects fail. In those cases, software quality needs to be

improved in order to prevent failed projects. Test automation is an important factor and increases

quality (Kile & Inampudi, 2007). In our study we can confirm that, quality is improved by applying

more test automation and increasing the automated test coverage.

The answer to RQ4 is that generally, only failed projects are impacting the use of quality metrics,

quality metrics are improved or introduced to prevent future failures on projects. In addition, there is

more effort invested in testing. We have not perceived any impact of successful projects on quality

metrics. Finally, this study identified quality metrics that are impacted by failed projects. These

quality metrics are: fix response time, unit test coverage, number of automated test coverage.

83

RQ5: At what maturity levels are which software quality metrics implemented?

We analyzed which quality metrics are implemented at which maturity level. The answer to this RQ

depends on the answers given to RQ1-RQ4. The literature did not provide any support on this RQ, in

order to answer this RQ, we analyzed data related to RQ1-RQ4. As a result, the answer to RQ5 is that,

there is a relation between the use of specific quality metrics and maturity levels. This relation is

found between on one side, low, and on the other side, medium and high maturity levels. There is a

distinct difference between these two sides in terms of implementing quality metrics. We perceive

that there are a number of quality metrics implemented in medium and high maturity organizations

that don’t exist in low maturity organizations. These quality metrics are listed below:

 Defects during production

 Defects reported by customer

 Test case count

 Lines of code

 Number of automated test cases

 Accuracy of estimates

We perceive that the quality metrics implemented in medium and high maturity level are identical

and there are no major differences between medium and high maturity levels. The overview of

quality metrics with the corresponding levels is presented in table 35, in section 4.7.1.

Main Research question: How are the maturity of an agile software development approach and the

use of particular software quality metrics related?

Finally, based on the five aforementioned sub RQ’s, we can answer the main RQ. We can conclude
that, there is a relation between agile and the use of software quality metrics to some extent, this
relation is mostly apparent when looking at low and high maturity levels. Organizations with higher
maturity are focused to increase quality, using quality metrics related to testing; especially the
number of failed/succeeded automated tests and automated test coverage are the applied metrics.
On the other hand, organizations with lower maturity are not focusing on quality metrics, they are
mainly busy to improve their existing agile practices. For these organizations, the focus is on the
number of defects, which is an indicator for quality, and trying to improve their existing agile
processes.

84

5.2 Agile maturity

In this study we reviewed literature in order to understand the different levels of agile maturity and

the specific details of each maturity level. These details are converged into level focus points as

described in section 2.3.1. We could identify several similarities between the models, but mostly, the

level focus points of each model were different. For example, level three of Scrum Maturity Model

(Yin & Figueiredo, 2011) describes customer relationship as level focus point, whereas, Agile

Adoption Framework (Qumer & Henderson-Sellers, 2009) describes this in level four. However, these

focus points of levels are the foundation of our data collection. We have constructed the questions

for maturity score based on these level focus points, in accordance with related research questions.

As a result, these level focus points were also the driver for score calculation of maturity as described

in section 3.6.1. On the calculation side, some of the question can score more points due the fact

that they are described as important factors in the studied maturity models. In our data collection

phase we have acknowledged that these questions are indeed considered important in organizations

to achieve a higher level of agile maturity. The leading factors that were verified according to our

results are: test automation, continuous delivery, continuous improvement and other practices

mentioned in section 4.4.2.

For the calculation and categorizing agile maturity of organizations, maturity is divided in three levels

as mentioned in section 3.6. The levels consist of low, medium and high maturity. This is a more

simplified model to assess maturity and is based on the score, instead of specific practices or

activities related to certain levels as the models we have reviewed in this study describe.

Nevertheless, this simplified model does make use of the practices and activities, but only to provide

a score that eventually will determine maturity. It’s imperative to mention that the core objective of

this study is not to design a model to determine maturity. As a result, we could have used one of the

existing models to determine maturity. However, using such a model would not have any link to our

research questions, and in addition, it would have not been as accurate. Because, these models are

not providing specific measures to determine maturity, but solely indicating the key points to adhere

to. The model used in this study divides maturity in three levels with a minimum score for each level.

This approach has been simplifying the measurement and provides an assessment which is closer to

the topics of this study, which is agile maturity and software quality metrics.

In general, the existing maturity models (Ozcan-Top & Demirörs, 2013) assess maturity on basis of

one or two dimensions. These assessments are conducted by simply analyzing which agile practices

are implemented in organizations. In our opinion, determining maturity based on one or two

dimensions is not very effective, especially considering software quality metrics. As a result, this

study formulated 25 questions representing five dimensions. The variety of dimensions will reveal

certain aspects and will provide more value to determine agile maturity more accurately in the

context of this study. The first dimension is agile practices; we investigated which agile practices are

implemented. Implementing an agile practice doesn’t mean that is implemented in the right way.

Therefore, we picked some important agile practices and investigated to what extent are these

practices implemented. The other dimensions are software quality, testing process, software

deliveries and organizational strategy. Especially on the organizational strategy topic, we investigated

how organizations cope with continuous improvement, agile training and coaching. These topics are

broadly discussed in the literature we reviewed, as described in the section 2.3. These dimensions

have contributed to a more accurate calculated agile maturity. We cannot confirm whether adding

more dimensions will contribute to a more precise maturity assessment, however, these dimensions

have helped us to measure maturity from a broader view, yet useful.

85

5.2.1 Organizational strategy

From the maturity score results we acknowledge that many organizations scored less or no points at

all regarding the organizational strategy dimension. This dimension is related to continuous

improvement and learning as also discussed in Agile maturity map (Packlick, 2007), Agile Adoption

and Improvement Model (Qumer & Henderson-Sellers, 2009) and Maturity model for software

development organizations (Soares & Meira, 2013). This is an interesting dimension that shows the

relation between awareness of agility and the willingness to improve.

It’s evident from the results that many organizations don’t know “how agile” they are, simply

because they are not performing any assessments to measure their maturity and uncover

improvement areas. They are aware on a high level what the improvement areas are, but the details

and specifics of it are lacking. In addition, seven organizations are not providing any continuous

trainings or workshops to improve on agile. It’s interesting that these organizations have the

ambition to grow in agile development, but, first of all, they are not conducting any assessments to

see where they stand on agile implementation, and secondly, they don’t provide any trainings or

workshops continuously. Although, almost all organizations have been providing training during the

initial stage of agile implementation. These trainings took a few days to maximum a week, and the

objective was to get familiar with agile implementation.

We agree with (State of agile survey, 2014), that having a training program, common tools and an

internal agile support group is essential for agile growth. In our study, only four organizations have

been providing the teams with training and workshops from initial implementation until now. From

the four organizations that provide continuous training, only one organization, which is organization

A, is investing extensive effort in training and improving teams continuously. Organization A has

scored a relatively high maturity score and can be considered mature. Teams in organization A are

assessed regularly and are provided with the necessary help and advice from the agile coaches to

improve. A similar study has shown that continuous and hands-on training is more preferable to

once-off training (Conboy, Coyle, Wang, & Pikkarainen, 2010). As a result, organizations that are

providing continuous training, are not only scoring a higher maturity score, but the team members

agree with this strategy and find it more beneficent. It’s imperative to mention that not every team

needs training, according to one of the agile coaches of organization A: “at some point, teams don’t

need any training anymore, because they have been evolving so well that they are not following

scrum by the book anymore”.

5.2.2 Agile maturity vs experience in agile

The teams of 11 organizations have been assessed in this study, and we generated a total score. Next

to that, we investigated the experience of all organizations with agile methods. This analysis is

described in section 4.2.1. The purpose of this analysis is to define the scale of the organizations in

terms of experience in agile. We specifically looked for organizations that were in the range of just

started implementing agile and organizations that have been implementing agile for 5+ years. As a

result, we wanted to discover the relation between agile maturity and the experience in agile. With

this analysis we want to discover if there is any correlation between organizations with the most

experience in years and high maturity score.

There are two organizations that have eight years of experience with agile, and they have not scored

the highest maturity score. In contrary, one of these two organizations has scored low to medium

score. Especially in organization K, experience is not an indication of maturity. From our study we

acknowledged that organization K is a very turbulent organization in terms of shifting teams. The

respondent of organization K has indicated that, the teams are usually not stable, there exists no

velocity. Team members are pulled out of one team and added to another team to handle the critical

86

situations. In addition, team members of organization K consist more than 80% of contractors. The

contractors are usually working for short periods. Perhaps we could link this instability in teams and

working with non-permanent team members with the lower maturity score. This instability is not

only affecting agile maturity, but also the productivity and project success. We agree with (Drurya,

Conboy, & Power, 2012), that this behavior causes implications, such as not completing the planned

work, scope decisions are impacted and when team members are pulled out; there is no additional

time left for someone else to cover their work. On the other hand, organization F has the lowest

experience with agile and has scored the lowest maturity score. In this case there is a correlation

between experience and agile maturity.

5.3 Quality metrics, necessary and neglected

In section 4.3 we presented the collected quality metrics. For the data collection, this study selected

13 metrics mentioned in the reviewed literature (section 2.5), that are relevant to quality and agile

maturity. The data analysis has shown that, next to the provided metrics, organization are using tools

to manage quality, these tool provide more metrics and insight in quality. There are variety of used

to collect metrics, such as Sonar, SIG meter, Fortify and TICS. Based on 22 interviews and surveys

conducted, the general impression is that, there is less attention paid to quality metrics and

collecting it. According to a respondent from organization A; “We collect data but it’s not our driving

force”. A respondent from organization I has indicated; “Metrics are just number, they provide no

value”. And finally, a respondent from organization H has said; “We use Sonar, but we do nothing

with it”.

However, the use of quality metrics is not fully neglected; organizations do gather and pay attention

to metrics that are important to their environment. We analyzed the most important quality metrics

according to the respondents. The results show that, 9 out of 11 organizations have indicated that

defects are the most important followed by code coverage and unit testing. However, the question

remains, are these agile metrics? Agile metrics are measures related to agile practices. The most

common agile metrics is velocity. Next to velocity, other agile metrics are pulse (measuring

continuous integration, product size (amount of completed work), burn (remaining work vs human

resources) and faults (number of faults per iteration), (Anderson, 2005; Dubinsky, Talby, Hazzan, &

Keren, 2005). According to studied organization is defects considered as one of the most important

quality metrics. According to (Dubinsky, Talby, Hazzan, & Keren, 2005), defects can be considered as

an agile metric, we agree with that, if it’s measured per iteration. Generally, the difference between

traditional and agile metrics is that; agile metrics are more focused on measuring progress (Misra &

Omorodion, 2011). To conclude, we can acknowledge that there is a broad interrelation between

agile and traditional metrics, but mostly, the traditional metrics are used in agile context.

5.3.1 Measuring software quality

We analyzed how organizations measure software quality. As (Hendriks, Vonderen, & Veenendaal,

2000) argues, evaluation of software quality is difficult, in our study we perceived the same. Many

organizations don’t’ know how they measure software quality. In general, organizations have

indicated that the number of defects is the leading indicator for measuring software quality. Most of

the organizations use the combination of automatically and manually generated data. However,

there are no fixed criteria to measure software quality. It remains interesting to perceive that many

experts and team members don’t exactly know how software quality is measured.

5.3.2 Introducing new quality metrics

In high maturity organization the use of metrics is expected to play a key role (Jalote, 2002). We

don’t entirely agree with that, according to our study, metrics play a role, but not as important as

87

described by (Jalote, 2002). In our study we perceived that introducing new quality metrics in

organizations does not happen regularly, except for the ones in higher maturity. The results

regarding this are described in section 4.7. We acknowledged that from 11 organizations, only three

organizations are introducing new quality metrics. These organizations have scored a relatively high

maturity score, and we could perceive that there is a correlation between maturity and the use of

quality metrics. These results raise an interesting question; “Does implementing quality metrics helps

to become more mature, or, because organizations are mature, they implement quality metrics?”

Based on the results, we cannot perceive any correlation between the amount of quality metrics and

maturity. According to (Krebs, Kroll, & Richard, 2008), measuring too many metrics does not

contribute to project success. It doesn’t mean that necessarily implementing more quality metrics

will contribute to success and higher maturity.

Organizations that have medium maturity can be using same amount of metrics or even more. As a

result, a model with three maturity levels cannot highlight in detail specific quality metrics related to

certain maturity levels. For this aspect, a maturity model with more levels could aid to identify which

quality metrics belong to which maturity level However, based on the results presented in section

4.7, we perceive that there is a small correlation between the use of specific quality metrics and

maturity levels and necessarily the amount of metrics. Especially, between low and high maturity

organizations regarding implementing specific quality metrics. As a result, organizations are

implementing quality metrics, because of the fact that they are mature, and not implementing more

quality metrics to grow in maturity. In our study we have not received any indication from the

respondents and results that quality metrics can improve maturity, except for the fact that certain

quality metrics are used more in medium and high maturity organizations.

5.4 Challenging questions

During the data collection phase we conducted interviews. The interviews contained of challenging

questions that were hard to answer. One of the most challenging question was “when is a quality

metric effective?”. We perceived that many respondents found it hard to respond to this question. At

first, they expressed that the question was unclear, as a result, we elaborated to make the question

clearer. Although they understood what exactly the question is, not all of the respondents could

provide us with an answer. It raises the question; why is this so hard to answer? Unfortunately, we

could not find the underlying factors related to the difficulty of this question. But it’s worth

mentioning that some of the respondents found it hard to respond to this.

Another challenging question is related to measuring project success. We asked the respondents;

“what is the success rate of projects?”. Most of the respondents had a general idea to what extent

the success rate is, but they found it hard to express it in figures. We agree with (Highsmith, 2002), in

each organization, projects are managed differently and success is measured differently. In general,

project success is achieved if software quality is high, the customer is satisfied, and the products

have been released on time. Project success rates provided by respondents are based on rough

estimation and it’s hard to proof their validity. Some of the respondents have indicated that the

project success is 100% due to the fact that they have never been involved in failed projects and that

their current project is running for years. As a result, we can only conclude that the project success is

applicable to the corresponding team and not the entire organization.

88

5.5 Agile practices

5.5.1 Difficult practices

In section 4.5.5 we analyzed the improvement areas for agile teams. Seven out of 11 organizations

have indicated that planning, followed by retrospective and defining users stories are considered to

be difficult and needs improvement. A case study performed on agile describes that, planning can be

difficult and sometimes frustrating for the teams (Layman, Williams, & Cunningham, 2006). We agree

with (Layman, Williams, & Cunningham, 2006) regarding the difficulty of planning. Our results

indicate that planning is considered to be time consuming and difficult to conduct in some cases. One

of the factors is related to planning too tight, and therefore risking a failed sprint. Another factor

indicated by respondents is that, some of the issues such as defects cannot be planned, and

therefore it impacts the planning session with implications. The planning session is impacted because

of incomplete user stories. User stories are not defined properly, and during the planning session,

the team attempts to refine the user stories and make them fit in the sprint. However, according to

the results of this study, defining good user stories, creating small and achievable user stories seems

to be a challenge. Finally, retrospective is considered to be an agile practice that four organizations

struggle with it. A scrum master from the studied organizations said; “it usually takes time before

everybody opens up”. Another aspect related to retrospective mentioned by respondents is that

action points are neglected. At the end of retrospective, action points are created, but not further

processed by the team members. One of the respondents said; “action points are created, but they

hang in the air”. Based on these facts, we could conclude that planning, defining user stories and

retrospective can be considered as one of the most difficult agile practices.

5.6 Team experience

Experience in agile team is crucial and a key factor for success. Based on the results described in

section 4.5.3, it is evident that team maturity plays an important role. Some of the teams have less

experience in agile, whereas other teams are excelling in agile implementation. This variation can be

explained due to individual experience with agile development. We acknowledged two correlations.

First, organizations with high maturity level have teams that have on average, more than two year

experience with agile. Second correlation shows that, low maturity organizations have teams with

poor experience with agile. Poor experience is indicated as less than one year experience with agile.

As a result, becoming more mature in agile depends on the experience the individuals have in the

team. The more experience the team has, the easier it becomes to implement agile methodologies

and achieve organizational goals.

On the other hand, the teams will struggle if there is a team with poor experience and just started

implementing agile methodologies, like we acknowledged in organization F. Organization F has not

only a team with low experience, but also just started three months ago implementing scrum. As a

result, it impacts the growth of the team in agile and implementing agile practices in the right way.

Unfortunately we couldn’t find any relevant literature that agrees or opposes our results.

5.7 Roles in teams

We agree with (Abrahamsson, Salo, Ronkainen, & Warsta, 2002; Nerur & Balijepally, 2007) that agile

methodologies encourage interchangeability of roles. We acknowledge that nowadays it’s really

moving forward and being applied. However, in practice, this does not happen for all organizations,

especially in the range of low to medium maturity. We perceived that mostly organizations with

more experience in agile and higher maturity are really applying diverse roles for a single team

member. In most of the cases the scrum master role was combined with other activities and roles

89

such as developer or tester. Another interesting practice is the introduction of Devops. There is no

standard definition for Devops. Devops brings the QA engineer job description closer to that of

developer (Roche, 2013), it’s more about the culture and the manner of working. According to

(Swartout, 2014), continuous delivery and Devops are the next big thing. We studied 11

organizations, and from those organizations, only one is implementing Devops. The only organization

that has Devops, is organization J. In addition, this organization has scored the highest maturity

scored in our study. When we asked a team member of this organization what his role is, he replied:

“most of us are Devops”. Every team member is responsible for development, operations and testing.

According to the results of our study, we would carefully agree with (Swartout, 2014) to some extent

that Devops could be the next big thing.

5.8 Recommendations

Our study has shown that many organizations don’t measure how agile they are. Measuring agility

and improving agile related processes can increase quality. Agile coaches or scrum masters are the

responsible individuals for good implementation of agile methodologies and guarding agile principles

in organizations. Agile coaches and scrum masters should conduct more assessments in organizations

to identify weak and strong teams in implementing agile. They can take the good practices from the

strong teams, and apply these on the weak teams in order to improve the performance. In addition,

theoretical models can provide a substantial foundation to measure teams and helping them to

overcome their weaknesses. The question remains, how can agile coaches and scrum masters

conduct assessments? The empirical evidence from our study shows that, the best moment is during

the retrospectives, agile coaches should make use of the opportunity, and request the team to fill out

a survey and collect the necessary information to measure agility.

According to our study, the process of measuring software quality seems to be vague. Often

organizations rely on metrics such as defects and customer complaints. However, there is little effort

invested in collecting structured feedback from the customer. The customer is this context the end-

user and not the product owner. This process is very informal and often neglected. Introducing

consistent processes to collect feedback from the customer, and communicate this to the team, will

contribute to a better product and decreases the chance of failure.

In some of the cases we have perceived that the organizational strategy is not well communicated to

the teams. As a result, the teams are unaware of the strategy that the organization is implementing.

For example, one of the respondents replied: “I don’t know that what the organizational strategy is, I

think it’s something with continuous delivery”. Communicating the right messages to teams can help

organizations to involve the teams more, and enable commitment from the teams, in order to

achieve organizational strategies.

Empowering teams is a fundamental aspect of agile. However, in some cases this does not take

place. Particularly in one case, a respondent complained that the scrum master had “too much

power”. The scrum master was assigning tasks and responsibilities to the team during the stand-up.

As a result, the team was unhappy with assigned tasks and could not perform well, because the tasks

were assigned to the wrong individuals. Agile teams should be empowered, they are the main

responsible individuals for delivering on time with high quality. The teams should not be imposed to

use certain tools if they don’t want it. Teams will perform better if they choose how to work and with

what tools.

Agile coaches and scrum masters should enable variations in certain agile practices. Teams get often

bored when they always perform retrospectives in the same way. Conducting retrospectives in

different ways can help teams to reflect on their performance from different dimensions, and

provide a more in-depth analysis.

90

6 CONCLUSIONS

Organizations that have been implementing agile for a couple of years, can be considered becoming
mature. However, it remains unclear how agile maturity affects software quality. As a result, this
study focused on answering the following main research question: “How are the maturity of an agile
software development approach and the use of particular software quality metrics related?”. To
discover the empirical findings related to our study, we conducted in total 22 interviews and 22
surveys, across 11 organizations in the Netherlands, United Kingdom and Israel. We spoke to experts
and representatives of agile teams. In order to construct a valid data structure to aid answering the
main research question, we constructed five research sub-questions.

The findings of this study are presented in the results section, concerning the five research questions.
In the results section, the corresponding chapters end with an outcome, where we answer the
research question relevant to that section purely based on data. Later in the discussion, section 5.1,
we assessed the research questions and concluded the given answers. An overview is provided in the
table below.

Research question In this thesis

Main RQ How are the maturity of an agile software development
approach and the use of particular software quality metrics
related?

Section 5.1

RQ1 What are the most effective quality metrics (QM) that are
being used in agile organizations

Section 4.3

RQ2 What are the most effective agile practices that support
maturity

Section 4.4

RQ3 How do organizations measure the maturity of their agile
software development?

Section 4.5

RQ4 What is the impact of successful or failed projects on quality
metrics?

Section 4.6

RQ5 At what maturity levels are which software quality metrics
implemented?

Section 4.7

Table 34: Overview of research questions

In this section we provide a short summary of aforementioned answered research questions.

With RQ1 we tried to discover the most effective quality metrics in agile organizations. We have

identified these metrics. As a result, the answer to RQ1 is a set of identified quality metric used in

agile context. These metrics are: code coverage, unit test coverage, defects and the number of

failed/succeeded automated tests.

RQ2 was stated to discover the most effective agile practice to support agile maturity. Our study has

identified agile practices that are found effective in order to support agile maturity. We categorized

these practices in three levels. The answer to RQ2 consists of three levels with corresponding

practices. Practices to support low maturity are: Daily stand-up, Burn down estimation, Integrated

QA/Dev. Practices for medium maturity are: Unit testing, Pair programming, Velocity, Collective code

ownership. Finally, practices for high maturity are: Continuous deployment, Story mapping, Cycle

time, Automated acceptance test, Customer acceptance test, Test automation.

91

RQ3 is related to how organizations measure agility. The answer to RQ3 is: organizations don’t

measure their agility unless they are more mature, and maturity is measured by analyzing teams

through meetings, surveys and models – this is only conducted by organizations with higher maturity.

Organizations that are considered low or medium mature, are not investing any effort to measure

agile maturity

RQ4 is concerned with how project success affects software quality. We analyzed this RQ from

different dimensions. The answer to RQ4 is: generally, only failed projects are impacting the use of

quality metrics, quality metrics are improved or introduced to prevent future failures on projects. In

addition, there is more effort invested in testing. Finally, this study identified quality metrics that are

impacted by failed projects. These quality metrics are: fix response time, unit test coverage, number

of automated test coverage.

RQ5 investigates the relation between specific quality metrics and agile maturity. The answer to RQ5

is that, organizations with medium and high maturity are implementing quality metrics that don’t

exists in low maturity organizations. These metrics are: Defects during production, Defects reported

by customer, Test case count, Lines of code, Number of automated test cases, Accuracy of estimates.

In addition, quality metrics implemented in medium and high maturity level are identical, and there

are no major differences between medium and high maturity levels.

Finally, the answer to main RQ is: there is a relation between agile and the use of software quality
metrics to some extent, this relation is mostly apparent when looking at low and high maturity levels.
Organizations with higher maturity are focused to increase quality, using quality metrics related to
testing; especially the number of failed/succeeded automated tests and automated test coverage are
the applied metrics. Organizations with lower maturity are not focusing on quality metrics, they are
mainly busy to improve their existing agile practices.

In general, the use of quality metrics is not a very common practice, especially in organizations with
lower maturity. Quality metrics such as defects, code coverage, unit test coverage and automated
tests are found to be the most popular and meaningful by organizations. Other than that, tools are
providing a lot of data regarding the quality, but that seems to be neglected. However, the use of
metrics is more conducted in organizations with a higher maturity. These organizations are focusing
on quality metrics such as unit test coverage, automated test coverage and delivering high quality
software. Organizations that become more mature, produce higher quality software due to effective
implementation of agile. Organizations that have become mature, don’t implement scrum by the
book anymore. Autonomy and empowering teams allows them to develop their own structure of
agile implementation. Teams at this stage have become mature and the focus on quality is increased.
As a result, agile maturity leads to higher software quality, indicated by effective implementation of
agile practices related to software quality.

92

6.1 Future work

Further empirical work with larger and broader samples will help us to map quality metrics better to

certain maturity levels. We conducted our study in 11 organizations with two representatives of each

team. We recommend to conduct the future research in more organizations to map broader set of

maturity levels, and interview all team members. Investigating team’s experience in agile and its

relation to agile maturity would be an interesting topic to research. Especially, in organizations where

Scaled Agile Framework (SAFE) is implemented, the growth of the teams and their experience with

agile is interesting to research. Furthermore, future research based on agile maturity quality metrics

should include aspects such as definition of done and technical debt.

7 STRENGHTS AND WEAKNESSES

A strength of this study is that it’s the first study to investigate two crucial aspects of agile, which is

maturity and quality metrics, including all dimensions that can affect software quality. Another

strength is that, we conducted our research in three countries with different cultures. This a different

dimension and provides results that can be used as a foundation for a general understanding. This

only not provides results from a bigger picture, but also takes into account the cultural aspect in

different countries. Another strength is that we selected organizations based on experience in agile.

We studied organizations with almost zero experience, to organizations that have eight years of

experience in agile development. Using this, we defined a scale from low to high in order to construct

a base for maturity levels.

This study has several limitations as well. One of the limitation is related to the qualitative design of

our multiple case study. Due to this, the perception of the participants can be different, and they can

have a biased view on their work process and therefore could be hard to be validated. Furthermore,

some of the questions for the survey and interview could not be answered due to lack of expert

knowledge. Adding more questions to the survey and interview will provide a more detailed and

constructive maturity score. However, this could be hard due to time limitations. Although we had 22

participants in 11 organizations, our sample might be hard to be reproduced.

7.1 Validity considerations

To perform a valid study, we have encouraged the participants to provide honest and realistic

answers. In addition, we stressed that the data will be treated anonymously to fully encourage the

level of honesty from the participants. To provide transparency, we have included the full data

analysis in detail. Finally, data analysis and testing included the four criteria: construct validity,

internal validity, external validity and reliability (Yin R. K., 1994).

To address construct validity, the pre-defined set of interview and survey questions with their

relation to specific research questions, allowed us defining a valid initial starting point. The semi-

structured interviews aided to analyze aspects from different angles and dimensions. Furthermore,

we kept the data analysis phase consistent to the methodology described.

As for the internal validity, in this study, we used different ways of visualizing the data to discover

patterns and matches. In addition, the use of tables allowed presenting the data in a clear manner.

To address external validity, we repeatedly mentioned that the results are not reflective for the

entire organization, but solely for the team researched. We have collected data in 11 organizations in

the same manner and methods. Within the agile team, we interviewed different roles. We have

clearly stated the research strategy, which is based on certain criteria.

93

The methodology applied in this study, clearly states what interview questions are used, how the

survey is conducted, and how the data analysis is performed. For the data collection phase, we

followed the exact same procedure for all organizations.

94

8 BIBLIOGRAPHY

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development methods.

VTT PUBLICATIONS .

Agile manifesto. (2001). Agile manifesto.

Alegria, J. A., & Bastarrica, M. C. (2006). Implementing CMMI using a Combination of Agile Methods.

Ambler, S. (2005). Quality in an agile world.

Ambu, W., Concas, G., Marchesi, M., & Pinna, S. (2006). Studying the Evolution of Quality Metrics in

an Agile/Distributed Project.

Anderson, D. J. (2005). Stretching Agile to fit CMMI Level 3 - the story of creating MSF for CMMI®

Process Improvement at Microsoft Corporation .

Begel, A., & Nagappan, N. (2007). Usage and Perceptions of Agile Software Development in an

Industrial Context:An Exploratory Study. First International symposium on empirical software

engineering and measurement, 255-264.

Botella, P., Burgués, X., Carvallo, J., Franch, X., Grau, G., Marco, J., & Quer, C. (2004). ISO/IEC 9126 in

practice: what do we need to know?

Bruce W. Tuckman, M. A. (1977). Stage of small group development revisited. 419.

Cardozo, E. S., & Neto, J. B. (2009). SCRUM and Productivity in Software Projects: A Systematic

Literature Review.

Cheng, T.-H., Jansen, S., & Remmers, M. (2009). Controlling and Monitoring Agile Software

Development in Three Dutch Product Software Companies.

Conboy, K., Coyle, S., Wang, X., & Pikkarainen, M. (2010). People Over Process: Key People

Challenges in Agile Development.

CrunchBase. (n.d.). CrunchBase. Retrieved from https://www.crunchbase.com/organization/causata

Davis, N. (2013). Driving Quality Improvement and Reducing Technical Debt with the Definition of

Done.

Drurya, M., Conboy, K., & Power, K. (2012). Obstacles to decision making in Agile software

development teams. Elsevier, The Journal of Systems and Software.

Dubinsky, Y., Talby, D., Hazzan, O., & Keren, A. (2005). Agile Metrics at the Israeli Air Force.

Dyba, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review.

Fowler, M. (1999). Refactoring: Improving the design of existing code.

Grinyer, A. (2007). Investigating Adoption of Agile Software Development. Agile process in software

engineering and extreme programming, 163-164.

Hall, T., & Fenton, N. (1997). Implementing effective software metrics programs.

Hendriks, R., Vonderen, R. v., & Veenendaal, E. v. (2000). Measuring software product quality during

testing.

95

Highsmith, J. (2002). What Is Agile Software Development. CROSSTALK The Journal of Defense

Software Engineering.

IEEE. (1998). IEEE Std 1074 -1997 - Standard for Software Life Cycle Processes.

Imreh, R., & Raisinghani, M. S. (2011). Impact of Agile Software Development on Quality within

Information Technology Organizations . Journal of Emerging Trends in Computing and

Information Sciences.

ISO 8402. (1986). ISO 8402 Quality Vocabulary - in International Organization for Standardization.

ISO/IEC 9126. (2001). ISO/IEC 9126-1 Software engineering- Product quality- Part 1-4.

ISO/IEC 9126-2 . (2001). ISO/IEC 9126-2 Software engineering -Product quality- Part 2: External

metrics.

ISO/IEC 9126-3. (2001). ISO/IEC 9126-3 Software engineering -Product quality- Part3: Internal

metrics.

ISO/IEC 9126-4. (2001). ISO/IEC 9126-4 Software engineering -Product quality- Part 4: Quality In Use

metrics.

Jalote, P. (2002). Use of Metrics in High Maturity Organizations .

Janus, A., Schmietendorf, A., Dumke, R., & Jäger, J. (2012). The 3C Approach for Agile Quality

Assurance.

Jeon, S., Han, M., Lee, E., & Lee, K. (2011). Quality Attribute driven Agile Development.

Jinzenji, K., Williams, L., Hoshino, T., & Takahashi, K. (2013). Empirical study of Software Quality

Evaluation in Agile Methodology Using Traditional Metrics.

Jyothi, V. E., Srikanth, K., & Rao, K. N. (2012). EFFECTIVE IMPLEMENTATION OF AGILE PRACTICES –

OBJECT ORIENTED METRICS TOOL TO IMPROVE SOFTWARE QUALITY.

Kan, S. H. (2002). Metrics and Models in Software Quality Engineering. Boston: Addison-Wesley

Longman Publishing Co.

Kassim, N., & Zain, M. (2004). Assessing the Measurement of Organizational Agility. Journal of

American Academy of Business.

Kile, J. F., & Inampudi, M. R. (2007). Agile Software Development Quality Assurance: Agile Project

Management,Quality Metrics, and Methodologies.

Kohlegger, M., Maier, R., & Thalmann, S. (2009). Understanding maturity models resultsof a

structured content analysis.

Kumar, G., & Bhatia, P. K. (2012). Impact of Agile Methodology on Software Development Process.

International Journal of Computer Technology and Electronics Engineering (IJCTEE).

Kumar, G., & Bhatia, P. K. (2012). Impact of Agile Methodology on Software Development Process.

International Journal of Computer Technology and Electronics Engineering (IJCTEE), Volume

2.

Kunz, M., Dumke, R. R., & Schmietendorf, A. (2008). How to Measure Agile Software Development.

Layman, L., Williams, L., & Cunningham, L. (2006). Motivations and Measurements in an Agile Case

Study.

96

M.Sarshar, R.Haigh, M.Finnemore, G.Aouad, Barrett, P., Baldry, D., & Sexton, M. (2000). SPICE: A

Business Process Diagnostics Tool for Construction.

Misra, S., & Omorodion, M. (2011). Survey on Agile Metrics and Their Inter-Relationship with Other

Traditional Development Metrics.

Moe, N. B., Dingsøyr, T., & Røyrvik, E. A. (2009). Putting Agile Teamwork to the Test – An Preliminary

Instrument for Empirically Assessing and Improving Agile Software Development.

Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. (2008). A case study on the impact of

refactoring on quality and productivity in an agile team.

Nerur, S., & Balijepally, V. (2007). Theoretical Reflections on AGILE DEVELOPMENT METHODOLOGIES.

COMMUNICATIONS OF THE ACM March 2007/Vol. 50, No. 3.

NICE.com. (n.d.). NICE.com. Retrieved from http://www.nice.com/company-overview

Ozcan-Top, O., & Demirörs, O. (2013). Assessment of Agile Maturity Models:A Multiple Case Study.

Packlick, J. (2007). The Agile Maturity Map A Goal Oriented Approach to Agile Improvement.

Patel, C., & Ramachandran, M. (2009). Agile Maturity Model (AMM): A Software Process

Improvement framework for Agile Software Development Practices.

Paulk, M. C. (1999). Analyzing the conceptual relationship between ISO/IEC 15504 (software process

assessment) and the capability maturity model for software.

Paulk, M. C., Konrad, M. D., & Garcia, S. M. (1995). CMM Versus SPICE Architectures .

Qumer, A., & Henderson-Sellers, B. (2009). A framework to support the evaluation, adoption and

improvement of agile methods in practice.

Roche, J. (2013). Adopting Devops practices in Quality Assurance.

Sato, D., Goldman, A., & Kon, F. (2007). Tracking the Evolution of Object-Oriented Quality Metrics on

Agile Projects.

Schwaber, K., & Sutherland, J. (2013). Scrum guide.

Sfetsos, P., & Stamelos, I. (2010). Empirical Studies on Quality in Agile Practices: A Systematic

Literature Review.

Sidky, A., & Arthur, J. (2007). A Disciplined Approach to Adopting Agile Practices: The Agile Adoption

Framework.

Sirshar, M., & Arif, D. F. (2012). Evaluation of Quality Assurance Factors in Agile Methodologies.

International Journal of Advanced Computer Science, Vol. 2, 73-78.

Soares, F. S., & Meira, S. R. (2013). An Agile Maturity Model for Software Development

Organizations.

State of agile survey. (2014). State of agile survey.

Stettina, C. J., & Heijstek, W. (2011). Five Agile Factors: Helping Self-management to Self-reflect.

Stettina, C. J., & Hörz, J. (2015). Agile portfolio management: An empirical perspective on the practice

in use. International Journal of Management, 140-152.

Swartout, P. (2014). Continuous Delivery and DevOps – A Quickstart Guide. PACKT publishing.

97

TechCrunch.com. (n.d.). Retrieved from http://techcrunch.com/tag/fizzback/

University of Connecticut. (n.d.). Likert Scale. Retrieved from

http://www.gifted.uconn.edu/siegle/research/instrument%20reliability%20and%20validity/li

kert.html

Yin, A., & Figueiredo, S. (2011). Scrum Maturity Model.

Yin, R. K. (1994). Case study research: design and methods. Sage Publications.

98

9 APPENDIX

9.1 A – A sample of survey

99

Questionnaire
Please take your time and answer honestly.
If you would like to adjust a choice, please draw a circle around the field you would like to mark.

The scale is defined as follows:

Never

1

☐

2

☐
Not usually

3

☐
Rarely

4

☐
Occasionally

5

☐
Often

6

☐
Usually

7

☐ Always

Date: [___________], Team: [_____________]

1. What measures or metrics do you collect? Please also specify all the measures that you take but are not on this
list.

□ Defect count during production

□ Defect count reported by customer

□ Fix response time
□ Test case count

□ Lines of code (LOC)

□ Code coverage

□ Unit test coverage

□ Compile failures and build/integration defects
□ Weekly defect arrivals and backlog during testing
□ Number of failed/succeeded automated tests

□ Total number of automated test cases

□ Number of open customer problems

□ Accuracy of estimates

□ Others:

2. How do you measure software quality?
□ We don’t

□ Automatically generated data using tools

□ Manually generated data

□ We tried collecting metrics but we found them useless

□ We collect it but we do nothing with it

□ We have to, it is part of our process
□ Other:

3. How much is the source code covered by unit testing (in percentages)?

4. Does the code often need maintenance?

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

5. Is there any "extra time" given for cleaning up and re-factoring the source code?

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ A great deal

6. Is the test engineer always testing the latest build?

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

7. What agile practices does your team apply?

100

□ Scrum poker
□ Unit Testing
□ Story Mapping
□ Pair Programming

□ Open Work area

□ Iteration Planning

□ Continuous Deployment

□ Integrated Dev/QA

□ Automated Builds

□ Daily Standup

□ Coding Standards

□ Digital Task board

□ Refactoring

□ Burn down/ Team-Based

Estimation

 □ Cycle Time

□ Release Planning

□ Automated Acceptance Testing

□ Velocity

□ Agile Games

□ Dedicated Product Owner

□ Continuous Integration

□ Kanban

□ Test-Driven Development

□ Collective Code Ownership

□ Retrospectives

□ Customer acceptance tests

□ Others:

8. Do the test engineers make use of automated test scripts?

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

9. What percentage of test scripts is automated?

10. Please specify all the participants in the planning session (e.g. Dev. QA, info analyst etc.).

11. All members of the team actively participated during iteration planning meetings.

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

12. All the tasks for the sprint were estimated.

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

13. The team missed the sprint deadline.

Never

1

☐

2

☐

3

☐

4

☐

5

☐

6

☐

7

☐ Always

14. Working software was the primary measure for project progress.

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

15. The team rather reduced the scope than delayed the deadline.

Never 1 2 3 4 5 6 7 Always

101

☐ ☐ ☐ ☐
Occasionally

☐ ☐ ☐

16. At the end of iteration, we delivered a potentially shippable product.

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

17. How frequently do you release working software? E.g. weekly, monthly.

18. Scrum master was always present during the stand-up.

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

19. Stand up meetings were extremely short (max. 15 minutes).

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

20. All relevant technical issues or organizational impediments came up in the stand-up meetings.

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

21. In the retrospectives (or shortly afterwards), we systematically assigned all important points for improvement to
responsible individuals.

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

22. The team was always sitting together in the same room

Never

1

☐

2

☐

3

☐

4

☐
Occasionally

5

☐

6

☐

7

☐ Always

23. What artefacts are created specifically for people outside of the team?

24. What are currently the focus points of the organization to improve on agile?

25. Do any of the team members have any form of agile certification? E.g. SM, Exin Scrum etc. Please specify which
team member has what.

26. What agile practices/techniques would you like to conduct that are currently not in place?

27. Is there any freedom from the organization to allow implementation of agile practices?

Never 1 2 3 4 5 6 7 Always

102

d

9.2 B – Interview questions

A. What is your personal experience with agile?

B. How long has your company been doing agile development? What agile development?

C. What is the length of the projects?

D. What is the duration of the sprints? Why?

E. What tools do you use to manage agile processes and activities? E.g. Jira, confluence, word, excel,

post-its, internal wiki etc.

F. What test tools do you use?

G. What do you do well in agile (as a team)?

H. What things don’t you do well in agile (as a team)? Or needs improvements?

☐ ☐ ☐ ☐
Occasionally

☐ ☐ ☐

28. How much does the team make use of this “freedom” to implement (new)agile practices? What works and
what doesn't? Do you agree? How is your team's way of working agile different from how you think it should be?

29. How long after the sprint ends, you receive feedback from the customer?

30. What percentage of projects is successful?

31. How often do you measure customer satisfaction?

□ Weekly
□ After the sprint release
□ Monthly

□ Other:

32. How do you measure customer satisfaction?

□ Reported defects by customer

□ On time software release

□ Feedback request (survey, questionnaire etc.)

□ Other:

Thank you for filling out this survey.

103

33. What are the most important quality metrics? Why these?

34. Do you change the quality metrics often? Why?

35. When is a quality metric effective?

36. Is there a continuous delivery pipeline? How does it look like?

37. What agile practices are really necessary?

38. What is the area of improvements for you and your team to use agile methods better?

39. Is the company performing any agile assessment? How? What measures?

40. How familiar are the team members with agile methods? Experience in years?

41. Is there any agile training/workshop provided by the company? How often? For who?

42. What feedback do you receive regarding the quality?

43. What percentage of projects is successful? Why is the success rate of the projects like this?

44. What measures did you take when projects failed due to poor quality?

45. How does the customer feedback change the test or the development process?

46. When do you introduce new quality metrics? Why?

47. How often do you implement new quality metrics?

9.3 C - Improvement areas for teams

Organization Improvement areas indicated by teams

A Communication with business, better overview of user stories with related tasks

B Retrospectives, planning, communication, backlog refinement

C Planning, clear processes, team responsibility, testing

D More responsibility, dedication(fix own bugs), retrospective(takes time to open
up), SM has too much power(assigning tasks), planning(bugs)

E Use of test automation, changes during sprint, planning, jumping around
products

F Planning(very long), Jira tasks, backlog refinement, code quality, automated
tests(QA and unit test), continuous builds, team commitment, estimation

G Better user stories, code review(sooner), planning(not perfect), estimates,
retrospective(action points)

H Retrospectives(action points), communication with other teams, user
stories(defining)

I User stories(defining), communicating with other teams, trying be perfect, pair
programming

J Planning, communication with other teams, broader skills, heroes in teams,
changes during sprint

K General administrations
Table 35: Improvement areas in teams

104

Current quality metrics Improvements? Insight? Measurable? Proven it works?

Code coverage x X x -

Unit test coverage x x x -

Failed/succeeded auto test X x x -

Open customer problems
(defects)

 x x -

Table 36: Current metrics vs characteristics of effectiveness

9.4 D – Overview all quality metrics in literature

Metric M
o

ser et.
al

Sfetso
s &

Stam

elo
s

C
h

en
g &

Jan

sen

Q
u

ality in

agile
w

o
rld

 Yae

l
D

u
b

in
sky

et. al

W
alter

A
m

b
u

 e
t.

al

D
an

ilo

Sato
 et. al

H
. K

an

Coupling between Objects X X

Lack of Cohesion in
Methods

X X X

Weighted Methods per
Class

X X X

Response For a Class X X

Lines of code X X

Effort X

Number of acceptance
tests

 X

Total number of defects X X X

Number of defects/KLOC X

Number of the defects
found before the release

 X

Number of defects
reported by the customer

 X X

Code size X

Cyclomatic complexity X X

Coupling and cohesion X

Total reported defects X

Number of critical defects X X

Outstanding defects X

Fixed/solved defects X

Defects coming from
previous release

 X

Test failure rate X

Hours spent on bug X

Test success rate X

Product size X

Pulse X

Burn X
Number of Classes X
Class Size X
Number of Test Cases X
Number of Assertions X

105

Response for a Class (RFC) X

Depth of Inheritance Tree X X

Number of Children (NOC) X X

Afferent Coupling (AC) X

Efferent Coupling (EC) X

Mean time to failure X

Defect density X

Customer-reported
problems

 X

Customer satisfaction X

Phase-based defect
removal pattern

 X

Defect removal
effectiveness

 X

Defect density during
formal machine testing

 X

Defect arrival pattern
during formal machine
testing

 X

Fix backlog X

Backlog management index X

Fix response time and fix
responsiveness

 X

Percent delinquent fixes X

Defective fixes X

Compile failures and
build/integration defects

 X

Weekly defect arrivals and
backlog during testing

 X

Defect severity X X

Defect cause and problem
component analysis

 X

Reliability X

Number of CPU hours per
system

 X

Number of system crashes X

Models for post-release
defect estimation

 X

Table 37: Overview of all quality metrics discussed in literature

106

10 GLOSSARY

SW: software
QM: Quality Metric
RQ: Research Question
ISO: International Organization for Standardization
CMM: Capability Maturity Model
CMMI: Capability Maturity Model Integration
SPICE: Standardized Process Improvement for Construction Enterprises
AMM: Agile maturity model
AMM: Agile maturity map
AAIM: Agile Adoption and Improvement Model
SAMI: Sidky Agile Measurement Index
AAF: Agile adoption framework
SMM: Scrum maturity model
FDD: Feature Driven Development
XP: Extreme Programming
LOC: Lines Of Code
TDD: Test Driven Development
CMS: Content Management System
Dev: Developer
QA: Quality Assurance
Org: Organization
Sig = Sig meter
Tics = TIOBE Coding Standard Framework (TICS)
CC = Code Complexity
B2C = Busines to Consumer

107

11 ABOUT THE AUTHOR

The author of this thesis document is Mohsen Rezai, student of Master ICT in Business at Leiden

University in the Netherlands. This thesis document is the final part of his master’s program. Mohsen

has earned his Bachelor’s degree from the University of Applied Science in Amsterdam. In

Amsterdam he studied Technical computing and after his graduation he continued his path by

entering the Master ICT in Business at Leiden University. Since 2012, Mohsen has been working as a

part time QA engineer in an agile environment. Next to the theoretical foundation, he developed his

knowledge in practice working in an international environment, involved in diverse agile projects.

Next to researcher’s point of view based on the theory, Mohsen has also the practical experience,

and can analyze aspects from the practitioner’s point of view.

