¥ Universiteit
[Ned) Leiden
The Netherlands

Computer Science & Advanced Data Analytics

Sequential Recognition And Scoring Of Archery Shots

Raymond Parag

Supervisors:

Dr. A. J. Knobbe & Drs. M. Meeng

MASTER THESIS

Leiden Institute of Advanced Computer Science (LIACS)

www.liacs.leidenuniv.nl August 4, 2017

Abstract

In this master thesis, computer vision is applied to archery in order to recognize and score archery shots
in realtime or videos. This research is initiated by the NHB, which is the Dutch archery federation, for the
reason that currently scores of arrows are filled in manually. This creates distraction from the primary training
process. Also the order of the arrows which are shot, is not taken into account, which could be useful to
analyze. For this purpose, various methods and techniques using OpenCV with Java are discussed and applied
to detect and score the arrows. The target is detected by a color-based approach. The perspective of the target
is corrected by a homography transformation matrix and arrows are detected and scored using the Hough
Lines Transform in combination with a point in contour test. The scoring system is tested on videos, which are

taken from the archery training at the NHB.

Acknowledgements

In the first place I would like to thank my supervisors, Arno Knobbe and Marvin Meeng, for providing
amazing support on the project. At each milestone, their critical feedback kept me sharp. I want to thank the
researchers, Dirk Meijer and Arie-Willem de Leeuw, for giving me useful tips during the project. A big thanks
to the NHB for initiating this project and for giving us the opportunity to take photos and videos during the
practice. Without the NHB, this project did not exist at all. At last, I want to thank my family and friends for

the mental support. During times when there was a lot of pressure, they managed to cheer me up and relax.

Contents

x__Introduction

2 Related work]

l4 Detection of the target

l4.1 Hough Circle Transform|
l4.2 Color segmentation| e
l4.2.1 Color range specification| L L o
l4.2.2 Morphological closing|
[4.2.3 Finding contours of eachcolor]o oo oo o oo
l4.2.4 Drawmgcontours| Lo o
l4.3 Pseudocode target detection|. L
|5 Perspective correction|
|5.1 Calculate the destination circles|. L
|5.2 Create the transformation matrix and warp the perspective|
[5.3 Verify the perspective and improve it by rotation| 0 L.
[5.4 Pseudocode perspective correction| L L o
[5.5 Short evaluation onthedistances|. L L oo
|6 Sequential arrow detection and scoring|
[6.1 Amount of change between frames|. L L L L L Lo
|6.2 Background Subtractor (MOG2) vs Absolute differencef.
[6.2.1 Comparison|
[6.3 Hough Line Transform|. e
|6.4 Lightinconsistency| e
[6.4.1 Histogram equalization| L
[6.4.3 Alternative method|.
[6.5 AITOW SCOTING| o e

13
15
15

18
18
19
23
26
28

[6.5.1 Shadows| L
[6.5.2 Determining the tip of thearrow|. 00
[6.5.3 Calculating thescore|.
[6.5.4 Converting the coordinate system| L.
[6.5.5 Pseudocode of the arrow scoring|. L L L o o

|7 Experiments|

8 onclusion

|9 Future work|

[o.1 Whiteand blackrings|
[9.2 Rotationofthetarget|.
[9.3 More accuracy for the arrow scoring| Lo Lo L
[0.4 Saving thescoresinadatabasel L L L L

Bibliographyj

A Hardware & software set-up|

50
55

57
57
57
58
58

60

62

Chapter 1

Introduction

Nowadays computer vision plays an important role in different areas. Some of these areas include traffic,
sports, security systems, cars, etc. Archery is one of those sports where computer vision in the form of

recognition and scoring of shots could be very useful.

The NHB (Nederlandse Handboog Bond) is the Dutch archery federation that organizes training and big
competitions for amateur and also professional archers [1]. The NHB uses archery targets that consist of
differently colored circles, which indicate a different score (Image[1.1). At the NHB, they currently are filling
in the scores of arrows manually through an application. The archer or assistant has to fill in each score after
every round with the consequence that it creates distraction from the primary trainingsprocess. Because the
score is manually entered after every round (after six arrows), the order of the arrows is not taken into account,

which could be useful to analyze.

The NHB therefore wants to develop a scoring system, that is able to score the arrows that are shot into the
target by using a camera. This scoring system needs to be mobile, relatively cheap and robust. The scoring
system should be able to push the scores and location of each arrow to an online database. On this database
various historical analyses can be run. From these analyses, development of potential talent might be detected

and it can be used to improve the skills of the archers.

Current solutions that are on the market for archery are the Falco-eye System and Scatt Shooter Training

System.

e The Falco-eye System [2] consists of a big electronic target on which the arrows are shot. This system is
pretty accurate, but unfortunately it is quite expensive and far from being mobile (86 kg). Such a system

is only suitable for big competitions, but less for amateur competitions.

e The Scatt Shooter Training System [3] was primary developed for guns to measure the stability during
aiming. By placing the sensor on the bow, the aiming procedure can be analyzed. Unfortunately in the
archery sport it is not possible to determine the score just by analyzing the aiming procedure, because

there are various factors during arrow release that can influence the flight of the arrow. This solution

is therefore only suitable before shooting the arrow. Besides that, it is also difficult to apply and quite

expensive.

Both of these systems, as told earlier, are not suitable for the NHB. They are either too expensive or not mobile

at all.

This master thesis focuses on the development of such a scoring system with the use of computer vision
library OpenCV [4] and programming language Java [5]. This master thesis is a continuation of the research
project. In the research project, the focus was on exploring OpenCV possibilities in scoring arrow shots based
on images. The master thesis will build further on that, but instead on images, it will focus on video entirely.
The aim is to use and improve the techniques that are described in the research project, to create a start in the

scoring system that is proposed by the NHB.

Figure 1.1: Archery target.

Chapter 2

Related work

Most of the articles in this research area are based on images only, such as Nguyen & Lin [6] and Zin et al. [7].
The article however, that is the closest to what we want to achieve is written by Danielescu [8]. Danielescu
introduces onTarget, which is an electronic scoring system that is able to score each player’s shots. It keeps
track of the player’s scores and shows the rankings to the spectators. The set-up of onTarget consists of two
cameras that are connected to a frame around the target. The cameras are about 4” in front of the target. Besides
the hardware, Danielscu uses OpenCV in combination with C++ for the arrow scoring. Various computer

vision techniques, such as ellipse fitting, edge detection, erosion, dilation, are used to find the arrow.

For the recognition of the target, there are several assumptions that are made. First, it is assumed that the
target has a white background, so that it stands out. Second, it is assumed that there will be either a difference
between the colors of the rings or edges between the rings that differentiate them. Third, it is assumed that

there always will be an X in the center of the target.

To begin, onTarget asks the users to calibrate the cameras by clicking on the center of the target on screen.
OnTarget uses edge detection to find the rings of the target and therefore the regions that are scored differently.
After some noise removal methods, onTarget applies ellipse fitting to create a mask. This mask is then used to
ignore anything except what is inside the mask. The location of the arrow is found by computing the difference
between the previous and current frames based on a threshold value. To find the location of the arrowhead,
onTarget uses a vertical rectangular structuring element to extract the arrow from the surrounding area. The
scoring is based on the ring on which the arrowhead is shot. For each ring a mask is created. It is checked

whether the arrowhead is inside or outside each mask. The score is then added to the player’s score.

The similarities between Danielescu and our approach are the usage of ellipse fitting and creating a mask.
Ellipse fitting is used to find an overall mask of the target. This mask is then used to ignore anything except
what is inside the mask. The difference between two consecutive frames is also used in this master thesis to
detect change, just like in the article. To score the arrow, Danielescu uses masks of each ring. In this master
thesis the same principle is used, but instead of using masks that are found with edge detection, masks are

used that are found using color segmentation of the blue, red and yellow rings.

Besides the similarities, there are also notable differences between Danielescu and our approach. In Danielescu,
the cameras are placed on specific distances from the target. This will create images that are the same in terms
of position. In this master thesis this is not the case, the camera can be placed freely, but it should not be
perpendicular to the target. Instead of using two cameras, only one is used. In our approach, calibrating the
camera does not require human interaction. In this master thesis, the only two assumptions are that the camera

should not be placed perpendicular to the target and the target contains the blue, red and yellow rings.

Chapter 3

Dataset

For this master thesis project, videos and images are used, which are taken from the archery training at the
NHB. A snapshot of one of these videos can be seen in Image From these videos, a set of ‘noise” videos are
created in which noise is induced through video editing software. These ‘noise’ videos in combination with
the videos described above, represent the training set on which the parameters of the methods are adjusted to.

The total training dataset consists of six videos and 14 images, which can be found at [9].

Chapter 4

Detection of the target

The target that needs to be detected, can sometimes occur in a noisy area, such as Image In order to cope
with such noise around the target, features should be chosen that represent the target well. One could think of

two features. The circles and the color of the circles.

4.1 Hough Circle Transform

The Hough Circle Transform is a technique in computer vision for detecting circular objects in a digital image.
As can be derived from the name, it is a variant of the Hough Transform. The Hough Transform can be used
to determine the parameters of a circle when a number of points that fall on the perimeter are known [10]. The

number of adjustable parameters this Hough Circle Transform in OpenCYV takes, are six.

The Hough Circle Transform has a number of disadvantages. Besides that it requires a lot of time tweaking the
six parameters, the parameters that are eventually chosen will not work in every scenario, since they are prone
to change. The way in which the NHB places the camera at different positions, the Hough Circle Transform
will not work with the same parameters. Another disadvantage is that the Hough Circle Transform only works
well with circles. In this case the target could appear as an ellipse, because of the positions of the camera.

Therefore the Hough Circle Transform is not suitable in this case.

It should be noted that Hough Circle Transform works well in some cases, especially when the archery target
is perfectly circular. Such a case, where the Hough Circle Transform works well, can be seen in the paper of

Nguyen & Lin.

4.2 Color segmentation

The colors of the circles are white, black, blue, red and yellow, starting from the most outer circle to the center

(Image [1.1). These colors always remain the same on every target. The intensity of these colors however can

vary a bit, depending on the weather condition. Besides that, this seems to be the most convenient feature of
the target. The focus here will be the blue, red and yellow colors. The black and white colors are not reliable
enough to consider, since the color range of black and white could interfere with the color range of blue, red

and yellow. The general procedure to find the target based on color is as follows:
1. Define color range for each color.
2. Morphological closing (to remove small noise).
3. Find contours of each color.

4. Draw convexhull around it or fit an ellipse into it.

4.2.1 Color range specification

In order to detect color, a color range for each color has to be specified. In OpenCV, detection based on color
uses the HSV color space. Color conversion from an RGB image to an HSV image happens through the usage
of Imgproc.cvtColor (). The HSV color range in OpenCV varies from the normal HSV color range, which is
from 0 to 360 for hue and 0 to 100 for saturation and value. The HSV color ranges used in this master thesis,
are chosen to represent a broad spectrum of the original colors. These HSV color ranges are based on color
palettes of blue (Image [4.1), red (Image and yellow (Image[4.3). This way, even light or dark versions of

blue, red and yellow will be detected. The HSV color ranges are as follows:
e Blue: hue range [90, 125], saturation range [100, 255] and value range [130, 255].
e Lower Red: hue range [o, 10], saturation range [100, 255] and value range [130, 255].
e Upper Red: hue range [160, 179], saturation range [100, 255] and value range [130, 255].
¢ Yellow: hue range [20, 30], saturation range [30, 255] and value range [180, 255].

The colors are segmented from the image by using the Core.inRange () function, which creates a binary image
where pixels which fall in the defined range are true and all other pixels are false. Color segmenting the color
palettes results in images and These show that a broad spectrum of the colors in the blue, red
and yellow palettes are detected. The colors that are not detected are either too bright or too dark to such an

extend that it does not represent the color well anymore. An example of color segmentation on a target can be

seen in Images and [4.9) where Image is the original image.

4.2.2 Morphological closing

Morphological closing is necessary to remove any noise that is visible in the blue, red and yellow area.
Morphological closing makes finding contours later on more accurate. Morphological closing is a dilation

followed by the erosion of the result. This will fuse narrow breaks and long thin gulfs, eliminate small holes

Figure 4.1: Blue palette.

Mmemc i e mrowme memmewe meume memc
EEEE
e e e e
EEENE
EEEE
PoEmC perowaec o e
EEER
EEERN
e PoncEme naroeie
—
SEEEEER
EEEENEERN
ASHTONE 3135 PANTONE 3136C
Figure 4.2: Red palette.
PMS 162 | PmMs 164 | _PMS 165 PMS. 1665
..
_Pms 1625. PMS 1635 | FMS 1645 T PMS 1655 PMS 1685
PMS 165
PMS 176 PM5 179 PMS 150 ‘ PMS 151
;msms FMS 1755 | PMS 1805 | PMS 1515
.
: PMS 275?.. PMS 1777 1
PMS 162

Process
Yallow

PMS 105

PMS 112

PMS 119

PMS 1205

PMS 127

PMS 134

PMS 1345

Figure 4.3: Yellow palette.

PMS 100

PMS 106

PMS 113

PMS 120

PMS 1215

PMS 128

PMS 135

PMS 1355

PMS 101

PMS 107

PMS 114

PMS 121

PMS 1225

PMS 129

PMS 136

PMS 1365

PMS 102

PMS 108

PMS 115

PMS 122

PMS 1235

PMS 130

PMS 137

PMS 1375

Pantone
Yollow

FMS 109

PMS 116

PMS 123

PMS 1245

PMS 131

FMS 138

PMS 1385

PMS 103

PMS 110

PMS 117

PMS 124

PMS 1255

PMS 139

PMS 1395

Figure 4.4: Blue spectrum.

10

FMS 111

PMS 118

=
PMS 125

PMS 1265

PMS 140

PMS 1405

Figure 4.5: Red spectrum.

Figure 4.6: Yellow spectrum.

11

Figure 4.7: Blue segmentation.

Figure 4.8: Red segmentation.

Figure 4.9: Yellow segmentation.

12

and fill gaps in the contour [11]. The function Imgproc.getStructuringElement () can be used to create an
elliptical kernel Imgproc.MORPH_ELLIPSE with a specified size. Consider the yellow segmented image (Image
. This will look as follows (Image after applying morphological closing with an elliptical kernel size
of 25x25. This kernel size is the result of a compromise between speed and effectiveness, since increasing this
kernel size will result in slow morphological closing of the image. A kernel size of 25x25 is acceptable in this

case, since it reduces most noise in a short amount of time.

4.2.3 Finding contours of each color

Finding the contours is the process that makes it possible to use the detected colored rings to derive information
from. Without contour finding, the detected colored rings are useless. Finding the contour of each color uses
the Imgproc.findContours() function on a binary image. What this function does, is that it saves the contour
of every non-interrupted area with value true from the binary image into a list. These are visible as white parts
in the binary image. Contour finding has to be implemented careful, since there could be also other objects
visible around the target that are in the same color range as the rings. Such an example can be seen in Image

where the yellow score is also in the same color range as the yellow center.

Fortunately, the objects around and in the target can be filtered by size, by shape, but also by position. The
initial filtering would use the Imgproc.approxPolyDP () function, which approximates a shape with a specified
precision, which is epsilon. The epsilon parameter controls the approximation accuracy, which is the maximal
distance between the original shape and its approximation. An epsilon of 0.04 - perimeter works well for
saving the amount of vertices a contour has. This amount can determine what shape the contour is. For
example, if the contour has four vertices, this could indicate that the shape is a square, rectangle or any other
shape which has four vertices. For five vertices, the shape could be a pentagon and for more than six vertices,

this could indicate that the shape is close to an ellipse or circle.

The size filtering is possible by the usage of the Imgproc.contourArea() function. This function returns the
size of the contour. The position of the contour could also provide essential information to consider it a colored
ring or not. This position measure (Imgproc.pointPolygonTest ()) works by checking if a point of the given
contour is inside another contour. For the red and the yellow ring this is useful, since they are inside the blue

ring.

To summarize, for the blue contour a combination of approxPolyDP() and contourArea() is useful, since the
approxPolyDP () function filters out non-circular objects and the contourArea() function makes it possible to
choose the biggest circular object that is left, which is the blue contour. For the red and yellow contours, the
pointPolygonTest () in combination with contourArea() is enough to correctly detect the red and yellow ring.
The pointPolygonTest () makes sure that the found contour is inside the blue contour and the contourArea()
assures that it is the biggest found contour. Image shows an example of the detected contours for blue,

red and yellow after applying shape filtering, size filtering, position filtering and ellipse fitting.

13

Figure 4.10: Original image 1.

Figure 4.11: Yellow segmentation after closing.

14

4.2.4 Drawing contours

The detected contours are mostly not well-defined using the standard Imgproc.drawContours() function to
draw them. It is recommended and more robust to fit an ellipse into the contour by using the Imgproc.fitEllipse ()
function. An alternative is to draw a convex hull around the contour by using the Imgproc.convexHull ()
function. This has the same effect as the fitEllipse() function. The convex hull would be the better choice
if the target was heavily deformed and not elliptic at all. In this master thesis, the fitEllipse () function is

used because it requires far less code. The difference between drawContours() and fitEllipse() can be seen

in Image for the blue ring.

4.3 Pseudocode target detection

The pseudocodes, and [3|are implemented to accomplish the target detection on video. This target detection
has to be applied only once in the initial phase. Once the camera is set, the camera remains at the same

position.

Algorithm 1 Blue ring detection.

Change color of the frame to HSV color
Segment the blue color with the specified color range
Remove noise with morphological closing
Find all blue contours within the frame
for each found contour do
if the contour is circular and the contour is the biggest then
Save the contour size
Save the contour
end if
end for
: if the chosen contour is not empty then
Fit an ellipse into the contour
Save the fitted ellipse to a contour
Return the contour
else
Return the empty contour
end if

e PN AW N

HoOoR R R R R R e
N U R RN R Q

15

Figure 4.12: Detected contours after shape filtering, size filtering, position filtering and ellipse fitting.

Figure 4.13: drawContours() vs fitEllipse().

16

Algorithm 2 Red ring detection.

1: Change the color of the frame to HSV color
Segment the red color with the specified lower and upper color range
Remove noise with morphological closing
Find all red contours within the frame
for each found contour do
if a point of the contour is inside the blue contour and the contour is the biggest then
Save the contour size
Save the contour
end if
end for
: if the chosen contour is not empty then
Fit an ellipse into the contour
Save the fitted ellipse to a contour
Return the contour
else
Return the empty contour
end if

e ®N R RN

HoR R R Rl R R
N VR RN R Q

Algorithm 3 Yellow ring detection.

1: Change the color of the frame to HSV
Segment the yellow color with the specified color range
Remove noise with morphological closing
Find all yellow contours within the frame
for each found contour do
if a point of the contour is inside the red contour and the contour is the biggest then
Save the contour size
Save the contour
end if
end for
: if the chosen contour is not empty then
Fit an ellipse into the contour
Save the fitted ellipse to a contour
Return the contour
else
Return the empty contour
end if

L *PN IR wN

<
N VTR RN R Q

17

Chapter 5

Perspective correction

This chapter focuses on all the aspects of calculating the perspective correction of the target. As already known,
the camera can be placed almost freely across the field. By placing the camera very close with a short angle
towards the target, it could visualize the target as an ellipse. During the archery competition/training, the
visitors also look at the score screen and therefore it is necessary to correct the perspective of the ellipse to a
more appropriate frontal view. The ideal situation would be to correct the ellipse into a perfect circle. This
however is not always the case, since there are various factors that contribute to creating the “perfect’ circle

from an ellipse. The perspective correction in this chapter is purely based on OpenCV and its functions.
The perspective correction works according to the following steps:

1. Retrieve the contours of the three colors: blue, red and yellow.

2. Calculate the destination circle for each retrieved contour.

3. Create the transformation matrix and warp the perspective according to it.

4. Verify the perspective and improve it by rotation.

5.1 Calculate the destination circles

Retrieving the contours of the three colors has already been discussed in Chapter |4} Those contours of the
three colors are the source ellipses, which are detected (example Image [5.1). They need to be converted to
preferably circles. In Section a method is described that needs the number of source pixels of the ellipses
and the number of destination pixels of the circles to be equal. Based on that it calculates the appropriate
transformation matrix. Therefore the calculation of the destination circles is important, to assure that the

amount of pixels of the destination circles are equal to the source ellipses.

The calculation of the destination circles are based on the amount of pixels the source ellipses have. In OpenCV,

the function Imgproc.circle() is used to draw a circle with a given radius. This radius determines the

18

number of pixels and thus the size the circle has. There is unfortunately no known formula in OpenCV to
calculate the number of pixels given the radius of the circle, because each increment in radius results in the
increase of the number of pixels by an inconsistent number. Therefore three simple approximation formulas
are created by trial-and-error that approximate the radius of the destination circles given the number of pixels
the source ellipses have. Drawing destination circles with these estimated radiuses results in an amount of
pixels that are equal or almost equal to the amount of pixels the source ellipses have. These formulas like said
earlier are created by trial-and-error, which means that for each image and video in the training dataset, the
optimal destination circle radiuses are determined and the amount of pixels of those radiuses are noted. From

these radiuses and amount of pixels, the following radius approximation formulas are created:

741 - s_blue
— 1
e_blue = 4187 (5)

Where e_blue is the estimated radius of the blue destination circle and s_blue is the number of pixels the blue

source ellipse has.

492 - s_red
— 2
e_red = 2777 (5)

Where e_red is the estimated radius of the red destination circle and s_red is the number of pixels the red

source ellipse has.

244 - s_yellow

1375 (5-3)

e_yellow =

Where e_yellow is the estimated radius of the yellow destination circle and s_yellow is the number of pixels the

yellow source ellipse has.

These approximation formulas simply approximate, because in some cases the number of pixels cannot be
perfectly equal to the source ellipses using the estimated radiuses of these formulas. In those cases, the number
of pixels in the destination circles is either too big or too small compared to the source ellipses. Therefore
bigger radiuses are chosen for the destination circles which is near the source ellipses in amount of pixels.
The difference in number of pixels between the source ellipses and destination circles are subtracted from the
destination circles in order to equal the number of pixels. Algorithms [4} [5| and [6| describes this process for each
color. Image [5.2[shows an example of the destination circles, which are created from the source ellipses from

Image In these images, the amount of pixels are equal to each other.

5.2 Create the transformation matrix and warp the perspective

A transformation matrix is a special matrix that can describe 2D and 3D transformations [12]. They are

frequently used in linear algebra and computer graphics, since transformations can be easily represented,

19

Figure 5.1: Source ellipses.

Figure 5.2: Destination circles.

20

Algorithm 4 Blue destination circle calculation.

1: a = estimated radius of the destination circle using formula
2 fori=a+1toa—1do

3:

e ®*N vk

10:
11:
12!
13:
14:
15:
16:
17:

is equal)
18:
19:
20:
21:

Draw circle with radius i on the same center as the blue source ellipse
Find contours to retrieve the drawed circle
Calculate difference in the number of pixels between destination circle and the blue source ellipse
if difference is smallest and > 0 then
Save current smallest difference
Save the contour
if difference == 0| i ==a—1 then
Save the pixels of the contour minus the difference (so that the number of pixels is equal)
Break out of all loops
end if
else
if The saved contour is empty then
i=i+2
else
Save the pixels of the contour minus the current smallest difference (so that the number of pixels

Break out of all loops
end if
end if

end for

22: Return the self-made Mat, which contains the saved pixels

Algorithm 5 Red destination circle calculation.

1: a = estimated radius of the destination circle using formula (5.2)
2 fori=a+1toa—1do

3:

e *N vk

10:
11:
12:
13:
14:
15:
16:
17:

is equal)
18:
19:
20:
21:

Draw circle with radius i on the same center as the red source ellipse
Find contours to retrieve the drawed circle
Calculate difference in the number of pixels between destination circle and the red source ellipse
if difference is smallest and > 0 then
Save current smallest difference
Save the contour
if difference == 0 || i ==a —1 then
Save the pixels of the contour minus the difference (so that the number of pixels is equal)
Break out of all loops
end if
else
if The saved contour is empty then
i=i+2
else
Save the pixels of the contour minus the current smallest difference (so that the number of pixels

Break out of all loops
end if
end if

end for

22: Return the self-made Mat, which contains the saved pixels

21

Algorithm 6 Yellow destination circle calculation.

1 a = estimated radius of the destination circle using formula (5.3)

2 fori=a+1toa—1do

3 Draw circle with radius i on the same center as the yellow source ellipse
Find contours to retrieve the drawed circle

4
5: Calculate difference in the number of pixels between destination circle and the yellow source ellipse
6: if difference is smallest and > 0 then
7: Save current smallest difference
8: Save the contour
9 if difference == 0 || i ==a —1 then

10: Save the pixels of the contour minus the difference (so that the number of pixels is equal)

11 Break out of all loops

12: end if

13: else

14: if The saved contour is empty then

15: i=i+2

16: else

17: Save the pixels of the contour minus the current smallest difference (so that the number of pixels

is equal)

18: Break out of all loops

19: end if

20: end if

21: end for

22: Return the self-made Mat, which contains the saved pixels

combined and computed. By multiplying the transformation matrix with the original points of the image, the

transformation can be evaluated.

In OpenCYV, a transformation matrix can be constructed by using the Calib3d.findHomography () function.
This function determines the homography between two planes. It constructs a homography matrix based on
the two images (source and destination) that are given as input to the function. Instead of using two images, it
is also possible to use two set of points. This would be more practical in our situation, since we only know the
complete source image, but do not know the complete destination image. The source ellipses and destination
circles, which are discussed in sections |4.2[and could be used as an input set of points and destination set
of points respectively, because in the end circles are requested. Like said earlier, the source and destination

parameters of the findHomography () function requires to have an equal amount of pixels.

In the findHomography () function, there is another parameter that controls the methods used to compute
the homography transformation matrix. There are three methods namely: Regular (default), RANSAC and
Least-Median(LMEDS). The regular method uses all points to calculate the homography transformation
matrix. Both, RANSAC and LMEDS, select randomly matched points and are iterative methods [13]]. LMEDS
calculates the median of the square of the error and seeks to minimize this. RANSAC first randomly chooses
enough matched points to compute model parameters. Secondly it checks the number of elements of the input
feature point dataset which are consistent with the model just chosen. Then it repeats this two steps within
a specified threshold until it finds the maximum number of elements within a model. This model is then
selected and the mismatches are rejected. The method that is chosen in this case is RANSAC. RANSAC without any
threshold tuning works better than re