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Abstract

A majority of the human genome consists of sequences that do not code for a particular
protein, so called non-coding DNA. The non-coding regions nonetheless play a vital role in
gene expression. These non-coding regions of the DNA contain cis-regulatory elements such
as promoters and enhancers. These regions can be bound by transcription factor proteins and
thereby controlling the rate of transcription of DNA to messenger RNA. This then helps to
regulate the expression of nearby genes.
Next-generation sequencing (NGS) techniques allow for identifying and studying the genomic
factors such as transcription factor binding, histone modifications and open chromatin that
underlie transcription with great sequencing depth. Furthermore, these data allow researchers
to build predictive models for these events using machine learning approaches, which permit
the annotation of new cell types without having to perform the experiment. In particular,
convolutional neural networks seem to be well suited to model genomic data. A convolutional
neural network (CNN) is a type of feed-forward neural network inspired by the animal visual
cortex. CNNs are characterized by having spatially local connections. This connectivity pattern
allows CNNs to be effective on data that have a grid-like topologies. In other words, data that
can be represented by nodes which are connected to neighbors along one or more dimensions,
where neighboring elements have statistical dependencies. Recently, algorithmic advances as
well as great improvements in processing capabilities and tools and better datasets have made it
possible to train increasingly complex models. Indeed, deep convolutional neural networks have
proven to be very successful on many artificial intelligence tasks such as image classification,
finding policy and value functions for game playing AI and drug discovery. As for typical NGS
data, which includes DNA sequences, open chromatin and transcription factor binding data,
these are all one dimensional grids.
Identifying transcription factor binding sites can greatly help researchers understand the tran-
scription process and the underlying factors to genetic diseases. In the first experiment, con-
volutional neural networks models were built to predict transcription factor binding sites from
sequence, open chromatin, gene expression and DNA shape data. We found the convolutional
neural network to perform close to the state of the art on some transcription factors, while
performing significantly worse on others. Building models for each task separately resulted
in better predictive performance than a multi-task network modeling all transcription factors
simultaneously.
In the second experiment, we took a closer look at the transcription process. The exact location
of transcription initiation, the transcription start site (TSS), can be determined experimentally
at base pair resolution. Unlike translation, where the exact amino acid triplet for starting the
translation process is known, translation is less well understood. We studied the transcrip-
tion process by building a convolutional neural network to predict the exact positions of the
transcription starts sites. The trained models were then interpreted, which lead to the finding
that the area directly around the TSS site is most decisive factor for determining whether a
particular base is a TSS, which to best of our knowledge is not reported in literature.
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1 Introduction

1.1 Motivation

The genetic code that contains the blueprint for the development and functioning of cells is
stored in the DNA. The DNA is a long polymer chain that contain four nucleotides: adenine
(A), cytosine (C), guanine (G) and thymine (T). Specific regions in the DNA called genes are
transcribed into messenger RNA (mRNA), which has uracil (U) in stead of thymine (T). The
mRNAs are eventually translated into proteins which perform various functions within the cell.
The Human Genome Project started in the early 1990s as an international effort to sequence
all of nucleotide base pairs that make up the human genome and identify all the genes. Humans
were found to have around 20.000 genes, which is far less than expected before the start of
the Human Genome Project. Furthermore, less than 3% of the genome code for a protein.
The vast majority of the genome is comprised of noncoding DNA sequences. The noncoding
regions nonetheless play an important role in transcription by regulating gene expression.
Cis-regulatory elements (CREs) are regions of the DNA that are important in controlling which
genes are expressed depending on cellular state and environment. With the advent of Next-
Generation Sequencing (NGS), sequencing costs as well as sequencing time have gone down
dramatically. The cost to sequence a human genome has gone down from USD $100 million
in 2001 during the human genome project to approximately USD $1000 today. Additionally,
current state of the art NGS technologies allow researchers to study not only the genome, but
also the transcriptome (RNA transcripts) and epigenome (chemical changes to the DNA and
the histone proteins that do not change the sequence) of virtually any organism.
Several public data respositories exists where a vast amount of NGS data has been collected
by big consortia. The ENCyclopedia of DNA Elements (ENCODE) project [21] aims to identify
all functional elements in the genome and contains various NGS datasets such as protein-dna
interaction data in the form of ChIP-seq experiments for distinct cell types. The FANTOM5
(Functional Annotation of the Mammalian Genome) project [22] tries to build transcription
regulatory models for all human primary cell types. The dataset is based on transcription start
site locations.
These datasets allow researchers to find the novel motifs (short sequence patterns) and epige-
nomic traits that drive gene expression as well as build predictive models to annotate the
genome and identify regulatory elements. Identification of these elements could help future
studies and our understanding of gene regulation which could lead to improved medicines and
treatment of genetic disorders such as cancers and auto immune diseases.
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1.2 Research objectives and contributions

Recently, deep convolutional neural networks (CNNs) have achieved state of the art results
on many machine vision benchmarks. These networks generate powerful representations from
labeled training data without need the need for manual feature engineering.
In this work two experiments were conducted. In the first experiment we built convolutional
neural network models to predict the location of transcription factor binding sites in the genome
for use in the ENCODE-Dream transcription factor binding challenge. We did extensive feature
engineering as well as a search for optimal architectures for learning. In the second experiment,
CNNs were used to build predictive models of the exact location of transcription initiation
(transcription start site or TSS) from experimental data. We then interpreted these models to
get a better understanding of the transcription process.
The main contributions of this work are: 1) An investigation of various architectures and
parameters of convolutional neural networks to integrate various NGS data for transcription
factor binding site prediction. 2) By interpreting the convolutional neural network we found
strong evidence that the region directly surrounding the TSS site is the most important factor
in determining the presence of a TSS as opposed to the TATA box described in literature. 3)
Publishing the source code for applying convolutional neural networks to transcription factor
binding site prediction, which can be modified to be used on any genomics problem.
The thesis is structured as follows. Section 2 provide an introduction to neural networks
and regulatory genomics. Next, Sections 3 and 4 describe convolutional neural networks and
their recent applications to genomics. Sections 5 and 6 present and discuss the results of the
transcription factor binding and transcription start site experiments respectively. Lastly, we
summarize the findings of this work and provide directions for future work in Section 7.

7



2 Background

2.1 Gene Expression and Regulation

The genetic information used in the growth, development, functioning and reproduction of
an organism is encoded into the DNA. The DNA is a long molecule which consists of two
complementary biopolymer strands consisting of the nucleotides adenine (A), cytosine (C),
guanine (G) and thymine (T). The nucleotides of both strands are bound together with hy-
drogen bonds between A and T and C and G, forming the double-stranded DNA. These two
strands are wound around each other to form a double helix. The asymmetric ends of the
DNA strand are identified as either the 3’ and 5’ end, based on the R group at the end of
the sugar molecule. The chromosomal DNA is located in the cell nucleus, where a segment
of DNA is compactly wrapped around eight histone proteins each forming a nucleosome. The
DNA-protein complex is called chromatin (see Figure 1).

Figure 1: Hierarchical represention of the
chromatin structure. Source: O’Sullivan lab
at UPCI [2].

The protein coding genes are parts of the
genome that encode function, i.e. they code
for a particular protein. The information of
genes is copied onto a RNA molecule in a
process called transcription. Figure 2 gives a
schematic overview this process. In general
terms, the following steps are performed dur-
ing transcription: First the RNA polymerase
enzyme and general transcription factor pro-
teins bind to the promoter region of the DNA.
Next, the RNA polymerase separates the two
strands by breaking the hydrogen bonds of
the double helix. One of the strands of the
DNA acts as the template strand. Bases on
the template strand are read in the 3’ to 5’
direction one base at a time. At the same
time the polymerase builds a complementary RNA chain in the 5’ to 3’ direction. Sequences
called terminators signal the completion of the RNA transcript. In eukaryotic cells (cells with
a nucleus enclosed within membranes, e.g. animal or plant cells) the primary transcript under-
goes post-transcriptional modifications to turn it into mature RNA. If the RNA codes for a
protein, it is called messenger RNA, which eventually is translated to a protein in a ribosome.
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Figure 2: Schematic figure of the transcription process. Source: BIOL 2060, Memorial
Univeristy [7].

The location where the transcription of a gene starts is called the transcription start site.
Approximately one fifth of the human promoters contain a TATA box 25-25 bases upstream
(in the 3’ direction of the template strand) of the transcription start site. The TATA box is
a so called cis regulatory element (CRE), a non-coding DNA sequence which regulates the
transcription of nearby genes. Other CREs are enhancer or insulator sequences. These are
short regions in the DNA that can be bound by transcription factor proteins to increase or
decrease the likelihood of the transcription of a gene will occur. These transcription factors
are encoded in different genes called trans regulatory elements. CREs play an essential role in
the expression of genes in a cell and therefore have a large impact on the development and
functioning of the cell. Changes to these regions could lead to difference in phenotype (e.g.
disease). In reality, the exact mechanisms that underly transcription and gene expression are
still unknown. Several factors contribute to regulatory events, such as the DNA methylation
(addition of methyl groups to the DNA), modification to the histone proteins, chromatin
accessibility, transcription factor binding and DNA shape.

2.2 Next-Generation Sequencing

With the advent of next-generation sequencing technologies researchers can study these regu-
latory events and build predictive models. ChIP-Seq (chromatin immunoprecipitation followed
by sequencing) measures protein-DNA binding activity across the genome as well as molecular
marks on the histones [35], which can be used to identify transcription factor binding sites.
ChIP is a process to enrich certain DNA sequences that are bound by particular proteins. The
ChIP process consists of the following steps.

1. Crosslinking the proteins to the DNA

2. Fragmenting the DNA strand by sonification to fragments of 0.2 to 1kb.

3. Linking the target protein with bead attached antibodies specific to that protein.

4. Precipitating or capturing the antibody-protein complex using beads

5. Unlinking the protein and purifying the DNA
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At a high level, the data analysis pipeline for a researcher working with ChIP-Seq data is as
follows: The ChIP process creates a large number of small reads (small fragments of DNA).
These reads are then aligned to a reference genome, which is a complete assembled sequence
of a species. These aligned reads can then be converted into a format which can be read by
a genome visualization tool like the Integrative Genomics Viewer (IGV) [53] as seen in Figure
3. Usually, there will also be an untreated (no antibodies for that transcription factor) control
data set. Regions that are relatively enriched for that transcription factor, known as peaks,
can then be found using a peak finder such as MACS [73].

Figure 3: Processed ChIP-Seq data visualized in the Integrative Genomics Viewer. Here
we can see both the ChIP-Seq signal for the FoxA1 transcription factor as well as the
detected peaks, which are in the vicinity of the SMAP2 gene.

Regions of the chromatin that are open, i.e. free of nucleosomes can be found using DNase-Seq
(DNase I hypersensitive sites) [61], FAIRE-Seq [26], MNase-Seq [23] and ATAC-Seq (Assay
for Transposase-Accessible Chromatin) [16]. Finding these regions is important as the DNA
must be accessible for transcription to take place.

Figure 4: Open chromatin is accessible for transcription factor proteins to bind onto the
DNA. Source: Open chromatin and diabetes risk, Groop. [29].

The expression levels of genes can be observed from RNA-Seq analysis [69]. Cap analysis gene
expression (CAGE) [56, 40] is a technology which allows for mapping the transcription start
sites at single nucleotide resolution. In short, small fragments from the the start of the mRNA
are captured, reverse-transcribed to complementary DNA (cDNA) and then amplified using
PCR producing short sequences (tags) of 20-27 nucleotides in length. These tags can then be
aligned to the reference genome and counted.
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Figure 5: CAGE tags aligned to the reference genome. Each tag corresponds to a mRNA
TSS. Source: Kabushiki Kaisha DNAFORM [1].

3D interactions of the chromatin can be captured by Hi-C ((high-throughput chromosome
conformation capture)) [12]. Several openly accessible NGS databases have been created by
different consortia.

Database Description

Encyclopedia of DNA Comprehensive database of protein-DNA binding data (ChIP-Seq),
Elements (ENCODE) [21] open chromatin (DNase-Seq, Faire-Seq) and

DNA-interactions (Hi-C, 5C) for several cell types.
Functional Annotation of Transcription State Sites for close to 1000 human
the Mammalian Genome cell types (CAGE).
(FANTOM5) [22]
Roadmap Epigenomics [14] Epigenomics database of DNA methylation,

histone marks, open chromatin and RNA transcripts (RNA-Seq).
JASPAR [54] Database of transcription factor binding motifs.

Table 1: Databases with Next-Generation Sequencing data for use in building predictive
models for cis-acting regulatory elements.
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2.3 Neural Networks

Machine Learning is the field of Computer Science concerned with developing algorithms that
allow computers to learn to do specific tasks without being specifically programmed. These
tasks are learned from historical data or examples, where the algorithm is ’trained’ to model
the underlying process and make predictions.

2.3.1 Feed-Forward Neural Networks

A neural network is a computational model approximating a (natural) phenomenon, such as
housing prices in a particular neighborhood or the binding of transcription factors to their
respective binding sites. More specifically, the neural network produces a predicted output
given a number of features describing a particular input. The goal of the neural network is
to produce outputs that are close to the observed values in nature. An input x ∈ X may
represent the features of a particular sample for which we want to make predictions, this can
be a genomic sequence or the pixel values of an image for example. If the target variable Y
is restricted to a set of classes (e.g. binding and non-binding) the problem is a classification
task, otherwise, if Y takes values from the real numbers, the problem is a regression task [15].
A fully connected feed-forward neural network can be represented as a directed layered graph,
where the input in one layer is connected to all the outputs in the next layer. Nodes in the
intermediary layers are called hidden nodes or neurons. This architecture of multiple layers
allows neural networks to represent complex interactions in the data [43].
The connections between layers can be represented by a matrix of weights W ∈ Rm×n where
m is the number of output nodes and n is the number of input nodes, in particular wij is the
connection weight from input node i to node j. Additionally, the non-input layer nodes will
also have a bias term b. The networks adapt to a particular task by modifying the trainable
parameters of the network; the connection strengths between nodes and the bias terms of the
nodes. A central property of neural networks is that the function is differentiable. This implies
that for each parameter we are able to calculate how the output changes to small perturbations
of the parameter. Using this gradient information, we can update the trainable parameters by
making small steps in order to minimize a distance function between the outputs produced by
the network and the expected values obtained from training data.
Given an input, the network performs inference by ’feeding the input forward through the
network’. For each incoming connection for a particular node, the input is multiplied by the
weight on that incoming edge. All these values are summed up after which the bias term is
added. More formally, the representation at layer k, hk is computed by the affine transform
hk =

∑
Wkhk−1

+bk, where Wk is the matrix representing the weights between layer k − 1
and k. The output of a particular node may then pass through a non-linear function. In the
early days of neural networks, the sigmoid function was used as the hidden layer activation
function.

σ(x) =
1

1 + e−x
(1)

The issue of these units is that training can be slowed down considerably when it gets stuck in
the saturated part of the input (which means its value will be near the 0 or 1). More recently,
rectifiers have been very successful for training deep networks [70]. In particular, the rectifier
linear unit or ReLU function is defined as

ReLU(x) = max(0, x) (2)
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By removing the negative part of the input, the representation becomes more sparse. Each
next layer changes the representation of the input such that the representation realized at the
last hidden layer become linearly separable in the case of classification or able to be fitted by
a linear function in the case of regression.
The activation function suitable for the output layer nodes depends on the prediction task.
The sigmoid function squashes the output between 0 and 1 and is used in classification tasks
to represent a probability of the input being of a instance of a particular class. In the case
of multiple classes, where each class will be represented by one node, the softmax function is
used. The softmax function takes an n-dimensional vector of real numbers (obtained from the
n classes) and squashes the vector into numbers between 0 and 1, summing to 1.

σ(x) =
ezj∑n
i=1 e

zi
, for each class j (3)

Regression tasks do not require a non-linear activation at the final output.
In order for the network to learn a particular function and make predictions the weights of the
network are trained to minimize an objective function. This objective function is a function
of the trainable parameters of the network (the weights and biases) and consists of a loss
function, which returns a distance between the predictions and the expected outcomes, and
possible regularization terms which will be described in more detail below. As the network
contains millions of parameters and the loss function is in general non-convex, the weights are
optimized using a first order method to find a local minimum of the objective function.
Let x = {x1, x2, ..., xn} be the inputs 1, 2, ..., n to the output layer, let y be the ex-
pected output and let the output of the network (after applying the activation function) be
σ(
∑n

i=1wixi+b) = z, where σ represents the activation function. Depending on the prediction
task, we can formulate loss functions as below. Note that these are the losses for one example,
in order to calculate the loss for a training batch, the mean of over all the errors on those
examples is taken.
For regression problems, the loss function commonly used is the squared distance.

C = (y − z)2 (4)

Depending on the distribution of the labels using a mean squared error for classification could
result in poor learning due to the derivative having saturated regions. For classification prob-
lems, the cross entropy loss function is often used.

C =
m∑
i=1

yj ln zj (5)

Where m is the number of classes. We can interpret the output of each training instance as
probabilities, that is, the one-hot encoding from the training data and the distribution produced
by the model. The cross entropy measures the number of bits needed to encode an instance
when using a coding scheme optimized for the model’s probability distribution instead of the
’true’ probability distribution of the data. The closer the model’s distribution is to the real
distribution, the fewer bits are necessary to encode the training instance.
A special case of cross entropy for two classes is the binary cross entropy loss function defined
as below.

C = −(y ln z + (1− y) ln (1− z)), z ∈ [0, 1], y ∈ {0, 1} (6)
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In particular, it has the properties that it is always positive, and close to zero if the output
produced by the network is close to the expected output. Furthermore, the derivate of the
error function with respect to the weights has the nice closed form of Equation 7. Here, the
magnitude of the derivative used to update the weights is directly proportional to the error in
the prediction.

∂C

∂wi
= (

y

z
− 1− y

1− z
)z′xi =

z′xi(z − y)

z(1− z)
= xi(z − y) (7)

Of course, it is possible for a network to predict several related tasks simultaneously, known
as multi-task training. In this way, training data can be shared between tasks, which can
lead to more general representations and improved prediction performance. For example, in
drug discovery, the task predicting biological activity of compounds on a particular protein is
related to the task of predicting biological activity on compounds on another protein. For a
given compound, a joint model of how that model would interact with several (similar) proteins
could be constructed. In this way, knowledge of how compounds interact on a specific protein
can be transferred and applied to another protein.
The vast improvements in predictive accuracy of neural networks in the last few years has
been accomplished due to better datasets being available for training (e.g. ImageNet [25]),
improvements in processing capabilities, specialized libraries being developed and algorithmic
improvements, which allow researchers to train increasingly deep models.

2.3.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a well known first-order method for optimizing neural
networks. The idea is that by adjusting the weights by taking small steps in the opposite
direction of ∇Q(w), where Q is the function to be optimized or objective function and where
∇ is the vector of partial derivatives of Q known as the gradient. This is done by taking a fixed
size batch of training examples, computing the derivatives with respect to all the trainable
weights and then updating each weight according to w := w − η∇Q(w). Here η is the learn
rate that controls the step size of the gradient descent.
Vanilla SGD has problems optimizing in regions of the input where the surface curves much
more steeply in one coordinate than another. In such regions, SGD will zig-zag along the
steepest dimension. By adding a momentum term, the oscillations in such situations can be
dampened and the convergence speed will be faster [51]. The update to w at time step t is
explained in Equation 10, where γ is the momentum term controlling the importance of past
updates.

vt = γvt−1 + η∇Q(w) (8)

w = w − vt (9)

Nesterov accelerated gradient (NAG) [49] improves on the momentum method by computing
the gradient at the expected next position. Since the momentum term γvt−1 is used to update
the parameters w, the next position can be approximated by w − γvt−1.

vt = γvt−1 + η∇Q(w − γvt−1) (10)

w = w − vt (11)
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Another commonly used first-order stochastic optimization algorithm is Adam, proposed by
Kigma et al. [39], which improves on the vanilla stochastic gradient descent by dynamically
adjusting the updates to the parameters by maintaining estimates of the first and second
moment of the gradient.

Algorithm 1 ADAM algorithm. It minimizes (maximizes) f(θ) using estimates of the
first and second moment of the gradient. The parameter α controls the step size, β1 and β2
control the exponential decay of the averages of the first and second moment respectively.

1: procedure Adam (α, β1 ∈ [0, 1), β2 in[0, 1), f : Rn → R, θ ∈ Rn)
2: initialization:
3: m0 ← 0 // estimate of first moment
4: v0 ← 0 // estimate of second moment
5: t← 0 // time step
6: loop:
7: while θt not converged do
8: t← t+ 1.
9: gt ← ∇f(θt−1). // compute gradient

10: mt ← β1mt−1 + (1− β1)gt // update first moment estimate
11: vt ← β2vt−1 + (1− β2)g2t // update second moment estimate
12: m̂t ← mt/(1− β1) // bias correction due to initialization
13: v̂t ← vt/(1− β2) // bias correction due to initialization
14: θt = θt−1 − α ∗ m̂t/(

√
v̂t + ε)

By keeping an estimate of the first moment, we smoothen the gradient descent process. The
estimate of the second moment is an estimate of the uncertainty. When the variance is high,
the step size will be small and conversely if the estimate of the second moment is low, the
step size will be larger.

2.3.3 Backpropagation

In order to update the weights to improve the predictive performance of the network, the
gradient consisting of all partial derivatives of the error function with respect to the weights
needs to be calculated. For a given weight, wij, which corresponds to the connection strength
of hidden node i to hidden node j, the partial derivative is calculated using the chain rule of
calculus as below.

∂E

∂wij
=
∂E

∂oj

∂oj
∂wij

= δj
∂

∂wij
(
∑
l

wljal + bj) = δjai (12)

Here, oj is the output of the node j before activation and ai is the output of node i after
activation using activation function σ. The activations a are computed during the forward pass
and are propagated from input to output. The errors or deltas δ for each node are propagated
’backwards’ starting from the error obtained from the objective function down to inputs. The
rule to compute these delta’s can be again be calculated using the chain rule.
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δj =
∂E

∂oj
=
∂E

∂aj

∂aj
∂oj

=
∂E

∂aj
σ′(oj) (13)

=
∑
k

∂E

∂ok

∂ok
∂aj

σ′(oj) (14)

=
∑
k

δk
∂ok
∂aj

σ′(oj) (15)

=
∑
k

δkwjkσ
′(oj) (16)

Hence, computation of the gradient is an efficient process which is similar in terms of compu-
tational complexity to computing the forward pass (inference step).

2.3.4 Regularization

Larger networks can learn complex relationships in the data, but they are also prone to over-
fitting the training data (i.e. fitting to noise in the data or simply memorizing the train set). In
order to generalize to new examples, this problem needs to be addressed. By adding a penalty
function as a function of the weights to the optimization algorithm, poor representations that
do not generalize well can be punished. The objective function Q then consists of the cost
function C and regularization term(s). L2 regularization penalizes the squared magnitude of
the weights. Let w be the weights of the network. The objective function Q then becomes
C + λ‖w‖22, where λ ≥ 0 is the parameter controlling the impact of large weights on the
objective functions. In particular, the larger the value for λ, the more the network is penalized
for large parameter values.
Another simple to implement, effective and often-used method is dropout [63]. It attempts to
prevent the co-adaptation of neuron activations, where several neurons together learn a specific
feature. During the training of the network, for each separate example in the training batch,
the activations of randomly selected neurons is set to zero. This results in more general, sparse
and less correlated representations and therefore improved performance on held-out training
sets [19, 63].
Another issue of deep networks is the exploding or vanishing gradient problem, where gradient
information is unable to propagate through many layers. The ReLU non-linearities address this
by creating more sparse representations. Since only a subset of the nodes will be active for a
given example and the computations will be linear on this subset, gradient information will be
propagated down the network more easily [28]. Moreover, since only a subset of neurons will
be active, adding ReLUs also improves the speed of inference and training.
Related to the learning problem caused by vanishing or exploding gradients in deep neural net-
work architectures, is the phenomenon that the distributions of each layer’s inputs may change
during training. As each layer is affected by the parameters in all previous layers, small changes
to the network parameters have an amplifying effect further down the network. The change of
distributions of internal nodes of a deep neural network is referred to as Internal Covariance
Shift. Batch normalization proposed by Ioffe et al. [33] is a way to reduce this phenomenon.
The idea is to normalize or whiten the activations of each feature separately. Consider a layer
with n inputs x1, x2, ..., xn. The normalized value for the i-th input is calculated as
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x̂i =
xi − E(xi)√
V ar(xi)

(17)

For computational efficiency, the batch mean and batch variance are used to translate and
scale the input. The batch normalization procedure for a particular layer can be summarized as
in Algorithm 2. The shift and scale operation by parameters γ and β is necessary to ensure the
network retains the representational power, that is, the ability to approximate certain functions,
by allowing the batch normalization transform to represent the identity function.

Algorithm 2 Batch Normalization transformation. Given m training examples in a mini-
batch, each feature x with training examples x1, x2, ..., xm is scaled and shifted to y.

1: procedure BN (x1, x2, ..., xm)
2: µ← 1

m

∑m
i=1 xi // batch mean

3: σ ← 1
m

∑m
i=1(xi − µ)2 // batch variance

4: x̂i = xi−µ√
σ+ε

// normalize

5: yi = γx̂i + β // scale and translate

During training of the network, the batch normalized inputs are replaced by their respective
transformations y = BN(x). The model parameters to be optimized are the weights and biases
of the initial model as well as the scaling and translation parameters of the batch normalization.
Once the model has been trained, the batch-normalization transform is made deterministic by
making use of population statistics for the mean and variance. More specifically, for each
feature, we take the sample mean over the batch means and the unbiased sample variance of
the batch variances. Afterwards, the batch normalization operation can be replaced by a linear
transform.
The advantage of using batch normalization is that it enables higher learning rates, since
normalizing prevents small changes in the parameters to have an amplifying effect further down
the network. Furthermore, it makes the network robust to scaling of a layer’s parameters. High
learning rates may increase the scale of the weights which may lead exploding gradients during
backpropagation. Now for a scaling factor a, we have that BN(wx) = BN((aw)x), since
Using batch normalization however, the error propagation will be unaffected by a scale of the
parameters. Given the affine transform wx+b, we have that BN(wx+b) = BN((aw)x+b) for
scaling factor a. This results in the following observations for error propagation and gradients
of weights respectively.

∂BN((aw)x+ b)

∂x
=
∂BN(wx+ b)

∂x
(18)

∂BN((aw)x+ b)

∂aw
=

1

a

∂BN(wx+ b)

∂w
(19)

That is, the error propagation is unaffected by the scaling of the weight parameters and the size
of the gradients is inversely proportional to the size of the weights, hence parameter growth
is stabilized.
Furthermore, batch normalization also acts as a regularizer. As mini-batches consist of differ-
ent examples, the activations for a particular training example will vary across mini-batches.
In practice, Ioffe et al. [33] found batch normalization leading to better generalization and
reducing the need for dropout.
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3 Methods

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural networks that can process types
of data that have a grid-like topology, that is, that have statistical dependencies between
neighboring elements. An example of such data are images, which are a 2-D grid of pixels.
CNNs have been very successful in machine vision tasks achieving state of the art performance
in various image and video recognition benchmarks.
Similarly, the DNA can be thought of as a 1-D grid of nucleotides. More specifically, a n length
sequence of DNA can be represented as a 4× n matrix, where each nucleotide is represented
by a vector of length 4. An example encoding is given in Figure 6.

A
C
G
T

Figure 6: One-hot encoding of the sequence GATAAATCCTAGTACTTGC

This encoding can be compared to an image where instead of being a 2-D grid having three
channels R, G and B, the genome is represented by a 1-D signal with four channels A, C,
G and T . Additionally, any signal over the genome, such as chromatin accessibility, histone
marks or transcription factor binding data can be processed using the convolutional neural
network by either adding it as a separate channel or processing it separately. The components
of vanilla convolutional neural networks are described below.

3.1.1 Convolution Layer

Convolution is a mathematical operation which takes two functions f and g as input and
produces a function which is the integral of pointwise multiplication of f and a reversed and
shifted version of g. Formally, the convolution operator ∗ is defined as in Equation 20.

(f ∗ g)(t) :=

∫ ∞
−∞

f(x)g(t− x)dx (20)

In convolutional neural networks, the function g is called a convolutional filter and acts on the
input function f . The resulting output is called a feature map. In practice, the input will be a
multidimensional array such as an image or the one-hot encoded genome. The convolutional
filter is a multidimensional array of parameters, consisting of the weights of the connections and
the bias. Consequently, the convolution operation is a finite summation over one or multiple
axes. More concretely, let I be the input array of N dimensions and K be a kernel, then the
output at i = (i1, ..., iN) is calculated as in Equation 21, where j = (j1, ..., jN) is a coordinate
of the input.

(I ∗K)(i) =
∑
j

I(j)K(i− j) (21)

Note that the convolutions at the borders present an edge case, since we may need coordinates
which are not part of the input. There are several ways to deal with the border cases, visualized
in Figure 7.
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(a) valid convolutions (b) same convolutions (c) full convolutions

Figure 7: Visualized are three two-dimensional 3 × 3 convolutional filters acting on two-
dimensional grids (e.g. an image). The center of the kernel is, depicted by the filled in
blue square, accumulates information about the neighboring cells inside the 3x3 kernel.
By moving the kernel over the image the feature map is created. There are three ways
one can deal with the border cases when performing convolutions. Valid convolutions
only allow each element in the kernel to overlap with the input grid. Same convolutions
restrict the center of the kernel to overlap with the input grid. In this way, the dimensions
of the input and the produced feature map will be the same. Lastly, full convolutions only
require part of the kernel to overlap with the input. The positions in the kernel that do
not overlap with the kernel can be padded with zeros in the input.

In the case of a genome, the input will be represented by a one-hot encoding of the DNA
sequence. The convolutional filters act on local parts of the genome as depicted in Figure
9. Note that each nucleotide will be represented by a vector of length 4. Consequently, each
connection in Figure 9 contains 4 weight variables. The filter in this case is a matrix with
4 rows and n columns, where n is the width of the filter. The output of the filter is then
calculated as the sum of the entries of Hadamard product between the filter matrix K and
the relevant portion of the input, i.e. the region of the genome that is connected to that filter,
I. More precisely, the output of the i-th filter of length w at position j is calculated as in
Equation 22 with the addition of a bias term. Sometimes, the filter K is not flipped like in the
equation, in this case we speak of cross-correlation instead of convolution.

w∑
k=0

4∑
n=1

In,k+jKn,w−k (22)

As stated earlier the filter is a 4 × n matrix, where n is the width of the filter. Each filter
scans the genome for a certain sequence motif. The filter can be represented graphically as in
Figure 8. Note the similarity between a convolutional filter and a position weight matrix which
are commonly used in bioinformatics to represent sequence patterns [65, 66].
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Figure 8: Graphical representation of a convolutional filter for scanning a DNA sequence.
Each position in the filter contains four values for each of the bases. Positive values for
a particular base indicate that the filter activation will be higher if that base is present
at that specific position. Conversely, if a base is present on the position where the filter
has negative value for that particular base, the resulting score of the filter will be lower.
As such the filter acts as a detector for specific sequence motifs. For example in this
visualization, the filter is looking for a TTCG pattern for the first four bases.

In contrast to traditional multilayer neural networks, where higher level neurons are connected
to all previous neurons, the convolutional units are only connected to a local region in the input.
This concept is referred to as sparse connectivity allows the CNN to more efficiently exploit
the local correlations. Additionally, adjacent neurons share the same weights. By restricting
the model in this way, fewer parameters need to be stored. This reduces memory requirements
and computation time and simplifies the learning task. Intuitively, one could view convolution
as applying the same local filter using a set stride (for example starting at each base pair).

Convolutional
units

Input
layer

Figure 9: Local connectivity and weight sharing in the convolutional layer. In this case
the filters have a width of 4. Similar colors indicate similar weights.

In the next stage of the convolution layer, the output of the convolutional units is passed to
a nonlinear function, which is often referred to as the detector stage of a convolution neural
network.

3.1.2 Pooling Layer

Convolution layers often precede pooling layers. The pooling layers summarizes the output
of the previous layer by downsampling the input. For example in a max-pooling layer, the
input is down sampled by taking the maximum over a fixed length region. Max-pooling has
several advantages; it reduces the number of parameters of the model and helps make the
representation more invariant to translation of the input. The canonical representation for
a convolution and pooling unit is depicted in Figure 10. In practice however, the non-linear
detector stage and the pooling layer can be swapped in order to reduce computation time
since the max(ReLU(x)) = ReLU(max(x)).
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Convolution

Non-lineairity

Pooling

Figure 10: Convolutional unit consisting of convolutions, followed by a non-linear activa-
tion function and down sampling stage through pooling.

Convolution/pooling layers can be stacked onto each other. Neurons in higher layers will cover
increasingly larger parts of the input (visual field) and generate increasingly higher level feature
representations. The convolution / pooling layers are often followed by dense layers with fully
connected units. Figure 11 shows an overview of the VGG-16 or OxfordNet architecture [59].
As can be seen, the representations generated by the convolutional layers get increasingly
smaller in width and length and greater in terms of depth. Each position in the depth slice of a
representation covers an increasingly large portion of the input as each neuron covers multiple
input neurons. More formally, each neuron i in layer j covers the outputs of the connected
neurons at layer j − 1, each of which is connected to the layer below until the input layer.
As the depth increases, the number of features extracted for that position increases, i.e. the
number of filters is increased. Intuitively, we use more features to describe higher level features
which cover a larger part of the input.

Figure 11: VGG-16 architecture, which is a popular architecture for image recognition.
Source: Fossard, University of Toronto [6].

In genomics, lower convolutional layers act as motif detectors. Higher layers take combinations
of the output of these motif detectors to learn higher level features such as motif grammars.
For example for enhancers the composition of motifs and motif grammars can be fixed or
flexible, depending on the enhancer model [62]. A CNN can learn these patterns automatically
from data.
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When performing backpropagation for convolutional layers, the delta term for a particular
weight must be summed up for all expression in which that variable occurs due to weight
sharing between feature maps. Similarly, for batch normalization, the same normalization is
applied to all locations in a feature map. For max-pooling layers, only the node that produced
the maximum activation during the forward pass carries the deltas for lower layers. During the
forward pass, we can keep track of the ’winning’ unit and propagate the error signal through
that node.

3.1.3 State of the Art Convolutional Neural Networks

Deep neural networks are able to build more complex representations of the data and the
best performing neural networks on competitions have been increasingly deep. In theory a
deeper network should be able to perform at least as well as a shallow network, since the
shallow network could just be learned by the deeper network and the next layers could learn
the identity function. However, training deeper neural networks has proven challenging. It
has been shown that deeper networks suffer from a degradation problem, that is, as the
network gets deeper by adding more layers the accuracy actually gets worse even though
gradients do not vanish or explode. He et al. [30] address this problem by learning residual
representations. Let the mapping to be learned by a stack of layers be H(x). Instead of learning
this representation directly, the stacked layers in a residual neural network learn the residual
mapping F (x) = H(x)−x. The original mapping is then obtained as H(x) = F (x) +x. The
reason for doing this is that learning the identity function may in fact for a neural network.
Adding the skip connections helps preconditioning the problem, in that, the optimization
process can start close to the identity mapping, which ensures the network performs at least
at the level of a shallow network. In the case that the dimensions of F (x) and x do not match,
1x1 convolutions could be used to match the dimensions. Using this architecture He et al. were
able to train a 152 layer neural network on the ImageNet dataset winning first place in the
2015 ILSVRC competition.
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Figure 12: Degradation problem in vanilla convolutional neural networks. Adding more
layers leads to an increased error on both the train and test set on the CIFAR-10 bench-
mark [41]. Source: He et al. Microsoft Research Asia [30].

3.1.4 Implementation

Specialized libraries for neural network models with built in routines for performing convolution
operations, performing symbolic differentiation and optimizing the network weights such as
TensorFlow, Theano, Torch and Caffe [9, 13, 20, 34] allow researchers to develop models on
a high level of abstraction. In particular in the case of TensorFlow, a computation is described
in the form of a graph. The nodes on the graph represent operations, which are abstract
representations of computation such as addition, matrix multiplication or a non-linearity. Ten-
sors, arbitrary dimensional arrays, flow along the edges of the graph. TensorFlow provides the
means to execute these computations on one or multiple devices. Graphical Processing Units
(GPUs) are often used to train neural networks, since the computations involved can easily be
parallelized and therefore GPUs provide significant speedups over general purpose CPUs.

3.2 Interpreting Deep Models

Deep networks have proven to achieve exceptional results on various machine learning tasks by
creating high level representations of the data. However, considering these networks are com-
prised of multiple layers and contain millions of parameters, interpreting these deep networks
to gain an understanding what the network has learned is not straightforward.
In the case of genetics, we are particularly interested in finding what sequence motifs are
important in certain processes (e.g. the binding of DNA-proteins). Formally, a motif is a fixed-
length sequence pattern with biological significance represented by a 4 × n matrix of real
numbers, where each column represents a probability distribution over the nucleotides A, C, G
and T for that position. For example, a motif could be a certain pattern where transcription
factor proteins bind onto. Currently, the standard tool for motif discovery is MEME [11], which
uses the Expectation Maximization algorithm [24], where the starting position of a motif first
get estimated (E-step) and then the k-length motif is updated (M-step). For large genetics
datasets, the more efficient MEME-ChIP is often used [47].

3.2.1 Activation Maximization

The lower layer convolutional filters act as motif detectors. In fact, once the model is trained,
we can use these filters as feature extractors to generate representations that can be fed into
other machine learning algorithms such as random forests [46]. As each filter is in effect a
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position weight matrix, a simple approach then would be to visualize the weights of these
filters as shown in Figure 8.
A different way of visualizing what a filter has learned is to find inputs that maximize the
activation of that particular filter. More specifically, we first train a network f : X → Y
with with trainable parameters θ. After training the network, the trainable parameters θ of
the network are fixed. Now, instead of optimizing the parameters of f by minimizing an error
function with respect to θ, the output of a particular neuron is maximized with respect to the
input. Let gi : X → R be the function that outputs the activation for neuron i for a given
input. The optimization problem can then be stated as

argmax
x

g(x)− λ||s||22 (23)

The term λ||x||22 penalizes large values in the sequence representation and is necessary oth-
erwise any input with large weights will produce a large activation. Similar to training the
network, we can find an input x which maximizes activation using gradient ascent. Note that
the starting point of x should be chosen carefully such that the optimization process does not
get stuck in a bad local optimum or is biased towards certain solutions.
Simonyan et. al [58] use this process to find the input that maximizes the activation for a
particular class of image. With this we can find images which represent the particular class.
Similarly, for DNA sequences, given a trained network we can find inputs sequences that
maximize the activation of a particular class (e.g. transcription factor FOX1 bound / un-
bound). Let s ∈ Rn×4 be the encoding of the sequence and fC : Rn×4 → R be the score of
class c obtained from the CNN. We then find the sequence that maximizes the class score:
arg maxs fC(s)− λ||s||22. A good starting point is an encoding where each nucleotide (A, C,
G and T) is equally likely (e.g. starting with each nucleotide having a score of 0.25). Note
that this representation is not a strict sequence as seen in the previous section (i.e. a one-hot
encoding).

3.2.2 Perturbation based approach

The contributions of particular parts of the input to the prediction can be examined by mod-
ifying the input and observing the resulting change in a particular node. For DNA-sequence
data the individual bases can be mutated and the effects on the model observed, perform-
ing an in-silico mutagenesis. For example, given a model for a particular phenomenon (e.g.
transcription factor binding), the effect of mutating base pairs on the binding of transcription
factors can be investigated. This can be particularly interesting to investigate the effects of
mutations at specific points in the genome associated with a phenotypic change (such as dis-
ease), also known as single nucleotide polymorphisms (SNPs). The drawback of using these
types of methods for interpreting the model is the computational complexity considering the
large number of possible changes that can be made to the input sequence (4n, where n is the
length of the sequence under investigation). Each such change would require a full forward
pass.

3.2.3 Gradient based methods

Since the subset of the network that is active (i.e. where the neurons fire) is differentiable, the
gradient information can be used to calculate the contributions of the individual nucleotides
on the activation of specific nodes. Simonyan et al. [58] propose a method to calculate the
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contributions individual elements in the input on the score (activation) of a specific class. First,
given an input I0 and the activation of a particular node specific to that class calculated by
the affine function, Sc(I0) = wTc I0 + bc, the contributions of the individual inputs of I0 will
be simply given by the weights wc. That is, large values of elements of wc indicate that the
corresponding elements from I will have a large influence on the score Sc. A deeper neural
network can not be interpreted directly in this way. However, we can calculate the first order
Taylor expansion approximating the non-linear score function given by the deep neural network
for a particular class Sc in the neighborhood of the image I0 as follows

Sc ≈
∂Sc
∂I

∣∣∣∣
I0

I + Sc(I0) (24)

Here ∂S
∂I

∣∣
I0

is the derivative of f with respect to input I at point I0. Similar to the elements

in wc, the magnitude of the elements in the term ∂f
∂I

∣∣
I0

can be interpreted as the importance
of each of the parts of the input.
A disadvantage of using gradient based methods is that neurons that do not fire and hence
will have a gradient of zero can still carry information. For example consider the network.

f(x1, x2) = 1−ReLU(1− x1 − x2) = 1−max(0, 1− x1 − x2) (25)

Now,

y = x1 + x2 when x1 + x2 < 1 (26)

y = 1 when x1 + x2 >= 1 (27)

Hence, the gradient will be zero in the saturated region of x1+x2 >= 1. Therefore, calculating
contributions as in the method described above will lead to zero contributions for both inputs
in this region of the input.
To deal with this problem a new method for computing the importance of the inputs by
computing contributions of those inputs to a difference in activation to a reference input called
DeepLIFT was proposed by Shrikumar et al. [57]. The idea is to take a neutral input/example
called the reference input, for example the input where each nucleotide is equally likely, and
compute the contributions of each of the nucleotides to the difference in the final activation
for some example sequence.
In more detail, suppose we have a network f : X → [0, 1], which maps the input to one real
valued output between zero and one, predicting whether a transcription factor binds to the
sequence given by the input. The network under the reference input will produce a certain
activation as it will given an example input. We would like to find out what the contributions
of the individual input bases are to the difference in the activation under the reference and
the example input. Assuming the neural network has found a good model of the data, this
will give an indication as to which bases are important in the process the network is modeling.
The choice of the reference will have great impact on the results and must be chosen to be a
’neutral’ example, e.g. the background frequencies for the nucleotides for genetics problems.
Formally, let Cxy denote the contribution of node x to node y. Next, let An and A0

n be the
activation of node n in the example input and the reference input respectively. The difference
in activation from reference is then defined as

δn = An − A0
n (28)
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Finally let Sy be the set of nodes that are minimally sufficient (i.e. non-redundant) to compute
the activation of y and let Ox be the output neurons of x. The contributions are then defined
by the following two properties: ∑

s∈Sy

Csy = δy (29)

Cxy =
∑
o∈Ox

Cxo
δo
Coy (30)

The first property is straightforward, the contributions of the neurons from which the activation
of node y can be calculated should sum up to the difference in activation. Using the second
equations contributions of lower layers can be computed from contributions of higher layers.
In the example network f above, given the reference x1 = x2 = 0, the distance from reference
at x1 = x2 = 1 will be 1 and hence contributions of x1 and x2 will be 0.5 for each, even
though the gradient equals zero.
The contributions for a neural network can be calculated using the rules below. More specif-
ically, in order to avoid numerical problems when the difference from reference δn for a node
n is small, multipliers as defined below are calculated.

mxy =
Cxy
δx

(31)

Chain rule The first rule, which is reminiscent of the chain rule seen in back-propagation,
allows for calculating multipliers for multi-layered network. Given a node t, which is in a higher
layer than x, but connected to x, we can calculate the multiplier mxt as below using Equation
30.

mxt =
1

δx

∑
o∈Ox

Cxo
δo
Cot =

1

δx

∑
o∈Ox

mxoδx
δo

motδo = mxomot (32)

Affine functions For affine functions, such as for convolutions and fully connected layers.
The following rule applies. First let Iy denote all the input nodes of node y. Let

Ay =
∑
x∈Iy

wxyAx + b (33)

It can be shown that mxy = wxy. Using Equation 28, we have An = δn + A0
n.

A0
y + dy =

∑
x∈Iy

wxy(A
0
x + δx) + b =

∑
x∈Iy

wxyA
0
x + b+

∑
x∈Iy

wxyδx (34)

By definition,

A0
y =

∑
x∈Iy

wxyA
0
x + b (35)

Substituting
∑

x∈Iy wxyA
0
x + b by A0

y in the above equation and canceling out the A0
y on both

sides gives in the desired result.
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δy =
∑
x∈Iy

wxyδx =
∑
x∈Iy

Cxy =
∑
x∈Iy

mxyδx =⇒ wxy = mxy (36)

Max-pooling A max pool operation can be defined as

Ay = max
x∈Iy

Ax (37)

The multipliers can be computed as

mxy = 1{Ax = Ay}δy
δx

(38)

The term 1{Ax = Ay} equals 1 if the condition inside the braces is true and 0 otherwise.
Equation 38 can be easily proven from the definition of contributions.∑

x∈Iy

Cxy =
∑
x∈Iy

mxyδx =
∑
x∈Iy

(1{Ax = Ay}δy
δx

)δx =
∑
x∈Iy

1{Ax = Ay}δy = δy (39)

Non-linearities For non-linearities (ReLU, sigmoid), we can use the following rule.

mxy =
δy
δx

(40)

This follows directly from Equation 29.
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4 Related Work

Convolutional neural networks have been applied to modeling and studying epigenomic events
in several studies. In most studies the architectures used are shallow networks, consisting of
one convolution layer followed by a ReLU non-linearity, a max-pool downsampling layer, one
dense hidden layer and lastly one output layer [71]. Multi-task networks are also common as
the sequence is shared between different prediction tasks and cell tissues. These networks are
very flexible in that they can process a variety of NGS data and can be applied to study many
different chromatin effects. Basset [36] and DeepBind [10] use the shallow multi-task network
to predict chromatin accessibility and transcription factor binding respectively.
A deeper and much wider architecture called DeepSea was used by Zhou et al. to build a
multi-task network to predict 919 chromatin features including transcription factor binding,
open chromatin and histone modifications using datasets from the ENCODE and Roadmap
Epigenomics projects from sequence alone [74]. The network architecture consists of three
convolution/pooling layers, one hidden dense layer and lastly one output layer with 919 outputs
corresponding to each of the prediction tasks. Quang et. al [52] improve on the performance
of DeepSea by using a shallow architecture but adding a bi-directional long short term memory
layer in between the pooling and fully connected layers. A long short term memory or LSTM
[31] is a recurrent neural network (RNN) layer. RNNs processes data from left to right, keeping
track of an internal state that is updated by the inputs. By doing this, the RNN is able to
use information of previously seen inputs when making predictions. Recurrent neural networks
are also trained using backpropagation, taking into account that a particular output can be
influenced by all previous inputs, hence error information is propagated backwards through the
time steps. LSTMs consist of blocks, where each block contains a memory cell maintaining the
block’s state. Updates to and reads from the memory cell’s content is regulated by a gating
mechanism. Using this architecture an LSTM is able to recall information from arbitrarily
many time steps before. The rationale for using the recurrent layer is the claim that it can
more efficiently capture motif grammars caused by the spatial arrangement and composition
of motifs in vivo than dense layers.
Schreiber et al. successfully apply convolutional neural network to predict 3-D chromatin
interactions from sequence and chromatin accessibility given by DNaseI experiments [55]. The
interaction data is taken from Hi-C experiments. The model takes as input two genomic regions
with their respective sequence and DNaseI signal and maps that to the confidence score that
the two regions will interact. The two regions are processed separately. First the DNase and
sequence are processed separately, where the sequence is processed by two convolution/pooling
stages and the DNase signal is processed by one pooling/convolution unit. Next the resulting
representations are combined and undergo more processing by a convoluting/pooling stage.
The representations for both regions are then merged and go through a final dense unit, where
the distance between the regions is added as a separate input.
Poplin et al. developed a SNP and variant detector from aligned reads, by encoding the
reference and read bases and read features as images [50]. These images are then processed
by the Inception-V2 architecture [68]. The approach, called DeepVariant, achieved the highest
performance in an FDA administered variant calling challenge. This architecture is significantly
deeper than the previously mentioned works.
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Common approaches to interpret the trained network are to observe the activation of particular
filters or outputs of interest. In particular perturbation based approaches are often used to study
the effects of single nucleotide variants on various epigenomic events [10, 36, 74]. DeepBind
finds motifs from data using the activations of the different convolutional filters of the trained
model. It takes all the instances from the test set and for each instance and each convolution
filter k it finds the position which has the highest activation score after rectifying passing some
pre-set threshold. The sequence corresponding to that position is kept and all such sequences
for all the examples in the test set are used to create a position frequency matrix. This PFM
can then be visualized as a sequence logo (similar to Figure 8) in the usual way. Using this
approach DeepBind has been able to reproduce known motifs for various transcription factors.
The activation maximization approach described in the previous section was used to produce
a visualization of profiles of histone modification data to identify which histone marks are
indicative of a nearby TSS site [60].
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5 Experiment: Transcription Factor Binding Site Pre-

diction

Transcription is the process where a particular DNA segment (gene) is copied into messenger-
RNA by the enzyme RNA-polymerase. Transcription factors (TFs) are proteins that bind to
specific parts in the non-coding part of the genome to promote or repress the transcription and
thereby regulate the expression of nearby genes. In July of 2016, The Encyclopedia of DNA
Elements (ENCODE) Project [21] together with Dream Challenges launched a competition on
Synapse [8] to build predictive models of transcription factor binding across cell types. The
models can use the primary DNA sequence, open chromatin (in the form of DNase-Seq data),
gene expression (RNA-Seq) and DNA shape in order to predict transcription factor binding
sites which are determined from ChIP-Seq experiments. For each of the transcription factors
there will be one or more cell types for which the ChIP-seq data is provided as well has one or
more held out cell types for which the ChIP-seq data has not yet been released by ENCODE.
The held out cell types are divided into leaderboard cell types, for which 10 submissions can
be made and final submission cell types, for which only a single submission is allowed.

Figure 13: The goal of the challenge is to predict the locations of the binding locations in
the genome of specific transcription factor proteins. These TFs regulate the expression of
nearby genes. Source: Encode-Dream Transcription Factor Binding Challenge [4]

The prediction task is structured as a classification problem. The genome is divided into
overlapping bins of 200 base pair(bp) length with a stride of 50, where each bin is classified as
being either unbound by the transcription factor, having an ambiguous peak or a conservative
peak. An example is given in the Table 2. For the held out train sets the model then have to
assign a probability to each bin being a conservative peak.
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Chromosome Start Stop Label
chr10 10000 10200 U
chr10 10050 10250 U
chr10 10100 10300 A
chr10 10150 10350 A
chr10 10200 10400 C
chr10 10250 10450 A
chr10 10300 10500 A
chr10 10350 10550 A

Table 2: The genome is divided into regions of 200 bp length. For each bin a prediction
the model needs to predict whether the transcription factor binds to this part of the DNA
as determined by ChIP-seq experiments. The label U means the TF does not bind at
this location, A is an ambiguous binding site and is counted as unbounded (U). Lastly, C
means a conservative peak region, that is, the transcription factor is found to be binding
at this location.

5.1 Data Description

As mentioned in the previous section, experimental data is used for both the input of the
predictions (DNA sequence, chromatin accessibility and gene expression) as well as the output
target for the predictions (The transcription factor binding sites). In total there are 32 tran-
scription factors and 14 cell types. Please refer to the overview in Figure 14 In the sections
below a more detailed description of the data sources is given. The held out cell types of the
leaderboard round only consist of chromosomes 1, 8 and 21. The training cell types contain
all chromosomes except for the Y-chromosome and the held out chromosomes. The final cell
types consist of all chromosomes except for chromosome Y. The total size of all the provided
data is around 2.2TB uncompressed.
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Figure 14: Overview of transcription factors and cell types. As can be seen in the figure
each row lists a transcription factor along with the cell types that can be used for training
the model and the held out cell types. Source: Encode-Dream Transcription Factor Binding
Challenge [4]

ChIP-Seq

The transcription factor binding data is provided as experimental data obtained from ChIP-seq
experiments in two ways. First, the fold change over control, which is a signal over the genome,
where a higher signal correlates with a transcription factor binding event. The transcription
factor peak data provides the positions of the transcription factor binding events at 200bp
resolution which is used to derive the labels for the prediction task. The processing pipeline
to obtain the fold change and peak data from the alignments can be found in the following
Github repository https://github.com/kundajelab/chipseq_pipeline. The peak data
is provided in the narrow peak format [5]. The Irreproducible Discovery Rate (IDR) method
[45] is used to score the reproducibility of peaks. Each peak computed by the peak caller is
assigned a score representing the probability that the peak is noise. Peaks passing the 5%
IDR threshold are defined as conservative peaks. Peaks that do not pass this threshold are
marked as ambiguous peaks. All other regions in the genome are marked as unbound. The fold
change data is provided in the BigWig format [37], which allows for compressing regions with
no change in the signal.
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DNA Sequence and Shape

The reference genome used is the human genome hg19 assembly [42], which is provided in
Fasta format.
The geometries of base pairs and base steps (between consecutive bases) can be described by
six variables, three translations and three rotations. These variables define the position and
orientation of base pairs relative to the previous base pair along the axis of the helix and
by that define the structure of the nucleic acid molecule. DNA shape features are calculated
using the sequence data using the DNAShapeR package in R [18] which uses a sliding 5 base
window to calculate four structural features from all-atom Monte Carlo simulations, displayed
in Figure 15. If we recall the shape of the DNA, the strand backbones will be closer on one
side than on the other side of the helix. The major groove width (MGW) is the with of the
space where the backbones are far apart. DNA binding proteins can more easily access bases
on the major grooves side since the backbone is not in the way. The roll and helix twist are
both base step parameters, whereas the propeller twist and MGW are base pair parameters. In
the prediction task, we pad the sequences with a non-determined base when calculating the
base step parameters, since the first position will otherwise be undefined.

Figure 15: Structural DNA features computed by the DNAShapeR package. Source Zhou
et al. University of Southern California [75].

Mathelier et al. show that adding these features improves in vivo binding site prediction [48].

DNase-Seq

TF binding events usually occur when the chromatin is accessible, that is the region does not
have a nucleosome. Open chromatin can be experimentally captured by finding regions that
are hypersensitive to DNase-I using DNase-Seq. The DNase-Seq data can thus be used as
a cell type specific input for the model, allowing the model to generalize to new cell types.
The protocol for processing the raw DNase data can be found here https://github.com/

kundajelab/atac_dnase_pipelines. Provided are alignments in the BAM format [44], the
fold change over control in BigWig format as well as the peaks in the narrow peak format.

RNA-Seq

The gene expression is estimated from RNA-Seq data using the ENCODE long RNA processing
pipeline https://www.encodeproject.org/rna-seq/long-rnas/. For each cell type two
biological replicates are provided with expression levels for 57820 genes as transcripts per
million (TPM).
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5.2 Prediction Task

The model estimates the probability of the transcription factor binding event occurring for a
particular cell type for each 200bp region. The models are scored on four metrics.

• Area under receiver operator curve (AUROC)

• Area under the precision recall curve (AUPRC)

• Recall at false discovery rate of 50% (FDR50)

• Recall at false discovery rate of 10% (FDR10)

The receiver operator curve is generated by varying the threshold and calculating the false
positive rate (FPR) and true positive rate (TPR).

TPR =
tp

tp+ fn
FPR =

fp

fp+ tn
(41)

Similarly, the precision recall curve is calculated by varying the threshold and calculating the
recall (true positive rate) and precision.

precision =
tp

tp+ fp
(42)

The false discovery rate is defined as the complement of the precision.
The performance of the methods in the competition is validated in three ways. In the leader-
board round the models are scored on held out cell types on the chromosomes 1, 8 and 21,
which amounts to approximately 8 million bins per cell type. In the final round the models
are scored on the full genome of a held out cell type totaling approximately 60 million bins.
Lastly, in the benchmark round the performance of the models is measured on the missing
chromosomes 1, 8 and 21 of training cell types.
For our internal validation, we held out one cell type for testing and used the other cell types
for training.

5.3 Training and Validation

The internal validation phase was done mostly using transcription factor CTCF using the
validation pipeline described above. For each cell type, the training data consists of more than
50 million training instances. Most of these training instances will not add any information to
the model, since a lot of non-binding and non-open regions will be redundant. In fact of the
∼ 50 million train regions, only around 500k will have binding events. To save training time,
we choose to train on regions that overlap with DNase peaks augmented with 100k regions
per cell type that are not hypersensitive to DNase-I. For CTCF this results in ∼ 2.5 million
train regions for all the train cell types combined.
We found that the training in most cases quickly started stagnating or overfitting the train
data. One possible improvement we tried was to initialize the filters with known transcription
factor sequence motifs from the JASPAR database, however this did not improve performance.
We observed small performance improvements in AUC by pre-training the network using the
mean fold change of the ChIP-seq signal as the target for prediction, in essence converting it
to a regression task, although we did not use pre-training for our submitted models.
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5.4 Feature Engineering

From the data provided, the sequence, DNase fold change, the four shape features and gene
expression were used in experiments.
The sequence is converted to a one hot encoding as described in the background section where
regions that are not sequenced are replaced by zeros. The fold change signal from the BigWig
files were extracted using WiggleTools [72]. The shape data was computed using DNAShaper
and lastly we used the TPM values from gene expression data for the 32 TFs of the challenge.
Both the shape and gene expression data was normalized using zero mean and unit variance.
The open chromatin data was transformed by applying the function x → log(x + 1) to each
data point.
The sequence encoding, shape features, open chromatin signal over the genome and labels
were saved into binary formats such that they can be loaded into memory fully which allows
for fast batch generation. Through experimentation we found that mixing training and cell
types during training improves the convergence of the model. Hence each batch is constructed
by taking train regions from different regions of the genome and different cell types. Using
Keras’ batch generator, batches with training examples can be constructed on the CPU while
the network is trained on the current batch using the GPU. The disadvantage of using this
approach is that the entire genome, accessibility, shape and label data needs to be loaded into
RAM as using a memory mapped file is prohibitively slow in generating train batches as we
want the GPU to be utilized at all times. Loading all data into memory requires at least 128GB
of RAM.
In order to make a prediction for a particular 200bp bin, we include the regions 400bp upstream
and downstream of the bin as enhancers are 50-1500bp in length.

5.5 Network Architecture

The architecture used for submissions is displayed in Figure 16. The architecture is quite
shallow having one convolutional layer where large filters are used. We use separate paths
for the different features and merge them in a higher level, where the combined features are
processed using a fully connected layer. Similar to the sequence processing path, the shape
can also be processed using convolutional/pooling layers. The gene expression data can be
processed using a dense layer.
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Figure 16: Left: architecture using for making submissions to challenge. Right: Architec-
ture can be extended with new data.

In images, it was found that a deeper architecture with convolutional filters with smaller
receptive fields results in improved performance [68]. Figure 17 shows the deeper architecture
we used in our experiments.
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Figure 17: Left: Multi-Task Network. Right: Deep architecture.

Instead of building one model for each transcription factor, predicting the binding sites for
the transcription factors can be combined. Figure 17 show the joint model we used to make
predictions for all transcription factors simultaneously. In particular, for each task (TF) there
are three nodes present. The first node represents that the fact that the region is unknown to
be binding site. The second node represents non-binding and lastly the third node represents
binding. The error is then calculated using a weighted cross entropy loss function, where the
weight of unknown sites are set to 0, non-binding is set to 1 and binding is set to the ratio of
non-binding to binding. By doing this, the error propagates solely from TFs for which we have
data for that particular combination of genomic region and cell type, which means that only
TFs for which there is data will impact the representation. The idea of using this architecture
is that a general shared representation for sequence and DNase is created, which is then
transformed for each TF individually. That is, each transcription factor shares a representation
of the DNase and sequence of 1000 latent factors and computes a representation specific to
that transcription factor using 128 hidden units which are not shared between the transcription
factors. The representation learned for a particular TF can thus be leveraged to improve the
representation for other TFs.
For optimization of the network parameters we used the ADAM algorithm using a learn rate
of 0.001 and a batch size of 256. The single-task models (the models for an individual TF) are
trained for a maximum of 50 epochs with a patience of 10. The multi-task model was trained
for 5 epochs. The network parameters were initialized using Xavier initialization [27].
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5.6 Implementation

The convolutional neural networks were implemented in Python using the Keras package with
TensorFlow. The code is available on https://github.com/nielstendijke/Dream_TF_net

and includes code to programmatically download and pre-process the data as well as train and
models and submit predictions. The hardware used for the experiments consists of an eight
core Xeon workstation with 128 GB RAM and four GPUs (1x GTX Titan X 12GB, 3x 1070
8GB).

5.7 Results

This section summarizes the results obtained on the internal validation set (Table1 4), the
leaderboard round (Table 6), final round results (Table 7) and the benchmark round (Table
8). In the leaderboard, final and benchmark round we used the shallow architecture and the
sequence + DNase features. The naive method is a linear classifier which classifies all regions
which are not open as non binding and uses scores obtained from known TF binding motifs
and the max DNase fold change on open chromatin regions. Autosome is the winning method
on the first round of the challenge and Nabla is our submission. As can be seen in the results,
our method performs well on CTCF (on par or better than Autosome), but performs relatively
poorly on other transcription factors. As expected the benchmark round produces the highest
AUC and AUPRC values on average, since these predictions are made within cell type, that is
the test data are the held out chromosomes of the training set for that particular cell type.
Our method performs poorly on the final benchmark, most of which is evaluated on the liver
cell type.
Figure 3 shows the training progress for each of the configurations of Table 4. Most of the
progress is made is the first 10 epochs after which it starts stagnating or even overfitting on
the validation set. Note that the validation set here refers to a part of the training set, which
is not used to train the model but is solely used to decide when to terminate the training
procedure.
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Table 3: Training progress for each of the configurations of the single task models. From
left-to-right, from top-to-bottom: Shallow (sequence), Shallow (sequence + DNase), Shal-
low (sequence + DNase + shape), Shallow (sequence + DNase + gene expression), Deep
(sequence + DNase). The train set is represented by the blue line and the validation set
is represented by the orange line.

Model Features AUC AUPRC FDR50 FDR10 Time/epoch (s)
Shallow

Sequence 0.950 0.263 0.200 0.012 410
Sequence + DNase 0.988 0.655 0.700 0.343 450
Sequence + DNase + Shape 0.987 0.662 0.701 0.360 780
Sequence + DNase + Gene expr 0.985 0.633 0.673 0.307 460

Deep
Sequence + DNase 0.919 0.459 0.469 0.127 560

Table 4: Results obtaining using the validation pipeline on the transcription factor CTCF.
The scores are averaged over two different held out cell type sets.
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Cell type AUC AUPRC FDR50 FDR10
JUND 0.969 0.163 0.006 0.0
EGR1 0.979 0.141 0.001 0.0
MYC 0.99 0.29 0.098 0.0
GABPA 0.924 0.147 0.0 0.0
REST 0.924 0.031 0.0 0.0
RFX5 0.928 0.03 0.0 0.0
TCF12 0.943 0.076 0.0 0.0
CTCF 0.963 0.382 0.324 0.04
ATF2 0.644 0.006 0.0 0.0

Table 5: Results obtaining using the validation pipeline using the multi-task network. One
celltype is held out and the others are used for training.

Cell type Method AUC AUPRC FDR10 FDR50
ATF7 Naive 0.6833 0.0364 0.0002 0.0002

Nabla 0.9357 0.1736 0.0091 0.1035
Autosome 0.8971 0.3256 0.0772 0.2988

CREB1 Naive 0.7426 0.1803 0.0016 0.1120
Nabla 0.8569 0.2335 0.0200 0.1886
Autosome 0.8145 0.2656 0.0476 0.2324

CTCF Naive 0.7357 0.2237 0.0073 0.1983
Nabla 0.9892 0.6965 0.4601 0.7109
Autosome 0.9879 0.7327 0.5292 0.7380

EP300 Naive 0.9391 0.0977 0.0000 0.0000
Nabla 0.9697 0.1331 0.0000 0.0007
Autosome 0.9891 0.2702 0.0003 0.1348

JUND Naive 0.9115 0.1754 0.0003 0.0221
Nabla 0.9850 0.2465 0.0087 0.1119
Autosome 0.9938 0.4040 0.0406 0.3066

TAF1 Naive 0.8764 0.3446 0.0000 0.0000
Nabla 0.9828 0.5499 0.0001 0.6270
Autosome 0.9796 0.5861 0.0822 0.6560

Table 6: Leaderboard round results.
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Cell type Method AUC AUPRC FDR50 FDR10
CTCF Nabla 0.9206 0.5024 0.4881 0.3004

Autosome 0.9371 0.4800 0.4369 0.3062
E2F1 Nabla 0.9695 0.2593 0.004793 0.0

Autosome 0.9852 0.4511 0.4623 0.0318
EGR1 Nabla 0.9518 0.1755 0.0795 0.000

Autosome 0.9814 0.3581 0.2276 0.0172
FOXA1 Nabla 0.8900 0.1865 0.1443 0.0019

Autosome 0.9374 0.3046 0.2657 0.027
FOXA2 Nabla 0.9276 0.1737 0.0972 0.0004

Autosome 0.9559 0.348 0.3155 0.0037
GABPA Nabla 0.9447 0.2809 0.256 0.0255

Autosome 0.9364 0.4372 0.3608 0.0938
HNF4A Nabla 0.8877 0.301 0.2576 0.0275

Autosome 0.903 0.5191 0.5479 0.1573
JUND Nabla 0.9303 0.1804 0.0673 0.004

Autosome 0.9671 0.4853 0.5185 0.0509
MAX Nabla 0.9524 0.2221 0.0884 0.0001

Autosome 0.9724 0.4615 0.5007 0.0028
NANOG Nabla 0.9335 0.0616 0.0 0.0

Autosome 0.9577 0.2438 0.181 0.0025
REST Nabla 0.9114 0.2251 0.1525 0.0023

Autosome 0.9144 0.3204 0.2613 0.0159
TAF1 Nabla 0.9472 0.219 0.1021 0.0

Autosome 0.9776 0.3619 0.2338 0.0007

Table 7: Final round results.
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Cell type Method AUC AUPRC FDR50 FDR10
CTCF Nabla 0.9712 0.6235 0.6405 0.3163

Autosome 0.9529 0.5561 0.5361 0.3282
E2F1 Nabla 0.9699 0.4246 0.4613 0.0093

Autosome 0.9941 0.5161 0.5476 0.0563
EGR1 Nabla 0.976 0.3945 0.3749 0.0039

Autosome 0.9934 0.5815 0.6379 0.0915
FOXA1 Nabla 0.9308 0.2819 0.2501 0.0063

Autosome 0.9712 0.4173 0.4014 0.0544
FOXA2 Nabla 0.941 0.3454 0.3293 0.0192

Autosome 0.9748 0.5064 0.5233 0.1378
GABPA Nabla 0.9691 0.4755 0.4878 0.0658

Autosome 0.9889 0.6202 0.6771 0.1964
HNF4A Nabla 0.9256 0.4652 0.4727 0.1541

Autosome 0.965 0.6293 0.6654 0.3111
JUND Nabla 0.9437 0.4251 0.444 0.0372

Autosome 0.9809 0.5968 0.664 0.1412
MAX Nabla 0.9574 0.4707 0.4932 0.085

Autosome 0.9868 0.6372 0.7039 0.204
NANOG Nabla 0.9675 0.2028 0.1013 0.0096

Autosome 0.9897 0.3591 0.3147 0.0443
REST Nabla 0.9352 0.4024 0.4209 0.0003

Autosome 0.9719 0.5865 0.6418 0.1618
TAF1 Nabla 0.9602 0.3212 0.2828 0.0005

Autosome 0.9911 0.4644 0.4669 0.0061

Table 8: Benchmark round results.
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5.8 Discussion

In our own internal validation we tried (combinations) of several different features and con-
figurations of the network. Using the DNase fold change signal has the largest positive effect
over only using the sequence, which is expected since binding will mostly occur at DNase
sensitive regions. Furthermore, the cost of adding the DNase features in terms of training time
is relatively small. Note that obtaining the open chromatin data requires experimentation,
though only once per cell type as opposed to once for each cell type and transcription factor
combination. Adding the sequence features does not significantly improve performance and
adds significant costs to both memory requirements (20GB) and training time (73% increase).
The features derived from the RNAseq experiments also seem to add no useful information.
It is important to note that most experimentation was done on CTCF, which is known to
have a sequence motif which is shared in most in vivo binding sites and is highly conserved in
vertebrates. Furthermore, CTCF localization is largely invariant across cell types [38]. Unsur-
prisingly, our method performed best on CTCF, with only a few transcription factors on the
leaderboard round performing on par with the winning method. In the final benchmark this
disparity is even more clear. Note that the AUC and the AUPRC performance metrics tend to
balance each other out. For example, at the expense of AUC, the AUPRC can be increased to
0.5 by setting all binding sites to be binding. The recall at the different precision thresholds
correlates strongly to the AUPRC.
A major factor in the performance of the Autosome team was due to choosing which cell types
to use to train. This was done by comparing the cell types on DNase accessibility and gene
expression [3]. This may also explain the poor performance of the multi-task network, which
is trained with all the cell types simultaneously. In particular the cell type specific features,
that is the features to extrapolate to new cell types are the DNase accessibility and the gene
expression data. Since we did not add any further identifying information, it may not be easy
for the CNN to learn the relationships between cell types. A simple fix for this is to add a one
hot feature vector identifying the cell type, though not sufficient since some cell types will not
have training data available.
As for CNN architecture, we found shallow models with large filters to result in the best
performance. This is very different from image models such as the standard CIFAR-10 model,
where having multiple convolutional layers improves performance. A major advantage of using
the CNN models is that sequence and DNase features are found automatically, whereas the
Autosome team manually created features from the sequence, DNase and RNAseq data and
fed those features to a XGBoost model [17].
For future work, more time should be spent on the multi-task network since it can leverage
the entire training set of transcription factors to build better representations. Additionally, it is
computationally much more efficient to build one model which can train and make predictions
on multiple transcription factors simultaneously than to build a model for each transcription
factor separately. Adding the Autosome improvement of choosing which training cell types to
use could be accomplished by having separate representations for each subset of cell types.
Additionally, more experimentation could be done on selecting the regions of the DNA which
are used for training. Lastly, more experimentation could be done on the architecture of the
models, e.g. adding recurrent layers. Ideally, this should be mostly done on the multi-task
network in order to avoid having to tune a model for each individual transcription factor.
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6 Experiment: Transcription Start Site Prediction

The transcription start site (TSS) is the 5’ end of the genome where transcription from DNA
to messenger-RNA starts. As mentioned in Section 2, the TSS sites can be experimentally
determined at base pair resolution using CAGE technology.
The FANTOM5 project [22] contains 573 primary cell samples for which CAGE tags were
collected. The tags were then clustered based on proximity, where clusters larger than 49 bp
were separated into non-overlapping regions based on expression profiles using independent
component analysis [32]. This resulted in ≈3.5 million peak regions. These peaks are further
filtered down to a ’robust’ set of peaks which were well supported by at least 11 observations
resulting in ≈200 thousand peaks. In the literature, a distinction is made between sharp peaks
and broad peaks [22]. Sharp peaks have a short peak region where the tags are close together
and have TATA box enrichment. The CAGE tags corresponding to broad peaks are more
dispersed and these peaks will have a larger peak region and are CG-enriched. In addition,
sharp or focused peaks are more correlated with tissue-specific expression, whereas broad
peaks are correlated to broad expression throughout the organimsal cycle.

Figure 18: Sharp CAGE peak (left), broad CAGE peak (right). Source: Illuminating eu-
karyotic transcription start sites, Stamatoyannopoulos [64].

In this experiment, we built a predictive model for the CAGE peaks using a convolutional neural
network and interpreted this trained model. For the prediction task, we define a CAGE peak
to be a sharp peak if its peak region is of length 11 bp or shorter and a broad peak otherwise.

6.1 Approach

Convolutional neural networks can be used to build predictive models of the experimentally
determined TSSs. In the experiment, primary sequence is used to build a predictive model of
the CAGE peaks. More specifically, for a specific genomic region, the model predicts whether
the exact center of that region corresponds to a sharp peak, broad peak or the background.
The convolutional neural network used is depicted in Table 9. This architecture was found
by starting from a shallow network, i.e. having one convolution/pool layer and increasing the
number of convolutional layers until performance did not improve. For this task, having more
than one convolution/pool layer already does not improve performance. The parameters of
the network were trained using the Adam optimization algorithm with a learning rate of 0.001
and a batch size of 256 using the cross entropy error loss.
We created a dataset by augmenting the CAGE peak locations with non-peak (background)
locations chosen uniformly at random from the non-peak regions of the genome. This resulted
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Figure 19: Distribution of CAGE peak lengths in the dataset.

in a dataset where 10% (201,802) of the data points are peaks and 90% (1,816,218) are non
peaks. Note that the peaks can be on either strand. In the case the peaks are on the negative
strand, the reverse complement for that region is taken as input. That is, the sequence is
flipped and each base is replaced by its complementary base, i.e. A is replaced by T and C is
replaced by G and vice versa. The dataset was then split into a train and held-out validation
set by holding out chromosomes 1, 8 and 21 and using the rest for training.
Before training the train set is first partitioned into a train set (80%) and validation set (20%).
The network is trained for a maximum of 100 epochs with an early stopping patience of 10
using the validation loss as the benchmark.

Layer Description
Input 200x4 DNA sequence
1D Convolution, width 10 Stride 1, valid padding, output 191x16
1D Max Pooling, width 4 Stride 4, output 47x16
ReLU
Flatten output 752
Fully connected output 128
ReLU
Dropout rate 0.5
Fully connected output 3
Softmax Propabilities for each class, output 3

Table 9: Architecture of the CNN used for TSS prediction.
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Each nucleotide of the DNA sequence is one-hot encoded. Next the one-hot encoded sequence
is processed by a convolutional layer, which has 16 filters of length 10 and uses a stride of
one. The activations of the convolutional layer are then downsampled using max-pooling. The
downsampled activations are then passed through a ReLU non-linearity. This is then followed
by a dense layer with 128 units and a dropout layer with a dropout rate of 0.5. Lastly, there
are 3 output units corresponding to the three output classes: sharp peaks, broad peaks and
the background.
Next, activation maximization and the DeepLIFT method are both applied to the trained
network. The starting point for activation maximization is chosen to be the matrix with 0.025
for all the entries. L2-regularized gradient ascent with a learning rate of 0.01 and λ of 0.01
using 1000 iterations is then applied to find an input which maximizes a particular class, i.e.
sharp or broad peak. Note that the activation before applying softmax is maximized, since the
softmax output can be maximized by minimizing the probability for the other classes. For the
DeepLIFT method, the reference is chosen to be the background frequencies of the nucleotides
in the region of 2000bp upstream and 200 bp downstream of the TSS [67].
Lastly, we compare the results with the current default tool to find motifs, MEME-ChIP.
MEME-ChIP is run in discriminative mode, with the the different peaks (broad and sharp) as
the primary sequences and non-tss sites as the control sequences.
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6.2 Results

As can be seen in the figure below, the validation stops decreasing after about 10 epochs. The
train error is still decreasing, which means the model is overfitting.

Figure 20: Train progress.

The confusion matrix in Figure 21 shows that the network easily distinguishes peaks from
non-peaks, however, many sharp peaks are classified as broad peaks.

Figure 21: Confusion matrix of the predictions.

Convolutional Filters

The convolutional filters are visualized as sequence logos in Figure 22. In order to make the
filters better interpretable, the negative parts of the filters were zeroed out. Note that this is
precisely the result obtained when applying the activation maximization procedure, where the
individual filter responses are maximized. It can be seen that multiple TATA box recognizing
filters are learned, showing that some redundancy in the filters and that the number of filters
could be decreased.
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Figure 22: Convolutional filters visualized as sequence logos.

Activation Maximization

Figure 23 shows the inputs that maximize the sharp and broad peak classes. The network seems
to pickup on the TATA box, which a well-known cis-acting regulatory element occurring in
about 20% of human promoters. The increased CG content for the broad peak is also expected
and reported in literature. It must be stated though, that although the TATA box seems to be
a recurring pattern when using activation maximization, there will be a lot of variance within
multiple runs depending on the initialization of the parameters of the network.

Figure 23: Max class models of sharp TSS peaks (top) and broad TSS peaks (bottom).
The transcription start site is at the exact center (ending at location 100). The area
highlighted in red is where the TATA box is expected. Scores below the 85-th percentile
are set to zero in order to get a more clear picture.
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DeepLIFT

We calculated the contributions of the inputs on the distance to reference for each example in
the training data set. The mean of the contributions for all the examples is depicted in Figure
24. As expected, the TATA box region contributes more to the score for the sharp peaks, as
the TATA box will be enriched for sharp TSSs. Another interesting observation is that the
contributions in the center seem to be more important than the TATA box region, which to
the best of our knowledge has not yet been reported in the literature.

Figure 24: DeepLIFT contributions for sharp peaks (top) and broad peaks (bottom). The
area indicated by the red rectangle is the location where the TATA box is expected, which
has higher contributions in the sharp peak class compared to the broad peak, consistent
with the literature. The center however, seems to contribute much more to the network
classifying it as a TSS peak.

We tested this hypothesis by performing in silico mutagenesis, where a specific part of the
sequence is left blank, i.e. replaced by zeros during traning and the resulting AUC and AUPRC
on the test set was observed. Note that since there are three classes the AUC and AUPRC are
calculated using a one-vs-all approach. The scores can be found in Table 10.

Safe region Non-TSS Sharp Broad
AUC AUPRC AUC AUPRC AUC AUPRC

Entire input 0.954 0.944 0.798 0.545 0.889 0.806
TATA box 0.813 0.787 0.680 0.362 0.769 0.671
Center 0.909 0.898 0.750 0.479 0.844 0.740
TATA box + center 0.937 0.925 0.788 0.540 0.870 0.780

Table 10: Results of the in-silico mutagenesis. The ’Safe region’ is the region in the input
that is not zeroed out. The TATA-box region is defined as 35bp to 20bp upstream of the
TSS. The center region is defined as 10bp upstream to 10bp downstream of the TSS. The
TATA box + center region is defined as the region 35bp upstream to 10 bp downstream
of the TSS.
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Motif Distribution Motif Distribution

Table 11: Top five sharp motifs (left) and broad motifs (right).

MEME-ChIP

Figure 11 shows the top five motifs found by MEME-ChIP along with their distribution profiles
along the 200bp region. As can be seen, the sharp TSS motifs are more focused than the broad
motifs.
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6.3 Discussion

By visualizing the filters the motifs found by the network can be visualized as sequence logos.
Unlike the motifs found by MEME-ChIP, the filter sizes are fixed. However, larger motifs can
be learned by combining filters.
The distributions of the motifs in the MEME-ChIP results seem to indicate that the sharp TSS
motifs are more focused around the center, whereas the broad TSS are more dispersed. Looking
at the DeepLift results, we see a similar picture. The contributions of the center and TATA
box are larger for the sharp class compared to the broad class. In particular, the center region
seems to have the largest impact on the center. Note that the DeepLift results are aggregated
over all examples, which means that positive and negative contributions could cancel each
other out. Therefore, we validated this result with the in-silico mutagenesis, where a higher
AUC and AUPRC were observed when keeping the center fixed as compared to keeping the
TATA box region fixed. However, unlike the TATA box motif, which is found by visualizing the
motifs, activation maximization and MEME-ChIP, the center does not have a clear motif.
We found that a shallow architecture performs best on this task in line with other work
applying convolutional neural networks to predict chromatin effects from sequence only [71].
DeepChrome [60], which uses histone modification data to predict TSS sites uses a similar
architecture, which was found using a grid search. Seemingly, the peaks as identified by the
CAGE data can be described by linear combinations of the motif detectors, although some
experimentation with recurrent bidirectional LSTM layers did provide small improvements to
the AUC and AUPRC scores. As future work, we could investigate the cases where LSTMs
perform better as well as increase the length of the upstream region as enhancer regions
may not be captured in this short window. The current version of DeepLift does not support
recurrent layers, however this should be a straightforward task to implement using the the
rules for affine functions and non-linearities.
As the CAGE peaks in this study are aggregated for all cell types a future extension on this
experiment could be to study cross-cell type prediction using cell-type specific data such as
histone modifications and open chromatin.
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7 Summary and Conclusion

Following the completion of the Human Genome Project in 2003, next-generation sequencing
allow for rapid sequencing of DNA and RNA and by that have revolutionized genomics and
molecular biology. Many regions of the DNA which do not code for proteins contain regulatory
elements such as promoters, enhancers, insulators, etc, which play crucial roles in gene expres-
sion. Precisely identifying and characterizing these regions could improve our understanding
of the transcription process and lead to new medicines for genetic diseases. NGS technology
allow for identifying and studying the genomic factors that are involved in these events such as
transcription factor binding, histone modifications and open chromatin with great sequencing
depth. Furthermore, these data allow researchers to build predictive models for these events
using machine learning approaches, which allow for annotating new cell types without having
to perform the experiment.
Recently, deep convolutional neural networks have proven to be very successful on many
artificial intelligence tasks such as image classification, finding policy and value functions
for game playing AI and drug discovery. CNNs are characterized by having spatially local
connections. This connectivity pattern allows CNNs to be effective on data that have a grid-
like topologies such as images and DNA sequences.
In this work we conducted two experiments. In the first experiment, transcription factor binding
site prediction was studied by evaluating different features generated from sequence, shape,
open chromatin and gene expression data and various CNN architectures to model these data.
We found that sequence and open chromatin are the most important factors to consider when
building models for transcription factor binding. As for architectures, we found that shallow
models with large filter sizes resulted in the best predictive performance. Building a model for
each individual transcription factor outperformed our multi-task approach, where we built a
CNN with a shared representation of the sequence and open chromatin for all the transcription
factors. In comparison to other methods, we found that our CNNs performed close to the state
of the art on some transcription factors and cell types, while being significantly worse on others.
This is mainly due to the selection of cell types for training and train regions, rather than the
method itself.
In the second experiment, we built CNN models to exactly predict the location of the tran-
scription start site from CAGE data. The trained models were then interpreted, which lead to
the finding that the area directly around the TSS site is most decisive factor for determining
whether a particular base is a TSS, which to best of our knowledge is not reported in literature.
In conclusion, we found that NGS data can be used to build predictive models of in-vivo tran-
scription factor binding sites which can extrapolate to new cell types and thereby complement
experimental findings. Convolutional neural networks are a flexible way of modeling genomic
data without the need for much pre-processing or manual feature creation. As future work,
more study could be done on the architecture of the neural network. In particular, multi-task
networks, deeper networks and recurrent layers.
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