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Abstract

In this thesis, we perform a comparative analysis of feature description algorithms implemented in the

OpenCV [Ope17] framework. Feature description algorithms have been an important topic in computer vision

for the last few decades, which has resulted in many approaches to encoding information in local regions of

interest. In this thesis we propose an evaluation framework that evaluates the performance of SIFT [Low04],

SURF [BTVG06], BRIEF [CLSF10], ORB [RRKB11], BRISK [LCS11], FREAK [AOV12] and LATCH [LH16], un-

der several kinds of geometric and photometric transformations. We define a performance metric, matching

score, that shows the ratio between correct and false feature matches, and measures the consumed time and

memory of the algorithms. We observe that BRIEF [CLSF10] performs better than expected under photomet-

ric transformations, and that FREAK [AOV12] and BRISK [LCS11] are the best overall performers among the

evaluated algorithms.
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Chapter 1

Introduction

Over the last decades, the ability to effectively register and recognize image data in computer vision has

been a widely explored topic. It has led to a surge in applications such as object recognition [TCGP09],

panorama stitching [BL07], and image classification and retrieval [LSDJ06], where large databases of images

are continuously evaluated to find the most relevant result to a given query image. These applications have

expanded to mobile platforms, which currently possess lower computational and storage capabilities than

those of conventional desktop computers, which in turn increases the importance of low resource usage that

these methods use.

All of the mentioned applications rely on an efficient and accurate generation of features, where local re-

gions of interest of an image are decomposed and quantified. This process typically involves two major

sub-processes: the detection of keypoints and the description of those keypoints, which are called feature

descriptors. In the phase where keypoints are detected, local regions of interest are identified based on their

properties such as being located on an edge or a corner. Depending on the implementation, the keypoint

scale and orientation are measured as well.

In the feature description phase, the image data around the keypoint is extracted, characterized and stored

in a feature vector. Obtaining a distinctive set of feature vectors of two images allows us to establish matched

between them, as can be seen in Figure ??. This matching process is done by a feature matcher, which

matches feature vectors based on their value and distance defined by the feature descriptor. In order to

form an accurate and invariant feature vector, we need a method to detect image features and a strategy

to encode and characterize this interesting information. The requirement of highly distinctive and invariant

descriptors has driven the development of feature descriptors that are able to efficiently generate feature

vectors that are invariant to geometric and photometric image transformations. These developments have

led to a wide range of proposed approaches to feature description. However, it is unclear what descriptor

3



4 Chapter 1. Introduction

Figure 1.1: An example of matches between a source image (left), and its rotated counterpart using feature vectors
detected and computed with the SURF algorithm. The matches in this image are filtered based on their distance between
the descriptors.

algorithms should be used for which applications, as each requires a different level of accuracy and resource

usage. In this thesis, we will be looking at the performance and computational and storage requirements of a

number of feature descriptors supplied by the OpenCV [Ope17] framework. We will take a large data set of

images and will make a number of comparisons between the source images and its transformed counterparts.

The transformations that will be evaluated are scale change, rotation, Gaussian blur, illumination change, 2D

perspective change and a combination of scale change and rotation.

To provide a comparative analysis we have defined a performance metric, matching score, which shows the

ratio between correct matches and false matches for a pair that consists of a source image and a transformed

image. To evaluate the resource usage of the feature description algorithms, we will measure the computation

time and memory consumption while feature vectors are being generated.

In the following chapters we will firstly examine the approach and structure of each algorithm that we will

evaluate in our framework. Following this, we will accurately describe the data set and performance metrics

that we will be using in our evaluation. We will then proceed to the comparative analysis of the experiment’s

results, and will finally discuss our observations and conclusions.



Chapter 2

Related Work

As mentioned in the introduction of this thesis, feature detection and description and their performance have

been a popular topic in computer vision for years. One of the first and most cited papers that evaluated

feature descriptors, including the state of the art feature descriptor SIFT [Low04], was published in 2005 by

Mikolajczyk et al. In this paper [MS05], the authors presented an experimental evaluation of scale and affine

invariant feature descriptor algorithms by comparing their feature vectors. The evaluation of the algorithms

was performed in the context of matching the same scene observed under different viewing conditions,

such as scale change, rotation and blur. Most of which we also evaluate in this thesis. Mikolajczyk et al.

defined two important metrics, 1-precision and recall, from which we derived the metric we use in our own

evaluation: matching score. The authors also introduced their own feature description algorithm in the same

paper, which returned the best results in their evaluation. In the period after the publishing of the paper by

Mikolajczyk et al., their dataset and performance metrics have become widely used by papers that propose

new feature description methods [LCS11, LH16]. In 2012 and Miksik and Mikolajczyk [MM12] performed

similar experiments on more recent feature descriptors: BRIEF, BRISK, ORB, MRRID, MROGH and LIOP.

With the growth of applications of computer vision and feature description on mobile devices such as phones

and tablets, the emphasis on minimizing computational and storage requirements became increasingly im-

portant. For this reason, J Heinly et al. have performed a performance analysis of binary feature descriptors

BRIEF, ORB and BRISK. In their analysis, they tested the individual effects of several transformations to gain

a better understanding of binary description algorithms and how they can best be combined with feature

detection algorithms. The authors found that BRIEF’s performance was most favorable but fell short under

geometric transformations. For geometric transformations they found that SIFT had the best performance.

5



6 Chapter 2. Related Work

In 2008 a paper was published by Thomee et al. that focused on the detection accuracy and description

time of various methods on a set of realistically transformed images embedded into a collection of over one

million web images. The authors found that it is not always necessary to use a computationally intense

feature descriptor to obtain high accuracy. They found SURF [BTVG06] performs poorly when using a small

number of interest points.



Chapter 3

Examination of Feature Descriptors

As feature description has been a very relevant topic within the field of computer vision, a wide variety of

approaches for evaluating features have been developed over the years. In this section, numerous approaches

that are part of the OpenCV [Ope17] framework are examined for finding distinctive descriptors which will

be further evaluated based on their performance in Chapter 5.

3.0.1 Scale-Invariant Feature Transform (SIFT)

Scale-invariant feature transform (SIFT) was proposed by Lowe [Low04] and extracts and describes features

that are highly distinctive and are scale and rotation invariant.

Firstly, to obtain the feature descriptors a rectangular grid, centered at the position of the keypoint, is laid out

over the image. For each sample element of this grid, the gradient magnitude and orientation is calculated, as

shown on the left in Figure 3.1. As can be seen by the circle, the sample information is weighted by a Gaussian

window, which limits the effect of minor positional changes of the grid and decreases the prominence of

the outer data. To achieve rotation invariance, the information in this grid is rotated to correspond to the

orientation of the respective detected keypoint.

To finally obtain the feature descriptor, the sample data is used to create 4× 4 sub-regions, all of which contain

an 8-bin histogram. Weighted by their magnitude, each sample point is put into its appropriate bin. The bins

each represent a range of degrees between 0◦ and 360◦. Lowe [Low04] has found that a 4× 4 histogram with

8 orientations performs best in the average case, which results in a vector of size 4× 4× 8 = 128. This vector

contains floating point values which each take 4 bytes to store. This means each vector will take up 512 bytes

of memory in order to store it.

Lowe [Low04] found that a 4× 4 histogram with 8 orientations performs best in the average case, which is

7



8 Chapter 3. Examination of Feature Descriptors

Figure 3.1: Centered around the keypoint location, the gradient magnitude and orientation of all the elements in the
16× 16 sample array are calculated, as shown on the left. The sample array is used to create orientation histograms,
divided by 4× 4 subregions. In this example image, we use a 8× 8 sample array with 2× 2 subregions.

Image gradients Keypoint descriptor
Figure 7: A keypoint descriptor is created by fi rst computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This fi gure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For effi ciency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for signifi cant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
fi gure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

why we will use this configuration in our experiments. To reduce the effects of illumination changes, the

sample vector has to be normalized to be relative with respect to each other. The vector is normalized to unit

length, which results in a vector of which all the sample points have a joint sum of 1. Consequently, a change

in illumination will theoretically not affect the level of distinctiveness of a SIFT descriptor.

3.0.2 Speeded Up Robust Features (SURF)

The SIFT algorithm described in the previous section is excellent at describing locally affine pieces of images

[MS05], but has one major drawback. The amount of time computing the histograms with gradient magnitude

and orientation requires a lot of time and resources. SURF [BTVG06] was proposed to improve this downside

of SIFT, while maintaining its key properties. SURF uses integral images to speed up the computation and in

essence, is an approximation of the SIFT algorithm.

Orientation Estimation

Before the construction of the SURF descriptor is started, the orientation of each keypoint is defined to achieve

rotation invariance. To achieve this, a dominant orientation is defined by considering the local gradient

orientation distribution, estimated based on Haar wavelet responses. The Haar wavelets for the horizontal

direction x and vertical direction y are computed with a neighborhood radius of 6s [BTVG06], where s is the

scale that the keypoint was detected. The size of the wavelets is relative to the scale of the keypoint as well

and equals 4s.

Figure 3.2 shows the Haar wavelet filters that are applied to the integral image, which can be seen as a

matrix that makes up a two-dimensional lookup table [Cro84]. An integral image is a cumulative addition
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Figure 3.2: Haar wavelet filters to compute the re-
sponses in x (horizontal) and y (vertical) direction. Figure 3.3: The dominant orientation (see red arrow)

of the keypoint is calculated by taking the sum of
all responses within the sliding orientation window
(marked by the dark gray area) [BTVG06]

of intensities on subsequent pixels in both horizontal and vertical axis, which enables the computation of the

sum of pixel values at any scale or position using only four lookups. After the responses are weighted by a

Gaussian filter (σ = 2s) centered at the interest point, the wavelet responses are positioned in the coordinate

plane as points, see Figure 3.8. The dominant orientation is then estimated by calculating the sum of all

responses within a sliding orientation window of 60 degrees, which is marked dark grey in Figure 3.8;

Constructing the Descriptor

The calculation of the descriptor starts by laying a square region centered at the position of the keypoint,

with the orientation as calculated in the previous paragraph and size 20s× 20s. Following this, the region is

split up into 4× 4 sub-regions. For each of these 16 sub-regions, the Haar wavelet responses are computed

at 5× 5 evenly spaced out sample points. Then, the x and y wavelet responses (dx, dy) are collected for each

sub-region: v = ∑ dx, ∑ dy, ∑ |dx|, ∑ |dy|. The combination of the sum of values and sum of absolute values for

each direction demonstrates the intensity of the polarity of the sub-regions, and together form the descriptor

for all 16 subregions of length 64, which takes 256 bytes to store. Lastly, the feature vector is normalized to

achieve invariance to contrast changes.
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3.1 Binary Descriptors

As shown in the previous section, patch descriptors such as SURF and SIFT use gradient operations which

can leave a large memory and computing time footprint. Binary descriptors approach this in a different way,

and were introduced to avoid these costly operations. Binary descriptors use pixel comparison operations to

generate short binary strings. A clear advantage of binary features is that, on a modern CPU, it takes fewer

resources to match binary features, as the Hamming distance between two features is used to match features,

rather than the more resource-consuming Euclidean distance [CLSF10].

A binary descriptor is constructed with bits which present the outcome of the the binary test:

τ :=


1, if p(x) < p(y)

0, if p(x) ≥ p(y)
(3.1)

where function p(x) presents the intensity of point x on patch p. To achieve this, sample points must be

chosen, the dominant orientation of each keypoint must be defined, and a way to decide which sample pairs

to compare must be determined. Therefore, most binary descriptor algorithms consist of a sampling pattern,

a way of deciding the dominant orientation of a keypoint, and (x − y)-pair selection process. A feature is

constructed of a vector n filled with results of binary tests:

fn(p) := ∑
1≤i≤n

2i−1τ(p; xi; yi) (3.2)

In the following subsections, different approaches to this problem will be explained.

3.1.1 Binary Robust Independent Elementary Features (BRIEF)

BRIEF [CLSF10] was the first binary descriptor that was published and takes a relatively simple random

approach. Considering BRIEF takes information for the sample points at single pixels, it’s very sensitive

to noise. In order to improve stability, the algorithm first smooths the image patch using a Gaussian filter.

BRIEF does not use a sampling pattern, but uses other means of deciding the spatial arrangement of the

sample points (xi, yi) within a patch with size S× S. Calonder et al. have experimented with five different

methods [CLSF10], which are illustrated in Figure 3.4:

G I The locations for (xi, yi) are randomly sampled without any restriction,

G II The locations for (xi, yi) are randomly sampled based on an isotropic Guassian distribution,

G III The locations for (xi, yi) are randomly sampled where the first location xi is sampled from a Gaussian
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Figure 3.4: Five sampling strategies considered by Calonder et al. [CLSF10]

centered around the origin while the yi location is sampled from another Gaussian centered on xi.

G IV The locations for (xi, yi) are randomly sampled from discrete locations of a coarse polar grid.

G V The location of xi is centered, while yi takes every possible location on a coarse polar grid where the

amount of points is equal to the size of the descriptor in bytes.

Calonder et al. [CLSF10] found that all strategies except for G V performed very similarly. With G II slightly

standing out, the authors picked this strategy for the implementation of BRIEF.

3.1.2 Rotation-Aware BRIEF (rBRIEF)

rBRIEF got its name from being a rotation invariant version of the previously discussed BRIEF descriptor

algorithm and was developed alongside an oriented version of the FAST detector algorithm (oFAST), which

combined is called Oriented FAST and Rotated BRIEF (ORB). Considering the focus of this paper on the evalu-

ation of descriptor algorithms, only the descriptor extracting process of ORB will be discussed. The authors

of ORB have made two major changes to the BRIEF descriptor which will be discussed in the following

paragraphs.

Analysis of variance and correlation of oriented features

As the keypoint detection algorithm oFAST in ORB provides keypoints that have a given orientation, the

authors of ORB [RRKB11] needed to find a way to utilize this useful information. To achieve this, they

introduced steered BRIEF, which defines a matrix S of the size 2× n, where n is the size of the vector of binary

tests performed for each feature. rBRIEF constructs a steered version of this matrix using the orientation of
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Figure 3.5: Distribution of means for feature vectors: BRIEF, steered BRIEF, and rBRIEF [RRKB11]

the keypoint region θ and its corresponding rotation matrix Rθ . This means the steered BRIEF descriptor is

constructed as follows:

gn(p, θ) := fn(p)|(xi, yi) ∈ Sθ (3.3)

A key property that sampling pairs should have is high variance, which results in a more discriminative

feature. Besides this, it is preferable for sampling pair tests to be uncorrelated, so that each sampling pair

brings new information to the test set. As stated in [RRKB11], one of the pleasing properties of BRIEF is

that each feature test vector has a large variance and a mean near 0.5, which results in a favorable amount of

variance and uncorrelation.

However, once this data is steered by Rθ the mean values of the result sets of the features become more

distributed as can be seen in Figure 3.5. This means BRIEF’s approach of randomly selecting sample pairs is

not a good choice. Instead of this, the authors of ORB have implemented a learning method for the sampling

pairs. The learning is done with a training set of keypoints drawn from the PASCAL [EZW+
06] 2006 set, and

an enumerated set of all possible sampling pairs. Following this, a greedy algorithm is applied to obtain a

set of 256 sampling pairs with means near 0.5. Once this algorithm has terminated and has obtained the best

sampling pairs, the generation of the descriptor is complete.

3.1.3 Binary Robust Invariant Scalable Keypoints (BRISK)

The Binary Robust Invariant Scalable Keypoints [LCS11] (BRISK) algorithm takes a different approach than

both BRIEF and ORB. BRISK aims to expand on the quality of binary features, by defining the characteristic

direction of each keypoint and taking a unique approach of selecting samples and sample pairs.
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Figure 3.6: Sampling pattern for N = 60 used by BRIEF [RRKB11]

BRISK uses a particular sampling pattern which can be seen in Figure 3.6. For each sample point, we take a

region with size σ of the standard deviation of that is applied to each sample point. Two types of sampling

pairs (pi, pj) are used, short pairs and long pairs. The set of short pairs S is defined by sample points that

have a threshold below d max, and the set of long pairs L are sampling pairs that have a distance above d min

where d min > d max. The exact definitions of these sets can be seen in equations 5.4 and 5.5.

S = {(pi, pj) ∈ A| ‖ pj pi ‖< δmax} ⊆ A (3.4)

L = {(pi, pj) ∈ A| ‖ pj pi ‖> δmin} ⊆ A (3.5)

BRISK uses long sample pairs to estimate the rotation of the descriptor and the short sample pairs are used

for binary intensity tests like we have seen in other binary descriptor algorithms.

Orientation Estimation

To estimate the orientation of keypoints, BRISK [LCS11] uses local gradients, see equation 3.6 where g(pi, pj)

defines the local gradient for the sampling pair (pi, pj). I defines the intensity of the respective sample

points, smoothed by a Gaussian filter with a standard deviation σ proportional to the distance between the

two sample points.
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g(pi, pj) = (pj − pi) ·
I(pj, σj)− I(pi, σi)

‖ pj − pi ‖2 (3.6)

To finally compute the orientation of the keypoint, the sum of all local gradients of the long pairs g is taken,

and the arctangent y-component of g by the arctangent of the x-component of g: α := arctan2(gy, gx).

Building the Descriptor

As we have seen with other binary feature descriptors, the construction of a feature is done by performing

binary tests that compare the intensity of each point in a sample pair. BRISK assembles a descriptor dk by

performing the following for each sample pair:

b :=


1, if I(pα

j , σj) > I(pα
i , σi)

0, otherwise
(3.7)

Note that in this equation the keypoint orientation α is used, the intensity of both sample points in smoothed

by a Gaussian filter and only the short sample pairs are used. A collection of 512 comparisons makes up the

feature vector generated by BRISK, which is stored in 64 bytes.

3.1.4 Fast Retina Keypoint (FREAK)

The Fast Retina Keypoint (FREAK) descriptor [AOV12] suggests to take inspiration of the human retina to

create a retinal sampling grid, where the density of the sample points decrease exponentially as we near the

center (see Figure 3.7). Each of these sample points is smoothed with a Gaussian filter to decrease sensitivity

to noise. In Figure 3.7 the radius of the red circles around each sample point illustrate the size of the standard

deviation of the Gaussian kernel.

The authors of FREAK have considered multiple ways of creating the sample pairs to describe an image

patch. One possibility is to use the approach of BRISK [LCS11], where pairs were selected based on spatial

distance as was discussed in the previous subsection. Rather than this approach, the authors have opted

for the strategy used by [RRKB11] where learning is used to obtain pairs that are more uncorrelated and

discriminant. Please refer to subsection 3.2.2. for the explanation of this concept.

The process of learning to maximize variance and uncorrelation brings an interesting structure of the resulting

sample pairs to light. The first sample pairs that are selected are mainly located in the outer rings of the
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Figure 3.7: Sampling pattern used by FREAK
[RRKB11]

Figure 3.8: The human retina [HAW71]

Figure 3.9: The 45 predefined pairs used by FREAK to determine orientation [AOV12]

sampling pattern, while the last few selected pairs are mainly located in the inner rings of the sampling

pattern. This behavior resembles our understanding of the model of the human retina.

The coarse-to-fine structure allows FREAK to have an advantage during the matching process. At first, while

comparing two descriptors, just the first 128 bits of each descriptor have to be compared. If this comparison

shows potential by showing the distance between these two sets of bits is low, the next set of 128 bits of each

of the descriptors is compared. This allows for a large portion of the matching candidates to be discarded

without having to compare the full descriptors first.

The orientation assignment approach of FREAK is similar to that of BRISK [LCS11] which is discussed in

section 3.2.3. FREAK uses a predefined set of pairs to determine the orientation BRISK uses long distance

pairs for orientation assignment, see Figure 3.9.

Just like BRISK, a collection of 512 comparisons makes up the feature vector generated by FREAK, which is

stored in 64 bytes.
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Figure 3.10: A visualization of the LATCH descriptor [LH16]

3.1.5 Learned Arrangements of Three Patch Codes (LATCH)

The Learned Arrangements of Three Patch Codes [LH16] (LATCH) descriptor was introduced in 2015 by

Levi and Hassner. The authors build upon the concept of other binary descriptors, but instead of using

pixel comparisons, have opted for comparing the patches themselves. They have made this choice to make

the feature descriptors less sensitive to noise and slight distortions. They also propose to compare triplets

instead of pairs to improve the spatial support of the patch comparisons. The comparison between the three

points together form a single bit. A couple of triplet arrangements can be seen in Figure 3.10 in green and

blue.

Triplet Comparisons

In equation 3.2 of section 3.1 we have described the binary test used by most binary descriptors. Binary

descriptor algorithms generate binary feature vectors that take up a low amount of storage space and don’t

require much time to be matched. Besides improving other properties, LATCH aims to also keep the afore-

mentioned benefits. To accommodate comparing triplets instead of pairs, the authors have redefined Equation

3.2.

Each triplet contains one of the patches that is denoted as the anchor referred to as Pa and two other patches

that are denoted as companions referred to as P1 and P2. In the comparison function g, the similarity of the

anchor patch Pa is compared to both companion patches P1 and P2 using their Frobenious form. The resulting

binary value is produced by redefining function f from Equation 3.2 with g from Equation 5.7, with W being

defined as the detection window.

g(W) =


1, if ||Pa − P1||2F > ||Pa − P2||2F

0, otherwise
(3.8)
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Learning Patch Triplet Arrangements

There exist many possible triplet arrangements even within a small detection window W. To decide which

arrangements to use, the authors of LATCH have defined a novel selection process. A data set consisting

of three different collections of detection windows, pairs of which have been labeled as ”same” or ”not-

same” and together form a benchmark of 500K comparisons. To select the appropriate amount of triplet

arrangements for some image, triplets are randomly selected and are evaluated over all window pairs in the

benchmark. The quality of an arrangement is defined by the number of times it correctly returned the same

binary value for the ”same”-labeled window pairs and different values for the ”not-same”-labeled window

pairs.



Chapter 4

Experiment Setup

In the following chapter, the large data set used for the experiments will be described. After this a description

follows about the way the source data will be modified in order to evaluate the performance of the previously

examined algorithms. Finally, the criterion and performance measures that we have chosen are discussed.

4.1 Data Set

The descriptors are evaluated on a large scale with the images provided by The MIR Flickr collection [HL08].

This collection contains images provided by Flickr that are under the Creative Commons license. It contains

25000 images, of which 2500 will be used to evaluate the performance of the descriptors on a large scale.

During the experiments, each image is transformed for each variation of each transformation.

4.2 Source Transformations

In the experiments, the descriptors will be evaluated using images that are photometrically and geometrically

transformed. The following transformations will be evaluated:

4.2.1 Scale Change

Scale changes are performed by changing the size of the image. In these experiments, the images will be

scaled in the range of 0.5 to 2 with an interval of 0.25. See Figure 6.1a for an example of this transformation

for argument 0.5.

18
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4.2.2 Rotation

Rotation is done by simply rotating the camera position within a range of 0 to -90 degrees with an interval of

-5 degrees. See Figure 6.1b for an example of this transformation for argument -60 degrees.

4.2.3 Illumination Change

Change in illumination is achieved by adding a specified value to each pixel point of the image, making

it more intense. The values added range from -175 to +175 with an interval of 25. See Figure 6.1c for an

example of this transformation for argument -100.

4.2.4 Two-dimensional Perspective Change

When modifying the two-dimensional perspective of an image, we combine rotations on the x-axis and y-axis

to achieve a perspective which resembles us changing the orientation of a 2D poster. For our experiment’s

dataset we rotate the images in the range 0 to 40 degrees with an interval of 10. All the combinations of these

values are evaluated, which brings the total number of variations to 25. See Figure 6.1d for an example of

this transformation for argument 30 degrees for both rotations.

4.2.5 Gaussian Blur

Blurring images is done by applying a Gaussian blur filter over the image. This will result in a less detailed

image. In our experiments we will use images blurred with a kernel size ranging from 1 to 15, with an

interval of 2. See Figure 6.1e for an example of this transformation for argument 13 for kernel size.

4.2.6 Scale Change + Rotation

To further look into possible image transformations that may occur in applications of feature descriptors, we

also evaluate a combination of scale change and rotation. We combine the effects of scaling in the range of

0.75 to 1.75 with an interval of 0.25, with the effects of rotation in the range of 0 to -45 degrees with an interval

of -15 degrees. See Figure 6.1f for an example of this transformation for argument -30 degrees (rotation) and

0.5 (scale).
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(a) Scale change with argument 0.5 (b) Rotation with argument -60 degrees

(c) Illumination change with argument -100
(d) 2D perspective change with 30 degrees rotation on
both axes

(e) Gaussian blur with kernel size 13
(f) Rotation and scale with arguments -30 degrees and 0.5
respectively

Figure 4.1: Examples of transformed images
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4.3 Performance Metrics

4.3.1 Matching Score

When the framework starts with the experiment, it loads images from the data set and evaluates them

one by one. At this time, the keypoints of the source image are detected using the SURF detector using

default parameters. This same detector is used for the evaluation of all description algorithms to allow our

framework to focus on the performance of the description algorithms, rather than including the variance in

results that the usage of different feature detectors could cause. After this, it goes through each algorithm

described in Chapter 3 paired with each transformation described in section 4.2. In this process, it goes

through each variation of the current transformation and transforms the source image with the parameters

of the current variation. Then, the evaluation framework detects the keypoints of the transformed image

and computes the feature vectors of both the transformed image and the source image using the current

description algorithm. Following this, the evaluation framework matches the feature vectors using the brute-

force matcher implemented in OpenCV [Ope17]. The process of finding matches is as follows: the matcher

takes the descriptor of each feature in the source feature set and compares it with each feature in the feature

set of the transformed image. Before returning any matches, the matcher performs a cross check to validate

any matches made. During this cross check, the matcher repeats its first process but now compares each

feature from the transformed image with every single feature in the source image. A match is only valid

if these two processes obtain the same match pair. After the matcher returns the set of found matches, we

filter them based on whether their Euclidean distance is below the threshold of t = 3 pixels. If the Euclidean

distance is below this threshold, we assume it’s a correct match. If it is not, we count it towards the number

of false matches.

The metric we use to measure the accuracy of the feature description algorithms is called the matching score.

The matching score answers the following question: given a detected match, how likely is it to be correct? To

calculate the matching score for a given pair of images, the number of correct matches relative to the number

of false matches is taken:

matching score =
#correct matches

# f alse matches + #correct matches

This metric is based on the precision metric used by Mikolajczyk et al. [MS05] in 2005.

The average matching score per variation of each transformation for each algorithm will be discussed in

Chapter 6.
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4.3.2 Resource Consumption

In addition to the matching score, which measures the quality of the descriptors that the algorithms generate,

it is of interest how many resources the algorithms consume. In current applications, resource usage is often

just as important as the accuracy of algorithms. The metrics we will measure are time consumed per descriptor

and memory allocated per descriptor.

To measure the time consumption of the description algorithms, the clock tick count of the processor is mea-

sured be f ore and a f ter the features are computed. To obtain the time between these tick counts in millisec-

onds, we take (be f ore− a f ter) ∗ T where T is the clock’s tick frequency per second. During the computation

of the feature descriptors of the transformed images, we measure the consumed time per transformed image.

Using this value, we calculate the consumed time per descriptor by dividing the consumed time per transformed

image by the number of feature descriptors that are computed for the image. The average of this metric per

variation of each transformation will be discussed in Chapter 6 for each algorithm.

Memory consumption is registered by measuring the amount of memory each description algorithm allo-

cates during its computation time. To do this, we have modified the f astMalloc function from OpenCV

[Ope17] to track this information. During the computation of the feature descriptors of the transformed

images, we measure the memory allocated which gives us an impression of how much memory the fea-

ture description algorithm uses during the computation of the feature descriptors. To finally obtain the

memory allocated per descriptor metric, we divide the recorded amount of memory allocated by the num-

ber of features that are computed. The average of this metric per variation of each transformation will be

discussed in Chapter 6 for each algorithm.

4.4 Implementation of the Framework

For the implementation of the framework we have adapted an existing framework built by the Github

user BloodAxe named OpenCV-Features-Comparison [Blo14], which is written in C++. To be able to use

this framework for our experiments we had to make numerous changes and improvements. Among other

changes, we upgraded the framework for use with OpenCV 3.3 [Ope17], added new algorithms, new and im-

proved image transformations, memory tracking with a custom compiled OpenCV build, a different statistics

file structure and large folder processing support using the Boost C++ library [Boo17].

We will compare the feature description algorithms using their default parameters set in OpenCV [Ope17].

The default size of the feature vectors of the description algorithms are shown in Table 4.1.
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Algorithm Feature vector size in bytes
BRIEF 32

BRISK 64

FREAK 64

LATCH 32

rBRIEF 32

SIFT 512

SURF 256

Table 4.1: Default feature vector size per algorithm

The system that we run the experiments on has four hyper-threaded quad-core Intel Xeon CPU’s, type E5-

2667, running at 3.30GHz and has 48GB of RAM. The program has been optimized to work with OpenMP

[DM98], which enables the framework to evaluate multiple variations of a transformation in parallel using 32

threads. This dramatically improves the performance of framework.



Chapter 5

Experiment Result Analysis

In our experiments we have evaluated the effects of multiple image transformations on the performance of

feature description algorithms. In the following subsections we analyze our defined metrics to acquire insight

into the behavior of description algorithms. We firstly analyze the performance of the description algorithms

with regards to the matching score per variation of each transformation. Finally, we will discuss the time and

memory consumption per descriptor of the algorithms, for each variation of the defined transformations.

5.1 Matching Score

The average results of the experiments with the subset of the MIR Flickr [HL08] data set are summarized in

Figure 5.1 per transformation.

5.1.1 Illumination Change

When first examined, there are a few interesting observations that can be made when looking at Figure 5.1a.

The general trend of performance is clear. Most of the descriptors perform very similarly, except for BRIEF,

which outperforms others. This could have to do with BRIEF’s simple random approach, which is able to

create sampling pairs without being restricted by a pattern.

24
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5.1.2 Gaussian Blur

The effect of Gaussian blur on the evaluated feature descriptors can be seen in Figure 5.1b. We immediately

see one clear method that performs significantly less than others: SURF. In contrast, BRIEF outperforms the

other algorithms once again, which could be a result of the simple intensity comparisons BRIEF performs.

5.1.3 Rotation

The results of the effects of rotation on the description algorithms is less converged, as we can see in Figure

5.1c. BRIEF does not provide rotation invariance, which explains its bad performance for this transformation.

Furthermore, it is notable that the patch descriptors, SIFT and SURF, perform less well than others.

5.1.4 Scale Change

Upon inspection of Figure 5.1d, which shows the results of the effects of scale change, we see that the

performance of rBRIEF, LATCH and BRIEF is not favorable. For BRIEF this is completely expected, as BRIEF

does not provide scale invariance. LATCH relies on the scale of the keypoint calculated by the detector.

While the SURF detector used in our experiments does calculate the orientation of each keypoint, it appears

to be that this is not taken into account. This is likely due to the fact that the implementation of the new

LATCH algorithm is currently sub-optimal in the OpenCV [Ope17] framework, as stated on the website of

the algorithm [lat]. The lesser performance of rBRIEF is a result of lack of compatibility with the keypoint

scale calculated by the SURF detector. The OpenCV [Ope17] implementation does not take the calculated

keypoint scale into account, and also does not calculate a keypoint scale itself, which in turn results in bad

performance regarding scale change.

5.1.5 Scale Change + Rotation

The effect of scale change can be seen in Figure 5.1e. It is clear that the descriptors which do not take advan-

tage of the keypoint scale, rBRIEF, LATCH and BRIEF, do not perform well when the scaling of the image

is changed. Besides this, the behavior of the other descriptors is very similar to the individual transforma-

tion rotation (Figure 5.1c) and scale change (Figure 5.1d) that were combined in our experiment. BRISK and

FREAK perform the best, and have a similar performance, whereas SIFT and SURF also perform similarly.

This is due to the fact that both pairs of these descriptors are very similar in concept, as discussed in Chapter

3.
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5.1.6 2D Perspective Change

The results of the effects of 2D perspective change are shown in Figure 5.1f. Upon first sight, it is striking

that all algorithms perform relatively similarly. As we have seen with rotation and scale change, BRISK and

FREAK both perform best, with FREAK excelling the closer we get to more dramatic 2D perspective changes.

While BRIEF has shown its limited performance with those same transformations, it performs relatively well

under 2D perspective change. This likely has to do with that the plane rotations of this transformation are of

a low value, which has given BRIEF a chance to still obtain a reasonable amount of correct matches. We can

see that BRIEF’s performance decreases when the rotation argument increases.

5.2 Consumed Memory and Consumed Time

During each feature description process of the various algorithms we have evaluated, we have measured the

time and the memory it took to generate the descriptors. This data provides an insight into what computa-

tional resources each algorithm requires. The average results of both consumed time and consumed memory

are shown in Table 5.1 and Table 5.2 with accompanying comparison charts respectively.

A look at Figure 5.2 gives us an impression of one of the strongest properties of binary descriptors. BRIEF,

BRISK, FREAK and rBRIEF all have a shorter computation time by an order of magnitude over SIFT, which

takes about 143µs per descriptor. Furthermore, LATCH and SURF both have a significantly lower computa-

tion time than SIFT.

Table 7.3 shows the memory requirements of the algorithms by listing the average consumed memory per

feature it took to generate a descriptor, for each algorithm. This data is greatly related to the memory each

algorithm uses to store the descriptors, but also gives us insight into how much memory the OpenCV [Ope17]

implementation of each algorithm uses for the calculation of these descriptors. As we can see in Figure 5.3,

SIFT has a memory footprint that is much larger than any other of our evaluated algorithms. SIFT descriptors

are large in size, and take 512 bytes to store. In contrast, the binary descriptors consume an amount of

memory that is lower by an order of magnitude when compared to SIFT. While SURF and SIFT share a

conceptually similar approach, SURF has a much lower memory footprint.
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Figure 5.1: Average matching score per variation for each transformation
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Algorithm Consumed time (µs)
BRIEF 5.54225

BRISK 14.408456

FREAK 11.139673

LATCH 82.065743

rBRIEF 6.761497

SIFT 142.720711

SURF 56.663863

Table 5.1: Average consumed time per descriptor in µs
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Figure 5.2: Comparison chart of average consumed
time per descriptor in µs

Algorithm Consumed memory (bytes)
BRIEF 1029

BRISK 1208

FREAK 1756

LATCH 998

rBRIEF 1079

SIFT 12794

SURF 1198

Table 5.2: Average consumed memory per descriptor
in bytes
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memory per descriptor in bytes



Chapter 6

Discussion and Conclusions

In this thesis, we have proposed a framework to evaluate the performance and resource consumption of

recent feature description algorithms in the OpenCV [Ope17] framework. We have attempted to gain more

insight into the behavior of feature description algorithms when exposed to several transformations, namely

scale change, rotational change, illumination change, 2D perspective change, Gaussian blur and a combi-

nation of rotational and scale change. By having defined a set of performance metrics, we have created a

comprehensive overview of the effects these transformations have on the algorithms. From the result analysis

of our experiments, we can derive a number of notable observations.

Firstly, when we consider non-geometric transformations such as Gaussian blur and illumination change, we

can deduct that BRIEF has favorable performance. BRIEF benefits from the fact that the geometric composi-

tion stays intact under these transformations. Taking into account the time and memory it takes to compute

a BRIEF descriptor, BRIEF is a highly recommended feature description algorithm to use in situations where

geometric transformation is not a factor of concern.

The overall best matching score was achieved by FREAK and BRISK, with the former performing marginally

better in some situations than the latter. Both algorithms show their robustness under all of the transforma-

tions, while both having the lowest memory consumption and computation time. Based on these results, it

makes them suitable for evaluating scenes that have geometric as well as photometric changes.

Another notable remark is that LATCH and rBRIEF achieve a lower marking score than expected when it

comes to scale changes. LATCH relies on the scale of the keypoint calculated by the detector, but is likely not

optimized for using the scale property of the keypoints found by the SURF [BTVG06] detector we have used

in our experiments. The lack in performance of rBRIEF is a result of lack of compatibility with the keypoint

scale calculated by the SURF detector.

29
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When evaluating other published papers that evaluated feature descriptor algorithm performances [LCS11]

[LH16], we observe the fact that while a feature descriptor performs excellently in one experiment, it can

perform differently in others. As an example, BRISK [LCS11] outperforms SIFT [Low04] in many of the tests

of Leutenegger et al. [LCS11], while SIFT outperforms BRISK in many tests by Levi and Hassner [LH16]. This

illustrates that experiments often only show one perspective of the behavior of a feature descriptor. There are

many contributing factors to the matches found using a specific feature descriptor, such as: the data set that

is used for evaluation, the parameter configuration and the kind of detector and matcher used to handle the

features.

This brings us to our last point. Though our experiments have given us interesting insights into the behavior

of various feature description algorithms provided by the OpenCV [Ope17] framework, the amount of under-

standing into their behavior that it gives us is limited. The framework could be expanded to evaluate more

algorithms and (advanced) transformations, such as combinations of the transformations discussed in this pa-

per. Moreover, different performance metrics such as overlap error, precision and recall used by Mikolajczyk

et al. [MS05] could provide us with a different frame of reference to evaluate feature descriptors.
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