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Abstract

The constant evolution of machinery and the increased degree of automation
along with advances in technological knowledge have given rise to predictive
maintenance (PM), a maintenance scheme that can diagnose the current state
of machinery or even predict its remaining life based on collected data. In the
scope of this thesis, a PM framework is designed for the estimation of tool
damage and remaining tool life in CNC milling machine cutters, based on
collected time-series data measuring force, vibration and acoustic emissions
after each cut. Time-domain, frequency-domain and time-frequency domain
features are extracted from the time-series. For the latter case, Wavelet
Transform is used since it is much more suitable than Fourier Transform and
its variants for time-frequency analysis of non-stationary signals. Further fea-
ture selection and feature transformation techniques are applied with the aim
of dimensionality reduction and ultimately a final subset with relevant and
non-redundant features. In all cases, a necessary transformation for the prob-
lem at hand is to take the cumulative values of the features, therefore adding
all previous values to a feature’s value. The final feature set is then used
as input to a proposed modification of Extreme Learning Machine (ELM),
a single layer feedforward network that performs learning of the connecting
weights without iterations. A modification of ELM, ES-RELM is proposed
which uses regularization and modified Evolutionary Strategy (ES) in order
to find a stable model that can predict tool wear sufficiently for different test
sets. ES-RELM significantly improves the generalization capabilities of the
found optimal regression model and clearly outperforms ES-ELM, a similar
methodology without the use of regularization. The feature set that per-
forms best is acquired after PCA performed at the whole feature set, since
it projects the feature set into 4 independent features, thus resulting in non-
redundant features. Last but not least, recommendations for future research
regarding all main parts of the framework are proposed.



Chapter 1

Introduction

1.1 Thesis Topic

There is a steady growing pressure on companies, urged by the worldwide
competition, to streamline operations involving product and product related
manufacturing system design, product manufacturing and system mainte-
nance [1].

The main task of this thesis is to provide predictive maintenance solutions,
by employing data mining techniques on real-world data. After a feature data
set is acquired from the raw data by means of preprocessing such as noise
removal, checking the quality of the data, feature extraction, selection and
transformation, data mining and pattern recognition techniques are applied
with the general aim of classifying normal from abnormal machinery function
or determining and predictin machinery damage. Special focus is given on
data measurements in the form of signals, consequently in time-series anal-
ysis, since in order to apply data mining techniques to time-series, certain
factors need to be taken into account, for instance what time-series repre-
sentation, distance measure or feature extraction technique to use. In the
scope of this thesis, feature extraction is performed on time-series by using
Continuous or Discrete Wavelet Transform. The extracted features, after all
the preprocessing stages are finished, form the final data set on which data
mining and pattern recognition techniques are applied. Some major time
series related tasks include query by content [2], anomaly detection [3], motif
discovery [4], prediction [5], clustering [6], classification [7] and segmenta-
tion [8]. In the scope of this thesis the main focus is on regression, which is



in essence a more generalized case of classification. The goal is to build a
model that can predict tool damage and consequently the remaining useful
life for a CNC milling cutter. For this goal, the experiments also involve
clustering methods as well as methods to handle outliers and noise.

1.2 Thesis Overview

The rest of the thesis is organized as follows: Chapter 2 focuses on Main-
tenance Theory and background information. Specifically, a brief history of
maintenance is provided, along with the three major types of maintenance
strategies as well as the kind of maintenance data that are monitored and
recorded. Focus is given on Predictive Maintenance (PM) along with litera-
ture review on PM that is relevant to the current thesis.

Chapter 3 is concerned with Time-series analysis. Since quite often main-
tenance data are in the form of time-series, also known as signals, some basic
tools for processing these signals are defined and examined. Specifically, fo-
cus is on ways of acquiring the frequency content of a time-series. Starting
with Fourier Transform and its drawbacks, Wavelet Transform is then in-
troduced, a family of transforms that is ideal for multiresolution analysis of
non-stationary signals.

In Chapter 4 some of the preprocessing steps applied to the data such
as normalization and smoothing are described, along with feature extraction
methodologies for time-series data. These methods are used in the experi-
ments described in Chapter 7.

In Chapter 5, some basic background on Evolutionary Optimization is
given. A typical Evolutionary Strategy (ES) algorithm is outlined along
with some proposed modifications and a meta-ES scheme used to tune the
ES parameters.

In Chapter 6 the focus is on Maintenance Decision support methodologies
which are employed for the experiments described in Chapter 7. Specifically,
the focus is given on supervised learning through Artifical Neural Networks
(ANN) and a special type of ANN known as Extreme Learning Machine
(ELM) Moreover, an optimization scheme which is combined with an ELM
in order to augment the performance of the ELM as a regressor, is defined
and explained.

Chapter 7 reports the experiments done on the real world data and the
respective results, by using the methods described in the previous chapters.



Last but not least, Chapter 8 is devoted to discussion of the results as well
as relevant future research.



Chapter 2

Maintenance Theory

2.1 Introduction

The essence of maintenance is to ensure that the respective machinery is
at satisfactory condition with regards to a certain operation [9]. Although
defining a satisfactory condition depends on a variety of factors such as the
type of operation, industry and application objectives, to name but a few,
there are a number of defined criteria that are used to evaluate machinery
condition. These criteria and the conditions that have to meet are as
follows [10]:

1) Performance: the ability of the machine to perform its functions.

2) Downtime: operation of the machine must be within acceptable level of
downtime.

3) Service life: before replacement of the machine is necessary it must
provide a good return on investment.

4) Efficiency: the level of efficiency of the machine must be acceptable.

5) Safety: the machine must be safe to the personnel.

6) Environmental impact: the operation of the machine must be friendly to
the environment and other equipment.

7) Cost: it is expected to have a maintenance cost with in an acceptable level.

Hence, taking into account these factors it is now possible to define the
goal of maintenance more precisely [9]: The goal of maintenance is to ensure
that machinery performance is satisfactory, considering the above factors. In
order to get a more complete picture of maintenance, the rest of the chapter

10



includes maintenance history, in specific how maintenance evolved and how
the three main types of maintenance strategies emerged. A definition and
brief description of these three maintenance strategies, namely corrective,
preventive and predictive maintenance is given. The last section of this
chapter focuses extensively on predictive maintenance, which is the main
topic of this thesis.

2.2 Maintenance History & Evolution

As industrialization was in process and machinery became more complicated
and the degree of automation increased, more and more focus had to be
given on maintenance. Thus, along with the evolution of the machinery the
maintenance process has been evolving and becoming of continuously more
importance. In general, the evolution of maintenance is categorized into 3
different generations [9]:

1) the first generation, between 1930s and 1940s.

2) the second generation, between 1950s and 1970s.

3) the third generation, from 1980s till date.

During the first generation, the degree of industrialization was low. The
machinery used in factories was simple and basic, therefore repairing and
restoring was performed very fast. Thus, maintenance was not an important
issue and it was limited to corrective maintenance, one of the three generic
types of maintenance strategies.

As industrialization evolved, machinery became more complicated and de-
pendence on machines was increasing. Consequently, repair became a more
difficult and complex task, requiring more time and skills. Machinery failure
resulted in longer downtime which led to the need of preventing these failures
and consequently the resulting downtime. Inevitably, more focus was given
on maintenance schemes, which resulted in the concept of preventive main-
tenance, which employs periodic maintenance operations on the machinery
in order to reduce or delay machinery failure and downtime.

During the third generation, production’s dependence on machinery in-
creased even more, apparently with an accompanying increase in complexity
and degree of automation. Machine failure and downtime could be detrimen-
tal for the industry’s operation hence maintenance became a significant task
of high priority. At the same time, maintenance tools improved and technol-
ogy and knowledge to predict machine failure had become available. This led
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to the third type of maintenance strategies known as predictive maintenance,
which relies on collecting data indicative of machinery health and condition
and based on these data predicts if the machine is due to failure.

2.3 Maintenance Strategies

In literature it is possible to find three generic types of maintenance [11,12]:
corrective maintenance, preventive maintenance and predictive maintenance.
As mentioned, these maintenance strategies emerged during the three respec-
tive maintenance generations defined above.

Corrective maintenance, consists in repair actions when equipment or
machine fails. The equipment is in action until the moment that it fails.
At that moment it will be repaired or replaced. The main disadvantages of
this approach include fluctuant and unpredictable production, high levels of
non-conforming products and scraps as well as high levels of maintenance
interventions motivated by catastrophic failures [13].

Preventive maintenance, also known as planned maintenance, is char-
acterized by periodic maintenance operations in order to avoid equipment
failures or machinery breakdowns, determined through optimal preventive
maintenance scheduling using a wide range of models describing the de-
grading process of equipment, cost structure, and admissible maintenance
actions [14]. The main drawback of preventive maintenance lies in the fact
that, contrary to the past, equipment and machinery have become so com-
plex that a periodic maintenance scheme is very expensive. Hence, the need
for more efficient maintenance schemes gradually became more and more
crucial, which gave rise to the predictive maintenance scheme.

Predictive maintenance (PM), also known as Condition Based Mainte-
nance (CBM), is the task of predicting when machinery failure is due and
therefore when service is needed, based on data collected from the machin-
ery. While preventive strategies are generally suitable for equipment that is
not process-critical and will cause little or no damage if allowed to run to
failure, an effective predictive maintenance system can significantly reduce
unexpected failures as well as repair costs. Thus, an accurate prediction
of a potential problem can provide better maintenance at an overall lower
cost. Moreover, unnecessary maintenance tasks are avoided by performing
maintenance only when it is deduced so from the collected data.
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2.4 Predictive Maintenance (PM)

PM consists of three main steps: data acquisition, data processing and main-
tenance decision-making [15]. The first step, data acquisition, involves in-
formation collection, therefore acquiring relevant data with respect to ma-
chinery condition. The second step, data processing, involves processing the
data. This includes operations such as checking quality and properties of the
data(eg cleaning data, handle missing values) and feature extraction. Last
but not least, based on the processed data, the last step is the decision-
making process, which decides the machinery health and consequently if or
what maintenance action should be performed.

PM can be divided into two main categories: diagnostics and prognostics.
Prognostics deals with fault prediction while diagnostics with fault detection.
Fault prediction recognizes a forthcoming fault and also provides an estimate
on the probability and timing of the respective fault. Fault detection indi-
cates whether something is wrong in the current state of the machinery.
Prognostics can be seen as a more important task since it can predict future
faults and hence result in decreased machinery downtime and increased reli-
ability. However, diagnostics can also be important in case prediction fails.
Apart from fault detection, diagnostics also deals with fault isolation, there-
fore locating the root of fault, as well as with fault identification, therefore
determining the type of fault. Hence diagnostics is also an important task
since it can provide insights on the root causes of fault as well as classify it
into categories.

2.4.1 Predictive Maintenance Data

Data acquisition is a process of collecting and storing useful data (infor-
mation) from targeted physical assets for the purpose of CBM [15]. Col-
lected data can be divided into two main categories, condition data and
event data. Condition data are measurements that reflect the machinery’s
condition, while event data provide information about what happened at a
certain time point (eg. a failure and its probable causes) or information on
what action was performed (eg repair and possibly a brief description of the
repair process). Apparently, condition data are indispensable for PM, and
a PM scheme based only on condition data can reduce downtime. However,
event data are also important since they can be used as flags at different time
points and potentially provide further insights.
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Condition data can be further divided into three categories: 1)Value data
2) time series data and 3) multidimensional data. Value data are single values
collected at specific time points. Time series data, also known as waveform
data, are signals collected for a specific time period and a respective sampling
rate. It should be noted that value data include not only the raw collected
data but also single value data extracted from time-series data after a feature
extraction procedure. Multidimensional data are collected data that span
more than one dimension, such as images. In this thesis, the condition data
used are time series data. Value data are not used, although the proposed
framework can be trivially generalized to also include value data along with
time series data. Multidimensional data are beyond the scope of this thesis.

2.4.2 Literature Review

The literature on machinery diagnostics and prognostics is huge and diverse
primarily due to a wide variety of systems, components and parts. Hundreds
of papers in this area, including theories and practical applications, appear
every year in academic journals, conference proceedings and technical re-
ports.

Since it is apparently not feasible to cover the whole literature, a brief
literature review is given with research that is relevant to the scope of this
thesis, namely involving CNC milling cutters, wavelet analysis, neural net-
works and evolutionary optimization.

Li et. al [16] combine fuzzy inference logic with neural networks to build
a Fuzzy Neural Network (FNN) in order to detect and define tool damage of
CNC milling cutter, and consequently the remaining tool life. The training
of the FNN is performed by an extension of the back-propagation method,
which extension includes the learning of the fuzzy rules. Chen et. al [17]
use Genetic Algorithm (GA) and Evolutionary Stratey (ES) along with a
neural network classifier. Feature selection and subsampling of the dataset
is performed by a GA, while the ES is used in the next stage to optimize the
construction (number of nodes) and the training (connection weights) of the
neural network. Yan et. al [18] have developed a fault diagnostic method-
ology for diesel engine combustion system, based on neural networks and
evolutionary optimization. An evolutionary algorithm is used to adjust the
connection weights of the neural network. In a similar but more complete
and sophisticated scheme, Huang et. al [19] propose an evolving wavelet
network for power transformer condition monitoring. The wavelet network

14



is a neural network with a layer consisting of wavelet nodes which perform
multiresolutional analysis of a time-series in the time-frequency domain. The
evolving wavelet network proposed by the authors optimizes the parameters
of the neural network through evolutionary optimization, including both pa-
rameters that affect the wavelet analysis and the connecting weights of the
neural network.
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Chapter 3

Time-Frequency Analysis

3.1 Introduction

This chapter is concerned with the topic of time-series analysis. In specific,
the focus is on different transforms available in order to acquire the frequency
content of a time-series, as well as on ways to use these transforms for feature
extraction. First ,a description of Fourier Transform (FT), which is in essence
the frequency domain representation of a signal, is given and it is explained
why it is not suitable for real-world applications with non-stationary data.
A variation of FT, namely Short-Time Fourier Transform (STFT) that can
deal with non-stationary data is also described along with its drawbacks.
Furthermore, another family of transforms, Wavelet Transforms, which are
superior for analysis of non-stationary time-series is described and defined.
The aforementioned transforms are then used as tools for extracting features
from the raw signals.

3.2 Fourier Transform (FT)

Fourier Transform (FT) provides information about the frequency content of
the signal on which the transform is applied,according to the follow formula

X(f) = /OO z(t)e 2™t dt (3.1)

—00

FT provides information as to what frequencies are contained in the signal
as well as the intensity of these frequencies. In essence, FT decomposes
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the signal into a sum of sinuses and cosines. However, there is no time
information, therefore no information regarding at which time period these
frequencies are contained, since FT assumes that the frequency content of
the signal is the same for the whole duration of the signal. Hence, it becomes
obvious that FT is suitable for stationary signals. If it is applied to non-
stationary signals, therefore signals with varying frequency content over time,
these signals are treated as stationary, hence the temporal variation of their
frequency content is ignored. In essence, if we apply FT to a non-stationary
signal we get the frequency content of the signal averaged over the duration
of the signal, which is not really useful in the vast majority of real-world
data, since in non-stationary time series analysis it is important to know the
frequency content of the signal at various time intervals.

3.2.1 Short-Time Fourier Transform

A variation of the F'T that can deal with non-stationary signals is based on
dividing the non-stationary signal into short segments where the signal can be
considered stationary and then apply the F'T at each of these segments. This
variation of FT is named Short Time Fourier Transform (STFT). In contrast
to FT, STFT can provide information about the temporal variation of the
signal’s frequency content. In essence, the only difference between STF'T and
FT is that FT first divides the signals into non-overlapping windows. The
only difference is therefore the use of a windowing function, as can be seen
in the respective formula:

oo
X(r, f) = / 2wt — F)e 2 dt (3.2)
—0oQ

The windowing function has a value equal to 1 for time points ¢ that are
within the window of center 7 and zero for time points t outside the win-
dow. It is apparent from the above formula that temporal information is also
taken into account. Apparently, if we do not want to lose any information
regarding the varying temporal frequency content of the signal then window
width must be such that each segment of the signal is stationary. However,
although STFT can provide both frequency and time information contained
in a time series, there is an unavoidable trade-off between those two, rooted
in Heisenberg’s uncertainty principle. Briefly, in quantum physics the uncer-
tainty principle states that it is not possible to know at the same time the
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exact momentum and the exact position of a particle. Mathematically,this

is formulated as:
ANWAND (3.3)

A, is the error in the calculation of momentum, A, the error in the
calculation of position and ¢ is a constant (equal to Planck’s constant h).
Accordingly, in the field of signal analysis Heisenberg’s uncertainty principle
is stated as such: It is not possible to know the exact frequencies contained
in a signal in specific exact time points. Mathematically, with A; being the
error in calculation of time and Ay the error in the calculation of frequency,

this is formulated as: -

4

It is however possible to know what frequency bands are contained in
specific time intervals. Thus, a resolution problem arises. Better time reso-
lution corresponds to worse frequency resolution and vice versa. In the case
of F'T there is perfect frequency resolution but the time resolution is irrele-
vant since there is no temporal information at all. Using FT we can know
the exact frequency value instead of a frequency band, which however does
not violate Heisenberg’s uncertainty principle since we do not have any time
information at all. This becomes more clear if we see FT as a special case
of STFT, with FT using a window of infinite width. In the case of a finite
window, smaller window width corresponds to better temporal resolution
and consequently worse frequency resolution. Since window width must be
constant, the major drawback of STFT, especially in real-world applications
is that it is not possible to define a window width that gives a satisfactory
resolution trade-off for the whole duration of the signal. This is one of the
reasons Wavelet Transform (WT) is superior, which will become clearer in
the next section.

Briefly, using WT, time and frequency resolution are not the same for
all frequency bands, but the trade-off between them changes for different
frequency bands. In higher frequencies, WT provides better temporal res-
olution (consequently, worse frequency resolution) and in lower frequencies
better frequency resolution (consequently, worse temporal resolution). In
practice, this is really useful since usually high frequencies have short du-
ration, therefore appearing as ’spikes’, while lower frequencies have larger
duration, usually being present for the whole duration of the signal.

A > (3.4)
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3.3 Wavelet Transform

3.3.1 Wavelet Definition & properties

A wavelet is defined as a wavelike oscillation with an amplitude that begins at
zero, increases, and then decreases back to zero. In other words, a wavelet is a
function 1 (t) which is wavelike near the start of the axes and zero everywhere
else. For a function to be admissible as a wavelet, its mean must be zero and
it should also be localized both in frequency and time domains. In detail, a
wavelet function must meet the following three properties [20] :

/_00 Y(u)du=0 (3.5)

/OO V*(u)du =1 (3.6)

00 2
0 < Cy < oo,where Cy = / wdf (3.7)
0

The first property states that the integral of ¥() must be equal to zero,
consequently the deviations of the function above zero must be equal to its
deviations below zero. The second property states that the integral of ()
squared must be equal to 1, which means that the function cannot be zero
at all time points but there must exist deviations from zero and they should
be sufficiently small. The third property states that () must meet the
admissibility condition, which means that the original signal can be acquired
by using an inverse wavelet transform. Moreover, it should be mentioned that
in the case of a complex wavelet there is a fourth property which states that
the wavelet’s F'T must be real and equal to zero for negative frequencies [21].

3.3.2 Continuous Wavelet Transform (CWT)

While FT decomposes a signal into a sum of sines and cosines, CW'T de-
composes the signal into a sum of wavelet functions at different scales s and
translation 7, according to the following mathematical formulation of the
transform:

=T

W@;):% /_ () )i (3.8)
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CWTT is basically the representation of the signal’s frequency content over
time. As apparent in the mathematical formula, this is due to the convo-
lution of the signal with different wavelets which are variations of the so-
called mother wavelet. These wavelets are commonly referred to as daughter
wavelets because they are copies of the mother wavelet in a different scale s
and translation 7. Scaling of the mother wavelet enables decomposition of
the signal in different frequency bands while translation enables decomposi-
tion at different time intervals. Hence, it now becomes clear why WT can
provide different time-frequency resolution trade-offs, in contrast to STFT.
An example of a mother wavelet for different scale and translation values is
given in Figure 3.1. This wavelet is called Morlet wavelet and is a Gaussian-
windowed complex sinusoid wavelet defined as in the following formula:

Wo(t) = T e ot (3.9)

The second order exponential attenuation provides good time resolution,
while wy is the central angular frequency of the wavelet and defines the time-
frequency resolution trade-off. It can be proven that wy = 6 results in optimal
time-frequency resolution [22]. In the following section it will be described
in more detail how various mother wavelets can be ideal for different appli-
cations. Furthermore, the characteristics that affect the choice of mother
wavelet are listed and analysed, along with the choice of set of scales.
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Figure 3.1: Morlet Wavelet for different scale s and translation u values
(image taken from Kiymik et. al [22]

)

3.3.3 Choice of Mother Wavelet and scale

The choice of mother wavelet, along with the choice of scales are in general
important factors in time-series analysis, since not only they can provide
different time and frequency resolutions but also these choices should reflect
the data to be processed and what kind of information to extract from these
data. The following four factors are commonly taken into account as far as
the choice of mother wavelet is concerned [23]:

1. Width: Width is defined as the e-folding time of the wavelet’s am-
plitude, with e-folding time defined as the time interval in which an
exponentially growing quantity increases by a factor of exp. Wavelet
width in time and frequency domains define its resolution. For ex-
ample, a narrow wavelet function provides good temporal analysis but
bad frequency analysis. Conversely, a wide wavelet function provides
frequency resolution but bad temporal resolution.
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2. Shape: The shape of a wavelet function should reflect the character-
istics of the data to be processed. For example, in time series that
contain sudden leaps a boxcar-like function should be chosen, therefore
a function which is everywhere zero except for an interval where it takes
a constant value. However, in case we are just interested in the power
spectrum of a time series the choice of wavelet function is not critical
since all wavelet transforms decompose the signal into wavelets, hence
the energy spectrum of the signal remains the same after the decompo-
sition and is independent of the choice of wavelet function. However,
there might still be differences depending on the choice of scales.

3. Orthogonal or non-orthogonal: Choice of an orthogonal base implies
using DW'T while a non-orthogonal wavelet function can be used with
either DWT or CW'T. In the case of an orthogonal wavelet, the width
of the wavelet base in every scale proportionally defines the number
of convolutions in this scale. Hence, the wavelet spectrum contains
discrete blocks of wavelet power which is useful for signal processing
as it gives a compact representation of the signal. In the case of non-
orthogonal wavelets the wavelet spectrum is significantly correlated in
neighbouring time points at larger scales (corresponding to lower fre-
quencies) hence analysis is redundant at these points. Non-orthogonal
wavelets are suitable for time-series analysis where smooth and contin-
uous variations of the wavelet amplitude are expected.

4. Complex or real: There are real and complex wavelet functions. Their
difference lies in the kind of information they provide. For example, a
complex wavelet provides information about the amplitude as well as
the phase of the oscillation, which is useful in identifying oscillatory
behaviour, while a real wavelet function provides a single component
and can be used to identify peaks or discontinuities in the amplitude
of the signal.

The choice of a set of scales is also important and related to the choice of
wavelet function. If an orthogonal wavelet has been chosen then the choice
of scales is limited to a specific set of scales as defined by Farge et. al [23].
If non-orthogonal wavelets are chosen then an arbitrary set of scales can be
used. In this case, a larger number of scales generally gives better frequency
resolution but apparently also increases the computational cost since the W'T
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must be calculated for a larger set of scales. Scales are commonly written in
fractional powers of two [23]:

s; =502 § =1,2...0 (3.10)

J =65 logy (Né;so) (3.11)

Where s is the smaller scale and J defines the larger scale. The choice
of so must be such that the respective Fourier period is approximately ;.
Moreover, the choice of a sufficiently small d; depends on the width of the
wavelet function in its frequency-domain. For example, for Morlet wavelet,
9; around 0.5 is the largest value that gives sufficient sampling in the scale
space, while in the case of other wavelets larger values can also be used.
Generally, smaller §; results in better frequency resolution. It is possible to
define a direct correspondence between scale and frequency and it is quite
common in the visual representations of WT to replace the values in the
scale axis with the corresponding frequency values, due to frequency being
a more familiar measure. The following formula gives the relation between
frequency and scale:

F.
F, = A (3.12)

Where s is the scale, F. is the central frequency of the wavelet and A
is the sampling period. The reasoning behind this formula becomes more
obvious if it is taken into account that for a mother wavelet, which therefore
has not been scaled up or down, it is s = 1. Then, a periodical signal with
frequency equal to the central frequency of the wavelet can capture the main
oscillations of the wavelet. Accordingly, if the wavelet is scaled, this central
frequency will be F./s and if the sampling period A is taken into account
the formula of Equation 3.12 is derived.

3.3.4 Discrete Wavelet Transform (DWT)

Although calculating the CWT for a larger set of scales has the potential to
provide more fine grained frequency resolution, at the expense of extra com-
putational cost, there is still an upper threshold in the maximum resolution
that can be achieved due to Heisenberg’s uncertainty principle. DWT is an
alternative WT that can also provide multiresolution analysis and similarly
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to CWT can provide a good resolution trade-off. A major advantage of DWT
compared to CWT is that it can be computed very efficiently using filters
and downsampling. Specifically, at each level of the transform the signal is
passed through a high-pass and a low-pass filter simultaneously. The filters
are half-band filters, therefore divide a frequency band into two equal bands
and are applied to the original signal through convolution. Apparently,for
each filter’s output half the frequencies of the original signal are removed,
which means that half the samples can be discarded according to Nyquist’s
rule. The two filters h(k) (low-pass) and g(k) (high-pass) must be related
to each other and form a quadrature mirror filter (QMF), defined as a filter
whose magnitude response is the mirror image around 7 of that of another
filter:

g(k) = (=1)*h(1 — k) (3.13)

Moreover, the mother wavelet function v, (¢) and the respective scaling
function ¢;;(¢t) must form an orthonormal basis. This is mathematically
formulated as:

Gr10(1) =D hIK (3.14)

Vj+10(t) = Zg[/f]wj,k (3.15)

In essence, the mother wavelet function gives the ’detail coefficients’ of
the transform (Equation 3.17) while the scaling function which is orthonor-
mal with regard to the mother wavelet gives the ’approximation coefficients’
(Equation 3.16).

Ajiin Z Ajhjlk — 2n] (3.16)

Dji1n = ZA] kgjlk — 2n] (3.17)

It should be clear that changing the mother wavelet corresponds to chang-

ing the QMF. For example, if Haar wavelet is used, defined as ¢ = [—1,1],
then glK] = 5, — ) and hlK] = [ 5, 5]
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@ Approximation coefficients
x[n] ——b @ Detail coefficients

Figure 3.2: One level of DW'T, resulting in approximation and detail coeffi-
cients of the original signal

In essence, the input signal is transformed by being convoluted with each
of the bandpass filters and then each output is subsampled by 2 (Figure 3.2).
However, calculating the convolutions first and then applying downsampling
would be inefficient. The efficient calculations of DW'T is due to the Lifting
Scheme, according to which the signal is first divided and then convolution
and accumulation operations are applied to the divided signal parts.

The above procedure can be further repeated to its outputs. This way,
the approximation and detail coefficients can be further divided by applying
the same halfband filters as well as downsampling. In signal processing this
is referred to as a filter bank, defined as an array of band-pass filters that
separates the input signal into non-overlapping frequency sub-bands of the
original signal (Figure 3.3).

Level 3
coefficients

@ _'" @ E;;-i':f;:zients
x[n]——l" @ E:i%clients

Figure 3.3: A filter bank for 3 levels of DWT

Due to downsampling, in each level of decomposition the number of sam-
ples is half of the number of samples of the previous level. Consequently,
more samples are used for higher frequency bands. Similarly to CWT, this
means that higher frequencies have better time resolution. It is noteworthy
that the total number of DWT coefficients is equal to the length of the signal,
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hence for a signal that is 128 samples long the resulting wavelet coefficients
are also 128 in total (Table 3.1). On a related note, DWT assumes that the
input signal length is a power of 2. In practice though, there exist various
ways to deal with signals of other lengths as well, such as zero-padding or
periodic padding.

Level | Frequency Band | Samples
1 [fma:v/27 fmaz] 64
2 [fmaz/4; fnax/2] | 32
3 [fmax/&fmax/4] 16

Table 3.1: 3 decomposition levels for a signal with 128 samples and frequency
range 0 to fiaz

3.3.5 CWT vs DWT

CWT and DWT both have their advantages and disadvantages, each being
useful in different applications. A main advantage of DW'T is its fast, efficient
computation. In signal processing applications DW'T’s efficient computation
allows for fast decomposition and recomposition of the signal. When only
certain frequency bands of the signal are chosen to be recomposed by applying
the inverse transform, DWT can act as zone-band filter. Moreover, DWT
provides a very good energy compactification of the signal, therefore it is
a suitable method for compressing the signals. As mentioned, the wavelet
coefficients represent the frequency content of the signal over time, and their
total number is equal to the signal’s length.

On the contrary, for CWT the total number of coefficients is equal to
the number of different scales multiplied by the signal’s length. Thus, apart
from the extra computational cost, lots of the information provided by CWT
is redundant. On the other hand, CWT can potentially provide a more
fine-grained resolution, which can be useful in some tasks such as anomaly
detection. Moreover, CW'T is time-invariant while DWT is not, which means
that shifts in time-series can produce different results. However, there exist
variations of DWT that are time-invariant. Last but not least, by using
the CWT it is possible to get some measures that cannot be derived using
DWT. These measures can be acquired when pairs of signals are compared
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and they provide various types of information regarding first and second
order correlation between the signals.
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Chapter 4

Data Processing for
Time-Series Data

4.1 Introduction

The representation and quality of data is first and foremost before running
an analysis [24]. This chapter contains descriptions of the preprocessing
techniques that are employed for the task of this thesis. Data preprocessing
includes cleaning, normalization, transformation, feature extraction and se-
lection, therefore data preprocessing refers to all the operations applied to
the data until the final training data set is acquired. For conveniency, in the
scope of this thesis data processing is distinguished between preprocessing
(cleaning, normalizing and in general transforming data) and feature extrac-
tion and selection of data. Specifically, the preprocessing part is concerned
with normalizing and standardizing data, as well as handling outliers and
smoothing.

4.2 Data Processing for Time-Series Data

4.2.1 Data Preprocessing
Normalization & Standardization

One of the goals of applying normalization to a feature set is to scale the fea-
tures so that they lie in a common range. This way features are directly com-
parable, and furthermore the performance of machine learning techniques can
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be improved. For example, in several types of neural networks it is required
that the input data sets are normalized. If input data are not normalized, it
is quite possible that the effects of certain features are predominant, while
other features are practically not taken into account.

Standardization is quite similar to normalization, since it also performs
a rescaling of the data. However, instead of rescaling the data so that all of
them are in the same range, standardization rescales that data so that they
have zero mean and unit variance. One normalization method (min-max
normalization) and one standardization method (z-score) are defined next:

T — Tmin
L= L min 4.1
‘ Tmaz — Tmin ( )
= —H (4.2)
o

In the above equations, x is the value of one feature observation, x,,;, and
Tmaz are the minimum and maximum values of the feature vector respectively,
i and o are the mean and standard deviation of the feature vector, while
r, and z, are the new respective normalized and standardized values of the
observation. It should be noted that for the case of min-max normalization,
data are scaled to lie in [0, 1], although this range can be then modified to
be [—b,b] through a simple linear scaling.

Handling Outliers & Smoothing

The median filter is a nonlinear digital filtering technique, often used in signal
processing to remove outliers and noise. The main idea of the median filter
is to replace each time-series point with the median of its neighborhood. The
neighborhood is often called the window or the order of the median filter. For
a window with an odd number of points, the median is trivially calculated as
the middle value after all values have been sorted. If the window contains an
even number of points the median can be calculated in various ways, usually
by taking the average of the two middle values after sorting them.
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Figure 4.1: Plot a peaky time series and its smooth version after median
filter is applied

If the appearance of outliers is rare, a narrow window is enough to remove
them. However if outliers appear frequently and the signal is too noisy then
a larger window might be necessary. In general, the larger the window the
more intense the smoothing effect will be and the larger changes will be in
the original signal. Too small window size values might not remove or reduce
the outliers significantly, while too large values might distort the data and
consequently the information they might provide.

4.2.2 Feature Extraction from Time-Series
The necessity of feature extraction

Starting from an initial data set, the goal of feature extraction is to derive
values from the initial data, which derived values form the so-called feature
set. The mathematical definition of a data set is a r x ¢ matrix, where rows
r represent samples and columns ¢ represent features. Hence, each column
corresponds to a feature while each row corresponds to a sample, therefore
a vector with values for each feature. Since the initial data sets are often
large and contain redundant information, ideally feature extraction should
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result in informative and non-redundant data. Feature extraction is related
to dimensionality reduction, therefore the extracted feature set is usually
smaller than the original. Since in many real world problems the initial data
can be of huge size and possibly redundant as well, feature extraction is very
often a necessary process which can transform the initial data into data more
suitable for machine learning methods to be applied.

In general, feature extraction is almost always necessary for time-series
data. For example, assuming a sampling rate of 100Hz, each second of the
signal is represented by 100 data measurements, hence the number of samples
required to represent a signal that lasts one hour is too large, consequently
applying machine learning methods on such a data set would be very ex-
pensive computationally. Moreover, not all the information contained in the
signal is meaningful or important since signals may contain noise or infor-
mation that is irrelevant in the context of the respective application. Thus,
when machine learning algorithms have to be applied on time-series data
feature extraction is almost always necessary, since although it is possible to
apply machine learning algorithms to raw signals the computational cost is
high and the results are in general poorer. In the next section, some feature
extraction methods from recent literature are reviewed. Furthermore, possi-
ble variations of these methods are proposed, in order to provide a variety of
feature extraction methods and choose the most effective.

Feature extraction from time-series

There are some basic operations common to most feature extraction methods
on time series. First of all, signal segmentation is usualy an essential step for
lengthy signals. Signals can be segmented either using a standard window
length or other methods such as the Bayesian approach [25], where the signal
is segmented according to detected changes of its mean value and variation.
Then, from a machine learning point of view each window of the signal
represent a sample of the data set and the features derived from each window
represent the features for this sample. Features can be derived from the time-
domain of the signal or from the frequency-domain or both.

Prochazka et al. [26] use DWT to extract features from Electroencephalo-
gram (EEG) signals and then classify EEG signal segments. First, they divide
the signal into segments by using the Bayesian approach. Then features are
extracted from each segment by applying multivelel wavelet decomposition.
For each segment of length 2°; a filter bank is used with DWT being applied
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for s levels. As mentioned already in the respective chapter different tech-
niques such as zero-padding can be applied in case the input signal length is
not a power of 2. The resulting DWT coefficients are then used as features
that are fed to an self-organizing map (SOM) for classification. It should be
noted that it is also possible to compress the signal features in order to re-
duce the number of patterns that are fed to the SOM. The number of classes
is known beforehand and is equal to four, so the SOM in essence clusters the
signal segments into four classes. This methodology is compared with a sim-
ilar methodology with the only difference being that DFT is used instead of
DWT. DWT outperforms DFT for all experiments in terms of classification
accuracy and furthermore it results in more compact clusters.

Phinyomark et al. [27] also use DWT in order to extract features from
both the time-domain and the frequency domain of an electromyography
(EMG) signal and find the most optimal feature set in terms of class sep-
aration. They use a 4 level filter bank to get the wavelet coefficients of
the signal at different decomposition levels and furthermore they recompose
specific frequency bands of the signal. Then they extract frequency-domain
features by using the wavelet coefficients at different level and time-domain
features by the reconstructed signals that contain specific frequency bands.
Instead of using the wavelet coefficients as features, the mean absolute value
(MAV) and root mean square (RMS) measures are used. These are also the
extracted features from the time-domain recomposed signals. Then each of
these feature sets are evaluated in terms of class separability for 6 defined
classes, by using the scatter graph and the RES index, a statistical mea-
sure. It is found that the time-domain features recomposed from the detail
wavelet coefficients of level 1 and level 2 provide the best class separability.
This methodology is hence proved useful in defining the most informative
features, which is in essence the primal goal of feature extraction.

Kilby et al. [28] also analyse EMG signals although they use a slightly dif-
ferent approach. They use CWT first to analyze the frequency content of the
signal over time,for different scales. Then, by visual inspection of the scalo-
gram, the most dominant frequency components of the signal are selected.
For each of the selected scales, a signal which contains only these specific
frequency band is reconstructed. For each extracted signal three features
are derived: Mean Frequency (MNF), Median Frequency (MDF) and RMS.
MNF and MDF are frequency-domain features of the mean frequency and
median frequency of the signals power spectrum respectively, acquired by
taking the DFT of the signal, while RMS is a time-domain feature. It should
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be noted that despite, as mentioned, FT is not suitable for non-stationary
signals, this is a different case because the extracted signals contain specific
frequency bands of the original signal, hence the FT can provide some in-
formative features. For 5 different scales and 3 features at each scale, the
feature set consists of 15 features, which are fed to a multilayer artificial
neural network (ANN), which is trained and tested for various input signals.
For 30 different input signals, the lowest classification error is 3.33%, for an
ANN of 6 neurons at the hidden layer.

The above methods provide different alternatives for feature extraction.
Apparently some of these methods share a lot in common, such as signal
segmentation, decomposition of the signal’s frequency content via DWT
or CWT and extraction of time-domain or frequency-domain features. It
should be noted that more measures than described in the above methods
(MNF,MDF RMS,MAV) can be derived, such as zero-crossing rate (ZCR),
energy of the signal in time-domain, or average power of the signal or isolated
frequency bands of the signal in the frequency domain.

Apparently, finding the most optimal methodology for feature extraction
is application-specific, as it depends on the data and the specific task of the
analysis. Thus, alternative methods must be tried in order to find an optimal
one for the respective problem and furthermore these methods need to be op-
timized as they depend on some parameters, such as window length, choice
of scales (for CWT) or levels of decomposition (for DWT), choice of wavelet
function and choice of measures to derive. One way to optimize the feature
extraction process would be manually, by applying different methodologies
and different parametric setups for each respective methodology. However,
this is generally a naive approach since it requires manually running many
experiments. A more sophisticated approach would be to view the feature
extraction process as a formal optimization problem. The evaluation crite-
ria for an optimal feature extraction process is therefore the minimization
or maximization of an objective function. From this point on, two different
approaches can be tried. Evaluation can be performed either based on a
statistical measure for example the class separability of each feature set, or
based on the classification accuracy for each feature set used. The drawback
of the latter approach, commonly known as wrapper approach, is that evalu-
ation depends not only on the feature extraction but also on the classification
method used. Hence, from an engineering point of view it would be more
efficient and meaningful to first optimize the feature extraction process based
on a statistical measure (such as class seperability, cluster compactness or
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correlation with targets) and then possibly optimize the machine learning
task (such as classification, clustering, regression and more) separately.

4.2.3 Dimensionality Reduction, Feature Selection &
Transformation

Apart from feature extraction, the process of feature selection is also nec-
essary. While feature extraction involves generating new features out of an
existing data set, the goal of feature selection is to select an optimal subset
of features from an existing feature set. Ideally, the goal is to select highly
discriminative features, while discarding redundant features, therefore also
resulting in dimensionality reduction. In this section, some of the most com-
monly used dimensionality reduction techniques are briefly reviewed, such
as Linear Discriminant Analysis (LDA) and Principal Component Analysis
(PCA). Then, a recent framework for dimensionality reduction which can
result in highly discriminative low-dimensional space at a reasonable com-
putational time, Semi-Random Projection (SRP), is described along with a
proposed variation that makes it suitable for regression problems.

Furthermore, another approach for feature selection suitable for regres-
sion problems, Fast Correlation-Based Filter (FCBF) is also described. The
main reasoning behind FCBF is that for a regression problem, a highly dis-
criminative feature is one that shows high correlation with the respective
targets to be predicted. At the same time, a feature should also satisfy some
uniqueness criteria, therefore even if a feature is highly correlated with the
targets it might still be redundant to other features and should hence be
discarded.

Fast Correlation-Based Filter (FCBF)

As mentioned the goal of feature selection and also feature engineering in
general is to yield a final data set which contains high-quality features with
regard to the machine learning task at hand. The quality of a feature set
can be examined individually, therefore with respect to how informative this
feature is regarding the targets (class labels for classification problems or
numeric values for regression problems). In other words, this can seen as the
relevancy of a feature.

However, evaluating and choosing features based only on their relevancy
to the targets has some significant limitations, since a feature set might
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contain highly relevant features which are redudant. Apart from irrelevant
features, redundant features have also been shown to affect the speed and
accuracy of learning algorithms [29]. Hence, for a feature to be considered
good, not only does it have to be relevant but also not redundant to any of
the other relevant features chosen in the final subset.

Feature selection algorithms fall into two broad categories, the filter model
or the wrapper model [30]. The filter model relies on general characteristics
of the training data to select some features without involving any learning
(classification or regression) algorithm. The wrapper model requires one pre-
determined learning algorithm in feature selection and uses its performance
to evaluate and determine which features are selected. Thus, for each new
subset of features, the classifier or regressor has to be trained. The wrapper
method utilizes more information and usually outperforms the filter method
since feature subsets are evaluated according to the classification or regres-
sion performance. However, the wrapper approach can be prohibitive when
the number of features is large enough, since the number of possible feature
subsets to evaluate grows exponentially.

Yu et. al [31] propose a filter-based feature selection methodology that
can detect feature subsets with features that are both relevant and non-
redundant. As far as quantificiation of relevancy is concerned, two different
correlation measures are proposed: one is the linear correlation measures,
such as Pearson’s correlation, the other is based on information gain.

For the purpose of finding feature subsets that contain relevant but not
redundant features, the concept of predominant correlation is defined by
the authors as follows [31]: The correlation SU; . between a feature F; and
a class C' (or in general, the targets) is predominant if 1) the correlation
measure exceeds a predefined threshold ¢, therefore SU; . > ¢ and 2) there
exists no other feature F; that has a higher correlation with F; than SU;,
therefore AF} such that SU;; > SU;.. Consequently, a feature is defined
as predominant to the class (or targets) , if and only if its correlation to the
class (or targets) is predominant or can become predominant after removing
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its redundant peers.

Input: a data set X of d features S(F}, Fy, ..., Fy), class labels C
(classification) or target values T' (regression), threshold §

Output: optimal feature subset Spest
fori=1 to d do

calculate Corr; 7;

if Corr;r > 0 then

| append F; to Syg;
end

end
Order Sjg in descending order;
F, < getFirstFeature(Sys);
repeat
if F, # () then
repeat
Py Fy;
if SU,, > SU,r then
remove [ from Sy;
F, < getNextFeature(Sys, I );
end
else
‘ F, + getNextFeature(Sist, F);
end
until F, = (;
end
F,, < getNextFeature(Syst, F);
until 7, = 0;
Sbest < Slist;
Algorithm 4.1: Outline of the FCBF algorithm (pseudocode)

Dimensionality Reduction through Feature Transformation

Given that the data set is denoted by a matrix X where rows correspond to
observations or samples and columns to features, dimensionality reduction
can be mathematically formulated as a mapping from the original space to
a low-dimensional space according to the following formula:
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H=WTX (4.3)

Hence, H is the new low-dimensional representation of the data set, X is
the original data set and W is the linear transformation matrix. In essence,
a linear dimensionality reduction method is characterized by the way W
is computed. Two of the most common feature transformation methods
are Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA). The goal for both PCA and LDA is to find an optimal W for the
following optimization problem:

WTLW)
WTB
Depending on the quantities L and B different dimensionality reduction
schemes can be implemented.

W* = argmax Tr( (4.4)

PCA

PCA is an unsupervised dimensionality reduction method that projects data
into dimensions with maximum variance. For PCA, matrices L and B of
Equation 4.3 are determined as follows:

1

L=+ (o= &)@ —2) (4.5)

=1

B =1, (4.6)

LDA

LDA is a supervised dimensionality reduction that projects data into dimen-
sions that maximize discrimination between the various class labels. For
LDA, matrices L and B of Equation 4.3 are determined as follows:

L= ch(jc - j)(j;c - j)T (47>



B=Y (& —2.)@ ~7.)" (4.8)

i=1

Semi-Random Projection (SRP)

Although PCA and LDA are the most common dimensionality reduction
methods they have their limitations. The main drawback is that both these
methods are computationally expensive since determining the solution to
Equation 4.3 has a cost of O(d®). Moreover, PCA maps the data in such
ways that variance is maximized, but this transformation does not guarantee
a better classification or regression performance. As far as LDA is concerned,
although it does project features to dimensions that maximize discrimination
between classes, it requires class labels so it is useful only for classification
problems and not for regression ones.

Zhao et. al [32] have proposed Semi-Random Projection (SRP), a dimen-
sionality reduction method that employs LDA in combination with random
feature subsampling to determine the transformation matrix W, thus man-
aging to get the best of both worlds, a computationally fast dimensionality
reduction that also produces a space with discriminative power. After de-
scribing the proposed SRP, a variation of it will be presented which makes
it suitable for regression problems.

SRP is basically using the idea of Random Projection (RP) but in a
smarter way that allows learning from data. In RP, W is determined com-
pletely randomly, according to the following formula:

1 with prob p =
w;j =c{0 with prob p =
—1 with prob p = i

1
2c
1—

L (4.9)

Where ¢ is set to v/d. The fact that some of the weights of the transfor-
mation matrix are set to zero corresponds to a random subsampling of the
original data set. SRP employs this idea, but in contrast to RP the non-zero
weights are not assigned randomly but depend on the data. Specifically, d;
features are chosen each time from the original set of d features, and LDA
is performed on the subsampled feature set, projecting it into the first most
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discriminative dimension. This procedure is repeated r times until rw; trans-
formation vectors are produced, which means the new space will contain r
features. Since d, is typically set to a value around v/d, performing LDA
is significanly faster than performing it on the original set (O(v/d3) instead
of O(d?)). Specifically, in the ith iteration, the original data set is reduced
to a submatrix X;, which X is then projected to a one-dimensional space
according to the following formula:

h; = w;TX, (4.10)

The transformation vectors are determined from the data in accordance
to the LDA equations 4.7 and 4.8 , the only difference being that they are
performed on the subsampled reduced dataset X;. Specifically, the LDA
equations for the reduced data set become:

L= n(z.—7)(2—1)" (4.11)

B =) (v — %) (% — T,)" (4.12)

=1

The term n is a regularization term. Moreover, since instead of a trans-
formation matrix W a transformation vectow w is now computed at each
iteration, equation 4.3 now can be formulated as an eigenvalue problem:

Lo = AB¢ (4.13)

In the above equation, ¢ is the eigenvector and A its corresponding eigen-
value. Hence, the optimal transformation vector w; can be determined from
the optimal eigencvector ¢; corresponding to the largest eigenvalue A;:

W = v/ A (4.14)
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Input: data matrix of training samples X, labels y, number of
features in subset ds, number of dimensions/features in new
computed data set

Output: reduced dimensionality matrix H

for i =1 to r do
randomly select d, features from the original dataset

perform LDA on the reduced training subset and project subset to
first most discriminative dimension
project respective test subset accordingly

end

Algorithm 4.2: Outline of the SRP algorithm (pseudocode)

SRP for regression problems (SRP-PCA)

As stated, the proposed SRP is suitable for classification problems since it
employs LDA, which uses class labels. If SRP is to be used in a regres-
sion problem, as in the current thesis, it has to be modified. One apparent
modification would be to convert the known targets of the training set into
class labels. After this conversion, SRP takes place exactly like described in
the previous section. However, issues arise with this approach regarding the
number of classes to divide the samples and corresponding targets into, as
well as what criteria to employ in order to assign samples to each class.

An alternative approach would be to just replace the LDA with PCA in
the SRP algorithm. The difference is in the way the subset is projected to a
one-dimensional space each time: In the case of original SRP the projection is
such that it maximizes discrimination between classes, in a supervised learn-
ing way, while in the case of the proposed SRP-PCA variation the projection
is such that the variance is maximized. The computational complexity of the
algorithm remains the same in both cases ( O(Vd3) ).
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Input: data matrix of training samples X, labels y, number of
features in subset d, number of dimensions/features in new
computed data set r

Output: reduced dimensionality matrix H

for i =1 to r do
randomly select d, features from the original dataset

perform PCA on the reduced training subset and project subset to
dimension that maximizes variance
project respective test subset accordingly

end

Algorithm 4.3: Outline of the SRP-PCA algorithm (pseudocode)
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Chapter 5

Evolutionary Optimization

5.1 Introduction

Evolutionary optimization refers to a family of meta-heuristic algorithms,
commonly called Evolutionary Algorithms (EA) that share in common the
adoption of Darwinian biological concepts. As metaheuristic algorithms, they
are designed to generate solutions that are sufficiently good for an optimiza-
tion problem, for which usually none or limited information exists, while
computational capacity is also limited [33]. In general EAs, as metaheruis-
tic algorithms, traverse the search space intelligently instead of exhaustively.
This is typically done by generating a population of candidate solutions.
This population is evolved according to biological evolution concepts such
as mutation, recombination and natural selection. One of the most signfi-
cant advantages of EAs is that few or no assumptions about the optimization
problem are made, which makes them suitable for a variety of problems where
the search space is multi-dimensional and no information is available [34].
In the scope of this thesis, the EA used is Evolutionary Strategies (ES).
Like most EAs, ES employs stochastic optimization, meaning that traversal
of the search space depends on probabilistic generation of random variables.
Moreover, self-adaptation is used for parameter learning, therefore for in-
stance the parameters that affect mutation are learned dynamically as the
population evolves in each iteration. In the rest of this chapter, first the stan-
dard ES algorithm is outlined and then several modifications are proposed
which are applied with the aim of augmenting it. The next section assumes
some basic background on ES and EAs in general, hence the processes of the
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standard ES version are described briefly. For a more extensive insight into
the theory of ES and EAs the reader can refer to [35].

5.2 Evolutionary Strategy (ES)

The representation of a candidate solution, corresponding to an indivual of
the population, depends on the problem-specific search space, for instance
on the dimensionality of the objective function to be optimized as well as
its function domain. In the scope of this thesis, the search space is real-
valued and defined for a specified continuous range. According to the basic
outline (Figure 5.1), the population is first initialized and then recombination,
mutation and selection are applied in a loop, with each iteration of the loop
corresponding to each generation of the population of candidate solutions.
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5.2.1 Standard ES

’ ES Initialization!

initialize
population {eg randomly)

Y
Evaluate initial population
o S main loop|
Y
Recombine population
‘,_f"""
v

Mutate population

¥
Evaluate population

Y
Population selection

________________________

Figure 5.1: Outline of a typical ES algorithm

Recombination

During recombination individuals share information by creating new individ-
uals (hereby referred to as offsprings) through exchange of their coordinates.
Four different types of recombination were tried, which can be categorized
into Intermediary (global or in groups) and Discrete (global or in groups)
recombination.

Mutation

During the mutation process individuals (commonly referred to as parents)
produce new individuals (commonly referred to as mutants) whose positions

44



depend on a normal distribution which is centered around the parent indi-
vidual and has its variance defined by the step-size of the parent. In the
current approach, individuals are treated as agents, while each agent uses
different individual step sizes for every dimension of the search space. These
step sizes also undergo mutation, according to global and local learning rates
, using the values suggested by Schwefel for all agents. This approach can
improve the adaptation of the individuals in the search space as there is the
potential for diverse subpopulations that can adapt to the search space in
different ways. Typically, in standard ES usually normal distribution is used,
but other distributions such as uniform and log-normal distribution can be
tried.

Selection

Initially, two different selection schemes are implemented. The first one is
the greedy (u + A)-selection that selects the p best individuals out of the
group of u parents plus the A mutants and offsprings, resulting from muta-
tion and crossover respectively. The second one, (u,\)-selection keeps the
1 best individuals out of the group of A mutants and offsprings. In the fi-
nal implementation a combination of these schemes is used, with the details
described in the next section.

5.2.2 ES modifications

These modifications regard: 1) a mechanism to deal with individuals whose
position are outside the limits of the search space 2) an more sophisticated
selection scheme that combines (1 + A) and (p,\) selection 3) a more sophis-
ticated mutation scheme that imitates the properties of Covariance Matrix
Adaptation while maintaining a linear time complexity.

Reposition of solutions that violate search space boundaries

Since the coordinates of the population might violate the limits of the search
space, a mechanism to deal with out of range positions should be imple-
mented. A mechanism inspired from Particle Swarm Optimization (PSO), a
swarm based optimizer where the position of an individual depends on the
individuals best known position and the global best known position. In the
proposed implementation one way to deal with individuals that are out of
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range is to distribute them around the current best of the population. This
simplified PSO mechanism is applied only to a certain percentage of the out
of range individuals according to a predefined probability. The other mech-
anism that deals with the rest of the out of range individuals is to reposition
their violating coordinates within a normal distribution around respective vi-
olated limits of the search space. The motivation behind the PSO mechanism
is to reduce possible function evaluations lost due to out of range positions as
well as to potentially make advantage of such cases by integrating a simplified
PSO search behaviour which in practice generates more candidate solutions
near the best individuals of the population.

Mixed Selection Scheme

The implemented mixed selection scheme was inspired by Kramer [36] and
was originally used for constraint-based optimization problems in order to
separate the population in two different groups, one according to the mini-
mum fitness found and the other according to the minimum number of con-
straint violations. This is achieved by employing a modified selection scheme:
my individuals are selected from the m parents according to minimum num-
ber of constraint violations and m—myg individuals from the A new individuals
according to minimum fitness.

Directed Mutation

Covariance Matrix Adaptation (CMA) is commonly used in ES algorithms
as a means to rotate the coordination system. A covariance matrix is gen-
erated from the respective individ ual uncorrelated step sizes by multiplying
with n % (n — 1)/2 rotation matrices. This covariance matrix is then used
to define the positions of the offsprings according to a multivariate normal
distribution. Apparently, the advantage of this method is the increased direc-
tionality it provides, therefore its easier to escape premature convergence and
global search is potentially more efficient. However, the disadvantage of this
method is the increase in complexity of the mutation process to quadratic
instead of linear. The performance is notably slower, especially if a different
covariance matrix is estimated for each individual agent. Hence, it was our
choice to experiment with other modifications in order to increase poten-
tial directionality and global search behavior, with the complexity remaining
linear.
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Comparison of standard mutation (solid), directed
mutation (dotted), and biased mutation (dashed) with bias b.

Figure 5.2: Mutation Operators Comparison

The idea of Directed Mutation Operator (DMO) and Biased Mutation
Operator (BMO) techniques was inspired from Kramer et. al [36]. Both
these modifications alter the positions of the generated individuals (mutants).
DMO achieves this explicitly by altering the skewness of the data, therefore
adds a move to the positions of the mutants, while BMO moves the mean
of the distribution to be used for the generation of mutants (Figure 5.2).
In the current implementation, a small move is added to the positions of
the mutants, according to a DMO operator that is learned and controlled
similarly to the step size. Furthermore, the size of this movement is bound by
the step size. DMO can be divided in two cases, according to how the directed
movement is calculated. In the first case, the directed movement is generated
randomly. In the second case, the directed movement is learned, based on
the previous generated movements. In the current implementation, at first
the directed movements are all generated randomly and then a percentage of
them is learned while the rest are still generated randomly at each generation.

5.2.3 ES parameter tuning (meta-ES)

As far as parameter tuning is concerned, it is a common practice to perform
several experiments with some predefined values for the parameters to be
optimized. Since this is a rather naive method, we decided to use meta-
optimization, therefore we used an ES optimizer to tune the ES parameters.

47



The advantages of this choice are several, for the same reasons a metaheuristic
optimization algorithm such as ES is superior over exhaustive search. The
advantages become much more obvious as the number of parameters to be
optimized grows. The metaES enables efficient tuning of a large number of
parameters and consequently enables us to parametrize more processes in
the current implementation instead of using parameters with fixed values.

The meta-ES runs exactly the same algorithm as the ES (Figure 5.1)
, the only difference being in the evaluation function that is used. In the
case of meta-ES, evaluation of an individual corresponds to evaluating the
fitness of a parametetric setup, which is done by running the nested ES for a
given objective function and a given number of runs and evaluation budget.
Thus, a single evaluation of the meta-optimizer corresponds to the whole
evaluation budget of the nested ES, multiplied possibly by the number of
times the nested ES is run.

Input: population matrix X, objective function func, budget b,
number of runs r

Output: fitness vector f

decode population values into actual parametric values

for each individual x; of the population do
run ES with parameters x; for the given function ,budget b and
number of runs r
fi = mean f,,; over all r runs

end

Algorithm 5.1: The evaluation stage of the meta-ES

The population of the meta-ES represents parametric setups, with a pa-
rameter representing a dimension of the search space and the parametric
ranges representing boundaries of the search space.

An encoding of the parameters takes place using min-max normalization
(Equation 5.1 ) so that they all lie in the same range, which in here is chosen
to be [0, 1]. These values are then decoded when needed for the evaluation
part (Equation 5.2). The main reason that parameter normalization is neces-
sary is due to the presence of discrete parameters (such as selection scheme,
or recombination type) along with continuous ones.

f= LT Tmin (5.1)

Tmaz — Tmin
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T = Tmin T+ f (xmax - $m7,n) (52)

The meta-ES is capable of finding various, diverse optimal parametric
setups for various objective functions. Hence, for the current impementation
that includes that aforementioned modificiations and a large number of pa-
rameters, and depending on the optimization problem at hand, the meta-ES
is able to find different parametric setups that result in good performance.
Thus, the meta-ES has the potential to be a useful tool that can perform
efficient application-specific parameter tuning of the ES.
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Chapter 6

Maintenance Decision Support

6.1 Introduction

This section deals with the maintenance decision support system, designed
to diagnose tool life of CNC milling machine cutter based on a feature set
exracted from collected time-series data. The aim is to use Extreme Learning
Machine (ELM), a specific type of neural network, in combination with ES,
in order to find a stable model able to predict tool wear accurately.

6.2 Supervised Learning

6.2.1 Artificial Neural Network (ANN)

Artificial Neural Networks (ANN) are types of network inspired from biolog-
ical neural networks, where nodes correspond to neurons and edges between
the nodes correspond to synaptic weights. ANNs can show great flexibil-
ity, depending on their structure and the activation functions used, which
makes them suitable for a variety of applications. ANNs are shown to have
the universal approximation property, meaning that they can approximate
any function given enough training examples. ANNs are characterized by a
multi-layer structure, typically having an input layer, one ore more hidden
layer and an output layer (Figure 6.1). Each layer contains nodes, and each
nodes applies an activation function to the summation of all its inputs.
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hidden layers

output layer

input layer

Figure 6.1: The generic structure of an ANN

6.2.2 Extreme Learning Machine (ELM)

ELM is in essence a standard feedforward NN with a single hidden layer that
can be trained very fast since no iterations are required. The input layer
weights are assigned randomly, while the hidden layer weights are determined
analytically in one step. A standard ELM with a single hidden layer and N
nodes in the hidden layer is described according to the following equation:

N
i =Y hif(Wi,x;) (6.1)
k=1

N is the number of samples in the dataset, y; is the output of the ELM
for sample x;, wy stands for the weights and biases of the kth node, Ay is the
weight that connects the k;h hidden element with the output layer and f the
activation function used (eg sigmoid). The above equation can be written in
compact form as:

y = Gh (6.2)
h is the vector of weights of the output layer and G is given by:

fwi,x1) ... f(wn,x1)
G —

f(wi,xp) ... f(wn,xp)
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Accordingly, the mean square error (MSE) function F(w) to be minimized
is given by the following equation:

P
B(w) = (y(xn;w) — t,)? (6.3)
n=1
Since the weights that connect that input and the hidden layer are as-
signed randomly, the output weights h that minimize the error function given
by Equation 6.3 are calculated by Moore-Penroses generalized inverse of G
according to the following equation:

hept = (GTG)'GTT (6.4)

where T is the vector of targets.

6.2.3 ES-ELM

As mentioned, randomly assigning the input weights (connect input layer
with the hidden nodes) and bias allows for an one-step calculation of the
output weights (connecting the hidden layer with the output layer), there-
fore makes ELM extremely fast, while at the same time might, under some
circumstances, improve the generalization capabilities of the network. How-
ever, the random assignment of input weights has its drawbacks as well, the
main drawback being that randomness can cause unstable performance with
lots of variance.

In this section, a modification of ELM is proposed where, instead of using
random assignment, the input weights are being optimized by using an ES.
The output weights are still determined analytically in such a way that the
training error is minimized, by using the pseudoinverse as in Equation 6.4.
The objective function to minimize is in essence the test error of the classifer
or the regressor, therefore ES is trying to find optimal input weights and bias
that minimize the error on the test set.

However, using the test set and its corresponding labels or targets to op-
timize the weights or other hyperparameters can lead to unrealistic, biased
performance. Specifically, in this case, different input weights are tried and
evaluated each time, using information from the test set to evaluate them.
Hence, it is almost certain that an optimal weight vector will be found that
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minimizes the test error sufficiently, but the same weight vector will per-
form very poorly on an unknown test set, therefore the actual generalization
capabilities of the ELM will be poor.

Another optimization scheme would be to find an optimal weight such
that the training error is minimized. The problem withthis approach is over-
fitting, therefore despite a minimized training error that will probably be
quite low, the error on a test set will be much higher, hence the generaliza-
tion capabilities of the ELM will still be poor.

A much better approach would be to optimize the k-fold CrossValidation
(CV) error instead of the train set error or the error of a single test set. This
way, an optimal weight vector is one that minimizes the mean CV error,
therefore the optimal vector to be found by the ES must minimize the test
error on all k folds. Thus, the goal of this scheme is to find a stable model
where the model’s parameters can yield efficient performance for various test
sets. In this case, the model’s parameters are the input weights of the ELM,
but optimization can include more parameters such as the number of nodes of
the ELM, or parameters that affect feature extraction or feauture extraction
process. The mathematical formulation of the optimization problem to be
solved by the ES are to be found next.

The goal of optimization is to minimize an objective function, which in
this case takes as value the average MSE of a k-fold CV scheme for a given
input vector x .

f(x)=>_ MSE(x,CV fold;) (6.5)

Each CV fold represents a different split of the dataset into training set
and test set, therefore there is a different training set and testset for each fold.
The MSE for each CV fold is given by Equation 6.3, where x of Equation
6.5 corresponds to the weights and bias of the input layer of the ELM.

Consequently, the function domain is a vector x, with the vector dimen-
sionality depending on the number of weights and bias of the input layer,
which in turn depend on the dimensionality of the feature set d and number
of nodes N in the hidden layer in the following way:

#dimensions = dN + N (6.6)
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In this formula, the product dN corresponds to the number of elements
in the d x N input weights matrix while the second term N corresponds to
the length of the 1 x N vector of the bias weights.

6.2.4 Regularized ES-ELM (ES-RELM)

Despite employing ES to minimize the mean CV error and find a stable para-
metric model, it is still possible that the solution found is suboptimal and
that the classifier or regressor does not generalize well enough. A regular-
ized version of ELM can further aid in finding a more optimal model with
improved generalization capabilities.

Calculating the weights that connect the output and the hidden layer of
the ELM can be seen as a regression problem between the hidden and the
output layer, described by the following equation:

E(W) = (4o — 2nW)’ (6.7)

This is in essence a rewriting of Equation 6.3 with a different notation in
order to avoid confusion since Equation 6.7 describes the regression between
the hidden layer and the output layer, and not between the input and output
layer like in the case of Equation 6.3. According to this notation, in Equation
6.7 and the following Equations 6.8 & 6.9, P is the total number of samples,
Z, is the output of the hidden layer for the ny sample, v, is the actual
target value of the sample, w is the weight vector between the hidden and
the output layer, while the rest of the variables are notated the same way as
in Equation 6.3.

Regularization in essence adds an extra constraint on the minimization
problem. In the case of regularization, an optimal solution w must not only
minimize the mean square error between the predicted and the true targets,
but also minimize a term that includes w. For example, for the case that the
first norm of the weights is used, the error function to be minimized becomes
as follows:

E(w,\) = Z (Y — 2, W)2 + A Z |w;] (6.8)

=1

The added term to the error function is named L1 penalty, because the
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first norm of the weights is used, while the respective minimization problem is
also known as LASSO (least absolute shrinkage and selection operator) [37].

Accordingly, if an L2 penalty term is added to the error function, the error
function takes the following form, also known as Tikhonov regularization or
ridge regression problem:

Mw

N
— 2, w)? + A Z w? (6.9)
n:1 i=1

In general, an optimal solution to the ridge rigression problem outper-
forms the Lasso solution in cases were the variables are highly correlated
with each other [37].

A hybrid solution combining both L1 and L2 penalties called elastic net
is proposed by Zou et. al [38], as a means to overcome the drawbacks of the
L1 and L2 approaches. Specifically, elastic net combines both penalties in a
weighted manner as given by the following equation:

P N N
Z n— T W) +/\12|wi| +)\2wa (6.10)
i=1 i=1

n=1
The equation can be rewritten as follows, where o controls whether the
penalty term is closer to the L1 or L2 norm:

P
1—
(Yn — T W) +>\Zawz Q2 (6.11)

n=1

Elastic net is the same as LASSO when a = 1 (only an L1 penalty exists).
As a tends toward 0, the elastic net approaches ridge regression (L2 penalty
becomes predominant).

Apparently, two X\ values are included in the equation, \; and Ay which
therefore need to be optimized. Typically, optimization of the A; and Ay (or,
if Equation 6.11 is used, A and «) is done using CV, which can be costly es-
pecially since a two-dimensional search is needed [39]. Tt is hence proposed to
also include these parameters in the proposed ES-ELM optimization scheme.
This has significant advantages over using CV, since in CV a predifined set of
values is tried out, and the search space is searched in an exhaustive manner,
while as mentioned ES traverses the search space more intelligently and the
parameters to be optimized can be tested in a continuous range.
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Chapter 7

Experiments and Results

7.1 Problem Description

The experimental part of this thesis is concerned with the estimation of re-
maining useful life (RUL) for high-speed CNC milling machine cutters based
on collected condition data. The condition data collected for this task can
be divided into three types of measurements: 1) force measurements, 2) vi-
bration measurements and 3) acoustic emission measurements. The data are
taken from the 2010 PHM Society Conference Data Challenge.

The current problem is of importance since tool failure may result in
losses in surface finish and dimensional accuracy of a finished part, or possible
damage to the work piece and machine [16]. It is hence important to find a
way to predict tool wear, in order to schedule the cutting process accordingly
and avoid inaccuracies or even worse surface damage or machine damage.
Monitoring of tool wear in order to prevent surface damage is considered as
one of the difficult tasks in the context of tool condition monitoring [40].

Specifically, the task is to predict the wear of the cutter’s flutes (Figure
7.1). In this thesis, the CNC milling cutter examined uses a triple flute
(Figure 7.1c). Diagnosis of tool wear corresponds to modelling the flutes’
wear based on the measured time-series data. According to this model, it is
possible to estimate how many cuts can be perfomed until the flutes need
replacement, defined by a given upper limit in the flute wear. It is then
possible to create a cutting schedule according to this model. Thus, it should
be apparent that tool life is correlated to tool wear, therefore RUL estimation
is performed implicitly through tool wear diagnostics.
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!
(a) Single flute (b) Double flute (c) Triple flute

Figure 7.1: Single, double and triple endmill flutes of a CNC
milling machine cutter

7.2 Data

7.2.1 Data Acquisition &Description

All the data are time-series acquired from dynamometer, accelerometer and
acoustic emissions, for each of the 315 cuts. Specifically, there are 7 moni-
tored signals for each cut: 3 signals for force measurements (in N) in dimen-
sions X, Y and Z respectively, 3 signals for vibration measurements (in g)
in X, Y and Z respectively and 1 signal that measures the root mean square
(RMS) value of acoustic emissions (in V).

The data acquisition details are similar to the paper by Li. et al [16],
although it should be noted that Li. et al examined CNC milling machine
cutter with double flute instead of triple and probably different operating
settings too: In the current thesis, the spindle speed of the cutter was 10400
RPM; feed rate was 1555 mm/min; Y depth of cut (radial) was 0.125 mm; Z
depth of cut (axial) was 0.2 mm. For the data acquisition, a Kistler quartz 3-
component platform dynamometer was mounted between the workpiece and
machining table to measure the cutting forces in the form of charges, and
converted to voltages by the Kistler charge amplifier. Three Kistler piezo
accelerometers were mounted on the workpiece to measure the machine tool
vibrations of cutting process in X, Y, Z direction respectively. A Kistler
acoustic emission (AE) sensor was mounted on the workpiece to monitor the
high frequency stress wave generated by the cutting process.

Each of the 315 cuts is accompanied by a wear file listing the wear (in 1073
mm) of each of the 3 flutes after the respective cut. All signals are sampled
at a frequency rate of 50kH z, although each signal can vary in length. The
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time-series data as well as the respective wear data are all in CSV format.
The size of all the collected time-series for each cutter is approximately 1GB.
The wear value of a flute is in essence indicative of the damage caused to the
flute. It should be apparent that the wear can only increase after each cut
(Figure 7.2a). Diagnosis and modelling of flute wear is revolved around the
maximum wear value out of the three flutes (Figure 7.2b).

wear (10° mm)

wear (10° mm)

flute 1

flute 2

flute 1 o flute 3

flute 2 | +  maximum wear
flute 3 0 . L

' 1}

L n . n
L L L L L &0 100 160 200 250 300 380
50 100 150 200 250 300 350 cut

cut

(b) Maximum wear of all 3 flutes

1131 f
(a) Wear across all 3 flutes for cutter ¢y highlighted for cutter ¢;

Figure 7.2: a) Wear values after each cut for all 3 flutes for
cutter ¢; b) maximum wear highlighted (7.2b) for cutter ¢,

7.2.2 Feature Extraction

Since all data are time-series data, features have to be extracted from the
original time-series data before the data set can be used as input to the
algorithms used for the prediction process. Each feature value is extracted
from each of the 7 types of signals for each of the 315 cuts , for all 3 available
cutters. Thus, the feature set that represents each cutter is a Nxd matrix,
where d is the total number of extracted features and N = 315 is the number
of observations.

The type of extracted features can be categorized into time-domain,
frequency-domain and time-frequency domain features (Section 4.2.2). The
extracted time-domain features are Mean Absolute Value (MAV) and Zero-
crossing rate (ZCR) (Figure 7.3), the frequency-domain features are mean
frequency (MF) and median frequency (MDF) (Figure 7.4), while the time-
domain frequency features are the average wavelet power at 9 different scales
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corresponding to 9 frequency bands, acquired through CWT.
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Figure 7.3: Time domain features extracted from force (Fx,Fy),
Vibration (Vz) and AE signals for cutter ¢

It can be seen that the MAV of force and vibration signals grows higher,
which makes sense since higher tool wear values mean that higher force has
to be applied in order to cut the piece. No useful information appears to be

provided as far as ZCR is concerned.
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Figure 7.4: Frequency-domain features extracted from force
(Fx,Fz), Vibration (Vx) and AE signals for cutter ¢

It can be seen that for some cases (Figure 7.4b, 7.4d ) median frequency is
a constant feature. For the rest of the cases, although there can be seen some
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relevancy to the targets especially regarding mean frequency, the features
seem to contain large outliers and be noisy. In general it can be said that
the quality of frequency-domain features is significantly lower than that of
time-domain (Figure 7.3 ) or time-frequency domain features (Figure 7.5).
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Figure 7.5: Time-Freq domain features extracted from force
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From the time-frequency features it can be seen that some frequency
bands (the 3 lowest ones) are more dominant than others (Figure 7.5). How-
ever, the extracted information from different frequency bands seem to be
highly correlated, which can be seen more clearly in the normalized feature
set of Figure 7.6.
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Figure 7.6: Normalized Time-Freq domain features extracted
from force (Fx,Fy) and Vibration (Vz) signals for cutter ¢

In general, it can be observed that the extracted features contain outliers,
therefore observations that are distant from the rest of the observations.
Specifically, it can be seen that after certain cuts, the observed measurements
show deviations and fluctuations, which in overall results in a peaky and noisy
feature set. These kind of fluctuations make the features less relevant and
consequently might be an obstacle for the machine learning stage. Despite
the outliers, which are present in all three types of features, it is noticed that
time-frequency domain features and in some cases time-domain features can
be informative and relevant to the targets, while frequency domain features
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are the most noisy and irrelevant. It is also noticed that extracted features
from force and vibration signals are generally informative, while acoustic
emission signals are much more noisy and irrelevant.

According to the above, one way to improve the features would be to
remove or replace the outliers and smooth out the feature set as well. One
way to achieve both goals would be to use the median filtering method pro-
posed in Section 4.2.1. Median filtering can both smooth out the observed
set and also attenuate the effect of outliers, as can be seen in Figure 7.7.
However, although there is a small improvement in the sense that features
seem smoother and the outliers are reduced or show smaller deviations, the
aforementioned drawbacks of the features still remain: many of the features
are not relevant enough to the targets, while even the features that show
higher correlation to the targets are highly redudant, therefore providing
very similar information. This can be seen as a sign that further feature
engineering or feature transformation is required with the aim of facilitating
the next stage of machine learning and regression in specific.
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Figure 7.7: Normalized & Smoothed Time-Freq domain features
extracted from force (Fx,Fy) and Vibration (Vz) signals for
cutter ¢;

A closer examination of the targets (Figure 7.2) might hint at what could
be a useful transformation of the features. As mentioned, the wear can only
increase or stay the same after each cut, which consequently means that the
wear is a monotonic function with regard to the number of cuts. Moreover,
the wear of a flute at each cut depends on the wear value of the previous cut,
which in turn depends on the previous cut, and so on. Hence, the wear value
of a flute depends on all previous cuts.

Taking these two points into account, it should be clear that ideally a
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single relevant feature should meet the following criteria: First, it should
have to be a monotonic function with regard to the number of cuts (although
not necessarily increasingly monotonic) and secondly it should depend on all
the previous feature values corresponding to earlier cuts. Accordingly, an
efficient way to transform the features would be to take the cumulative sum
of the feature values at each of the 315 cuts instead.

This approach is convenient and effective since all outliers are removed
and features are smooth (Figure 7.8), plus at the same time features have
the potential to become more relevant to the problem to targets. Indeed,
it is found that the correlation of all features with the targets is increased.
However, there is still high redudancy among the features. It should be noted
that although these remarks are about cutter ¢;, they hold valid for the other
two cutters ¢4 and cg. A plot of all features, for the cumulative case, for all
3 cutters can be found in Figure 7.9.

Since the number of total features is 91, a dimensionality reduction
method should be applied in order to reduce the number of features and
consequently the number of required numbers and the search space for the
ES optimization scheme. For this purpose, the variation of SRP suitable for
regression problems (Section 4.2.3) is used. Before using the SRP-PCA algo-
rithm, the number of features is first reduced either by selecting the features
that show that highest correlation with the targets, or by using FCBF (Sec-
tion 4.2.3) which also takes into feature redudancy. The final feature sets for
all 3 cases of a 3-fold CV scheme can be seen in Figure 7.10.
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7.3 Regression & Wear model

Once the final feature set is acquired it is fed as input to the maintenance
decision support system. Within the scope of this thesis, experiments have
been performed with different types of feedforward neural networks used as
regressors, where the feature set is fed to the input layer of the neural network
and the output layer corresponds to the predicted wear values.

As mentioned already in Section 6.2 feedforward ANNs and ELM both
have their limitations. Briefly, ANNs are slow to learn the weights due to
the iterative nature of the back-propagation algorithm, and furthermore it
is quite probable that back-propagation gets stuck in local optima. On the
other hand, ELM might be fast and avoid iterative learning, but the totally
random assignment of the input weights and biases results causes large vari-
ance in the performance. Hence, all the experiments reported here involve
employing either ES-ELM or ES-RELM ( proposed in Section 6.2.3). All
experiments that are reported here use 10 nodes in the hidden layer.

As far as the ES optimization part is concerned, both experiments involv-
ing ES-ELM and ER-RELM aim in finding a stable model, in specific a set
of input weights and biases that minimize the average MSE for 3-fold CV.
Since all experiments involve 10 nodes and a final number of 4 features, the
objective function to be optimized by the ES has 4 %10+ 10 = 50 dimensions
(according to Equation 6.6) or 50 + 2 = 52 dimensions for the case of ES-
RELM where regularization is used through the elastic net (Equation 6.11).
Using a higher number of nodes should not change the results dramaticaly
because regularization is used by means of elastic net which applies a mixed
L1 and L2 penalty. Thus, many of the weights connecting the nodes of the
hidden layer with the utput layer are practically pruned or forced to take
lower values, affecting the output in a lesser degree. Moreover, it is note-
worthy that median filtering (Section 4.2.1) with a neighborhood size of 11
is applied at the output of the layer. In practice this is found to perform
better, most likely because the predicted output is smoothed by taking into
account the neighborhood of a prediction instead of a single prediction. This
way, it is possible for the ES to find some solutions that can be improved
when median filtering is applied at the end. Hence, overall there is a slightly
increased probability of finding better solutions. The evaluation budget for
all experiments reported here is 5000 objective function evaluations.
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For the case where PCA is performed at the whole feature set of 91
features, the ES-ELM without regularization yields around the same results
as for the case where FCBF and SRP-PCA are performed. However, when
regularization is used, ES-RELM performs much better. The first experiment
gives an MSE of 80 (Figure 7.13a), which is further optimized to 75 (Figure
7.13b). The results containing the average MSE of the 3-fold CV for the 2
feature sets with ES-ELM and ES-RELM are summarized in the following
table. The parameters of the elastic net for the ES-RELM experiments are
A = 1.68 and alpha = 0.84 for the FCBF + SRP-PCA case and A = 0.26
and alpha = 0.66 for the PCA case.

Experimental Setup | FCBF+SRP-PCA PCA
ES-ELM 412.26 (5.38) 464.44 (5.31)
ES-RELM 221.42 (5.31) 70.14 (16.43)

Table 7.1: Average testset MSE for the 3-fold CV (average trainset MSE
error in parenthesis)
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Chapter 8

Conclusions & Discussion

In conclusion, it can be said that the main bottleneck of the framework
lies in the feature extraction and feature selection part. Initially, the time-
domain features extracted from the raw time-series using Continuous Wavelet
Transform seem to be the most informative, although all features are noisy
and contain outliers. Transforming all features by using the cumulative values
at a given cut, therefore summing up all previous extracted features from the
previous cuts, seems to be crucial and is recommended as an important and
useful step for tool condition monitoring of CNC milling machine cutters,
for the reasons explained in the previous chapter. The number of different
scales for wavelet analysis is 9, which means that analysis is perfrormed at
9 different bands. Since in the scope of this thesis the interest is on the
average wavelet power at each band, and there is high correlation between
different frequency bands, choosing a different number of bands is in general
not crucial to the feature extraction process and the final results, provided
of course that this number is not too low.

Furthermore, it is confirmed that EAs and in specific the proposed ES
can be useful as far as efficient learning of the parameters of an ELM is
concerned. ES is able to quickly find a sufficiently good solution and is
also able to escape local optima. Regularization also seems to be crucial for
finding a stable model and ES-RELM experiments significantly outperform
the ES-ELM experiments without regularization. Although the training error
is less for the ES-ELM experiments, the test error is much lower for ES-
RELM, which confirms that the generalization capabilities of the model are
improved de to regularization.

It is also noteworthy that the feature set where PCA is performed on
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the whole feature set outperforms the one where FCBF and SRP-PCA are
applied. This could be due to the fact that SRP-PCA projects to the first
dimension that maximizes variance, while PCA projects to the first 4 di-
mensions with maximum variance. Since there is high redudancy among the
features, even after FCBF, projecting each feature subset into the first PCA
dimension will still result in features that are highly correlated with each
other (Figure 7.10). On the other hand, performing PCA in the whole feature
set and projecting to 4 dimensions results in 4 features that are indepedent
to each other, even if the original feature set contains redundant features. As
far as the number of features is concerned, projecting to a greater number of
features is in essence pointless because they explain practically zero variance
of the data. Also, since the number of feautures is not that big, performing
PCA is not that computationally expensive.

It can be argued that the proposed ES-RELM variation of ELM is not
really an ELM but just a type of Single Layer Forward Network, since for
the first part the input weights and bias , and for the second part an elastic
net is used to define the connectiong weights instead of determining them
analytically by taking the pseudoinverse like in the ELM or ES-ELM case,
which is not feasible since regularization is used.

8.1 Future Research

In this section a few suggestions will be proposed, believing that they might
potentially be proven useful for future research as far as tool condition moni-
toring of CNC milling machine cutters is concerned or possibly other machine
learning problems that deal with feature extraction from time-series.

First, since the main bottleneck of the framework lies in the feature ex-
traction part, it is crucial to be able to extract or engineer features that
can provide information about the targets in more detail. One idea in this
direction would be, apart from average wavelet power, to extract other mea-
sures by using CWT, like pair-wise comparisons of time-series in different
cuts that can show first order (linear) or second order (non-linear) phase or
amplitude correlation. For example, pair-wise comparison between a signal
and the signals corresponding to previous and next cuts can be done.

Moreover, as far as SRP-PCA is concerned, it could be modified to project
each SRP subset to 2 or 3 dimensions instead of just one, as a way to produce
independent, non-redundant features.
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As far as the ES-RELM part is concerned, two main augmentations could
be tried. First, it could be tried to run the ELM for more than one time
and average the outputs of each run, with different input weights and bias
or regularization parameters each time. Of course, this would mean that
the optimization search space would grow, but the proposed modified ES is
known to perform well in multidimensional space.

Taking into account the significant performance boost due to the regu-
larization used by the elastic, an even better performance could be achieved
by trying other regularization techniques such as the normalized elastic net,
composite absolute penalty and Owen’s hybrid penalty reviewed by Miche
et. al [39]. Moreover, another idea worth trying regarding regularization is
to add an extra layer to the ELM. The output of the ELM could pass from an
extra layer of nodes with sigmoid activation function and then regularization
could be performed again via another elasticnet. This only adds two extra
parameters for the ES optimization scheme, the regularization parameters of
the extra elastic net.

Last but not least, using a wrapper approach for feature selection in-
stead of a filter one could also improve the performance, although it would
significantly increase the required computational time.
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