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Abstract

Given a complex network G, like a social or computer network, which nodes
should one immunize (or remove) to make it less vulnerable to virus attacks?
This problem can be formulated as a subset selection problem, where the
target is to select a subset of nodes to be immunized, in order to effectively
prevent the spread of an epidemic. The drop of the largest eigenvalue (eigen-
value drop or eigen-drop) has been proven to be an effective measure for the
impact of an immunization strategy, as it represents the network’s vulner-
ability. It was additionally shown that the problem of selecting k out of n
nodes from a network such that the eigenvalue drop is maximum belongs to
the class of NP hard problems. Heuristic algorithms have been suggested to
solve these problems approximately. Netshield algorithm was introduced in
[8], a greedy approach that approximates the eigenvalue drop by means of a
submodular function, the shield-value, and then maximizes the shield-value
by means of a greedy approximation algorithm. In this thesis, we designed a
problem specific genetic algorithm and compared it to Netshield+ – an im-
proved variant of Netshield – and showed that on six moderate size problems
from literature, their performance is competitive and often better. We also
formulated a generalization of the k-Node Immunization Problem as a multi-
objective problem, including the cost of immunization as a second objective.
We present the first results on biobjective optimization, using multiobjec-
tive genetic algorithms as solvers. The method is demonstrated on the USA
domestic airline network and the global city network of the Pandemic co-
operative board game, which are enhanced by immunization cost data. In
addition, first insights into the reliability of solvers and the typical shapes of
Pareto fronts are obtained and discussed. Finally, we estimate through Con-
tinuous Time Markov Chain simulations the critical value for the infection
rate λ on finite, square lattices in Z2 with percolation.
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Chapter 1

Introduction

1.1 Problem Motivation

Imagine having a large cluster of servers that process millions of data or even
more, regarding civilians’ sensitive, personal information and imagine that
this cluster suffers a cyber-attack that could distribute a phishing virus over
the network. It is decisive that government agencies and policy makers know
beforehand which servers to close down in order to suspend the magnitude of
the attack and save as much information as possible. To take it even a step
further, it is useful for law-enforcement agencies to have intelligence, given
a social network of criminals or terrorists, on which individuals to neutralize
so as to maximally scatter the network and also for health organizations to
determine which citizens are more susceptible in contacting a disease and
disseminating it further, resulting in a pandemic.

Immunization of a complex network, whether it is a social network or
a computer network, is a crucial step in combating attacks, such as virus
attacks (both digital and natural), rumours and other attacks over networks.
In view of this, knowing in advance which nodes to immunize (or equivalently
remove/quarantine) in order to counter the influence of the attack and stop it,
is a key question in targeted immunization strategies, which aim in applying
what is known as “herd-immunity” [1],[2].

1.2 Approach

The immunization of complex networks can be thought of as a subset selec-
tion problem, where the aim is to select a limited number of nodes to be
immunized (removed or quarantined) in order to halt and stop the spread
of an epidemic. There has been much attention on this matter, such as
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[3],[4], [5], where various methods of node selection are discussed, like ran-
dom immunization or acquaintance immunization. In [6], [7], this matter
is approached from a more algebraic perspective; that of the largest eigen-
value of the adjacency matrix. In [8], Chen et al. argue that the eigenvalue
drop or eigen-drop, which is the drop of the largest eigenvalue of the graph
is a powerful measure for the impact of the immunization strategy, under
the SIS epidemic model and proved that the problem of selecting k out of
n nodes from a network, such that eigenvalue drop is maximum, belongs to
the class of NP hard problems. In this view, they present Nethield and Net-
shield+, approximation algorithms that greedily solve this matter by means
of a submodular function, the shield-value.

Due to the complexity class of this problem we believe that heuristic al-
gorithms and particularly a class of metaheuristic algorithms, namely genetic
algorithms, can prove to be a valuable asset in maximizing the eigen-drop
and even outperform the Netshield algorithms in certain scenarios. Thus,
in this project we follow this direction by designing problem specific genetic
algorithms and comparing them with Netshield+, the efficient variant of
Netshield. We make the comparison on six moderate-sized problems from
literature; namely:

• Karate: Social network of friendships between 34 members of a karate
club at a US university in the 1970s [9]. See figure A.1.

• Dolphins: Is a social network consisting of an undirected network of
frequent associations between 62 dolphins in a community living off
Doubtful Sound, New Zealand [10].

• US Flights: List of the most important Airports in the United States
connecting one to another based on the existence of connecting flights
(edge) from one port to the other ports. See figure A.3. Data taken
from kateto.net/network-visualization.

• Pandemic: A cooperative board game with the goal to fight the out-
break of the virus. We used the graph that connects cities in the world
as an example data set [11]. A picture of the Pandemic board is seen
in Figure A.4.

• Conference Day 1: Social interaction of members of a conference on
first day. Taken from here [12]. See figure A.5.

• Conference Day 3: From the same data set as above, but for the third
day. See figure A.6.
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We further formulate the node immunization problem as a multiobjective
problem, by defining and including a cost function as the second objective.
The method is demonstrated on the USA domestic airline network and the
global city network of the Pandemic cooperative board game, which are aug-
mented by immunization cost data. First insights into the reliability of solvers
and the typical shapes of Pareto fronts are obtained.

We deal, finally, with a more theoretical aspect; that of the contact pro-
cess on square lattices. We present work that has been done on the extinction
time of an epidemic on graphs and we study the extinction time of an in-
fection on various finite lattices on Z2 with percolation, in terms of steps
under simulations of a Continuous Time Markov Chain (CTMC) model. We
present the results demonstrated on 10 × 10, 15 × 15, 20 × 20 and 25 × 25
square lattices and we discuss open problems and future work.

1.3 Research Questions

The research questions discussed above, can thus be summarized as following:

1. Given an integer k ∈ Z>0. Can genetic algorithms effectively determine
which node subsets achieve the highest eigenvalue drop and outperform
Netshield+?

2. Defining a cost for immunizing each node, how can we determine a
Pareto front by minimizing the cost and maximizing the eigenvalue
drop, that can be useful for policy makers, by the use of a multiobjective
genetic algorithm (EMOA)?

3. Estimating the critical value for the infection rate λ on finite, square
lattices in Z2, on which percolation has happened.

estimating the critical value for the infection rate λ on finite, square
lattices in Z2 with percolation.

1.4 Overview

The rest of the thesis is organized as follows: In Chapter 2, we formally define
the research questions 1 and 2, stated previously. In Chapter 3, we present
Netshield and Netshield+ from [8]. In Chapter 4 we present the single-
objective genetic algorithms and their results for research question 1 and
in Chapter 5 the multiobjective genetic algorithms and the resulting Pareto

9



fronts for research question 2. We end Part 1 with Chapter 6 discussing
our results and presenting future work. In Part 2, we begin by presenting
the Contact Process in Chapter 7 and in Chapter 8 we discuss Percolation
Theory. Finally in Chapter 9 we present our approach and results to research
question 3 and we conclude with the discussion and future work in Chapter
10.
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Chapter 2

The Node Immunization
Problem

In this Chapter we will briefly discuss the epidemic models SI, SIS, SIR. We
will then formally define a network (or graph) and the eigenvalue drop before
finally presenting rigorously the k-Node Immunization Problem, as well as
the Multiobjective Optimization Problem.

2.1 Epidemiology

Epidemiology is the field of study of infectious disease spread across a pop-
ulation. The formation and spread of infectious diseases is a complex phe-
nomenon with many interacting factors and agents. As a result, mathemat-
ical models have been designed to illustrate the establishment and spread
of pathogens and to facilitate their study. Epidemiological models have ap-
plications also in the analysis of computer networks, for instance to study
the transmission of messages and computer viruses through the internet and
in social networks and to study the way a rumour is spread in Twitter or
Facebook, for example. The foundations for such an approach, were set by
Kermack and McKendrick in the early 1900s [13]. In the rest of this thesis
when referring to an epidemiological model, we will mean a model of a virus
spreading in a network.

These models are known as compartmental models in epidemiology, and
serve as a basic mathematical framework for understanding and studying the
complex nature of these systems. In the simplest scenario, the population
can be classified into two states only: Infected (I) and Susceptible (S), if the
probability of becoming infected is strictly positive. However, to make the
scenario even more realistic a third label, R, for the population is included
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which represents entities that are immune/recovered/removed.
With this terminology, we can define the following models:

• SI model: A population entity can get infected after being in a sus-
ceptible state. Once an entity is infected it keeps being infected and
it can infect other entities. Such dynamics occur also in the spread of
messages and information across computer networks.

• SIS model: In this model entities that are infected can recover and re-
turn to the susceptible state. After this though, they might get infected
again. This resembles a flu-like spread.

• SIR model: Here, an infected entity can be removed from the network
some time after its infection. Reasons for this could be that the in-
fected entity got immunized, or the infected entity got isolated from
the population, or the disease was lethal. This model reasonably re-
sembles dynamics of infectious diseases which are transmitted between
humans, and where recovery confers lasting resistance, such as measles,
mumps and rubella.

There also many more classification schemes or compartments that will not
be discussed here, as they are a field of study on their own. We point the
interested reader however to [6], [7]. In the following we will deal with the
SIS epidemic model.

Figure 2.1: Three common models in epidemiology, In the SI model, nodes
stay infected, once they got infected, In the SIS model, infected nodes can
return in a susceptible state, and in the SIR model nodes are immunized
after having recovered and can no longer infect neighboring nodes.

The study of these models is done through deterministic approaches, for
example through the use of ordinary differential equations, but can also be
viewed by a stochastic simulation framework which is more realistic. We will
present the latter when simulating the contact process on finite lattices, later
in Chapter 7.
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2.2 Definitions

Before we proceed into the definition of the eigenvalue drop, we briefly give
the definition of a network (graph) in its abstract, mathematical form.

Definition 1 A network (also called a graph) is an ordered pair G = (V,E)
consisting of a set of vertices V = {v1, . . . , vn} (also called nodes or sites)
and a set of edges E ⊆ V × V (also called links or bonds) connecting pairs
of vertices [14].

In essence, a graph is a structure amounting to a set of objects, in which
some pairs of the objects are in some sense “related” [15]. Vertices and edges
can also have weights, as well as directions . However, in this project we will
not be using weights, except for the multiobjective approach in Section 5,
where the weight of a node will be the cost of its immunization. We will also
deal only with undirected and connected graphs. The latter means, that the
there are no two nodes that cannot be reached by some path between them.

Graphs can be coded efficiently into what we call an adjacency matrix,
the elements of which are either 1 if a link between two nodes is realized and
0 otherwise. The matrix representation of graphs is rather important since
it allows for applying various algebraic techniques, as well as it is one way of
coding them in computers.

Throughout this project we will be using the adjacency matrix, since it
gives rise to the next definition; that of the the eigenvalue drop.

Definition 2 Given a network G, let S be the subset of nodes chosen to be
removed. Then G′ is a subgraph of G with the nodes in S removed and their
adjacent edges. The eigenvalue drop ∆λ is defined as the difference between
the maximum eigenvalue of the adjacency matrix of G, λ1 and the maximum
eigenvalue of the adjacency matrix of G′, λ′1. That is ∆λ = λ1 − λ′1.

We would like to justify here the use of the eigenvalue drop as a measure.
As mentioned also in the introduction, in [6] and [7] the largest eigenvalue
λ is a good measure of how vulnerable the graph is. λ is closely related
to the epidemic threshold τ of a network under an SIS epidemic model, via
the formula τ = 1/λ, since its threshold will be small. Thus, for larger λ
an epidemic is more likely to be sustained. The way to overcome this is to
lower the vulnerability of the network by minimizing λ and thus maximiz-
ing the epidemic threshold, which is equivalent to maximizing the difference
(∆λ) between the largest eigenvalue of the initial network and the largest
eigenvalue of the perturbed network.
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We should also mention here, that because the adjacency matrix of a
graph is symmetric, with non-negative entries, all of its eigenvalues are real
numbers and there exists a non-negative eigenvalue λ which has maximum
absolute value among all eigenvalues. This eigenvalue has also a non-negative
real eigenvector (Perron–Frobenius theorem) [16]. Furthermore, the removal
of nodes and their edges from a graph, is equivalent to deleting the respective
rows and columns from its adjacency matrix. Then by the Poincare Separa-
tion Theorem (or Cauchy Interlacing Theorem) [16], [17], [18], we have that
the largest eigenvalue of the sub-matrix will be at most equal to the largest
eigenvalue of the original matrix, of the connected graph. Thus, ∆λ ≥ 0.

Finally, we will call eigen-scores the elements of the eigenvector corre-
sponding to the largest eigenvalue of the graph. These components play a
special role when designing the genetic algorithms.

In the next section we will formally define the single objective Node Im-
munization Problem, as well as the multiobjective optimization approach.

2.3 The Node Immunization Problem

We begin by defining the single objective optimization approach, where the
aim is to maximize the eigenvalue drop, to decide which nodes to remove.

Problem 1 Given a network G = (V,E) with n nodes and k ∈ {1, 2, ..., n} ⊂
N, the (single objective) k-Node Immunization Problem is the problem of
determining a set S ⊆ V : |S| = k, to be removed from a network, such that
the eigenvalue drop is maximal.

Chen et al. proved in [8] that the k-Node Immunization Problem with
the largest eigenvalue is NP hard. Due to this, heuristic algorithms are pro-
posed in [8], namely Netshield and Netshield+, which are approximation
algorithms. The key aspect of these algorithms is that they do not operate
directly on the eigenvalue drop, but use an approximation of it. The ap-
proximation of the largest eigenvalue is a submodular function and therefor
allows for the construction of greedy heuristics with guaranteed performance
bounds, as we will discuss in Chapter 3.

Next we will define the multiobjective Node Immunization Problem, by
introducing a cost function as the second objective to be optimized.

Problem 2 Given a network G = (V,E) with n nodes, let ci be the cost of
immunization of each node i ∈ V . The (multiobjective) Node Immunization
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Problem is the problem of determining a set S ⊆ V , to be removed from the
network, such that the eigenvalue drop is maximal and the cost of immuniza-
tion is minimal.

Note that in Problem 1, we know a priori the number k of nodes to be
immunized. This is not the case, however, for Problem 2, which is why it rea-
sonably resembles real world scenarios. Imagine for example if policy makers
must close down airports to halt the spread of an infection. It might be wiser
in terms of cost and eigenvalue drop to close down 10 “small” airports rather
than 1 “big” one. In essence Problem 2, tries to determine the possible solu-
tions in which there exists a tradeoff between two objectives to be optimized,
by establishing an efficient set and the resulting Pareto front.

16



Chapter 3

Netshield Algorithm

In this Chapter we will present NetShield and Netshield+ (see Algorithms 1
and 2) from [8]. Some of the ideas of these algorithm will be useful in the
design of the problem specific genetic algorithm. Moreover the Netshield+
algorithm, a more efficient version of the Netshield algorithm, will serve as a
baseline algorithm in the benchmarking.

Netshield and Netshield+ are heuristic algorithms, designed to solve the
k-Node Immunization Problem. These algorithms given k ∈ Z>0 and a graph
G = (V,E), greedily select nodes to determine the set S ⊆ V : |S| = k, which
is to be removed from V . However, they do not directly operate on the eigen-
value drop, but rather use an approximation of it which is submodular and
therefore lends itself for constructing an approximation algorithm. This sub-
modular approximation is called Shield-value, Sv(·), and is define as follows:

Sv(S) =
∑
i∈S

2λ(ui)
2 −

∑
i,j∈S

aijuiuj

where S is the set of the nodes to be removed from V . Here ui denotes the
i-th element of the eigenvector that corresponds to the largest eigenvalue of
the graph G. The Shield-value rewards dissimilarity between nodes, that is
small aij, and nodes that have a high eigen-score.

It also proved in [8] that the Shield-value is a good approximation of the
eigenvalue drop, when the first (largest in magnitude) eigenvalue λ1 of the
graph G is simple and also that δ ≥ 2

√
2kd, where δ = λ1 − λ2 (eigen-gap)

and d is the maximum degree of G. Given also the fact that λ ≤ d, we
get δ ≤ d and we end up with the expression k ≤ d/8. This constraint
explicitly says that in order to get a good approximation of the eigenvalue
drop with Shield-value, the cardinality of subset S cardinality should sat-
isfy the inequality, which does not always hold when the maximum degree
of the graph G is relatively small. To circumvent this issue and further
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balance the optimization quality and the computational cost, [8] proposes
Netshield+. As opposed to the Netshield algorithm however, the Netshield+
algorithm, removes nodes in batches of b-nodes each. After each batch the
largest eigenvalue and the corresponding eigen-scores are recomputed. This
way the algorithm yields more accurate results, but due to multiple eigen-
value computations the computation time increases, but is still linear with
respect to the size of the input graph.

Algorithm 1 Netshield

Input: adjacency matrix A and integer k
Output: a set S with k nodes

1: compute the first eigenvalue λ1 of A and u the corresponding eigenvector
u(j)(j = 1, ..., n)

2: initialize S to be empty
3: for j=1:n do
4: v(j) = (2 · λ− A(j, j)) · u(j)2

5: end for
6: for iter = 1 : k do
7: let B = A(:, S)
8: let b = B·u(S)
9: for j = 1:n do

10: if j ∈ S then
11: let score(j) = -1
12: else
13: let score(j) = v(j)− 2 · b(j) · u(j)
14: end if
15: end for
16: let i = argmaxjscore(j), add i to set S
17: end for
18: return S

Netshield works as follows: In step 1 the first (largest) eigenvalue λ is
computed, as well as the corresponding eigenvector u and in step 2 we ini-
tialize an empty set S which is the node subset. In step 4 the algorithm goes
through all n nodes and computes the Shield-value score of each individual
node. Afterwards in each iteration of steps 6-17 the algorithm greedily se-
lects one more node and adds it to set S (step 16) according to the score in
step 13. The intermediate steps 10-12 are used to exclude the nodes that are
already in S.

18



Algorithm 2 Netshield+

Input: adjacency matrix A and integer k and integer b
Output: a set S with k nodes

1: compute the number of iterations needed t = ∗k/b
2: initialize S to be empty
3: for j=1:t do
4: initialize S ′ to be empty
5: S ′ = Netshield(A, b)
6: S = S ∪ S ′
7: update A by deleting the corresponding rows/columns indicated by

the nodes in S ′

8: end for
9: if k > tb then

10: S ′ = Netshield(A, k − tb)
11: S = S ∪ S ′
12: end if
13: return S

In the next Chapters we present our results on the Node Immunization
Problem. In Chapter 4 we discuss the single objective k-Node Immunizaion
Problem and in Chapter 5 we present the multiobjective Node Immunization
Problem.
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Chapter 4

The k-Node Immunization
Problem

This Chapter is the first part of our contribution. We will deal here with
Problem 1, by designing problem specific genetic algorithms for single ob-
jective node selection and we will be comparing our results with those of
Netshield+. The comparison will be made on six moderate-sized problems
from literature (see page 7).

4.1 Motivation

As we mentioned previously, in [8] Chen et al. proved that the k-Node Im-
munization Problem is NP hard. In particular they proved that the problem
is NP complete, and we know that these problems require time that is super-
polynomial in the input size. For this reason it is meaningful to use heuristics.
They allow for faster computation, but do not guarantee optimality. It is a
necessary trade off. This is in contrary to approximation algorithms that in-
volve a mathematical proof certifying the quality of their returned solutions
in the worst case scenario. Netshield and Netshield+ are such algorithms.

We believe that for Problem 1, genetic algorithms could be a good can-
didate class of algorithms. Genetic algorithms are a particular instance of
meta-heuristics, inspired by natural selection. They belong to the class of
Evolutionary Algorithms. Evolutionary Algorithms are an optimization
method based on the biological analogy of survival of the fittest. Genetic
algorithms, typically are applied on discrete search spaces as opposed to
Evaluation Strategies, which encode continuous vectors. In this project we
designed genetic algorithms to deal with Problem 1.

In the next section we will briefly describe genetic algorithms to make
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the reader acquainted with the notions discussed.

4.2 Genetic Algorithms

In this section we will briefly present Genetic Algorithms.

Genetic Algorithms (GAs) are a class of meta-heuristic algorithms which
belong in the broader class of meta-heuristics called Evolutionary Algorithms
(EAs). The latter, are a class of direct, probabilistic search and optimization
algorithms, which have GAs as one of their main representatives.

Developed by Holland, a computer scientist and psychologist at the Uni-
versity of Michigan, in 1975 [19], in the form we know and use them, GAs
intended to simulate biological systems to use natural selection (Darwin’s
survival of the fittest) to solve practical applications. His goal was broader,
to develop adaptive systems that communicate with their environment and
evolve [20].

Genetic algorithms have several key-components. These are problem rep-
resentation, crossover or recombination, mutation and selection. In more
detail, representation is crucial as it specifies in an encoded form the solu-
tions to a particular problem. The choice of representation can affect the rest
of the algorithm operators such as mutation. The crossover operator, which
is one of the main aspects of a GA, allows for exploitation of the search
space, by combining parts of the parent representation into the children,
making it possible to exchange information between individuals and combine
favourable, for the problem, characteristics. Crossover, thus, can be thought
of as a basic reproductive procedure we know. However, as it also occurs in
nature, mutations take place. Mutation operators are necessary for exploring
the search space of a problem at hand. It allows for changes in the offspring
that would not be possible by simply applying the recombination/crossover
operators. Finally, the selection operator, determines which of the parents
and/or offspring will play the role of the new parent population and so on.
There are two popular schemes such as (µ+λ) and (µ, λ). The former means
that we select as our new parent population the best (with respect to our
problem) individuals from the union of children and parents, while the lat-
ter specifies that we select as our new parent population the µ best offspring
out of the λ offspring generated. For more details we point the reader to [20].

In the next section, we will present the outline of our GAs and discuss
the problem specific parameters.
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4.3 GAs and Problem Specific Parameters

We will start by our first attempt which is a simple (1+1)-GA, noted as
GA 0. Below we present its outline. G is the graph, maxEval is the integer
indicating the maximum number of iterations or generations and k is the
integer determining how many nodes to remove.

Algorithm 3 GA 0

Input: the graph G, maxEval, k
Output: a set S with k nodes

1: determine the adjacency matrix A of G
2: compute the first eigenvalue λ1 of A
3: t← t
4: P (t)← initialize population of a single individual randomly
5: f(P (t))← evaluate the fitness value of the individual
6: while t ≤ maxEval do
7: P ′(t)← mutate the individual with mutation probability pm
8: f(P ′(t))← evaluate the fitness value of the mutated individual
9: t← t+ 1
10: P (t)←select the best individual between the two as the next parent

population
11: end while
12: return solution S with the highest eigenvalue drop

Function f here is the actual eigenvalue drop and not an approximation
of it. GA 0 is a simple genetic algorithm, with no problem specific parame-
ters, which operates as a basis for the other GAs we will discuss next.

Remark: Before we proceed it is necessary to discuss the solution representa-
tion and evaluation we used in GA 0, as well as how a solution is interpreted.
These remarks also hold for all the other GAs we will present next.

Let’s begin with the latter. Given a graph G = (V,E) with |V | = n, we
represent a solution s as a permutated sequence of integers in {1, 2, .., n},
where each integer represents a node of the graph G. That is index 1 rep-
resents node 1, index 2 represents node 2 and so on. For example s =
(1, 3, 5, 2, 6, 7, 9, 4, 8, 10), if n = 10, is a solution. This representation is not
usual, but a problem specific representation for subset selection as it has also
been used in other contexts too. See [21].

Given k ∈ {1, 2, ..., n} ⊂ N, the first k components of the solution s are
the nodes which need to be removed, in order to get the maximum eigenvalue
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drop. A solution s is thus evaluated on the first k elements of s. This is
implicit in the pseudo code above. That is f(s) = ∆λ(s[1 : k]), where we
calculate the eigenvalue drop if we remove the nodes with indexes the first k
elements of solution s.

Finally, the mutation is done as following for this representation. Given a
solution s we mutate the solution k-times by selecting each time with prob-
ability pm an element from s[1 : k] and with probability pm an element from
s[k + 1 : n] and then interchanging them. We chose pm = 1/n, as proposed
by Bäck in [20].

We continue now, presenting the problem-specific GAs we designed.

Algorithm 4 (µ+ µ) - GA

Input: the graph G,maxEval, k, pm
Output: a set S with k nodes

1: determine the adjacency matrix A of G
2: compute the first eigenvalue λ1 of A; let u be the corresponding eigen-

vector and u(j), j ∈ {1, .., n} the eigen-scores
3: t← t
4: P (t)← initialize the population randomly with µ individuals
5: f(P (t))← evaluate the fitness value of each individual in the population
6: while !(termination criteria met) do
7: for i ≤ µ do
8: p1 ← select parent 1
9: p2 ← select parent 2

10: c← recombine parent 1 and parent 2 to create offspring c
11: c′ ← mutate offspring c with probability pm
12: f(c′)← evaluate the fitness value of the mutated offspring
13: end for
14: t← t+ 1
15: P (t)← select the best µ individuals from the union of the µ offspring

and µ parents, as the new parent population
16: end while
17: return solution S with the highest eigenvalue drop

The pseudo code of Algorithm 4 represents the general outline of our
problem specific GAs. In more detail, the Shield-value formula defined in
Chapter 3

Sv(S) =
∑
i∈S

2λ(ui)
2 −

∑
i,j∈S

aijuiuj
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has a higher value if the nodes in the set S ⊆ V , where V is the set of nodes
of graph G, have high eigen-scores and the nodes are dissimilar between each
other [8]. We took the former into account to make a problem specific muta-
tion operator for the GAs. In particular, we gave a larger mass/probability
for the indexes of the nodes with the k highest eigen-scores to be included
in the first k elements of each solution s in the population, after mutation,
which is done precisely as mentioned before. This way, our GAs are more
focused on the part of the search space that is more likely to be relevant
for solving the problem. We also feel that because we combine the greedy
approach of Shield value with the actual eigenvalue drop function, there is
an advantage in determining the nodes which yield the largest eigenvalue
drop. The different mutation rates we used for the k components of u with
the highest eigen-score were pm = 2/n, 3/, 6/n, 1 and for all other nodes the
mutation probability was set to 1/n. For completeness reasons we also in-
cluded the pm = 1/n in the set above. The choices for pm were arbitrary and
based upon the idea that the larger probabilities should be proportional to
the basic 1/n. Regarding the parent selection scheme, we used the classic
scaled proportional selection.

For recombination we did the following procedure: Since the represen-
tation is not binary we could not use a usual recombination operator. Let
G = (V,E) be a graph, with |V | = n and let k ∈ Z>0. Let also p1, p2 be
the two parents selected by scaled proportional selection. We calculated the
union T = p1[1 : k] ∪ p2[1 : k]. If |T | > k we randomly discard nodes so
as to have |T | = k. Then the offspring will have in its first k positions, the
elements of T and the remaining n − k components of the offspring will be
filled by the complement of the set T in {1, 2, ..., n}, to avoid any duplicates.
Afterwards, a randomness is introduced by the mutation operator.

Moreover, the evaluation of the solutions is done as mentioned previously
for Algorithm 1. In addition we should also mention that we used a static
population size of µ = 50 and a recombination probability of pc = 0.75 [20].

Finally, we used an additional termination criterion to the maximum
number of generations. That is, if the best fitness value remained stagnant
for more number of generations than k(n− k), the algorithm should end its
search. We adopted this, keeping in mind that in a solution s the possible
number of mutations is proportional to k(n− k).

In the next section we will describe our experiments and present our
results.
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4.4 Experiments and Results

We will start this section by describing the experiments we carried out before
moving to the presentation of the results. We will note as GA 0 the single
parent GA, presented in Algorithm 3 and as GA 1, GA 2, GA 3, GA 4, GA 5
the GA presented in Algorithm 4 with pm = 1/n, 2/n, 3/n, 6/n, 1 respectively.

We ran each GA on every network, 20 times, with maximum number
of generations maxEval = 30000. We did this for k = 1, 2, 3, 5, 10. The
choices for k were arbitrary and were based mostly on the idea that our
networks are relatively small, thus the number of nodes to remove should
not be large. Furthermore, coding of the algorithms was done in the RStudio
environment1 with igraph package2. The experiments we executed on the
following machines of the LIACS Data Science Lab:

• Latinum: 16 Intel Xeon E5-2630v3 CPUs @ 2.40GHz (32 threads)
1.5TB RAM

• Duranium: 20 Intel Xeon E5-2650v3 CPUs @ 2.30GHz (40 threads)
128GB RAM

• Tritanium: 20 Intel Xeon E5-2650v3 CPUs @ 2.30GHz (40 threads)
1TB RAM

We would like to point out here that we used instead of function evalua-
tions, number of generations in the GA’s as a termination criterion. In the
1 + 1 of course these two notions are equivalent. However, this is not the
case for the population-based GA’s. The reason for this is that these GA’s
can be parallelized, using at least µ processors.

We will start now by presenting the results in boxplots. Each boxplot
presents the Eigen drop against the Class of algorithms, that is GA 0, GA 1,
GA 2, GA 3, GA 4, GA 5 and Netshield plus representing Netshield+. In
each figure starting from upper left to lower right, we have k = 1, 2, 3, 5, 10.

Next, in Table 4.1 we give the median results for all Networks and for all
algorithms.

1Version 1.0.136 – c© 2009-2016 RStudio, Inc.
2Version 1.0.1, http://igraph.org/r/
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Figure 4.1: Results for the Karate Network.
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Figure 4.2: Results for the Dolphins Network.
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Figure 4.3: Results for the USA Network.
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Figure 4.4: Results for the Pandemic board game Network.
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Figure 4.5: Results for the Conference day 1 Network.
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Figure 4.6: Results for the Conference day 3 Network.
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Table 4.1: Median results for all Networks
Networks GA0 GA1 GA2 GA3 GA4 GA5 NetshieldPlus

k = 1 karate 0.637663 0.637663 0.637663 0.637663 0.637663 0.637663 0.637663
Dolphins 0.625875 0.625875 0.625875 0.625875 0.625875 0.625875 0.625875
USA 1.410999 1.410999 1.410999 1.410999 1.410999 1.410999 1.410999
Pandemic 0.182128 0.182128 0.182128 0.182128 0.182128 0.182128 0.147066
Conf. day 1 0.968081 0.968081 0.968081 0.968081 0.968081 0.968081 0.968081
Conf. day 3 17.67357 17.62927 17.67347 17.67260 17.65165 1.059852 1.059852

k = 2 karate 2.103674 2.103674 2.103674 2.103674 2.103674 2.103674 2.103674
Dolphins 1.203444 1.203444 1.203444 1.203444 1.203444 1.203444 1.203444
USA 2.880762 2.880762 2.880762 2.880762 2.880762 2.880762 2.880762
Pandemic 0.411588 0.411588 0.411588 0.411588 0.411588 0.411588 0.411588
Conf. day 1 1.264015 1.264015 1.264015 1.264015 1.264015 1.264015 1.264015
Conf. day 3 17.6732 17.67276 17.6566 17.67241 17.6681 17.67013 2.058068

k = 3 karate 3.031487 3.031487 3.031487 3.031487 3.031487 3.031487 3.031487
Dolphins 1.447190 1.447190 1.447190 1.447190 1.447190 1.433805 1.427201
USA 4.321868 4.321868 4.321868 4.321868 4.321868 4.321868 4.321868
Pandemic 0.549761 0.549761 0.549761 0.549761 0.549761 0.549761 0.470017
Conf. day 1 2.101622 2.101622 2.101622 2.101622 2.101622 2.068796 2.101622
Conf. day 3 17.67019 17.67149 17.67142 17.67166 17.67112 17.65112 2.412332

k = 5 karate 4.106751 4.106751 4.106751 4.106751 4.106751 4.106751 4.106751
Dolphins 2.097431 2.08117 2.076892 2.080667 2.097751 2.097751 2.081674
USA 7.204260 7.204260 7.204260 7.204260 7.204260 7.204260 7.204260
Pandemic 0.950231 0.924342 0.941926 0.9502309 0.950231 0.91331 0.955593
Conf. day 1 2.958561 3.010937 2.95832 3.028930 3.045471 3.039115 3.063814
Conf. day 3 17.65924 17.67044 17.67136 17.66936 17.66959 17.60980 3.854225

k = 10 karate 5.209574 5.107664 5.107664 5.107664 5.107664 5.311484 5.311484
Dolphins 2.940289 2.907666 2.923008 2.968493 3.157546 3.286219 3.399719
USA 12.08268 11.68963 11.80947 11.92225 12.17715 12.60777 12.60777
Pandemic 1.431002 1.420122 1.429910 1.449002 1.511400 1.521515 1.444183
Conf. day 1 4.252082 4.385349 4.383103 4.420728 4.669685 19.23729 4.912077
Conf. day 3 17.64637 17.65904 17.66447 17.65775 17.65886 17.65800 5.648326

4.5 Conclusion

The study presented here shows that genetic algorithms often perform bet-
ter, if not significantly better, in solving the k-Node Immunization Problem.
Netshield+ is a fast, greedy, approximation algorithm that produces in many
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cases good results. Based on our findings depicted above, we believe that an
efficient strategy to solve this problem could be, if time permits, using not
only Netshield+ but also the problem specific genetic algorithm to make it
more probable that the best solution for the eigenvalue drop objective is
found.

In order to achieve good results, problem specific tuning turned out to
be very useful. The idea we used and which works well is to use eigen-score
values in order to adjust the mutation probabilities. This way the search is
directed in areas of the search space that is more likely to be relevant for solv-
ing the problem. We should also emphasize here that the supplementary use
of a problem specific genetic algorithm has the advantage of calculating the
actual eigen-drop, rather than an approximation of it. This can be useful for
moderate sized networks. However, in large networks the computational cost
increases, since the algorithm eigendecomposes larger adjacency matrices.
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Chapter 5

The Multiobjective Node
Immunization Problem

In this Chapter, we discuss Problem 2, a generalization of the k-node im-
munization problem, which we defined in Chapter 2 (paragraph 3). The
motivation behind the study of this problem is that it resembles closely real
world situations, where the objectives can be conflicting. In actual world
scenarios it is likely that multiple nodes need to be controlled or immunized,
however the number of nodes is not known a priori. What is known, though,
is the cost for the immunization of each node.

We studied a biobjective node immunization problem with the eigenvalue
drop as the first objective and the cumulated costs of immunization of each
node, as the second. The latter is defined as follows: Let ci be the cost
of each node i ∈ V , where V is the set of nodes of graph G. The cost of
immunization of set a S ⊆ V is then

C(S) =
∑
i∈S

ci

which clearly is to be minimized, while the eigenvalue drop is to be maxi-
mized. The problem is formulated as:

f1(S) := ∆λ(S)→ max

f2(S) := C(S)→ min

S ⊆ V

We are interested in the efficient set of this problem, that is the set:
SE = {S ⊆ V = {1, ..., n}| 6 ∃S ′ ⊆ V = {1, . . . , n} : f1(S

′) ≥ f1(S) ∧
f2(S

′) < f2(S) ∨ f1(S ′) > f1(S) ∧ f2(S ′) ≤ f2(S)} and the Pareto front
{(f1(S), f2(S))T |S ∈ SE}.

In the next paragraph, we present the Experiments and the Results.
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5.1 Experiments and Results

We will start this paragraph by describing the experiments we carried out
before moving to the presentation of the results. We used two multiobjective
genetic algorithms (EMOAs) as solvers. Namely the the nondominated sort-
ing genetic algorithm NSGA-II [22], belonging in the class of Pareto based
EMOAs and the the S-metric selection algorithm, SMS-EMOA [23], belong-
ing in the class of indicator based EMOAs.

The implementations of SMS-EMOA and NSGA-II, were done in the
RStudio environment, featured by Bossek’s ecr package3. The representa-
tion of a subset S of the nodes V of given graph G is chosen to be a bit vector
b in Bn, where bi = 1 means the node is selected to be removed/quarantined
and bi = 0 means the node is not selected, for i = 1, . . . , n. As recombina-
tion operator, one point crossover is used. For all bits we used pm = 1/n
as the mutation probability. The reason for this mutation rate is that, in
contrast to the single objective genetic algorithms we discussed, here we do
not know a priori the number of nodes to remove/quarantine. That is, we
do not specify a subset cardinality. As a consequence the algorithm should
not try to explore a particular direction of the search space (bias introduced
from the mutation operator), but rather present to the decision makers a
complete picture of their possible choices. For example, quarantining 10
less-important (in terms of eigen-score) airports could be more beneficial in
terms of cost, than quarantining 1 important (in terms of eigen-score) airport.

As mentioned briefly in the introduction, the USA domestic airline net-
work (see figure A.3), and the global city network of the Pandemic cooperative
board game (see figure A.4), which are augmented by immunization cost data,
served as examples for computing the efficient sets and the resulting Pareto
fronts. In case of the Pandemic network the size of the cities was used as a
cost, assuming that it is more difficult to immunize larger cities (see table
A.3). In case of the US flights network the size of the airport (number of
visits) was taken into account (see table A.2).

We would like to underline here that even though we aimed for real-
world, problem settings, more modeling would be needed, such as social
interactions, geographic environment, and various other factors, in order to
plan an effective real-world immunization. In this study, we simply focus on
the network aspects of the problem and we feel that it could be used as a
basis for further studies on this or similar topics.

3https://github.com/jakobbossek/ecr2 and https://cran.r-project.org/web/

packages/ecr/ecr.pdf
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Regarding the methodology of the experiments, each algorithm for the
multiobjective optimization was run a total of 5 times, producing 5 Pareto
front approximations. Moreover, we allowed for a maximum of 10000 func-
tion evaluations and we used as a parent selector for both classes of algo-
rithms selSimple which randomly selects parents for recombination, the
recCrossover operator which applies the one-point crossover recombinator
and finally we used, as mentioned previously, the mutBitFlip operator as
the bit-flip mutation operator, which flips each bit with a given probability.

Results for Pandemic are shown in Figure 5.1 and Figure 5.2. Results for
USA Flight network are shown in Figure 5.3 and Figure 5.4.

Below are 5 Pareto fronts for the Pandemic board game network based
on NSGA-II algorithm. In every figure we have included a sixth plot in the
bottom right, combining all plots to serve as an indicator of the variance of
the results.

5.2 Conclusion

Looking at the results, we observe that the NSGA-II algorithm obtained,
overall, better results and displayed a more robust performance than the in-
dicator based SMS-EMOA on this problem. It is also visible that the Pareto
fronts looks near linear, especially for the USA Flights network. This might
be explained by the fact that big nodes (larger cities or, respectively, air-
ports) are at the same time expensive to immunize as well as crucial for
immunization. We can also observe for the USA Flights network a knee-like
region can be identified, which is a preferable by decision makers solution [24].

In Figure 5.5 we can see both solvers for both networks. In black + we
represent the NSGA-II algorithm and in red 4 the SMS-EMOA algorithm.
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Figure 5.1: 5 Pareto fronts for the Pandemic board game network based on NSGA-II algorithm.
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Figure 5.2: 5 Pareto fronts for the Pandemic board game network based on SMS-EMOA
algorithm. 38



Figure 5.3: 5 Pareto fronts for the USA Flight network based on NSGA-II algorithm.
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Figure 5.4: 5 Pareto fronts for the USA Flight network based on SMS-EMOA algorithm.
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Figure 5.5: Pandemic board game network (left) and USA Flight network (right).
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Chapter 6

Discussion and Future Work

In this project we studied the NP hard k-Node Immunization Problem as well
as a multiobjective generalization of it, where k is not known a priori. We ex-
emplified that the use of genetic algorithms often returns better, sometimes
even significantly more robust results, in solving the k-Node Immunization
Problem. We compared our results to Netshield+, a fast, greedy heuris-
tic algorithm which belongs in the class of approximation algorithms, that
produced in many cases good results. Based on our findings and results, we
recommended the following strategy: if time is available, one should not only
use Netshield+, but also a more problem driven genetic algorithm to make it
more probable that the best solution for the eigenvalue drop objective is not
overlooked. In essence, we believe that a problem specific genetic algorithm
for such a complex problem, should pose as a complementary solution, but
is some cases it yields a much better solution than Netshield+.

In this study, in order to achieve good results, we designed problem spe-
cific adaptations, which turned out to be very useful. An idea that we saw
works well, is to use eigen-score values in order to adjust the mutation prob-
abilities. This way the search is more focused on the part of the search space
that is more likely to be relevant for solving the problem. We should also
emphasize here that the supplementary use of a problem specific genetic algo-
rithm has the advantage of calculating the actual eigen-drop, rather than an
approximation of it, like Netshield+. This can be useful for moderate sized
networks. However, in large networks the computational cost increases, since
the algorithm eigendecomposes larger adjacency matrices.

Finally, first results were also obtained on a multiobjective formulation
of the node immunization problem. We discuss the approach where the total
cost of immunization is one objective and the drop of eigenvalue is a second
objective. Two different state-of-the-art metaheuristics, namely NSGA-II
and SMS-EMOA are applied to solve this problem and the results and show
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robust performance.
For future work we recommend the study of larger networks, through

problem driven adaptations to allow the support of genetic algorithm, which
by nature, converge slower to an optimal solution. We consider as a promising
route to accomplish this is, to hybridize GA with Netshield+, for instance by
using the latter in constructing initial solutions. Moreover, the development
of problem specific crossover operators could be also beneficial, since genetic
algorithms benefit from the recombination operator. Finally, it would be in-
teresting and useful, to also test disconnected networks to model the spread
of air-born diseases. These diseases, which can be transmitted through the
air, can be modeled on disconnected networks and thus allow for a study on
node selection on these type of networks. In addition, we suggest to model
a multiobjective optimization problem by augmenting more data, such as
social interactions and expert’s knowledge, as well as optimizing more objec-
tives to tackle even more realistic scenarios, for example node immunization
importance, node immunization cost and degree immunization for a node.
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Part 2
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In this part we will deal with the 3rd research question, that is, estimating
the critical value for the infection rate λ on finite, square lattices in Z2 with
percolation.
We will start by presenting the Contact Process and the work that has been
done in the literature, before moving on to Percolation Theory and to the
presentation of our results.

Chapter 7

The Contact Process

The Contact Process (CP) is an example of a model of an interacting particle
system, which are continuous-time Markov jump processes describing the
collective behavior of stochastically interacting components or agents [25].
It is a subfield of Probability Theory that studies models that arise in e.g.
statistical physics, biology, economics and epidemiology to name a few [27].
The CP is usually interpreted as a model for the spread of an infection. We
will deal with this process on networks (or graphs), particularly, on two-
dimensional lattices, which belong in the category of regular networks.

The standard model of the CP on an undirected graph G = (V,E), given
an infection rate λ ∈ (0,+∞), is a continuous-time, discrete-space Markov
process (η)t≥0 ∈ {0, 1}V , with generator L given by

(Lf)(η) =
∑
x∈V

(
η(x) + (1− η(x))λ

∑
y∼x

η(y)
)

(f(ηx)− f(η)),

where f : {0, 1}V → R is a bounded function and x ∼ y means that there
exists an edge between vertices x, y, and ηx(z) = η(z) if z 6= x and ηx(z) =
1− η(z) if z = x. Here, ηt(x) = 1 indicates that at time t vertex x is infected
and ηt(x) = 0 indicates that at time t vertex x is healthy.

Informally, the above says that if at time t ≥ 0, the vertices in A ⊆
V are infected, then as time progresses each uninfected vertex x ∈ V \ A
becomes infected at an exponential rate equal to λ times the number of
currently infected neighbors, and each infected vertex in A becomes a healthy
(uninfected) vertex at an exponential rate equal to 1, independently of the
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status of their neighbors. The CP, as we defined it, is also sometimes referred
to as the susceptible-infected-susceptible (SIS) epidemic model [26], [27], [28].

The CP was first introduced by Harris in [29], as a continuous-time
Markov process (ηt)t≥0 ∈ {0, 1}Z

d
, where Zd is the d-dimensional integer

lattice. The CP has been studied on graphs other than Zd. To our knowl-
edge the first such work was done by Pemantle on infinite trees [30] and on
certain non-homogeneous classes of graphs. Chatterjee and Durrett [31] and
Berger, Borgs, Chayes and Saberi [32] have considered the CP on two dif-
ferent models of power-law random graphs. Furthermore, the CP has been
studied in other contexts, such as high energy physics, where it was intro-
duced by Grassberger and de la Torre [33] and it was shown to be equivalent
to the reggeon spin model, a discretization of reggeon field theory [27].

The behavior of the CP depends on the parameter λ, the infection rate
of the disease. In the next paragraph we will discuss this dependence.

7.1 Critical Infection Threshold

It is natural to consider what happens to the process as λ increases. It is ob-
vious that the infection will spread faster and also that it will take a longer
time for the infection to die out, that is, reach the absorbing state where
every individual is healthy. The interesting question, however, is whether
there is a critical value, a threshold, for λ at which the CP exhibits a phase
transition. In order to present the results we must first define certain notions.

We define 0, 1 to denote the configuration η ≡ 0, η ≡ 1. We also define
P η
t (·) = P (ηt ∈ ·|η0 = η), the probability distribution of ηt at time t, given

the initial configuration η.

We have that, P0
t is non-decreasing as function of t and P1

t is non-increasing
as a function of t. As a result, the limits of these probability distributions
exist, which implies the existence of a critical infection threshold λc ∈ [0,∞]

such that if λ ≤ λc, then the limit of P1
t is 0, meaning that the infection

will die out eventually, while if λ ≥ λc, then the limit is not 0, meaning
that the infection survives forever [34], [35]. Setting p(λ) to denote the

density of the infections for the limit of P1
t as t → +∞, we have that

λc = inf{λ ≥ 0|p(λ) > 0} = sup{λ ≥ 0|p(λ) = 0} (see Figure 7.1).

Finally, p(λ) as a function of λ is non-decreasing and continuous. Further-
more, we say that the process survives if the infection persists with positive
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Figure 7.1: Qualitative plot of the density function. [34].

probability; otherwise we say that it dies out. Finally, if N1, N2 are two
networks for which N2 ⊆ N1, then λc(N1) ≤ λc(N2) (“a network with more
connections has a lower threshold”).

We continue by distinguishing between finite and infinite graphs. We
start with the latter.

7.1.1 The CP on Infinite Graphs

There have been studies of the CP on infinite lattices, including triangular
grids and regular trees. There are two types of survival: weak and strong.
The former means that every site gets infected finitely many times (with
probability one), while the latter means that it gets infected infinitely many
times (with positive probability). We define λc1, λc2 as the critical values for
the CP surviving weakly and surviving strongly, respectively [44].

On the d -dimensional lattice Zd it is known that λc1 = λc2 = λc ≡
λd, where d denotes the dimension of the lattice. Furthermore, it can be
shown through simulations that λd=1 ≈ 1.6494, and rigorously that 1 <
λ1(Z) < 2. Also, due to the monotonicity property mentioned previously,
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1 ≤ 2dλd(Zd) ≤ 2λ1(Z) < 2. In addition, we know that for the triangular
grid 6λc(T) = 1.548 [34], [35]. Finally, for homogeneous trees Td (d ≥ 3) we
have λc1 < λc2 [44].

7.1.2 The CP on Finite Graphs

On finite graphs the infection becomes extinct with probability 1. The im-
portant question is how long it takes for the infection to become extinct.
Equivalently: How long will it take for the dynamics on the network to reach
the configuration 0 starting from the configuration 1? For this, we define

τ ≡ τ0 = inf{t ≥ 0 : ξ1t = 0}.

We begin by discussing the results on finite sub-graphs of Zd. Let ΛN =
[0, N)d ∩ Zd, N ∈ N, be the N-block in Zd. If the infection starts with the
configuration 1, then for λ < λc(Zd)[37]

lim
N→∞

τ

log(|ΛN |)
= c1(λ) ∈ (0,∞).

As a result,

lim
N→∞

E(τ)

log(|ΛN |)
= c1(λ) ∈ (0,∞).

On the other hand, for λ > λc(Zd)[38] we have

lim
N→∞

log(E(τ))

|ΛN |
= c2(λ) ∈ (0,∞).

Thus, in the sub-critical phase the time to extinction is logarithmic in the
volume of the lattice (i.e., very slowly increasing with the volume), while in
the super-critical phase it is exponential (i.e., very rapidly increasing with
the volume).

In the super-critical phase, the order of magnitude of the extinction time
is exponential in the number of vertices of the graph. The process exhibits
metastability, meaning that it persists for a long time in a state that resem-
bles an equilibrium, called quasi-equilibrium, and then quickly moves to its
true equilibrium, (0 in this case).

In d = 1 and for λ = λc, it is known that

lim
N→∞

τ

|ΛN |
=∞ and lim

N→∞

τ

|ΛN |4
= 0
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in probability [39].

We continue by discussing results on finite sub-graphs of the d-regular
tree Td. Fix d ≥ 2 and let Tdh be the finite sub-graph of Td, consisting of all
the generations from the root to generation h. Like before, let the CP on Tdh
start from configuration 1. Then the following results stand:

• If λ < λc2, then there exist constants k1, k2 > 0, such that

P (k1h ≤ τ ≤ k2h)→ 1

as h→∞.

• If λ > λc2, then ∀ σ < 1 ∃ k1, k2 > 0 such that

P (τ > k1e
k2(σd)h)→ 1

as h→∞.

The last result tells us that τ is at least as large as a stretched exponential
function of the number of vertices (d+ 1)h [40].

We end this paragraph with results on general, finite graphs. Even though
there are successful case studies for the extinction time, these depend on the
structure of the graphs under consideration and sometimes their relation
to some infinite (possibly even random) graph. The following results are
context-free i.e., hold for arbitrary (general) sequences of graphs. In ad-
dition, there is large literature on the extinction time of the CP on finite
graphs. This is sub-divided into two categories: papers that study situations
where the extinction time is “large” (i.e., exponential in the number of ver-
tices of the graph) and papers that focus on situations where the infection
disappears quickly. However, no rigorous results exist for finite graphs that
are not regular.

The following facts have been established [41]: For n ∈ N and d > 0,
let Λ(n, d) denote the set of all trees with n vertices and degree bounded by
d, and let G(n, d) be the set of graphs having a spanning tree in Λ(n, d). Then

• For any d ∈ N and λ < λc1(Td) there exists a C > 0 such that, for any
graph G with degree bounded by d and |G| ≥ 2,

E(τ) ≤ C log(|G|).
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• For any λ > λc(Z) and any ε > 0, there exists a constant c(ε) such that,
for any connected graph G with |G| ≥ 2,

E(τ) ≥ e
c(ε)

|G|
log(|G|)1+ε

,

and for any non-empty A ⊆ G,

P (ηA
exp{c(ε) |G|

log(|G|)1+ε
}
6= 0) > c(ε).

• For any λ > λc(Z) and any sequence of graphs (Gn)n∈N with |Gn| → ∞
as n→∞, τ

E(τ)
→ exp(1) in distribution as n→∞.

The previous results hold for general, finite and connected general graphs.
It is interesting to notice that if the infection rate λ is greater than the critical
infection rate of the one-dimensional process (λc(Z)) the average extinction
time grows faster than exp(|G|/(log |G|)k). Furthermore, this result allows
to safely say that: with positive probability we know that starting from
any non-empty set of infected vertices, then at time t = exp{c(ε) |G|

log(|G|)1+ε}
the infection has not died out. Finally, the previous results show that the
extinction time divided by its expectation converges in distribution to the
exp(1) (the unitary exponential distribution) as the number of vertices tends
to infinity.

In the next chapter we will briefly discuss Percolation Theory and present
the notions that we will read in our chapter on simulations and results.

Chapter 8

Percolation Theory

Percolation Theory is the study of connectivity in large networks. It describes
the behaviour of random clusters in these networks. To understand the notion
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better, we must think through an example: Imagine that a liquid is poured
on top of a porous material, such as a sponge. The question one could ask
is: Will the liquid be able to make its way inside the material, from hole
to hole, and finally reach the bottom and exit? This practical question is
modelled mathematically as a three-dimensional network of n×n×n vertices,
usually called “sites”, in which there may exist edges , usually called “bonds”,
between two neighboring vertices (allowing the liquid to go through) with
probability p, or not with probability 1–p. The probability of an edge existing
or not is assumed to be independent of the existence of any other edges. The
retained edges are called open and the removed ones closed. Usually, we are
interested in the behavior for large n [34]. This problem, called bond or edge
percolation, was introduced in mathematics by Broadbent and Hammersley
[42], and has been studied intensively by mathematicians and physicists since
that time.

There exists also what is called site percolation. By letting a vertex be
occupied with probability p or removed with probability 1− p (in which case
all edges incident to the vertex are removed as well), one again obtains a
random graph. In the following we will deal only with bond percolation, and
we will call this model ordinary percolation.

Since it is easier to examine infinite networks, the question that arises
naturally is the following: are there infinite clusters? For this we will define
a given vertex as the origin 0 and let Cp(0) denote the cluster containing
the origin in the random graph. We define also the percolation function
θ(p) := P(|Cp(0)| =∞), denoting the probability that the origin is connected
to infinity. By Kolmogorov’s zero–one law, for any given p, the probability
that an infinite cluster exists is either zero or one. Since this probability is
a non-decreasing function of p there must be a critical p below which the
probability is always 0 and above which the probability is always 1. We call
this critical value pc and it is defined as pc = sup{p ∈ (0, 1) : θ(p) = 0}.
It is known that pc ∈ (0, 1) and that p → θ(p) is continuous ∀ p 6= pc and
strictly increasing on (pc, 1). Continuity is also expected to hold at p = pc.
However, this has been proved for the square lattice with d = 2 and for Zd
with d ≥ 11. Thus, at p = pc a phase transition occurs:

• p < pc : all clusters are finite

• p > pc : there are infinite clusters

In the supercritical phase it turns out that there is a unique infinite clus-
ter, with probability 1 [43].
For a more thorough reference on percolation theory we point to [44]. In the

51



Figure 8.1: Qualitative plot of the percolation function [34].

next chapter, we will discuss our simulations and results.
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Figure 8.2: Simulation of ordinary percolation on a 25× 25 block in Z2, for p = 0.4 (left) and
p = 0.6 (right). The largest cluster is colored in red. Note that the red cluster spans the area
from top to bottom and left to right for p = 0.6, but not for p = 0.4.
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Chapter 9

Simulations and Results

In this chapter we will present the simulations we carried out to address
research question 3, as well as the results of these simulations. We will
start by discussing the problem before moving on to our simulations and the
parameters we chose.

9.1 The Problem

The CP on finite graphs eventually dies out and all nodes become healthy.
This is because (ηt)t≥0 is a Markov chain on a finite state space. As discussed
previously the interesting question is how long this will take?

These conditions in [41] mentioned in paragraph 7.1.2 are not sharp, in
the sense that the two critical values do not match, but have a gap. For this
reason we used a Continuous Time Markov Chain (CTMC) to simulate the
spread and, eventually, the death of the infection on finite square lattices,
to seek for sharper bounds. Furthermore, we introduced randomness by
putting percolation on the lattices and determining a connection between
the percolation probability and the critical infection thresholds on the lattice
with edges randomly removed.

9.2 Approach and Results

In this paragraph we will discuss our approach and present our results.

As mentioned previously, we would like to determine sharper bounds
for the critical values for the infection rate of which the time to extinction
changes drastically. We focused on finite, square lattices with percolation,
and we modeled the spread of the disease using a Continuous Time Markov
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Chain (CTMC) model. For simplicity, we did not use the actual time to
extinction, but instead the number of the Markov Chain steps. We used
as an upper bound (i.e., termination criteria) 2000 steps. After that we
terminate the simulation. We used the following algorithm:

1. Successively pick p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1} to percolate the lattice,
using bond percolation with probability p.

2. If the percolated lattice has a giant component (i.e., a cluster spanning
from left to right and top to bottom), then continue to step 3, otherwise
repeat from step 1.

3. Chose a λ and infect all sites of the lattice. Start the CTMC with this
λ and repeat 10 times.

4. If the system becomes healthy (i.e., all nodes have state 0) for this value
of λ prior to 2000 steps for all 10 runs, then we classify the system as
being is in the subcritical, phase and we go to step 3 to choose the next
value of λ.

5. We continue like this until we have found at least 3 successive values
of λ where the infection has not ceased spreading prior 2000 steps, for
all 10 runs.

6. We choose as the critical value for λ the first λ for which for all 10 runs
the infection did not cease spreading up to 2000 runs (i.e., over this
value of λ the system is declared to go in the supercritical phase).

7. We go to step 1 again.

The CTMC rates we used to simulate the CP (ηt)t≥0 are chosen as in [27]:

λ
∑
y∼x

η(y), if η(x) = 0,

1, if η(x) = 1,

for λ ∈ (0,+∞). In words, infected vertices become healthy at rate 1 and
healthy vertices become infected at rate λ times the number of infected neigh-
bors. Of course, we cannot simulate an infinite network, and so there will be
an upper bound on the size of the clusters. Namely, all clusters have sizes
(volume) up to n. This is called a finite size effect. Nevertheless, we used as
percolation probability only the values p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}, due to
the fact that we did not come across a giant component for p < 0.5. This did
not come as a surprise: although there are finite size effects, for the infinite
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lattice there is a critical percolation probability pc = 0.5, for bond percola-
tion: we open (retain) bonds with probability p and we close (discard) with
probability 1 − p. Furthermore, for each p we tested the spreading of the
disease for λ ∈ {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9, 1, 1.2, 1.3, 1.4}. Even though
λ = 0 is not interesting, we still included it for completeness reasons.

We would like to mention that no analytical results exist (to our knowl-
edge) regarding the behavior of such experiments on finite-sized systems.
Thus, our study is to be considered as a first approach.

Next we present our results. We simulated the infection spread on 10 ×
10, 15× 15, 20× 20 and 25× 25 square lattices (see Figures A.7-A.30 for the
percolated lattices of different sizes under different percolation probabilities,
used in this study).

Our results in Figure 9.14 represent the critical values of λ over which the
number of steps to extinction transcends 2000 steps, for each of the different
lattice blocks. From the plot what can be immediately seen as a general
trend is a drop in the critical thresholds for each lattice as the block gets
larger. Specifically, smaller lattices have a higher threshold curve, whereas
as the block increases this curve descends. Moreover, it is visible that in
the 15 × 15, 20 × 20 and 25 × 25 lattices the curves are nearly identical at
p = 0.7− 0.8. It is also interesting that for each lattice size the critical value
line is non-increasing. In words this means that as the lattice tends towards
being 4-regular, its “tolerance” or “vulnerability” (with respect to infection
rates) decreases. This implies that, as the percolation probability increases,
the critical infection rate λ decreases. In addition the critical values for λ for
each lattice size under p = 1 have a difference between them equal to 0.1 in
magnitude. What is more, it is interesting that this critical value lines are all
convex. One could interpret this curves as Pareto fronts, where one objective
is the percolation probability and the other is the infection parameter λ.

An explanation we believe reflects the observations is that the larger the
network (in the number of vertices) and the more connected it is (in the
number of edges), the less resilient the network becomes to infections, and
more iterations from the stochastic simulation algorithm are needed in order
for all vertices to become healthy. This reflects our intuition when we take
into account the CP rates we used for the simulation. The more nodes there
are, the more infected vertices we begin with in our simulations, and the
more connected the network is, the more susceptible nodes become infected.
Thus, it is harder for the system to reach its absorbing state (i.e., all nodes
are healthy) quicker, even for fairly small values of λ.

4In Appendix A, page 97 to page 108, we present the results of our simulations.
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Finally, we would like to comment on the following open question. As
marked on the plot in Figure 9.1 we see that as p → pc = 0.5 then λc
converges to a point strictly below the critical value for the one-dimensional
process λc(Z) ≈ 1.6494 (dashed black line), and this can be seen for all the
different blocks. It is believed that this result holds for the infinite lattice
in which percolation has occurred, as p ↓ pc = 0.5. Indeed, for any p > pc
there exists an infinite cluster with probability 1, and as a result a one-
dimensional lattice will be present in it. Thus, the (infinite) network will be
more vulnerable in sustaining an infection than Z, which is implied by the
more general fact that if N1, N2 are two networks for which N2 ⊆ N1, then
λc(N1) ≤ λc(N2).
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Figure 9.1:
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Chapter 10

Discussion and Future Work

Following upon the work presented in [41], we simulated, using a continuous
time Markov chain model, called the the contact process on random graphs
generated from finite, square lattices with percolation. Our goal was to ob-
tain bands on the, critical thresholds for the infection parameter λ. We used
as a measure of criticality the number of steps the stochastic simulation must
do in order to end up in the absorbing state where all individuals are healthy,
starting from a fully infected network. We demonstrated the infection spread
on 10× 10, 15× 15, 20× 20 and 25× 25 square lattices. Our results indicate
that the larger the network is ( in the number of vertices) and the more
connected it is (in the number of edges), the harder it is for system to reach
the absorbing state, for at least fairly small values of λ, in the sense that
the simulation needs more steps to reach that state. We used as a criticality
cutoff point 2000 steps. If the system did not reach the absorbing state prior
to 2000 steps, then we terminated the simulation and classified it as being in
the supercritical phase.

While this study is merely a first approach to the problem, we believe
it can be used as a methodology for future studies in this direction, where
empirical results are needed. We propose for future work the study of other
networks, such as the Erdős-Rényi model, the configuration model and the
preferential attachment model of Barabási and Albert. What is more, we
suggest a study towards an immunization strategy in the following manner:
Determine the critical values of the infection parameter λ by removing a
number k of key-nodes (such as largest degree vertices), taking into account
the extinction time of the infection. In this view, we propose the use of the
largest eigenvalue drop (discussed in Part 1) to determine which nodes are
the most significant and estimate the critical values of λ for a given number
k, indicating the number of significant nodes to be immunized.
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Appendix A

Networks

In table A.1 below we summarize the characteristics of our Networks.

Table A.1:
Networks nodes edges
karate 34 78
Dolphins 62 159
USA 27 207
Pandemic 48 93
Conf. day 1 190 703
Conf. day 3 148 517

Remark: We should mention here the following: For the networks Conf.
day 1 and Conf. day 3, we have used only their largest connected compo-
nent in our study. The reason for this has been that Netshield/Netshield+
only deal with connected graphs and thus, it would be only fair to do our
comparisons on such graphs.

We continue by visually presenting the graphs we used.
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Figure A.1: Network of Karate Club.
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Figure A.2: Network of Dolphins.
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Figure A.3: Network of USA flights.
See also next page for the label meaning.
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Label Airport V isits
41 Cincinnati/northernKentucky 117
50 DetroitMetropolitanWayneCounty 126
70 GeorgeBushIntercontinental 90
80 Hartsfield− jacksonAtlantaInternational 102
84 HopkinsInternational 123
87 IndianapolisInternational 120
105 KansasCityInternationalAirport 117
109 LaGuardia 123
130 MemphisInternational 105
136 Minneapolis− St.PaulIntl 135
152 NashvilleInternational 108
154 NewarkLibertyInternational 123
163 OrlandoInternational 84
168 PhiladelphiaInternational 120
171 PittsburghInternational 120
172 PortColumbusIntl 120
173 PortlandInternational 138
176 Raleigh− durhamInternationalAirport 108
191 RonaldReaganWashingtonNationalAirport 117
192 SaltLakeCityInternational 123
194 SanDiegoInternationalAirport 99
195 SanFranciscoInternational 114
200 Seattle− TacomaInternational 141
203 SkyHarborIntl 99
205 SouthwestF loridaReg 81
213 TampaInternational 84
223 WashingtonDullesInternational 117

Table A.2: Cost values for Pandemic network (proportional to city size).
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Figure A.4: Network of the Pandemic board game.
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ID City Population ID City Population
1 SanFrancisco 723724 25 Beijing 7602069
2 Chicago 2830144 26 Seoul 9860000
3 Montreal 3280123 27 Tokyo 8372440
4 NewY ork 8124427 28 Shanghai 15017783
5 Washington 548359 29 HongKong 7347000
6 Atlanta 424096 30 Taipei 2491662
7 Madrid 3146804 31 Osaka 2590815
8 London 7489022 32 Bangkok 4935988
9 Paris 2141839 33 HoChiMinhCity 3496586
10 Essen 596204 34 Manila 10546511
11 Milan 1316218 35 Jakarta 8556798
12 St.Petersburg 4991000 36 Sydney 4444513
13 Algiers 2029936 37 Khartoum 2090001
14 Istanbul 10034830 38 Johannesburg 2091491
15 Moscow 10472629 39 Kinshasa 9464000
16 Cairo 7836243 40 Lagos 9020089
17 Baghdad 5753612 41 SaoPaulo 10059502
18 Tehran 7160094 42 BuenosAires 11595183
19 Delhi 11215130 43 Santiago 4893495
20 Karachi 11969284 44 Lima 7857121
21 Riyadh 4328067 45 Bogota 7235084
22 Mumbai 18410000 46 MexicoCity 8659409
23 Chennai 7088000 47 LosAngeles 3911500
24 Kolkata 4497000 48 Miami 386740

Table A.3: Cost values for Pandemic network (proportional to city size).
Data taken from kateto.net/network-visualization
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Figure A.5: Network of Conference Day 1.
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Figure A.6: Network of Conference Day 3.
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Figure A.7: 10× 10 lattice with percolation probability p = 0.5
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Figure A.8: 10× 10 lattice with percolation probability p = 0.6
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Figure A.9: 10× 10 lattice with percolation probability p = 0.7
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Figure A.10: 10× 10 lattice with percolation probability p = 0.8
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Figure A.11: 10× 10 lattice with percolation probability p = 0.9
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Figure A.12: 10× 10 lattice with percolation probability p = 1
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Figure A.13: 15× 15 lattice with percolation probability p = 0.5
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Figure A.14: 15× 15 lattice with percolation probability p = 0.6
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Figure A.15: 15× 15 lattice with percolation probability p = 0.7
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Figure A.16: 15× 15 lattice with percolation probability p = 0.8
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Figure A.17: 15× 15 lattice with percolation probability p = 0.9
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Figure A.18: 15× 15 lattice with percolation probability p = 1
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Figure A.19: 20× 20 lattice with percolation probability p = 0.5
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Figure A.20: 20× 20 lattice with percolation probability p = 0.6

86



Figure A.21: 20× 20 lattice with percolation probability p = 0.7

87



Figure A.22: 20× 20 lattice with percolation probability p = 0.8
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Figure A.23: 20× 20 lattice with percolation probability p = 0.9
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Figure A.24: 20× 20 lattice with percolation probability p = 1
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Figure A.25: 25× 25 lattice with percolation probability p = 0.5
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Figure A.26: 25× 25 lattice with percolation probability p = 0.6
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Figure A.27: 25× 25 lattice with percolation probability p = 0.7
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Figure A.28: 25× 25 lattice with percolation probability p = 0.8
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Figure A.29: 25× 25 lattice with percolation probability p = 0.9
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Figure A.30: 25× 25 lattice with percolation probability p = 1
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Below we will present the results that led to the plot in Figure 9.1.

We start with the results for the 10× 10 lattice with percolation.

Table A.4: p = 0.5
λ
0 102 102 102 102 102 102 102 102 102 102
0.2 160 138 154 160 148 148 156 150 136 140
0.3 194 162 168 166 130 166 214 144 168 216
0.4 198 364 184 222 222 182 206 262 246 228
0.5 398 234 258 306 266 290 282 182 166 322
0.6 382 582 624 654 476 440 330 448 290 414
0.8 908 1618 1446 1824 610 582 1664 2001 760 2001
0.9 2001 1958 1278 1310 2001 2001 2001 736 1210 2001
1 2001 2001 800 1608 2001 2001 2001 2001 1330 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.5: p = 0.6
λ
0 102 102 102 102 102 102 102 102 102 102
0.2 138 158 160 160 166 154 172 152 152 142
0.3 232 182 216 182 182 214 208 188 248 200
0.4 294 234 258 318 240 238 322 264 320 176
0.5 342 372 294 424 312 234 366 426 342 532
0.6 710 324 548 606 282 928 402 452 736 558
0.8 2001 2001 2001 1064 2001 2001 2001 2001 2001 1620
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Table A.6: p = 0.7
λ
0 102 102 102 102 102 102 102 102 102 102
0.2 186 198 142 174 158 158 164 164 162 200
0.3 268 326 232 282 260 246 220 290 258 254
0.4 398 438 262 372 268 258 312 388 274 460
0.5 806 1814 1268 792 832 760 672 1306 590 1180
0.6 650 2001 2001 964 1556 488 1826 2001 1668 950
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.7: p = 0.8
λ
0 102 102 102 102 102 102 102 102 102 102
0.2 186 158 168 170 168 150 160 170 158 192
0.3 270 276 232 256 310 256 214 206 252 186
0.4 262 458 414 414 358 378 382 430 446 414
0.5 490 876 986 934 654 456 424 538 1426 816
0.6 2001 1170 2001 2001 2001 2001 1788 994 1528 1032
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Table A.8: p = 0.9
λ
0 102 102 102 102 102 102 102 102 102 102
0.2 238 194 226 224 156 182 216 218 190 272
0.3 378 296 290 264 224 284 192 258 226 254
0.4 464 440 448 372 730 424 480 468 564 302
0.5 990 2001 2001 2001 1458 714 444 1318 500 1552
0.6 2001 2001 2001 2001 2001 2001 1988 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.9: p = 1
λ
0 102 102 102 102 102 102 102 102 102 102
0.2 220 210 220 202 198 240 194 248 228 216
0.3 272 414 364 348 330 428 562 386 422 274
0.4 1682 1040 1154 422 934 1714 890 482 996 1410
0.5 2001 2001 2001 2001 1636 2001 2001 1142 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Next, we present the results for the 15× 15 lattice with percolation.

Table A.10: p = 0.5
λ
0 227 227 227 227 227 227 227 227 227 227
0.2 383 315 275 383 343 321 317 359 359 363
0.3 329 415 397 367 463 393 425 371 431 385
0.4 485 559 487 587 535 517 489 457 683 561
0.5 621 707 563 853 619 689 651 713 521 813
0.6 971 971 973 1237 661 1031 937 1175 775 611
0.8 2001 2001 2001 1925 2001 2001 2001 1673 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.11: p = 0.6
λ
0 227 227 227 227 227 227 227 227 227 227
0.2 369 367 359 373 365 379 311 351 323 343
0.3 415 395 461 427 373 435 417 381 383 387
0.4 539 645 561 593 507 619 643 567 639 613
0.5 573 649 721 701 611 775 1057 873 945 869
0.6 1391 1403 1271 825 1133 895 1387 1093 1123 1195
0.8 2001 2001 2001 2001 2001 2001 2001 2001 1247 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Table A.12: p = 0.7
λ
0 227 227 227 227 227 227 227 227 227 227
0.2 407 329 389 387 393 355 377 395 405 411
0.3 497 561 527 425 533 505 619 461 463 541
0.4 949 577 709 915 663 649 987 635 807 969
0.5 1183 1581 1109 1161 825 1067 1249 1181 1293 1705
0.6 1717 1811 2001 2001 2001 1461 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.13: p = 0.8
λ
0 227 227 227 227 227 227 227 227 227 227
0.2 411 445 435 407 415 399 459 447 407 395
0.3 671 599 631 563 585 645 597 523 519 631
0.4 1767 881 1265 1125 771 873 931 1077 1341 1061
0.5 2001 2001 2001 2001 1709 2001 2001 1759 1919 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Table A.14: p = 0.9
λ
0 227 227 227 227 227 227 227 227 227 227
0.2 513 447 421 415 473 481 499 429 495 423
0.3 713 719 617 765 651 653 993 841 751 695
0.4 1041 1387 1169 1477 1863 1887 1087 1503 1883 785
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 1687
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.15: p = 1
λ
0 227 227 227 227 227 227 227 227 227 227
0.2 423 425 513 509 465 461 503 517 529 529
0.3 871 995 905 747 791 815 907 913 977 845
0.4 2001 1213 1343 2001 2001 2001 1695 2001 2001 2001
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Next, we present the results for the 20× 20 lattice with percolation.

Table A.16: p = 0.5
λ
0 402 402 402 402 402 402 402 402 402 402
0.2 652 634 652 646 586 644 648 650 636 620
0.3 698 766 788 694 736 766 746 782 698 766
0.4 804 936 978 1006 796 1100 1020 946 896 966
0.5 1106 1156 1042 1356 1214 1086 1186 1024 1132 1396
0.6 1670 1288 1554 1870 1426 1626 1860 2001 1442 1544
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.17: p = 0.6
λ
0 402 402 402 402 402 402 402 402 402 402
0.2 644 612 650 642 644 582 658 598 608 612
0.3 862 928 720 730 868 806 842 870 958 826
0.4 1250 858 1132 1380 1064 1076 1032 1172 1124 1078
0.5 1506 1844 1936 1466 1456 1456 1390 1348 1760 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 1996
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Table A.18: p = 0.8
λ
0 402 402 402 402 402 402 402 402 402 402
0.2 658 712 686 648 654 666 648 658 698 638
0.3 888 920 970 1040 964 1056 948 852 976 862
0.4 1450 1842 1254 1116 1406 1478 1308 1186 1250 1248
0.5 2001 2001 2001 1972 2001 1906 2001 2001 1608 1820
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.19: p = 0.8
λ
0 402 402 402 402 402 402 402 402 402 402
0.2 782 768 866 696 772 712 762 856 724 700
0.3 1098 1124 950 1126 1032 1232 1036 1186 1156 1004
0.4 1844 1520 2001 2001 1694 1704 2001 1786 2001 1612
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Table A.20: p = 0.9
λ
0 402 402 402 402 402 402 402 402 402 402
0.2 900 810 808 928 868 812 930 786 882 786
0.3 1370 1422 1292 1158 1364 1304 1570 1208 1598 1236
0.4 2001 2001 2001 2001 2001 2001 1994 2001 2001 2001
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.21: p = 1
λ
0 402 402 402 402 402 402 402 402 402 402
0.2 942 916 772 1038 864 856 910 954 894 984
0.3 1528 1896 1738 1810 1744 1430 1474 1730 1718 1890
0.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Next, we present the results for the 25× 25 lattice with percolation.

Table A.22: p = 0.5
λ
0 627 627 627 627 627 627 627 627 627 627
0.2 967 981 921 939 935 895 921 1019 951 993
0.3 1171 1105 1301 1085 1153 1109 1289 1123 1289 1103
0.4 1445 1455 1479 1463 1461 1409 1351 1381 1641 1467
0.5 1547 1857 1865 2001 1807 1863 1681 1829 2001 1997
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.23: p = 0.6
λ
0 627 627 627 627 627 627 627 627 627 627
0.2 1009 1051 1061 1031 995 1011 985 1003 1015 969
0.3 1307 1245 1483 1365 1303 1509 1357 1365 1389 1279
0.4 1841 2001 1697 1919 1771 1653 1671 1911 1633 1983
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Table A.24: p = 0.7
λ
0 627 627 627 627 627 627 627 627 627 627
0.2 1115 1109 1021 1063 1045 1121 1147 1113 1013 1049
0.3 1515 1395 1391 1515 1467 1403 1353 1453 1453 1525
0.4 2001 2001 1791 2001 1973 2001 1761 2001 2001 1981
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.25: p = 0.8
λ
0 627 627 627 627 627 627 627 627 627 627
0.2 1213 1249 1219 1295 1113 1195 1137 1143 1327 1235
0.3 1775 1767 1501 1835 1849 1861 1925 1823 1831 1427
0.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

107



Table A.26: p = 0.9
λ
0 627 627 627 627 627 627 627 627 627 627
0.2 1115 1313 1289 1321 1361 1287 1363 1285 1425 1237
0.3 2001 2001 2001 2001 1865 2001 2001 1959 1865 2001
0.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

Table A.27: p = 1
λ
0 627 627 627 627 627 627 627 627 627 627
0.2 1415 1481 1521 1479 1323 1441 1499 1307 1521 1381
0.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.5 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.6 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.8 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
0.9 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.2 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.3 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
1.4 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
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Appendix B

Source Code

Netshield source code

Netsh i e ld <− f unc t i on (G, k , idx out )
{
###f i n d k nodes , and i f we d e l e t e them , w i l l produce maximum drop in terms
###of the 1 s t e igen−value o f A
#A i s the g iven graph
#k i s the number o f nodes to d e l e t e
#idx i s the index o f de l e t ed nodes
#de l i s the d i f f e r e n c e o f 1 s t e igen−value o f A a f t e r d e l e t i n g the nodes

A <− as . matrix ( get . adjacency (G) )
i f ( nargs ()<3)
{
i dx out <− c ( )
}

i f (k<0)
{
idx <− −1
re turn
}
###pre−p r o c e s s i n g ? ( e . g . , to exc lude those degree−1 nodes )

spectrum <− e i gen (A, symmetric = TRUE, only . va lue s = FALSE)
# make sure a l l e lements o f u p o s i t i v e ”
u <− spectrum$vectors [ , 1 ]
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lam <− spectrum$values [ 1 ]
pos <− which ( abs (u)==max( abs (u ) ) )
i f (u [ pos [ 1 ] ] < 0)
{
u <− −u
}
n <− dim(A) [ 1 ]
u0 = (2 ∗ lam ∗ rep (1 , n) − diag (A) )∗ ( uˆ2)
#top 1
tmp <− u0
tmp [ idx out ] <− −1
pos <− which (tmp==max(tmp ) )
idx <− pos [ 1 ]

###g r e e d i l y f i n d the other nodes
i f (k>1)
{
f o r ( i in 2 : k )
{
A0 <− A[ , idx ]
r <− as . matrix (u [ idx ] )
tmp <− A0 %∗%r

tmp <− u0 − 2 ∗ ( ( tmp)∗u)
tmp [ idx ] <− −1 #exc lude those a l r eady s e l e c t e d
tmp [ idx out ] <− −1
pos <− which (tmp==max(tmp ) ) [ 1 ]
idx <− append ( idx , pos )
}
}

A0 <− A
A0 [ , idx ] <− 0
A0 [ idx , ] <− 0
spectrum <− e i gen (A0 , symmetric = TRUE, only . va lue s = FALSE)
u00 <− spectrum$vectors
lam00 <− spectrum$values [ 1 ]
de l <− lam − lam00

return ( l i s t ( f i r s t = idx , second = max(tmp) , th i rd = de l ) )
}
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Netshield+ source code

N e t s h i e l d p l u s <− f unc t i on ( G, k , batch , idx out )
{

# f i n d k nodes , and i f we d e l e t e them , w i l l produce maximum drop in terms
# of the 1 s t e igen−value o f A
# greedy way by matrix pe r turbat i on theory and submodular ity
# A i s the g iven graph
# k i s the number o f nodes to d e l e t e
# batch i s un i t d e l e t e s i z e
# idx i s the index o f de l e t ed nodes
# de l i s the d i f f e r e n c e o f 1 s t e igen−value o f A a f t e r d e l e t i n g the nodes

A <− as . matrix ( get . adjacency (G) )

i f ( nargs ()<4)
{

i dx out <− c ( )
}

i f (k<0)
{
t o t a l i d x <− −1
re turn
}

round = c e i l i n g ( k/ batch )
t o t a l d e l = 0
t o t a l i d x = c ( )
Ao = A
f o r ( r in 1 : round )
{

spectrum <− e i gen (Ao , symmetric = TRUE, only . va lue s = FALSE)
# make sure a l l e lements o f u p o s i t i v e
u <− spectrum$vectors [ , 1 ]
lam <− spectrum$values [ 1 ]
pos <− which ( abs (u)==max( abs (u ) ) )
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# u <− i f e l s e (u<0, u∗−1, u)
i f (u [ pos [ 1 ] ] < 0)
{

u <− −u
}

n <− dim(A) [ 1 ]
u0 = (2 ∗ lam ∗ rep (1 , n) − diag (Ao) )∗ ( uˆ2)
#top 1
tmp <− u0
tmp [ idx out ] <− −1
pos <− which (tmp==max(tmp ) )
idx <− pos [ 1 ]

i f ( k > 1)
{

i f ( r == round && k%%batch !=0)
{
batch = k−(round−1)∗batch ;
}

i f ( batch >=2)
{
#g r e e d i l y f i n d the other nodes
f o r ( i in 2 : batch )
{

A0 <− A[ , idx ]
r <− as . matrix (u [ idx ] )
tmp <− A0 %∗%r
tmp <− u0 − 2 ∗ ( ( tmp)∗u)
tmp [ idx ] <− −1 #exc lude those a l r eady s e l e c t e d
tmp [ idx out ] <− −1
pos <− which (tmp==max(tmp ) ) [ 1 ]
idx <− append ( idx , pos )

}
}
}

# Ao <− A
Ao [ , idx ] <− 0
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Ao [ idx , ] <− 0
spectrum <− e i gen (Ao , symmetric = TRUE, only . va lue s = FALSE)
u00 <− spectrum$vectors [ , 1 ]
lam00 <− spectrum$values [ 1 ]
# u00 <− spectrum$vectors
# lam00 <− spectrum$values
de l <− lam − lam00

t o t a l d e l = t o t a l d e l + de l ;
t o t a l i d x = append ( to ta l i dx , idx )

}
r e turn ( l i s t ( f i r s t = to ta l i dx , second = t o t a l d e l ) )

}

GA 0 source code - Based on Algorithm 1

# 1+1 GA #

GA 0 <− f unc t i on (G, maxEval , k )
{

s t a r t . time <− proc . time ( )
# G i s the graph/network

A <− as . matrix ( get . adjacency (G) )

# Eigendecomposit ion o f adjacency matrix
spectrum <− e i gen (A, symmetric = TRUE, only . va lue s = FALSE)
lambda <− spectrum$values [ 1 ]
i f ( lambda<0) { lambda <− lambda∗−1}
v <− spectrum$vectors [ , 1 ]
v <− i f e l s e (v<0, v∗−1,v ) # make sure a l l e lements o f u p o s i t i v e
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n <− vcount (G) # s i z e o f graph/number o f nodes

pm = 1/n # mutation p r o b a b i l i t y

eva lcount <− 0
h i s t f i t <− c ( )

f i t <− c ( )

# I n i t i a l i z e populat ion and eva luate
S <− seq (n)
S <− sample (S)

f i t <− e igen drop (S [ 1 : k ] ,G, lambda )
eva lcount <− eva lcount+1
h i s t f i t [ eva lcount ] <− f i t

f i t n e w <− c ( )

# Evaluat ion loop ( mutation )
whi l e ( eva lcount < maxEval )
{

# inte r chang ing the vec to r e lements

t <− S
f o r ( i in 1 : k )
{

ind one <− t [ 1 : k ]
i n d z e r o <− t [ ( k+1):n ]
random zero <− sample ( l ength ( i n d z e r o ) , 1 , r e p l a c e = FALSE,

rep (pm, l ength ( i n d z e r o ) ) )
random one <− sample ( l ength ( ind one ) , 1 , r e p l a c e = FALSE,

rep (pm, l ength ( ind one ) ) )
temp <− i n d z e r o [ random zero ]
t [ ( random zero+k ) ] <− ind one [ random one ]
t [ random one ] <− temp

}

o f f s p r i n g S <− t
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f i t n e w <− e igen drop ( o f f s p r i n g S [ 1 : k ] ,G, lambda )

J <− ( f i t n e w )
K <− ( f i t )

i f ( J>K)
{

f i t <− f i t n e w
S <− o f f s p r i n g S

}

eva lcount <− eva lcount+1
h i s t f i t [ eva lcount ] <− f i t

}

end . time <− proc . time ( )
time . taken <− end . time − s t a r t . time
return ( l i s t ( f i r s t = S [ 1 : k ] , second = f i t , t h i rd = h i s t f i t ,

f our th = evalcount , f i f t h = time . taken ) )

}
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GA 1,2,3,4,5 source code - Based on Algorithm 2

# (mue + mue)−GA #

GA i <− f unc t i on (G, maxEval , k , p )
{

# G i s the graph/network
s t a r t . time <− Sys . time ( )

# G i s the graph/network

A <− as . matrix ( get . adjacency (G) )

# Eigendecomposit ion o f adjacency matrix
spectrum <− e i gen (A, symmetric = TRUE, only . va lue s = FALSE)
lambda <− spectrum$values [ 1 ]
i f ( lambda<0) { lambda <− lambda∗−1}
v <− spectrum$vectors [ , 1 ]
v <− i f e l s e (v<0, v∗−1,v ) # make sure a l l e lements o f u p o s i t i v e
so r t ed <− s o r t . i n t (v , de c r ea s ing = TRUE, index . r e turn = TRUE)
le igen comp <− s o r t e d $ i x [ 1 : k ] # k l a r g e s t e i g e n s c o r e nodes
n <− vcount (G) # s i z e o f graph/number o f nodes

# GA parameters
mu = 50
pc = 0.75
pm = 1/n # mutation p r o b a b i l i t y
pool = 30 # pool s i z e f o r tournament s e l e c t i o n

eva lcount <− 0
h i s t f i t <− c ( )

# I n i t i a l i z e populat ion and eva luate
r <− seq (n)
S <− matrix (0 , nrow = mu, nco l = n)
f o r ( i in 1 :mu)
{

S [ i , ] <− sample ( r )
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}

f i t n e s s <− rep (0 , mu)

f o r ( i in 1 :mu)
{

f i t n e s s [ i ] <− e igen drop (S [ i , ( 1 : k ) ] ,G, lambda )

}

idx <− which ( f i t n e s s == max( f i t n e s s ) ) [ 1 ]
opt <− S [ idx , 1 : k ]

eva lcount <− eva lcount+1
h i s t f i t [ eva lcount ] <− max( f i t n e s s )

f i t n e s s n e w <− rep (0 , mu)
temp <− 0
p r e v f i t n e s s <− max( f i t n e s s )

# Evaluat ion loop ( recombinat ion − mutation )
whi l e ( eva lcount < maxEval && temp < ( k∗(n−k ) ) )
{

# Generate new populat ion
# parent s e l e c t i o n − tournament method
o f f s p r i n g S <− matrix (0 , nrow = mu, nco l = n)

f o r ( j in 1 :mu)
{

parent 1 <− s e l e c t s c P r o p o r t i o n a l (S , f i t n e s s )
r <− r u n i f ( 1 )

i f ( r < pc )
{

parent 2 <− s e l e c t s c P r o p o r t i o n a l (S , f i t n e s s )
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un <− union ( parent 1 [ 1 : k ] , parent 2 [ 1 : k ] )

i f ( l ength (un) > k )
{

d i f <− l ength (un) − k
f o r ( l in 1 : d i f )
{

rm <− sample (un , 1 , r e p l a c e = FALSE)
un <− un[−rm ]

}

}

t <− c (un , s e t d i f f ( seq (n ) , un ) )
}

e l s e
{ parent 2 <− parent 1 ; t <− parent 2 }
# pr in t ( t )

prob <− rep (pm, n)
prob [ which ( t %in% le igen comp ) ] <− p

f o r ( i in 1 : k )
{

ind one <− t [ 1 : k ]
i n d z e r o <− t [ ( k+1):n ]
random zero <− sample ( l ength ( i n d z e r o ) , 1 , r e p l a c e = FALSE,

prob [ ( k+1):n ] )
random one <− sample ( l ength ( ind one ) , 1 , r e p l a c e = FALSE,

prob [ 1 : k ] )
random zero <− i n d z e r o [ random zero ]
random one <− ind one [ random one ]
ind1 <− which ( t == random one )
ind2 <− which ( t == random zero )
t <− r e p l a c e ( t , c ( ind1 , ind2 ) , t [ c ( ind2 , ind1 ) ] )

}
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o f f s p r i n g S [ j , ] <− t

}

Union <− rbind (S , o f f s p r i n g S )

f o r ( i in 1 :mu)
{

f i t n e s s n e w [ i ] <− e igen drop ( o f f s p r i n g S [ i , ( 1 : k ) ] ,G, lambda )
}

f i t n e s s u n i o n <− append ( f i t n e s s , f i t n e s s n e w )

f t n s <− s o r t . i n t ( f i t n e s s u n i o n , de c r ea s ing = TRUE, index . r e turn = TRUE)
S <− Union [ f t n s $ i x [ c ( 1 :mu) ] , ]
f i t n e s s <− f i t n e s s u n i o n [ f t n s $ i x [ c ( 1 :mu ) ] ]

idx <− which ( f i t n e s s == max( f i t n e s s ) ) [ 1 ]
opt <− S [ idx , ( 1 : k ) ]

eva lcount <− eva lcount+1
h i s t f i t [ eva lcount ] <− max( f i t n e s s )

# terminat ion c r i t e r i o n − s tagnat i on

i f (max( f i t n e s s ) − p r e v f i t n e s s == 0)
{

temp <− temp + 1
# pr in t ( temp )

}
e l s e {temp <− 0}
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p r e v f i t n e s s <− max( f i t n e s s )
}

end . time <− Sys . time ( )

time . taken <− end . time − s t a r t . time
re turn ( l i s t ( f i r s t = opt , second = max( f i t n e s s ) , t h i rd = h i s t f i t ,

f our th = evalcount , f i f t h = time . taken ) )

}

MultiObjective GA source code - Based on the ’ecr’ package by Jakob Bossek

####################################
# MOEA / SMS − EMOA / NSGA−I I #
# Assumptions : #
# G i s a connected graph #
# k−i n v a r i a n t #
####################################

bi Object ive GA <− f unc t i on (G, maxEval )
{

# v i s i t s <− c (117 ,126 ,90 ,102 ,123 ,120 ,117 ,123 ,105 ,135 ,108 ,123 ,
# 84 ,120 ,120 ,120 ,138 ,108 ,117 ,123 ,99 ,114 ,141 ,99 ,81 ,84 , 117)
# popu la t i ons <− c (723724 ,2830144 ,3280123 ,8124427 , 548359 ,
# 424096 ,3146804 ,7489022 ,2141839 , 596204 ,1316218 ,4991000 ,2029936 ,
# 10034830 , 10472629 , 7836243 , 5753612 ,7160094 ,11215130 ,11969284 ,
# 4328067 , 18410000 , 7088000 , 4497000 ,
# 7602069 , 9860000 , 8372440 , 15017783 , 7347000 , 2491662 ,2590815 ,
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# 4935988 , 3496586 , 10546511 , 8556798 ,
# 4444513 , 2090001 , 2091491 , 9464000 , 9020089 , 10059502 , 11595183 ,
# 4893495 , 7857121 , 7235084 ,
# 8659409 , 3911500 , 386740 )

# Uncomment below , depending on the co s t func t i on

# G <− s e t . ve r tex . a t t r i b u t e (G, ’ importance ’ , V(G) , degree (G)∗ betweenness (G,
#V(G) , d i r e c t e d = FALSE) )

# G <− s e t . ve r tex . a t t r i b u t e (G, ’ pop ’ , V(G) , popu la t i ons )
# G <− s e t . ve r tex . a t t r i b u t e (G, ’ pop ’ , V(G) , v i s i t s )
A <− as . matrix ( get . adjacency (G) )
# Eigendecomposit ion o f adjacency matrix
spectrum <− e i gen (A, symmetric = TRUE, only . va lue s = FALSE)
eigen lambda <− spectrum$values [ 1 ]
i f ( eigen lambda <0) { eigen lambda <− eigen lambda∗−1}
v <− spectrum$vectors [ , 1 ]
v <− i f e l s e (v<0, v∗−1,v )

n <− vcount (G) # s i z e o f graph/number o f nodes

so r t ed <− s o r t . i n t (v , de c r ea s ing = TRUE, index . r e turn = TRUE)
ind <− s o r t e d $ i x

# GA parameters

mu = 50L # populat ion s i z e
pc = 0.75 # recombinat ion p r o b a b i l i t y
pm = 1/n # mutation p r o b a b i l i t y

r e f . po int <− c (1 ,10000L)
lambda =1L # change to 50L in NSGA−I I EMOA
f i t M a t r i x <− matrix (0 , nrow = 2 , nco l = (mu+lambda ) )

# uncomment below depending on the s o l v e r a lgor i thm

s u r v i v a l . s e l e c t o r = setup (selDomHV , r e f . po int = r e f . po int ) # SMS−EMOA
# selNondom # NSGA−I I EMOA #

recombinator = recCros sover
parent . s e l e c t o r = se lS imp l e
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mutator = mutBi t f l i p

# i n i t i a l i z a t i o n

populat ion = genBin (mu, n)

c o n t r o l = initECRControl ( f i tFunct ion3 , n . o b j e c t i v e s = 2L ,
minimize = c (FALSE, TRUE) )

c o n t r o l = registerECROperator ( cont ro l , ” se l ectForMat ing ” ,
parent . s e l e c t o r )

c o n t r o l = registerECROperator ( cont ro l , ” recombine ” ,
recombinator )

c o n t r o l = registerECROperator ( cont ro l , ”mutate ” ,
mutator )

c o n t r o l = registerECROperator ( cont ro l , ” s e l e c t F o r S u r v i v a l ” ,
s u r v i v a l . s e l e c t o r )

# f i t n e s s c a l c u l a t i o n

f i t n e s s = e v a l u a t e F i t n e s s ( cont ro l , populat ion , G, eigen lambda )

########################################################################
# Evaluat ion loop ( recombinat ion − mutation ) in a steady−s t a t e manner

#
########################################################################

f o r ( i t e r in 1 : maxEval )
{

pr in t ( i t e r )

# parent s e l e c t i o n and mutation #

o f f s p r i n g = recombinate ( cont ro l , populat ion , f i t n e s s = f i t n e s s ,
lambda = lambda , p . recomb = pc , s l o t = ’ recombine ’ )

o f f s p r i n g <− mutation ( o f f s p r i n g , ind , n)
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# c a l c u l a t e c o s t s o f new schedu l e s
f i t n e s s . o = e v a l u a t e F i t n e s s ( cont ro l , o f f s p r i n g , G, e igen lambda )

# apply (MU + LAMBDA) s e l e c t i o n

s e l = replaceMuPlusLambda ( cont ro l , populat ion , o f f s p r i n g ,
f i t n e s s , f i t n e s s . o )

populat ion = s e l $ p o p u l a t i o n
f i t n e s s = s e l $ f i t n e s s

}

r e turn ( l i s t ( f i t n e s s = f i t n e s s , inds = populat ion ) )

}

Cost function for the MultiObjective GA source code

#############################################################################
# The co s t func t i on has a as a 1 s t o b j e c t i v e the e igen−drop ( maximization )
#
# and as a 2nd o b j e c t i v e the co s t o f immunization de f ined as the sum of the #
# nodes to be immunized/removed .
#
#############################################################################

f i t F u n c t i o n <− f unc t i on (S , G, lambda )
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{

nodes <− which (S==1)
G prime <− d e l e t e . v e r t i c e s (G, nodes )
A prime <− as . matrix ( get . adjacency ( G prime ) )
i f ( dim( A prime ) [ 1 ] ! = 0 ){

spectrum prime <− e i gen ( A prime , symmetric = TRUE, only . va lue s = FALSE)
lambda prime <− spectrum prime$values [ 1 ]

d e l t a e i g e n <− lambda − lambda prime}
e l s e

d e l t a e i g e n <− 0
# pr in t ( lambda prime )
# pr in t ( e i gen drop )

co s t <− sum(V(G) [ nodes ] $pop )

c ( d e l t a e i g e n , co s t )

}

Ordinary (bond) percolation source code

#####################################
# ordinary ( bond ) p e r c o l a t i o n #
#####################################

bond perco l a t i on <− f unc t i on (G, p)
{

edge <− get . e d g e l i s t (G)
e d g e s t o d e l e t e <− c ( )
temp <− 0
f o r ( i in 1 : dim( edge ) [ 1 ] )
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{

r <− r u n i f ( 1 )
i f ( r < (1−p ) ) { temp <− temp + 1 ; e d g e s t o d e l e t e [ temp ] <− i }

}

G new <− d e l e t e e d g e s (G, e d g e s t o d e l e t e )

V(G new) $ c o l o r <− ’ white ’
c l u s t e r <− c l u s t e r s (G new)
c o l o r s <− rainbow (max( membership ( c l u s t e r ) ) )
max ind <− which ( c l u s t e r s (G new) $ c s i z e==max( c l u s t e r s (G new) $ c s i z e ) ) [ 1 ]
ind <− which ( c l u s t e r s (G new) $membership==max ind )
V(G new ) [ ind ] $ c o l o r <− ’ red ’

p l o t (G new , layout=layout on g r id ,
ve r tex . s i z e =3, ver tex . l a b e l = NA, edge . width = 1)

p r i n t ( c l u s t e r $ c s i z e )
re turn (G new)

}

CTMC simulation for the SIS epidemic spread on the square lattice

############################################
# S t o c h a s t i c S imulat ion Algorithm (CTMC) #
############################################
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SSA <− f unc t i on (G, b , d)
{

V(G) $ s t a t e <− rep (1 , vcount (G) ) # a l l nodes made i n f e c t e d
n i n f <− c ( )
n i n f [ 1 ] <− sum(V(G) $ s t a t e==1)
# pr in t ( n i n f )
n susc <− c ( )
n susc [ 1 ] <− 0
ra t e <− rep (0 , vcount (G) )
a l i v e <− TRUE
t <− 0
time <− c ( )
time [ 1 ] <− 0

i t e r <− 1
whi l e ( a l i v e && i t e r <= 2000)
{

pr in t ( i t e r )
i t e r <− i t e r + 1

# pr in t (V(G) $ s t a t e )
f o r ( j in 1 : vcount (G) )
{

# pr in t ( j )
#### Construct ing the i n f e c t i o n−r a t e Matrix ####

output <− i f e l s e (V(G) [ j ] $ s t a t e == 0 , make rates (G, j , b ) , d )
# pr in t ( output )

ra t e [ j ] <− output

}

i f (sum( ra t e )>0)
{ a l i v e <− TRUE}
e l s e
{ a l i v e <− FALSE}

i f ( a l i v e )
{

r a t e o f l e a v i n g <− sum( ra t e )
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DeltaT <− rexp (1 , r a t e o f l e a v i n g )
sumprob <− 0
u <− r u n i f ( 1 )

f o r ( j in 1 : vcount (G) )
{

prev sumprob <− sumprob
sumprob <− sumprob + ra t e [ j ] / ( sum( ra t e ) )
i f ( prev sumprob < u && u <= sumprob )
{

i f (V(G) $ s t a t e [ j ] == 0)
{V(G) $ s t a t e [ j ] <− 1}
e l s e i f (V(G) $ s t a t e [ j ] == 1)
{V(G) $ s t a t e [ j ] <− 0}
break

}

}
n i n f [ i t e r ] <− sum(V(G) $ s t a t e==1)
t <− t + DeltaT
time <− append ( time , DeltaT )
}

}

r e turn ( l i s t ( graph = V(G) $state , time = time , i t e r s = i t e r ,
i n f e c t e d = n i n f / vcount (G) ) )

}

make rates <− f unc t i on (G, j , b )
{

nb <− ne ighbors (G,V(G) [ j ] , mode=c (” a l l ” ) )
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v <− sum(V(G) [ nb ] $ s t a t e == 1)
{ r a t e <− b∗v}
# i f ( v > 0)
# { r a t e <− b}
# e l s e
# ra t e <− 0
#
return ( ra t e )

}
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