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Abstract

This thesis researches the error distributions of possible high frequency pricing
models in the foreign exchange market. The models are tested on the EUR/USD
exchange rate. The main focus of the research is to analyze the models on the
Pareto-front using Multi-objective Optimization and Genetic Programming. The
results of different non-dominated models are compared against each other and
an analysis of the error distributions regarding the models found during six sim-
ulations over the high frequency data-set is given. The models found during the
simulations of the Evolutionary Algorithm (EA) has shown to converge toward a
(possible) global optimum. The EA was able to minimize the error of all three
objectives (prediction error, skew and excess kurtosis) of the models. By deriving
the models found after the simulations, it was possible to create a theoretical
model for different holding periods.
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1 Introduction

1.1 Motivation

In the past years there has been many hedge funds that claim to outperform the
forex (foreign exchange) market. These trading firms mostly use proprietary
software that handles automated high frequency trading algorithms to buy and
sell shares when there exist inefficiencies in the market [10]. It is still unclear
how these firms actually create their models. What is known is that they trade
on very short time periods (See Figure 1).

Figure 1: Survey of which holdings positions are classified as HFT, adopted
from Aldrige, I. (2010, p.22)

In the past Neural Networks have been widely used for prediction in finan-
cial markets, because they are able to minimize the error of the target function
[4]. The problem here is that the underlying structure of these networks can be
very difficult to understand because they are too much of a black box, which
is a disadvantage. In trading, prediction models should be stable and easy to
understand because without stability, risk can be underestimated and can lead
to more losses than profits. Risk management and prediction models used in
trading are of equal importance. But to manage the trading risk, the error
distributions of the prediction models should be well understood.

In the past decade trading has become autonomous process for many trading
firms. Autonomous means that the models used do not have to be interfered
and also possibly left unmonitored. But because black-box models are too much
of a risk if left unmonitored due to the lack of theoretical foundation, it is possi-
ble that trading firms do not use them that often. Therefore the term Grey-Box
models needs to be explained.

Grey-box models lay between White- and Black-box models. In contrary to
White-box models that are deterministic because of physical knowledge, grey-
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box models are not deterministic but they do make use of prior physical knowl-
edge. As to Black-box models which do not use any prior knowledge in the
data for it’s output, Grey-box models do use a combination of it’s prior physi-
cal information in the data with newly gathered information.

Figure 2: Grey Box, adopted from Bacher, B. et al. (2014, p.5)

Grey-box models are well suited for K-steps forecasts and control of both
observed and hidden states. It helps the model with deficiencies when the model
is missing proper description and or time-tracking of unexplained variations in
e.g. parameters [7]. Therefore this paper will try to make use a Grey-box
model in it’s experiments. White-box models are not relevant because markets
are noisy environments due to all of the factors influencing them, which makes
it impossible to have one model that has always the perfect output.

1.2 Hedging Strategies

The amount of financial products available today is enormous. A good under-
standing of the difference between all of these products is beneficial to someone
who is willing to become a trader because each product can be used differently
and can influence the trading strategy. Most hedging strategies used today by
hedge funds are built using options. Hedge funds are companies trading finan-
cial products claiming to use strategies that can generate high returns with
low risk. Hedge funds differ mostly in the type of methods (e.g. aggressive
or passive) and strategies (e.g. butterfly, straddle, iron condor etc.) they use,
but they still use the same kind of financial products (e.g. options or futures
contracts) to obtain the results they desire. The main benefit of using options
is that they can reduce risk and generate higher returns than when just buying
or selling a stock, this is why hedge funds use them.

Options are financial derivatives that represents a contract sold by one party,
to another party. There are two different types of an option, the call option and
the put option. The call option gives the holder the right to buy the underlying
asset on a certain date for a certain price. The put option gives the holder the
right to sell the underlying asset on a certain date for a certain price. The price
listed in the contract is known as the exercise price or strike price, and the date
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as the expiration date or maturity of the contract.

Suppose a trader at a hedge fund wants to buy on the first of February a
one month call option Google contract with a strike price of $520. He checks
with his broker and sees that the offer price is $32.00. This is the price for an
option to buy one share. Normally in order to purchase one option contract,
the size of the contract to buy or sell must equal 100 shares. Therefore, the
trader must arrange for $3,200 to be sent to the exchange through the bro-
ker. The exchange will then arrange for this amount to be passed on to the
party on the other side of the transaction. If the price of Google does not rise
above $520 at the end of February, the option is not exercised and the trader
loses only $3,200 even if the price of Google went to $0. But if Google does
well and the option is exercised when the bid price for the stock is $600, the
trader is able to buy 100 shares at $520 and immediately sell them for $600 tak-
ing a profit of $4,800 when the initial cost of the option is taken into account [6].

Options make it possible for traders to hedge their risk using different types
of strategies that can create a spread that minimizes their risk. One possible
strategy among others using options is the butterfly strategy. The butterfly
strategy is a non-directional strategy where the trader has to take both sides
(selling and buying) of the trade. This involves taking three positions with
different strike prices using European options which can be exercised only on
the expiration date. The strategy can be created by buying a European call
option with a relatively low strike price K1, buying a European call option with
a relatively high strike price K3, and selling two European call options with a
strike price K2 that is halfway between K1 and K3. The payoff pattern con-
structed by using the butterfly strategy (See Figure 3) will only give a positive
payoff if the the price ST stays inside the range K1 < ST ≤ K3 when it expires
(See Figure 4).

Figure 3: Butterfly Spread, adopted from Hull, J. (2012, p.242)

The payoff of the butterfly strategy can be maximized if the prediction of
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the model is equal to K2 each time at expiration, only then we can say that the
prediction model has priced the asset correctly. It is extremely difficult to price
an asset with high confidence, therefore if the distribution of the prediction
errors is known beforehand the construction of the position can be adjusted in
order to obtain a higher probability of expiring at or near the highest payoff
K2, so that a profit can be realized.

Normally in financial models, there are different issues when dealing with risk.
Most of the time attention is only paid to the prediction error, but the distri-
bution of prediction errors is also of importance for measuring the correct risk
of the model. First, the distribution of the prediction errors can be skewed
left or right, which means that the distribution is not symmetrical. Secondly,
if there is high excess kurtosis the error distribution can have very long tails
which can lead to big unexpected losses. Therefore all three types of errors
should be minimized in order to estimate the risk associated with the predic-
tion model better. A prediction model that has normally distributed errors
should be the one wanted from a risk-management perspective, because un-
expected losses could be better estimated than when the model found has a
leptokurtic or platykurtic distribution of errors. When having a leptokurtic
distribution of errors there is a higher expectancy of extreme values (errors),
this could mean that the model found could be overfitting the training set and
perform weakly on the test set. When having a platykurtic distribution the
model could be doing the opposite of a platykurtic distribution of errors, this
model can be generalizing to much on the training set which is also not what
we want from a risk management perspective. The best distribution of error
is therefore one in between the leptokurtic and the platykurtic distribution of
errors like the normal distribution of errors. Therefore in this paper attention
is mostly paid to the distribution of the prediction errors, where we want to
optimize to a prediction error distribution close to that of the normal distri-
bution. The butterfly strategy is only used to show the relevance of why the
prediction error distribution must be optimized when searching for the correct
pricing model. Without optimization of the prediction error distribution, it is
more likely that the models will be exposed to generalization or specialization
risk.

Figure 4: Butterfly Spread Payoff, adopted from Hull, J. (2012, p.243)
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2 Background

This thesis is focused on finding a theoretical model for prediction in high fre-
quency trading scenarios using an evolutionary method. To build the grey-box
models proposed earlier, the characteristics of high frequency data in general
must be known beforehand. This will help guide us in finding the superior
model.

2.1 Value of High Frequency Data

The high frequency data studied in this thesis concerns the EUR/USD exchange
rate. In the forex market currencies are traded in different markets, almost ev-
eryday during the year, except weekends. It is considered to be the financial
product traded in a market that is close to perfect competition. One of the con-
ditions for perfect competition is perfect information. This means in a market
all consumers and producers are assumed to have perfect knowledge of the price
and the effects that have influence on it. This is an interesting property because
games of perfect information can be solved. If the process of the EUR/USD
exchange rate can be seen as a game played with perfect information like Chess
or Go. This could mean that there could also be dominant moves/models that
can lead to winning strategies for traders. Therefore the more information we
have about the process, the closer we are to solve this problem.

Using high frequency data has several advantages and disadvantages. Some
advantages among others are:

1. The market is always and ultimately right.
Collecting as much information about market prices as sensible, is of extreme
importance. For high frequency traders collecting this is necessary, because
they are then capable of reacting faster above the competition [2].

2. Less biased data
Many lower frequency traders will use data that is biased by outliers of higher
frequency intervals. A possible scenario in the forex market is that it was pos-
sible that during 23 hours of trading a very low volatility was seen compared
to the last hour of the day where it was very high. For a day-trader using day
intervals for their volatility models the observed volatility (uncorrected) would
be a lot higher than the real volatility. This example is far from complete but
it is critical to see that without all the information it would be easier to make
incorrect trading decisions [13].

3. First on price formation.
When there is any new information about the price, whether it is good or bad

8



this will directly influence the price ( price formation). Price formation can
be seen as the acceleration of the current price. Lets assume there is good in-
formation only a few people know, than these people if rational will take long
positions driving the price high, giving it a higher acceleration on the short
term. Lower frequency traders would have not noticed this if they did not
make use of high frequency data.

The disadvantages of high frequency data are less of influence on the price
itself but on drawbacks to acquire and process the data. Processing-time can
be drawback because the amount of data is enormous leading to lots of com-
putation time, and in many cases it is also noisy which makes it difficult for a
human eye to analyze easily. It may also be difficult to acquire data because
the data is expensive compared to lower frequency data which is normally free.
Another difficulty would be that they may have slips due to system errors when
acquiring the data from the market.

2.2 Genetic Programming

Genetic Programming (GP) [9] is an artificial intelligence technique used to
evolve computer programs (functions) to solve or converge to a specific goal.
These computer programs are represented as trees or linear structures which
can be easily modified using evolutionary operations. The new programs that
are generated are hopefully better than the programs from previous generations.
The evolution of the population is an iterative process with the population in
each iteration called the generation. The evolution of processes in nature are
not bounded by time, but for the tests in this paper it has to be stopped,
otherwise we will never be able to know when to evaluate the models evolved.
This is normally done using a stopping criterion like maxGeneration. When
the amount of generations equals maxGeneration this

The general algorithm is easy to implement. It randomly creates an initial
population of programs from the available primitives and calculates the fitness
for each of the programs in the population. Afterwards the program will enter a
while loop where first selection and secondly genetic operations will take place
until a stopping criterion is met. At each generation the fitness of the new
individuals will be again evaluated. When the stopping criterion is met, the
program will stop and return the best so far individual/model.

As referenced earlier one of the disadvantages of high frequency data is
that it is noisy. In the past GP was capable of dealing gracefully with certain
amounts of noise in the data especially if steps are taken to reduce over-fitting,
but cleaner data will mostly make the learning process easier for any system,
GP included. One of the other particular values of GP is in its power of ex-
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ploring poorly understood domains. A Lot of research has been done on lower
frequencies but still a lot needs to be done on higher frequencies [9]. Therefore
GP is a good method for research on higher frequencies.

2.3 Multi-objective Optimization

In many real world problems it is necessary to optimize different objectives. A
simple example can be that of when someone is buying a car. If this person
has only one criterion speed. This person would buy the fastest car in the
world. But this is not always the case, the optimization problem becomes more
difficult when there are multiple criterion. In the case where there is only one
criterion like maximize speed, the car with the maximum speed, would be called
the non-dominated car, because no other car can dominate this car in speed.
When there are multiple criterion it is possible to have different non-dominated
cars only if the Pareto-set is a mutually comparable set. In this paper the re-
search is focused on maximizing the safety in a risk-management perspective.
This is done using three objectives. If the model found satisfies the following
criteria, then it will be non-dominated. Let J1, J2, J3 be three objective (cri-
terion) vectors. Here Jx represents the vector of non-dominated values for each

Jx =

J
x
1

Jx2
Jx3


criteria Jx1 ,Jx2 and Jx3 for a model x in the population, e.g. J1

1 is the average
absolute error for model one. Then J1 is non-dominated if J1

i ≥ J2
i ∧ J1

i ≥ J3
i

∀ i is true and J1
i > J2

i ∧ J1
i > J3

i for atleast one i is true [5]. If this criteria is
satisfied the model will be added to the Pareto front used in this paper.

Multi-objective optimization forms an important part of this thesis because
downside risk is a lot of the times underestimated in trading of financial prod-
ucts. The downside risk is the financial risk associated with losses. That is, it is
the risk of the actual return being below the expected return, or the uncertainty
about the magnitude of that difference.

It is possible that some researchers are only optimizing one objective instead
of multiple objectives during the search process [12]. The problem is that op-
timizing one objective (e.g. average absolute error) does not say everything
about the distribution of the errors. This can result in a model that has a
very low error but disregards the tails of the error distribution which can be
very long and that when applied in practice it can take only one of those very
long tails to have an enormous downside risk. For this reason, we use multiple
objectives to estimate the prediction error distribution better. This way we
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can find a model with limited downside risk, by not specializing and also not
generalizing too much as mentioned earlier (See Hedging Strategies, Section 1.2
). Therefore the three objectives Jx1 ,Jx2 and Jx3 to be minimized will be used
to help find a model with a close to normal error distribution. To compute
the non-dominated value of each objective we use the following three fitness
measures; average absolute prediction error, skew (of the prediction errors) and
the excess kurtosis (of the prediction errors) to determine the prediction error
distribution of the model. The lower the value of the fitness function, the higher
the non-dominated value will be for the objective that is being minimized. The
three objectives can be computed using the statistical formulas seen in (1),
more information on the exact computation is given in section 3.2.2.

Fitness(Jx1 ) =
1

N

N∑
i=1

|p̂i − pi| =
1

N

N∑
i=1

| εi| = ûε

σ̂2ε =
1

N − 1

N∑
i=1

(εi − ûε)2

Fitness(Jx2 ) = Ŝε =
1

(N − 1)σ̂3ε

N∑
i=1

(
εi − ûε)3

K̂ε =
1

(N − 1)σ̂4ε

N∑
i=1

(
εi − ûε)4

Fitness(Jx3 ) = |K̂ε − 3|

(1)

When hedging using the butterfly strategy, knowing an estimate of all three
optimization objectives is of great importance for risk management. Having
a distribution that has a low error, a symmetrical form and has zero excess
kurtosis would be ideal from a risk management perspective, because this has
the characteristics of a normal distribution. When we look at the dark line for
the payoff of the option construction in Figure 3, it has the form of a triangular
distribution with the highest payoff at the top and a lower or negative payoff
when St (Stock Price) deviates from K2 (Strike Price). We need to realize
that the butterfly construction can be many times not in the money when the
model found contains excess kurtosis. Therefore finding models that minimizes
the risk criteria will contribute to the payoff of the spread construction. The
butterfly strategy is not the only strategy that exist, but it is a well understood
method used to control the risk when trading by using a range instead of a
direction. There are also other methods to manage risk [1] in trading but those
methods are not relevant for this paper.
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3 Methodology

3.1 Data

The total data used for searching and testing of the model contains intervals
of 1 minute with a total of 99998 minutes in the range of (16:30) 12/1/2016 to
(8:59) 15/4/2016, and it represents 24 hours of trading between Monday and
Friday. The data used for searching (Training Data) consist of first 2/3 of the
total minutes (See Figure 5) and the remaining 1/3 is used for the test-set. The
data was obtained using the Bloomberg terminal and was not filtered.

Figure 5: Training Data for the EUR/USD exchange rate

3.2 Experimental Setup

This thesis compares the performance of the “most interesting” model found
with a random model from the population. To find the most interesting model
a heuristic is used to determine a point on the Pareto front when the search
process of the evolutionary algorithm is terminated. The main goal is to mini-
mize the total risk of the model, this will be done by comparing the prediction
error distribution between the two models. To minimize the total risk of the
model, the three fitness measures seen in (1) need to be minimized. The best
model will have for all three factors values close to zero. To find this model a
new proposed heuristic h(Jx) is used, see (2). Here SNDV and CPD are used to
compute h(Jx). SNDV is the sum of the non-dominated value for each criterion
in Jx. CPD is the centroid (of maximum non-dominates values) penalty dis-

tance. By subtracting CPD from SNDV we get h(Jx). The centroid ~O necessary
for computing a part of CPD is computed using max(Jxi ), this stands for the
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~O =


max(Jx

1 )
3

max(Jx
2 )

3
max(Jx

3 )
3

 =

o1o2
o3


most non-dominated value for objective i in the population of models . If there
is no other model in the population (of size n) that dominates max(Jxi ), than
max(Jxi ) will have a non-dominated value of n− 1. After dividing max(Jxi ) by
three ∀ i, we find the three coordinates o1,o2 and o3) which gives us the location

of ~O in three-dimensional space.

The bigger the distance between the model on the Pareto front and the
centroid of the Pareto front the bigger the penalty of CPD will be. This penalty
therefore will help with finding a model that is balanced in all three criteria.

h(Jx) = SNDV − CPD
SNDV = Jx1 + Jx2 + Jx3

CPD =
√

(o1 − Jx1 )2 + (o2 − Jx2 )2 + (o3 − Jx3 )2
(2)

It is expected that the highest value of h(Jx) will return the most interesting
model found ( knee-point model ) on the Pareto front. This is because the
kee-point model will have a high non-dominated value in each criteria, while
still not favouring one criteria before the other. The model with the highest
value of h(Jx) is therefore selected and tested on the test set.

3.2.1 Prediction Model

During the initialization of GP there must be a variety of different models ini-
tialized to help find the best model during the search process. The population of
models consist of semi-parametric models. The lags of the parameters (average
price and returns) are chosen randomly within a finite range because otherwise
they will not be considered as high frequency lags, but the amount of the return
parameters in the models can be infinite because we do not know exactly which
lags, how many lags and in which combination of lags combined is able to find
the best pricing model. Due the the high dimensionality of the data principal
component analysis (PCA) is often used to determine which factors are most of
influence in a factor model [14]. The disadvantage of PCA is that the amount
of factors of influence is always chosen arbitrarily rather than naturally and
therefore it will not be used. Another method will be used instead (See Ini-
tialization & Stopping Criteria 3.2.2) for finding the theoretical model of the
time-series.

The core component of the model relies on the drift of the EUR/USD exchange
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rate process, this can be seen as the average price ul over some lag l, see (3).

ul =
pt + pt−1 + ...+ pt−l

l
(3)

The (multiple) return factors that can be added to the model are noted as rl
over some lag l, see (4). This is the difference between the current price and
the lagging price.

rl = pt − pt−l (4)

It may sound strange that a simple model like this would work, in an environ-
ment full of other factors that are non-continuous e.g. inflation, interest rates
and growth announcements. But the return is always present which is not the
same as the other factors that could be of influence during certain periods only.
Just like a race car, we know it accelerates fast but this depends on other factors
that are unpredictable a few months beforehand like weather and road condi-
tions. But the acceleration of the car around the track year round, would give
a better estimation of the future (general) acceleration. A general measure is
better than a single measure. Assume the acceleration of the car was measured
on a day when there was no wind and a dry track. This will usually lead to an
overestimation of the acceleration if the race takes place on a windy day with a
wet track. Therefore combining the two components, we get a general form of
the theoretical model that will be used in the population to predict the future
price pt+h from the current price pt:

pt+h = ul + w1rl + ...+ wnrl (5)

The total amount of different return factors that have influence on pt+h in the
model is noted as n and all must be weighted by w because each will have
an independent weight on the future price. The weight wi associated with the
returns are chosen randomly within the range 0.00–1.00. This range prevents
the algorithm by adding weights that are too small (e.g. 0.000001), which can
create models that have too many factors and are more likely to overfit the
training set.

3.2.2 Initialization & Stopping Criteria

The size of the search space in this paper is hard to define, because the im-
plemented algorithm will keep adding (infinitely many) factors to the model
during the search process if it is not stopped. If the algorithm will not stop
adding factors, the search space for finding the best model is infinite. Because
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of this large search space, we implement at the initialization of the population
a diverse set of models in order to test different possible models.

The models at initialization would consist of 2 forms, this was chosen because
of the problem solving principle of Occam’s Razor where “Among competing
hypotheses, the one with the fewest assumptions should be selected”. Therefore
one form would contain only one component (ul) and the other 2 components
(ul, rl).

The value of the lagging distance l is selected to be in the range between 50 and
7200 minutes (5 days), with a distance of 50 minutes between each lag. This
range is chosen because of Figure 1 which considers holding periods up to 5
days as high frequency holding positions. The distance of 50 minutes between
each lag is chosen for the simple fact that if smaller time frames are added, the
search space would become much larger and the model found is less likely to be
close to the global optimum.

Each model in the population is evaluated for the three criteria using the train-
ing set. But because of the large amount of data, it is not efficiënt to compute
the values of the objectives on every single data point. Therefore the three
objectives of the model are computed using 1000 random points which would
make the algorithm more efficiënt and still statistical significant. The target
price pt+h that the model should predict was chosen to be 240 minutes. A hold-
ing period of 240 minutes is still considered as a high frequency trading holding
period. The benefit of longer holding periods is that they are more likely to
be in the money than shorter holding periods. When the holding period in-
creases the price volatility also increases which makes it more likely that the
trade will cover the transaction costs. But longer holding periods also carry
the disadvantages that they are more likely to be declassified as high frequency
holding periods and that they are also more difficult to predict because there
is more uncertainty during a longer holding period than on a shorter period of
time. Therefore combining models of different holding periods would also be
interesting for future research, because then there will be more information for
risk management between conflicting predictions.

The size of the population is also important w.r.t. the evaluations and the
efficiency of the program. If the population is too small it will not be diverse
enough, but it cannot be too big either. A population that is too big can take
a long time before it can evaluate all the models. This depends on the com-
plexity of the model and how much the model needs to be evaluated during
each generation. Therefore a constant population size of 500 is used. To con-
trol the size of the population three evolutionary operations ( See Evolutionary
Operations 3.2.3 ) will be used. During the search for the prediction model
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each criteria is expected to be minimized until a certain point. Each criteria
in the optimization problem has an influence on the error distribution of the
predictions. One (possible) reliable distribution of the prediction errors can be
the one that fits the butterfly spread option seen in Figure 3 as close as possible.
With a prediction error distribution that is close to the normal distribution it is
possible to expect a positive payoff with higher confidence than when we have
a leptokurtic distribution that can contain more extreme (error) values. The
problem here is that when one criteria is being minimized it will have an effect
on the other criteria therefore multi-objective optimization is necessary to find
a model with an error distribution that is close to the normal distribution. The
search process is not stopped until the stopping criteria: generation ≤ max-
Generation is violated. The value chosen for the max amount of generations
was arbitrarily chosen after a few trial and errors. After doing different tests
it seemed that 1500 generations was enough for the EA ( See Algorithm 1 ) to
converge towards a (possible) global optimum. This was made possible using
the recommendation for the mutation rate suggested by Schwefel, and is com-
puted by adding a one in the numerator and dividing it by the squared root
of the population size [11]. The Schwefel mutation rate is a robust parameter
control scheme that affects the speed of adaptation during mutation. Choosing
the mutation rate arbitrarily can lead to different population of models when
running the EA. A low mutation rate will give a low adaptation rate, but it will
return more precise models. A high mutation rate will give a high adaptation
rate, but it will return more imprecise models. Therefore we will use Schwefel
mutation rate to control the models in the population more optimally.

Algorithm 1 EA
populationSize ← 500
maxGeneration ← 1500
maxLag ← 7200 /* in minutes */
k ← 10 /* tournament size */
SchwefelMutationRate ← 1√

populationSize

P0 ← initializePopulation(populationSize)
while generation ≤ maxGeneration do

probability ← Random(0,00:1,00) /* select a random value */
if probability ≤ SchwefelMutationRate then

Mutate(P ,maxLag,k)
else

Reproduce(P ,k)
end

end
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3.2.3 Evolutionary Operations

Darwinian evolutionary theory describes the mechanism of natural selection,
and uses the fitness of the individual to measure reproductive success. This
thesis makes use of three evolutionary operations during each generation of
the EA. The evolutionary operations within EA are Remove, Mutate and Re-
produce ( See Algorithms 2,3 and 4). After performing an operation in the
population, the fitness of the model reproduced or mutated is recomputed.

Algorithm 2 Remove(P ,k)

model ← TournamentSelection(P ,Low,k) /* select low fitness model */
P ← Pop(model) /* remove low fitness model from population */

Algorithm 3 Mutate(P ,maxLag,k)

Remove(P ,k)
model ← TournamentSelection(P ,High,k) /* select high fitness model */
range ← Random(1:maxLag) /* select a random lag in range */
operator ← Random(+,-) /* choose randomly between + and - */
model ← model (operator) rrange /* add random factor to model */
P ← Push(model) /* add mutated model to population */

Algorithm 4 Reproduce(P ,k)

Remove(P ,k)
model ← TournamentSelection(P ,High,k) /* select high fitness model */
P ← Push(model) /* add high fitness model to population */

Notice that in Algorithm 1, it is possible only once during each generation
to Mutate or Reproduce a model in the population. Both of these evolutionary
operations include a Remove operation on the population before a new model
is chosen for mutation or reproduction. The Remove operation removes a low
fitness model from the population using the Pop() function to make sure that
only high fitness models are later evolved in the search process. After Removal,
the model used for mutation or reproduction is added to the population using
the Push() function, this keeps the size of the population constant and helps
the algorithm stay efficiënt.

For all the evolutionary operations, a selection procedure takes place. This se-
lection procedure happens by k-tournament selection, with k = 10. The fitness
measure used during tournament selection is calculated using almost the same
heuristic as for finding the knee-point model shown earlier. The only difference
in this case is that we do not look at the Pareto front, but just at the random
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models selected for tournament selection. When reproducing Reproduce() we
are selecting the model with the highest fitness and when removing Remove()
we are selecting the model with the lowest fitness from the tournament. The
same function TournamentSelection() is used each time for k-tournament selec-
tion in these functions, but there is only a sub procedure that determines the
type of fitness (Low or High) of the model that has to be returned.

The Mutate() function is also dependent of k-tournament selection, however
the mutation itself is random. The mutation in the models happens by adding
a random return factor to the existing model which makes the size of the model
grow. The random factor added during mutation can have either the addition
operator or the subtraction operator. When using the two operators for mu-
tation, the EA is able to self-correct itself randomly during mutations when
searching for the best model.

A random model before mutation can look like.

pt+h = ul + w1rl (6)

And after mutation.

pt+h = ul + w1rl − w2rl (7)

The self-correction that is now possible during mutation supports the model
during both overestimation and underestimation of pt+h. Assume the model is
overestimating pt+h, then if a mutation happens in this model with a subtrac-
tion operator, it will decrease the overestimation of pt+h and vice versa. The
advantage of this type of mutation is that it is simple, but it can also have
bad adaption if the weights or lags are too high. If this happens the weight or
the factor added may overpower the other factors in the model dramatically,
making it harder for the model to be selected during future generations because
of bad adaptation resulting in a lower fitness of the model.

4 Results

For testing the stability and performance of the results obtained by the evolu-
tionary algorithm the algorithm was simulated six times. The simulations show
that the algorithm was able to converge towards the goal of the optimization
problem. During the search process (See Section 6.1) we see that the algorithm
was able to minimize all three criteria during each simulation. We also see that
the Pareto fronts (See Section 6.2) at the end of each simulation are similar.
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But it may occur sometimes that the points on the Pareto front may be fur-
ther away from each other than in the other simulations. We can also see that
the error distributions of the knee-point models were close to that of the nor-
mal distribution. When comparing the knee-point models against the random
models we see a big difference in the form of the distribution. Almost none of
the random models had a form close to that of the normal distribution. The
random models were in not even one criteria better then the knee-point models
found (See Section 6.3). The difference in prediction and target between the
two models from one of the six simulations can be seen in Figure 6 and 7 . In
Figure 6 we can see the predictions of the knee-point model and in Figure 7 the
predictions of the random model. The disadvantage of the random model was
that the predictions were being to much generalized compared to the knee-point
model which had more specialized predictions. Predictions that are too much
generalized can give distributions like those seen in Figure 28,29,30 and 31 (See
Section 6.3.2 ) . These distributions are definitely not wanted, because they are
far from being normal distributed.

The usefulness of using genetic programming is that we can see directly which
factors are more of an influence on the prediction target. By analyzing the un-
derlying structure of the knee-point models found we can possibly find better
models in the future, by looking at more peculiar search spaces.

pt+240 = u1050 + 0.33r2400
pt+240 = u3100 + 0.54r2950
pt+240 = u1850 + 0.65r2100
pt+240 = u1050 + 0.41r1850
pt+240 = u3750 + 0.56r2900
pt+240 = u2750 + 0.86r1450

(8)

When looking closely at the knee-point models found (8) after the six simu-
lations, we find some interesting characteristics. The most interesting one, is
that all the models had only one return period as factor even though there were
models that had more than one return period as a factor, and also models with
only the average price as predictive factor. This satisfies Occam’s razor prin-
ciple that among competing hypotheses, the one with the fewest assumptions
should be selected. When looking at models here above we see that the average
price lag range is between 1050 and 3750 minutes, and for the range of the
lagged returns this is between 1450 and 2950 minutes. Thus the future price,
is highly dependent on this range, and there are many different combinations
of lags that still leads to a close to normal distribution for the errors of the
knee-point models found when using this range. We also see that for short time
frame predictions of 4 hours that the lagging indicators do not range in the
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Figure 6: Knee-point Model

Figure 7: Random Model

period lower than 1050 minutes and neither in the range higher than 3750 min-
utes. Notice that the initialized population had a minimum lag of 50 minutes
and s maximum lag of 5 days. This shows that there is a big space of lagging
indicators that had little significance when searching for the knee-point models.
There are therefore some lagged distances that should not be included in the
model, because it will give the type of error distribution that is not desired from
a risk management perspective.

The second most important realization is that of when we take the average
of the lagged distance over all the simulations for the average price, return and
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the weights, we get:

pt+240 = u2246 + 0.55r2275 (9)

The interesting part of this, is that we can rewrite this into a more general form
like:

pt+h = uα +
1

2
rα (10)

The importance of finding a theoretical model like (10) could support Mandel-
brots theory of scaling markets [8]. According to rule 5 of his theory he states
that Market time is relative. This means that without the identifying legends,
one cannot tell if a price chart covers eighteen minutes, eighteen months, or
eighteen years. Therefore a formula like this could characterize the behavior
of the price evolution over shorter or longer periods just by optimizing α. In
this case α is the optimal lagging distance both for the mean and the return.
The benefit of having a lagging distance that is the same for both the mean
and the return, is the time it takes to optimize the model for a specific holding
period. Before we began this research we did not know which type of models
or lags were naturally better. Now we know that it is not necessarily needed
to search in deep areas of the search space (e.g. models with many variables),
which makes it more efficiënt when optimizing the lags of the theoretical model
found because there is only two. It is still possible that the lag of the mean and
to the lag of the return will not always give a error distribution that is close
to the normal distribution, however it is still much more efficiënt to have equal
α as a starting point for both the mean and the return in further optimization
of the lags. This model also confirms that the EUR/USD exchange rate on a
high-frequency level is mean-reverting. Mean reversion refers to the possibility
that, while prices fluctuate unpredictably in the short run, they tend to oscillate
around long-term trend lines and the further they deviate from the trend lines
the more they are pulled toward them [3]. In this case we see that the future
short term price is dependent on the long term intraday- mean and return, and
if markets do actually scale, equation (10) would be a model that can character-
ize target prices for different kind of holding periods of the EUR/USD exchange
rate. In the case that this theoretical model of scaling markets is rejected, the
algorithm should still be able to find models close to the global optimum for
other holding periods.

5 Conclusion

The evolutionary algorithm (EA) used in this paper was successfully imple-
mented. After running the EA for six simulations, all the models found per-
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formed well in a risk-management perspective on the test set. The EA was able
to decrease the error in the three objectives (error, skew and excess kurtosis).
The knee-point model found on the Pareto front was similar in all the six sim-
ulations, the only thing that varied was the lag of the factors influencing the
short term prediction. This was mainly caused by the size of the search space,
but the EA was still able to find models in a certain range that were better
than randomly selecting a model from the starting population used during the
initialization of the EA. During each simulation there was a great variety of
different models that were tested, but we still saw that the knee-point models
found at the end were very similar to each other. Due to this similarity it was
possible to derive a theoretical model for the EUR/USD exchange rate. The
beauty of the theoretical model (10) derived is that it agrees with great theories
as those from Occam’s Razor and with the scaling of markets proposed by Man-
dlebrot [8]. Therefore the theoretical model derived seems to be an appropriate
model, but this still has to be statistically tested for holding periods above and
below 240 minutes before it could be accepted.
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6 Experiments

6.1 Search Process

Figure 8: Simulation 1 Figure 9: Simulation 2

Figure 10: Simulation 3 Figure 11: Simulation 4

Figure 12: Simulation 5 Figure 13: Simulation 6
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6.2 Pareto Fronts

Figure 14: Simulation 1 Figure 15: Simulation 2

Figure 16: Simulation 3 Figure 17: Simulation 4

Figure 18: Simulation 5 Figure 19: Simulation 6
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6.3 Prediction Error Histogram

6.3.1 Knee-point Model

Figure 20: Simulation 1 Figure 21: Simulation 2

Figure 22: Simulation 3 Figure 23: Simulation 4

Figure 24: Simulation 5 Figure 25: Simulation 6

25



6.3.2 Random Model

Figure 26: Simulation 1 Figure 27: Simulation 2

Figure 28: Simulation 3 Figure 29: Simulation 4

Figure 30: Simulation 5 Figure 31: Simulation 6

26



References

[1] Aldrige, I. High-Frequency Trading. Wiley Trading, 2010.

[2] Berk, J., and DeMarzo, P. Corporate Finance, third edition. Pearson
Prentice Hall, Boston, 2014.

[3] Dubil, R. An Arbitrage Guide to Financial Markets. Wiley Finance,
2004.

[4] Dunis, C., and Williams, M. Modelling and trading the eur/usd ex-
change rate: Do neural network models perform better?, 2002.

[5] Emmerich, M., and Deutz, A. Multicriteria Optimization and De-
cision Making: Principles, Algorithms and Case Studies. LIACS, Leiden
University, 2006.

[6] Hull, J. Options, Futures,and other Derivatives. Prentice Hall, University
of Toronto, 2012.

[7] Madsen, H., Bacher, P., and Juhl, R. Grey-box modeling; an ap-
proach to combined physical and statistical model building., 2015.

[8] Mandelbrot, B., and Hudson, R. The (mis)Behavior of Markets.
Basic Books, 2004.

[9] Poli, R., Langdon, W., and McPhee, N. A Field Guide to Genetic
Programming. http://lulu.com, http://www.gp-field-guide.org.uk/, 2008.

[10] Rijper, T., Sprenkeler, W., and Kip, S. High frequency trading
position paper, 2010.

[11] Schwefel, H. Evolution and Optimum Seeking. Wiley NY, 1995.

[12] Sheta, A., Faris, H., and Alkasassbeh, M. A genetic programming
model for s&p 500 stock market prediction, 2013.

[13] TransTrend. Trend following: riding the kurtosis, 2013.

[14] TSAY, R. Analysis of Financial Time Series. Wiley, University of
Chicago, 2005.

27


