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Abstract

Doctors are able to give the right vaccines and inform customers about their travel destinations to ensure a

prepared journey. To know how much time is exactly needed for these appointments, we can use historic

data to perform analyses and make predictive models. Throughout the years data have been collected of

appointments and GPS data. However, this data have not been used for estimating consultation time yet.

The aim of this thesis is therefore to research how regression techniques can be used to accurately estimate

appointment time based on historic data.

We look at which data can be used for the estimation. Data can then be interpreted to see what effects the

attributes have on time duration. Also, we look which regression models can be used to accurately model

the consultation time. For this, we introduce the use of (ensemble) regression trees and model trees. Different

experiments are conducted to compare the regression models to decide the most suitable model. Based on

these results, the model tree comes out as the most insightful model to make time predictions.

Moreover, this research also opens up the discussion in how much should be relied on models. It shows that

human factors are important influencers in models and thus raises questions to what extent models can be

used for human decision making. Data cannot explain every event and data-driven predictions may conflict

with future policies.
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Chapter 1

Introduction

A majority of Dutch households plans at least one holiday per year; according to an annual report of Nibud

[4] the number of households that went on holiday was around 67% in 2016. Compared to the last 10 years,

this percentage has returned to the same level as in 2010− 2012 and with this growth, there is an increased

need to prevent ourselves from diseases in foreign countries. With the emergence of travelling to foreign

places there is a higher risk of facing a variety of existing exotic infections (e.g., Hepatitis A, Hepatitis B or

dengue); facing more evolved, severe viruses such as enterovirus 71, or being confronted with new diseases

(e.g., transfusion-transmitted virus or Nipah virus) [13].

Not only will vaccines protect ourselves from these viruses, they can also protect our neighbouring circle from

contracting the disease. Moreover, immunization can lead to protection of the future generation. Many viruses

that have caused severe disablement or higher death rates years ago, are now less acute or have completely

eradicated. For example, with the global vaccination program of smallpox, the eradication of this infectious

disease was officially declared in 1980 by the WHO [11]. Thus, the chances of contracting smallpox now and in

the future are quite slim. The last smallpox case in the US was in 1949.

To protect people from these viruses, the company Thuisvaccinatie offers an at-home service where doctors

visit customers for vaccinations. Doctors are able to give the right vaccines and provide explanations and tips

regarding the customer’s destination, to ensure a prepared journey. With an annual customer growth due

to a growing need for disease prevention and interest in their unique service, a challenge arises where the

rate of vaccination appointments is growing at a fast pace. With this growing demand for vaccinations the

present scheduling tool has to be revised in order to treat every client with the available resources. For this the

company has asked to perform a data analysis on appointment data, to estimate consultation time based on

different features.

Hence, the problem for this thesis is how we can use data to accurately estimate consultation time by using
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GPS data and appointment data. With the use of data, descriptive and predictive analyses can be performed to

gain a clearer understanding of the current appointment state of the company. With a more accurate estimation,

I herein hope to contribute in finding a better balance between the growing demand for vaccinations and the

available doctors, where the results can be used for a better route planning.

To properly estimate consultation time, a data analysis has been carried out where regression as main statistical

technique has been used to adeptly model the consultation time. The proposed research question is therefore:

How can we use regression techniques to accurately model the consultation time based on historic data?

For a clear structure of this thesis a few sub questions have been posed to answer the research question in a

correct manner. The sub questions are:

1. Which data (types) can be used for estimating the consultation time?

2. Which regression technique(s) can be used to accurately estimate the consultation time?

3. Which model can be used best to showcase the estimated consultation time?

4. Which attributes strongly correlate with the consultation time?

1.1 Thesis overview

This chapter is the introduction of this thesis. Chapter 2 of this thesis consists of a section where a more

extensive problem definition is given and where regression will be explained on an abstract level. It also gives

an overview of the approach for this thesis. Chapter 3 discusses different regression techniques to find the

appropriate technique for our own consultation time estimate. Chapter 4 focuses on the data that have been

acquired for this project, with an explanation of the necessary pre-processing steps prior to the data modelling

process. In the following chapter, experiments and analyses are conducted, where visualizations and models

are made and compared in order to find the most suitable model for the consultation time. Chapter 6 opens

up a discussion related to this thesis and ends with a conclusion in Chapter 7, with subsequently a brief look

of possible future work.
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Chapter 2

Problem and approach

This chapter introduces the necessary background information, and explains regression, both on a higher

abstract level and with respect to the problem. It also explains the approach, and materials and tools used for

this thesis. Chapter 2 aims to provide an understanding of the problem and its scope.

2.1 Background information

The company Thuisvaccinatie provides a service in vaccination support where a doctor visits a customer’s

house (or any other preferred place) to give the right vaccinations, instead of the customer who needs to

travel to a certain physical place. Doctors are available seven days a week, where every day is divided in four

different time frames between 9AM till 10PM. This gives customers the flexibility in choosing their own time

frame and day according to their personal preferences.

Because of the growing number of Thuisvaccinatie customers, a present dilemma is how to serve all the

customers with the currently available doctors. Every appointment takes on average one hour and is evenly

split between travel time of a doctor and consultation time. This means there is an average consultation time

of thirty minutes. This estimate was based on data from previous years, but is currently not sufficient enough

to further build upon. A thirty minute consultation is not applicable if every appointment has their own set

of features that needs to be taken into account (e.g., type of vaccination or number of customers during an

appointment). Also, based on experience there is an indication that more appointments can be scheduled

within one time frame than what the current method calculates.

The provided real-world data consist of two files: GPS data (positional data and time duration of the doctors’

cars) and appointment data (customer data), and have been primarily used for daily operations or daily

decision making. The challenge for this thesis is to use this data for data analysis purposes and to gain
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insights in consultation time for customers. We will develop a more accurate model of the current consultation

landscape where patterns in the model can be identified and where we can conclude which parties need more

consultation time and which need less.

2.2 Regression

In statistics and machine learning there are many techniques that can be used for analyzing relationships

between different variables. The subfield machine learning in computer science uses data in order to develop

predictive models with the ability to learn from data without explicit programming [14]. This learning from

data can be done either under supervision of humans or without. Based on the data and if the target variable

is known, it can be divided into supervised learning, semi-supervised learning, unsupervised learning and

reinforcement learning. Choosing the right technique depends in part on the type of variables that are given

and what attribute type the target variable is. Since the current problem has labelled data with response

variables for every instance, supervised learning techniques can be used for this research. Supervised learning

techniques can be divided into classification and regression [23], and the choice between these two techniques

depends on the type of the response variable. Because there is time duration as response variable, a regression

analysis is used in this case. Regression has been widely used in many different fields (e.g., predicting stock

market prices or predicting house prices) when it comes down to analyzing data with quantitative target

attributes and explanatory variables [2]. Its goal is to find the most accurate function that is able to fit the data

with the least error between the predicted target value and the actual value [23]. Such an analysis can be used

for:

1. Studying the existence of associations between variables.

2. Identifying the measure of strength of these relationships by using correlation.

3. Formulating a regression equation to predict the target value based on explanatory variables.

A dataset can be seen as a table of data consisting of rows of observations with k columns of attributes. A

model with k features can be described as a multiple regression equation E(y) with x1, x2, ...xk variables.

Definition 2.2.1 (Multiple regression equation):

E(y) = f (x1, x2, ...xk) = α + β1x1 + β2x2 + ... + βkxk. βi = slope α = y-intercept

E(y) is the expected value of y. In real-world conditions it cannot be assumed that for each xi-value the

corresponding y-value consistently occurs and it can therefore be said that E(y) is a probabilistic model that

allows variability in y for each xi-value. Therefore, the probabilistic model can be denoted as the mean of

a conditional distribution of y. Moreover, α (alpha) determines the height of intersection with the y-axis. βi

(beta) describes the change in y when there is a one-unit change in xi when leaving all other xj equal [2]. The

slope does not indicate a strength or weakness of the association for xi, but determines the direction of the

association with xi.
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A corresponding equation for estimating the multiple regression equation is Definition 2.2.2.

Definition 2.2.2 (Prediction equation):

ŷ = f (x1, x2, ...xk) = a + b1x1 + b2x2 + ... + bkxk bi = slope a = y-intercept

The prediction equation provides estimates of ŷ-values as response variable for any possible value for xi. When

modelling these equations care should be taken for regression outliers. An outlier can fall far from the fitted

model and can cause a different trend when adding them to the model and inducing misleading patterns.

Both the multiple regression equation and the prediction equation can be used to fit a model and to estimate a

corresponding model with the available observations. A residual, y− ŷ, can be described as the difference

between the observed value and the predicted value, thus measuring the prediction error. A positive residual

occurs when y > ŷ and a negative residual is present when y < ŷ. With regression one of the objectives is to

fit a model with an equivalent predictive model with the least error in residual. Thus, the smaller a residual

the better the prediction fit the real values. Different statistical techniques can be used for calculating the least

error and will be further explained in Chapter 5.

2.3 Formalizing the problem

For this problem, the equation can be formalized as:

• E(y) = time estimation for an appointment.

• ŷ = predicted time estimation for an appointment.

• k = number of attributes present in the model that are relevant for the estimation of ŷ and y.

• βi or bi= change indicator for an attribute i.

• xi = value input for attribute i.

Possible attributes for this problem can be region, numbers of customers in one appointment, type and/ or

number of vaccinations.

By using this method, not only a regression equation to predict consultation time can be made. It also helps in

structuring the approach to identify which attributes associate with each other and to find the key attributes

that holds the strongest impact in the consultation time. Specifically, because the relationships between the

attributes with time duration are still unknown, regression trees are used to find these relationships and to

classify the time duration based on different attributes by constructing decision rules.
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2.4 Approach

Before starting with the regression analysis, the data need to be converted in a correct format in order to

develop an accurate model [1]. The whole process from turning raw data into a meaningful model can be

described in six main steps:

1. Objective and scope

Knowing what the objective is and scope can bring focus to the research. It can function as guideline by

investigating the relevant attributes and to detect irrelevant data points for the scope of the problem.

2. Data collection

After establishing a solid understanding of the objective, the available data can be collected. The collected

data will be converted into one table and can be summarized based on type of variables, number of data

points and its distribution based on datatype.

3. Data cleaning

Data cleaning improves the data quality and can ensure a more accurate data model. In this phase,

irrelevant data points can be excluded and variables that are most important for the data analysis will be

identified for a proper analysis. Herein lies the exploratory data analysis to get a clear understanding of

the data and to visualize the available dataset.

4. Data modelling

This phase will use the available data to correlate it with the business objectives and to make recommen-

dations by using regression models and statistics.

5. Evaluate Accuracy

By evaluating accuracy, models can be shaped into better models to meet the business objectives.

6. Iterate

Note that the five phases stated above are not sequential, but form an iterative and incremental process

to ensure the most accurate model when making valuable conclusions.

2.5 Materials and tools

For this thesis, we use programming language Python 2.7 with iPython Notebook. For the pre-processing part

of the data, we have Pandas. Visualizations of data are done with Matplotlib and machine learning algorithms

are implemented by using Sci-kit Learn. A literature study is conducted for theories about regression and

statistics. The Weka software is used for visualizing a prediction model by using model trees [12].
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Chapter 3

Related Work

This chapter describes different regression techniques. Specifically, three types of regression trees are explained.

These techniques will be used in the data modelling process to model the data.

3.1 Regression trees

Modelling can have 1) descriptive purposes, it provides a systematic structure of the data, and 2) prediction

purposes, models can predict unobserved data. Decision trees are able to do both tasks [10]. Decision trees

are used within supervised learning for classifying response values based on decision rules. Classification

and Regression Trees (CART) have been first introduced by Breiman in 1984. With the classic regression

techniques, the relationship between the response variable and its predictors has already been specified prior

to the analysis (e.g., linear or exponential) and is able to confirm whether a relationship between these two

exist [20]. However, a Regression Tree Analysis (RTA) does not define such a relationship and its initial focus

is on developing a set of decision rules on the predictor variables [7] [18]. These decision rules are constructed

by recursively partitioning the data into smaller subsets where binary splits are made based on the predictor

variables [20]. Subsequently, it uses heuristic search to evaluate all the splits and to find the best split such that

the tree moves vertically deeper in the tree. As for regression trees, the best split is the one where the two

derived subgroups lie closest to the corresponding response variable. This algorithm will eventually construct

a tree diagram with decision rules as branches and quantitative mean responses as leaves. To prevent the tree

from overfitting, we need to have enough data available and should exclude irrelevant attributes in the model.

The right graph (b) of Figure 3.1 visualizes an example of a regression tree. The regression tree algorithm

partitions possible target values into different regions based on the explanatory variables and establishes

different split points. We see four split points with five leaves. Based on this regression tree a target variable

classifies five possible regions [R1, R2, R3, R4, R5] as we can see in left graph (a).
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Figure 3.1: (a): A mapping of the response variable into regions [R1, R2, R3, R4, R5] based on two attributes X1, X2. (b):
Visualization of a regression tree based on attributes X1, X2 [24]

Most tree algorithms follow a recursive top-down method. A more formal outline of the main steps is explained

below [23] [10]:

1. Start with root node r and assign all instances to r. X := r expresses the traversed nodes.

2. If X := ∅, return tree with root node r and end algorithm.

3. Choose x, such that X := X \ x, to decide what the score sold(x) of node x is before the splitting task is

performed. For regression trees this score can be the sums of squares about the mean or the sums of

absolute deviations about the median.

4. If splitting is possible or necessary proceed to the next step. Otherwise return to step 2.

5. For all attributes k ∈ K, evaluate the splitting effect of that attribute. Choose attribute with highest result

such that snew
k (x)− sold(x) is maximized. This chosen attribute k can only occur once in the same path

from the root.

6. Create node set of children Y. Add Y to X to make X := X ∪Y and ensure that x is connected to all Y.

7. Associate the nodes in Y to the corresponding instances and go to step 2.

Regression trees can provide a clear hierarchical model that show the influence of an input variable on other

input variables where variables higher in the tree can have a bigger impact on the result [19]. It is thus able

to present the interactions between variables and the structure in the data. However, when dealing with

linear response variables, it does not always produce the most accurate model and can have difficulties when

modelling smooth lines [20] [7]. Also, trees can be highly sensitive to the data and its sample data can influence

the manner in how the tree is split. It is therefore important that data are pre-processed and correct train- and

test sets are made.

In the following subsections, different variants of regression trees that can be used for the modelling process

are discussed.
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3.1.1 Bagging trees

The word bagging is derived from BootStrap Algorithm with Aggregation. The idea behind bagging trees is that

datasets are resampled with replacement from the original dataset [5]. With bootstrap resampling, around 1/3

of the data is excluded from the sample and will be filled with other datapoints [20]. It then models for each

sample a classifier and eventually aggregates all of these variances. When this is done, the average variance

should create a lower variance compared to the variance of the original model. In theory it can be said that the

variance of the aggregated classifier is reduced to 1/n of the original one.

The usage of bagging trees can lead to an aggregated model with a lower variance and can increase the

accuracy of the model. A disadvantage of this method is that it requires 30− 80 trees to average [20]. Thus,

interpreting one of these trees is difficult when all of these trees differ strongly from each other. A chosen

individual tree with its relationships may be a possibility out of many, leading to a higher uncertainty of

interpretation.

3.1.2 Random forest

The Random Forest algorithm collects numerous models for prediction and is used for accurate predictions

that prevents the model from overfitting. The underlying idea is that an ensemble of multiple models can

reduce the generalized error variance than using a single model for the prediction task [6]. Random forest uses

a combination of bootstrapping and random feature selection. With the bagging method the trees are generated

and at every node split a feature subset will be randomly chosen which means that the subset is independent

from the previous node [18] [6]. Since a large number of trees are generated, there is a smaller generalized

error which prevents the tree from overfitting and makes the features more useful for predictions [20]. Also,

as with bagging trees, the trees are maximally grown without pruning and are aggregated by taking the

average of the trees. Consequently, random forest can ensure a stronger prediction and also induce a durable

variety among the trees [6]. With the random characteristic, the bias will be kept low because it diminishes

correlations between unpruned trees, and at the same time a lower variance will occur because it ensembles

the total number of unpruned trees.

3.1.3 Gradient boosted regression trees

Gradient Boosted Regression Trees are a combination of two algorithms: regression trees and boosting [10].

Boosting is a method to ensemble many models for an improved prediction. As with bagging trees and

random forest, the idea is that combining multiple models together can result in a better prediction model

than finding a most optimal single model. Boosting differs from other regression tree techniques because

of its sequential, stage wise procedure. The boosted models fit the models to the training data by using

methods to increasingly focus on the most difficult observations to predict in the existing trees. For regression
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problems, it can therefore be seen as a functional gradient descent. The algorithm starts with a regression tree

that reduces the loss function maximally [10]. The second tree is built on top of that by fitting the tree on

the residuals of the first tree and reduces the total error variance. The model then contains a combination

of two trees where the combined residual is calculated. This process happens stage wise, meaning that the

next tree will be made based on the previous model and leaves the previous model unchanged while the

model becomes larger. Only the residual will be re-calculated to determine the contribution of the next new tree.

3.1.4 Model trees

The model tree algorithm was first introduced by Quinlan [21]. Quinlan’s M5 algorithm constructs a decision

tree with linear regression models as leaves. These linear models contain local regression coefficients of

relevant attributes [17]. This local property means that attributes can be present in multiple leaves but have

different independent coefficient values in each leaf. Having linear models as leaves instead of constant values,

enables a more smoothing effect with less splitting occurrences. The splitting stops when the reached attribute

values of a node vary little, or there are few instances remaining. According to Quinlan, the advantage of M5

over Breiman’s CART algorithm is that it builds smaller regression trees with more accurate predictions [21].

Because M5 can classify many attributes for one leaf, less tree depth occurs. This makes the model less complex

and provides an easier data interpretation.

3.2 Applications of regression

Research examples of the effectiveness of ensemble trees are studies in biomedical and clinical fields [3]. For

many clinical analyses logistic regression is used for predicting binary outcomes; having either a disease or

not. However, it would be even more beneficial if classification algorithms can be used for not only predicting

these diseases but also provide insights for more targeted treatments of patients and improved assessments

of a patient’s diagnosis. A research with regards to this prospect indicates that there are benefits of using

ensemble trees [3]. In this research, the three ensemble trees mentioned in Section 3.1 were used as well to

make potential models. From results of these experiments, it came forward that logistic regression performs

better than ensemble trees for predicting heart failures of patients. However, for analysis purposes ensemble

trees gave good guidelines in classifying patients based on disease subtype.

A study more in line with our problem in estimating appointment times is the prediction of travel time [24] [25].

When predicting travel time a challenge is to incorporate uncontrollable factors that are influential for travel

time prediction. There is sparseness of real-time traffic data and fluctuating interactions such as weather

conditions, traffic incidents and different roadway circumstances. For these predictions different algorithms

were used as well as the three ensemble trees mentioned in this chapter. From this research, ensemble trees
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were preferred over other techniques and in particular the gradient boosted trees. Since travel time deals with

many fluctuating variables, the chances of having a high error rate are bigger. With gradient boosted trees it

estimates many simple regression trees with low performances and by combining these together, it is able to

correct these errors and improve the accuracy of the models. Moreover, because of its sequential character, it

was able to reduce the error initially faster than the other algorithms.

11



Chapter 4

Data

This chapter describes the data available for this research and the necessary steps that were undertaken before

starting with the data modelling process. As described in Chapter 2, these steps concern collecting data,

cleaning data and performing an exploratory data analysis.

4.1 Data collection and data cleaning

The delivered data consisted of two files. One file contained GPS data of the doctors’ cars with 14 attributes

and 15, 010 entries. The other file contained data of the appointments with over 11 attributes and 7, 453 entries.

The objective is to estimate consultation time based on appointment attributes, where the appointment

attributes and parts of the GPS file are explanatory variables and stop duration the response variable. The

appointment attributes can be found in the appointment file. As for estimating the time duration of an

appointment, the company does not use a clocking system of appointments and the only indication for

consultation time needs to be derived from GPS data. Registered doctors use cars from the company for their

appointments. The company records these travel routes, creating a data set for analysis. An available data

attribute in this set is stop duration of a car and can thus indicate the duration of an appointment. If this

stop duration can be linked to an appointment row then we know how long an appointment approximately

was. Hence, the goal in the first step in the data analysis is to collect the two data sets and convert it into one

single table with stop duration as response variable. To merge these two files a matching takes place where

an appointment entry matches a GPS entry based on their time period, place and date. Because the data is

application-driven and focuses on supporting daily operational decisions, the challenge in this project is to

transform the data set into a data set for analysis purposes. This process ensures that the correct data can

easily be extracted and transformed into a right format to perform data analyses. An explanation of the main

attributes are listed in Table 4.1. The blue coloured attributes are key attributes for the matching process.
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Attribute name Description
GPS data file
Ys code Unique identifier
Date from Date of car leave
Time only from Time of car leave
Addr from Address from car leave
Date to Date of car arrival
Time only to Time of car arrival
Addr to Address to car destination
Odo from Unknown
Odo to Unknown
Event distance Distance of car journey expressed in meters
Event duration Duration of car journey expressed in seconds
Stop duration Duration of car stop expressed in seconds
Distance private Distance of private car use in meters
Keys in Unknown
Appointment data file
Reference Unique identifier
Address Address of customer and travel destination of doctor
Zipcode Zipcode of customer and travel destination of doctor
Place Place of customer and travel destination of doctor
Region Region of customer and travel destination of doctor
Doctor The assigned doctor for appointment
Date Date of appointment
Time Time indication of when appointment took place
Repeat Indicator whether it is a first appointment or a repeat
Number of people Number of people present during appointment
Vaccination name An irregular set of columns indicating the vaccinations/ treatments needed

per person for an appointment

Table 4.1: An explanation of the initial available data prior to pre-processing

Due to missing values and ubiquitous data entries, the files first need to be cleaned separately before merging

them. This process is described in the next subsections.

4.1.1 Appointment data

Thuisvaccinatie offers 52 types of products and services to their customers. Upon receiving the data, the entries

had an irregular number of columns because every appointment had a diverse number of products or services.

To even the total columns out for every entry, we add the total offered products to the table and calculate the

frequency of each product type for each product in one appointment.

Another change is to set the time frame in a correct format for every appointment. Appointments can be either

in the morning, noon, afternoon or evening. The time frame attribute is expressed as a time stamp under

attribute name time. E.g., interpreting an appointment on 9AM should mean an appointment on that time.

However, based on an evaluation session with the company it is concluded that the stated time does not give

an indication of the order between appointments and is not the actual appointment time. This means that

these times are merely suggestions of a certain time frame and that doctors can deviate from these suggestions
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during the actual events. Since the GPS data will be partly merged based on time, this can lead to a misleading

match. Thus, the attribute should be transformed into a time frame rather than a time stamp to prevent

confusion. These time stamps changes to: morning, noon, afternoon or evening. For example, appointments

between 9AM - 1PM are classified as a morning-value for attribute time frame.

Lastly, adding an extra column with the occurrence of a matching string serves as feature to eventually match

the data with GPS data. This matching string is: Zipcode + time frame + date.

4.1.2 GPS data

The GPS data contain missing values for some locations or stop duration. Without known location or stop

duration, it is impossible to use it for the matching process or time estimation. Since no linkage can take place

without these values, it is better to exclude these from the data and to remove these entries.

Also, the doctors deliver medical examinations as a service that can take up to two hours and is separate from

Thuisvaccinatie. It is therefore important that these entries are left out in the matching process, to ensure that

appointments are not linked to misleading stop duration.

It happens that doctors use cars for private use. These are however no official appointments. Home locations of

the doctors were therefore removed and duplicate stop locations have been deleted as well. A possible reason

for a duplicate stop location is that the driver has found a better parking place a few minutes later and decided

to relocate himself. However, it is of importance to choose the correct entry with the right stop location and

stop duration to make an accurate prediction model. The duplicate entries with same stop location can have

varied differences in stop duration from 5 minutes to 45 minutes.

Lastly, we can make the same columns as with appointment data with regards to time frame, occurence and

matching string. With the matching string and occurence feature it is possible to merge the two tables. The

occurrence feature tells the frequency of a matching string, indicating how frequent an appointment or

destination point occurs at the same time, date and place.

4.1.3 Merging the data

After we clean the data separately, the matching can take place. This can be done by looking at the occurrence

attribute and the matching string. Different scenarios can occur and we can use for every scenario a different

technique to match the entries from both files. If the occurrences from both GPS entry and appointment entry

are one, then immediate matching can take place. This means that there exists only one GPS entry with same
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place coordination and time frame as an appointment at a certain date. However, if one of these are at least

bigger than one, then a few scenarios could have happened and are mapped out in Table 4.2.

Scenario Description Matching solution
Appointment occurrence == 1 There is one GPS stop point The two data rows can be merged
GPS occurrence == 1 in the area of an appointment together.

at the same time and date.
Appointment occurrence >= 2 There were multiple Option 1: By using positional data,
GPS occurrence == 1 appointments in the area at calculate the distances for each

the same time and date. appointment with corresponding GPS
data point. Choose eventually the
appointment with shortest distance
with GPS point.
Option 2: More than one appointment
can take place in one area. Here, divide
stop duration by appointment occurrence
and distribute over appointments.

Appointment occurrence == 1 There were multiple stop points By using positional data, calculate
GPS occurrence >= 2 in the area at the same time the distances for each GPS data point

and date for one appointment with corresponding appointment.
Choose eventually GPS point with
shortest distance with appointment*.

Appointment occurrence >= 2 There were multiple stop points By using positional data, calculate
GPS occurrence >= 2 and appointments in the the distances for each appointment

area at the same time and with corresponding GPS data point.
date. Choose eventually the appointment with

shortest distance with GPS point*.
*It can occur that two or more GPS points have the same address and matches an appointment. In that case,

the GPS point with the longest stop duration has been matched to an appointment.

Table 4.2: An explanation of possible matching scenario’s when linking appointments with GPS data.

After the merging process, instead of two separate tables there is now one table with all data. We remove

unnecessary attributes or duplicate attributes - in relation to the appointment data file - in the GPS data, since

we are only interested in the stop duration of an entry. These attributes are for example addr from, date from and

time only from. When collecting the data, there were GPS data of the doctors’ cars with 14 attributes and 15, 010

entries, and an appointment file with over 11 attributes and 7, 453 entries. After cleaning and merging this to

one table, there is a total of 6, 615 entries and 73 columns, from 2016− 05− 01 till 2017− 01− 26. Tables 4.3

and 4.4 are descriptions of the data, where vaccination products are named in Dutch.

For regression and classification algorithms there is the risk that categorical values are not well processed in a

model when formatting categorical values into numerical values. If we take attribute as region and assign for

every place a unique number instead of region name, then we cannot say that value Amsterdam with number

10 as value is greater than Twente with number 5. One-hot-encoding combats this drawback by making for

every possible attribute value an individual binary column. This however also leads to extra columns and

results in this case to 91 columns instead of 73 for the modelling process.
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Attribute name Domain Description
Reference [0, ..., 6615] Appointment key for every individual entry
Address String Streetname of appointment
Place String Place of appointment
Region String Region of appointment
Doctor String = {a1, ..., a14} Name of doctor of an appointment
Date Timestamp Date of the appointment
Repeat {0, 1} A first appointment {0} or a second appointment {1}
Number of people [1, 8] Number of people during an appointment
DTP NVI {0, 1} A product type
DTP Revaxis {0, 1} A product type
Hepatitis A Senior {0, 1} A product type
Hepatitis A Junior {0, 1} A product type
Hepatitis B Senior {0, 1} A product type
Hepatitis B Junior {0, 1} A product type
Hepatitis B Indicatie {0, 1} A product type
Hepatitis A B Senior {0, 1} A product type
Twinrix {0, 1} A product type
Hepatitis A B Junior {0, 1} A product type
Buiktyfus {0, 1} A product type
Buiktyfus Indicatie {0, 1} A product type
Gele Koorts {0, 1} A product type
Gele Koorts Indicatie {0, 1} A product type
FSME {0, 1} A product type
FSME Indicatie {0, 1} A product type
Meningitis {0, 1} A product type
Meningitis Indicatie {0, 1} A product type
Rabies {0, 1} A product type
Rabies Indicatie {0, 1} A product type
Encefalitis {0, 1} A product type
Encefalitis Indicatie {0, 1} A product type
BMR {0, 1} A product type
BMR Indicatie {0, 1} A product type
HIB {0, 1} A product type
HIB Optioneel {0, 1} A product type
Pneumovax {0, 1} A product type
Pneumokokken {0, 1} A product type
Gammaquin {0, 1} A product type
Gammaquin Indicatie {0, 1} A product type

Table 4.3: Part 1 of description of available data after data cleaning

4.2 Exploratory data analysis

To gain a better understanding of the data, we conduct an exploratory data analysis to visualize the data and

to investigate correlations between attributes.

Table 4.5 shows distributions of three features. We observe from this table that the mean of the number of

people is 1.865004 and that the largest group of an appointment is 8. Also, on average there are 13 vaccination

products per appointment, with a maximum of 78. A more interesting feature is stop duration. This shows

that the maximum stop duration is 7, 818 seconds and equals 2.17 hours. This falls far above the average
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Attribute name Domain Description
Gordelroos P1 {0, 1} A product type
Gordelroos P2 {0, 1} A product type
Consult {0, 1} A product type
Herhaalconsult {0, 1} A product type
Recept Malaria {0, 1} A product type
Recept Overig {0, 1} A product type
Cholera {0, 1} A product type
Administratiekosten {0, 1} A product type
Vaccinatieboekje {0, 1} A product type
Rabies Uitleg {0, 1} A product type
Buiktyfus Uitleg {0, 1} A product type
Dengue Uitleg {0, 1} A product type
Schistosomiasis Uitleg {0, 1} A product type
Tuberculose Uitleg {0, 1} A product type
Encefalitis Uitleg {0, 1} A product type
Hoogteziekte Uitleg {0, 1} A product type
Duikadvies Uitleg {0, 1} A product type
Malaria Uitleg {0, 1} A product type
FSME Uitleg {0, 1} A product type
Deet Lotion {0, 1} A product type
Deet Extra {0, 1} A product type
NoShow {0, 1} A product type
Event Duration [5, ..., 8721] Travel duration of a doctor to be at the appointment
Stop Duration [110, ..., 7818] Stop duration of an appointment
Timey Timestamp Actual time of an appointment based on GPS data
time framey String = {morning, noon, Actual time frame of an appointment

afternoon, evening} based on GPS data

Table 4.4: Part 2 of description of available data after data cleaning

Number of people Number of vaccinations Stop duration
Mean 1.865004 12.845654 1671.978987

Std 1.157825 10.226579 921.724399

Min 1.000000 0.000000 110.000000

25% 1.000000 6.000000 992.000000

50% 1.000000 10.000000 1467.000000

75% 2.000000 17.000000 2144.000000

Max 8.000000 78.000000 7818.000000

Table 4.5: Data distribution based on number of people, number of vaccinations and stop duration

consultation time of an appointment. However, the table also indicates a mean of 1, 671.978987 seconds

(≈ 27.87 minutes). This average is in line with the current consultation time calculation where on average

every appointment takes thirty minutes for consultation. Though, there is a standard deviation of 921.724399

(≈ 15.36 minutes), illustrating differences in appointments as well. It would therefore be interesting to find

attributes that influence these deviations in the average consultation time of thirty minutes.

In the next subsections, different visualizations are given for certain attributes to describe how they correlate

with the response variable. In every boxplot figure, the right most boxplot are calculations based on the total

appointments.
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4.2.1 Analysis based on region

Figures 4.1 and 4.2 show boxplots of the time duration based on region of the appointment.

Figure 4.1: Boxplot of time duration based on region part 1 (in seconds).

Figure 4.2: Boxplot of time duration based on region part 2 (in seconds).

It can be seen that there is an overall median between 1000 and 2000 seconds. There are no big differences

compared to the regions, although the distribution of the stop durations per region can be different. For

example, around Randstad West, Noord-Holland, and Amsterdam the minimum stop durations are lower
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compared to the other regions. However, for these regions there are also more data points with a longer stop

duration. This distribution difference between sparseness and expansion can also be due to the amount of

available data in these regions. Figure 4.3 shows a histogram to visualize the frequency of appointments of over

3, 600 seconds per region. This indeed shows that there are more appointments in Amsterdam, Noord-Holland

and Randstad West, and can be the reason for such outliers in the boxplots.

Figure 4.3: Histogram of absolute appointment frequency with stop duration > 3,600 seconds

4.2.2 Analysis based on doctor

Figure 4.4 shows the distributions of stop duration based on doctor. It should be assumed that every doctor

is equally skilled and no evident differences are present in stop duration based on doctor. A boxplot helps

to test if this assumption is true and that no stop duration differences are present between doctors. With

Figure 4.4 we observe that there are a few differences between doctors. E.g., doctor a8 and doctor a2 have

medians lying above the average doctor. Because there are differences, the doctor attribute should be included

in the predictive model.

It should be noted that this does not neccessarily imply a direct causal relationship between doctor and stop

duration. The longer stop duration can also be due to a larger group size that a certain doctor frequently needs

to vaccinate or the type of region (e.g., in Amsterdam or Randstad West an appointment takes longer).

4.2.3 Analysis based on group size and repeat of appointment

Another boxplot visualization is Figure 4.5 where distributions of stop duration are on the y-axis with the

group size on the x-axis. An upward trend is present and aligns with the assumption that the larger the group,

the longer an appointment takes.
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Figure 4.4: Boxplot of time duration based on doctor in seconds

Figure 4.5: Boxplot of time duration based on group size in seconds
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It is possible that a customer requires multiple sequential appointments before a vaccination yields the full

effect. Figure 4.6 represents the differences in time between the two appointment types. A first appointment

would take in general longer than a repeating appointment, since it covers a longer introduction from the

doctor and requires a longer explanation regarding the vaccinations. Also, customers may have more questions

during their first session. This notion is also reflected in the time duration of an appointment between these

two types. The boxplot of the first appointment lies higher than the second appointment.

Figure 4.6: Boxplot of time duration based on first or second appointment in seconds

4.2.4 Correlations

Figure 4.7 represents a correlation matrix of different attributes. For the calculation, we use the Pearson

Correlation Coefficient (PCC). The PCC measures the linear correlation between two continuous variables X and
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Y. A commonly used Greek sympol for the PCC is ρ (rho) that divides the covariance of (X, Y) by the product

of standard deviation X and standard deviation Y [2] [8]. The covariance can also be rewritten in terms of

mean and expectation.

Definition 4.2.1 (Covariance):

ρ(X, Y) = cov(X,Y)
σXσY = E[(X−µX)(Y−µY)]

σXσY

A correlation is a ratio that takes a value between +1 and −1. +1 indicates a positive linear correlation, 0

indicates no linear correlation and −1 a negative linear correlation. The correlation is used to analyze how two

variables are associated with each other. For example, a positive correlation means that two variables are in

the same direction such that an increase of variable X means an increase of variable Y. A correlation between

the same two variables for X and Y always results in 1. Table 4.6 is the same correlation matrix but expressed

in numbers.

Figure 4.7: Correlation matrix of attributes

Region Doctor Repeat People Event Daypart Vaccinations Stop
Region - -0.177180 -0.010858 -0.023799 -0.083257 -0.054908 0.004419 0.064833

Doctor -0.177180 - -0.032628 0.031341 0.008883 -0.002052 0.013382 -0.224716

Repeat -0.010858 -0.032628 - -0.057334 0.027300 -0.001337 -0.360510 -0.274447

People -0.023799 0.031341 -0.057334 - -0.023142 0.030350 0.746105 0.391760

Event -0.083257 0.008883 0.027300 -0.023142 - -0.070426 -0.047213 -0.002799

Daypart -0.054908 -0.002052 -0.001337 0.030350 -0.070426 - 0.022648 0.006246

Vaccinations 0.004419 0.013382 -0.360510 0.746105 -0.047213 0.022648 - 0.528887

Stop 0.064833 -0.224716 -0.274447 0.391760 -0.002799 0.006246 0.528887 -

Table 4.6: Correlations between attributes expressed in numbers

A negative correlation can be seen between number of vaccinations and repeating appointment (−0, 60510),

indicating that a second appointment yields a decrease in number of vaccinations. This can be explained

because only a subset of vaccinations requires a second appointment, meaning that the number of vaccinations

that a person needs decreases in the second appointment. A strong positive correlation is between number of

vaccinations and number of people (0, 746105). A possible explanation is that when the group becomes larger,

more vaccinations are needed to cover the whole group. There are also correlations between variables and stop

duration in the correlation matrix. It shows a positive correlation between number of people and stop duration
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(0.391760), but also number of vaccinations and stop duration (0.528887). Both positive values are reasonable

because the larger a group or the more vaccinations are required, the longer an appointment would take.
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Chapter 5

Evaluation

This chapter explains the experiment setup with theories of performance indicators to evaluate the predictive

models. It also explains the steps of the modelling process and evaluation of the experiments. By comparing

the different regression models, we can choose the most suitable model that accurately estimates consultation

time.

5.1 Experiment setup

After the data have been properly cleaned and pre-processed, different models can be developed for descriptive

and predictive purposes. Since the response variable is numeric, we use regression. Specifically, regression

trees will be used to model the data. These are classic regression tree, the three ensemble types of regression

trees and the M5P model tree. To investigate which model suits the data best, we use R2 and the Mean Square

Error (MSE) to evaluate the models.

5.1.1 Bias and variance

A data set can be divided in training data and test data. Training data consist of observational data for the

algorithm to learn. With this experience the test data can be used to evaluate the performance of the model

that has been made with the algorithm and training data [14]. It is important that no observations from the

training set are included in the test set. When these observations are included in the test set it will be hard

to identify its actual performance and to know if the model has generalized or has memorized the data. If a

model has generalized well enough, it is able to perform its task well on a new data set. However, if the model

has only memorized the tasks based on the observations, it will perform poorly and will not be able to predict

the correct response values for a new data set [23] [15]. This is also called overfitting. An overfitted regression

tree might perform well on the trained data, but can be a complex model that performs incompetently on

unseen observations. It is therefore important that not too many attributes are selected and that splitting stops
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when there is little improvement to be gained.

Besides overfitting, there is also a problem of underfitting where a model is too generic and does not capture

all the patterns present in the data. The bias-variance trade-off is a trade-off that continuously needs to be

made in statistics and machine learning. A high bias misses the relevant patterns between the response variable

and explanatory attributes (underfitting), whereas a high variance can cause the model to be too sensitive

to variations in training data (overfitting). When modelling we want to make an accurate model that fits

the training data well, but also performs well on unseen instances. It is therefore important to use the right

performance metrics to find the right balance between these two. Measuring the performance is relevant for

evaluating the trustworthiness of the model and for comparing different approaches [23].

As for the bias-variance trade-off, Forward Feature Selection or Backward Feature Elimination is a method to

decrease the variance by using less attributes than the initial attribute input to simplify the model [23]. Also,

another method is to use a large training set to decrease variance. Another way for this trade-off is to use

ensemble learning [15]. Boosting trees combine models with a high bias such that an ensemble of these trees

leads to a lower bias than the individual models. Similarly, bagging trees combine models with a high variance

and ensembles them leading to a lower variance than taking the individual models separately.

This subsection finishes with the Occam’s Razor principle. This principle states - referenced to Englishman

William of Ockham in the 14th-century - that ”one should not increase, beyond what is necessary, the

number of entities required to explain anything” [23]. This showcases that the simplest model should be

chosen to explain data and concerns the balance between overfitting and underfitting. Hence, in statistics and

machine learning there has to be a balance made between fitness, generalization, precision and simplicity.

5.1.2 Quality of models

Train/test split and k-fold cross-validation

An evaluation technique to build a model is train/test split. This method split the data set in a training set and

test set. An algorithm learns on a training set and with the resulting model the accuracy will be calculated

based on test data. This accuracy can be of different forms depending on type of learning algorithm. For

example, with classification there are measures such as precision, recall and F1 score. For linear regression there

are Mean Square Error (MSE) or R-squared (R2) as measures. A pitfall when using train/test split is that a single

performance indicator does not tell much about its actual reliability of the result [23]. An accuracy of 0.91

would not guarantee an equivalent accuracy score on another data set with the same model. It then suffices

to calculate a confidence interval over a single performance indicator. Confidence intervals can only be cal-

culated with the use of multiple measurements and one possibility to do this, is by using k-fold cross-validation.
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k-fold cross-validation is often used when there are few data instances available or when a performance

indicator can only be used over a set of data instances instead of a single instance [23]. A data set will then be

divided in k equal subsets. Each subset will be used as a test set with k− 1 training sets. This repeats k times

and leads to k results. It is then possible to analyze one of the individual test sets or to take an average of k

test sets. There can be two advantages to use k-fold cross-validation. One is that the data set is used as training

set and test set leading to a more robust model [23] [15]. Second, it is possible to get k test sets instead of one.

Especially with a limited data set, having k test results instead of one can give us more insights into the model

reliability. The results are however not completely independent since the k test sets overlap within the k-folds

as well.

Formalizing quality indicators

The Mean Square Error is a risk metric [23] and is an average of the squared error; this error is a difference

between the observation and its predictor, the residual. A variation in the difference can occur due to noise

in the data or the predictors do not hold enough information to make a correct prediction of an observation.

Because of the exponent a MSE cannot be negative and the closer its value is to zero the better [16]. The MSE

and R2 can be written as Definitions 5.1.1 and 5.1.2 respectively.

Definition 5.1.1 (Mean Square Error (MSE)):

MSE = 1
n ∑n

i=1(Ŷi −Yi)
2

Definition 5.1.2 (R2):

R2 = TSS−SSE
TSS = ∑(y−y)2−∑(y−ŷ2)

∑(y−y2)

where TSS = Total Sum of Squares and shows the error of y when predicting for y without using information of

x. SSE = Sum of Squared Errors and shows the error of ŷ when predicting for y using information of y.

The R2 can therefore be seen as the proportional reduction error when the prediction equation, ŷ, is used to

predict y instead of the mean, y [2]. This indicator shows how much error ŷ is able to proportionally reduce

when the predictor equation is used instead of y. When there is a strong association between the variables x

and y then the prediction equation ŷ performs better than y.

5.2 Comparing regression tree models

Machine learning algorithms can be used for predictive analyses. Performance scores and run time complexity

are measures for choosing an appropriate algorithm. A factor prior to the algorithm choice is to measure

whether data is dependent through time. Since the appointments are scheduled over a time period and the

data are ordered based on date and time, we need to ensure that the model does not perform well because

of improvements over time. Hence, we would like to have a model with attributes that are independent
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throughout time. A way to ascertain this time dependency is to perform the modelling with k-fold cross-

validation and train/ test split. With train/test split the data set is split into training set and test set in an

orderly manner over time, whereas k-fold cross-validation does not compromise this order and is independent

of time of the data. For this thesis, the train/ test split ratio is 80/20. When the results of both techniques are

comparable, then we know that there is independence between time and data, and no specific time order is es-

sential in the analysis. The performance results of both techniques are shown in Table 5.1 and Figures 5.1 and 5.2

The performance measurements are MSE and R2 for each model. Table 5.1 shows that all models except for

gradient boosting performs well on training data with a high R2 score of 0.92 for random forest and bagging

regressor, and even a R2 of 1.00 for decision regressor. However, it also appears that a difference is present

compared to the prediction on test data for random forest, bagging regressor and decision regressor with

a score of 0.53, 0.52 and 0.23 respectively. The same pattern is seen when using MSE for calculations. This

indicates an overfitted model meaning that the models are too complex and performs good on training data

but does not generalize well on new data. The scores in test data for gradient boosting show a slightly better

test score compared to the other ensemble trees, namely a R2 of 0.56 and MSE of 355, 217.06.

Aside from this information, Figure 5.1 presents for each algorithm a graph that visualizes residuals on training

data and test data. As explained in Chapter 2 the residual equals the difference between a prediction and

an observation. An optimal model has residuals of zero, which in this case displays with a red line for each

residual graph. The decision regressor has perfect training residuals of 0 which is in line with the MSE and R2

scores. Nevertheless, there is a poor score on test data which displays a strongly overfitted model. Random

forest and bagging regressor show a more evenly spread test error with a few outliers, whereas gradient

boosting has stronger residual differences with more data points below the red line. This implies that gradient

boosting predicts appointment times longer than the actual time.

MSE R2 Runtime

Method train test train test in seconds

Random forest 67,296.45 384,423.94 0.92 0.53 0.487

Bagging regressor 69,577.24 389,658.65 0.92 0.52 0.643

Boosted gradient regressor 288,292.89 355,217.06 0.66 0.56 1.201

Decision regressor 0.00 623,559.29 1.00 0.23 0.083

Table 5.1: Performance scores of four regression models by looking at MSE, R2 and runtime. These models are made by
using train/ test split.

There are also differences in runtime, where the decision regressor comes out as a slightly faster algorithm;

0.083 seconds to fit the model. This can be explained due to the modelling of a single tree, whereas the

ensemble algorithms develop multiple estimators to make their predictions and can thus take longer to make

the model. When comparing the three ensemble trees, gradient boosting has a longer runtime. A possible

explanation for this is its sequential, stage wise property where every next tree is build on top of the previous
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(a) Random Forest (b) Bagging Regressor

(c) Boosted Gradient Regressor (d) Decision Regressor

Figure 5.1: Residuals on training and test set by using train/test split on four types of regression tree models

ones, meaning that for every tree new re-calculations need to be made whereas the other ensemble trees

happen more randomly and are less dependent on the previous trees.

A different modelling technique is to use k-fold cross-validation. Figure 5.2 are performance results of using

10-fold cross-validation with computation times. The same pattern can be derived from these results as with

train/test split. Decision regressor performs poorer according to R2 than the ensemble trees and a possible

cause for this is the development of a single tree. In general, gradient boosting has a higher score than the

other two ensemble trees, but requires a longer runtime and is twice as long than other ensemble trees. Next

to these performance scores, the figure also showcases standard deviations. Boxplots are shown in the left

graph that visualizes the same information. These standard deviations show not too substantial fluctuations

when generating new models with the same algorithm. Even though the performance scores with k-fold

cross-validation are lower in comparison to train/ test split, the differences are not too conclusive to choose

train/test split over k-fold cross-validation when looking at the performance scores and standard deviations.

Since k-fold cross-validation can give us more reliable models, we choose to use this technique to work with.

Based on the experiment results the models are too overfitted to perform a good predictive model, such that

there are too many features than the available data. The trees are too deep and too complex, resulting in low

training residuals but high test residuals. An option to reduce the overfitness is by using fewer attributes to

counterweight for the depth and complexity of the trees. Comparing the four models result in random forest

as machine learning technique for optimizing the model. The figures show an overall faster runtime of random
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Performance Runtime

Method R2 std in seconds

RF 0.494117 0.058 6.039

BR 0.505692 0.064 5.631

GB 0.573261 0.052 12.656

DR 0.168796 0.121 0.979

Figure 5.2: Model performances by using 10-fold-cross-validation. The left figure shows boxplots of R2 for random forest,
boosted regressor, gradient boosted regressor and decision regressor. The right table shows scores expressed in numbers.
Std = standard deviation of the R2-mean.

forest in comparison to the other two ensemble trees and performs better than a single decision regressor.

Regardless of a lower performance score than gradient boosting, random forest is able to model a better model

with a training score of 0.92. A next step is to optimize the model such that the model is able to perform well

on test data too. Section 5.3 covers this next step in more detail. The goal in optimizing the model is to achieve

at least the same performance score as the results above but with fewer attributes and more simplicity.

5.3 Random forest model optimization

The R2 score of random forest without any reduction in the number of features is 0.49 with k-fold cross-

validation and has a runtime of 6.039 seconds. This model can hopefully be less overfitted with fewer attributes

for more simplicity.

Figure 5.3 illustrates the first 34 relative important features, with the most important ones ranking higher in

the figure. The relative importance of f eaturei is determined by taking the error reduction of nodei, weighted

by the sample proportion that reaches that node split [22] [7]. An interesting observation is that doctors play

a more influential role in determining appointment time than vaccination type. The variable ai indicates a

doctor’s id and is in alignment with the boxplots of time duration based on doctor in Figure 4.4. As explained

in Chapter 4 the figure of the descriptive analysis on doctors shows fluctuating medians in appointment time

and reveals the influence that doctors have on appointments, similar to the relative importance histogram.

With the use of this histogram we can perform forward feature selection to construct an optimized model.

The approach in reducing the number of attributes works by looking at the feature importance of Figure 5.3

and to start building a model with the most important feature first. Based on the ranking in the figure, we

then add one feature at a time until the score of the model is around 0.49. Implementing this method results

in a model with the first 34 important features and is a reduction in comparison to the total data input of 91

features. The random forest model with 34 attributes has the following cross-validated performance score:
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R^2 score 0.49

Root mean squared error 686.201136694 seconds

Mean absolute error 501.206894758 seconds

Runtime 3.069

Total number of instances 6615

The performance indicators show that this improved model has a similar performance score with fewer

attributes and a two times smaller runtime than the previous random forest model.

Figure 5.3: Top 34 important relative features based on random forest

5.4 Ensemble tree versus model tree

A drawback of using ensemble trees is its black-box property; the visualization of a regression tree is rather

complex. When taking random forest models, the algorithm makes many random estimators and takes the

average of these estimators as end result. A possibility is to extract one of these estimators for interpretation.

This however does not guarantee that it represents the average overall case and represents a possible state

out of many regression estimators. This contributes to the notion that in machine learning there is a trade-off

between accuracy of a model and the interpretability of a model. The experiments in Sections 5.2 and 5.3

focus mainly on improving the quantitative accuracy of a prediction model. Section 5.4 provides insights

into the visualization of appointment time predictions. A model tree algorithm makes a decision tree with

multiple regression equations as leaves. This ensures a less complex regression tree than the other algorithms

and makes it easier to interpret for end users. With the use of Weka [12] the algorithm M5P runs on the data

and results in the visualization and performance of Figure 5.4. The M5P algorithm is a reconstruction of
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Quinlan’s algorithm [9], introduced in Chapter 3. This model illustrates a tree with one node and two leaves.

Furthermore, Table 5.2 illustrates the performance of M5P in comparison to random forest.

M5P Random forest
R2

0.618 0.49

Mean absolute error (in seconds) 403.2736 501.2069

Root mean squared error (in seconds) 569.7166 686.2011

Runtime (in seconds) 9.16 3.069

Table 5.2: Performance comparison of M5P and random forest, using 10-fold cross-validation

Having two different models, namely random forest and M5P, we are able to compare both results and derive

if the results are in line with one another. Based on Table 5.2 M5P has a longer runtime than random forest.

However, even without feature selection M5P is able to perform better with lower mean absolute error than

random forest. The algorithm also has a higher R2 score and is able to fit the data better with the observations.

Overall, both models include the same attributes with some deviations in the number of attributes. M5P uses

more attributes to build the model because it does not perform feature selection. Also, from the random

forest results we derive that, next to the number of vaccinations, doctors a2 and a8 have two of the highest

relative feature importances. With M5P we are able to look more closely on this impact in seconds. From

this model we see that they have two of the highest coefficients on both leaves. It shows that the number of

vaccinations are dependent of how much extra appointment time is needed when doctor a2 or a8 performs

the consultation. For example, with vaccinations fewer than 9 a consultation requires 366.5966 seconds extra

whereas vaccinations of more than 10 leads to an extra time of 1, 354.6319 seconds. Table 5.3 compares two

M5P models including and excluding doctors in the model. The results show that doctors are indeed an

important factor when modelling the data. Excluding doctors result in a higher error rate, but also increases

complexity of the model with 2, 855 rules instead of 2 rules.

With doctor Without doctor
R2

0.618 0.368

Mean absolute error (in seconds) 403.2736 538.5737

Root mean squared error (in seconds) 569.7166 738.7341

Number of rules 2 2,855

Runtime (in seconds) 9.16 5.83

Table 5.3: Performance comparison of M5P including the doctor attribute and M5P excluding doctor. The models are made
by using 10-fold cross-validation.

Interestingly, the number of vaccinations in the left leaf influences the appointment time, whereas in the right

leaf the number of vaccinations does not hold an impact on the eventual appointment time. It shows that at a

certain point the number of vaccinations has no further influence on the time estimation.

When comparing the same attributes from both leaves with one another, we see that attributes on the right

with negative values have lower values. The same is with positive attributes where the right attributes present
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higher coefficient values than their left equivalent. This implies that an increase in number of vaccinations

yield an extra increase in time for each of these attributes.

Figure 5.4: Visualization of the predictive model with the use of M5P

5.5 Main findings

From the experiments it is clear that ensemble trees perform better than a single decision regressor. An

explanation for this difference is its ensemble property, where ensemble trees take many single decision

regressors, thus requiring longer computation time. By averaging the performance of these tree results, it will

in general perform better and is more robust than a single tree. However, the models - regardless of algorithm

- showcase overfitted models that perform well on training data, whilst displaying poor test performance due

to the complexity of the models. When choosing a regression tree algorithm that suits best with the data set,

it can be said that random forest comes out as optimal model with a test score of 0.49 and a short runtime.

To further optimize the model, we reduce the number of attributes, while receiving the same performance

score as before. With relative feature importance we are able to reduce the number of attributes to increase the

simplicity of the model, leading to a model with 34 input attributes instead of 91.

When comparing the random forest with model tree M5P, we conclude that M5P performs better with a

lower error rate and is a simpler model for interpretation. Regardless of algorithm choice, it can be said

that the number of vaccinations holds the strongest influence. Both in random forest and M5P this attribute

ranks highly in both relative terms (Figure 5.3) and in absolute terms (Figure 5.4). Also, doctors play, with
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similar coefficients, an important part in time duration determination. This also leads to higher complexity

when excluding this attribute from the model. Thus, M5P can be best used for predicting the model since it

performs better and is able to visualize the influence of attributes in absolute values. This enables end users to

immediately act on it.
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Chapter 6

Discussion

The analyses of the data were based on GPS data. The raw GPS data represented pure numbers of a car’s

stop duration, but did not account for human action. It is unknown what exactly took place during a stop

duration. Different events could occur from parking place to the customer’s physical place and these are

unexplainable factors, meaning that there is always noise in the data. This in turn might not represent the

actual time influence of the available attributes. E.g., did a Hepatitis B Senior vaccine require an extra 403.5181

seconds, and did an appointment in Groot Amsterdam really result in an extra 51.9556 seconds, or was there a

delay in travelling? These are hard questions to know and to measure. It does however highlight the notion

that raw data are not able to explain every hard detail and that there is always an unpredictable human

factor that plays an important part in events. This also means that certain associations do not imply causal

relationships necessarily. There can be alternative reasons for these associations that cannot be derived from

the available data.

It should also be noted that the models are highly dependent on the doctors. This shows that time duration

depends on skill or doctor’s practices, and not only on type of vaccination or group size. This also makes the

model less secure for future use. That is, if doctors decide to leave the company, then the model would be less

useful for time estimation. It is therefore of importance that clear choices should be made when implementing

this model for future use within the company. For example, we can question if we should give doctors enough

time for consultation based on their needed work time. Or give every doctor the same work time regardless of

his work effort.

Thus, data-driven models should therefore be regarded with care and should be seen as a tool. Regardless of

the models that are made, it should be our own human domain knowledge that calls the action. In the end,

human decisions are made by human actions. We cannot explain everything that happened based on data

only and data-driven predictions may conflict with desirable future policies.
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Chapter 7

Conclusions

The aim of this thesis is to achieve a more accurate estimation for consultation time. Based on historic data from

Thuisvaccinatie the appointment time is estimated using different regression techniques. The available data for

this project contained data regarding customers’ appointment data and doctors’ GPS data. By combining these

two sets we are able to create a setting where stop duration from GPS data as time can be explained from

customers’ appointment data.

Since time is a numeric continuous response variable, it was favorable to use regression techniques. More

precisely, different experiments were conducted with the use of regression trees and the ensemble trees random

forest, bagging trees and gradient boosted trees, and model tree. Based on these experiments, it was visible

how challenging the trade-off was between model complexity and model interpretation. From the outcomes of

the experiments on regression trees it came forward that random forest performed better. By reducing the

number of data attributes from 91 to 34 we were able to make a model with a similar R2 = 0.49 with feature

reduction. However, due to its black-box character we were able to optimize the model but at the expense of

interpreting the model. To gain results from both aspects we have made a visualization by making a model tree

on the data set. With these two approaches there is a focus on optimizing quantitative performance on a model

and on interpreting a visualized model based on the same data set. Based on these results, we concluded that

in terms of interpretation and performance the model tree came out as best.

From these approaches and descriptive analyses there are several conclusions that can be made. There

are correlations between time duration and repeat, and between time duration and group size. These two

observations are logically in line with the current practices of Thuisvaccinatie. A more engaging observation is

the strong association between time duration and doctor, where there seems to be some differing fluctuations

in time based on doctor. In general, however, the appointments take on average thirty minutes with a standard

deviation of fifteen minutes. This means that the current method of assigning thirty minutes for every

appointment is quite accurate. With a standard deviation of fifteen minutes, it does leave room for more precise
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time estimation with the use of the M5P prediction model. With M5P we are able to reduce the standard

deviation from fifteen minutes to seven minutes, creating a model that is able to estimate the consultation time

more accurately.

7.1 Future work

The purpose of a time estimation model is to make future calculations of appointment duration more accurate.

There are several extensions to work on to optimize the model and to gain a better understanding of customers.

• Parameter tuning - A technique not implemented in the model optimization is parameter tuning [23].

Since we mainly focus on the predictive power of the attributes, parameter tuning is out of the scope but

can help in further optimizing the model. We can ensure that pruning takes place earlier in the ensemble

trees, making the model less complex and overfit.

• Availability of more diverse attributes - It can be insightful to add more attributes of customers that are

more based on the group composition to make more precise calculations. For example, age of customers

with differences in children or adolescence, or travel destination to see which countries require longer

consultation time.

• Clocking system of doctors - Appointment time is derived from GPS data of the doctors. However, the

GPS data do not explain the reason for travelling, meaning that there are data points in the set that does

not imply an appointment. Also, these stop duration of GPS include the walking process to and from

an appointment. This makes the stop duration not representative for the time estimate of the available

attributes in the data. With the use of a clocking system for doctors, we are able to make more accurate

time estimations that are mainly focused on an appointment. Also, these observations can be more easily

linked to the appointment data entries.

36



Bibliography

[1] A. Afifi and S. Azen. Statistical analysis A Computer Oriented Approach. Academic Press, 111 Fifth Avenue,

New York, New York 10003, 1 edition, 1972.

[2] A. Agresti and B. Finlay. Statistical Methods for the Social Sciences. Prentice Hall, Inc., Upper Saddle River,

New Jersey 07458, 4 edition, 2009.

[3] P. Austin, J. Tu, J. Ho, D. Levy, and D. Lee. Using methods from the data-mining and machine-learning

literature for disease classification and prediction: a case study examining classification of heart failure

subtypes. Journal of Clinical Epidemiology, 2016.

[4] J. Bos and G. Schonewille. Vakantiegeld-enquête 2016. Technical report, Nationaal Instituut voor

Budgetvoorlichting, 2016.

[5] L. Breiman. Bagging predictors. Machine Learning, (26):123–140, 1996.

[6] L. Breiman. Random forests. Machine Learning, (45):5–32, 2001.

[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth Interna-

tional Group, Belmont, California 94002, 1 edition, 1984.

[8] N. Chok. Pearson’s versus Spearman’s and Kendall’s correlation coefficients for continuous data. Univer-

sity of Pittsburgh, 2008.

[9] C. Deepa, K. SathiyaKumari, and V. Sudha. Prediction of the compressive strength of high performance

concrete mix using tree based modeling. International Journal of Computer Applications, 2010.

[10] J. Elith, J. Leathwick, and T. Hastie. A working guide to boosted regression trees. Journal of Animal Ecology,

(77):802–813, 2008.

[11] F. Fenner. Smallpox and its eradication. WHO, 1988.

[12] E. Frank, M. Hall, I. Witten, and C. Pall. The WEKA Workbench. Online Appendix for ”Data Mining: Practical

Machine Learning Tools and Techniques”. Morgan Kaufmann, 2016.

[13] J. Galama. Opkomende virusinfecties. Nederlands Tijdschrift voor Geneeskunde, 2001.

37



[14] G. Hackeling. Mastering Machine Learning with Scikit-learn. Packt Publishing Ltd., Livery Place, 35 Livery

Street, Birmingham B3 2PB United Kingdom, 1 edition, 2014.

[15] G. James, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning. Springer-Verlag New York

Inc., New York, 1 edition, 2013.

[16] E. Lehmann and G. Casella. Theory of Point Estimation. Springer, New York, 2 edition, 1998.

[17] D. Malerba, F. Esposito, M. Ceci, and A. Appice. Top-down induction of model trees with regression and

splitting nodes. Transactions on pattern analysis and machine intelligence, 2004.

[18] J. Mendes-Moreira, A. Jorge, J. Sousac, and C. Soares. Comparing state-of-the-art regression methods for

long term travel time prediction. Intelligent Data Analysis, (16):427–449, 2012.

[19] D. Moore, S. Davey, and B. Lees. A new method for predicting vegetation distributions using decision

tree analysis in a geographic information system. Journal of Environmental Management, (15):59–71, 1991.

[20] A. Prasad, L. Iverson, and A. Liaw. Newer classification and regression tree techniques: Bagging and

random forests for ecological prediction. Ecosystems, (9):181–199, 3 2006.

[21] J. Quinlan. Learning with continuous classes. World scientific, 1992.

[22] Scikit-Learn. 1.13. Feature selection. http://scikit-learn.org/stable/modules/feature_selection.

html, 2010.

[23] W. van der Aalst. Process Mining. Springer, 2 edition, 2016.

[24] F. Zhang, X. Zhu, T. Hu, W. Guo, C. Chen, and L. Liu. Urban link travel time prediction based on a

gradient boosting method considering spatiotemporal correlations. International Journal of Geo-Information,

2016.

[25] Y. Zhang. Uncertainty Associated with Travel Time Prediction: Advanced Volatility Approaches and Ensemble

Methods. PhD thesis, University of Maryland, 789 East Eisenhower Parkway, 2015.

38


