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Abstract

Refrigeration is recognized as being one of the major energy consumers in supermarkets.

The costs associated with refrigerator equipment often represent more than half of the

total energy costs. This presents a good motivation for running these systems efficiently.

Therefore, a Portuguese Retailer challenged us to define baselines, so they can examine

the energy performance of their refrigeration departments. In this study, we investi-

gate different ways to construct a reference behavior, which can serve as a baseline for

judging the performance of energy consumption. We used 3 distinct learning models:

Multiple Linear Regression, Random Forests, and Artificial Neural Networks. During

our experiments we used a variation of the sliding window method in combination with

learning curves. We applied this approach on five different supermarkets, owned by the

Retailer, across Portugal. In the main section of this study, we describe solutions for

the business questions laid down by the Retailer. We are able to create baselines using

off-the-shelf data mining techniques. Moreover, we found a way to create them based

on short term historical data. With our findings, the Retailer is able to create baselines

to examine the energy performance. Furthermore, these baselines enable the Retailer

to compare the energy savings with the investments made for the measure. This way,

the Retailer is able to determine if energy efficiency measures are effective. We believe

that our research will serve as a base for future studies, for which we provide interesting

directions.
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Introduction

Portugal has been developing and transforming their energy policy since 2014, with an

emphasis on energy efficiency, towards a more sustainable economy. In 2016, Portugal

created the National Renewable Energy Action Plan (NREAP) which established an en-

ergy saving target of 25% by 2020 [1]. The program intends to generate awareness about

the energy usage of companies. Moreover, it aims to stimulate businesses to perform

energy management in a more sustainable way. To achieve this goal, the Portuguese

government, in cooperation with the EU, set up a fund named ’Portugal 2020 Strat-

egy’. This fund invests in research in order to create and transfer the scientific outputs

to production sites [2]. Besides research, the Portuguese government is also actively

supporting and encouraging companies to develop strategies aligned with their sustain-

ability. Since the start of the fund, in 2014, more than e1 billion of applications have

been approved [3].

Research shows that when the government takes the role of a driver behind energy sav-

ings, by providing financial incentives, this encourages businesses the most to investigate

better ways of utilizing energy [4]. It is beneficial to have a solid energy management

program since, first of all, this is the core of saving energy in an organization. From a

business point of view, greater energy efficiency is of importance because it provides a

number of direct economic benefits such as increased competitiveness, e.g., decreasing

energy consumption reduces production costs, and higher productivity, e.g., by decreas-

ing lead times [5]. Besides direct benefits, the indirect economic consequences are, e.g.,

an improved image, contributing to climate protection or resource conservation [5]. Ad-

ditional research shows that there is a major untapped potential for improved industrial

energy efficiency [6, 7]. There are several explanations that reveal the causes behind this

efficiency gap. For example, when inadequate information is available about the results

of investments in energy efficient products, this can limit companies to invest in them.

Furthermore, liquidity constraints, when upfront costs are high and access to credit is

limited, can prevent companies to make energy efficient improvements. Hence, Energy

1



Chapter 1 Introduction 2

management should focus on utilizing as much of this potential as possible to create

major benefits by addressing factors that prevent businesses to make investments.

One particular business area where energy management is particularly important is

retail [8]. Retailers operate in an industry that is characterized as a competitive and

low-margin [9]. Therefore, these companies are continually searching for ways to become

more efficient and, thus, more competitive. Supermarkets, e.g., sell mainly food products

and a substantial amount of these products need to be stored in fridges and freezers to

slow down the deterioration of the food. Hence, refrigeration plays a significant role

in retaining these items at a planned temperature. These fridges and freezers utilize

energy day and night and, because of that, they are the largest energy consumers in

supermarkets [10]. This is, therefore, a good place to search for efficiency gains.

1.1 Problem Statement

Studies on energy efficiency have been conducted for residential [11], historical [12], and

state owned buildings [13]. Commercial buildings, like supermarkets, have received less

attention because the availability of data is limited. Supermarkets, in particular, are

one of the most energy intensive buildings and that is why energy management is vital

in this business [8].

The last couple of years there has been a growing focus on energy efficiency [1], mostly

because, for supermarkets, energy costs are the second-highest operating cost after la-

bor [14]. Compared to other buildings, supermarkets consume proportionately more

energy [10]. This is caused by the refrigeration which conserves the chilled and frozen

products [10]. In this type of stores, the costs associated with refrigerator equipment rep-

resent more than 50% of the total energy costs [8, 9, 15, 16]. This outlines the importance

of operating the system at its optimum performance level by reducing the associated

energy costs. Therefore, it is essential to implement energy management policies to find

potential improvement opportunities, because, in this area, a small improvement could

yield significant results.

As soon as energy management policies are in place, one can analyze the energy con-

sumption or the effectiveness of improvement measures, by monitoring energy usage over

time. In order to evaluate the performance of a store, the actual energy usage should

be compared to a reference behavior. There are two ways to establish this reference

behavior [17]. The first is called energy benchmarking which consist of the comparison

of the energy usage in a store with the current or past performance of another store

with a similar configuration. The energy usage of this ’similar’ store will be transferred
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and appear as the reference behavior. The second method is called energy baselining, in

which the reference behavior is based on the previous, or optimal energy performance,

of the current store.

Since supermarkets tend to have different configurations, it becomes challenging to find

a store with similar characteristics to form a benchmark. Therefore, we will focus on the

second method and create our own baseline which will be used as reference behavior.

This baseline will be based on the previous energy consumption of the store.

1.2 Research Questions

A giant Portuguese retailer, hereafter referred to as ’The Retailer’, challenged us to

define baselines for the energy consumption of the refrigerator sections in their stores.

To establish this, we decided to use standard data mining techniques. The approach will

be tested with data derived from several stores that belong to the Retailer. The Retailer

laid down several practical challenges. These are translated into research questions and

used to answer the main question of this study.

Main question

� Can off-the-shelf data science technologies be used to create an energy baseline

that supports improved energy management?

Multiple sessions with the Retailer have been organized to gather business requirements.

From these sessions, three issues emerged, each of these will be presented here.

Retailers frequently open new stores. When a new store is opened, no data has been

collected about the energy performance of this specific store. To create a baseline as

soon as possible, it is essential to know how many days it takes to collect sufficient

data. Therefore, we have to study the minimum amount of days needed to create

a solid baseline. This information is also suitable for updating the baseline when the

configuration of the store changes, e.g., due to an upgrade of the refrigeration equipment.

It is important to determine how reliable the baseline is and if it needs updating. The

assumption is that the prediction error will grow over time, and therefore will behave

differently for short and long term predictions. We will have to test how the reliability

of the predictions develop over time. With this information, the life-cycle of a model

can be determined, which defines how often the model needs to be updated.

When a new energy saving policy is implemented, the Retailer wants to estimate how

much energy is saved. Therefore, a model has to be developed which is able to make
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long term predictions based on the old configuration of the store. With this baseline,

the Retailer can see what the estimated energy consumption would be if they did not

change the layout. By comparing this baseline with the observed energy consumption

or the new baseline, the difference can be estimated. We will examine the behavior of

the model for long term predictions because the Retailer needs to know for how long he

can estimate, with a reasonable accuracy, the energy gains from a certain energy policy.

Business questions

1. When I open a new store, how many days do I need before I am able to train my

model for a baseline, and which model should I use?

2. For how long does this baseline stay reliable?

3. Can we estimate the energy gains after a new energy efficiency measure is imple-

mented?

Research approach

1. Study the prediction accuracy of a model based on the amount of training data.

2. Discover how often the model needs to be updated.

3. Empirically test the model behavior for long term predictions.

1.3 Organizational Relevance

The Retailer can benefit from this study in several ways

� The Retailer is currently monitoring their day-to-day energy consumption with an

advanced energy monitoring system. However, as there is no reference behavior,

they can not assess the performance of their energy policies. By creating an energy

baseline they will be able to analyze their performance.

� This baseline helps to identify potential improvements because, in order to calcu-

late the energy consumption, it is often necessary to identify variables that affect

this consumption. The Retailer will get insight into factors that influence the en-

ergy usage and this information can be useful for decision-makers when deciding

to invest in measures that lead to improved energy efficiency.
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� Improved energy efficiency reduces risk exposure to energy price fluctuations. Be-

ing energy efficient can decrease the electricity costs. Therefore, it becomes an

interesting subject to study for a commercial company. When the energy con-

sumption can be estimated in advance, this information can be used in the Re-

tailers‘ energy price strategy. It can be applied to determine if a fixed or variable

price would suit best, which can be useful in energy price negotiations.

1.4 Thesis Overview

This thesis consists of 5 chapters, following this introductory chapter.

Chapter 2, Literature Review on Energy Management, presents a literature review based

on Energy Management. It describes areas related to EM and presents several examples.

Chapter 3, Materials & Methods, contains an extensive overview of the learning models

and methods that are used for energy baselining.

Chapter 4, Experimental Setup, outlines the approach used in this study. Next, it

includes an overview of the used data and explains how it is prepared.

Chapter 5, Results, displays the results obtained from the executed experiments. It

answers the research questions and also includes a discussion of the results.

Finally, in Chapter 6, Conclusion, each research question will be individually answered.

Further, it also consists the main conclusion of this thesis, and directions for future work

are proposed.



Literature Review on Energy Man-

agement

In this chapter, we make an extensive overview on Energy Management and describe

some best practices.

Energy Management (EM) has been the subject of numerous studies throughout the

years, and, because the field of EM is wide, it can be described in many different

ways [18]. To define the field of focus, it is important to start with a description of

Energy Management that is going to be used in this study. The following description

captures the essence of this project; ”Energy management can be seen as a means to

overcome barriers to improved energy efficiency” [4].

The purpose of EM is to search for improved strategies to consume energy in a more

efficient way. From a business point of view, greater energy efficiency is of importance

because it provides a number of direct, and indirect, economic benefits. Examples of

direct economic benefits can be increased competitiveness or higher productivity, where

indirect economic benefits can be an improved image, climate protection or resource

conservation [5]. Other research shows that there is a major untapped potential for

improved industrial energy efficiency [6, 7]. Energy management is focused on utiliz-

ing as much of this potential as possible to create benefits for the company and their

environment.

The way companies perform EM has been evolving throughout the years but the basic

framework of the EM process is still the same. In 2001, [19] described successful energy

management as a continuous process that consists of three steps, Figure 2.1.

1. This process starts with measurement, in this step, the data about the energy

consumption is collected, e.g., by directly measuring the energy usage.

6
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2. During the analysis, data is collected, prepared and presented to a decision maker

that will evaluate the information and decide what action to take.

3. After analysis, action might be taken, e.g., implementing new energy policies.

After this step, it is important to start measuring again to determine the effect.

Figure 2.1: Example of the Energy Management Process

The characteristics of the food-retail industry, such as fierce competition and low mar-

gins, makes retailers continually search for ways to operate more efficiently [9].Since

energy costs are the second highest costs for a retailer [14], a decent energy manage-

ment process is vital for improving efficiency [18]. Electricity costs associated with

refrigeration accounts for a large part of the operating costs because these machines are

continually utilizing energy, day and night. In an office building, one could simply turn

off the machines, air conditioning or lights, when no one is around but it is not possible

to simply shut down the refrigerators in supermarkets during the night. Refrigerators are

used to retain items on a planned temperature to keep them sellable. Keeping products

sellable means that they can be sold over a longer period of time and this improves the

store economics [14]. Thus, savings in energy costs can be undone by the depreciation

of products. This implies that a trade-off has to be found between the length of time

a product is sellable and the energy consumption. For retailers and researchers, this

presents an attractive opportunity to explore different ways to obtain energy efficiency

gains.

A lot of studies found in Energy management literature is focused on aspects to consume

energy in a more efficient manner [18]. The scope and results of the studies performed are

quite diverse. Several studies discovered and developed best practices [14, 20, 21]. Other

studies developed simulation models to estimate the energy consumption or savings [22].

Another part of the studies identified factors that influence the usage of energy [22, 23].

Finally, there is a part that tries to predict energy consumption using data mining

methods [24].
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2.1 Best Practices

As described before, a great number of studies have developed best practices to reduce

energy consumption in supermarkets. These ’proven ways of success’ have a lot of

different applications. One study [20], focused on pre-packed food that is stored in

freezers and fridges. It proposed best practices on how the packaging of these products

can reduce energy usage. Another study [14], developed best practices based on the use of

low energy doors, equipped with anti-sweat heaters, that consume one-third less energy.

The same study also suggests that implementing an energy monitoring system is key to

spot new areas, of the supermarket, to improve energy efficiency. To conclude, another

study [22], proposes several measures to optimize efficiency, like installing specialized

compressors and heat exchangers.

Generally, best practices are documented well which makes it possible to implement

them. This enables others to test if they can obtain similar results. When you operate

multiple stores, it is advisable to first test a best practice in a single store before executing

them in others. Given the circumstances, it can be that a certain best practice is not

profitable, possible of appropriate. When a best practice proves to be a success, this

will lead to replication. It also simplifies decisions to reserve funding for the required

investments in other stores.

2.2 Simulation Models

A simulation model is a representation of the construction and working of a system

of interest [25]. The purpose of simulation is to enable decision makers to predict the

effect of changes in the physical environment, e.g., to evaluate potential benefits of best

practices. Therefore, a virtual model needs to be developed where all components and

aspects of the system require examination. One study [24], used six different simulation

models to validate if future changes, e.g., in technology, had a positive impact on energy

efficiency. Each of these models consisted of a diversified set of variables, collected

by sensors throughout the store. Another study [10], used the supermarket energy

simulation software from Energyplus to examine opportunities for energy efficiency in a

specific case study.

Simulation models can be an adequate and suitable way to quickly evaluate the impact of

measures. Off-the-shelf simulation models are available and can be immediately used for

this practice. However, to have a simulation model that accurately reflects the impacts

in the real world, it is essential to have a wide range of information available about the



Chapter 2 Literature Review on Energy Management 9

specific store layout and configuration. Since it can be hard to find supermarkets with

similar layouts, it is a time intensive process to create a simulation model that is able

to precisely assess the effect of measures for each independent store. Moreover, since

supermarkets continually implement new equipment and best practices, the models need

frequent updating in order to reflect the reality.

2.3 Influential Factors

Collecting data and studying their relevance to the energy consumption is a way of

smart energy management. One study [26], names a couple of challenges that have to

be addressed in order to realize the full potential out of the data. a) how to effectively

collect, store and manage energy data, b) how to efficiently analyze and mine energy

data, c) how to use energy data to support effective and efficient decision making, d)

how to create insights and get understanding from energy data and e) how to effectively

prevent risks and protect privacy while utilizing energy data.

Several studies [27], identified and studied driving factors of energy use in buildings. It is

valuable information to know which factors influence the most the consumption of energy

if you want to work towards a more efficient way of using energy. The International

Energy Agency’s Energy in the Buildings and Communities Program (IEA EBC) [27],

indicated that there are six main factors that impact energy use in buildings, e.g.,

climate, building design and occupant behavior. Another study [28], showed that other

factors like the indoor humidity, occupancy behavior, operating hours, or the building

size can be influential factors.

The influence of factors is different in each situation [23, 24], therefore, the impact

on energy consumption is also a topic of study. One study [23], reviewed literature

about the relationship between climate change and energy consumption of consumers

and technology. They conclude that the changing climate will influence the technological

change and that some technologies that are not economic today may become so in the

future. Another study [24], describes how the energy consumption of a supermarket is

expected to change based on the indoor- and outdoor temperature and relative humidity.

Food quality has also been addressed in energy management since this is essential for

food retail stores like supermarkets. In [14], the authors researched the trade-off be-

tween food quality loss and the energy consumption. In a second study [21], traditional

defrost schemes were used and optimized with food quality as a new variable. Another

study [10], used operational data like the store layout, opening hours and the type of

products as variables to determine the optimal energy consumption.
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Several studies showed that a number of people that visit a store, occupant behavior

also has a significant impact on the energy usage. However, one of the biggest challenges

associated with the collection of this data is the lack of a standardized format and the

regulation of privacy issues [27]. Therefore, supermarkets that want to study occupant

behavior, need to design a data collection process that protects peoples privacy. This

makes the usefulness of this data questionable, e.g., people need to be aware that they

are monitored which can result in them altering their behavior. Because of these issues,

it happens that this data is typically unavailable for analysis.

2.4 Energy Prediction

Numerous studies focused on energy prediction because forecasting the energy consump-

tion is an important component of any energy management system [29]. Traditional data

mining techniques like Multiple Linear Regression (MLR), Artificial Neural Networks

(ANN) or ensemble methods like Random Forests (RF) have been used for this.

In New Zealand [30], researchers used MLR to calculate the optimal energy usage level

for office buildings, based on monthly outside temperatures and numbers of full-time

employees. With this knowledge, they could build an energy monitoring and auditing

system for the optimization and reduction of energy consumption. In the UK [24], re-

searchers used an MLR to forecast the expected effect of climate change on the energy

consumption of a specific supermarket. They estimated that, until 2040, the gas con-

sumption will increase 28%, which is more, compared to the electricity usage, which will

increase 5,5%.

In the UK, most supermarkets negotiate energy prices and, when they exceed their pre-

dicted demand, they have to pay a penalty.Therefore, their ability to accurately predict

energy consumption will facilitate their negotiations on electricity tariffs with suppliers.

One supermarket in the UK used ANN’s to analyze the Stores Total Electricity Con-

sumption as well as their individual systems, such as Refrigeration and Lighting [15].

For each of these systems, they developed a model to provide an energy baseline. This

baseline is used for performance monitoring which is vital to ensure systems to perform

adequately and guarantee operating costs and energy use are kept to a minimum. Fi-

nally, ANN’s have been used for energy prediction with the final goal of estimating the

supermarkets future CO2 emissions [31].

A recent paper [28], provides a detailed literature review on the state-of-the-art devel-

opments of Artificial Intelligent (AI) based models for building energy use prediction.

It provides insight into ensemble learning, which combines multiple AI-based models
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to improve prediction accuracy. The paper concludes that ensemble methods have the

best prediction accuracy but that a high level of technical knowledge and computational

resources is required to develop them. Consequently, this has hindered their application

in real practice. An advantage of high prediction accuracy is that this can allow early

detection of equipment faults that could disrupt store operations [15].

These studies show that predicting energy consumption is possible with data mining

techniques and that they can predict energy usage within acceptable errors. Compared

to other engineering methods, ensemble methods require less detailed information of the

physical building parameters [28]. This saves money and time in conducting predictions

compared to simulation tools. Hence, they could replace them in the future. Because

studies use different types and volumes of input data, there is no unified input data

format. Therefore, knowledge of the methods and a variety of data is needed to create

meaningful and accurate predictions.

2.5 Energy Baselining

Creating energy forecasts is an important aspect of the energy management and main-

tenance of buildings [28]. It helps to evaluate energy efficiency, conduct building com-

missioning, and detect and diagnose building system faults. In order to evaluate the

performance of a store or a system as well as to detect any faults, the operation of the

store/system must be compared to a reference behavior [17].

This reference behavior can be used to determine the performance of the store and can

be established in two different ways. One way is called energy benchmarking and it

includes the comparison of the stores’ current energy usage with the current or previous

performance of a similar store. The energy consumption of another store, with a similar

configuration, size or equipment, will be transferred to create the reference behavior.

The second method is called energy baselining, here the reference behavior is defined as

the previous, historically best, or ideal, theoretical performance of the given store [15].

Since supermarkets differ in a lot of ways, a baseline for the energy consumption should

be created for each store individually. This baseline is usually created on the analysis of

historical data [17], from a selected period of time, and can be developed using traditional

data mining techniques.

Two different approaches are described to implement a baseline [17]. The first way

includes creating the baseline once, without further updating. When the configuration

of a building, either does not change often or a sufficient amount of data is available,

this could be a good approach. When the amount of data is limited or the baseline
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is expected to reflect changes in equipment or building layout, the second way is more

suitable. This baseline approach is more dynamic and includes frequent updates, e.g.,

with the usage of new input variables or data. When a building is regularly renewing

their equipment or the volume of data is small, this approach fits best.

A first step to estimate a baseline involves determining the dependent and independent

variables [15]. Consequently, the dependent variable will be the energy consumption for

the store or system. The independent variables will be factors that affect the energy

consumption like temperature, occupancy behavior or floor size. When a baseline is

established, it can serve as a starting point for setting energy efficiency improvement

goals as well as a comparison point for evaluating the effects of changes or spotting trends

in energy performance [15]. The baseline becomes part of the Energy Management

process as is shown in Figure 2.1.



Materials & Methods

In this chapter, we start with a description of the time series nature of our data in

Section 3.1. We will also introduce time series modeling and some specific time series

algorithms that can be used. Section 3.2 describes the machine learning algorithms that

are used. Finally, Section 3.3 and Section 3.4 report the techniques that are used to

train and evaluate the algorithms’ performance.

3.1 Time Series

Time series data are defined as the sort of data that is captured over a period of time [32].

X1, X2, . . . Xt−1, Xt . . . (3.1)

Where X is the value measured at time t. A time series variable can be observed on a

regular basis, e.g., daily temperature measures, or at irregular intervals, e.g., tweets from

your favorite American president. The main characteristic is that these observations

are dependent in time, so that previous observations are related with the subsequent

ones [33].

Time series data is ordered in a chronological order, often referred to as ”time”, which

makes it possible to analyze how a given variable changes over time. The time order

can either be based on a sequence of observations or on the timestamp, which indicates

the specific moment of measurement [33]. This time order is important for time series

data because it enables the analysis of trends, seasonal events or other changes over

time. However, seasonality, irregular effects or other developments can cause time series

data to deviate drastically throughout a period of time, in time series this is called

non-stationary [34].

13
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3.1.1 Stationarity

The biggest part of literature concerning time series analysis is concentrated on sta-

tionary time series data [35]. A stationary time series is a set of data, of which, the

statistical properties such as the mean and variance do not change over time [33]. Clas-

sical time series algorithms work on the assumption that a dataset is stationary [33].

Therefore, it is important to know if a time series data set is stationary or not, because

this influences, e.g., the choice of prediction algorithms. A typical approach is to convert

non-stationary time series into stationary time series to enable this implementation of

classical time series algorithms. Converting the time series can be done by different

kinds of techniques, e.g., seasonal adjusting, where the seasonal component of the time

series is removed [36].

To discover if a time series is stationary, one can decide to plot the output variable [36].

Figure 3.1, shows the plot of the output variable of a stationary time series. We notice

the graph evolving around a mean, which is similar throughout time, and the graph

does not show trends or periodic fluctuations. However, Figure 3.2 presents a rising

line which exhibits a strong trend and visualizes that the mean is changing over time.

Therefore, this is a non-stationary time series dataset.

Figure 3.1: Example of a Stationary Time Series
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Figure 3.2: Example of a Non Stationary Time Series

It is possible to study the non stationary components of time series data [37]. An example

of a non-stationary component is, irregular effects, which can be caused by equipment

upgrades, replacements or breakdowns. Seasonality is another component of time series

data in which it undergoes consistent and expected variations that are repeated every

calendar year.

3.1.2 Time Series Forecasting

In time series forecasting, forecasts are made on the basis of data comprising one or

more time series [38]. Making forecasts can also help in model evaluation when testing

different time series algorithms [38]. Based on the analysis of historical data the forecast

will provide new future values. One way to test the accuracy of forecasts is to compare

these future values with the actual observed values.

It is very hard to forecast a numeric value correctly but the difference can be larger

or smaller. Every forecast Ŷi of an observed value Yi will have a forecast error E,

which describes the deviation among them. A lot of studies are focused to minimize

the prediction error, i.e., to get it as close to zero as possible [39, 40]. Reducing errors

on prior values can be a good practice for building a reliable forecast model. The

difference in focusing on prior or future values distinguishes two types of forecasts, Ex-

post forecasts and Ex-ante forecasts [41]. When using a regression model in combination

with time series data, it is possible to produce these two forecasts. Where ex-ante

forecasts are forward looking, ex-post forecasts are backward looking. I will demonstrate

their difference using two examples.
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� Ex-ante forecasts are entirely based on available information at the time the fore-

cast is produced. For example, when we produce an ex-ante forecast of the number

of tourists that are expected to visit Portugal next year (2018), we can only use

data up to this year (2017).

� Ex-post forecasts use information beyond the time at which the forecast is made.

For example, when we create an ex-post forecast of the number of tourists that

visited Portugal in the past year (2016), we can use the observed values, of the

independent and dependent variables, that are known after this forecast period.

3.1.3 Forecast Algorithms

Forecasts can be produced using a time series algorithm which learns from historical

data to predict future values. For time series forecasting we can use several statistical

techniques to learn from past data to build such a model. We can divide them into meth-

ods where all data points hold equal relevance, or methods where all data points carry

a weight that strengths their relevance [42]. Here we explain several classical methods

for time series forecasting, Regression, Moving average, and Exponential smoothing.

Regression Regression is not a time series specific method for forecasting, however, it

can be applied to make time series forecasts. Regression can be useful when we want to

use multiple input variables to make a prediction, e.g., domain knowledge can be applied

to create these variables. In a regression analysis, we search for a linear relationship

between these independent variables. Based on this relationship the algorithm will be

able to predict a value for the dependent variable.

In multiple regression models, we forecast the dependent variable using a linear combi-

nation of the independent variables. This is slightly different than what happens with

Auto Regression, where this is done using a linear combination of the prior values

of the dependent variable. Regression assumes that prior values have an effect on the

subsequent ones. This method makes use of linear relationships and, therefore, works

best when the time series data is stationary. By defining the number of past values, that

are included in the analysis, we can realize variations in the prediction performance.

Moving Average The word moving symbolizes that the period over which an average

is computed changes over time. Every moment a new observation becomes available this

one replaces the oldest one. Values can vary widely per observation, yet, depending on

the size of the sample used for averaging and the existence of outliers, the average across

the entire period resides steady. As a result, the average moves slowly when additional
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observations are attached. This method is applied in time series analysis to smooth out

short-term fluctuations and highlight long-term trends or cycles [33].

If a time series dataset is stationary one can obtain good results with the moving average

method. This method assumes that the average, computed over a specified interval, is

more representative of the forecast period than using only recent observations [42]. To

use this method, a period of historical data needs to be selected. If recent values are

considered relevant, one can select a small number of observations, when more historical

data is preferred a larger quantity can be selected. Determining the optimal amount

can be done based on a mixture of domain knowledge, understanding of the particular

time series data and behavior of the model.

Exponential Smoothing The name exponential smoothing reflects the point that

weights exponentially decrease when observations grow older [42]. Methods based on

exponential smoothing have the characteristic that forecasts are weighted aggregates of

prior observations. In these aggregates, recent observations carry relatively more weight

than older ones [42]. The concept is that the closer the data remains to the forecast

period, the more suitable it is to be predictive, opposed to older data. A method based

on exponential smoothing can be applied to forecast values for non-stationary datasets.

3.2 Data Mining and Machine Learning Methods

In this section, we will describe the Data mining and Machine learning methods that

are used in this study. We will start with the introduction of a descriptive data mining

method, Subgroup discovery. Next, the predictive machine learning algorithms will be

introduced. Because the nature of this preliminary study is to use off-the-shelf tech-

niques, we will briefly introduce these predictive algorithms. The literature described in

Section 2.4 gives examples of successful applications of these methods for the prediction

of energy consumption.

Descriptive data mining is a knowledge discovery approach [43]. It consists of searching

for patterns in data to explain what is happening. Predictive techniques try to fore-

cast what might happen in the future based on the dependency amongst this historical

data [44].
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3.2.1 Subgroup Discovery

Subgroup discovery (SD) is acknowledged as a general technique to perform descriptive

and exploratory data mining [45]. This method can be used to, e.g., perform knowledge

engineering, feature creation, or to identify relations between dependent and independent

variables [43, 46]. It aims to identify interesting subsets of a dataset that show an

unusual behavior. The differences in behavior between the subgroup and the complete

dataset these methods search for are not due to statistical variations but to external

factors [43]. Identifying these factors helps to produce a general understanding of the

data and provides insights for the analyst [43].

3.2.2 Multiple Linear Regression

Linear regression is a simple and widely used statistical technique for predictive mod-

eling [24]. When more than one input variable is used, we talk about Multiple Linear

Regression (MLR). The easiness of using this method is viewed as the main advantage

of linear regression because there are no parameters that have to be tuned. However,

one major limitation, linear regression is not able to handle nonlinear problems well [28].

The Multiple Linear Regression model can be represented with this formula [24]

Yi = β0 + β1x1,i + β2x2,i + . . .+ βkxk,i (3.2)

Where Yi is the dependent variable, i.e., the value we want to predict. x1, . . . xk represent

all the independent variables that are used as input for the prediction. β1, . . . βk are the

coefficients of the corresponding independent variables. The coefficients show the change

in the value of Yi per unit of change in the independent variable when all other factors

stay equal. For example, when the coefficient β1 is 100, and the corresponding input

variable x1 changes from 29 to 30, the output variable will be adjusted with 100.

MLR is able to explain the relationships between the dependent and the independent

variables. The coefficients can also be used to determine variable importance, to see

which variable is the most important for making the prediction [47]. However, variable

importance can only be determined when the input variables have the same scale, i.e.,

are normalized.

To determine the coefficients, MLR can use multiple methods of which the least-squares

method is the most popular. The goal of this method is to minimize the error between

the observed and predicted values [24, 48]. The result of the least squares method is the

“best fit”, which can be represented by a line.
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In Figure 3.3, the red dots represent the real values. The blue line is the linear model,

represented by the formula shown above. The green lines are the differences between

the predicted and the observed values, i.e., the errors. The coefficients are obtained

by finding the minimum sum of squared errors. The total error is calculated with the

following formula:

E = (e1)
2 + (e2)

2 + (e3)
2 + . . .+ (e6)

2 (3.3)

Where e1, . . . , e6 are the individual squared errors.This is done so that the positive and

negative errors won’t cancel each other out, the error will always have a positive value.

By adjusting the coefficients the model can minimize the differences and create the best

fit, where E is the smallest. The best fit, e.g., linear model, is found when the value

for E is the lowest. This is described as “least squares” estimation because it gives the

least value for the sum of the squared errors.

Figure 3.3: Example of linear regression, which has one independent variable

3.2.3 Random Forest

Random Forests (RF) are an ensemble method originally introduced for classification

and regression problems [49]. It essentially consists of the generation of multiple deci-

sion trees obtained using different randomization techniques (Figure 3.4). The set of

predictions made by each of these trees is aggregated to obtain the prediction of the

RF [50].

The Random Forest method has specific characteristics that make it interesting for this

research. First, RF is considered to be one of the most accurate general-purpose learning
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techniques available and is popular because of its good off-the-shelf performance [51, 52].

It generally produces highly accurate predictions and is able to handle a large number

of input variables [28].

A state-of-the-art review of artificial intelligence methods used for energy prediction

concludes that ensemble methods offer several advantages over single-model methods [28,

53]. The advantage of the ensemble methods lies in its remarkably improved prediction

accuracy and stability [28]. Where a single-model method uses one type of model for

prediction, ensemble methods combine multiple models. When a single method is used,

the user needs to select a suitable learning algorithm for their problem because no

particular model has dominated others in predicting [28]. Since the ensemble method

uses multiple models for prediction, the combination of these models will reduce the

overall prediction error of the model [28]. The eventual prediction of the ensemble

method is made on the integration of all these different models. And because it is

unlikely that all the models will fail, at the same time, there is a little chance that the

ensemble method causes great errors [28].

Figure 3.4: Example of a Random Forest

3.2.4 Artificial Neural Network

Artificial Neural Networks (ANN) have successfully been used in numerous studies to

predict energy consumption [15, 28, 29, 31, 54, 55]. The success can partly be explained

because of their ability to make time-series predictions [56]. Artificial Neural Networks

are also used in the area of deep learning [56].

In a Neural network, each neuron is connected to the next layer of neurons, through

synaptic weights [56]. If this connection is unidirectional (one way), the network is
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characterized as feedforward (Figure 3.5). The connections between the neurons receive

a certain weight, we can compare this to the coefficients in the MLR [15]. The number

of input and output neurons are equal to the amount of independent and dependent

variables.

Models developed using Neural networks can achieve very high predictive performance.

ANN’s try to imitate the learning process of the human brain and learn from exam-

ples [56]. The model is able to identify relationships between the input and output data

using previously recorded data [15]. A limitation is that they can only do this for data

that belongs within the boundary of the training set [57]. This means that to be able

to make full advantage of using a Neural network it is essential to use a substantial

amount of training data, that is representative of the whole range of the variables [57].

For example, because one of the variables is Temperature, samples of different seasons or

multiple months are needed to enable the network to generalize and predict better [55].

When multiple seasons are included, a lot of different temperature values can be fed to

the model.

Artificial Neural Networks can be harder to tune in comparison to MLR and RF since

there are more parameters that can be tuned [29, 56]. For example, one study was

devoted to using various configurations, several training algorithms, and multiple sets

of input variables to create the most efficient predictions with the ANN [54].

Figure 3.5: Example of a Feedforward Artificial Neural Network

3.3 Experimental Methods

During this study, several experimental methods have been applied to research the ques-

tions described in Section 1.2. In this chapter, we will discuss each of the methods that

we used, Learning Curves and Sliding Window. In the experimental setup, Chapter 4,
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a description of the chosen approach is outlined which explains how they are used in

combination.

3.3.1 Learning Curves

In Machine Learning, learning curves are used to reflect the predictive performance as

a function of the number of training examples [58]. Figure 3.6 reveals the developing

learning ability of a model when the number of training examples increases. The curve

indicates how much better the model gets in predicting when more training examples

are used. The general idea is to find out how good the model can become in predicting

and what the subsequent number of training examples is [58]. Since we are searching

for the minimum number of training days to create a baseline, we can use the learning

curves to identify this number.

Figure 3.6: Example of a graphical representation of a learning curve

To test the learning ability of a model one can create several training sets of data and

evaluate their performance on a test set [59]. These training sets can differ in, e.g.,

volume. It is preferred that the data for these sets are randomly selected from the

available data [59]. The purpose is to train the model multiple times, and after every

training, the model performance should be tested. The results of these tests can be

plotted to draw a learning curve which shows the evolution in the performance of the

model. These curves can be clarifying, especially when the performance of multiple

models is compared. Besides for model selection, also the performance of a model can

be compared in relation to the number of training examples used [58]. Such a learning

curve will tell how the model behaves when it is constructed with varying volumes of

training data.
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3.3.2 Sliding Window

The Sliding window method uses historical data to predict future values [60]. In this

method, a window of specified length slides over the data [34], (Figure 3.7). This makes

it possible to train and test the algorithm in multiple periods of time. The window

defines the length of the data over which the predictions are computed, the window size

can be fixed or variable. The Sliding window model can be either sequence or time-

stamp based. If it is sequence based, the window sizes are defined by the number of

observations, time-stamp based means that it is defined by a duration in time [33]. The

window slide can be triggered due to different reasons, e.g., when new data becomes

available or when a specific point in time is reached [61].

The sliding window is a popular method in the field of statistics, where it is used to cal-

culate statistical information over a fixed period of time or instances, with the necessity

to forget old observations [33].

Figure 3.7: Example of a Sliding Window Process

3.3.3 Updating the Forecast Model

Having a reliable model that makes accurate predictions is a good starting point. The

accuracy of a model influences the effectiveness and actionability of the outcomes. There-

fore, it is important to observe the performance of a learning model, e.g., with learning

curves. To prevent that errors in predictions become too large, and keep the model

reliable, one can choose to perform regular updates, with fresh data, to keep the model

accuracy stable.

A simple way to determine the life cycle of a forecast model is to analyze how prediction

errors emerge over time. When they fall outside an acceptable range one can choose to

update the model. The most widely used updating procedure, for time series models, is

renewing output variables [62]. A general assumption is that forecasts strongly depend

on the most recent behavior of the input data [62]. Therefore, the model needs to
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be filled with fresh data to make the most accurate predictions. During the updating

process, following the first in, first out principle, up-to-date input data will be added,

some input data will stay in place and the oldest part will be removed.

3.4 Evaluation

Nowadays, Machine Learning models and methods are applied in various areas and are

used to make important decisions which can have far-reaching consequences [63]. There-

fore, it is important to evaluate their performance. Evaluating is also done to choose

the best configuration out of different methods, parameters, features or datasets [63].

Currently, Cross-Validation (CV) is the widely accepted and most used evaluating tech-

nique in data analysis and machine learning [63, 64] and serves as a standard procedure

to estimate model performance.

Cross-Validation is used to test the performance of a predictive algorithm that is trained

with cross sectional data [64]. Cross sectional data is data which is collected at the same

point of time or is without consideration to differences in time [65]. Normally, this

data is collected to study a population at a current point in time, instead of studying a

development over a period of time.

When used for evaluating prediction performance, the algorithm is given a dataset on

which it will be constructed, training data, and a dataset on which this model will be

tested, test data. The goal of Cross-Validation is to repeat this process multiple times

to make full use of the total data set [63]. Therefore, the dataset will be divided into

equal parts, called folds. Each fold will once represent the testing set, when all the other

parts are used for training, Figure 3.8. Since time is not a factor of importance, folds

from each point in time can be used for training and testing. Once all the folds are used

for testing, the average of the error terms is used to calculate the prediction accuracy.
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Figure 3.8: Example of a Cross Validation

However, Cross Validation does not work well in evaluating the predictive performance

of time series [64]. Time-series prediction is a method of forecasting future values based

on historical data [61]. In contrast to cross-sectional data, the time order and period

of data collection are important. However, a consensus regarding standard procedures

to evaluate time series data does not exist [63]. This is not only due to the different

characteristics that time series can have, but also the different evaluation techniques that

exist like forward validation, modified cross-validation or blocked cross-validation [63].

One way to validate the prediction performance of a time series model is to make use of

a Sliding Window design [66], (Figure 3.9). In this method, the training and test data

can not be randomly selected throughout time for training and testing. This is where

this method differs with the Cross-Validation technique, (Figure 3.8).

Figure 3.9 shows the process of a Sliding Window approach with an initial window size

5. Each number represents an observation of the time series data (1, 2, 3, . . . , 10). The

initial window at t = 1 shows that the first until the third observation is used to predict

the value for the fourth. Next, the sliding window will slide one observation to the right

and the first until the fourth are used to predict the value of the fifth observation. This

process will be continued until the sliding window reaches the end of the time series.

Once all the examples are used for testing, the average of the error terms is used to

calculate the prediction accuracy.
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Figure 3.9: Example of a Sliding Window Validation

3.4.1 Metrics

Error metrics are used to evaluate the prediction performance of a model. Error metrics

show the difference between the observed and the predicted value. The Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE) are the most frequently used error

metrics in Machine Learning for regression [67].

The following formula shows how the Mean Absolute Error is calculated:

MAE =
1

N

N∑
i=1

∣∣∣Ŷi − Yi

∣∣∣ (3.4)

Here Ŷi is the predicted value and Yi is the real value. The calculation of the MAE is

relatively simple. First, the distance between Ŷi and Yi is calculated, this represents the

absolute error. After all the tests are executed, all the absolute errors are summed and

divided by the number of tests. This gives the Mean Absolute Error [68]. This error

represents the average absolute error of the model, not to confuse with the RMSE.
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The following formula shows how the Root Mean Squared Error is calculated;

RMSE =

√√√√ 1

N

N∑
i=1

(Ŷi − Yi)2 (3.5)

Here Ŷi is the predicted value and Yi is the real value. The calculation of this error

is done in three steps, First, the individual absolute errors are squared and summed to

form the total squared error. By squaring the absolute errors, bigger errors are penalized

heavier than smaller ones. This means that large errors have a higher influence on the

total squared error. Secondly, the total square error is divided by the number of tests,

this produces the Mean Squared Error (MSE). Finally, the RMSE is calculated by taking

the square root of the MSE [68].

Pearson’s correlation can be used to describe the dependence between the independent

and the dependent variables [69]. The squared Pearson correlation coefficient, (R2), can

also be used to assess model performance [70].

Mean Absolute Error is the most natural measure of the average prediction error [68, 71].

The RMSE describes more than just the average prediction error alone, e.g., since the

errors are squared, the RMSE also describes the magnitude of the errors [71].



Experimental Setup

This chapter starts with describing the characteristics of the data used (Section 4.1).

Next, Section 4.2 describes the approach used and Section 4.3.1 illustrates it with a

practical example.

4.1 The Data

This section provides insight into the data collection process and the actions taken to

prepare the data for training the models. Furthermore, an overview of the datasets will

be provided.

For this study, we obtained data from five stores across Portugal. The stores are lo-

cated in the regions of Aveiro, Fatima, Macedo de Cavaleiros, Regua, and Mangualde,

Figure 4.1. These supermarkets sell mainly food products and some general merchan-

dise. Part of the food products is stored in fridges and freezers, of which the electricity

consumption is measured in 15-minute intervals.

The datasets provided are mainly based on the energy consumption and weather data

for the whole year of 2016 and the first half of 2017 (Table 4.1). The data for each store

is available from the moment the store opened or started to collect the data. Hence,

for each store, the maximum amount of data is available. The energy consumption is

measured in kilowatt hour (kWh) from the Retailer’s energy monitoring system. The

weather data consists of the outside temperature derived from a sensor placed on the

roof of the store and is measured in degrees Celsius (C◦). Both the energy and weather

data are delivered in 15-minute intervals. Because we focus on daily forecasts, they were

aggregated by day.

28
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Figure 4.1: Example of the Store Locations

First day Last day Observations

Aveiro 04/12/2015 26/04/2017 510 days

Fatima 07/01/2016 26/04/2017 476 days

Macedo de Cavaleiros 13/11/2015 26/04/2017 531 days

Mangualde 16/05/2016 16/05/2017 366 days

Regua 16/05/2016 16/05/2017 366 days

Table 4.1: Overview datasets

4.1.1 Data Standardization

In order to apply a similar approach to the data of each store, we decided to work

separately with datasets that have a similar structure. Before creating these datasets,

it is important to identify the dependent and the independent variables [15, 28]. In this

study, an energy baseline will be created that reflects the estimated refrigeration energy

consumption. Consequently, this will be the dependent variable, and the independent

variables are the ones influencing this consumption. As can be read in Section 2.3, there
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are a lot of factors that can influence the energy consumption, but only the factors that

are measured, by all stores, can be used here as an independent variable. The effect

of the independent variables, in the refrigerations‘ energy usage has to be examined.

By examining their importance, on the final predictions, we can create a dataset that

gives us good prediction performance. The following variables were available for each

store; Timestamp, Refrigeration Energy Consumption and Outside temperature. Based

on the two available variables, Timestamp and Outside temperature, we tried to create

new features with additional information that the algorithm can use.

To determine which features to create, knowledge about the behavior of the store is

important [15]. The process of designing new features, based on domain knowledge,

is called Feature engineering [72]. Designing appropriate features is one of the most

important steps to create good predictions because they can highly influence the results

that will be achieved with the learning model [73]. The domain knowledge required

for this process can be acquired through conversations with experts, reviewing similar

studies and using descriptive data mining techniques, e.g., Subgroup discovery (SD). SD

is a method to identify, unusual, behaviors between dependent and independent variables

in the data [45, 46]. In this study, SD will be used to improve our understanding of the

behavior of the energy consumption.

Similar studies [15, 24, 30, 31, 54, 74, 75], have been reviewed to analyze what kind

of variables, based on the temperature and timestamp, were used to predict energy

consumption. Based on the two available variables, a large set of variables were created,

such as Week, Date and Maximum Temperature.

It is important to limit the number of variables in the input dataset to avoid over-

parameterization, i.e., using an excessive number of features. This makes the model

complex and can lead to overfitting [15]. When a model is overfitting, instead of learning

from the input-output patterns the model will start memorizing them, and it will lose the

ability to generalize well. This leads to poor predictive performance, hence, the model

will not be able to make accurate predictions for the baseline. Therefore, an optimal

subset of features needs to be selected from this large set of variables. The process of

selecting the optimal subset of variables is called Feature selection [76]. During this

process, redundant or irrelevant features are removed from the input dataset. In this

study, the set of features was selected using a combination of domain knowledge and

trying different sets of variables for making predictions. The features that are selected

for the datasets will be described in the following section.
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4.1.2 Features

The original time series data was provided, in sometimes irregular, 15-minute inter-

vals. After this restructuring, the data is converted into hourly values and eventually,

transformed to daily formats. Table 4.2 gives an overview of the final features that are

derived from the Timestamp variable. As used in other studies, we also use the Workday

variable [15], because supermarkets tend to have a different energy consumption during

weekdays and weekends due to different opening hours and shopping habits [15]. The

Retailer stores also have different opening hours during weekends and workdays and

therefore this feature can be useful.

Name Type Description Derived from

Weekday Categorical (1-7) Day of the week Timestamp

Week of the Month Categorical (1-4) Week of the Month Timestamp

Workday Binary (0-1) Workday or Weekend Timestamp

Table 4.2: Variables derived from the Timestamp

Table 4.3 gives an overview of the final features that are derived from the Temperature

variable. Variables related to temperature are used in a lot of similar studies [15, 24, 30,

31, 54]. One study used this amplitude variable, for the indoor temperature, to improve

their regression analysis [74]. The variable Temperature Amplitude is the maximum

change of a temperature in a given period. In this dataset, it represents the maximum

change of outdoor temperature for one day.

Name Type Description Derived from

Max Temperature Numerical Max Temperature of the Day Temperature

Mean Temperature Numerical Mean Temperature of the Day Temperature

Min Temperature Numerical Min Temperature of the Day Temperature

Temperature Amplitude Numerical Absolute Difference Min and Max Temperature

Table 4.3: Variables derived from Temperature

During meetings, to collect requirements and acquire domain knowledge, the experts

explained that thermal inertia of the building plays a role in the energy consumption

of refrigeration. Thermal inertia means that the indoor conditions are affected by the

outside temperature [75]. During days with a high outside temperature, the building

warms up and this effect even lasts the following day. Therefore, Table 4.4 contains
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variables that are created based on the temperature of the day before. Another effect

of including this variable is that the observation concerning the first day of each dataset

had to be omitted because this row could not contain temperature values of the day

before.

Name Type Description Derived from

Max Temperature Y.. Numerical Max Temperature of Yesterday Temperature

Mean Temperature Y.. Numerical Mean Temperature of Yesterday Temperature

Min Temperature Y.. Numerical Min Temperature of Yesterday Temperature

Temperature Amplitude Y.. Numerical Absolute Difference Min and Max Temperature

Table 4.4: Variables derived from Temperature

4.1.3 Indicator Variables

The final dataset, which is the combination of Table 4.2, 4.3 and 4.4, contains several

categorical variables. Because not all methods, that we are going to test, deal well with

categorical variables we will transform these into indicator variables. Designing indicator

variables is a commonly used method to ’trick’ the regression analysis to accurately

examine these variables [77].

For our experiments, we transformed the variables Weekday and Week of the Month

into indicator variables. We decided to do this because all the values that these features

hold are evenly meaningful. The values of these features are used to identify the level of

the variable, e.g., 1 = Monday or 5 = Friday. The following example illustrates how we

want to avoid that these variables are treated. For the variable Weekday, the number

6 represents Saturday, but Saturday is not twice as much as number 3, representing

Wednesday. Or number 3, Wednesday, is not the same as 1 plus 2, i.e., Monday plus

Tuesday. So, for the variable Weekday and Week of the Month, 6 and 3 indicator

variables are created.

Indicator variables hold binary values, 0 or 1, which indicate the presence or absence

of their particular category, (Table 4.5). Using an equal number of indicator variables

to represent an equal number of categories is called the indicator variable trap. This

variable trap can distort the regression analysis [78]. This can happen when, e.g., instead

of six, seven indicator variables would be used to represent Weekday. The general rule

to bypass this trap is to use one fewer indicator variable then there are categories [78].

As can be noticed in Table 4.5, instead of one variable representing Weekday, 1-7, we
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will now have six indicator variables to code the seven categories of Weekday. That is

because when all the values are set to zero, the category Sunday is specified.

D1 D2 D3 D4 D5 D6

Monday 1 0 0 0 0 0

Tuesday 0 1 0 0 0 0

Wednesday 0 0 1 0 0 0

Thursday 0 0 0 1 0 0

Friday 0 0 0 0 1 0

Saturday 0 0 0 0 0 1

Sunday 0 0 0 0 0 0

Table 4.5: Example of Indicator variables for Weekday

4.1.4 Normalization

After creating the indicator variables, the next step was to perform normalization on

the data. Normalization is a general method which is performed to improve predictive

accuracy and can be useful for some algorithms [79]. For this study, normalization

has a couple of advantages. First, normalization makes it possible, depending on the

algorithm, to calculate variable importance, because the weights of the variables can be

compared. Next, because the values of all features lie in a similar range, also, the error

metrics can be calculated in this similar range. For example, since the absolute values

of all features are transformed into a similar range, 0-1, it does not matter if the max

energy consumption is around 1200 kWh or 2500 kWh. They will both receive a value

1 if the scale is 0-1. This makes it possible to compare the learning models’ and the

stores’ performance. Finally, the normalized data has a new scale and therefore serves

to protect data privacy, since the original values are not displayed.

The objective of normalization is, to transform the values of the variables into a similar

value range. By doing this, one can prevent that particular features have a higher impact

on the prediction due to their greater numeric value range [80]. Because our variables

have different scales, one variable might overpower another one [81].

For the normalization in this study, the Z-score method is used on all the variables

except the indicator variables. Using the Z-score method, the values for the attributes x

are normalized by subtracting the population mean from the value x and next, dividing



Chapter 4 Experimental Setup 34

this by their standard deviation [81]. This method is used because it is particularly

useful when the actual minimum and maximum of attribute x are unknown [81].

4.2 Experimental Setup

The data is obtained from five stores across Portugal, as is mentioned in Section 4.1

We used commercially available software from Python (3.6) and R [82] to perform

the experiments. The Python libraries from Scikit-Learn and Keras [83] were used

to implement the machine learning algorithms. Because our goal was to use off-the-shelf

approaches, no changes have been made to the default configuration of the used machine

learning models.

In order to study the questions described in Section 1.2, we designed an approach based

on Learning curves in combination with a Sliding window. Our experimental setup is

a variation of the Time series approach used by [84, 85]. The method we propose is

visualized in Figure 4.2. We decided to use this particular method because we want

to train machine learning models with different sizes of historical training data. The

learning curves enable us to visualize and evaluate their performance.

The method we designed, is able to keep the time series data in order. This is an

important challenge since we do not use a time series specific model [61]. Specific time

series learning models like SARIMA and ARIMA require more technical knowledge

before they can be applied [61]. Furthermore, we want to be able to use domain-

specific knowledge to engineer new features, therefore, we decided to follow a regression

approach. We selected off-the-shelf machine learning algorithms like MLR, RF and

ANN.

4.2.1 Approach

The approach, that is described here, is based on the business questions and their cor-

responding research approaches that are described in Section 1.2.

We start our approach with data exploration. In this study, we use the Subgroup

Discovery (SD) method to perform this task. This method has the ability to search for

interesting behavior in the data (Section 3.2.1). As soon as we find interesting insights,

we share them with the business. For the SD analysis, we use a dataset that contains

the original values, therefore, we excluded the indicator variables. These variables can

make it hard for SD to find interesting patterns. For example, for the variable Weekday,

Sunday can only be recognized if the six other variables, Monday-Saturday are tested
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for 0. The result is that SD has to combine six different rules, which makes the patterns

too deep. Excluding the indicator variables improves the explorative power of SD, and

using the original values makes the results easier to interpret.

Because we are interested in changes in the energy consumption, we decided to not

transform our time series dataset as described in Section 3.1.1. When we remove the

irregular changes in the energy consumption, to make the dataset stationary, we lose

the ability to study them. Our non-stationary time series dataset enables us to detect

these irregular changes in the energy consumption.

The first goal of this research is to define the minimal set of training examples needed

to build a solid energy baseline. To do this, we train the machine learning models with

different sizes of training examples. Each iteration we increased the number of training

examples and evaluated the models prediction accuracy using the approach described

in Section 3.4. When all iterations have been completed, we are ready to plot the error

metrics in the learning curves. Because this approach is replicated for the three models,

this also reveals which one performs the best.

After we selected the model which is able to create the baseline with the least amount

of data, we define the update frequency of this setup. We expect the prediction error to

grow over time, and therefore the baseline will become unreliable at some point when the

prediction error becomes too high. To find the point of which we recommend updating,

we use the previously defined setup, to make predictions for the remaining dataset.

As soon as the predictions are made, we compute a MAE for each of 10 subsequent

predictions. Once all the errors are computed, we can plot them in the learning curves.

This enables us to analyze how the prediction accuracy develops along the prediction

horizon, and define the update frequency.

Finally, the third part of this research is to analyze the long term prediction performance.

This was done by training each model with various sizes of training data and let it predict

for the remaining dataset. After the predictions were made, we then calculated a MAE

for every 10 subsequent predictions. Having plotted the error metrics in the learning

curves, meant that we could study their performance over time.

The Retailer requested us to use the Mean Absolute Error (MAE) as the error metric

because its simplicity makes it easier to explain the results to the business (Section 3.4.1).

Therefore, we decided to use the MAE to describe the difference between the observed

and the predicted values. Furthermore, the Retailer required us to calculate the Pearson

correlation.
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4.3 Learning Curves in Sliding Windows

Before we can execute the method, Figure 4.2, we need to define three parameters.

1. First, we define the number of training examples for the initial window. This

number represents the maximum size the training set can reach.

2. Next, we determine the size of the step, symbolized by the green square in iteration

1. This iteration starts with this single step, and after each iteration, one more

step is added. Each iteration the initial window increases with historical data, and

therefore expands backward, until the maximum size is reached.

3. Finally, we set the volume of the prediction window, which is symbolized by the

red square. The prediction window is used to test the prediction performance of

the models. As soon as the initial window is filled with green steps, i.e., reached

its maximum size, it slides to the right. The size of the prediction window is also

used for this window slide.

Figure 4.2: Example of our Sliding Window Process
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4.3.1 Example

For example, the parameters were set as Initial window = 180, Step = 10, Prediction

window and Window slide = 50. By choosing these values, we can make full use of

the available dataset. With this setup, we can train and test the model in six different

periods of time.

In the first iteration, 10 subsequent training examples, from the period November until

May, are used to train the model. The examples cover a period of 10 consecutive days

prior to the prediction window, which is colored red and covers a period of 50 days.

When in the next iteration 10 more days are added, the training set now covers a period

of 20 days preceding the prediction window. For each iteration that follows, the steps

add 10 more training examples until the test set holds 180 days. As soon as the initial

window reached its maximum size, the whole window slides 50 days to the right. This

process replicates itself until it arrives at the end of the dataset, where the period of

July until January predicts the values for February and March. After each test, the

error metric is computed and plotted in the learning curve.

Figure 4.3: Example of the used Sliding Window Process



Results

This chapter is organized around the three research approaches described in Section 1.2.

We will first describe the results, that we derived from data exploration in Section 5.1.

Next, each research approach will be subsequently answered in Sections 5.2, 5.3 and 5.4.

Each section also contains a discussion of the results.

5.1 Data Analysis with Subgroup Discovery

We used the open-source software Cortana to perform Subgroup Discovery (SD) [86].

Cortana has the ability to identify interesting patterns in datasets. We will use observa-

tions, retrieved from the store located in Macedo Cavaleiros, to show insights retrieved

from SD.

We used the default values, and we selected the Average as the quality measure. With

this setup, Cortana found 26 interesting subgroups in the dataset from Macedo Cav-

aleiros. The subgroup with the highest score is Mean Temperature >= 24. Figure 5.1,

shows that this subgroup, (the black line), has a different distribution than the whole

dataset, (gray line). This subgroup reveals, that when the Mean Temperature surpasses

this threshold of 24 degrees, the energy consumption follows a different energy profile.

In Figure 5.1, the gray line shows us how the energy consumption is distributed for the

whole dataset of Macedo Cavaleiros, the whole dataset contains 531 observations. The

black line shows this distribution for days where the Mean Temperature was 24 degrees

or higher, and is based on 68 observations.

38
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Figure 5.1: Distribution of the energy consumption of the subgroup Mean Tempera-
ture ≥ 24, Macedo Cavaleiros, based on 68 observations

The algorithm noticed that there is a different energy profile when the mean temperature

is ≥ 24. Therefore, we decided to test the correlation between Mean Temperature and

Energy Consumption. We plotted these variables to analyze their relation. Figure 5.2

shows, that there is a different relation when Mean Temperatures reach values of 24

degrees or above. This supports our previous finding with Cortana, that there are two

energy profiles, one when temperature is < 24, and another one when the temperature

is ≥ 24. Finally, we produced the same analysis for the other two stores in Fatima,

Figure 5.4, and Aveiro, Figure 5.3, and we notice a similar behavior when temperatures

reach higher values.

Figure 5.2: Distribution of the Total Kwh Today vs Mean Temperature, Macedo
Cavaleiros
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The patterns detected by subgroup discovery algorithms are not always explained by

statistical variation but, rather by external factors [43]. Since we believed that the higher

energy consumption is not solely due to mean temperatures of 24 degrees or above, We

presented our findings to the Retailer.

The Retailer explained, that the refrigeration machines are programmed to work on a

different mode above a user defined temperature, which is mostly above 20 degrees. This

threshold varies for different stores, but with SD we are able to detect this threshold

from data.

Table 5.1, shows the average temperature per month and store. We can see that the

days where the average temperatures are ≥ 20 (highlighted in bold) are mainly during

the months of June, July, August, and September.

Store Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Aveiro 12 13 14 16 17 20 21 21 19 18 14 14

Fatima 9 11 11 14 15 19 22 22 20 17 12 10

Macedo

Cavaleiros
8 10 12 15 16 22 26 25 22 16 10 8

Table 5.1: Average Temperature per Month and Store

In this study, we used SD for retrieving useful insights for the Retailer. We were able

to detect that every store has a different threshold, after which the energy consumption

follows a different profile. We believe that this information can be useful to improve our

machine learning models in two ways. First, we could decide to split the data, based on

this threshold, and develop a different model for when temperature reach higher values.

A second option is to create an indicator variable, which can be included in the input

dataset for each specific store. It will be used to indicate when the mean temperature

is above the threshold for that specific store, e.g., < 24 or ≥ 24.
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Figure 5.3: Distribution of the energy consumption of the subgroup Mean Tempera-
ture ≥ 20.6, Aveiro, based on 66 observations

Figure 5.4: Distribution of the energy consumption of the subgroup Mean Tempera-
ture ≥ 20.3, Fatima, based on 62 observations

5.2 Minimum number of days to create a Baseline

In this section, we empirically test the minimum number of days needed to create a

reliable baseline. We also test different machine learning algorithms, ANN, MLR, and

RF to find out which one can create this baseline with the least amount of training days.

The plots in Figure 5.5, 5.6 and 5.7, show the learning curves of the associated machine

learning methods for the store Macedo Cavaleiros. When we applied this method, on the

data from the other stores, it showed similar learning curves, for simplicity we decided
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to show plots from only one store. The approach that we use here, is described in

Section 4.3.1 the blue colors, in Figures 5.5, 5.6 and 5.7, are related to the ones in

Figure 4.3.

Our analysis of the learning curves in Figure 5.5 shows, that the error at 10 days is quite

high. We further observe, that in the first 30 days, the error decreases dramatically

when more data is used to train the machine learning model. The learning curves also

reveal, that there is a local minimum around the 30 training days. From this point

on, the average MAE increases for almost all training sets, alongside the number of

training days. Therefore, we decide that 30 days are enough for the MLR to make its

best predictions.

When we look at Figure 5.6, we notice that the learning curves show a quite stable

behavior. Given our findings, it is hard to determine a point in time where this RF

performs best.

An interesting development of learning curves can be seen in Figure 5.7. The overall

trend is that the error, for the ANN, decreases when more training examples are included

in the training set. We believe that this trend will continue when more training examples

are included.

Taken together, our experiments show that the MLR has a clear advantage over the other

two methods for creating a baseline with a minimum amount of days. We repeated this

approach on all the other stores and the results are discussed next.

Figure 5.5: Example of MLR prediction performance for Macedo Cavaleiros
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Figure 5.6: Example of RF prediction performance for Macedo Cavaleiros

Figure 5.7: Example of ANN prediction performance for Macedo Cavaleiros

In Figure 5.8, we see how the error evolves as we train the model with more and more

days. This plot displays the learning curves obtained for each of the trained models,

MLR, ANN, and RF. The number of training examples ranged from 10 up to 180 days,

with threads of 10, and have been tested for a period of 50 days. Each line represents

the mean of 18 iterations, for all stores, Aveiro, Fatima, and Macedo Cavaleiros, we

performed six iterations regarding the method described in 4.3.1.
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In Figure 5.8, we observe that the MLR is the most reliable by a number of 30 days

with a MAE of 0.25. Besides, we observe that using the MLR, as we expand the size of

training examples, there is an increase in the MAE. Furthermore, we perceive a different

behavior for the other two learning models. We see that the performance of the RF

stabilizes when we increase the training data following 70 training examples up to 180.

Moreover, we remark that the ANN exhibits a continuous reduction in the MAE when

more training examples, up to 180, are attached to the training set.

Figure 5.8: Learning curves, based on an average for all stores and methods

The learning curves in Figure 5.8, reveal that each of the learning models is affected

differently by the change in the training set size. We notice that the MLR outperforms

the other two methods, for making a reliable baseline using the least amount of days.

Furthermore, we see that the performance of the MLR worsens when we increase the

number of training examples. This can be explained by the nonstationary nature of

the datasets. This non-stationarity is a problem for the MLR since it has difficulties

with nonlinear relationships. Because the MLR works well with a smaller number of

training examples, we assume that the dataset contains periods of local stationarity.

One study [87], shows that it is possible that nonstationary time series appear stationary

when examined close up. In this local period, the statistical properties change slowly

over time. As a consequence, the data that lies close to the forecast period is more likely

to be predictive for this forecast period.

For the ANN and RF, stationarity is irrelevant since they are able to handle more

complex, nonlinear relations. We see evidence for this in our results, there is a promising

development over time in the associated learning curve. We believe that with more
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diverse data, the ANN could be able to predict a baseline with less number of training

days than the MLR. Unfortunately, we were not able to investigate this further.

5.3 Study of the Update Frequency

This section studies, how frequent the model has to be updated when its trained based

on the recommendations of Section 5.2. With that, we are able to propose an update

frequency required to keep the baseline reliable.

As shown in Section 5.2, we are able to create a reliable model with the MLR trained on

30 days. Therefore, we trained the MLR for each of the stores during the same period

of the year, March 2016, and we estimated the energy consumption for the period of one

year, from April 2016, until February 2017.

Figure 5.9, shows the evolution of the MAE throughout this period. We observe that

during the first 30 days of predictions, the MAE remains quite low, under 0.5. As

mentioned in Section 3.1.3, this is somewhat expected, because the prediction period is

close to the period used for training.

In Figure 5.9, we see that during the period between 50 till 180 days, the MAE is higher

for all the stores. As a matter of fact, this period represents the months June, July,

August, and September. Table 5.1 shows, that throughout these months, temperature

levels reach higher values than in March, the period that was used for training the model.

Our findings in Section 5.1, show that the energy consumption follows a different profile

when average temperatures are higher than 20 degrees. This explains why the MAE

is higher. To avoid this problem, we could train a different model for each of the two

energy profiles identified in Section 5.1. Because our dataset is limited, we were not able

to test this in practice.
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Figure 5.9: MAE over time using MLR

We observe, in Figure 5.9, that in Aveiro the influence of seasonality is less evident than

for the supermarkets in Fatima and Macedo Cavaleiros. Since all stores are trained and

tested with the same model and in the same period of time, the most plausible factor,

for this, are the variables that are related to Temperature. The average temperatures

of the three stores follow a similar pattern, higher in the summer and lower in the

winter. However, if we focus on the amplitudes of the average temperatures per month,

(Table 5.1), we observe that Aveiro registered the smallest amplitude, with a difference

of 9C◦. The other stores, Fatima and Macedo Cavaleiros, noted an amplitude of 13C◦

and 18C◦ respectively. This seems to explain why the model trained for the store of

Aveiro, is less affected by seasonality.

In Figure 5.9, we notice that after 220 days the accuracy of the model increases again.

When we look at Table 5.1, we see that the temperature values from November on, are

comparable to the ones in March. Nevertheless, the error is still higher than in the

period of the first 30 days.

We applied this method in different periods of time, and we perceived similar behavior.

In conclusion, we base our decision on the average prediction. Figure 5.9 shows that the

average prediction remains stable until 30 days, therefore, we recommend updating the

model up to 30 days.
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5.4 Study of Prediction Accuracy over time

This section describes how the learning models perform for making long term predictions

when we use more than 180 days of data to train. Finally, in Section 5.5, two other stores

will be used to test if these predictions are accurate enough to estimate energy savings.

Each store has a different number of observations, and they are also collected in different

periods of time. We will train the MLR, RF, and ANN with the first 180 and 360 days

of data, and test for the remaining days. We will do this for the stores located in Aveiro,

Fatima, and Macedo Cavaleiros. Therefore, we train each store in different periods, and

not within the same period.

In Section 5.3, we noticed that 30 training days were not enough to make accurate long

term predictions. Therefore, we decide to include more training days into our training

set. Each of the following plots, in Figures 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15, show

how the prediction error evolves over time, per store, per model and number of training

days. Each point shows the average error for 10 subsequent predictions.

Figures 5.10, 5.11, and 5.12 show the evolution of the prediction error when the models

are trained on the first 180 days of data. We observe, that each store shows a similar

behavior as described in Section 5.3. This is more evident when we compare the error

of the MLR (red line) with the error in Figure 5.9. Overall, the MAE is lower for the

stores of Fatima and Macedo Cavaleiros, if we use 180 days instead of 30 days. These

results also show, that the effect of the different consumption modes is still visible, but

less dramatically.

Figure 5.10: MAE over time using 180 training days, Aveiro
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Figure 5.11: MAE over time using 180 training days, Fatima

Figure 5.12: MAE over time using 180 training days, Macedo Cavaleiros

We expect that long term predictions become more accurate when we use 360 training

days to train the model because the model is trained with data from all periods of the

year. Because we use this number of training days, a bigger variation of temperature

values is included in the training set. Therefore, we decided to train the models, for all

stores, on the first 360 training days and study the predictions on the remaining days.

Figures 5.13, 5.14, and 5.15 show us how the MAE error evolves for this period of time.

We observe, that the for the corresponding period of time, the MAE is a bit lower than

for the models trained on 180 days.



Chapter 5 Results 49

In contrast to Section 5.2, that MLR has the worst performance, while the RF and ANN

perform somewhat similar. The results of this experimental part supports the general

idea that when we train the models with more data, our predictions will improve.

Figure 5.13: MAE over time using 360 training days, Aveiro

Figure 5.14: MAE over time using 360 training days, Fatima
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Figure 5.15: MAE over time using 360 training days, Macedo Cavaleiros

When the algorithms are trained with 180 training days, the effect of the different energy

consumption modes is still visible. When we use 360 training days, we observe that the

predictions become more accurate. Therefore, we advice to train algorithms on 360

training days to create long term predictions.

5.5 Estimate Energy Savings

The Retailer wants to estimate, with reasonable accuracy, the energy savings resulting

from its energy policies. Changes in energy policies, such as the retrofitting an equip-

ment, require high investments. This makes it important for the Retailer to know if

the investments are truly effective, in the reduction of energy consumption. If we use

a baseline trained with data before some measure is implemented, we can estimate the

energy savings by comparing its estimates with the observed consumption.

We selected two stores that have undergone a retrofitting of the equipment. From these

stores exactly one year of data is available. Mangualde and Regua had, respectively,

170 and 200 training days available before the Retrofit. Because we have less than a

year of data available, we decide to use the MLR, trained on 30 days, as described in

Section 5.2.

Figures 5.16 and 5.17 show the observed consumption (orange lines) versus the baseline

estimates (blue lines) for these two stores. We trained the MLR for both stores, on 30

training days, between 50 and 20 days before the Retrofit and we predicted for 50 days.
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This makes it easier to visualize how the baseline compares with the energy consumption

before and after the Retrofit.

The deviations, between the baseline and the energy consumption, can result from poor

prediction performance or energy savings/losses. We chose a setup that gives us a reliable

baseline, therefore, we believe that the deviations are caused by energy savings. In both

Figures 5.16 and 5.17, we observe that, before the Retrofit, the baseline and the real

energy consumption intertwine in several points. This behavior, which was also seen

before, shows that the predictions are close to the real consumption. After the Retrofit,

however, the observed consumption is always lower than the prediction, which offers

strong evidence that the implemented measure was effective.

Hence, if we assume that the baseline is accurate enough, we can estimate the energy

savings using the difference between the predicted and observed energy consumption.

Figure 5.16: Example of the predicted and observed Energy Consumption, Mangualde

Figure 5.17: Example of the predicted and observed Energy Consumption, Regua



Conclusions & Future Work

Several reasons can keep a company from investing in energy efficiency measures. For

example, when inadequate information is available about the results of investments in

energy efficiency measures. Energy management can focus on addressing these factors

that prevent a company to make investments.

Energy efficiency measures can require high investments. This makes it important for the

Retailer to know if the investments are truly effective, in reducing energy consumption.

Energy baselines can be used to study the effectiveness of energy efficiency measures.

The results can simplify decisions to reserve funding for the required investments in

other stores.

In this study, we researched if off-the-shelf data science technologies can be used to

create energy baselines that support improved energy management. Before that, we

also performed some exploratory analysis to better understand the data.

With our exploratory analysis, we were able to detect that every store has a distinct

threshold for the activation of a different energy consumption mode. As temperatures

pass this threshold, the energy consumption of the store follows a different profile. The

Retailer was able to explain that this is due to the refrigeration machines that are

programmed to work on a different mode above a user defined temperature, which is

mostly above 20 degrees.

Our first goal, was to determine the minimum amount of training days needed to create

a reliable baseline, and which model performs best. For that, we studied the predic-

tion accuracy of three machine learning models, ANN, RF, and MLR, based on various

datasets. For the experiments, we proposed a sliding window approach in which we sys-

tematically expanded the size of the training set with historical data. Our experiments

show, that the MLR has a clear advantage over the other two methods for creating a

baseline with a minimum amount of days. This model needs 30 training days to estimate

a reliable baseline.

52
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The second goal was to determine how often the algorithm needs to be updated when

trained with a MLR on 30 training days. We trained our algorithm multiple times, on all

stores, and in different time periods. Our analysis shows that the MAE stays low for a

period of 30 days, after this the MAE dramatically increases. Moreover, we observed that

the energy consumption follows a different profile when average temperatures are higher

than 20 degrees. These findings are in line with our insights derived from Subgroup

Discovery. Our analysis shows, that the amplitude of the average temperature affects

the prediction performance. Hence, we advise updating the model up to 30 days.

Our third goal, was to determine if we can estimate energy savings after implementing

an energy efficiency measure. To answer this question, we trained our models with 180

and 360 training days and predicted for the remaining days. Our findings show, that the

predictions become the most accurate when trained with 360 training days. Because we

use 360 training days, a bigger variation of temperature values is included in the training

set. This supports the general idea that when we train the models with more data, our

predictions will improve. With a baseline, trained on 360 training days, the Retailer is

able to estimate, with reasonable accuracy, the energy savings resulting from its energy

policies. Moreover, he can compare the energy savings to the investment made for the

measure. This has obvious advantages for the retailer.

In summary, the results of this study show that we have been able to create reliable

energy baselines using off-the-shelf data science technologies. Moreover, we found a way

to create them based on short term historical data.

6.1 Future Work

Further work needs to be done to establish whether transfer learning can be applied, to

enable baselines to be calculated quicker. In traditional machine learning, a predictive

model is constructed from scratch. Transfer learning attempts to transfer learning from

a previous task to a new task [88]. Thus, it would be interesting to examine to what

extent a model could be trained on other stores, and implemented in a new store.

In our experiments we observed that the ANN needs more data than the MLR, to

construct a good model. Therefore, transfer learning could enable us, by making use of

the powerful capability of Neural networks in handling nonlinear relations, to establish

baselines quicker than the MLR can do now.

The second direction of research includes fine tuning Neural networks to optimize their

performance. Our experiments show, that recent data is more likely to be predictive

for future predictions. Therefore, we suggest examining the utilization of time series
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algorithms that make use of exponential smoothing. Furthermore, we are also curious

how a Long Short Term Memory (LSTM) algorithm could be applied in this context [89].

With SD, we were able to detect that every store has a different threshold, after which

the energy consumption follows a different profile. We believe that this information

can be useful to improve our machine learning models in two ways. First, we could

decide to split the data, based on this threshold, and develop a different model for when

temperature reach higher values. A second option is to create an indicator variable,

which can be included in the input dataset, it will indicate when the mean temperature

is, e.g., < 20 degrees or ≥ 24. We think that an important issue for future research, is

to determine how one of these options can improve the predictive performance.

A unified set of input data needs to be generated to construct a model that can be trans-

ferred towards different stores [10, 88]. We believe that including store specific variables

could lead to achieving better prediction performance. Therefore, we are interested in

researching which supplementary data can be collected, and how.

Also, we view that analyzing the significance of each variable, and how this is affected

by energy measures, creates valuable information for the Retailer. This is an important

aspect for future research. This knowledge can be used to perform a ’Retrofit’ analysis,

this specifies which stores benefit most from specific upgrades, i.e., saves the most energy.

Finally, we recommend that further research should be undertaken to study if the base-

lines can become solid enough to detect equipment faults. With our current models,

we can only detect equipment failures when the energy consumption shows extremely

unusual behavior. In [15], a baseline is designed that can detect system faults based

on energy consumption. Deviations from their baselines are interpreted as prediction

errors or faults in the equipment [15]. They designed a method, where, if five consec-

utive data points deviate from the baseline, according to a pre-determined percentage,

the system warns for a possible failure. Furthermore, this information serves for setting

up a maintenance plan to prevent equipment faults or help to react quickly when faults

occur.
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