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Abstract

Scheduling in the painting facilities of automotive manufacturing plants is a complex
process. The paint loss caused by machines continuously switching colours leads to
significant costs. Optimising these schedules while assigning new jobs in real time and
dealing with machine break downs is therefore an important issue in the truck painting
problem.

Previous successes in solving this problem with algorithms inspired by colony insects
made evident that this is an area worthy of further investigation. Both improving
on existing methods and looking from other angles through previously unconsidered
models of division of labour inspired by insects may lead to solutions closer to the the
optimum.

Improving the understanding of the strengths and weaknesses of various approaches
to scheduling for painting trucks is done by comparing them on a singular problem set.
Along with the previously used methods and yet unconsidered models is a proposed
algorithm building on those existing approaches. To measure the performance of all
the used approaches the total setup time, throughput and flow time were kept track
of. At the same time queue and storage usage were measured to avoid solutions with
unrealistic requirements.

As newly considered model, foraging for work showed a phenomenal performance
in terms of the total setup time. This was primarily the case in experiments with
uniform colour distributions and those with heavy workloads, which the model was
able to handle best across all measured statistics. For a realistic colour distribution it
was also competitive on the front of total setup time. While the proposed algorithm
could not compete with the performance by foraging for work on the total setup time,
it showed improvement over the methods it used as inspiration in most situations.
With a realistic colour distribution the proposed algorithm was also competitive with
foraging for work on total setup time and outperformed it on most other measures.

Foraging for work is presented as a new and important competitor in optimising
for the total setup time. Further, the importance of evaluating the performance of
new approaches which may excel in different areas deserves emphasis. The proposed
algorithm serves as another step forward in decreasing setup times while maintaining
a high throughput.

Keywords: online scheduling, optimisation, division of labour, colony insects, swarm
intelligence
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1 Introduction

Both insect colonies and online scheduling aim for maximal performance, while acting on
limited information. In colony insects, this leads to a division of labour over the many
individual insects. For online scheduling, this division is done over operational units, be that
personnel, factory machines or computer servers. Due to the similarities between these two,
it is not much of a stretch to apply concepts of one to improve the other.

Morley et al. [22] [20] [21] applied chaos theory to truck painting while working for
General Motors. Using chaos theory, they moved job assignment responsibilities from an
overseeing control unit to the painting machines themselves. Seeing the work by Morley
et al. [22] [20] [21], both Campos et al. [6] and Cicirello and Smith [8] realised that the
chaos theory approach corresponds to what can be observed in insect colonies, where the
individuals select their tasks without any global supervision. Using the reinforced threshold
model described by Théraulaz et al. [31], Campos et al. [6] compared an insect based
task allocation algorithm to the market based approach Morley et al. [22] [20] [21] used.
This was done with the aim of showing the viability of insect inspired division of labour in
application. Around the same time, Cicirello and Smith [8] were also creating an algorithm
based on the work by Théraulaz et al. [31]. Their focus was on describing a competitive
scheduling algorithm. Following these initial two teams, several others worked on analysing
and improving their approaches in a number of areas. This led to more effective algorithms
from, among others, Nouyan et al. [23] [24] and, most recently, Meyyappan et al. [18].

Despite there being a range of models describing colony insect division of labour in biol-
ogy, so far all approaches considered for application originate from the reinforced threshold
model Théraulaz et al. [31] described. How the approaches so far compare in performance
is also unclear. This problem originates in different authors all using other variations of the
problem and, sometimes slightly, different test cases.

This work contributes to the field by empirically comparing, a selection of both existing
work and adaptations of not previously applied models of division of labour in colony insects,
on a singular set of problems. In addition, a proposed algorithm combining aspects from
two similar approaches is showcased.

This document is structured as follows. Section 2 introduces the problem with a de-
scription of a wider known problem to show how it differs, followed by a formal notation
of the problem. Related work is included in Section 3. Then, Section 4 details how insect
behaviour in nature relates to the approaches to solving the problem which are employed in
this work. After that, Section 5 starts by explaining algorithms that were previously applied
to the problem and variations on those. The same section continues with descriptions of the
insect division of labour models included in this work, which were not previously used to
solve the problem. Section 6 provides details on the proposed algorithm. This is followed
by the experimental setup, described in Section 7. Naturally, Section 8 then follows with
the results and their evaluation. I-n conclusion, the most important results are summarised,
their significance is discussed and further work is proposed in Section 9.



2 Problem

This section introduces the problem domain of this work. By doing so, the reader will be
provided with a solid understanding of the problem and its relation to a selection of common
scheduling problems. As a starting point, the widely known job shop scheduling problem is
described. Following that, the flow shop and parallel machine problems lead into the truck
painting problem that is the subject of this research. The problem description concludes
with the formal notation of this problem.

2.1 Job shops, flow shops and parallel machines

One of the most general and widely known scheduling problems is the job shop scheduling
problem. This concerns the scheduling of n jobs over m machines, distributed over k stages.
Jobs may consist of multiple operations, but no more than k. The sequence in which the
operations pass through the stages may differ per job (though the operation order within a
job is fixed). For example, in Figure 1 the layout of a job shop for m = k = 3 is shown.
A job Ji(S1, 52, 53) may go through the stages in the order shown in Figure 1, while job
J2(S3, 51, S2) follows an alternate ordering and job J,,(S3, Sa, S1) yet another. Each operation
has a processing time p, which is the time a job requires on a machine for the corresponding
stage.

Start Ml(Sl) <> Ml(SZ) < Ml(S?’) —:End

y

Figure 1: A simple job shop with three machines and stages. Dashed edges indicate bi-
directionality.

The flow shop problem is a variant of the job shop where the operations of every job J
must have the same sequence through the stages. As such, every job J; through J,, for the
flow shop in Figure 2 will have the sequence (51, Ss,.S3). Both flow and job shops may have
multiple machines in one or more of their stages, this is referred to as a flexible, or hybrid,
shop. This is also shown in Figure 2, where the second stage has two machines.
Single-stage scheduling problems where m > 1, are referred to as the parallel machine
problem. Scheduling jobs in all of these environments is done with some objective in mind,
like minimising the makespan. The makespan refers to the amount of time in the schedule
between the start of the first job and the end time of the job that finishes last. In other
words, given the processing time of each individual job, the task is to optimally distribute
them over the machines and schedule them such that the entire collection of jobs is completed
in the shortest possible amount of time. With the availability of all job information such a



problem can, at least theoretically, be optimally solved.
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Figure 2: A flexible (or hybrid) flow shop, at least one stage has multiple identical machines.

When the problem however concerns an online problem, as in Figure 3, this is a different
matter. Online scheduling refers to the problem class where a decision on the allocation of
jobs has to be made based on limited information. Generally, only the assignment of jobs so
far and information (e.g. processing time) about the next job to be scheduled are available.
This job must then be allocated to one of the machines, before information about the next
job after that becomes available. In fact, usually it is unknown whether or not there even
will be a next job.

Production line Decision point Machines
/ Jl Ml
? 77 > J3 1 DM

\\n]z M

Figure 3: An m machines version of the online parallel machines problem.

2.2 Painting trucks

Working for General Motors (GM), Morley et al. [22] [20] [21] had to deal with the truck
painting problem. Within the painting facilities of GM, colour changes of the painting
machines resulted in a significant loss of paint. In fact, almost as many colour changes were
being used as trucks were painted. From personal communication with a Ford researcher,
Cicirello and Smith [8] noted that paint switches tend to cost somewhere between a sixth
and an eight of the paint needed to paint a single truck. Through optimising the painting
schedules of these machines, Morley et al. [22] [20] [21] aimed to reduce the paint loss.

The situation was one in which trucks come off a production line at some rate. Once a



truck comes off this production line it has to be painted. There are multiple painting booths,
which can each paint one colour at a time. The colour of a truck is only known once it comes
off the production line, so the schedule cannot be made in advance and has to be generated
dynamically. Clearly this concerns an m machines online parallel machine problem.

Production line Decision point Queues Machines
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Figure 4: The truck painting problem, an m machines version of the online parallel machines
problem.

As becomes evident by looking at Figure 4, the problem has a number of other characteristics.
Note that the job situation considered in the figure is not a realistic one, as the system should
rarely (if ever) get clogged like in the figure, let alone after such a small number of jobs.
This does however provide the ability to show the various quirks of this problem.

Painting booths can switch between colours (R, G, B), which costs time and, as previously
mentioned, paint. Due to this, it is advantageous to let machines specialise on a single colour
as much as possible. Additionally, painting booths can break down with some probability,
such as machine M, in Figure 4, indicated by it being crossed out. This causes them to stop
processing for a random amount of time (within some range). Every painting booth has a
queue of equal length, limiting the number of trucks that can be waiting for a single painting
booth.

In case a truck is not assigned to any painting booth for some reason (e.g. all queues
are already full), it will be placed in storage. At every time step both the truck(s) coming
off the production line and any that may be in storage will go through a process, depending
on the applied algorithm, in an attempt to assign them to a booth. In a real situation this
storage space is obviously finite, but the size is generally undefined and can therefore, within
simulations, be considered infinite. Even so, its use should be monitored since having more
than a few trucks in storage can be considered as a failure of the system.

Finally, there is the concept of priority. Although this will not be taken into account
in this work, some solutions to the problem did consider this situation, therefore awareness
of this is important. A priority job is, as is evident from the name, a job that is somehow
important and needs to be finished quickly. Now, the reason this is not taken into account
here, is because it is unclear what the impact of priority jobs is. Acting on priority jobs
may in fact have a negative impact on the objective function due to the lack of a penalty
when high priority jobs are ignored. The ability to simply ignore this problem characteristic,



to improve results, makes that its inclusion would result in an unfair comparison towards
algorithms that do include priorities in their solution.

2.3 Formal notation

Formal notation of scheduling problems is done in triplets of ||y, as proposed by Graham
et al. [15]. In such a triplet, a represents the shop configuration, /5 shows which constraints
and assumptions are used and finally, v is the objective function to optimise. Since the
original description by Graham et al. [15], there have been a fair number of extensions to
this notation, the ones used here have been listed in the review work by Chen et al. [7],
Allahverdi et al. [1] [2], and Ruiz and Vazquez-Rodriguez [28].

Notation Meaning

@ Shop configuration

B8 Constraints

vy Objective function

P, Parallel machines problem for some m machines
online An online problem is considered

T All jobs j have a release date

Ssd Setup times are sequence dependent

block Jobs are blocked from entering the next stage when all queues are full
brkdwn  Machines may break down

Dj =D All jobs j have an equal processing time p

TSsT Total setup time

TSC Total setup cost

F Flow time

YU, Throughput

Table 1: Summary of used notation.

In the previous subsection it has been determined that truck painting concerns the parallel
machines problem, therefore a = P,,, which refers to the parallel machines problem with
identical machines P, for some m machines.

A number of constraints are part of the problem, because of this the [ field is denoted
as follows: B = online,r;, Ssq,block,brkdwn,p; = p. First, online refers to the fact that
this is an online problem. This means that job information will only be available for jobs
whose release date r; has passed. With online problems the allocation of a job is irrevocable,
so assignments cannot be changed after the arrival of a new job. As mentioned r; denotes
the release date, every job j has such a release date. For truck painting, this is the time at
which a truck comes off the production line. Next, S,y indicates the sequence dependence
sd of setup times S. If the same colour is sequenced, no setup time is required; if different
colours are sequenced, there is a setup time. The fourth restriction, block, indicates limited
buffer sizes between stages, forcing jobs to wait in a previous stage when the buffer is full.
This is used to denote the restriction on queue sizes of machines and the use of the storage
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space when necessary. As fifth component, the brkdwn constraint indicates the possibility
of machine break downs. Finally, p; = p defines the processing time of every job j as equal
to p, this makes evident that the painting time is the same for every truck.

Three objectives are considered for optimisation. First off, there is the total setup time
(which is directly related to the number of flushes) v = T'ST'. The total setup cost (7 = T'SC)
is not considered since only an estimate of the cost is available, which, due to the direct
relation, can be calculated provided the total setup time, if so desired. As second objective,
the average flow time (also referred to as cycle time) v = F' is optimised. This refers to the
time from the moment a job enters the system, until it is finished processing. The third and
final objective is the throughput v = > U;. When a job j is completed U; = 1, otherwise
U; = 0. As such, this is simply the sum of completed jobs. These three objectives may be
considered individually, or in some combination. Ideally, optimisation would happen for all
of these objectives, but the total setup time is the most significant for the goal of reducing
production costs. Therefore, it is prioritised as long as the other objectives do not deteriorate
to excessively poor results.

The makespan (7 = Cq) is, unlike in Campos et al. [6], not considered. This is the
total amount of time it takes for all jobs to complete. It is not considered, because it is not a
very interesting objective for online problems. Average flow time is already a good indicator
for when the last job will be finished (release time of the last job + average flow time). More
significantly, there is barely any variation in the makespan. Due to the release times of the
jobs, there is a very clear limit to the minimal possible makespan (the release time of the
last job + processing time). As such, the makespan will only significantly deviate when an
algorithm produces schedules which are unable to keep up with the production rate. All
this is of course under the assumption that the processing capacity is sufficient to process at
least as fast as the production rate.

The truck painting problem can then formally be written as in Equation 1 below. Clearly,
for this problem the number of constraints are an important source of complexity.

P, |online,r;, Ssq, block, brkdwn, p; = p|T'ST, F, Z U, (1)
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3 Related work

Some research related to the problem considered in this work is discussed in this section.
This includes painting problems as well as more general automotive factory problems. A
summary of scheduling work in automotive factories is also referred to, such as to provide a
starting point for further work.

Yu and Ram [34] focus on a similar problem to the one considered in this work, which
does not include break downs. It does however deal with multi-stage jobs, optimising the
queue order, due dates for jobs, machines that can only process a certain selection of job
types and machines with different processing times. They too draw inspiration form the
popular threshold model, described by Théraulaz et al. [31], for their approach. In the
comparison they consider their own approach, an auction based model and a naive model.

In a case study of a Korean factory, Moon et al. [19] discuss a situation with some very
factory specific considerations. The focus seems to be on optimising the scheduling of the
storage area before the painting stage. Similarities are in the consideration of multiple paint
colours, different colour distributions and the need for setups when changing to a different
colour. They don’t compare to different algorithms, just a number of different alternatives
of their own. One interesting point they mention in regards to paint costs from setups is
an approximate paint loss of 0.46 litre when changing colour. Although this seems to be for
regular cars, as opposed to trucks, it gives an indication of the magnitude of the problem.

The more general production scheduling process in a car factory is considered by Inman
and Schmeling [16]. They mention how the order in which cars go through production
changes due to the need to rework parts at various stages during the process. This is (one
of) the reasons cars arrive at the paintshop in a non-optimal order and thus scheduling is
required there.

In the work by Ding and Sun [9] there is also a focus on the more general production
process of cars, though painting is also included. An interesting point here is that different
departments (body, painting and assembly) in the factory have different scheduling consid-
erations, another reason scheduling is needed before painting. They consider a sorting area
before the painting process to optimise the painting schedule, after painting they then place
the cars back in the original order they arrived in at the painting area.

Boysen et al. [5] provide a summary of work on scheduling in car manufacturing plants,
including painting problems. This includes the articles discussed above, except the one by
Yu and Ram [34]. Moreover the articles by Campos et al. [6], Cicirello and Smith [8],
Kittithreerapronchai and Anderson [17], Morley et al. [22] [20] [21] and Nouyan et al. [23]
[24] are also discussed.
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4 Division of labour in social insect colonies

This section provides a description of social insect behaviour leading to a division of labour
in their colonies. Following that, an explanation is provided as to why algorithms based on
this behaviour form a viable approach to solving the truck painting problem.

4.1 Behaviour

A variation of factors are believed to influence division of labour in colony insects. Be-
havioural differences can be observed based on age, size or shape, genetics, the colony life
cycle, experience, environmental stimuli, developmental variations and social interaction.
Below follows a concise description of how all of these factor into division of labour. More
details and references may be found in the works of Beshers and Fewell [3], and Duarte,
Weissing Pen and Keller [10].

Different age groups tend to perform different tasks, younger insects will generally per-
form tasks in the nest, while older individuals go outside to forage and defend the nest. As
work outside the nest is more dangerous, it makes sense to send out the least valuable (those
with the shortest remaining lifespan) individuals. Dividing labour based on shape happens
because some individuals are simply more suitable for certain tasks based on their morphol-
ogy. For example, an ant with larger mandibles may be more fit to defend the colony. Genetic
differences appear due to the selection of different mates in the colony. Groups with different
ancestries tend to prefer different task sets, although it remains unclear whether this has an
effect on the colonies efficiency. During the colony life cycle the needs of the colony change.
When the colony is in a growth phase it requires different worker distributions than during
the reproduction phase. As such, insects may be incited to change tasks with phase changes.
Moreover, different phases also tend to lead to another distribution, generally in terms of
morphology, of the newly produced larvae. Previous task experience influences the division
of labour as insects that successfully completed a task of a certain type are more likely to
take on another task of the same type. There is evidence supporting that experienced indi-
viduals are not just more likely to perform a task, but do so more efficiently. Stimuli from
the environment also play a role. Individuals that come across a certain task type regularly,
e.g. they run into garbage in the nest a lot, may be incited to switch from their current
task as the environment indicates a shortage elsewhere. The developmental environment is
believed to play a role in division of labour as well. One example is how the temperature
during larval development later influences at which temperatures an individual responds by
moving brood to keep it in an optimal environment. Social interaction can be observed in
insects recruiting other workers for a task type. Conversely, workers may also be inhibited
from performing certain tasks, by transferring inhibiting substances between each other.

4.2 Why insect algorithms?

Not all of these factors translate equally well to application in the truck painting problem.
The vast majority is however applicable to a more general production environment. Here
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follows a quick look at how these factors could be related to such an environment. This will
indicate the great overlap in these different environments which makes it sensible to take a
look at colony insect inspired algorithms applied to manufacturing problems, such as truck
painting.

Age may matter in that older machines are more likely to break down and therefore
assigning (priority) jobs to them instead of machines that are less likely to break should
be avoided where possible. Machines of different sizes and shapes may be more effective in
performing certain tasks than others, think of newer versions with further optimised designs
working alongside older versions. Genetic difference can be related to a manufacturing
environment as machines from different manufacturers working alongside each other. This
may not be a common occurrence, but it could happen that a factory changes to machines of
another manufacturer, while keeping older machines (that still work) around while they last.
Similarly uncommon may be a restructuring of operations within a factory, while keeping
parts that aren’t (currently) being changed operational. This could be seen as a phase change
like in the colony life cycle. Experience is easily linked to setup operations, like colour changes
in the truck painting problem. Here, ’experienced’ machines require less time for another task
of the same type compared to machines that require a setup. Environmental stimuli could be
explained as what a machine observes in terms of job availability, or the required movement
distance (either by the job or the machine) in order to process a job. This may then play
a role in the decision about whether or not to take a certain job. Developmental variations
don’t seem to have an obvious counterpart in manufacturing, at least not different from
size and shape or genetic variations. Social interaction would be the sharing of information
between machines about their status. This can include things such as their queue size and
whether they require repair, be that planned or unexpected.

The considered variation of the online parallel machines problem deals with multiple
operation types (colours), with a cost for switching between them (paint and time loss).
Having multiple operation types makes this a problem fit for insect division of labour models,
which rely on their ability to learn a preference for one or more operation types to divide
labour. Moreover, the online aspect of the problem means there is another similarity to the
situation faced by social insects in nature. Decisions in social insect colonies are made based
on a very limited view of the whole. Assuming this is properly modelled, this should, at
least in appropriate situations, lead to a similarly effective division of labour as observed in
nature.

14



5 Algorithms

In this section, various algorithms that were used in the past, or will be considered in this
work, are described. Starting with the market-based approach, described by Morley et al.
[22] [20] [21], which can serve as a baseline. Following that, the algorithms described by
Campos et al. [6], and Cicirello and Smith [8] are explained. Some of the variations on
those two, that have been introduced since, have also been included. Finally, insect inspired
models that have not yet seen application to this problem are introduced.

5.1 Market-based approach (Morley et al.)

Morley et al. [22] [20] [21] approached the truck painting problem, not in the traditional
fashion of trying to describe to the system what should happen in every possible situation,
but by describing how to achieve the desired result, the trucks being painted. Meaning
that, instead of having a global controller telling everyone what to do, everyone knows for
themselves what they need to do to achieve the desired result (at least for their part).
No longer is there a need to understand what is happening in the complete system, an
understanding of the local situation is sufficient.
In 1993, the system was described through the three rules below [22].

1. Assign the truck to the booth with the shortest non-full queue whose last truck is of
the same colour as this next truck (if such a booth exists).

2. Assign the truck to a booth with an empty queue if such a booth exists.

3. Assign the truck to a booth with the shortest non-full queue if such a booth exists.

Oddly enough, these rules describe the perspective of a global controller, contrary to the
perspective of the considered solution. Cicirello and Smith [8] noted the redundancy of the
second rule, given the third. In 1996 [20] and 1998 [21], the four rules below were described,
which take the machine perspective. Note that this description includes important (priority)
jobs, which as described in Section 2.2 will not be taken into account in this work.

1. Try to take another truck the same colour as the current colour.
2. Take particularly important jobs.
3. Take any job to stay busy.

4. Do not take another job if the paint booth is down or the queue is full.

While both provide a decent representation of the system, neither of these two rule sets
are completely accurate descriptions of the system. The actual system (as described in
[21]) works in a market-like fashion, where everyone bids and the highest bidder wins. This
bidding competition is not at all represented by either rule system. The height of the bid
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does however depend on the concepts presented in the rules: colour similarity, queue length
and job importance. As such, a bid can be placed as a result of a few simple rules. Based
on those bids, a scheduler then assigns jobs to the highest bidder. Together, this leads to a
market-based solution where assignments are a result of a bidding process.

The solution provided by Morley et al. [22] [20] [21] resulted in a 10% reduction in the
required number of colour changes. Consequently, this led to a saving of a million dollar,
compared to the previously used system, in the first nine months after being implemented,
in a single painting facility.

Beyond the given rule sets and the use of a bidding mechanism, no implementation
details were provided. For their comparison, Campos et al. [6] described these rules as
the bid function By in Equation 2, for every machine k. Every truck ¢ has a priority w;
and a colour ¢;, in the equation, ¢; ; indicates one when the last truck in queue of machine
k has the same colour as truck ¢, or zero when the colours differ. Then, AT} is the time
until machine k£ would start to paint truck ¢. Each of these components has a weight,
respectively P, C' and L. When the w; term is ignored, and therefore P, this becomes a
function consisting solely of queue length and colour similarity. This doesn’t actually change
the outcome of the algorithm, as both w; and P are the same for every bidder. For this
reason, the implementation used later in this work removes P - w; from the equation, leaving
only 14 C'- ¢;; in the nominator of this equation.

B ATF 2)

In Equation 3, the components of AT are detailed. It consists of the number of trucks in
queue ¢, for machine k&, multiplied by the paint time ¢,, plus the number of times the colour
of the next truck in queue is different from before ni, multiplied by the flushing time ¢4, plus
the remaining paint time on the truck currently being painted ¢. All of these are measured

in seconds for this work, Campos et al. [6] did not specify the unit they used.

By,

ATy = qx -ty +nl -ty +1; (3)

The highest bidder resulting from the equation is assigned the truck. When a tie occurs, the
bidder that does not need to change colour wins. If there are multiple bidders not needing
a colour change the lowest numbered one would be given the job. When there is a group
of bidders that all have a colour different from what the truck requires, one is chosen at
random.

Queue length does not play a role in breaking ties, since it is not possible for bidders
with the same colour to have the same bid, without their queue length being equal. This
is the result of two properties of this algorithm. First off, the priority is the same for every
bidder. Secondly, after applying the colour tie breaking rule, the remaining bidders all have
the same value for the colour factor of the function. This leaves only AT} as variable factor
in the function. Therefore, this variable must be the same for all remaining bidders in order
for them to have bid the same.
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5.2 Ant-based (Campos et al.)

Inspired by the fixed threshold model described by Bonabeau et al. [4] and the later response
threshold model by Théraulaz et al. [31], Campos et al. [6] proposed an insect inspired
algorithm. The idea behind both the threshold model and the insect inspired algorithm is
that individual insects have a, possibly variable, threshold 6, for every task type. When
the stimulus for a task surpasses this threshold the insect will perform tasks of that type.
The stimulus is the perceived need for a task through interaction with the environment and
other colony members. E.g., often running into trash may incite nest cleaning, while only
occasionally observing trash likely results in sticking with the current task. This threshold
is believed to be influenced by a number of factors, such as genetics and experience, as
discussed before in Section 4.

Applying this threshold model to the truck painting problem led to the following ap-
proach. A colour demand D; for every colour j was included, as shown in Equation 4. This
demand consists of the sum of the priorities w;, for every truck i that has not yet been
assigned to a machine. The Dirac delta function ¢, results in only the trucks requiring a
colour ¢; = j being included in the demand of a colour j. Despite priorities, and as such
the described demand, not being included in the problem definition used in this work, it is
included here because it plays a role in the bid function Campos et al. [6] described.

Dy =3 wi-o(ci = j) (4)

With the goal in mind of showing the similarities between the market-based and ant-based
approaches, Campos et al. [6] described a bid function, although bidding is probably not a
very ant-like process. The bid of a machine is described in Equation 5. D,, refers to the just
introduced demand for a colour ¢ of truck ¢. Then, 0., is the threshold of machine % for
colour c¢. In the model, the thresholds are bound between 0,,,,, and 0,,;,. Here, AT} is the
same as in the market-based approach and as such also computed the same as in Equation
3. The terms « and [ are weights for the influence of # and AT} respectively.

D?
D2 463, + AT

Cicirello and Smith [8] simplified the bid function Py through removing D; from the function.
This was done by changing the function to the one shown in Equation 6. Since the calculation
of D; does not incorporate any machine specific aspects, and is therefore the same for every
machine, this is possible. Therefore, P, would change in the same way for every machine &,
resulting in the same machine winning the bid for the truck. As such, D, can be replaced
by a static value. Alternatively, D; and the division could be left out entirely (leaving:
o0 + AT? 7). The lowest bidder would then be the winner, leading once more to the
same result. From this observation it becomes clear that the colour priorities and demands
do not actually play a role in the allocation process Campos et al. [6] proposed. As such,
these concepts can be left out. This also immediately prevents any potential issues with the
exclusion of priorities from the problem.

DBy (5)
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1
1402, + AT

Py (6)
The ant-based algorithm handles ties in the same way as previously described for the market-
based approach, except for one part. When there are multiple machines that have the same
colour as required, the one with the shortest queue will be selected, before the rule that
takes the lowest numbered machine is considered. This is because, with the bid function of
Campos et al. [6], it is not clear that queue length is the only remaining factor.

Threshold values of each machine are updated when a truck is assigned to a machine.
The machine k£ that won the bid, has its threshold for that colour decreased by &, with the
rule in Equation 7. Equation 8 then increases the threshold of all other machines m, by ¢.

ek,c,' — Hk,ci - § (7)

Om.c, < Ome, + & (8)

From the comparison between the market-based approach as described by Campos et al. [6]
and their own ant-based approach, a couple of results are noteworthy here. There was an im-
provement (reduction) of the number of flushes required when painting, using the ant-based
approach. Although this improvement was not in all situations significant. Deviations from
the makespan in both directions, varying between the considered situations, were produced,
although these were primarily insignificant.

5.3 R-Wasps (Cicirello and Smith)

Cicirello and Smith [8] proposed an other insect inspired algorithm, called R-Wasps, based
on the same response threshold model by Bonabeau et al. [4] and Théraulaz et al. [31].
Differences between the model come from the manner in which the concept of thresholds
is translated into an algorithm. Where Campos et al. [6] used the threshold to determine
the height of bids made by machines, Cicirello and Smith [8] use the threshold in a more
insect-like manner to determine whether or not a machine will compete for a certain task
at all. In situations with multiple bidders, this is followed by a wasp-inspired dominance
contest, based on work by Théraulaz et al. [30] [29], to determine which machine acquires
the task.

They used Equation 9 to determine for every machine w whether or not to bid, based on
the resulting probability P. This probability is a result of a combination of the threshold
0, for a job type j and the stimulus S;, emitted by a job of the same type. Like in the
model described by Campos et al. [6], the thresholds are bound between 6,4, and 6,,;,. The
stimulus of a job is based on how long it has been waiting for assignment. So, the longer the
job remains unassigned, the stronger the stimulus becomes.

S?2

P(bid|0,;,5;) = ﬁ (9)
J w,]
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Since the exact definition of the the stimulus is not clear from Cicirello and Smith [8], for
this work it is defined as follows. The stimulus of a job is one, plus the time in seconds this
job was been awaiting assignment. It starts at one at the moment of creation in order to
avoid a possible division by zero in Equation 9, which may occur when both the stimulus
and threshold are zero. Setting the minimum of the stimulus to one, rather than that of the
threshold (Cicirello and Smith [8] tuned 6,,;, to one), has to do with the use of this same
equation for calculating the probability to bid by a variation on this algorithm introduced
later in this section which considers a 6,,,;, value of zero.

In their algorithm, threshold updates happen at every time step, as opposed to on job
assignment, like Campos et al. [6] did with their ant-based approach. Cicirello and Smith
[8] mention that these updates happen every twelve seconds. It is however unclear whether
everything happens in twelve seconds steps. This work assumes only threshold updates are
done every twelve seconds, job production and assignment remains in 60 second steps. Every
machine has its thresholds for the active colour (if any) decreased by d;, as shown in Equation
10. Where active colour refers to the colour the machine is currently painting, or the colour
it is doing a setup for.

9w7j = ew,j - 51 (10)

All other colours of active machines, i.e. machines that are painting or doing a setup, then
have their thresholds increased by d9, this is shown in Equation 11.

O = 0w+ 02 (11)

Finally, idle machines, i.e. not painting or doing a setup, decrease all their thresholds by 4%,
as in Equation 12. Where ¢ is the amount of time the machine has been idle. Cicirello and
Smith [8] do not specify the unit of measurement for ¢, this work uses seconds.

O = Ouwj — 05 (12)

When there are multiple bidders, Cicirello and Smith [8] decide which machine acquires the
job based on the previously mentioned dominance contest. The dominance of each machine
w, is based on their ’force’ F,, shown in Equation 13. The force consists of the processing
time T, and the setup time T, ;, of all the jobs in the machine’s queue. Again, seconds are
used, although this was unspecified in the original description. To avoid a possible division
by zero in the dominance contest explained in Equation 14, the force must be at least one.
Note that, contrary to intuition, a lower force value is better.

Fo=1.0+Ty,+ Tos (13)

Equation 14 describes the calculation of the probability P of the first machine, with force F,
winning the contest against another machine with force F,. When there are more than two
competitors, a single elimination tournament of dominance contests will be held. Seeding
is done based on the force variables of the competitors. Cicirello and Smith [8] did not
further specify the seeding process. For the experiments later in this work it is assumed
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the competitors are re-seeded at every round. The force variables are used in the seeding
process such that the highest and lowest compete, the second-highest and second-lowest,
etcetera. To avoid odd numbers of competitors C' appearing at any stage of the tournament,
the 210921 — ¢ machines with the largest F proceed to the second round without contest.
It doesn’t seem intuitive to let the machines with the largest F' proceed as these are the
least fit for the job, but this is how Cicirello and Smith [8] described it. The experimental
implementation used for this work does the reverse, where the lowest, most fit, machines
skip the first round.
P ins|Fy, F F 4
(Wasp 1 wins|Fy, Fy) = iR (14)
In the comparisons made by Cicirello and Smith [8], their R-Wasps algorithm consistently
significantly outperformed both the approaches of Morley et al. [22] [20] [21] and of Cam-
pos et al. [6], in terms of the required number of flushes. Flow times on the other hand
are significantly higher for R-Wasps, except for one problem where long setup times when
switching colours caused the other algorithms to entirely fill up their queues, forcing them
into longer flow times. The flow time refers to the length of time between the release of a
job from the production line to its completion. This indicates that R-Wasps, on average,
produces longer queues, or makes more use of the storage space, or a combination of those
two.

It should be noted here that Campos et al. [6] avoided using the storage space as they
considered its use a system failure, while Cicirello and Smith [8] embraced its use. Using the
storage space increases the pool of jobs that machines can select from, leading to a situation
where it is easier to sequence jobs of the same colour. To be fair, the option for a machine not
to bid in R-Wasps likely also has a positive effect on the number of flushes used, regardless
of the use of storage space, since this allows machines specialising in frequently occurring
colours to avoid having to switch. Knowing this, it can be stated that these results do not
mean that either algorithm is better than the other in a general sense. R-Wasps however
clearly performs better in the problem variations considered by Cicirello and Smith [8] for
the objective of minimising the number of flushes used.

5.4 Variations

A number of variations on the algorithms by Campos et al. [6] and Cicirello and Smith [8]
will be discussed in this subsection.

5.4.1 Ant-Task-Allocation (Nouyan et al.)

Nouyan et al. [23] [24] considered five modifications to the R-Wasps algorithm proposed by
Cicirello and Smith [8]. The more recent article by Nouyan et al. [24], does not include the
fourth change discussed (no bid for a created job), but it is included here and considered as
part of the approach in experimentation.
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. TUR (Threshold Update Rules)

One obvious improvement is that Nouyan et al. [23] [24] update the thresholds based
on the last job in queue, as opposed to based on the currently processing job. This
avoids problems with jobs being added to the end of the queue of a different type than
the current last in queue, but of the same colour as the current job.

. CFV (Calculation of the Force Variable)

They also include a related improvement, the potential requirement for a setup between
the last job in queue and the currently offered job. This is incorporated into the force
calculation with the addition of the job setup T, ; into Equation 15. This value will
be the setup time when a setup is needed, or zero when no setup is required. Again,
the unit was not specified and seconds are used in the experiments.

Fo=10+Ty,+Tys+Ty; (15)

. DC (Dominance contest)

The difference in probability to win becomes smaller as the number of competitors
grows. Nouyan et al. [24] resolve this by changing the dominance contest to the
formula on the left in Equation 16. This formula can, and often will, however result
in probabilities greater than one, because of the exclusion of competitor k£ from the
summation. Therefore, experimentation with this algorithm will employ the earlier
version of the equation from Nouyan [23], on the right in Equation 16.

1 1

L or Py (F F,) L
— L1, ... = —
itk % D i %

. BCJ (No Bid for a Created Job)

Jobs with a colour that rarely occurs may end up in situations where no machine bids to
acquire them. This may happen as a result of only the thresholds of job types that get
processed being actively decreased; leading to a situation where there are no machines
specialising in the infrequently occurring job type. In R-Wasps, the only manner in
which these jobs may eventually get assigned is by their stimulus increasing with time.
Since this can be a relatively slow process, these jobs may remain unassigned for quite
long periods. Nouyan [23] increased the chances of jobs with no bidders, by lowering
the threshold 6,, ; of every machine w for the corresponding job type j, as in Equation
17.

Pu(Fy, .. Fy) = (16)

ew,j - ew,j -Nn (]'7)

. IMC (Idle Machine does not Compete)
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This is an extra update rule for machines that are idle and don’t bid when a job is
offered. This rule, in Equation 18, decreases the threshold for the job type that was
offered, but not bid on, by ~s.

ew,j = Qw,j - 72 (18)

Nouyan et al. [23] showed how their modifications to the R-Wasps algorithm outperformed
the original in terms of idle time and throughput (the number of jobs completed during
the runtime), in all the situations they considered. This was done for the BCJ and IMC
modifications individually, the combination of BCJ, IMC and CFV, and the combination
of all considered modifications together. Moreover, their changes almost always showed
improvement in the number of setups, except for one of the six considered situations, where
R-Wasps did better than IMC individually, and the BCJ, IMC and CFV combination.

Later, Nouyan et al. [24] measured the makespan by creating an environment with
a production rate equal to the optimal processing rate, which could realistically never be
achieved due to the inclusion of break downs. In this situation they showed all fifteen
possible combinations of the TUR, CFV, DC and IMC modifications (from each individually
to all combined) outperformed R-Wasps. Most notably, any combination that included TUR
significantly outperformed those without TUR.

It should be noted that in both of the articles, Nouyan et al. [23] [24] considered a
situation where there were more machines than colours, as opposed to the reverse considered
in the work presented here.

5.4.2 Kittithreerapronchai and Anderson

Kittithreerapronchai and Anderson [17] investigate various parts of the system proposed
by Campos et al. [6], without explicitly proposing an improved algorithm. They evaluated
parameter optimisation, global or local threshold updates and the rules used for tie breaking.

The differences between local and global update rules as they described them are as
follows. First off, they apply updates as in Campos et al. [6], when a machine acquires a
job. Local update rules update only the thresholds of that specific machine, both for the
type of job that was acquired and all other job types. For global update rules the thresholds
of the particular job type are updated for all machines, thresholds of other job types are
not changed. This means that the difference is two fold, for which job types and for which
machines thresholds are updated.

1. Parameter optimisation

For single objective functions Kittithreerapronchai and Anderson [17] suggested that
parameter optimisation may not require complex optimisation methods. The a param-
eter does not seem to have much impact as long as it is greater than zero. It should
be noted though that the considered range of 3 is much smaller. Despite S being used
in an exponent, a smaller step size for a seems like it could be more interesting. The
impact of both parameters may in fact be more similar than their plot suggests.
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They provided a gradation in the significance of the parameters, ranging from insignif-
icant to moderate to sensitive. Respectively, these refer to parameters that account for
20%, 20-60% and more than 60% of system performance across parameter space. In
the insignificant group were 6,,;, and &, moderate were «, ¢ and 0,,,,, finally 5 was the
only parameter classified as sensitive. Note that they did not provide data or graphs
for all of these, only a comparison between o and [ is provided. It makes sense that
not all parameters have an equally significant impact, but a possible improvement of
20% by tuning more parameters is certainly not something to ignore. Additionally,
they suggest that it should be relatively easy to achieve a good balance between flow
time and the number of colour changes solely through tuning 5.

. Global versus local update rules

All graphs in their paper seem to support local updates, in their abstract they however
state that global updates are better. It is not immediately clear what they base this on.
This seems to be due to global updates reaching equilibrium faster than local updates,
which they consider important, despite local updates using both fewer colour changes
and a shorter flow time.

Their comparison on flow time between global and local updates shows that the global
update rule reaches equilibrium faster. They also show that the local update rule
generally produces better results. Combining these two findings it can be said that
the use of global or local update rules should be situation dependent. Changing colour
distributions, or at least those that change rapidly, may benefit from global updates
to quickly reach the new equilibrium. Relatively stable distributions would however
benefit from the higher quality results of local updates. In a factory setting it would
likely be best to use local updates, since day to day there probably would not be that
many changes, at least in the truck painting case. The final colour settings from one
day could therefore be carried over to the next day to avoid having to start form nothing
in terms of reaching the equilibrium. An other option might be switching between the
two at some point in the process. It is however difficult to say how effective this would
be due the equilibria being at different points. Following the switch, the new rule set
still needs to find its own equilibrium, which may or may not be worth the effort. One
remaining question is whether the other possible update combinations, i.e. update all
local thresholds and those of the same type globally, or simply all thresholds, might
be worth considering.

. Breaking tie rules

Kittithreerapronchai and Anderson [17] consider the effectiveness of some tie breaking
rules. First, they consider the regular case, as described by Campos et al. [6], where
first the colour of the last truck in queue is considered, then the waiting time and
finally a random decision. Next, they look at only using the colour followed by a
random decision, the waiting time with a random decision and lastly, random by itself.

They show that using all three rules produces the same results as using the colour and
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random. Waiting time combined with random and random by itself also produce the
same results, though this is a worse result than the first two approaches. In short, this
shows that the waiting time has no impact on the tie breaking in the system Campos
et al. [6] designed. Either the colour decides, or a random selection makes the decision.
It is however not immediately clear why this would be the case.

5.4.3 Meyyappan et al.

Meyyappan et al. [18] propose improvements to the system described by Cicirello and Smith

8].

They described their changes as three separate models, where each of them includes

more changes than the one before.

1.

M1

Model 1 describes two changes, which happen to be the same as two of the changes
considered by Nouyan et al. [23] [24]. The first change is the threshold update rule,
where threshold updates happen based on the last job in queue instead of the one being
processed. Secondly, they change the calculation of the force variable to include the
potential need for a setup when the new job is accepted.

M2

Model 2 introduces two additional changes on top of those in Model 1. Threshold
updates are done on assignment of a job to a machine like in Campos et al. [6], instead
of on time basis. More drastically, Meyyappan et al. [18] decided to allow thresholds
only two possible values, zero or 6,,,,. So instead of decreasing or increasing by d; or
2, as in Equations 10 and 11, Meyyappan et al. [18] set the threshold to zero or 6,
respectively. This was done with the aim of reducing the number of colour changes,
which may result from a low threshold for a colour that was used before the current
one. As a result of this change, 0,,;, is always zero and therefore no longer a parameter
that needs to be tuned. Moreover, d; and d, are no longer used at all, leaving just the
03 and 6,,,, parameters.

M3

In Model 3 Meyyappan et al. [18] aim to reduce the need for parameter re-tuning,
by automating parameter changes. There is a need for parameter changes when there
are changes in the production conditions, as this moves the optimum. Having already
reduced the number of parameters from five to two in Model 2, this task has already
been simplified. The d3 parameter is set to a constant. Dealing with changing situations
is done by defining update rules for 0,,,,, using fuzzy logic. The combination of these
two parameters then decides how quickly a threshold reaches zero for an idle machine,
leading it to take on a new job.

Their two sentence description of their fuzzy system (for Model 3) leaves out essential parts
required in reproducing their results. Despite the inclusion of Table 2 to show how 6,,..
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Throughput Number of setups Average flow time 6,44

High High High Low increase
High High Medium Medium increase
High High Low High increase
High Medium High Low increase
High Medium Medium Medium increase
High Medium Low Low decrease
High Low High Low decrease
High Low Medium Low decrease
High Low Low Do nothing
Medium High High Do nothing
Medium High Medium Low increase
Medium High Low Low increase
Medium Medium High Low decrease
Medium Medium Medium Do nothing
Medium Medium Low Do nothing
Medium Low High High decrease
Medium Low Medium Medium decrease
Medium Low Low Low decrease
Low High High Do nothing

Low High Medium Do nothing

Low High Low Do nothing

Low Medium High Medium decrease
Low Medium Medium Low decrease
Low Medium Low Low decrease
Low Low High High decrease
Low Low Medium High decrease
Low Low Low Medium decrease

Table 2: Fuzzy rule matrix, as shown in Meyyappan et al. [18].

should change when, for example, the throughput, number of setups and average flow time
are all high, practically all other details are missing. Even when assuming the exact same
membership functions are defined for the throughput, number of setups and average flow
time terms (low, medium and high) based on simulation results, they provide no information
at all about how they defuzzified 6,,,,. The range of values considered for the in- or decrease
of 0,,4: is not provided which is an essential part of their system’s behaviour. The used
values of other parameters, such as the initial values of 6,,,, and J3 (in case of Model 2 or
3) are not specified either. For these reasons their approach is not included in the empirical
comparison of this work, despite how promising the results they show are.

Meyyappan et al. [18] compared their three models and R-Wasps on Cicirello and Smith’s
[8] problem, which does not consider break downs. Both a situation with one minute setup
times and a situation with ten minute setup times were considered.

Starting with the one minute situation, M1 showed a small increase in the number of
setups compared to R-Wasps, while M2 and most significantly M3 showed lower numbers of
required setups. The throughputs show minimal differences, those of M2 and M3 are slightly
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better than the other two. Only M1 has a shorter flow time than R-Wasps, M2 and M3 use
longer flow times. Longer flow times seem to correlate with lower numbers of setups.

The ten minute situation shows the same differences in the number of setups. Throughput
differences of R-Wasps, M2 and M3 are also similar, though the gap is a bit larger. M1 has a
significantly lower throughput than the others. Unlike the other two performance measures,
the ordering of approaches by flow time is quite different in this situation. This time, M2
has the lowest flow time, followed by M1, M3 and finally R-Wasps.

In short, M2 and M3 decrease the number of setups required through their changes form
the R-Wasps model, while leading to longer flow times for one minute setups and shorter
flow times for ten minute setups. The changes in M1 by themselves achieve the reverse, more
setups and a shorter flow time.

5.5 Other insect inspired models

In this subsection some other insect inspired models which have not yet been applied to the
truck painting problem are described. They are altered where necessary to make it possible
to use them on the considered problem.

5.5.1 Self reinforcement

In 1988 Plowright and Plowright [25] described the self reinforcement model, based largely
on the same ideas as the (reinforced) threshold model of Bonabeau et al. [4] and Théraulaz
et al. [31]. Both employ memory about previous task performance, referred to as internal
reinforcement in the self reinforcement model and thresholds in the threshold model. The
two models also each track the need for the various task types through stimulus levels.

Plowright and Plowright [25] described the probability to perform a task with Equation
19. The probability of task performance P is influenced by internal reinforcement I, a
constant K and the external stimulus E.

P=1—e'hF (19)

Figure 5 further describes the workings of the algorithm. At every time step, E is incremented
by a value v; for every task type. Additionally, every machine has I decremented by a value
~v9 for every task type. For every idle machine the external stimulus of a random task type
is selected at every step. Following this, the probability is calculated as in Equation 19, if P
is larger than a randomly generated number, the job is accepted. After completion of a job,
I is increased by a value 73 for that task type. This results in the four parameters, v1, ¥, 73
and K to tune.

An inconsistency with the considered problem is the incrementing of E for every task type
at every time step, which may lead to task types that rarely occur having a high external
stimulus. This can easily be resolved by only incrementing E for those task types that have
an unassigned task waiting. Implementing this is done by keeping track of E for individual
jobs and therefore incrementing E for all unassigned jobs. In order to fit the model with
the queues used in the problem, any machine with a queue that is not full may encounter
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a random external stimulus. To avoid the same machines taking on tasks all the time the
update loop for the machines is executed in random order, instead of following the same
sequence at every time step as Plowright and Plowright [25] originally considered. Another
sensible change for the considered problem is to increment I based on the last task in queue,
rather than the one which was just completed. This reflects how Nouyan et al. [23] [24] and
Meyyappan et al. [18] handled threshold updates to reduce the number of setups.

’ Time = 1 ‘
v
>{ Insect = 1 ‘
v
Increment all

external stimulus
levels (E) for
each activity
v
Decrement internal
—ﬁ Insect = Insect+1 F stimulus levels (I)
for each activity

Randomly en-
counter exter-
nal stimulus

wb

Increase I for
last activity

7IKE

Loaf (idle) @ Perform activity ‘
|

¥ Yes

Yes
End

Figure 5: Flowchart of the self reinforcement model (reconstruction of the flowchart in
Plowright and Plowright [25], including some minor alterations for clarity). T'(A) refers to
the time T required for the execution of an activity A.

Comparing the Plowright and Plowright [25] model with those by Campos et al. [6], and
Cicirello and Smith [8], the greatest difference is seen in task selection. Plowright and
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Plowright [25] randomly show one task to a machine, while in the other two models all
machines see all tasks. In Campos et al. [6] a machine does not bid when it is broken down,
or when its queue is full. Cicirello and Smith [8] decide whether or not to bid based on a
probability function that includes the stimulus and threshold, while they do not specify this,
it is assumed they don’t bid when a queue is full either. Plowright and Plowright [25] then
decide whether or not to perform the task based on threshold and stimulus. The other two
allow all machines that bid to compete, based on threshold and queue (Campos et al. [6]),
and just queue (Cicirello and Smith [8]).

5.5.2 Foraging for work

Tofts [32] described the foraging for work (FEFW) model, which simulates the spatial situation
in an ant nest. Depending on their location in the nest, worker ants come across different
tasks. The model sequentially orders the considered task types and allows workers to move
back and forth over this sequence. Ants hatch deep in the nest, which relates to starting at
the beginning of the sequence. When there is a task available at the current position in the
sequence the worker will take this job. When the job is finished, the worker checks if there
is another task available in the current position (i.e. is there a task of the same type as the
last one?), as long as this is true, the worker keeps performing tasks of this type. When
there is no task available at the current location, the worker moves either to the next, or
the previous task in the sequence. If there is a task available at the new position the worker
starts working there, otherwise it keeps moving until it arrives at a position where it finds
work.

Task types can be related to colours and workers to machines to translate the situation
to the truck painting problem. Since colours have no sequential relation a few changes are
sensible. First off, the last task type will lead back to the first such that there are no begin
or end positions. Second, instead of starting at one specific task type, each machine will be
randomly assigned a starting position. Active (painting or in setup) machines with space in
their queue will first check for jobs in their location and if they see one add it to their queue.
Then idle machines look for a job in their current location. Finally, remaining idle machines,
that did not find a job in their current location, may move and look for a job elsewhere. A
maximum number of moves may be used, regulated by the only parameter for this algorithm,
the step size. These idle machines will move in a randomly selected direction and take on
the first job they see. If no job is found after moving the maximum number of steps, the
machine remains in this new position and try again during the next time step. Only when
a task in a new location is found a setup will take place, this is to avoid unnecessary setups
while looking for a new job. For all of these checks, machines will be selected in a new
random order every time step.

Note that these choices may not be optimal and will certainly have their advantages and
disadvantages. Future work could investigate other options if foraging for work proves viable
in some application. A line sequence could be maintained without connecting the start to
the end, or all task types may be considered in a complete graph. Using a more sophisticated
method for deciding the move direction might also be considered. For example, taking into
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account the movement directions of other machines could be beneficial.

Foraging for work approaches task distribution in a vastly different way than the other
models. The spatial distribution of work is an interesting concept which the other models
don’t employ. For the use in this problem a spatial distribution is however artificially intro-
duced, making it questionable whether it would have a positive effect. A discrepancy with
many application areas is that in the model machines move to tasks, as opposed to a factory
setting where tasks would generally move to machines. On the other hand this is very much
in line with areas such as swarm robotics.

It is difficult to say how the performance of FFW would compare to the other models.
The consistent performance of the same task until it is no longer available likely has a positive
effect. However, outlying tasks in the spatial distribution that occur infrequently may have
to wait a while until a machine reaches them. It is not clear how that would compare with
waiting for a change in a threshold until a machine takes up an infrequent task.

5.5.3 Fixed threshold

Bonabeau et al. [4] described the fixed threshold model, which preceded the reinforced
threshold model of Théraulaz et al. [31] which was used by Campos et al. [6], and Cicirello
and Smith [8]. This did not yet contain update rules for the thresholds. As such, the
diversity of the initially generated thresholds will largely decide the performance abilities of
the algorithm.

What follows is the implementation as considered in this work’s experiments. Thresholds
are generated randomly in the range [0pnin, Omaz], this should usually result in sufficient
diversity in task preferences when the task distribution is (close to) uniform. Situations
where some task types occur significantly more often than others would probably be more
difficult for this approach. The stimulus is taken for individual tasks based on the time
they have been waiting to be assigned to a machine, just like in R-Wasps [8]. Determining
the probability to bid for a machine also works in the same manner as in the R-Wasps
algorithm of Cicirello and Smith [8], using Equation 9 (which they got from Bonabeau et
al. [4]). Following that, the force is calculated as proposed by Nouyan et al. [23] [24] and
Meyyappan et al. [18]. Finally, a winner is selected through a tournament (if needed) of
dominance contests, again as described for R-Wasps [8]. For this model the only parameters
would then be 6,,;, and 6,,,,, where it makes sense to set 6,,;,, to zero, leaving just one
parameter to tune.

Without update rules this model is less computationally intensive than those of Campos
et al. [6], and Cicirello and Smith [8], which could be advantageous in situations with large
numbers of tasks and machines. The question remains whether the difference in computa-
tional effort is significant enough to consider the fixed threshold model as an option, despite
its most probably less optimal scheduling.
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6 Proposed algorithm

A variety of sensible ideas are involved in the various algorithms previously discussed, com-
bining a number of these could be beneficial. For this proposed algorithm the stimulus and
threshold reinforcement combination employed by most of the discussed algorithms is used.

This proposed algorithm works in four steps, first machines decide whether or not to bid,
then those that do determine the height of their bid, a winner is selected from the bidders
and finally thresholds are updated. The stimulus of a job S; is equal to one plus the sum of
the time (in seconds) that it has been awaiting assignment, just like in the R-Wasps model
of Cicirello and Smith [§].

Part Origin Contribution of the proposed algorithm
Stimulus Cicirello and Smith [8] Unchanged
Competitors  Original Allow broken machines to (consider making a) bid
P(bid) Cicirello and Smith [8], Cam- Probability to bid includes the job type
pos et al. [6], and Plowright
and Plowright [25]
Bid height Cicirello and Smith [8], and Compete (as opposed to simply taking the highest)
Campos et al. [6] based on both the threshold and AT (the time until
painting starts)
AT Cicirello and Smith [8], Include the remaining down time in the time until
Nouyan et al. (23] [24], painting starts
Meyyappan et al. [18] and
original
P(win) Nouyan [23] Unchanged
Updates Cicirello and Smith [8], and Unchanged

Nouyan et al. [23] [24]

Table 3: Summary of changes.

The chance to bid is defined in Equation 20, based on Equation 9 from R-Wasps. It works
the same, with the addition of the multiplier ¢;;, which evaluates to one when the colour
of the last truck in queue of machine k is identical to that of truck ¢, or zero when they
differ. This is the same as in the bid function Campos et al. [6] defined for the market-based
approach. By including this colour in the equation, machines may avoid switching back an
forth between a number of colours with low thresholds. This serves as an alternative to the
approach used in Model 2 considered by Meyyappan et al. [18], which excluded the memory
of previous tasks stored in the thresholds from the algorithm. In relation to nature this
corresponds with the probability of an insect actually coming across a task. Seeing a task
of the same type as the one currently being performed is more likely than coming across a
task of an other type since tasks of the same type would generally occur in the same area.
The chance to still observe opportunities for other task types relates to overlap in the areas
in which multiple task types occur. Considering the problem definition, it makes sense to
have the same overlap probability for all task types, since the cost to switch between them
is also equal. Nature differs in this in that different in nest tasks would have a lower cost
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(travelling time in this case) for switching between them than a switch from an in nest task
to an out of nest task.
52
Py(bid) = : 20
D = e ) 2
Step two is to determine a bid by which machines that decide to participate will compete.
For this and the next step the force concept described by Cicirello and Smith [8] is employed.
Therefore, as explained for their algorithm, the most fit individual is the one with the lowest
force. The force Fy is computed using Equation 21 which works the same as the ant-based
bid function of Campos et al. [6], minus the division. Contrary to the force from Cicirello
and Smith [8], this includes the threshold 6 ., of machine k for offered colour ¢ of truck i.
Like in Campos et al. [6], the o and (3 parameters serve as weights.

Fy=a-0, +AT;" (21)

The waiting time AT of a machine k here consists of four parts as in Equation 22. These
are Ty, and T}, 5, respectively the processing time and setup time of all jobs in queue. Note
that the queue is here defined as all jobs assigned to this machine k£ and thus includes the
job that may currently be in processing. Next T} ; is any setup time that may be required
for the offered job as proposed by both Nouyan et al. [23] [24] and Meyyappan et al. [18].

ATy =Typ+ Ths +Thj + Tha (22)

Finally there is the T} 4 term, this refers to any down time the machine may currently be
going through. This is part of a proposed change where broken machines are allowed to
compete for jobs. Note that machines that are already broken are still included in the
selection procedure of the break down probability and a such may have their down time
lengthened. Although this will rarely happen, in this manner a reasonable representation
of potential reassessments of the repair time is included. Due to the inclusion of this term
a broken machine is however not likely to win a job, unless the down time is almost over.
The aim here is to allow machines with potential short or even empty queues to continue
processing quickly after being back in operation.

In the third step one of the machines is selected to take on the job using Equation 23,
which is equivalent to the one used by Nouyan [23].

€

By
S
The final fourth step contains the threshold updates, which will be done every time step.
Time steps will coincide with the release time of new jobs, so if a new job is released every
minute there will be a time step every minute. Updates consist of the same rules as in
Nouyan et al. [23] [24]. Starting with the standard situation the threshold for the last
colour in queue is decreased (Equation 24) as proposed by both Nouyan et al. [23] [24] and

Pu(Fy, ... F,) = (23)
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Meyyappn et al. [18], and the other thresholds are increased (Equation 25) like in most of
the discussed algorithms.

Or,i = O — 01 (24)

Or,i = Or,i + 02 (25)

Next in order to promote idle machines to go back to work they have all their thresholds
decreased as in Equation 26, which works the same as described by Cicirello and Smith [8].
Jobs for which there are no bidders at all reduce the threshold of all machines as in Equation
27. Additionally, idle machines that don’t bid when a job is offered reduce the threshold
for the corresponding job type by 72 (Equation 28). Where the last two rules correspond to
respectively the no bid for a created job (BCJ) and idle machine does not compete (IMC)
rules proposed by Nouyan et al. [23] [24].

Ori = Or; — 0% (26)
Ori = Ori — ™ (27)
ek,i = 9k,i — 72 (28)
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7 Experiments

This section deals with the experimental setup considered in this work. First off, the experi-
mental setup is described. This includes the used default values for all problem parameters,
some experimental situations may specify an alternative value for one or more of these prob-
lem parameters. Secondly, some implementation details that may have some impact on the
measured results are specified. In the third subsection, the considered measurements are de-
tailed. Fourth, a description of the various considered problem situations is included. Lastly,
the parameter values used for each algorithm are listed.

7.1 Experimental setup

The problem parameters considered by Campos et al. [6] will be used as basis for the
experimental setup. Whenever there is a reason to deviate from this or something was not
specified the problem parameters as in Cicirello and Smith [8] will serve as second option.
When neither of these suffices some value that seems sensible is selected.

In order to measure throughput the runtime and duration of production will deviate
from Campos et al. [6] who measured the makespan instead. As in Cicirello and Smith [§]
simulation will take 1000 minutes with trucks being produced at a rate of one per minute and
requiring a paint time of three minutes. This leads to a theoretical optimal throughput of 998
trucks (all trucks released from ¢y to tg97 have a chance of completing their three minute paint
time). Although even with optimal assignment, trucks released toward the end may have to
deal with flushes or break downs, making this optimum an unrealistic target. Each truck will
have to be painted in one of twenty colours, selected uniform randomly. Every minute there
is a 0.05 probability for a randomly selected machine to break down for a uniform randomly
selected number of minutes from [1, ..., 20]. Changing the colour a machine paints requires a
flush with a duration of three minutes. Campos et al. [6] considered cases with between six
and fifteen booths. They mention that when using eight booths or more, storage is rarely
needed, therefore eight booths will be used. Queues with space for five trucks are kept in
line with the description from Campos et al. [6]. In addition to there being no reason to
change this, changes would also invalidate the comment about eight painting booths. The
initial colour of every machine is chosen uniform randomly as in Cicirello and Smith [8],
since Campos et al. [6] did not specify how they did this. Thresholds are also initialised
as considered by Cicirello and Smith [8], for the same reason. The threshold belonging to
the initial colour of a machine is set to 6,,;,. All other thresholds are drawn uniformly at
random from the interval [‘9"5‘” ,Omaz]. To allow all algorithms to work as intended there is
no limit on the size of the storage space, it is however kept track of as detailed later in the
measurements subsection.

7.2 Implementation details

Some minor implementation details are not strictly part of the algorithms, but may have a
(minor) impact on the outcome of experiments. As such, these implementation details are
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included here to provide an accurate representation of the experimental environment. This
is not an exhaustive list, there may well be more details impacting the outcome.

When a machine needs to change colour in order to start the next job in queue this
job waits in the queue until the setup is over. This keeps some queue space occupied for
longer than may be strictly necessary for the simulation. Doing this may however provide
a more accurate representation of a real painting booth. During the switch from one colour
to another moving parts and possible paint splashing in such a machine could make it
inconvenient to have a truck in the booth during this process. Of course, this doesn’t
necessarily provide an accurate representation of all real life systems, it is just one possible
representation which is sufficient for the purpose of this simulation.

7.3 Measurements

Optimisation for a minimal total setup time (7°ST) is the primary goal. This should however
be paired with a high throughput (_ U;). Ideally this would also be combined with a low
average flow (or cycle) time (F') to allow optimal scheduling in other steps of the production
process. Only optimising for the total setup time is not an option. First off, not painting
anything at all leads to the, ’optimum’, zero second setup time. Second, assigning all booths
a different colour at the start and painting only those colours until no more jobs of those
types arrive before switching to paint other colours would also achieve a low number of
setups; along with an extreme delay in the processing of trucks requiring the non-starting
colours. Clearly, neither of these situations are desired. As such, the goal can be summarised
as minimising the total setup time while maintaining reasonable results for the throughput
and average flow time.

In addition to those three measurements, another two are kept in mind as they would
ideally also be low, but are considered less important. This concerns the average queue
length (average queue length of all machines averaged over the number of measurements,
e.g. one per time step) and the average used storage space (storage space in use averaged
over the number of measurements). As long as these two measures do not reach too extreme
values they are considered acceptable. Explicitly optimising for these can be considered for
further work.

Analysis of the minimum, maximum, mean and standard deviation of the measurements
will provide insight into the performance of the algorithms in different areas.

7.4 Considered situations

A total of six problem situations are considered as listed below.

1. Standard situation as resulting form the default problem parameters described in the
experimental setup

2. As above, but with a colour distribution of colour occurrences: one colour 70%, one
colour 15%, one colour 7%, one colour 4% and the remaining sixteen colours 0.25%

3. As above, but now two trucks are produced every minute
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4. As above, but now the probability of a randomly selected booth going down is 0.25
per minute

5. Standard situation, but with no break downs

6. Standard situation, but with setup times of ten minutes

The first four are the experiments as described by Campos et al. [6], the only change being
the different standard situation. Situations five and six are based on the problems presented
by Cicirello and Smith [8]. Situations one through four present a (relatively) simple base
situation with increasingly complex alterations for the machines to deal with. The fifth
situation mimics the standard situation considered by Cicirello and Smith [8] which did
not include machine break downs. This can be interesting for situations other than truck
painting where break downs are unlikely, for example in software simulations. Finally, longer
setup times are considered to analyse how the various algorithms handle this. All of these
are executed for 1000 replications.

Problem Characteristics

1 A standard situation with an unrealistic uniform colour distribution
A standard situation with a realistic colour distribution

3 A heavy load situation with a realistic colour distribution and twice as many trucks requiring
painting

4 A heavy load situation with a realistic colour distribution, twice the trucks to be painted
and larger machine break down probability

5 A standard situation with an unrealistic uniform colour distribution, without break downs

6 A standard situation with an unrealistic uniform colour distribution, with long setup times

Table 4: Summary of the considered problem situations.

Dynamic colour distributions, both abruptly changing as considered by Cicirello and Smith
[8] and gradually changing, have not been included due to time constraints. They are
certainly interesting to consider investigating in further work though.

Based on good preliminary results achieved with the foraging for work algorithm it was
analysed further on the first two problems using step sizes from one through ten.

7.5 Algorithm parameters

Table 5 shows the parameters used to compare the algorithms on the situations described
in the previous subsection. Note that these parameters were not optimised for this problem,
therefore they may not provide an optimal representation of the algorithms. In particular
the algorithms using original parameters may not show a representative performance. Also
note that the proposed algorithm (KB) uses parameters from both Campos et al. [6] and
Nouyan [23].

For comparison purposes a random approach was also included in the experiments. It is
implemented such that newly produced jobs are immediately assigned to a randomly selected
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Algorithm Parameters Parameter origin

Random - -
Market-based (MBC) P =91.8106 C =1791.99 L =4.09477 Campos et al. [6]
Ant-based (ABC) o =617.188 B8 =4.66797 &€ = 7.85156 Campos et al. [6]
¢ =17.7344 Omaz = 39.6875 O = 5.50781
R-Wasps 01 = 100.0 09 = 10.0 03 = 1.05 Cicirello and Smith [8]
Omaw = 10,000.0  6,in = 1.0
Ant task allocation (ATA) &; = 14.0 dy = 14.0 03 = 1.01 Nouyan [23]
71 = 50.0 o = 50.0 B = 2000.0
gmin =10
Self-Reinforcement (SRM) 1 =0.5 vo = 0.25 v3 =0.5 Original
K =05 Omaz = 10,000.0  6,,;, = 1.0
Foraging for work (FFW)  step size = 2 Original
Fixed threshold (F'T) Ormae = 100.0 Omin = 1.0 Original
Proposed (KB) o =617.188 B = 4.66797 &€ = 7.85156 Campos et al. [6]
¢ =17.7344 Omaz = 39.6875  Omin = 5.50781
03 = 1.01 ~v1 = 50.0 ~v2 = 50.0 Nouyan [23]

Table 5: Used parameters in experimentation per algorithm.

machine that has space in its queue. After that it attempts to assign any jobs that may be
in storage. Jobs are added to storage whenever no machines with queue space exist, or the
only machines with queue space are broken.

Parameter optimisation is not considered here as it is a significant problem of its own
right. Simple test showed that even averages over 100 replications would have notable
variations when done twice for the same parameters. Therefore attempting to optimise even
when using simple methods would be a time consuming matter. This is most certainly
something to look at in further work.
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8 Results

In this section the results are shown and analysed, with each problem being handled in their
own subsection. A number of plots have many outliers with the exact same value. This
primarily happens with the throughput and is a result of these values simply being far more
likely to come out exactly the same compared to an averaged number with decimals.

8.1 Experiment 1

In terms of throughput the market and ant-based approaches as described by Campos et al.
[6] perform similarly well. Next, KB does pretty well in this area compared to R-Wasps and
ATA which are largely similar approaches. The performance of FT is also notable considering
it does not adapt to changing situations to the extend most other algorithms do.

Clearly FFW performs exceptionally well compared to all other approaches in using a
low number of setups. Unlike the other approaches, FFW will never add a job of a different
type to the queue of an active machine. As such, it is much less likely to do unnecessary
colour changes. Followed by that, KB has an advantage of around 100 setups on the rest.
Those others perform similarly well to each other, having relatively small differences in the
used setups. The exception to this is ABC, which somewhat surprisingly is worse than FT.
It could be noted that the parameters proposed by Campos et al. [6] were used, which were
not optimised solely for the number of setups. This is however also the case for the MBC
approach, which does not experience this problem.

MBC and ABC both achieve nice and low flow times, with MBC doing ever so slightly
better than ABC. Again KB is the best of the rest. Not surprisingly the R-Wasps and ATA
approaches result in longer flow times. In this uniform case however this has not resulted
in much better performance on the setup front compared to MBC and to a lesser degree
ABC. Finally FFW and FT are somewhere in between, considering the limits of FT and the
simplicity of FF'W these are however not unexpected performances.

In terms of average queue length MBC, ABC and FFW are the best performers. KB
does similarly well, but has a slightly larger spread in its results. The remaining algorithms
seem to do reasonably well in not assigning jobs of other types to a queue unless it gets busy,
resulting in no really long queues for any of the algorithms. Only SRM is a poor performer,
which seems to be the case across all measures. This is likely due to a number of random
factors being used in its implementation, along with the likely poor parameters.

The clear downside of FF'W is shown here, it uses comparatively much storage space to
achieve its low number of setups. As with the other measures, KB does not perform the
best, but remains in an acceptable margin, this time together with FT. R-Wasps and ATA
do explicitly use storage space, but by no means as excessively as FFW.
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Figure 6: Experiment 1: Twenty job types with
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8.2 Experiment 1 - Foraging for work
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Figure 7: Experiment 1: Foraging for work with different step sizes on twenty job types with
uniform random appearance rates.

Throughput seems to increase with greater step sizes, although the difference quickly becomes
negligible. The required number of setups is by far the lowest with the smallest step size.
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This can easily be explained by machines rarely being able to move far from their current
colour. As such, even when they move they have a good chance to come back to their old
position without finding a job elsewhere. A reduction of 100 setups compared to a step size
just one greater is a lot. However, it remains a question whether this weights up to the delay
in production reflected by the the throughput. Even so, step sizes of two or three still use
quite a few setups less than even larger step sizes, while they cause a much smaller delay.

Looking at the average flow times, it can be seen that, even with a step size of one,
production will on average rarely be delayed more than half an hour. Given operation costs
and the previous results, this makes it possible to calculate which number of time steps leads
to the lowest cost per painted truck.

Average queue lengths show that for the foraging for work algorithm queues with five
slots are quite excessive, at least with this colour distribution. Environments with this or
similar colour distributions could therefore save some space by reducing their queue sizes.

While this algorithm seems to require at least some storage in any situation it can be
kept in reasonable bounds when using step sizes of two or greater. Considering a situation
where queues are allowed to have a length of three, saving sixteen (two times eight machines)
spaces compared to this situation, assigning a storage area that allows for ten trucks still
leads to a reduction in the required area.

8.3 Experiment 2

Compared to the first experiment, the throughput performances are much closer with this
more realistic colour distribution. MBC and ABC are still the close first and second, followed
closely by R-Wasps and ATA, with FT and KB right behind those. By comparison FFW is
not really a competitor here, although it does not actually do extremely bad, it is just well
behind the rest on this front. SRM keeps performing similarly to random, here and in the
other measures.

Unlike in the uniform case, the FFW algorithm now has competition on the total setup
time front, ATA and especially KB come close, though they still leave a reasonable gap.
MBC is the best of the rest, but well behind the top three and as might be expected FT is
quite bad. The surprise is that both ABC and R-Wasps perform very poorly. As mentioned
for the first experiment, the ABC parameters were not solely optimised for the setup time.
Being one of the first approaches to this problem, it may also simply not be as good as more
sophisticated algorithms such as ATA. For R-Wasps this is likely in part a tuning problem
as well. Cicirello and Smith [8] made comparisons on uniform and close to uniform colour
distributions and as such the parameters may be more in line which such cases. Then again,
as they did not make a comparison with a more realistic distribution it is entirely possible
the algorithm simply doesn’t handle those very well. After all, on their problems R-Wasps
was at least able to improve on ABC (with parameters tuned for the setup time by Cicirello
and Smith [8]) by a margin, whereas here it is a clear step behind.

While the average flow time wasn’t very good in the uniform case either, FFW is now
clearly the worst. The rest of the algorithms (ignoring SRM) all do quite well, being mostly
in the four to six minute range. Of those, F'T' does relatively poorly, averaging just above six
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minutes, while MBC followed by ABC perform best having their average flow time around
the four minute mark.
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Figure 8: Experiment 2: Twenty job types with appearance rates of: one 70%, one 15%, one
7%, one 4% and sixteen 0.25%.
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Considering these three metrics, KB seems like the best choice for this more realistic colour
distribution. It is second best in terms of the total setup time and also performs well both
for the throughput and the average flow time. Only FFW outperforms KB on the total setup
time, but it is clearly worse in terms of both the throughput and the flow time.

Also for the average queue length, the differences are mostly small, with the same algo-
rithms (in the competitive range) doing best and worst. Here too FFW is an outlier and by
far the worst, despite having been one of the competitive algorithms in the uniform situation.
It should however be noted that its queue sizes still average just above one and its queue
usage cannot at all be considered excessive.

In terms of the average storage use, not that much changed compared to the uniform
case, primarily the numbers became smaller. Notable is that FT and KB use around the
same amount of storage as in the uniform case, but are now among the worst performers,
along with FFW. Then, R-Wasps and ATA are in between those poor performers and the
rest that rarely, if at all, use storage.

8.4 Experiment 2 - Foraging for work

Beyond a step size of one, all other step sizes perform reasonably similarly in terms of
throughput. The differences between step sizes are far less clear with this more realistic
colour distribution.

Unexpectedly, FFW with a step size of ten outperforms all other step sizes, including a
step size of one on the front of setup time. Is it somehow more likely to arrive back at its
position from the previous time step than other step sizes? There is no bias to movement in
one direction, the direction is randomly selected every time a machine starts moving (when
it couldn’t find a job in its current position), but not for every step of this movement. The
machine looks for a job only in this direction, it does not check the other side if it fails here.
This means that, when a step size of greater or equal to half of the job types is considered (in
this case ten or greater), a machine can arrive back at the position from the previous time
step regardless of the movement direction. This is due to the connection from the last job
type to the first job type considered for the used implementation of FFW. For smaller step
sizes this is only possible in half of the cases. It should be noted that this will only happen
when there are no jobs on the route to the type of the previous time step. Which explains
why the effect is clearly visible in this experiment, while being barely of note in Experiment
1. Fluctuations in performance of step sizes between two and nine may be explained by two
factors. First, when using a step size of five, moving in one direction for two time steps leaves
the worker in a position where it has two ways to get back to the original point using another
two time steps, since it doesn’t matter whether it goes forward or backward. Considering a
step size of two, again going in one direction for two time steps, only going back the same
way for two time steps will reach the original point. Generally, a larger step size has a
greater or equal number of possible paths back to its original position as any smaller step
size. Second, however, the greater the step size, the greater the likelihood of coming across
a job opportunity along this path before arriving back at the original position. Due to these
two factors it is not immediately clear beforehand which step size in the two to nine range
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Figure 9: Experiment 2: Foraging for work with different step sizes on twenty job types with
appearance rates of: one 70%, one 15%, one 7%, one 4% and sixteen 0.25%.

would require the lowest setup time. Additionally it should be noted that job opportunities
are not fairly distributed in this experiment. On the type range from zero through nineteen
the higher probabilities are all in consecutive positions, type zero being the 70% appearance
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rate, type one 15%, etcetera. Therefore, moving in the negative direction from point zero
(back to nineteen) on average presents fewer job opportunities compared to moving in the
positive direction, although it is not obvious if this influences performance since movement
in both directions is equally probable.

The trend for the flow time is clear and expected, with greater step sizes having lower
flow times. This is the logical effect of them being quicker in taking on newly appearing jobs
in different locations, simply because they are faster in reaching them. It should be noted
that flow time differences quickly become negligibly small from around step size four and
up, allowing step size selection to be made on basis of other factors.

For the average queue length the trend is similarly clear, but less obvious in its origin.
Lower step sizes are slower to take on a new job after running out of work. This gives
machines that are painting frequent colours more time to add work to their queue, even with
a full queue a slot may become available if it takes more than a couple of time steps for
another machine to take the job. Contrary, higher step sizes will quickly take any job after
going idle, while maintaining a bias towards active machines which get to check for a job
before those that are idle. Clearly, the setups induced by quickly taking any job when idle
are less significant to average queue length than maintaining (a few) long queues for frequent
types.

Like with the average queue length, the storage use is also greatly impacted by quickly
taking on any job with larger step sizes. Due to this, step sizes of four and greater hardly
use any storage at all.

8.5 Experiment 3

Only FFW seems to be able to deal with double the number of jobs being produced. Beyond
that, R-Wasps deals with the situation best, but is still hundreds of jobs behind on produc-
tion. MBC has some outliers that do pretty well, but in most situations, like the rest of the
algorithms, it is 400 or more jobs behind after the 1000 simulated minutes of the experiment.

The algorithms show the same ranking for the total setup time, indicating that efficient
use of setups is essential to high volume throughput. A side note about how FFW achieves
this is that it may be delaying jobs of uncommon types longer than usual. This may happen
because machines will not switch task while there are jobs of the same type available, with
continued production this is increasingly likely. As a result of this, the setup time may
remain low, but there could be a negative effect in respect to the average flow time.

These effects to the average flow time are visible, suggesting that FFW does occasionally
delay some jobs for quite a while. Except for SRM, the remaining algorithms all seem to
have an upper bound on the average flow time around 30 minutes. SRM’s performance is
very poor in terms of average flow time, but there is a good explanation for this, aside from
the complete lack of tuning. Only SRM offers a job randomly selected from all waiting jobs
to the machines, all other approaches (including random) first offer jobs produced in this
time step and then use a first in first out system for jobs in storage. Quite obviously, as
soon as there are more than a few jobs in storage, this will have the devastating effect on
the average flow time seen in the plot.
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Figure 10: Experiment 3: Double the production, twenty job types with appearance rates
of: one 70%, one 15%, one 7%, one 4% and sixteen 0.25%.

In addition to the average flow time, the average queue length shows that while FFW man-
ages to deal with the situation, it wouldn’t be able to handle much more. As might be
expected in this situation, all other algorithms generally have very full queues.



Storage usage is also as would be expected. Some outliers where FFW too has difficulty
handling the production rate can be seen. Given how often it manages, it may be expected
that in longer runs it may be able to recover from such situations, additional experimentation
is required to ascertain this. MBC is the only other algorithm that has a few outliers with
hardly any storage use, suggesting that it is sometimes able to deal with the situation for a
while at least. This could mean that it is a viable approach in less extreme situations.

A final notable things is how SRM and random are not particularly worse than other
approaches here (except for the average flow time). This may indicate that this is around
the limit of how poor performance can get here.

8.6 Experiment 4

Seeing how FFW already showed some difficulty in the previous experiment, it is no surprise
that with a higher break down probability added on it, like the rest of the algorithms before,
is no longer able to process everything.

The total setup time, with how extremely low it is, now very clearly indicates that FF'W
simply isn’t painting some job types. R-Wasps also manages an usually low total setup time,
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Figure 12: Experiment 4: Double the production, break down probability of 0.25 per minute,
twenty job types with appearance rates of: one 70%, one 15%, one 7%, one 4% and sixteen

0.25%.

which likely has a similar reason. Machines become so extremely specialised in a single job
type that they are highly unlikely to switch.

In terms of average flow time the same comments apply as for the previous experiment.
FFW’s average queue length suggest that it tends to be able to handle the situation for
a short while, until the system ultimately overflows, as it does with all other algorithms.
None of the average storage usage is surprising. FFW and R-Wasps were able to handle the
situation best, but still require excessively large storage.

8.7 Experiment 5

As might be expected, not much is different from Experiment 1. The distance between the
best and worst result of each algorithm has become smaller. This is primarily due to a shift
upward of the lower bound of around five to ten jobs for most algorithms.

While there are no major differences in total setup time compared to Experiment 1 either,
one thing is notable. For FFW the total setup time has increased, although not by much,
while for all other algorithms it stayed about the same or improved. It might be that break
downs give FFW some time to wait for another job of the same type that can be added to
the queue to reduce the setup time.

With machines no longer being plagued by break downs the flow time is lower for ev-
erything and the variation between runs is also reduced. Once more, also in terms of the
average queue length, both the numbers and ranges are smaller for all algorithms. Average
storage use is smaller with no break downs for R-Wasps, ATA and FFW. For the rest it
remains very similar to the situation in Experiment 1. With both FT and KB very stable
around the average one job in storage and the rest using storage rarely or not at all.
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8.8 Experiment 6
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Figure 14: Experiment 6: Setup time of ten minutes, twenty job types with uniform random
appearance rates.

Like with other situations where the problem was made more difficult, FFW is the only
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algorithm able to produce a reasonable throughput with ten minute setup times. Logically,
the total setup times are much longer and FFW is by far the best performing algorithm.

Unlike in Experiments 3 and 4, FFW now outperforms the rest in terms of average flow
time. It is likely that these long setups have a much greater impact on the flow time than
any delay in taking on jobs that may be induced by FFW. SRM is in the same situation as
in the two previously mentioned experiments. Given the situation, both the average queue
length and the average storage in use show no surprises.
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9 Conclusion and discussion

This section starts of with a summary of the results. In the next subsection this is followed
by the discussion of the contributions of this research. The final subsection then suggests a
number of routes of interest for further work.

9.1 Result summary

Most notable in terms of results is the performance by the foraging for work (FFW) al-
gorithm. On a uniform colour distribution it outperformed every other algorithm by an
exceptional margin on the total setup time. Despite not performing particularly well in
most other measures, performance in those is not poor enough to negate savings as a result
from the reduction in setup time. Investigation of performance by FFW when using different
step sizes resulted in very clear curves for all measures. As a result, optimisation for this
algorithm, including multi-objective cases, should be quite simple.

When a more realistic colour distribution is considered FFW remains competitive in
regards to the total setup time. In the other measures it is however a poor performer. For
this reason the proposed algorithm (KB) seems like the most effective approach for this
situation, as it is either competitive or not far behind in the most important measures. It
does require some storage, but this also goes for the closest competitors. This shows that
the proposed algorithm is effective, particularly since this situation is likely closest to the
real world situation. Also notable is that this proves the viability of combining aspects from
different algorithmic approaches for application to this problem. Additionally, being a new
algorithm, the used parameters were never specifically tuned for KB, making it probable
that it could perform even better. Experimentation with the step size for FEFW showed that
proper tuning could allow the algorithm a significant improvement in setup time over the
one used in comparison to the other algorithms. This is however not even close to the margin
in the uniform case, making algorithm selection for this more realistic situation a trade off
between setup time and the other measures.

Despite ATA and KB being similarly effective in the standard situation with a realistic
colour distribution in regards to the total setup time, FFW is the only algorithm that
manages to utilise this to cope with the double production rate in Experiment 3. For the even
more extreme situation where double production was considered together with an increased
break down probability, none of the algorithms were able to process at a fast enough rate.
Even so, once again FFW did show the best performance. With a tuned step size it might
do even better, though it is questionable whether this would be significant enough to handle
the situation.

It is no longer very surprising that FFW also performed best in experiments with a
uniform distribution without break downs or with much longer setup times. A bit unexpected
however is that none of the other approaches even come close to handling the uniform
distribution with much longer setup times. At best they managed to reach a throughput
slightly over half the produced jobs. Evidently, setups are a very significant part of this
problem.
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9.2 Discussion

Care needs to be taken in drawing conclusions from the experiments presented in this work.
While they are solid experiments, the compared algorithms were given no tuning effort.
Some parameters were taken as presented by the author of the respective algorithm and
as such were optimised for a, sometimes slightly, different problem. While others were
presented here originally without any significant thought behind them. Clearly, this is not
a fair comparison. Even so, significant performance differences such as shown by the FFW
algorithm on a number of cases cannot be ignored.

For use in the real world it is important to consider that it is not clear how well this
problem fits such a situation. This is not just because of the lack of clarity about the exact
problem originally faced by Morley et al. [22] [20] [21]. More significantly, the problem itself
may well have changed since Morley et al. [22] [20] [21] dealt with it over fifteen years ago.

While this is not a biological study, the effectiveness of the foraging for work model may
be relevant to the biological discussion of how realistically the model represents nature. The
publication of the model and the ideas behind it was followed by a back and forth of critiques
[26] [12] [27] [33] [13]. From a non-biologists point of view foraging for work does not seem
like a bad explanation, even if this is likely not the only aspect influencing insect behaviour.

9.3 Further work

As should be evident, the painting problem is part of a larger whole in the automotive
manufacturing industry. For future work it is important to take into account how painting
fits in with the rest of the production process. The previously discussed related work (Section
3) may serve as a good starting point for this.

While there clearly is space for simpler algorithms such as FFW, parameter tuning is a
very important problem for more complex algorithms. These more complex algorithms are
required in optimising for situations with more sophisticated target measures, such as jobs
with due dates. Therefore, further work focusing on tuning and a comparison after tuning
of the approaches included here, as well as any others that are of interest, is needed. Despite
being quite simple to tune, it may still be of interest to look at performance with different
step sizes for FFW on more challenging problems, like those with double production rates
considered in the experiments.

Another aspect of the FFW algorithm to look at is how it might be combined with
other approaches, with the goal of taking the good parts from both worlds. For example
a combination could consider machines that move around like in FFW| but go through a
bidding process for jobs in their current position, rather than just assigning them.

Further work may also focus on problem variations where dynamic colour distributions
are considered. These changes to the distribution during the production process may be
abrupt, as previously considered by Cicirello and Smith [8], or more realistically, gradual.

Approaches that model division of labour, but were not included here, like the evolution-
ary threshold [11], network [3] and social inhibition [14] models should also be included in
further work. As shown, untested approaches can sometimes produce exceptional results.
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A Measurements

A.1 Experiment 1
measure throughput total setup time average flow time average queue length average storage in use
min 972 2750 15.1433 1.56729 0
max 990 2887 22.2805 2.53875 0.122877
mean 982.145 2811.685 18.05086 1.966513 0.0004005991
std 3.021772 20.81714 1.056894 0.144516 0.004237715
Table 6: Measurements of random from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 986 2570 5.89447 0.267163 0
max 998 2766 7.17387 0.422861 0
mean 994.677 2671.913 6.261265 0.3013263 0
std 1.102673 31.89829 0.1598183 0.01742917 0
Table 7: Measurements of MBC from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 987 2661 5.9407 0.275155 0
max 998 2847 8.51055 0.611104 0
mean 994.566 2764.322 6.504912 0.3329397 0
std 1.214545 28.69543 0.2988738 0.03776914 0
Table 8: Measurements of ABC from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 974 2547 10.1456 0.554303 2.12288
max 994 2771 16.8525 1.30141 3.41758
mean 988.163 2658.595 12.48666 0.8084503 2.601182
std 2.740792 30.2754 1.04634 0.1129722 0.2164518

Table 9: Measurements of R-Wasps from experiment 1.
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measure throughput total setup time average flow time average queue length average storage in use
min 974 2539 13.366 0.802199 3.24276
max 992 2758 19.1836 1.4808 4.56144
mean 984.928 2659.253 15.64927 1.066892 3.92036
std 2.671695 34.27988 0.9497614 0.1113889 0.2149252
Table 10: Measurements of ATA from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 969 2749 14.4635 1.47724 0.002997
max 990 2878 22.5407 2.56315 0.0989011
mean 982.365 2809.88 18.06674 1.966597 0.01520978
std 3.140643 21.58146 1.13534 0.1545397 0.00676451
Table 11: Measurements of SRM from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 976 1594 10.3225 0.327671 3.6963
max 996 1821 14.4206 0.429997 7.31868
mean 989.159 1710.664 11.83037 0.3716516 5.083562
std 2.927848 40.18689 0.6866412 0.01695261 0.578387
Table 12: Measurements of FFW from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 982 2585 8.36052 0.458969 1.07892
max 995 2771 11.9899 0.916511 1.1968
mean 991.281 2681.092 9.584264 0.6049524 1.138011
std 1.963643 31.69138 0.4266495 0.05482387 0.01787564
Table 13: Measurements of F'T from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 983 2264 6.73742 0.253605 0.903097
max 997 2568 10.2397 0.889539 0.955045
mean 993.305 2449.797 7.572391 0.3786516 0.9339901
std 1.83121 43.21087 0.4053925 0.06929763 0.007802134
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A.2 Experiment 1 - Foraging for work

measure

throughput total setup time average flow time average queue length average storage in use

min 944 1184 14.6738 0.385613 7.92008
max 992 1531 31.3524 0.615955 23.0659
mean 980.594 1382.564 20.03083 0.4849286 12.66046
std 6.545992 49.9011 2.282294 0.03481235 2.109015
Table 15: Measurements of FFW step size 1 from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 977 1587 9.91886 0.326387 3.57542
max 996 1841 15.4018 0.435992 8.26873
mean 989.096 1710.844 11.81697 0.3711478 5.078257
std 2.992949 40.96677 0.6673296 0.01739954 0.5607201
Table 16: Measurements of FF'W step size 2 from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 981 1771 8.25829 0.294991 2.06693
max 996 1989 10.8773 0.382616 3.93007
mean 991.625 1873.83 9.374111 0.3354865 2.864794
std 2.118694 36.95737 0.3863008 0.01358969 0.294224
Table 17: Measurements of FFW step size 3 from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 986 1845 7.43548 0.287998 1.32567
max 997 2083 9.4073 0.362922 2.70829
mean 992.724 1964.652 8.264133 0.318709 1.866667
std 1.759807 35.97857 0.3032297 0.01195036 0.213559
Table 18: Measurements of FFW step size 4 from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 986 1904 6.98189 0.276724 0.842158
max 997 2146 8.48238 0.34494 1.83217
mean 993.352 2013.759 7.608657 0.3084692 1.285304
std 1.600205 35.76154 0.2441685 0.01118667 0.1526311

Table 19: Measurements of FFW step size 5 from experiment 1.
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measure throughput total setup time average flow time average queue length average storage in use
min 986 1943 6.71932 0.277437 0.67033
max 997 2176 8.08048 0.344511 1.44755
mean 993.718 2056.959 7.263582 0.3042179 0.9637715
std 1.480766 36.12817 0.2189547 0.01054936 0.1258221
Table 20: Measurements of FFW step size 6 from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 988 1962 6.49899 0.269445 0.475524
max 997 2170 7.67437 0.33495 1.27473
mean 993.941 2071.881 6.985692 0.2993082 0.7250352
std 1.368719 38.09394 0.2029869 0.01026412 0.1129089
Table 21: Measurements of FF'W step size 7 from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 988 1954 6.34274 0.262596 0.356643
max 997 2185 7.5206 0.333523 0.893107
mean 994.198 2088.946 6.810093 0.2973957 0.5648454
std 1.307863 36.75851 0.1772944 0.009720578 0.09105404
Table 22: Measurements of FFW step size 8 from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 989 1998 6.28945 0.267733 0.257742
max 997 2267 7.36647 0.329812 0.896104
mean 994.341 2105.302 6.695399 0.2964176 0.4537031
std 1.226468 38.26014 0.1803298 0.009892409 0.08915931
Table 23: Measurements of FFW step size 9 from experiment 1.
measure throughput total setup time average flow time average queue length average storage in use
min 987 1934 6.0743 0.262596 0.212787
max 998 2192 7.32797 0.33495 0.834166
mean 994.461 2066.434 6.52217 0.2886136 0.3584942
std 1.269681 39.99028 0.1703579 0.01020265 0.0777287

Table 24: Measurements of FFW step size 10 from experiment 1.
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A.3 Experiment 2

measure throughput total setup time average flow time average queue length average storage in use
min 981 1239 7.60725 0.535892 0
max 998 1617 10.9393 0.975595 0.002997
mean 991.737 1444.38 9.151961 0.734822 7.992002¢-06
std 2.423986 60.66226 0.533585 0.07119156 0.0001411243
Table 25: Measurements of random from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 993 495 3.59519 0.0472384 0
max 998 880 4.26179 0.104325 0.00499501
mean 997.107 681.371 3.905778 0.07119593 9.99002¢-06
std 0.9351072 67.9813 0.1094645 0.008788512 0.0002232718
Table 26: Measurements of MBC from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 991 872 4.02909 0.0890541 0
max 998 1251 4.85456 0.141859 0
mean 996.656 1059.885 4.318006 0.1104724 0
std 0.990275 60.46026 0.1013303 0.008310656 0
Table 27: Measurements of ABC from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 991 1077 4.80221 0.115171 0.363636
max 998 1343 5.70352 0.184102 0.625375
mean 995.84 1204.228 5.142044 0.1417835 0.4765982
std 1.214032 46.92483 0.1368007 0.009859111 0.03540391

Table 28: Measurements of R-Wasps from experiment 2.
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measure throughput total setup time average flow time average queue length average storage in use
min 992 462 4.34002 0.0660767 0.414585
max 998 740 5.3002 0.13829 0.632368
mean 996.377 602.457 4.737175 0.09643769 0.5091749
std 1.115399 47.56767 0.1503583 0.01079039 0.03625756
Table 29: Measurements of ATA from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 983 1260 7.65694 0.529899 0.001998
max 997 1646 11.2118 1.02569 0.025974
mean 991.842 1439.513 9.131598 0.7302834 0.00950649
std 2.329477 61.18792 0.5388569 0.07154701 0.003449321
Table 30: Measurements of SRM from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 974 345 11.3024 0.937491 0.414585
max 996 527 14.0961 1.23377 1.76523
mean 988.497 442.975 12.511 1.067637 0.8323009
std 2.632284 28.87029 0.4531935 0.04928173 0.1857662
Table 31: Measurements of FFW from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 990 657 5.23417 0.104182 0.706294
max 998 1142 6.54217 0.240617 1.30969
mean 995.038 939.431 5.967947 0.1556052 1.143799
std 1.297783 73.87013 0.1873239 0.01683805 0.06645584
Table 32: Measurements of F'T from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 987 362 4.73494 0.0565148 0.919081
max 998 769 6.14156 0.455686 0.968032
mean 995.362 524.475 5.15996 0.1341815 0.9447493
std 1.413844 64.82394 0.1863172 0.05682659 0.007274022

Table 33: Measurements of KB from experiment 2.
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A.4 Experiment 2 - Foraging for work

measure throughput total setup time average flow time average queue length average storage in use
min 962 299 12.1828 0.984873 0.979021
max 994 489 22.6891 1.39189 9.2018
mean 985.971 396.068 14.81908 1.146646 2.595667
std 4.194013 30.40733 1.299896 0.06334993 0.9937119
Table 34: Measurements of FFW step size 1 from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 976 327 11.227 0.914513 0.410589
max 996 534 14.5541 1.25303 2.06993
mean 088.372 440.777 12.51038 1.068036 0.8295747
std 2.754488 27.66692 0.4454512 0.0482037 0.1893828
Table 35: Measurements of FF'W step size 2 from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 981 351 10.7556 0.888398 0.206793
max 997 579 13.0759 1.20993 0.676324
mean 989.11 457.433 11.86923 1.039518 0.4029727
std 2.300259 28.97687 0.3612556 0.04616014 0.0769052
Table 36: Measurements of FFW step size 3 from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 982 360 10.494 0.873413 0.114885
max 996 547 12.7747 1.17325 0.384615
mean 989.413 442.318 11.56688 1.023563 0.2275432
std 2.324615 30.18486 0.3656035 0.04804161 0.04410933
Table 37: Measurements of FFW step size 4 from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 981 321 10.3734 0.880407 0.0639361
max 997 527 12.5744 1.17739 0.256743
mean 989.546 432.54 11.37432 1.010607 0.1373725
std 2.277514 31.80324 0.3577825 0.04685591 0.02770118

Table 38: Measurements of FFW step size 5 from experiment 2.
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measure throughput total setup time average flow time average queue length average storage in use
min 979 372 10.3754 0.899242 0.03996
max 996 571 12.7923 1.18339 0.191808
mean 989.487 464.552 11.38926 1.016904 0.09764032
std 2.280577 29.91806 0.3351866 0.04405876 0.02135966
Table 39: Measurements of FFW step size 6 from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 981 375 10.36 0.876981 0.026973
max 996 570 12.8434 1.19538 0.121878
mean 989.537 470.588 11.34877 1.015113 0.06349152
std 2.288639 29.26932 0.3533837 0.0467189 0.01501718
Table 40: Measurements of FF'W step size 7 from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 983 318 10.1488 0.856571 0.017982
max 996 540 12.3623 1.15085 0.112887
mean 989.658 441.145 11.27838 1.009792 0.04708291
std 2.221254 31.14874 0.3490861 0.04641109 0.01272525
Table 41: Measurements of FFW step size 8 from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 981 389 10.2492 0.869416 0.012987
max 997 564 12.4349 1.13843 0.0799201
mean 989.604 471.522 11.28241 1.010059 0.0347712
std 2.304017 28.57772 0.3365061 0.04448134 0.01063746
Table 42: Measurements of FFW step size 9 from experiment 2.
measure throughput total setup time average flow time average queue length average storage in use
min 981 282 10.0281 0.846581 0.001998
max 997 451 12.3937 1.16684 0.0569431
mean 989.804 365.227 11.06571 0.9899667 0.01600398
std 2.26334 30.69354 0.3734213 0.04952474 0.007084585

Table 43: Measurements of FFW step size 10 from experiment 2.
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A.5 Experiment 3

measure throughput total setup time average flow time average queue length average storage in use

min 1366 1934 25.8716 4.58557 201.591
max 1523 2290 28.6038 4.70416 286.739
mean 1448.339 2102.608 27.02523 4.657345 243.3286
std 24.71475 55.60155 0.4192486 0.01851059 13.93413

Table 44: Measurements of random from experiment 3.

measure throughput total setup time average flow time average queue length average storage in use

min 1447 831 13.117 2.57186 0.223776
max 1948 2005 26.5598 4.64764 241.788
mean 1580.627 1723.057 23.2382 4.23239 150.4549
std 54.93662 125.117 1.721183 0.2505092 36.41589

Table 45: Measurements of MBC from experiment 3.

measure throughput total setup time average flow time average queue length average storage in use

min 1384 1871 24.8417 4.50023 180.994
max 1560 2248 28.1124 4.68147 284.112
mean 1465.022 2066.698 26.55695 4.612931 232.0562
std 25.07366 58.73574 0.4505102 0.03096243 14.52358

Table 46: Measurements of ABC from experiment 3.

measure throughput total setup time average flow time average queue length average storage in use

min 1614 1043 25.3424 4.05339 52.1608
max 1833 1534 30.7082 4.63694 169.277
mean 1699.85 1339.214 28.58335 4.488826 120.4899
std 30.21911 81.86713 0.7039181 0.08013066 17.27197

Table 47: Measurements of R-Wasps from experiment 3.
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measure throughput total setup time average flow time average queue length average storage in use
min 1421 1643 23.9484 4.27232 128.655
max 1610 2055 28.1351 4.67106 255.51
mean 1521.348 1873.05 26.37678 4.560945 198.7118
std 28.31152 61.84073 0.5763526 0.05831386 17.45025
Table 48: Measurements of ATA from experiment 3.
measure throughput total setup time average flow time average queue length average storage in use
min 1372 1914 98.049 4.56045 194.333
max 1529 2320 134.665 4.69603 287.814
mean 1449.406 2103.015 117.3809 4.643088 242.5445
std 25.09875 56.01043 5.911663 0.01969848 14.21875
Table 49: Measurements of SRM from experiment 3.
measure throughput total setup time average flow time average queue length average storage in use
min 1854 189 17.8498 2.7257 8.42358
max 1975 432 50.4452 3.65791 76.7892
mean 1941.37 324.723 25.26813 3.141106 22.30051
std 14.74464 36.07475 3.760449 0.1590964 7.579288
Table 50: Measurements of FFW from experiment 3.
measure throughput total setup time average flow time average queue length average storage in use
min 1364 1770 26.3372 4.4918 179.687
max 1563 2288 30.085 4.68632 293.691
mean 1459.371 2072.172 28.32656 4.608672 235.4903
std 25.94777 65.23708 0.5067027 0.03252948 14.6618
Table 51: Measurements of F'T from experiment 3.
measure throughput total setup time average flow time average queue length average storage in use
min 1265 1680 24.911 4.28758 170.389
max 1570 2209 28.6447 4.6946 329.945
mean 1486.434 2000.793 26.79311 4.555803 215.7592
std 27.59495 59.13127 0.6017087 0.06383077 16.6348

Table 52: Measurements of KB from experiment 3.
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A.6 Experiment 4

measure throughput total setup time average flow time average queue length average storage in use
min 849 1218 34.3561 4.56102 402.584
max 1119 1621 43.6113 4.7504 549.131
mean 982.059 1432.855 38.5942 4.67703 472.4248
std 41.93698 65.1865 1.531227 0.02557375 23.43944
Table 53: Measurements of random from experiment 4.
measure throughput total setup time average flow time average queue length average storage in use
min 897 1125 31.9744 4.48196 345.275
max 1171 1527 42.3356 4.72086 526.483
mean 1020.965 1330.407 37.04383 4.628192 446.6468
std 42.05761 64.77347 1.47674 0.0381096 24.86791
Table 54: Measurements of MBC from experiment 4.
measure throughput total setup time average flow time average queue length average storage in use
min 860 1174 33.3036 4.54247 378.737
max 1133 1626 43.7442 4.7377 543.143
mean 991.746 1420.019 38.18308 4.663307 466.6708
std 40.92342 67.14405 1.493585 0.02581459 23.61977
Table 55: Measurements of ABC from experiment 4.
measure throughput total setup time average flow time average queue length average storage in use
min 1154 243 31.1535 4.4343 255.022
max 1453 769 36.6932 4.66335 406.056
mean 1294.094 488.25 33.8437 4.573762 329.7372
std 41.3192 80.0602 0.8688697 0.03299869 23.57464

Table 56: Measurements of R-Wasps from experiment 4.
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measure throughput total setup time average flow time average queue length average storage in use
min 871 1052 33.9454 4.50807 371.292
max 1157 1475 43.509 4.70902 534.563
mean 1028.399 1280.144 37.78045 4.644593 446.4115
std 41.86912 62.76468 1.415546 0.02847825 24.56684
Table 57: Measurements of ATA from experiment 4.
measure throughput total setup time average flow time average queue length average storage in use
min 839 1217 155.62 4.48966 400.224
max 1106 1666 224.829 4.72528 560.1
mean 983.103 1431.04 182.7486 4.662677 471.9263
std 40.406 69.54166 9.591807 0.02622584 22.70943
Table 58: Measurements of SRM from experiment 4.
measure throughput total setup time average flow time average queue length average storage in use
min 1237 27 29.3892 3.61938 176.159
max 1586 222 66.6659 4.56816 415.713
mean 1407.737 75.872 37.51526 4.28865 277.9881
std 57.40461 32.65492 6.225449 0.1551308 34.70102
Table 59: Measurements of FFW from experiment 4.
measure throughput total setup time average flow time average queue length average storage in use
min 867 1117 35.7024 4.55917 392.103
max 1109 1656 45.4002 4.72314 554.417
mean 990.511 1415.726 39.91931 4.656791 467.7818
std 42.38892 75.27649 1.554148 0.02500834 23.84415
Table 60: Measurements of F'T from experiment 4.
measure throughput total setup time average flow time average queue length average storage in use
min 661 931 34.5419 4.6181 372.493
max 1146 1569 43.5417 4.83359 630.691
mean 980.385 1363.237 39.31544 4.743606 469.3271
std 65.70878 94.60112 1.489828 0.02808497 34.92635

Table 61: Measurements of KB from experiment 4.

64



A.7 Experiment 5

measure

throughput total setup time average flow time average queue length

average storage in use

min 980 2745 12.4216 1.20366 0
max 993 2880 16.0263 1.707 0
mean 986.48 2822.797 14.14429 1.447038 0
std 2.027736 20.3944 0.5737676 0.08110192 0
Table 62: Measurements of random from experiment 5.
measure throughput total setup time average flow time average queue length average storage in use
min 995 2550 5.55075 0.242759 0
max 997 2769 5.77085 0.263596 0
mean 995.335 2655.812 5.657568 0.2528097 0
std 0.5450432 35.28044 0.03538875 0.003359736 0
Table 63: Measurements of MBC from experiment 5.
measure throughput total setup time average flow time average queue length average storage in use
min 995 2610 5.61145 0.248468 0
max 998 2799 5.8012 0.26645 0
mean 995.274 2711.936 5.713853 0.2581536 0
std 0.4951456 30.87911 0.03098626 0.002939543 0
Table 64: Measurements of ABC from experiment 5.
measure throughput total setup time average flow time average queue length average storage in use
min 989 2555 8.29032 0.387185 1.58741
max 996 2744 9.33266 0.500928 1.8981
mean 992.193 2653.871 8.780827 0.4405759 1.74447
std 1.022153 27.55892 0.1647668 0.01737378 0.04877564

Table 65: Measurements of R-Wasps from experiment 5.
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measure throughput total setup time average flow time average queue length average storage in use
min 985 2463 10.6714 0.565294 2.52048
max 993 2729 13.0343 0.847152 3.39261
mean 989.186 2604.692 11.80507 0.6913281 2.980095
std 1.373787 39.03964 0.3286513 0.04022822 0.1372903
Table 66: Measurements of ATA from experiment 5.
measure throughput total setup time average flow time average queue length average storage in use
min 980 2751 12.2591 1.18353 0
max 992 2885 16.4554 1.77337 0.016983
mean 986.516 2819.401 14.15448 1.447496 0.006576424
std 2.060094 21.39392 0.5888896 0.08311184 0.002619971
Table 67: Measurements of SRM from experiment 5.
measure throughput total setup time average flow time average queue length average storage in use
min 979 1677 9.00101 0.292136 2.90709
max 996 1909 11.7394 0.353646 5.34166
mean 990.813 1789.346 9.991924 0.3232918 3.816048
std 2.3672 37.37862 0.4209856 0.009348192 0.377438
Table 68: Measurements of FFW from experiment 5.
measure throughput total setup time average flow time average queue length average storage in use
min 990 2531 7.70624 0.382759 1.05495
max 996 2758 8.35915 0.468958 1.15285
mean 992.958 2646.73 8.029806 0.4250929 1.09942
std 0.9279532 33.45119 0.1032444 0.01381487 0.01571101
Table 69: Measurements of F'T from experiment 5.
measure throughput total setup time average flow time average queue length average storage in use
min 993 2223 6.36884 0.225204 0.9001
max 997 2502 6.65493 0.254319 0.955045
mean 994.475 2365.346 6.506397 0.2408722 0.9334366
std 0.6781112 45.45849 0.04141832 0.004589916 0.007929449

Table 70: Measurements of KB from experiment 5.
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A.8 Experiment 6

measure throughput total setup time average flow time average queue length average storage in use
min 481 4688 65.4758 4.7541 200.368
max 538 5071 73.0915 4.80705 228.282
mean 511.208 4895.711 68.92227 4.780941 212.593
std 7.612929 63.93747 0.9761201 0.008775333 4.352763
Table 71: Measurements of random from experiment 6.
measure throughput total setup time average flow time average queue length average storage in use
min 502 4599 60.8755 4.58599 172.946
max 566 5065 69.9243 4.7835 216.984
mean 532.13 4859.85 65.56966 4.719833 195.2864
std 9.844695 64.21017 1.375697 0.02899462 6.957846
Table 72: Measurements of MBC from experiment 6.
measure throughput total setup time average flow time average queue length average storage in use
min 491 4724 64.9125 4.70273 194.849
max 540 5077 71.3083 4.79449 223.393
mean 516.52 4904.923 67.97606 4.760523 208.7157
std 7.475392 63.00929 0.9632836 0.01177013 4.36982
Table 73: Measurements of ABC from experiment 6.
measure throughput total setup time average flow time average queue length average storage in use
min 525 4482 81.3718 4.64264 172.837
max 599 4984 90.1098 4.74426 209.218
mean 560.849 4759.029 85.54633 4.695047 191.7586
std 11.117 65.49701 1.370627 0.01703461 5.890342

Table 74: Measurements of R-Wasps from experiment 6.

67



measure throughput total setup time average flow time average queue length average storage in use
min 491 4621 66.4339 4.69274 197.408
max 539 5058 72.5316 4.77222 229.325
mean 514.416 4870.396 69.1769 4.736749 210.6341
std 8.009563 65.99549 1.016082 0.01232856 4.766408
Table 75: Measurements of ATA from experiment 6.
measure throughput total setup time average flow time average queue length average storage in use
min 489 4685 171.483 4.74768 199.812
max 535 5096 210.169 4.80391 226.8
mean 511.668 4895.631 192.1301 4.778518 212.3086
std 7.78411 63.36426 5.294456 0.009384517 4.410509
Table 76: Measurements of SRM from experiment 6.
measure throughput total setup time average flow time average queue length average storage in use
min 931 2935 27.8555 1.30926 13.8042
max 980 3441 47.2986 1.57514 33.3057
mean 962.387 3195.686 35.45724 1.431731 21.64107
std 7.465317 78.27701 3.296882 0.04358313 3.123329
Table 77: Measurements of FFW from experiment 6.
measure throughput total setup time average flow time average queue length average storage in use
min 487 4670 66.0221 4.68745 192.88
max 543 5087 73.191 4.78678 223.014
mean 515.701 4890.511 69.34823 4.750211 208.7466
std 8.096985 65.05453 1.061029 0.01472438 4.833845
Table 78: Measurements of F'T from experiment 6.
measure throughput total setup time average flow time average queue length average storage in use
min 493 4674 63.286 4.65135 182.684
max 556 5083 71.5071 4.79849 221.936
mean 523.774 4867.571 67.17855 4.737762 202.1623
std 9.169897 65.55942 1.241155 0.02226406 5.707443

Table 79: Measurements of KB from experiment 6.
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