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Abstract

Time series data can be defined as data taken over time. A large amount of time series data is being gathered

every day. Analyzing time series data requires multiple techniques to understand, prepare, visualize and

gain knowledge from the data.

Although several free tools for time series data analysis exist, none provide a platform that feature a range of

techniques while providing users the ability to implement their own algorithms. Environment for Time series

Analysis (ETA) is the platform we propose to fill this gap. The goal of our platform is to provide an easy way

to perform all data analysis related to time series and enable users to expand on it by easy creation of their

own modules. ETA is open source and written in Python, which has a lot of packages that can be utilized.

Some modules for profiling, plotting, preprocessing and machine learning are already provided in ETA.
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Chapter 1

Introduction

The amount of data collected is getting larger every day. Corporations, organizations, scientists and institu-

tions are trying to gather as much data as possible. Even data that is not useful yet, but which might become

useful in the future, is already being gathered. At the same time people are creating more and more data

themselves. A lot of their equipment like smartphones, smartwatches and home automation systems are

generating and gathering data.

Data comes in all kinds of different types. Our primary focus is time series data. “A time series is a sequence

of observations taken sequentially in time” [2]. A large amount of time series data comes from sensors that

continously collect data. An example is a weather station that measures the temperature and wind speed

every second. These large amounts of data make data analysis and knowledge discovery possible, which is

difficult by default. Other challenges come from data being missing, incorrect or inconsistent. This leads to

misinterpretation of the data and can lead to undesired results. To correct this data one has to understand it

and its structure. The data can then be preprocessed to give a clean data set.

There are already several free time series data analysis software tools available. However, to our knowledge

we are missing a platform that provides a range of time series analysis tasks and is easy to work with while

giving the user the option to implement their own techniques. That is why we propose ETA, Environment for

Time series Analysis. Our open source1 platform offers a framework for different functionalities to work with

time series data that can be expanded with modules.

ETA is an evironment where one can analyze, process, visualize and gain insight into data. This means

tackling the challenges mentioned above, which requires multiple data analysis techniques. It is an all–in–

one platform where one can easily use data analysis techniques. Because numerous different techniques

exist and the fact that one might want to design its own algorithm or functionality the platform has to

1Source–code can be found at https://bitbucket.org/eta_tkinter/eta/.
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5

be modular. That is why we created ETA and each of its core functionalities to be modular. Users can

also implement their own modules on top of the existing framework. Because of this framework the user

does not need to focus on functionalities like data loading, data handling, parameter handling, or any other

functionality already implemented. One of these core functionalities is data profiling. Data profiling can be

used to gain information and statistics about the data. The data can be cleaned and prepared for analysis

using preprocessing techniques. Machine learning algorithms can be applied for classification, clustering and

regression. Finally, the data can be visualized using various plotting techniques. All of these functionalities

have some modules already implemented. Using them is done by simply selecting the module from ETA’s

menu. The modules can also be improved or the platform can be expanded with new modules. The choice

for Python as the platforms programming language makes the implementation of modules very easy. It is

one of the most popular programming languages in scientific computing. Python’s (scientific) libraries allow

easy implementation of new functionality as well.

The next chapter provides some background on data analysis. It shows some data analysis challenges and

solutions using an example data set. A comparison of different time series analysis software will then be

shown in related work. Chapter 4 will discuss ETA as a platform and the design choices of its architecture

and its interface. After showing the framework, ETA’s functionalities and modules will be discussed. In

chapter 5 we show how easy it is to use ETA by giving a step–by–step guide on how to use ETA, without the

need of any programming. Finally, we will present our conclusions and suggest future work to be done to

further improve the platform in chapter 6.



Chapter 2

Background

Data can be classified into two different types: categorical and numerical. Categorical data is data that can be

sorted into groups or categories. Examples are sex, blood group or nationality. Numerical data is data that

can be measured. They can be placed in ascending or descending order. Examples are height, income or age.

Time series data is a form of numerical data.

A data set is most commonly represented by a data matrix. Every column of the table represents a particular

variable (feature). Each row corresponds to a given member of the data set (a sample). An example of a data

set is given in table 2.1.

R
ow

s

Columns
index date temperature condition ski–rentals

1 2017-01-01 1.2 cloudy 2

2 2017-01-02 0.6 rain 17

3 2017-01-03 -3.0 snow 22.5
4 2017-01-04 2.3 cloudy 24

5 2017-01-05 1.3 rain 19

6 2017-01-06 -2.3 snow 25

7 2017-01-07 -10.0 snow 27

8 2017-01-08 -3.7 ? 33

9 2017-01-09 0.3 cloudy 35

10 2017-01-11 1.1 cloudy 28

Table 2.1: A self–created time series data set.

This data set has some problems. For example, it contains the value 22.5 in ski–rentals. This should not be

possible. The best solution would be to change the value to 22 or 23. The second problem is that the data has

a ? as a condition. The temperature of that sample is negative and the amount of ski–rentals is rising. As one

can see from the other data rows, this probably means it was snowing. The next problem is that the data set

misses a day between index 9 and 10; 2017-01-10 is missing. To fill this, one could make its temperature the

average of the previous and next day. Since both days are cloudy one can also select cloudy as its condition.

6
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For its ski–rental value one might not want to overestimate and take the lowest value of the two. A not so

obvious fourth problem is the value −10.0. It might be possible that this was the actual temperature; but

since the change in temperature is so significant it is also possible the sensor was malfunctioning. This is

called an outlier.

The problems above are an example of the importance of data analysis. As you can see, with data analysis

one should be able to detect errors and know how to solve them. Getting rid of these problems is what the

data analysis technique called preprocessing does. The second problem could be fixed by applying a different

technique called machine learning; by applying a machine learning algorithm on the rest of the data one can

predict the condition. Visualizing the temperature over time would show the outlier of the fourth problem.

And although this data set is small enough for a user to understand, the data set could contain millions of

rows. This is why one might want to get more insight into their data to detect possible problems, which can

be done using data profiling. These data analysis techniques are all available in ETA and will be discussed in

further detail later in section 4.4, core.

Time Series: Seasonality, Trends & Forecasting

If the time series data set shown above had information spanning multiple years, one would see an

example of seasonality. The temperature will be low in the winter and high in the summer. This is called

seasonality, the cyclic fluctuation over a period of time. The temperature during the day also displays

seasonality.

Trend is how the value behaves over time without the effects of the calendar and other irregularities.

An example is that the temperature is rising due to global warming. This is called an upward trend.

With time series data it is important to take seasonality into account. This is especially important with

forecasting [3]. Forecasting is the process of using past data to predict future data.

Exploratory Data Analysis

Exploratory Data Analsysis (EDA) is an approach to data analysis. Usually one has some assumptions or

hypotheses that they want to test on the data. EDA postpones this and first lets the user explore the

underlying structure and model of the data. Based on the exploration, one can create new hypotheses

or alter current ones.

Exploratory Data Analysis is one of the reasons we created ETA. Although people might want to test

a technique or model of their own, provided techniques allow users to gain insight into their data and

how to approach or improve their data and techniques. This maximizes the insight into a data set

which is the primary objective of EDA. Other reasons [4] someone might want to use EDA is to extract

important variables, detect outliers and anomalies, test underlying assumptions and determine optimal

settings for future processes.
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Most of the techniques used in EDA are graphical. Graphics are the best way to show the structure of

the data and give the user the resources to analyze it. The importance of graphical representations of

data will be discussed in more detail later in section 4.4.1, plotting. The other way to explore the data

is the use of quantitative techniques. These yield numerical or tabular output. A simple example is

calculating the average value of a data column. Data profiling, which will be discussed in section 4.4.2,

allows exploratory data analysis by making use of both graphical and quantitative techniques.



Chapter 3

Related Work

Weka Waikato Environment for Knowledge Analysis (Weka) [5] is a popular machine learning software tool.

It is developed using the Java programming language. Weka also allows the implementation of new

algorithms. Since version 3.7.3, a package can be installed to allow forecasting for time series. The weka

interface can be seen in figure 3.1. Weka has a machine learning approach where it aims at creating

models. However, it does not provide the flexibility for all the tasks we deem useful for data analysis.

It is also limited in handling large data files.

Figure 3.1: Weka time series forecast example.

Orange Orange [6] is a machine learning and data mining tool. It is built using Python and C++ and allows

the user to write Python scripts. It also has an interface that allows visual programming where users

can drag components in an Orange workflow. This interface can be seen in figure 3.2. One of its biggest

advantages is that Orange is very easy to learn. It also features a package manager that contains a time

series package. However, the visual capabilities for that package are limited. For example, the line

9



10 Chapter 3. Related Work

plot for time series did not allow us to save the image. Orange was also slow with importing the 3MB

Infrawatch [7] data file and was not able to import the 300MB file at all. For comparison ETA imports

the smaller file instantly and the bigger file within a minute.

Figure 3.2: An example of a Orange workflow.

KEEL Knowledge Extraction based on Evolutionary Learning (KEEL) [8] is a software tool to assess evolutionary

algorithms for data mining and provide solutions to data mining. It has a collection of libraries for

preprocessing and machine learning techniques. However, it lacks in visualization techniques. It also

has problems handling the import of large files. When testing it with the Infrawatch file it took several

minutes to load the smaller file and crashed on loading the bigger file. Trying to perform operations on

the smaller file made the application crash as well.

Figure 3.3: An example of the user interface of KEEL.

A comparison to other time series analysis software can be found in the bachelor thesis of Lars Hopman [9].



Chapter 4

ETA: Environment for Time series

Analysis

Environment for Time series Analysis (ETA) is an open source platform designed for time series data analysis.

Although its focus area is time series data, it can handle different data as well. Therefor it can be expanded

and used for different areas.

ETA’s power lies in its modularity; the user can implement their own algorithms by creating a module and

utilize built–in functionalities such as data loading and parameter handling. However, ETA is built to be easy

to use. No programming knowledge is required to make use of ETA’s implemented modules. Performing

data analysis is as simple as a few simple clicks in ETA. All functionality is available from the menu and

parameters are inserted from a pop–up window.

ETA’s supported data analyzing techniques and modules will be explained in section 4.4, core. The second

section will explain the architecture of ETA and the third section shows the graphical user interface. But first

the choice for the use of Python and its packages will be explained.

Lars Hopman also contributed to the development of ETA. For his contributions see his bachelor thesis [9].

4.1 Python

Since an important part of ETA is the ability to expand on the functionality and create modules, modularity

is key. This also means that ETA should be available on as many operating systems as possible.

Using Python as the underlying language is the perfect solution for numerous reasons. Firstly, it is supported

11



12 Chapter 4. ETA: Environment for Time series Analysis

by all major operating systems. Secondly, it is already a widely known and used programming language in

statistics and data mining. This is also because it is known for its readability which in turn makes it easy to

learn.

Finally one of Python’s greatest strengths is that it has a large standard library. On top of that the Python

Package Index or PyPI, which is the official third-party software repository, currently contains over 95.000

packages and is growing continously. These packages allow us to easily create the graphical user interface,

handle data frames, create plots, implement machine learning algorithms, and much more. Below some of

the packages used in ETA will be explained. These packages can all easily be installed or updated by running

a simple shell script, which will be shown in chapter 5. New packages can be added by simply adding its

name to the requirements text file and running the shell script provided.

Tktinter The tkinter [10] — Tk interface — package is the standard Python interface to the Tk GUI toolkit.

It is available on Windows and Macintosh systems and most Unix platforms. Tkinter comes included

with the Python standard distribution. It offers a native look and feel on all platforms.

Pandas Pandas [11] provides high–performance, easy–to–use data structures and data analysis tools for the

Python programming language. Pandas is used to import the data and store it in a pandas data frame.

A pandas data frame is a 2-dimensional data structure with labeled columns of potentially different

data types. Some of pandas built–in data frame manipulation functions are also used.

Numpy NumPy [12] is the fundamental package for scientific computing with Python. It adds support for

multi–dimensional arrays. It comes with a large library of mathematical functions to operate on these

arrays. In ETA, it is mostly used for array manipulations on data from a pandas data frame.

Scikit–learn Scikit–learn [13] (or sklearn) is a machine learning library for Python. It has simple and efficient

tools for data mining and data analysis and features various machine learning algorithms. It is designed

to interoperate with the previous mentioned library numpy.

Matplotlib Matploblib [14] is a Python 2D plotting library which produces various figures in interactive

environments across platforms. It can generate various plots, charts, etc. using just a few lines of

codes. Its style or properties can be controlled via an object oriented interface or via a set of functions.

Matplotlib is used to provide the plots in ETA.

Seaborn Seaborn [15] is a Python visualization based on matplotlib. It provides a high-level interface for

drawing attractive statistical graphics. This module is used to make the matplotlib plots more aestati-

cally pleasing.

As you can see by the Python modules described above a lot of these modules have functionality that can be

used inside the platform. These modules make it easier to create and implement certain functionalities and
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modules to expand the platform.

4.2 Architecture

The architecture will be introduced using the workflow in figure 4.1. Generally it shows the steps the program

goes through while the user makes use of it. The first step, from now on referred to using the notation (1),

shows the initialization of the handlers and the creation of the Graphical User Interface (GUI). The second step

(2) shows what happens when a file is loaded and the third step (3) shows the use of one of the functionality

handlers. All of this is discussed more thoroughly below.

Figure 4.1: The worflow of the platform.

When a user starts the application (1), it calls the coreHandler. It first creates all the handler objects: module-

Handler, parameterHandler, filesHandler, dataframesHandler, guiHandler and what from now on will be referred

to as functionality handlers: plotHandler, profilingHandler, preProcessingHandler, machineLearningHandler. The

coreHandler keeps track of these handlers. When a handler want to make a call to another handler it does

this through the corehandler. This implementation preserves the modularity of the framework and allows

easy creation of new handlers or modification of current handlers without breaking the software. After the

handlers are created, the coreHandler will make a call to the guiHandler to initialize the interface which

completes starting up the application.

The guiHandler creates the root window containing nested frames for each different GUI element. In the

class diagram of figure 4.2 you can see how the GUI is build. Each of those elements is handled by a different
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Figure 4.2: The class diagram of the GUI.

class which makes changing or replacing a GUI element very easy. Each element will be explained in the

next section of this chapter.

When creating the menu bar of the GUI the guiHandler works together with the moduleHandler. For each

of the functionality handlers, the moduleHandler provides the modules from the correct module folder.

Modules nested inside a folder in the module folder will be displayed in a submenu. The moduleHandler

also returns the module object when the user chooses one from the menu.

To use the platform, the user must first load a data file. When the user selects the menu item to load a file

(2), a window to choose a file will pop up. This window is native to the operating system as can be seen in

figure 4.3. When a file is chosen the guiHandler passes the file name to the filesHandler. The filesHandler

recognizes the file extension and loads the data accordingly. The data will then be returned as a pandas data

frame and passed on to the dataFramesHandler. The dataFramesHandler adds the data frame to the list and

handles further data calls to the data frame. Examples are getting the data, adding or removing columns

from a data frame or creating a new empty data frame.

Figure 4.3: macOS Sierra native file chooser for ETA.
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With the data set loaded into the platform, one can now make use of the functionality handlers. Some

modules and other functionalities inside the platform require parameters. The parameterHandler takes care

of that. The process of handling parameters (4) for modules goes as follows; first it gets the parameters from

the module. It then creates a window with the help of the guiHandler containing the label and an entry

option according to the parameter type. An example of a window and a list of parameter types can be found

below in the section 4.3.4, parameters. If there are previousy used parameters saved, it will get those and

insert them as the selected value. If those are not available, default values from the module itself will be used

if available. The user can now select the parameters. When done, the selected parameters will be saved and

passed along to the functionality call.

These functionality calls are generally done in the following way. First the user selects a module to be used.

A call to the moduleHandler is made to get this module. A call to the dataFramesHandler will then be

made to get the currently selected data. After that, a call will be made to the parameterHandler to get the

parameters for the module. Finally the corresponding functionality handler from the module will be called

using the module, data and parameters. This will then perform the modules actions. The profilingHandler

will generally output a profiling report. The plotHandler will create a plot. The preProcessingHandler will

alter the current data frame or create a new one. And the machineLearningHandler will create a model, alter

the current data frame or create a new one or output a score when respectively fit, predict or score are chosen

from its module options.

The modularity of the platform does not only come from its modules, it also comes from the different

handlers. For example, it would be possible for the guiHandler to create the user interface in a webpage

instead of the tkinter window. The remaining handlers and calls to it can be kept the same. If you would like

to add support for a new file extension you could easily alter the filesHandler to support it. Although four

functionality handlers have been implemented, it is possible to implement new data analysis techniques by

creating a new category and a handler to support it.

4.3 GUI

ETA’s interface is built using tkinter. It uses different classes for each element as shown in the class diagram

of figure 4.2. It can be divided into four major parts: the menu bar, the data selection, the plotting notebook

and finally parameters. Each part will be discussed below. An overview of the full interface is shown in

figure 4.4.
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Figure 4.4: An overview of the interace on macOS Sierra.

Figure 4.5: Menu Bar

4.3.1 Menu bar

The menu bar is where all the functionality can be selected. This avoids clutter in the GUI. Each menu

contains a dropdown with more options. The different menu items can be seen above and its options will be

discussed below.

File This menu contains items to open or save a data file. Allowed file extensions currently are:

.csv - comma-seperated value

.pickle / .pkl - pickle, Pythons own file extension.

NOTE: pickle files can be hacked, don’t trust pickle files sent over the internet as they can run malicious Python code.

.xlsx - Microsoft excel spreadsheet file

.txt - plain text file

It is also possible to reload the last succesfully loaded file. When the program has been closed and

opened again this remains possible.

Lastly the user can save the current data frame to a file. ETA currently has support for .pickle, .csv and

.xlsx (Excel).

Edit This menu contains functionalities to change the selection of the data columns, remove columns from

the data frame or add or remove a data frame. The current selection can also be printed to the terminal.

The items and their functionality are listed below:
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Select all Select all of the data columns.

Select none Select none of the data columns.

Print selection Output selected data to the terminal.

Add new data frame Add a user generated (empty) data frame.

Rename selected data frame Rename selected data frame.

Rename selected data columns Rename selected data columns.

Remove selected data frame Remove the current source data frame.

Remove selected data columns Remove the selected columns from the dataset.

Remove unselected data columns Remove the columns that are not selected from the dataset.

Other The last 4 menu bar items contain the modules of the handler corresponding to that item. They

are Profiling, Plotting, Preprocessing and Machine Learning. These modules will be listed in the

subsection of each item in section 4.4 of this chapter.

4.3.2 Data selection

To select which data you want to use you first have to select the data frame you want to use from the data

frames listbox. In the data frames listbox you find the datasets the user loaded in, as well as any data

frames added from the Edit menu. It is also possible a data frame has been generated when using one of the

functionalities.

Figure 4.6: Data selection.

When a data frame is selected the columns it contains will be shown below it

in the data columns listbox. Each column will be below one another. Selecting

or deselecting a column is done by simply clicking on it. Selected columns will

have a blue background while unselected columns have a white background.

Most of the time actions will only use the selected data columns as data unless

specified otherwise.

These listboxes allow for easy switching between data frames and data columns

and provide an overview of all the data loaded. For instance, a dropdown menu

does not give this overview unless clicked upon.

4.3.3 Plotting Notebook

Figure 4.7: Notebook tabs. Figure 4.8: Plot Toolbar
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When a plot is created a tab is added to the notebook. The tab itself contains the name of the tab and a button

to close the tab. The content of this tab contains two elements of the plot. The first element is a matplotlib

toolbar. This toolbar contains different built–in functionalities. In figure 4.8 you can see how the toolbar

looks. Its functionalities are (from left to right):

reset original view this resets the plot to how it originally looked

back to previous view this undoes the last action performed on the view

forward to next view this redoes the last action performed on the view

pan axes with left mouse this gives the ability to pan inside the plot

zoom to rectangle this gives the ability to zoom in on the plot by selecting an area

configure subplots a pop-up window appears with sliders to change some parameters of the plot,

these parameters are ‘left,’ ‘bottom’, ‘right’, ‘top’, ‘wspace’, and ‘hspace’

save the figure opens a filechooser window to choose where to save the plot, you can give

insert a filename and choose a file extensions (options are: *.eps, *.pdf, *.pgf,

*.png, *.ps, *.raw, *.rgba, *.svg, *.svgz)

The second element of the tab is the plot itself. How the plot looks fully depends on the chosen plotting

option, its parameters and the data used. The toolbar functionalities can be used to modify the plot.

In figure 4.9 you can see an example of how it all looks like together.

Figure 4.9: An example of the plotting notebook.

4.3.4 Parameters

Lastly, some of the functionalities require the user to select or insert some parameters. A window containing

these parameters is created by first requesting the parameters of the module or function. If available it also

request the last used parameters or if those do not exist the default parameters. Each parameter will be shown

below eachother containing a label and the input option. ETA currently has the following input options:
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• string – a sequence of characters, e.g. “foobar”

• integer – a number without decimal points, e.g. “12”

• float – a number with decimal points, e.g. “24.89”

Above options use a textbox to write the input.

• columns - the selected data columns of the current data frame

• list - the items specified in the parameters list options

Columns and list use a dropdown menu to select an option.

• boolean - a checkbox to indicate whether to do the indicated label action or not

In figure 4.10 an example of a parameter window is shown.

Figure 4.10: An example of a parameters pop-up window. Currently selected is ‘index’ showing its dropdown menu
containing the data columns.

4.3.5 Evolution of the GUI

ETA aims for an easy–to–use design where inexperienced users are able to operate the program without

much of a hassle. This makes the GUI a very important part of the system. The GUI should therefor look

well and mainly be user–friendly. The design of the GUI was an iterative process and several GUI libraries

were considered.

Previously PyGObject [16] (aka PyGI), instead of tkinter, was used to create the GUI. PyGObject is a Python

package based on GTK+ [17]. A side–by–side comparison between the previous PyGObject interface and the

current tkinter interface is shown in figures 4.11 and 4.12.

As you can see in the comparison the tkinter interface looks less cluttered. This is because the data frame

selection is moved to a listbox above the data columns listbox instead of having a dropdown menu. Previ-

ously, there were also two data frame selection dropdowns; one for the data frame and one for the target data

frame. The target data frame was not a neccessary option since the target data frame would almost always
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(a) PyGObject (b) Tkinter

Figure 4.11: A comparison between the user interfaces.

(a) PyGOBject (b) Tkinter

Figure 4.12: A comparison between the filechooser windows.

be the same as the source data frame. This look also gives the user a better overview of the data frames and

makes the selection of a data frame easier and faster.

The tkinter interface also looks more like the native desktop environment1. You can see this especially

with the filechoosers in figure 4.12; PyGObject uses an own custom filechooser window while tkinter uses

the native filechooser window. The native look that tkinter offers gives more functionality and is, in our

oppinion, more appealing. PyGObject also has a lot of cross–platform inconsistency while tkinter is more

stable and reliable. PyGObject requires difficult installation steps when not using a Linux distribution while

tkinter is included in the Python standard distribution. This makes it more difficult to contribute to ETA

which counteract its design goals. These reasons made us use tkinter for ETA’s interface, which we think is

currently the best option.

1Desktop environment used: macOS Sierra
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4.4 Core

ETA differentiates between four different functionalities in ETA. These are plotting, profiling, preprocessing and

machine learning. Each functionality will be discussed and its implementation in ETA will be shown.

4.4.1 Plotting

Broadly speaking data analysis can be split into two parts: quantitative and graphical [4]. Quantitative tech-

niques have numeric or tabular output while graphical techniques have graphs or plots as output. Below the

importance of these graphical techniques will be shown.

Anscombe’s quartet [18] is a famous example of why graphical representation of data is important and shows

the dangers of only using quantitative techniques. Anscombe created the four datasets shown in table 4.1.

Each of these datasets have the nearly identical descriptive statistics as seen in table 4.2. The x value of the

first three data sets are also the same.

1 2 3 4

x1 y1 x2 y2 x3 y3 x4 y4

10 8.04 10 9.14 10 7.46 8 6.58

8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71

9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47

14 9.96 14 8.1 14 8.84 8 7.04

6 7.24 6 6.13 6 6.08 8 5.25

4 4.26 4 3.1 4 5.39 19 12.5
12 10.84 12 9.13 12 8.15 8 5.56

7 4.82 7 7.26 7 6.42 8 7.91

5 5.68 5 4.74 5 5.73 8 6.89

Table 4.1: The four datasets of Anscombe’s quartet

Number of observations 11

Mean of the x 9

Mean of the y 7.5
Regression cofficient 0.5
Equation of regression line 3 + 0.5x
Sample variance of y 4.125

Residual standard deviation 1.236

Correlation between x and y 0.816

Table 4.2: Descriptive statistics of Anscombe’s quartet

When one only views the quantitative statistics of these datasets, one might think they are equivalent. How-

ever, when the datasets are plotted and one fits a regression line, the result is the graphical output shown in

figure 4.13.

The plots show that the data sets are very different. The first data set appears to be linear with some variance.

The second data set does not follow a linear relationship, it might be quadratic. The third dataset is linear

with a single outlier. And the fourth dataset shows a constant x value with a single outlier as well. It also

shows that a single outlier is enough to produce a diagonal linear regression line even though the relationship

is not linear.

These examples show the importance of visualizing data using a graphical representation. This does not mean

that quantitative statistics are useless; they can be misleading on their own. Because of the visualization one
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Figure 4.13: Scatter plots with regression lines of Anscombe’s quartet — freely used from Wikipedia

can avoid forming false conclusions. Patterns, relationships and characteristics are more easily discovered

from a visualization of the data as well. Visually representing information allows us to reduce the complex

cognitive work for viewers and let them focus on the analytical process. Another advantage of a graphical

representation is that computers lack the capability a human posesses. Humans have knowledge and intuition

and can make decisions that cannot be automated by a computer. Data visualization allows the user to better

understand the data and improve further processes and results using human resources a computer does not

have.

This means that data visualization is aimed at users. Therefor the presentation of the data is very impor-

tant. Presentation is one of three goals of data visualization. The aim of a presentation is to efficiently and

effectively communicate the results of an analysis to a user. The ability to recognize and understand the data

is key to a good visual representation. The second goal is exploratory data analysis, which is previously

explained in chapter 2. The last goal is confirmatory analysis where one has one or more hypotheses which

the visualization confirms or rejects.

Because data sets and goals can differ, the design of each data visualization should therefor differ as well. The

modules shown below consist of various plotting techniques. They can be used for each of aformentioned

goals. However a user might want to create their own module or build upon an existing one to reach their

goal.

time single For this plot the user has to select the time series value to use as the index. This value is shown
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on the x-axis. The values of other selected columns are shown on the y–axis in a single plot as shown

in figure 4.14.

time multiple This plot is almost the same as time single. Only instead of the columns being plotted in a

single plot, they are shown in subplots below eachother as shown in figure 4.15.

Figure 4.14: Time series plotted using a single
plot.

Figure 4.15: Time series plotted using multiple
subplots.

scatter In a scatter plot a value on the x–axis is plotted against a value on the y–axis. The scatter plot is useful

to view the relationship between two values. An example can be seen in figure 4.16.

box A box plot shows the variation of a value. It shows the maximum and minimum value as the top and

bottom of the line, the third and first quartile as the beginning and end of the “box” and the median

represented by the line inside the box. The range between the first and third quartile is called the inter

quartile range or IQR. An example can be seen in figure 4.17.

Figure 4.16: A scatter plot for the first dataset of
Anscombe’s quartet.

Figure 4.17: A box plot for the first two datasets
of Anscombe’s quartet.

histogram A histogram splits the values in equally sized bins. It then counts the number of points that fall

into each bin. With a histogram one can show the center, spread and skewness of the data. It also

shows the presence of outliers. The vertical axis contains the frequency (or counts for each bin) and

the horizontal axis shows the bin values. It is also possible to normalize the frequency where it shows

a value between 0.0 and 1.0. Another option is to show a cumalitive histogram: the frequency of the

bins are its own value plus all the values of smaller bins. Two examples for histograms can be seen in

figure 4.18 and figure 4.19.
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Figure 4.18: A histogram with a clear center. Figure 4.19: Histograms of y1, y2 and y4 from
Anscombe’s quartet shown below eachother.

4.4.2 Profiling

Data profiling [19] is not a well established or defined research field yet. The following definition can be

given: “Data profiling is the process of examining data available from an existing information source [...] and collecting

statistics or informative summaries about that data.”2 We believe this is an important and useful process while

researching data.

Data profiling can be classified into two tasks. The first one is from a single source of data. This can be

further broken down into profiling tasks using a single column or multiple columns. The second one is

from multiple data sources and how they overlap. ETA only focuses on the first and uses only data from a

single data set to profile. The goal is to examine the data set and collect descriptive statistics, such as mean,

minimum, maximum, percentile, frequency and provide information about the data such as data types, data

length and value patterns, completeness and uniqueness of columns, keys and foreign keys. These results can

then be displayed in tables, charts or other visualizations. Since data profiling targets users the visualization

of the results is very important. The displayed results give insight into the data set and tells the user about

the quality of the data. Using this insight a user can then apply constraints or rules to further processes

such as data cleansing or optimization. For instance, inconsistent formatting, missing values or outliers can

be detected and transformed or discarded by preprocessing methods, optimized by parameters given by the

user using the data profiling insight.

However data profiling comes with its own challenges. Depending on the algorithm, the volume of the data

and desired output it could take a large amount of time to analyze the full data set. It is also possible the data

set does not fit into memory. A solution to these problems is taking a sample of the data set, however this will

not give a complete picture of the data. There are also tools that do not automatically detect dependencies

between columns, only user–suggested pairs, making it computationally less complex.

ETA has implemented the following functions for data profiling:

2Wikipedia on “Data Profiling”, 01/2017
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Folder: print This folder contains modules that print their output to the terminal. Many use pandas inte-

grated functions to generate the output.

print A very basic feature which prints the selected data to the terminal. It can be effective for small

data sets.

describe Generate various summary statistics. Output depends on the data type of the column.

correlation Compute pairwise correlation of columns. Available methods are pearson (standard cor-

relation coefficient), kendall (Kendall Tau correlation coefficient) and spearman (Spearman rank

correlation).

Pandas–profiling Pandas–profiling [20] generates profile reports from a pandas data frame. For each column

the following statistics — if relevant for the column type — are presented in an interactive HTML report:

• Essentials: type, unique values, missing values

• Quantile statistics like minimum value, Q1, median, Q3, maximum, range, interquartile range

• Descriptive statistics like mean, mode, standard deviation, sum, median absolute deviation, coeffi-

cient of variation, kurtosis, skewness

• Most frequent values

• Histogram

Note: Pandas–profiling requires an internet connection to download the Bootstrap and JQuery libraries in order

to generate the HTML report.

An example of a pandas–profiling report can be seen in figure 4.20, figure 4.21 and figure 4.28.

Figure 4.20: Pandas–profiling overview.
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Figure 4.21: Pandas–profiling statistics of a single column.

Plots Using ETA’s plotting methods you can visualize data. Although this option is not found under the

profiling menu, users can use the plotting methods to profile the data. An example would be the

histogram plot which can also be found in the pandas–profiling report.

4.4.3 Preprocessing

Low–quality data may lead to low–quality results. This is why data preprocessing [21] is an important step

in knowledge discovery. When collecting data from the real–world, it is very possible inaccurate data is

produced. This can come from faulty data collection instruments, human or computer errors at data entry,

purposely submitted incorrect data values (e.g. “January 1” for birthday to avoid submitting personal data),

errors in data transmission (e.g. age 113 becomes age 13 because the data structure only handles length 0 to

99) or one of many other reasons. It can also be incomplete because values are not inserted, are not available

or are deleted. Another problem is that the data might be inconsistent; an example with time series is that

dates can come in different formats, e.g. 31-12-2016 or 12-31-16. Inconsistencies can also come from different

naming conventions. Say a person is named ‘Roberto’ but is normally called ‘Rob’. When both names are

used in the data environment it might not be clear they are from the same person and should be aggregated

as such. It is also possible the same record exists twice in the database both using a different name which

leads to duplicates. Improving the data quality by dealing with these challenges consequently improves the
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results from analyzing the data. It can also improve the efficiency and ease of further steps. To improve data

quality a differentiation between four processes is made: data cleaning, data integration, data reduction and data

transformation. Note that there is much overlap between these processes.

Data Cleaning Data cleaning corrects data problems from the challenges described above. Missing data can

be dealt with by ignoring or deleting the records containing the missing data or by filling the missing

values. Filling the missing values can be done, for example, with a global constant, the mean value or

some other algoritm to find the most probable value. This does bias the data since the value may not

be correct. Noisy data (data containing a random error or variance in a measured variable) should be

smoothed. Another example is binning, which is used in a histogram. The histogram is discussed under

section 4.4.1, plotting. Outliers are also a form of noisy data. They are data objects that differentiate

significantly from the rest. Often they are the cause of a measurement error. And finally duplicate data

should be removed. Some problems may occur if key values contain duplicates. Say the profit of a day

is entered twice, once with the value 5000 and once with 3000. Here the actual value can be one of both,

the mean value or even the sum.

Data Integration Data integration [22] involves combining data from different data sources. An example is

when two companies want to merge their databases. With the increased amount of data and the need

to share the importance of proper data integration has increased. No data integration tools have been

implemented in ETA.

Data Reduction Data reduction reduces the size of the data to improve efficiency and reduce complexity

while producing (almost) the same analytical results. Dimensionality reduction and numerosity reduc-

tion are data reduction strategies. Dimensionality reduction applies data encoding schemes to obtain

a reduced or compressed representation of the original data. Numerosity reduction replaces data by

alternative, smaller representations.

Data Transformation Data transformations are procedures that try to contribute toward the succes of further

processes. Some methods provide better results if the data has been transformed. Normalization scales

numerical data to a smaller range, such as values between 0.0 and 1.0. Discretization and concept

hierarchy generation replaces raw values of attributes. Discretization replaces the values of a numeric

attribute by interval labels or conceptual labels. An example is where age values are replaced by 18–

24, 25–30, etc. or youth, adult, senior. Concept hierarchy generation generalizes attributes like city to a

higher-level concept like country.

Many preprocessing techniques have already been developed. However due to the amount of data and

complexity of the problems, preprocessing remains an important and active area of research. ETA has some

of those techniques implemented:
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baseline Baseline creates a constant value based on the mean of the data that is within one sigma from the

mean (inliers). The formula used is as follows:

mean, std = data.mean(), data.std()

inliers = (mean0 - std0 < data) & (mean0 + std0 > data)

baseline = data[inliers].mean()

An example of why this can be useful is that one can calculate the area of a peak by calculating the area

between the baseline and the peak as seen in figure 4.22.

euclidean Euclidean calculates the euclidean distance, the distance between two points, between two columns.

The formula used is as follows, where c1 and c2 are the two columns specified3:

eu dist = (data[col1] - data[col2]).abs()

standardization Standardization or Z–score normalization transforms the data so the mean value equals 0

and the standard deviation equals 1. Values above the mean value will get a positive value and values

below get a negative value. The formula used is as follows:

z score = (data[col] - data[col].mean()) / data[col].std()

minmaxscalar MinMaxScalar scales the values of each column to be between the given minimum and maxi-

mum value. The formula used is as follows, where maximum and minimum are two values specified:

data std = (data - data.min()) / (data.max() - data.min())

data scaled = data std * (maximum - minimum) + minimum

An example of this can be seen in figure 4.23.

normalization Normalization scales the values of each column to a value between 0.0 and 1.0. This is the

same as using minmaxscalar with minimum 0 and maximum 1.

Some machine learning algorithms require the data to be between 0 and 1 or work better if it is.

clip Clip requires a lower bound and an upper bound from the user. Values lower than the lower bound

will get the value of the lower bound and values greater than the upper bound will get the value of the

upper bound. Thus all new values are between the lower and upper bound.

rolling Rolling transforms the data using a specified method over a specified window. The window is the

number of observations used. For example, it is possible to smooth the data by using the mean value

over a certain window. This is a way to reduce noise. The formula used for window size 25 and method

mean is as follows:

roll mean = data.rolling(window=25).mean()

Other methods are sum, median, min, max and std4. An example of this can be seen in figure 4.23.

3Specified means that the user gave this input through the use of the parameters.
4standard deviation
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rolling correlation Rolling correlation calculates the correlation between two columns over a specified win-

dow. The formula used for window size 10 is as follows:

roll corr = data[col1].rolling(window=10).corr(other=data[col2])

resample Resample converts the offset of the datetime index to the specified value. This can range from

years to nanoseconds. An aggregation method can also be chosen. The methods are sum, mean, std,

sem5, max, min, median, first and last.

replace missing Replace missing replaces missing values. The mean, median or most frequent value can be

used to replace missing values.

PAA Piecewise Aggregate Approximation (PAA) [23] calculates the mean value of a window and uses that value

to describe the whole window. PAA is an example of dimensionality reduction. An example of PAA is

shown in figure 4.24.

SAX Symbolic Aggregate approXimation (SAX) [24] is a method for representing time series as a symbol. It first

uses PAA to devide the time series data into sections and then assigns a symbol to those sections. An

example of this can be seen if figure 4.26.

PCA Principal Component Analysis (PCA) [25] is used to reduce the dimensionality of a set of data. It is a way

to show the structure of the data as completely as possible by using as few variables as possible. An

example of PCA is shown in figure 4.25; PCA tries to preserve the interesting peeks of both values (the

blue peek on the left and two red peak are somewhat preserved) while retaining the general structure.

Figure 4.22: An example of peak values with a baseline.
Figure 4.23: An example of a standardization and rolling
mean.

In figure 4.27 you can see how various of the preprocessing techniques are applied to a data set. The original

data set is the Infrawatch6 [7] 24 hour data set resampled using the mean value over 3 minutes and was then

scaled between the values 0 and 5.

5standard error of mean
6http://infrawatch.liacs.nl

http://infrawatch.liacs.nl
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Figure 4.24: An example of PAA. Figure 4.25: An example of a PCA.

Figure 4.26: An example of SAX [1].

4.4.4 Machine Learning

There is no single definition for machine learning. It can be defined as a branch of artificial intelligence, how

to predict the future based on the past, develop methods that can automatically detect patterns in data, or

how to construct computer programs that automatically improve with experience. All definitions have in

common that the machine “learns” from data, hence the term machine learning. Below the machine learning

principles implemented in ETA will be explained.

First, a differentiation between two categories machine learning categories is made: supervised learning and

unsupervised learning.

Supervised Learning Supervised learning learns by example. With supervised learning the data contains a

label or attribute that one wants to predict. For supervised learning the algorithm fits a model and then

uses that to predict target values.

Normally the data set is split into a training set and a testing set. The user then uses the training set to

fit the model and the testing set to test the model. ETA contains the ability to split data into a training

and test set. A test size can be specified and the user can randomize the data which does not split the

data in order but shuffles it.
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Figure 4.27: An example of various preprocessing modules used on a data set.

A scoring algorithm can then evaluate the model by comparing the predicted values and actual values.

This structure for supervised learning is implemented in ETA. Each supervised machine learning mod-

ule has to contain the following three functions. Each function can have its own parameters which have

to be specified in the module.

Fit This function fits the model to the selected data. At least one parameter should be given to specify

the target value. The data will then be split into the target data and data without the target. The

ETA modules currently implemented have scikit–learn algorithms which use a f it(X, y) method

where y is the target value and X the data without the target. This will train a model that will be

stored in a pickle file in the /models folder.

Predict Predict uses the stored model to predict the target values. The user can apply the model on

the testing data without the target column selected. The scikit–learn algorithms use a predict(X)

method that, given unlabeled observations X, returns predicted values y. The predicted values will

be added to the data frame.

Score Score evaluates the model by comparing the predicted values with the actual values. Thus,

at least two parameters are needed to specify these values. Depending on the module, scoring

methods generate a score based on these values. These scores will then be returned and shown in

the terminal.

ETA currently contains two machine learning techniques for supervised machine learning.

Classification The goal of classification is to build a model that can seperate data into distinct classes.

A model is built by inputting labelled data. The algorithms learns from this data and creates a

model. In this case one can call the model a classifier. The classifier can then be used to predict the

label on a different data set. An example is when one has pictures of a dog and pictures of a cat.
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A classifier is created by training the model on this data. When this classifier is used on pictures

of either a cat or a dog, it will try to correctly identify the data as either being an image of a dog

or a cat.

Regression Regression is closely related to classification. Instead of the target being a label it consists

of numerical values. An example would be to predict the values of a stock.

Unsupervised Learning In unsupervised learning the data does not contain the target values. It analyzes

data which does not include a pre–labeled class. ETA currently supports clustering for unsupervised

learning.

Clustering Clustering tries to group data instances together. This is done by trying to maximize the

similarity for data instances within a group and minimize the similarity between groups.

Some scikit–learn machine learning methods have been implemented in ETA. The goal of these methods

was to show that these machine learning functionalities were possible. Currently these machine learning

algorithms are implemented: LinearSVC (Classification), CART (Classification), LassoLarsCV (Regression) and

K–Means (Clustering). Documentation about these algorithms can be found on the scikit–learn website7.

Additional machine learning algorithms can be implemented easily using ETA’s modular approach. Not

only scikit-learn algorithms are supported, one can also implement their own Python algorithms into the

ETA system.

7http://scikit-learn.org/

http://scikit-learn.org/
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Figure 4.28: An example of a pandas–profiling generated report.



Chapter 5

A guide to ETA

In this chapter we will show how easy it is to use ETA for time series data analysis1. Only built–in function-

ality is used; no coding is required. We will use the Infrawatch [26] dataset2, containing data from sensors

installed on the Hollandse Brug in the Netherlands.

First the Python packages need to be installed and updated using pip, a package management system. The

following lines of code are used:

pip install --upgrade pip

pip install -r requirements.txt

pip install --upgrade -r requirements.txt

This can also be done with a single command using our shell script:

sh run pip.sh

After the required Python packages have been installed and updated. One can now run the program:

python program.py

We are now greeted with an empty GUI (5.1). The next step is to import a data file. We go to File in the menu

bar and click on Open. This will prompt a file chooser window to appear where we will select our data file

(5.2). After the dataset is selected we will see our data as shown in figure 5.3. After renaming (figure 5.4) our

data frame and data columns we will end up with the updated data names as shown figure 5.5.

Now we would like to see how this data looks. Select our time single module under the Plotting menu which

1For this guide macOS Sierra is used as operating system.
2From: http://infrawatch.liacs.nl
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Figure 5.1: ETA’s empty GUI.

Figure 5.2: ETA’s file chooser.

Figure 5.3: Original data set
names.

(a) Rename menu

(b) Rename pop–up.

Figure 5.4: Rename process. Figure 5.5: Renamed data set.

first prompts us with a parameter selection window (figure 5.6). We select the values as seen in the figure

and click on Ok. We now have our plot shown inside of the GUI (figure 5.7).

Figure 5.6: The parameter selection
window for module time single.

Figure 5.7: A plot of the Infrawatch data using the time single module.

This data looks very noisy. Lets apply a rolling mean algorithm to smooth the data. We select “method:

mean” and “window size: 20” as our parameters. If we now plot using the time multiple plot, configure the

subplots to fit the plot more nicely (figure 5.9) and save the plot using the plot toolbar we get the plot as

shown in figure 5.8.

Finally, when we use the PAA module with the parameters “frame size: 500” and same length as source df
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Figure 5.8: A plot using the time multiple module saved with the plot toolbar.

Figure 5.9: The plot toolbar config-
ure menu.

selected and plot the resulting column we get the result in our GUI shown in figure 5.10.

Figure 5.10: The ETA interface after using the steps mentioned in this chapter.

From the resulting plot we can see clearly the parts where it is rush hour. A conclusion one could make is

that the morning rush hour starts a bit after 9 and ends a bit before 10, with a small spike after 10, and the

afternoon it starts more gradually at around half past 2 reaching its peak hight at around quarter past 2. If

one used the plot we started with, it would have been much harder to reach these conclusions.



Chapter 6

Conclusions and future work

Environment for Time series Analysis (ETA) was made to fill a gap in time series software. ETA is an open

source1 time series data analysis platform written in Python. ETA contains a range of functionalities needed

to analyze time series data. Data profiling, plotting, preprocessing and machine learning are all included

inside the platform. All these functionalities can easily be used by selecting the modules from the menu. No

coding is required to use our platform. The user interface uses a nice and clean overview to show the data

and results. This makes working with data easier and more comfortable.

ETA also focuses on modularity and expandability. It allows the users to easily create and modify modules.

Users can implement their own algorithms and functionality and expand the platform. The user can focus on

the implementation of their own algorithm since ETA handles the data, parameters, output and much more.

Because Python is widely used in statistics and data mining and contains a lot of useful packages the platform

can be further expanded with either implementing more functionality in the source code or creating more

modules. An example of interesting machine learning implementations would be Google’s Tensorflow [27] or

the recently released deep learning framework PyTorch2.

ETA provides some modules and therefor functionality already within the platform. We have built a solid

foundation for a modular platform that can handle data analysis tasks. However, other functionality is

proposed inside the thesis to further improve the platform. New modules with new functionality will provide

useful additions to the platform. Modification or creation of modules inside ETA will make this easier. And

because the platform should be community driven to take advantage of the expandability of our platform,

a way to share and import modules should also be implemented. Speed improvement for handling large

amounts of data should be made to make the platform more scalable. For example, the HDF5 file format [28]

would allow for better handling of large amounts of data in memory than csv does. Lastly, a lot of time series

1Source–code can be found at https://bitbucket.org/eta_tkinter/eta/.
2See http://pytorch.org for more information.
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data is generated real time. Implementing data streaming and functionality for it would be an interesting

field to explore.
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Appendix A

Implementing a module

To implement a module you have to add a python file (a file with file-extension .py) in the appropiate

modules folder. Upon running ETA it will automatically be added to the menu of the corresponding handler.

While ETA is running the user can alter the code and run the module without having to quit the application.

Each module must contain the structure of the template; a file is provided for each functionality inside

the \modules\templates folder. A generalized example of the templates is provided below in listing 1. A

user can then modify that structure by putting the parameters required inside of the ordered dictionary in

getParameters() . It can also put default values of these parameters in the dictionary in getDe f aults(). Both

of these functions are optional. If no parameters are required, no function has to be present. The run()

function of the module will be called by the handler, with some parameters provided by the handler. These

parameters differ for each handler. The code inside of run() will be executed. This is where the user inserts

his own code. Finally run() will return a dictionary called ‘returned’ to the handler. This dictionary has to

have the structure of the dictionary in the template of that functionality.

1 import pandas

2 # import your own packages here

3 class Module():

4 def __init__(self):

5 self.moduleName = ’name’

6 def run(self,data,parameters):

7 column = parameters[’column1’] # Get your parameters

8 # put your code here

9 returned = {

10 ’key1’: value1,

11 ’key2’: True

42
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12 } # the keys and values in this differ for each functionality

13 return returned # return above dict

14 # Optional, if no parameters are required this can be left out

15 def getParameters(self):

16 from collections import OrderedDict # for keeping options in order

17 settings = OrderedDict([

18 # (’KEY’, ’OPTION’), THE DICT STRUCTURE

19 (’column1’, ’columns’), # a column selection from selected columns

20 (’str’, ’string’), # a string textbox

21 (’list’, [’Option1’,’Option2’,’Option3’]), # a dropdown menu of list items

22 (’int’, ’integer’), # a textbox that gets converted to an integer

23 (’flt’, ’float’), # a textbox that gets converted to a float

24 (’bool’, ’boolean’)

25 ])

26 return settings

27 # Optional if no default values are desired

28 def getDefaults(self):

29 defaults = {

30 # Put default values of the settings here

31 ’column1’: None,

32 ’str’: ’String’,

33 ’list’: ’Option1’,

34 ’int’: ’100’,

35 ’flt’: ’200.20’,

36 ’bool’: True

37 }

38 return defaults

Listing 1: A generalized version of a module template.
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