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Abstract

Truck loading problems from practice tend to involve a lot of constraints. In automati-

cally solving these problems, a rule set has to be compiled that governs the generation

of valid solutions. This rule set is either defined manually, or distilled automatically

by analyzing solutions of human planners. Van Rijn et al. describe an approach for

automatically solving these problems using a manually defined set, determined in con-

sultation with industry. In a follow-up paper, we reported on an addition to this ap-

proach that introduced user-derived information into the mutation operator. This thesis

extends the existing approach further by introducing this user-derived information into

the function that transforms the used indirect representation into a solution that can

be evaluated. Furthermore, a method is proposed to correct the penalty function used

to evaluate candidate solutions. With these extensions we are able to generate solutions

that accommodate more boxes into a container, as well as improve on quality, in the

sense that the automatically generated solutions conform more to how a human planner

solves these problems.
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Chapter 1

Introduction

When solving instances of a Truck Loading Problem in logistics, constraints and objec-

tives are to be defined, in order to generate valid and desirable solutions. In the instance

of the TLP, the so called Highly Constrained Truck Loading problem, a lot of constraints

and objectives arise that have been predefined, that are implicitly used when a human

planner generates a solution. These constraints and objectives however have proven to

be either false and/or incomplete.

A paper by Van Rijn et al. [21] proposes an uninformed mutation operator as well as an

indirect representation so that the HCTL problem instances can be solved with the use

of a Genetic Algorithm, more specifically a Self-Adaptive Genetic Algorithm (SAGA) as

put forward by Kruisselbrink et al. [15]. In our earlier work we extended this approach

with the introduction of an informed mutation operator that uses statistics derived from

user-accepted solutions.

In this thesis we will further extend this approach for automatically solving instances

of HCTL, by introducing user-derived information into the function that converts the

indirect representations of solutions into solutions that can be evaluated. Furthermore,

the function that evaluates is adjusted by a user-derived correction factor.

Chapter 2 gives an overview of the Highly Constrained Truck Loading (HCTL) problem

studied in this thesis. In Chapter 3 an overview is given of the SAGA that has been

implemented by Van Rijn et al. to solve instances of the HCTL problem automatically.

Experienced human planners are solving these problems by hand. These human planners

use some combination of best practices from experience. To emulate this behaviour when

solving the HCTL problem automatically some useful statistics are extracted from the

user-generated solutions, by determining how often certain types of boxes are placed on

top of each other. A method for extracting this information is described in Chapter 4.
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In solving instances of this optimization problem automatically with the use of a Ge-

netic Algorithm, three main components need to be defined: representation, variation

operator, solution evaluation. These three components are used in a SAGA, where the

representation is used to effectively store a solution, the variation operator to modify

candidate solutions, and the solution evaluation to differentiate solutions of good and

bad quality.

The indirect representation describes which box needs to be placed on which stack in

which area of the trailer (Chapter 5). However, this representation does not represent

an absolute place for the boxes, but a place relative to other boxes. This reduces the

search space for the GA, by eliminating similar solutions.

For converting a candidate solution into a solution that can be evaluated for quality, we

use an Uninformed Building Function, first proposed by Van Rijn et al. [21]. The building

function tries to place each of the boxes on its intended stack. If this is not possible

the building algorithm will search the rest of the container for an alternative placement.

The uninformed building function is extended to incorporate statistics derived form

user-provided solutions to form the Informed Building Function.

During the course of the optimization algorithm, solution candidates evolve towards

solutions of better quality. To accomplish the evolution of the candidate solutions Van

Rijn et al. [21] propose an uninformed variation operator, in the sense that no statistics

derived from user-generated solutions. In our follow-up study, an informed extension to

this variation operator is introduced, that makes use of placement-statistics derived from

user-generated solutions [16]. Another variation operator that is introduced changes the

placement location of a stacked group of boxes. A description of these extensions can

also be found in Chapter 6.

To distinguish the solution candidates on quality, the candidate solution is evaluated by

the use of a penalty function, described in Chapter 7. This penalty function yields one

aggregated penalty score. The factors (sub-penalties) contributing to this penalty score

are described in the same chapter.

In experiments reported in [21] and [16], the automated solver is able to generate so-

lutions which according to the penalty score are close to the solutions put forward by

experienced human planners, but when evaluating the solutions by hand show some

shortcomings. In Chapter 7 a correction factor for the sub-penalty weights is proposed.

Experiments indicate that the corrected sub-penalty weights can identify the some of

the shortcomings found in the automatically generated solutions. A further subjective

analysis of solution provided by the automated solver that uses the penalty function
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with the corrected weights is performed. This analysis indicates that a lot of the loading

patterns observed in user-accepted solutions are also present.





Chapter 2

Highly Constrained Truck

Loading

In this chapter, a description is given of the Highly Constrained Truck Loading (HCTL)

problem studied in this thesis. The problem under investigation is a combination of the

Bin-Packing Problem (BPP) and the Container Loading Problem (CLP), as encoun-

tered in practice. The instances we intend to solve have a strongly heterogeneous set of

boxes that needs to be loaded into one container (see Figure 2.1), and a lot of different

constraints originating from practice.

(a) Front Part of the Trailer. The front part of the

trailer showing the raised area (bridge) present in

some of the trailers under investigation.

(b) Rear Part of the Trailer. The rear part of the

trailer showing part of the flaps that will cover the

sides of the trailer during travel.

Figure 2.1: Loaded Truck Trailer. Photos show a trailer as it is loaded in practice.

Most of the problem instances considered in this thesis have a raised area, called a bridge

(see Figure 2.1). The raised area divides the trailer into three main sections: On the

bridge, under the bridge, and adjacent to the bridge. This makes the problem studied a

combination of CLP and BPP. In CLP boxes need to be loaded into a single container.
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Each of the sections in the trailer can be considered a separate instance of CLP. In BPP

items need to be distributed over a number of containers (bins), in our case the sections.

Solvers that are available for these types of problems, however, deal with theoretical

problems involving only a few constraints and homogeneous sets of boxes [3, 4, 14, 24].

These solvers produce packing patterns unsuitable (see Figure 2.2) for the problem

considered, where all boxes are to be organized in stacks that are loaded and unloaded

from the sides of the container.

Each of the problem instances used in this thesis is accompanied by a corresponding

solution made by an experienced human planner. In solving instances of BPP or CLP,

a human operator is likely to use some combination of best practices from experience.

Automated solvers described in literature (e.g., [13, 17, 18, 24]), commonly emulate best

practices in the form of heuristics that can be used when volume-efficiency is the only

governing objective, which is not the case in the problem we are studying here.

To account for the fact that loading and unloading actions are performed from the sides,

each of the main sections is subdivided into a left and a right area. This means that

when a bridge is present in the container, it will contain a total of six sections, whereas

a container without such a bridge will consist of two sections.

(a) (b)

Figure 2.2: Undesirable Stacking Pattern. These patterns are unsuitable for the
problem studied as boxes are supposed to be picked up with the use of a fork lift.

The boxes in the problem instances have greatly differing sizes and shapes, as well as

varying weights. Each box is represented by a cuboid, a simplification, as in the real

world boxes can be oddly shaped. However, the deviant information is retained by

disallowing placement of other boxes on top of these. A problem instance is defined by a

set of boxes intended for a number of clients. Preferably, these boxes are fit into a single
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container. The problem instances investigated in this thesis are real world, provided by

industry.

(a) Trailer Without Bridge. Empty trailer with-

out a raised area (bridge).

(b) City Trailer. Empty trailer with smaller di-

mensions, for use within cities.

(c) Trailer With Bridge. Empty trailer with

raised area (bridge).

(d) Trailer With Larger Bridge. Empty trailer

with larger raised area (extra bridge).

Figure 2.3: The Four Types of Trailers. Four types of trailers exist, two with a bridge
and two without.

Some overhang and weight restrictions during placement were provided by industry, as

well as some rudimentary rules about which types of boxes are allowed to be placed on

top of each other. These rules prevent the placement of extremely heavy boxes on top

of boxes that have been indicated as being fragile, for example the placement of a stack

of heavy wooden plates on top of a glass shower cabin.

To be able to objectively evaluate suggested loadings, quality measures have been de-

vised. These quality measures are defined as penalty functions and have been determined

in consultation with industry. They represent stability of the loading, number of load-

ing/unloading actions and the stability of the loaded trailer, among other things. These

penalty functions are combined into a single penalty value by the use of weighted aggre-

gation, where all the sub-penalties are summed into a single value by multiplying them

with a factor reflecting their importance (weight).





Chapter 3

Automated Optimization of

Highly Constrained Truck

Loading

To automatically optimize instances of the HCTL problem, an optimization algorithm

such as a Genetic Algorithm (GA) [2] can be used. A GA iteratively has its population

of candidates evolving towards an optimal configuration. A GA typically operates on

discrete-valued solutions and is non-deterministic by relying on randomness to steer its

evolution.

To be able to do this, several components need to be defined. A solution representation

is necessary that describes, in some shape or form, what a solution looks like (see Chap-

ter 5). A variation operator is needed that is able to modify the solution represented,

so that a different solution is created (see Chapter 6). Lastly, a method of evaluating

the quality of a proposed solution are to be defined (see Chapter 7).

3.1 Self-Adaptive Genetic Algorithm

As core optimization algorithm, a Self-Adaptive Genetic Algorithm (SAGA) proposed

by Kruisselbrink et al. [15] is used. The SAGA makes use of individuals within its

population containing both a candidate solution and a mutation magnitude that governs

the extent of variation that the application of the variation operator gives rise to.

Van Rijn et al. [21] provide problem-specific operators allowing application of such a

SAGA to the HCTL problem under consideration. They define an indirect solution
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Chapter 3 – Automated Optimization of Highly Constrained Truck
Loading

representation that derived from how a human planner solves the problem by making

stacks of boxes and placing these stacks into the trailer from the side.

Algorithm 1 SAGA ([21])

1: t← 0

2: P (0) ← generate µ individuals ~a1, . . . ,~aµ, randomly

3: while not terminate do

4: for i = 1 to λ do

5: ~ai ← copy randomly selected parent from P t

6: ~ai ← mutate(mut. magn.(~ai))

7: ~ai ← mutate(~ai)

8: fi ← evaluate(~ai)

9: end for

10: P (t+1) ← {~a1:λ, . . . ,~aµ:λ}, select µ best from λ total

11: t← t+ 1

12: end while

In Algorithm 1, the size of the parent population is indicated by µ and the size of the

offspring population is represented by λ. For each of the generations P t+1, λ offspring

are generated by mutating a randomly selected parent from generation P t (n.b., no

crossover is used). Each of the individuals has its own mutation magnitude, which

defines the invasiveness of the variation operator. This variation operator is adapted,

according to method SA3 from [15], before the variation operator is executed on the

individual.

To select the µ best individuals to continue into the next generation, comma-selection is

used, where only the newly generated individuals can become part of the new generation.

Thus, our the selection operator makes sure that the SAGA does not suffer from the

fact that a candidate with a good solution might not have a good mutation magnitude,

and thus will not be able to produce offspring of sufficient quality, as put forward in [2].

Figure 3.1: Example of a container loaded with boxes for multiple clients. Each color
represents a different client to which boxes have to be delivered. Figure courtesy of
[21].
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3.2 Self-Learning

In trying to identify all factors that contribute to efficiently loading a container, it is

very difficult to get the experienced human planners to clearly define all aspects of their

solving process. Therefore, in Chapter 4, a method is presented that takes solutions

generated by the planners and extracts the information needed from those, for solving

new problem instances. The SAGA-based automated solver allows for several ways of

user-derived information to be introduced into the search process.

Human planners generate solutions to instances of the truck loading problem. Self-

learning is term we use to describe a method that as more of these solutions become

available, an automatically derived rule set is further improved. To integrate self-learning

into the existing automated solver, a clear definition of a box needs to be provided.

Box-types will be introduced to this end, defined by combinations of box properties.

Having defined box-types, we can derive relations between box-types. These relations

are in the form of allowed placement of a certain box-type on top of another. When these

relations are derived from solutions by human planners, we can extend the SAGA-based

approach to emulate human behaviour.





Chapter 4

User–Solver Exchange and

Interaction

In this chapter, a method will be described that takes solutions provided by experienced

human planners and extracts useful information from them, as we laid out before in

[16]. In addition to that, an overview of factors will be given that need to be taken into

account when setting up interplay between the user and the automated HCTL-solver.

4.1 Statistics Extraction

One of the important aspects of the planning of boxes into a container, is knowing what

boxes are allowed to be placed on top of certain (other) boxes. To use the solutions

generated by the human planners to this end, a method is devised that extracts useful

information from them. Boxes get assigned box-types according to relevant box prop-

erties, after which relationships between these types are defined. These relationships

and their occurrence count can be integrated into the optimization process, which is

explained in Chapters 5 and 6. Numerical (that is, not categorical) box properties need

their values to be grouped, so that they can be used more effectively when jointly rep-

resenting an element of a box-type. Therefore, a method is laid out for grouping these

values into bins with varying ranges.

4.1.1 Box Properties

Boxes that are placed on top of others have different behaviour from the boxes that they

are placed upon. When we talk about behaviour of a box, we mean the way a user deals
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with a box when it needs to be planned in. To reflect this behaviour, two box-type

categories are defined: An above-box-type and a below-box-type. Each box gets assigned

both.

Box-types are defined by:

• Pallet Configuration, a short description (represented by an index value) of how the

box is configured, and whether it has a smooth or rough surface. This parameter

defines whether a box is likely to slide;

• Product Group, a short description (represented by an index value) of what type of

product is in the box. For certain products it is disadvantageous to place anything

on top of it;

• Surface Area of top face (continuous value), it gives an indication of how many

other boxes could be placed on top of a box;

• Weight (continuous value) is used in the above-box-type. It represents how much

pressure this box puts on the boxes below it;

• Density (continuous value) is used in the below-box-type. It is a representation of

how solid a box is; a solid box can carry a bigger load on top of it.

It occurs that the properties surface area, weight, and density are unevenly distributed

over their property ranges. Where a lot of property value instances occur close together,

greater precision should be used to enable more detail in the resulting rules.

4.1.2 Binning of Property Values

Ideally, all bins are filled with the same number of items, such that all rules, to be

derived from combinations of the property values, represent the same fraction of the

data.

Algorithm 2 Determine Bins

1: function DetermineBins(DataSet)

2: IdealSize ← CountMostFrequentItem(DataSet) // Count most frequent item

3: BinSep ← SplitInBins(DataSet , IdealSize) // Determine bin-separation values

4: BinSep ←MergeBins(DataSet ,BinSep) // Merge bins where needed

5: end function
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To do this in presence of unevenly spread values, Algorithm 2 first calculates the number

of occurrences of the most frequent item. This number will be used as the ideal number

of items in each of the bins.

Algorithm 3 Split Data Into Bins

1: function SplitInBins(DataSet , IdealSize)

2: ǫ = 0.0001

3: if Length(DataSet) > IdealSize then

4: DataSetmedian ←Median(DataSet)

5: DataSetBefore ← {DP ∈ DataSet | DP < DataSetmedian}

6: DataSetEqual ← {DP ∈ DataSet | DP = DataSetmedian}

7: DataSetAfter ← {DP ∈ DataSet | DP > DataSetmedian}

8: BinSepBefore ← SplitInBins(DataSetBefore, IdealSize)

9: if Length(DataSetEqual) > IdealSize/2 then

10: // Median is frequent enough → separate bin

11: BinSepEqual ← {DataSetmedian − ǫ,DataSetmedian + ǫ}

12: else

13: BinSepEqual ← ∅

14: end if

15: BinSepAfter ← SplitInBins(DataSetAfter, IdealSize)

16: return BinSepBefore ∪ BinSepEqual ∪ BinSepAfter

17: end if

18: return ∅

19: end function

Initially, there is a single bin containing all the data. This bin is split according to

Algorithm 3, until the number of items in each of the bins is smaller than the ideal

number.

The function described in Algorithm 3 recursively determines bin-separator values, by

calculating the median of the provided data set. If this median-value occurs frequently

enough (IdealSize/2) in the provided data set, a separate bin will be created for this

value, by introducing two bin-separator values: DataSetmedian−ǫ and DataSetmedian+ǫ,

where ǫ has a small enough value to only encompass the DataSetmedian-value.

This is followed by a step in which adjacent bins might be merged. Per bin it is deter-

mined what leads to a number closest to the ideal: Merge with the bin before, leave as

is, or merge with the bin after.



16 Chapter 4 – User–Solver Exchange and Interaction

4.1.3 From Box Properties to Box-Types

After binning the non-categorical property values, we can combine the four parameters

to create a box-type. Each unique combination of the parameter values will constitute

a box-type. This is done for the above-box-type and below-box-type separately. Each

box will be assigned an above-box-type for representing behaviour when being placed on

top of another box, and a below-box-type for describing behaviour when being placed

underneath another box.

A two-dimensional contingency table can now be created, in which the number of times

that a box of a certain above-box-type is placed on top of another box of a certain

below-box-type is counted. These occurrence counts can be used as guidance rules

in the optimization, by taking the chance of a possible combination of stacked boxes

proportional to its relative occurrence count.

4.2 Discussion of User–Solver Interaction

In this section a description is given of ways to introduce user-feedback into the op-

timization process. A distinction is made between direct user-feedback and indirect

user-feedback. Direct questions that are answered by the user, and in that way provide

feedback, are considered direct user-feedback. Implicit information that users impart

by providing that solver with their solutions to HCTL problem instances is considered

indirect user-feedback. Furthermore, possible pitfalls and areas of concern are discussed,

when introducing user-feedback into the automated planning process.

4.2.1 Introduction of User–Solver Corrections

Having the automated solver suggest possible solutions and the user correct them is an

efficient way of training the solver. It is those corrections that can be used to improve the

solver quickly. Once more information becomes available, inferences can be made from

the already learnt corrections that will possibly prevent additional future corrections the

user will need to make, for example boxes with intermediate property values that should

behave similarly.

4.2.1.1 Placement Rules

It is difficult to define every single rule (constraint) and optimization measure (objective)

needed to build a valid loading of sufficient quality beforehand. To assist the automated
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HCTL-solver in learning how to make loadings of good quality, the user can be asked

to correct the suggested solutions put forward by the solver. These corrections will, in

most cases, become hard constraints for the solver, in the form of placement rules.

Notion 4.1 Placement Rule. A placement rule is defined by the combination of an

above-box-type and a below-box-type, and states whether the placement of a box with the

above-box-type is allowed or disallowed on top of a box with the below-box-type.

Placement-rules can be derived in two ways:

1. Analyse final solutions made by users; if a user has made a certain placement,

this will become a rule indicating the placement is allowed, which means the

automated HCTL-solver is allowed to perform this placement (indirect user-

feedback). This method is laid out in our earlier paper [16] and in Section 4.1.

2. The automated HCTL-solver is used to generate a suggestion-loading. Afterwards

the user makes corrections. These corrections will indicate that the solver per-

formed a placement that is not allowed. Thus, this invalid placement will be-

come a placement-rule that indicates that the placement is not allowed (direct

user-feedback).

4.2.1.2 Solution Evaluation

Another possibility for introducing user-feedback into the optimization process is to

allow the users to influence how loadings are evaluated. This can be achieved by giving

the user simple example-loadings with slight differences and let the user rank these

loadings. These rankings can be used to adjust the weight of the sub-penalties in the

penalty-function (direct user-feedback).

Additionally, the user can be introduced into the evaluation process by analysing solu-

tions generated by the user. In this analysis, more prevalent penalties are apparently

of less importance to the user. The weights assigned to each sub-penalty can then be

adjusted according to the importance a user has implicitly assigned to each of those

penalties (indirect user-feedback). This method is further explained in Chapter 7.

4.2.2 Considerations When Utilizing User-Feedback

Prompting of User. When asking any user for feedback, several factors must be

observed. The feedback-frequency is the most imported of those factors; if a user is

prompted too often, an adverse effect can be introduced where the user will no longer
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give the correct response, but rather the response that will cost the least amount of

time. To this end the number of interactions with the user should be limited as much

as possible.

When the user indicates that a certain placement is valid, the number of future prompting

of the user should be further reduced by analysing the feedback the user has given. For

example: when a user indicates that box of type A can be placed on top of a box of

type B, and a box of type C is lighter than the box with type A, but has the same

dimensions and has the same PC and PG (see Section 4.1.1), the box of type C should

also be allowed on top of the box of type B.

Mistakes. Another area of concern that can be encountered is the fact that the user

can provide unintended or intended but erroneous feedback. When this occurs a user

should be able to correct it.

Conflict Between Users. A certain “mistake” might not be a mistake at all but just

a preference of the user. This, of course, can only occur when multiple users provide

conflicting corrections on suggested solutions. The conflict between users should be

logged and reported back to the team of human planners. This is also a case that might

be useful for the users to discuss amongst themselves, to come to a consensus on which

of the views should be followed.

Reasons for Feedback. One of the major areas of concern with direct user feedback

is the reason a certain direct user-feedback is given. Several reasons can be envisioned:

• The current box is not allowed to be placed on top of another;

• It is not allowed to place a box on top of the current box;

• The current box has too much overhang over the box below it;

• The weight of the current box is too great for the box below to handle;

• User preference; the user sees a better place for it.

The last of the reasons listed above is the most difficult to detect, as it does not indicate

an error, but rather a better alternative placement. If a user only has to decide between

right and wrong, the exact reason for it being wrong or right needs to be determined.

The user can also be asked to give this exact reason, but this would mean that the user

needs to spend even more time to give this feedback.

Therefore, it might be beneficial to present only right–wrong questions to the user. In

this case, the exact reason for that given feedback needs to be determined automatically.



4.2 Discussion of User–Solver Interaction 19

In practice, this means that a lot more true–false data entries are needed before the exact

reason can be determined with any kind of certainty.





Chapter 5

Solution Representation

To effectively optimize an instance of the HCTL-problem under consideration, Van Rijn

et al. [21] propose an indirect solution representation, which is derived from how human

planners solve the problem. The representation indicates for each box in which stack it

is to be placed, located in a certain area of the container. This is then translated into

an exact (x, y, z)-coordinate. This significantly reduces the search space, as compared

to directly operating on (x, y, z)-coordinates, without excluding feasible solutions. How-

ever, this representation does not reflect that placement on a certain stack is actually

possible with respect to spatial constraints.

In our earlier work [16], we employed the translation routine provided by Van Rijn et

al. [21], which takes hard constraints and initial placement rules into account. Here, we

provide an alternative informed procedure that, next to these, adheres to user-derived

placement rules, which are based on observed combinations of boxes that were planned

by end-users.

5.1 Indirect Representation

With the Self-Adaptive Genetic Algorithm (SAGA) used for solving HCTL, we make use

of the following tuple-notation to represent a candidate solution L:

L = (S1, S2, S3, ..., Sn) (5.1)

where n is the number of boxes in the current problem instance. Each step Si represents

the placement of one of the boxes in the problem instance and consists of three parts:
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Si = (bi, ai, si) (5.2)

where bi is an unique identifier for a given box, ai is the area in which the box is to

be placed, and si is the specific stack in that area on which the box is to be placed.

It is exactly these steps that the user takes when solving an HCTL-problem: The user

compiles the loading stack by stack, and usually not by first placing a lot of boxes on

the floor of the container and constructing stacks on top of them layer–by–layer.

This representation was proposed to more effectively explore the search space [21]. By

limiting the freedom of the variation operation (see Chapter 6) to the coordinates rep-

resenting stacks and areas where a box is to be placed, a more restricted search space is

defined. If a representation would be used where a placement of a box is described by

the (x, y, z)-coordinates of its placement, many of the solutions would effectively be the

same [21].

With trailer dimensions of 13 600mm x 2500mm x 2650mm, each box could be placed

at approximately 90 ∗ 109 different positions, of which most options would be invalid

because boxes need to be placed on the floor or on top of other boxes. Assuming that no

more than 25 stacks are present in each of the areas, and at most 6 areas in a container,

this yields a total of at most 150 possible locations for a box to be placed. Thus, our

search space is reduced by a factor of approximately 600 ∗ 106 per box.

5.2 Conversion from Representation to Solution

To obtain an actual solution from an indirectly represented candidate solution, a deter-

ministic conversion routine is used. This building function [21] takes each of the steps,

in the order of their indices, and tries to place a box bi at its desired (ai, si)-coordinate,

as is described in Algorithm 4. If this is not possible due to any of the hard constraints

(FitsAt(b, a, s), see Section 5.2.1) and initial rule-set (AllowedInitial(b, a, s)), see

Section 5.2.2), see line 5, the building function will look through the rest of the current

area ai for a location that the current box can be placed in, thus placing the box as

close to its original (ai, si)-coordinate as possible. It is of course possible that the box

does not fit on any of the stacks in the desired area. In this case the rest of the trailer

is searched for a fitting alternative placement (lines 21 to 23).

As this placement function is not in any way influenced by user-derived information,

it will be referred to as the uninformed building function. Section 5.3 extends it with

user-derived information to obtain an informed building function.
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Algorithm 4 Uninformed Building Function [21]

1: for (b, a, s) ∈ L do // Step box, area, stack

2: a′, s′ ← a, s // Make a local copy

3: while box not placed and not all areas tried do

4: if stack s′ exists in a′ then

5: if FitsAt(b, a′, s′) and AllowedInitial(b, a′, s′) then

6: PlaceAt(b, a′, s′)

7: a, s← a′, s′ // Copy locals back into L

8: break while

9: else

10: NextStack(s′) // s′ updated

11: end if

12: else

13: if FitsAsNewStack(b, a, s′) then

14: PlaceAt(b, a′, s′)

15: a, s← a′, s′ // Copy locals back into L

16: break while

17: else

18: FirstStack(s′) // s′ updated

19: end if

20: end if

21: if all options for s′ in a′ have been tried then

22: NextArea(a′) // a′ updated

23: end if

24: end while

25: end for

Figure 5.1: Trailer With Numbered Areas. The areas in the trailer are assigned an
index, reflecting their ordering.

Area Order. Figure 5.1 provides the ordering assigned to each of the areas of the

container; the uninformed building function tries to find alternative placements for a

box (when no placement can be found within the preferred area) in the other areas

according to a fixed order (introduced via NextArea(a)).
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When a valid placement is found, the corresponding (a, s)-coordinate replaces the pro-

vided (a, s)-coordinate in the representation (lines 7 and 15). By applying the building

function, we ensure not only that the maximum number of boxes is loaded into the

container, but also, by reinserting the actual placement found back into the representa-

tion, that the one-to-one relationship between representation and solution is preserved.

Since the building algorithm manipulates the representation, it is executed as part of

the variation operator, further elaborated on in Chapter 6.

5.2.1 Hard Constraints

Several hard constraints have been defined in consultation with industry that need to

be satisfied for a placement to be valid, looking at weight/density, overhang, i.e., how

far does a box stick out over another.

1. BoxA is allowed to be stacked on BoxB if the following condition is met:

BoxADensity ≤ BoxBDensity ∗ 2

2. BoxA is allowed to be stacked on BoxB if the following conditions are met:

BoxAWidth −BoxBWidth

BoxBWidth
< 0.1 and

BoxALength −BoxBLength

BoxBLength
< 0.1

when the box is to placed not under the bridge. This ensures that the topmost

box is at most 110% of the size of the box on the bottom. Under the bridge, a

different set of conditions needs to be met before a box is allowed to be placed:

BoxAWidth −BoxBWidth

BoxBWidth
< 0.5 and

BoxALength −BoxBLength

BoxBLength
< 0.5

3. BoxA is allowed to be placed on BoxB if enough unfilled space is available above

BoxB to fit BoxA in.

5.2.2 Initial Placement Rules

Initially, the automated solver makes use of rules drafted in consultation with industry.

These rules have been defined as relations between manually defined box-types, where

boxes with a certain type are not allowed to be placed on top of boxes of certain other

box-types. These types are given in Table 5.1.
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Table 5.1: Overview of manual-box-types

Type Name Description

0 NON STACKABLE
An id given to client to represent the order of

servicing

1 CAGE
A metal cage that is placed in the trailer for

smaller and more fragile items

2 CAGE PRODUCT
Products to be placed into the cage. These

boxes are not part of the problem instance.

3 SOLID
Usually wooden floorboards (parquet and

laminate)

4 DONT COUNT Plates

5 SELF STACKABLE
Boxes with this type can be placed on top of

each other

6 FRAGILE 1 Bath

7 FRAGILE 2
Radiator placed on a Euro 3 skid (1,000 mm

1,200 mm)

8 FRAGILE 3
Radiator placed on a Euro 1 skid (800 mm

1,200 mm)

9 REMAINING 1 Can be placed on top of Fragile 2

10 REMAINING 2 Can be placed on top of Fragile 2 and 3

11 REMAINING
All other boxes

Table 5.2 shows the placements rules in accordance with industry. For a lot of the box-

types no placement rules have been defined. A large portion of the boxes is assigned

one of the three REMAINING box-types, for which the initial rules do not define any

restrictions to boxes that are placed on top of them. Nevertheless, the rules put forward

in Table 5.2 prevent known undesirable placements.
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Table 5.2: Overview of manually defined rules

Bottom Box Top Box
Extra

Requirement

Allowed /

Disallowed

FRAGILE 1 FRAGILE 1

Weight difference

<

50 kg

Disallowed

FRAGILE 2 FRAGILE 1

WeightTop

<

WeightBottom

Allowed

FRAGILE 2 FRAGILE 2

WeightTop

<

WeightBottom

Allowed

FRAGILE 3 FRAGILE 3

WeightTop

<

WeightBottom

Allowed

FRAGILE 2 REMAINING 1

WeightTop

<

WeightBottom

Disallowed

FRAGILE 2 REMAINING 2

WeightTop

<

WeightBottom

Allowed

FRAGILE 3 REMAINING 2

WeightTop

<

WeightBottom

Allowed

FRAGILE 1 SELF STACKABLE

Weight difference

<

50 kg

Disallowed

Any SELF STACKABLE - Disallowed

SELF STACKABLE Any - Disallowed

SELF STACKABLE SELF STACKABLE - Allowed

Any NON STACKABLE - Disallowed
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Table 5.2: Overview of manually defined rules (Continued)

Bottom Box
Top Box

Extra

Requirement

Allowed /

Disallowed

NON STACKABLE Any - Disallowed

5.3 Introduction of User-Derived Information

The uninformed building function determines an a, s-coordinate for a given box b. How-

ever, it does not take any user-derived information into consideration in this process.

Therefore, the informed building function is proposed where the uninformed building

function is extended to incorporate the user-derived information, which will improve

the adherence to the user-derived placement rules. The informed building function is

described in Algorithms 5 to 7

Algorithm 5 Informed Building Function

1: for all (b, a, s) ∈ L do // Step box, area, stack

2: if SingleStepInformed(b, a, s) then // Placement for box found, b, a, s possibly updated

3: PlaceAt(b, a, s) // Place box b in actual solution

4: end if // Otherwise: try next box

5: end for
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Algorithm 6 Single Step Informed

1: function SingleStepInformed(step, searchDepth) // step is possibly updated

2: b, a, s ∈ step // box, area, stack

3: if FitsAt(b, a, s) and AllowedInitial(b, a, s) then // Check preferred placement

4: if AllowedUser(b, a, s) then

5: return True // step unchanged

6: end if

7: step′ ← step // Local step

8: end if

9:

10: step′′ ← step // Local copy. Check rest of current area for alternative placements

11: switch SearchAreaInformed(step′′) do // step′′ possibly updated

12: case ALLOWED USER:

13: step ← step′′; return True // Update step

14: case ALLOWED INITIAL:

15: if step′ equals ∅ then

16: step′ ← step′′ // Update step′

17: end if

18: // We found an ALLOWED INITIAL placement within current section

19: if searchDepth == 0 and step′ not equal to ∅ then // search depth already reached

20: step ← step′; return True // Update step

21: end if

22:

23: numAreasSearched ← 1

24: while NextArea(a′) do // Check other sections for an allowed user placement

25: step′′ ← (b, a′, s′)

26: switch SearchAreaInformed(step′′) do // step′′ possibly updated

27: case ALLOWED USER: // The step we want (user) has been found

28: step ← step′′;return True // Update step

29: case ALLOWED INITIAL:

30: if step′ equals ∅ then

31: step′ ← step′′

32: end if

33: if numAreasSearched >= searchDepth then

34: step ← step′; return True // Update step

35: end if

36: numAreasSearched ← numAreasSearched + 1 // Search next area

37: end while

38: return False // No placement found, step is returned unchanged

39: end function
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Algorithm 7 Search Area Informed

1: function SearchAreaInformed(step) // stack s in step possibly updated

2: b, a, s ∈ step

3: foundAllowedInitial ← ∅

4: while NextStack(s′) do // s′ updated

5: if FitsAt(b, a, s′) and AllowedInitial(b, a, s′) then

6: if AllowedUser(b, a, s′) then

7: step ← b, a, s′

8: return ALLOWED USER

9: end if

10: if foundAllowedInitial equals ∅ then

11: foundAllowedInitial ← (b, a, s′)

12: end if

13: end if

14: end while

15:

16: if FitsAsNewStack(b, a, s′) then // s′ possibly updated to represent new stack

17: foundAllowedInitial ← (b, a, s′)

18: end if

19:

20: if foundAllowedInitial is not equals to ∅ then

21: step ← foundAllowedInitial

22: return ALLOWED INITIAL

23: else

24: return NONE

25: end if

26: end function

The informed building function first checks if a box b can be placed at its preferred place

a, s, adhering to the initial rules (line 3 in Algorithm 6). After this the adherence to the

user-derived rules is checked (line 4 in Algorithm 6). If the preferred place is considered

invalid, the building algorithm continues by checking the rest of the preferred section

for an alternative valid placement (Algorithm 7).

If no placement in the preferred area is possible, the rest of the container is checked.

For all these placements, conformance to the initial rules is checked first (line 5 in

Algorithm 7), after which conformance to the user-derived rules is checked (line 6 in

Algorithm 7).
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An (a, s)-coordinate that is valid according to the user-derived rules will always get

preference over an (a, s)-coordinate that is considered invalid, even if the invalid coor-

dinate is closer to the original (preferred) coordinate in the representation. If no valid

placement is found, then the first placement in accordance with the initial rules is used.

Since the user-derived rules do not define whether it is considered valid to place a box

on the floor of the trailer, a new stack needs to be created in an area to accommodate

a box, is not considered a valid placement according to the user-derived rules.

Because of the extra restrictions in lines 4 and 6 of Algorithm 6, it takes the informed

building algorithm longer than it takes the uninformed building algorithm to find a valid

place for a certain package. To alleviate this problem, a hybrid version of the building

function is proposed, where a maximum number of areas in the trailer is checked for

a valid placement (lines 19 to 21 and lines 33 to 35 in Algorithm 6). After the search

depth has been reached, the informed building algorithm falls back on placements that

only adhere to the initial rules. The search-depth is one of the test-parameters described

in Section 8.5.

Area Order. For the informed building function an alternative section order is used

(Figure 5.1); the preferred starting area of a box determines the search order of the

alternative areas. With this alternative ordering, the areas with a similar maximum

height are searched first:

• When a box is to be placed on the bridge, the alternative area order is:

Left: 1 =⇒ 2 =⇒ 5 =⇒ 6 =⇒ 3 =⇒ 4

Right: 2 =⇒ 1 =⇒ 6 =⇒ 5 =⇒ 4 =⇒ 3

where the other side of the bridge is checked, after which the areas behind the

bridge and underneath the bridge are checked;

• When a box needs to be placed below the bridge, the area order is:

Left: 3 =⇒ 4 =⇒ 1 =⇒ 1 =⇒ 5 =⇒ 6

Right: 4 =⇒ 3 =⇒ 2 =⇒ 2 =⇒ 6 =⇒ 5

where the other side under the bridge is checked first, then on the bridge, and

finally behind the bridge;

• When a box has a preferred area behind the bridge the other areas are searched in

the following order:

Left: 5 =⇒ 6 =⇒ 3 =⇒ 4 =⇒ 1 =⇒ 2

Right: 6 =⇒ 5 =⇒ 4 =⇒ 3 =⇒ 2 =⇒ 1

where the other side behind the bridge is searched first, after which the container

is checked for a place under the bridge and on the bridge. When a box does not
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fit in one of the areas behind the bridge, it is likely that is oddly shaped (a long

pipe for example), which is usually better fitted under the bridge.

The behaviour of NextArea(a) (line 24) in the informed building algorithm is defined

by these orders.





Chapter 6

Variation Operator

User-derived information can be introduced into the SAGA-based solver in several places,

one of which is the variation operator. We presented an approach for this in earlier work

[16], giving rise to an informed mutation operator.

The original, uninformed variation in the automated HCTL-solver implemented by Van

Rijn et al. [21], has two uses: To generate new solutions, and to modify existing candi-

date solutions. In generating new solutions, no user-derived information is introduced.

This is to ensure that the automated solver is not restricted in the beginning of its

optimization process. For both the uninformed and informed mutation operator this

generation process of new solutions is kept completely random.

Furthermore, our earlier work [16] suggests that the stack-mutation operator, which

swaps entire stacks in a solution, should be performed more often. This improvement is

described in Section 6.3.

6.1 Uninformed Mutation Operator

Van Rijn et al. [21] provide a variation operator for HCTL, for use within a Self-Adaptive

Genetic Algorithm (SAGA) [15]. This variation operator is purely random and does not

make use of user-derived information. We termed this uninformed box-mutation [16].

The SAGA applies mutation as the only handle for generating new candidate solutions

from existing ones. Thus the mutation application probability is 1.0. The mutation mag-

nitude expresses the (expected) fraction of the total number of elements (here: boxes)

n in the old candidate solution that gets mutated upon application of the mutation

operator. It is defined as
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mutmagn = mutmagn,sa +mutmagn,min , (6.1)

where

mutmagn,min =
1

n
(6.2)

is the lower bound of the total mutation magnitude. The self-adaptive mutation mag-

nitude mutmagn,sa is updated according to the rule (SA3 in [15])

mut′magn,sa = min

(

1

2
,

1

1 +
1−mutmagn,sa

mutmagn,sa
· exp(γ · N (0, 1))

)

, (6.3)

where γ = 0.22 [15]. Updating the self-adaptive part of the mutation magnitude is

performed before the actual mutation of the elements in the solution, i.e. mut′magn,sa is

used for the mutation.

The total mutation magnitude mutmagn,box for the box-mutation is initialized to 0.2,

through initializing mutmagn,sa,box to

mutmagn,sa,box = 0.2−mutmagn,min. (6.4)

The mutmagn,box is part of the individual ~r in the SAGA, i.e.:

~r = (L,mutmagn,box), (6.5)

L = (S1, S2, S3, ..., Sn) , (6.6)

Si = (bi, ai, si) . (6.7)

Each representation of a loading L is comprised of several steps S, each representing

the placement of a box b on a stack s in an area a of the container. For each box in

the solution a decision is made, based on the mutation magnitude mutmagn,box, whether

the associated step (b, a, s) gets mutated. If this is the case, three parameters can be

adjusted in mutating the step:

• Placement order, i.e., the position of the step associated with the box within the

representation;
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• Area in the container, where stack the stack that will contain the box is located;

• Stack in the area, in which the box is to be placed.

Each of the three parameters has an independent 1
3 -chance of being adjusted. For mu-

tating the placement order, a random new location in the permutation of the steps

(S1, S2, ...) is chosen. The step associated with the box under consideration is then

either inserted or swapped with the step currently at that location, see Sections 6.1.1

and 6.1.2.

For mutating the area in the container, the area index a currently in the step (b, a, s)

is replaced by a random integer in the range [1, 6], as there are 6 areas in a container

when a bridge is present. For mutating the stack index s, a random integer in the range

[1, 25] is used, as 25 stacks was estimated to be the maximum number of stacks in an

area.

When a bridge is not present a new random integer is chosen in the range [1, 2] to

indicate the area, and a stack number is randomly chosen in the range [1, 75], since the

areas are a lot bigger when a bridge is absent.

6.1.1 Insert

When performing an insert operation on a candidate solution, the current step is inserted

into its representation before a random step.

For example, insert step 5 (S5) before step 3 (S3):

L = (S1, S2, S3, S4, S5, S6)

↓

L′ = (S1, S2, S5, S3, S4, S6)

6.1.2 Swap

A swap operation on a candidate solution is performed by selecting a random step from

its representation and swapping the current step with that step.

For example, swap step 5 (S5) with step 3 (S3):



36 Chapter 6 – Variation Operator

L = (S1, S2, S3, S4, S5, S6)

↓

L′ = (S1, S2, S5, S4, S3, S6)

6.2 Informed Mutation Operator

In Section 4.1.3, a method for extracting usable information from user-generated solu-

tions is described. This extracted information is employed in emulating the user within

the optimization approach, through an informed box-mutation operator. By definition,

however, this mutation operation is unable to act on entire stacks. Therefore, a stack-

mutation operator is introduced to remedy this limitation.

6.2.1 Informed Box-Mutation

With informed box-mutation, a box will be mutated according to user-derived statistics.

Based on box-types, a box is either placed on top of (above-mutation), or underneath

another box (below-mutation). Above-mutation has the ability to place a box on top

of a stack, whereas below-mutation has the ability to place a box on the floor of the

container.

To choose whether to apply above-mutation or below-mutation, counts are used of the

number of times a box has been placed on the floor, and the number of times it has

been placed on the top of a stack, in the user-solutions. This determines the chance of

using either of the two mutation operators. In some cases, a box will make up the entire

stack, in which it is both the topmost box and on the floor (see Figure 6.1). These

SingleBoxStack cases are subtracted from the totals as follows:

Floor normalized = Floor − SingleBoxStack , (6.8a)

Top normalized = Top − SingleBoxStack , (6.8b)

Ratio =
Top normalized

Floor normalized + Top normalized
. (6.8c)
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Figure 6.1: Types of Stacks. A is a stack consisting of a single box (i.e., it is the
topmost box and on the floor), whereas B,C,D is a stack that is composed of multiple
boxes.

In the available user-generated solutions, the number of times the current box has been

above or below any of the other boxes in each of the problem instances, has been counted.

With these counts, a roulette wheel selection routine can be created with each portion of

the “wheel” proportional to count that combination of above-box-type and below-box-

type. The roulette wheel is used to determine where the current box is to be placed. If

for all combinations the count is zero, each placement will be assigned an equal portion

of the roulette wheel.

To accomplish the actual placement within the representation, the area and stack indices

need to be set to those associated with the box that the current box is being placed

underneath or on top of. The order in the representation determines the order in which

the boxes are placed in the container.

To place the current box underneath of another box, its step (b, a, s) is put in the

representation directly before that of the box it is to be placed underneath of. To place

the current box on top of another, it is inserted directly after it in the representation.

When using this insert-implementation, the boxes that are to be placed on the same

stacks will thus be sorted in the representation.

6.2.2 Stack-Mutation Operator

The informed box-mutation operator only moves boxes in relation to other boxes, and

cannot operate on entire stacks. To alleviate this shortcoming, a stack-mutation operator

is introduced that swaps entire stacks, as described in Algorithm 8. Before the actual

stack-mutation is performed, the self-adaptive part mutmagn,sa,stack of the stack-mutation

magnitude mutmagn,stack is updated according to Equation 6.3.
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Algorithm 8 Stack-Mutation

1: function StackMutation(~r)

2: mutmagn,stack ← UpdateMutMagn(mutmagn,stack ∈ ~r)

3: effectiveMutMagn ← mutmagn,stack ∗
n

numStacks

4: for (a, s) ∈ StackList(~r) do // Get stack ID (a, s)

5: if Random([0, 1]) < effectiveMutMagn then // Random value between 0 and 1

6: (a′, s′) ∈ StackList(~r) // Get stack ID (a′, s′)

7: SwapAll((a, s), (a′, s′), ~r)

8: end if

9: end for

10: SwapFirstOccurrences((a, s), (a′, s′)) // Swap stacks in building order

11: end function

Expressing the mutation magnitude for the stack-mutation directly as a fraction of the

number of stacks is not possible as the number of stacks in a solution may vary over

the course of the optimization run. It is therefore expressed in terms of the number of

boxes n and converted before application using a conversion factor of n
numStacks .

For initializing this effective magnitude of the stack mutation to 2
numStacks , we initialize

mutmagn,stack to 2
n
by taking

mutmagn,sa,stack =
2

n
−mutmagn,min (6.9)

(see Equation 6.2). An individual ~r in the SAGA is then extended to:

~r = (L,mutmagn,box,mutmagn,stack). (6.10)

To bring about the actual mutation of two stacks, all occurrences of combinations of

their area and stack indices a, s in the steps (b, a, s) are swapped with each other’s,

thereby swapping their contents in terms of the contained boxes. Also the location of

the first steps concerning the stacks is swapped, so that the order in which the placement

algorithm (Chapter 5) creates the stacks is also swapped.

6.3 Combining Mutation Operators

For every execution of the mutation operator, the algorithm needs to determine which

of the different box-mutation operators is going to be used. For the box-mutation
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two possible mutations can be chosen: Uninformed box-mutation (see Section 6.1) and

informed box-mutation (see Section 6.2.1). The choice between these two mutation-

operators is determined by the frequency informed-box parameter provided to the algorithm,

and is one of the parameters tested in the experiments (see Chapter 8).

The informed box-mutation manifests a sorting behaviour when applied. This is due to

the fact that steps are inserted directly before or after other steps referring to the same

stack and section. Since the stack mutation can be a very invasive mutation (it is able to

change several boxes in one mutation step), a linearly increasing application frequency

mut prob,stack is used for the decision to use stack-mutation. The mut prob,stack proposed in

our earlier work [16] ranged from 0.05 to 0.25. When applying the stack-mutation with

a linearly increasing rate, i.e. more stack-mutation towards the end of the optimization

process, the negative influence is decreased since the informed-box-mutation has sorted

the stacks in the representation.

It is beneficial to a apply the stack-mutation operator more frequently, as suggested in

our earlier work [16]. Therefore, we increase the mut prob,stack. Furthermore, we make the

mut prob,stack dependent on the frequency informed-box, since the stack-mutation operator

has a negative effect on the uninformed box-mutation. This is accomplished by using

mut prob,stack,start = 0.1 ∗ (frequency informed-box/0.25) (6.11)

at the start of the optimization process, and linearly it increasing to

mut prob,stack,end = 0.1 ∗ (frequency informed-box/0.25) + 0.15 (6.12)

at the end of the process, where frequency informed-box is provided to the SAGA as a test-

parameter. Thus, mut prob,stack can have starting values ranging from 0.0 to 0.4 increasing

to end values ranging from 0.15 to 0.55. This means that when more informed-mutation

is used, more stack-mutation is used.

In one mutation step, the stack-mutation operator is applied first. Due to the indirect

representation, first applying the box-mutation would mean that in the actual loading,

these boxes might not fit in their new stacks. Thus, the following stack-mutation would

be applied to (possibly) invalid stacks.





Chapter 7

Penalty Function

In the optimization of HCTL-problem instances, a lot of objectives have to be taken

into account. The performance of a solution in each of the objectives is expressed in the

form of a penalty. These different penalties are combined using weighted aggregation,

where each of these so-called sub-penalties is summed after being multiplied with a

certain weight. The weight assigned to each a sub-penalties as well as the sub-penalties

themselves have been developed in consultation with industry, but some are not optimal

for use in automated solving.

Some sub-penalties are expressed as non-continuous functions, where a penalty is in-

curred only after a certain threshold has been reached. Other sub-penalties keep a fixed

value once a certain threshold has been met. Both of these sub-penalties thus closely

resemble constraints, that would indicate a true–false distinction. These types of sub-

penalties, in combination with regular objective-functions, are very difficult to optimize

with the use of a selection-based iterative search method, as the penalty value does

not indicate a difference between two candidate solutions where one of the candidates

is closer to the aforementioned threshold, yet both candidates incur the same penalty

value.

In this chapter, a comprehensive overview of the used sub-penalties is given in Sec-

tion 7.1, and a listing of the original weights assigned to those in Section 7.2. Further-

more a method is described as put forward by Eiben et al. [7], for the adaptation of

these weights in a penalty function to solve Constraint Satisfaction Problems. However,

this method is not applicable to the HCTL problem-instances we are trying to solve

in this thesis. Therefore a method is described that corrects the weights by analysing

user-generated solutions in Section 7.3.
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7.1 Overview of Sub-Penalties

This section will give an overview of all sub-penalty functions contributing to the penalty-

function. These sub-penalties have been determined in consultation with industry. For

some sub-penalties a converge value has been defined that helps the GA rank solutions

that would otherwise have the same penalty value.

7.1.1 Left Over

This sub-penalty is used to reflect the fact that when boxes are left out, another delivery

needs to be scheduled to deliver the boxes to their respective clients.

Notion 7.1 Left Over Penalty. The Left Over Penalty is defined as the number of

boxes that have not been placed in the solution under evaluation.

7.1.2 Client Order

To represent the number of loading/unloading actions a fork-lift driver has to perform

to load/unload all boxes for a certain client, the client order penalty is introduced. This

penalty is increased for each extra unloading action a fork-lift driver would have to

perform. This means that clients that are to be serviced first are preferably placed on

top of stacks.

Notion 7.2 Client Order Penalty. The Client Order Penalty is determined by evalu-

ating for each client, in the order in which they are to be serviced, how many packages

need to be removed before all boxes for the current client can be unloaded.

7.1.3 Client Side

This sub-penalty is two-fold. The first part deals with the fact that it takes a couple of

minutes for the fork-lift driver to remove the flaps on one side of the trailer. If boxes for

a client are loaded on both sides, both flaps need to be opened, which will take extra

time. To reflect this, the Client Side Penalty is increased when a client has boxes on

both sides of the trailer. However, when the total weight of all boxes of a client exceeds

4000kg, both parts of the penalty are ignored, due to the fact that if those 4000kg was

to be loaded on one side of the trailer, the trailer would become very unstable once that

client’s boxes have been unloaded (Section 7.1.4).

Notion 7.3 Client Side Penalty. The Client Side Penalty is expressed as the number

of clients that have boxes on both sides of the container, or have boxes that are not on
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the client’s preferred side. This is penalty only incurred if and only if the total weight of

the client’s boxes combined is below 4000 kg.

Notion 7.4 Client Side Penalty Convergence Value. The Client Side Penalty Con-

vergence Value is defined as the number of boxes that are placed on the wrong side of the

container. If a client’s boxes are placed on both sides of the container, the wrong side

is defined as the side with the least amount of boxes.

The second part of the sub-penalty deals with the fact that some clients have a preferred

side for unloading their boxes, due to available loading docks, for example. If no client

side penalty is incurred for a given client, the client side preferred penalty is incurred.

Notion 7.5 Client Side Penalty Preferred. The Client Side Penalty Preferred is the

number of clients that have boxes that are not on the preferred side.

Notion 7.6 Client Side Penalty Preferred Convergence Value. The Client Side

Penalty Preferred Convergence Value is defined as the number of boxes that are not on

the preferred side.

7.1.4 Weight Distribution

To ensure that the trailer does not have the risk of falling over, the following sub-penalty

is used:

Notion 7.7 Weight Balance Side-to-Side Penalty. The Weight Balance Side-to-Side

Penalty is defined as the difference in weight of the boxes loaded on each side of the

container. If the weight on the boxes on the left side is the biggest, then the penalty is

halved.
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Figure 7.1: Side-To-Side Weight Balance Penalty. All boxes are of equal size and
weight. The only thing changed is the number of boxes on each side of the container.
The penalty weight balance penalty on the left side of the container is lower than on
the right side.
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The curvature of the road (when driving on the right side of the road) will put a higher

strain on the right side of the suspension. The penalty function reflects this by penalising

a weight imbalance on the right side more severely than on the left (Figure 7.1).

7.1.5 Under Bridge

If the container has a bridge, every box that is placed underneath the bridge will not

be assigned certain penalties. Due to this nullification of certain penalties, the SAGA

optimizes the penalty value by placing as many boxes as possible underneath the bridge.

Since all these boxes need to be removed by hand (a fork-lift is unable to reach here)

some boxes should not be placed underneath the bridge. To this end, the Under Bridge

Penalty is introduced. This penalty is incurred when a box that should not be placed

underneath the bridge is placed there.

Notion 7.8 SmallBox. A box is considered a SmallBox when the length or width is

smaller than 400mm.

Notion 7.9 Under Bridge Penalty. The Under Bridge Penalty is expressed as the

total volume of all boxes that are placed under the bridge, except for SmallBoxes.

7.1.6 Stack Height

This sub-penalty is used to penalise the stacks that are too high and therefore unstable.

This function grows exponentially, after certain conditions have been met.

Notion 7.10 Stack Height Penalty. The Stack Height Penalty is defined by, for each

stack in the container that is bigger than 1500mm and contains more than 4 boxes.

If these conditions have been satisfied, the penalty is calculated according to the Stack

Height Formula

Stack Height Formula = (#Boxes− 1)2 (7.1)
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Figure 7.2: Stack Height Penalty. The penalty increases with the number of boxes
in a stack. When boxes are smaller, more are needed to reach the 1500mm height
threshold.

7.1.7 Stack Pattern

This sub-penalty is used to represent the stability of a loading. It increases when stacks

are able to slide or fall over. It consists of two parts: plus and minus. The plus part of

the penalty reflects the possibility of stacks moving when the truck accelerates and the

minus penalty for when the truck brakes. This penalty has been provided by industry.

Notion 7.11 Stack Pattern Penalty. The stack pattern penalty is defined by going

through all stacks from back to front. For each stack, the stacks that are directly behind

it difference in height is multiplied by the width of the box that is behind the current box.

This is multiplied by the “Distance Bonus” defined below. If the current box is bigger

than the box behind it, the value is added to the plus-penalty, otherwise it is added to the

minus-penalty.

This penalty might be rather abstract, but can be viewed as weighted surface area of

the sides of stacks, that are not supported by other stacks. The weighting is determined

by the distance d between the current stack and the stacks are that do support it.

Distance Bonus =
1

1 + ǫ−14∗(d−400)
(7.2)

7.2 Sub-Penalty Weights

In the original penalty function, the following weights were assigned to the different sub-

penalties. The weighting of all these sub-penalties, has been established in consultation

with industry.
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Table 7.1: Initial Weights. The initial weights assigned to each of the sub-penalties.
Since the Client Side Penalty, Stack Patter Penalty and Balance Penalty are described
by several components, each component has its own weighting. The approximate values
of the sub-penalties (after multiplication with their respective weights) are listed in the
last column.

Sub-Penalty Weight Approximate Value Range

left over 100 000 100 000 - 1 000 000

under bridge 500 0 - 1500

client side 100 0 - 500

client side, convergence 10

client side, preferrence 5

client side, preferrence, convergence 1

client order 10 0 - 200

stack pattern minus 50 1000 - 6000

stack pattern plus 10

stack height 10 0 - 500

balance,right 10 0 - 1000

balance,left 5

7.3 Correction of Sub-Penalty Weighting

Given a set of penalties that describe certain undesirable traits of a solution, an im-

portance (weight) needs to be assigned to each of these penalties. The initial weights

have explicitly been determined by interviewing experienced human planners. To correct

these initial weights of each of the objectives, the available user-generated solutions can

be used to determine how often the user accepts a solution with certain penalty values.

If a user accepts high values for a sub-penalty, it is apparently of less importance to the

user. Thus, it should be valued less when evaluating the quality of a solution generated

with the use of the automated-solver. To accomplish this, we propose a correction factor

for each of the sub-penalties.
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7.3.1 Stepwise Adaptation of Weights

In work by Eiben et al. [7], a method is described to apply adaptation of weights as-

signed to sub-penalties in order to solve instances of the Constraint Satisfaction Problems

(CSP). In CSP, a set of constraints all need to be satisfied for the problem instance to

be considered solved. In their method, Eiben et al. describe that if a constraint is not

satisfied for a certain amount of generations, i.e. it is hard to solve, the weight assigned

to that sub-penalty is increased with a fixed value. Thus, the penalties with a higher

weight will have more influence in the selection operator of the GA. Initially, all weights

are equal.

The sub-penalties used by Eiben et al. are defined per constraint. If a constraint χi is not

satisfied, a penalty of 1 is incurred otherwise the penalty value is 0. The sub-penalties

for all constraints are combined into one penalty value using weighted aggregation, i.e.

by multiplying them with their assigned dynamic weight, described above.

Table 7.2: Method Comparison. A comparison between the method proposed in this
thesis and the SAW method as described by Eiben et al. [7].

This Thesis SAW

Sub-penalties Varying scale Equal scale

Importance of

Sub-penalties
Varying importance Equal importance

Goal of Weight

Adaptation
Determine true weights

Artificial weighting so GA

can solve CSP

Scope of Adaptation Dependant on user Within GA

Table 7.2 shows the differences in approach for adjusting weights between Eiben et

al. [7] and the method proposed in this thesis Section 7.3.2. The method proposed by

Eiben et al. deals with sub-penalties that are of equal weights and of equal importance,

whereas the HCTL-problem we are studying is evaluated by sub-penalties that are of

varying scale and varying importance. The goal of adapting the weights for Eiben et

al. is to assist the GA in solving their problem, whereas we are determining the actual

importance of each of the sub-penalties by analysing user-accepted solutions.

7.3.2 Correction Factor for Sub-Penalty Weight

The correction factor for the initial weight of a sub-penalty is determined using a col-

lection of user-accepted solutions. Since solutions for problem instances containing a

larger amount of boxes are likely to get higher absolute penalties, the average for each
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sub-penalty per box P box,i, weighted according to the initial setting, is calculated per

solution instead. Otherwise, solutions with more boxes would implicitly get a larger

vote, disturbing the per-solution accepted ratio between the sub-penalties.

Thus, per solution Υ, a weighted sub-penalty value per box is calculated,

P box,i(Υ) =
P sol,i(Υ) ∗ wi

numboxes(Υ)
, (7.3)

where P sol,i(Υ) denotes the i-th sub-penalty, taken times its initial weight, and numboxes(Υ)

denotes the number of boxes in that solution.

Two ways of calculating the correction factors for the initial weights of the sub-penalties

will be compared. For the first approach, we take the sum of an initially weighted

sub-penalty i per box, over all user-accepted solutions Υ1,Υ2, . . . ,Υm,

m
∑

j=1

(P box,i(Υj)) . (7.4)

Next, we determine the total of these sums, of all initially weighted sub-penalties per box

P box,1, Pbox,2, . . . , P box,n (expressed over all user-accepted solutions Υ1,Υ2, . . . ,Υm),

n
∑

i=1





m
∑

j=1

(P box,i(Υj))



 . (7.5)

Of this total, the portion can be determined that resulted from a certain initially

weighted sub-penalty. This portion reflects how important this weighted sub-penalty

was deemed to be, namely, larger portion ↔ less importance. As such, we take the cor-

rection factor for the initial weight of the i-th sub-penalty as the inverse of its fraction,

Csummed,i =

n
∑

i=1

(

m
∑

j=1
(P box,i(Υj))

)

m
∑

j=1
(P box,i(Υj))

. (7.6)

Some problem instances might require the user to drastically alter the weighting of the

sub-penalties for that particular solution. To prevent these outliers from skewing the

correction factors, a second method of determining the correction factors is proposed,

based on the averages of the initially weighted sub-penalties per box, averaged over all
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user-accepted solutions Υ1,Υ2, . . . ,Υm,

Caveraged,i =

n
∑

i=1





m∑

j=1
(P box,i(Υj))

m





m∑

j=1
(P box,i(Υj))

m

. (7.7)

After these inverted fractions have been determined, they need to be normalized. To

this end the sum over all the non-normalized correction factors is calculated,

C total, summed =
n
∑

i=1

(csummed,i) (7.8)

C total, averaged =

n
∑

i=1

(caveraged,i) . (7.9)

After which, the normalized correction factors csummed,i and caveraged,i can be calculated,

c summed,i =
c summed,i

c total, summed
(7.10)

c averaged,i =
c averaged,i

c total, averaged
. (7.11)

In determining the correction factors for the sub-penalties, the left over penalty (Sec-

tion 7.1.1) cannot be taken into account, since the building function (described in Chap-

ter 5) does not have the option to leave any of the boxes out. This is the reason behind

the normalization of the correction factors, since using the non-normalized correction

factors would disrupt the relationship between the left over penalty and the other sub-

penalties. The convergence values will also be excluded from the calculation of the

correction factors, since they were only introduced to assist the GA.





Chapter 8

Experimental Setup

In this chapter, a description is given of the experiments that have been performed to test

the performance of the proposed methods put forward in this thesis. The experiments

performed in our earlier work [16] are repeated. Furthermore, tests are performed on

the informed building function (see Chapter 5) to determine its performance both in the

terms of quality of a solution (number of boxes, stability etc.) as well as the number of

violations of the user-derived placement rules.

8.1 The Data Set

The data set used in our experiments consists of 1449 problem instances provided by

industry. For each of these problem instances, a solution by an experienced human

planner is also provided.

For the experiments, the data set is split up into three parts: A training set, a run

set, and a test set. The training set, 650 problem instances, is used to generate a two-

dimensional contingency table (see 4.1.3) for training the solver, whereas the test set,

using another 650 instances, gives rise to a contingency table for determining placement

violations. The remainder of the data set, 149 instances, is used for running the solver

on, after which performance with respect to placement violations and penalty values is

determined.

To generate more reliable results, a cross-validation scheme is used in which the split into

training, run, and test sets is performed five times. Per split, a certain problem instance

can only occur in one of the sets, that is, the sets are completely disjunct. Through

this cross-validation scheme, 745 runs of the solver are obtained for determining its

performance over. For the experiments with the correction factors for the weights of the
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penalty function, the test set and run set have been combined into a set of 1300 problem

instances, which are used to determine the correction factors.

8.2 Variation Operator

Our experiments for the variation operator (see Chapter 6) are three-fold: First, the

influence of the informed box-mutation and stack-mutation operator on the penalty value

is determined. Second, the effect of mutation operators is investigated on the number

of placement violations. Another part of the experiments is the investigation of the

ratio of combining the existing uninformed-mutation operator and the newly defined

informed-mutation operator. For placement violation, the following definition is used:

Notion 8.1 Placement Violation. A placement violation occurs when the placement

of a box with above-box-type a on a box with below-box-type b was done less than twice

by the human planner in the test data set.

The human planner making a mistake once has, according to this definition, no effect on

what is counted as a violation. Violations will be determined by comparing a generated

loading to the rules defined by a separate test set.

8.3 Building Function

The experiments performed for testing the performance of the informed building function

are two-fold: First, the influence of the search depth (see Section 5.3) for non-violating

placements is tested. Second, various levels of search depth are combined with three

different variation operators. These combinations should show if the building function

has any effect on the performance of the variation operators.

8.4 Penalty Function

Van Rijn et al. [21] showed that their results are on par with solutions generated by the

human planners. However, they conclude that the penalty function does not describe

the undesirable traits of a solution accurately enough to help the automated solver in

coming up with solutions that users would immediately accept. To determine whether

the corrections proposed on the sub-penalty weighting have the desired effect of better

representing validity of a loading, we will take the solver-generated solutions and the

user-generated solutions, and evaluate these using the corrected penalty function.
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8.5 Test Parameters

In the experiments, several ratios of using informed box-mutation will be tested. These

range from completely uninformed to fully informed, in four steps. The ratios are tested

with both the stack-mutation enabled and disabled.

For testing the informed building function, three different settings for the variation oper-

ator are used: uninformed without stack-mutation, 50% informed with stack mutation,

and completely informed with stack mutation. The informed building function is tested

as well as a hybrid version, where it only searches a number of areas for a non-violating

placement. Two hybrid versions are tested: Only search the current area, and search

both the current area and the corresponding area on the other side of the container.

Table 8.1 presents an overview of the other test parameters.

Table 8.1: Test Parameters.

Parameter Possible Values

Minimum number of bins Automatically determined

Maximum number of bins 25 bins

Evaluation budget 10, 000 evaluations

Population sizes (5, 35)

8.5.1 System Specification

A run of the solver with 10,000 evaluations takes about five to eight minutes, depending

on the number of boxes. It is a single threaded program. The system specifications of

the systems used are comparable to a Intel i5 (4th generation) with 8 GB of system

memory. The entire solver is run in a Linux environment. All the code used for the

solver is written in Python [20].





Chapter 9

Empirical Study

This chapter gives an overview of the results of all experiments that have been performed

to test the influence of the proposed improvements for the automated solver of Highly

Constrained Truck Loading problems. These experiments have been divided into four

parts: Variation operator, building function, penalty function and run-time analysis. All

box-plots presented in this chapter represent a comparison between solutions generated

with a certain default parameter setting (denoted by a grey line) and solutions generated

with a test parameter setting.

9.1 Variation Operator

For each of the different test-parameter sets (Section 8.5), we need to measure the

performance. This is done by making two comparisons:

• For each level of informed box-mutation, executing the solver with and without

stack-mutation is compared;

• The four levels where informed box-mutation are actually used (25%, 50%, 75%,

100%, with stack-mutation), are compared to the parameter settings used by Van

Rijn et al. [21], i.e., uninformed without stack-mutation (default parameters).

Three metrics will be used to determine the performance of automated solver with each

of the experimental settings.

• Percentage of boxes left over.

• Quality of placement of loaded boxes.
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• Percentage of violating placements.

9.1.1 Boxes Left Over
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(a) Difference in Percentage of Boxes Left Over (de-

fault). Comparison of percentage of boxes left over be-

tween the four levels of informed mutation compared

and unininformed mutation.
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(b) Difference in Percentage of Boxes Left Over

(stack). Comparison of percentage of boxes left over

between mutation operators, with and without stack-

mutation.

Figure 9.1: Influence of Mutation Operators on Boxes Left Over. The results obtained
with each of the informed mutation rates, show that less boxes have been left over
when 25% to 75% informed mutation was used. When 100% informed mutation was
used, the number of boxes that is left over is roughly the same as when the default
parameters were used. Stack mutation has a positive effect when a 100% fraction of
informed mutation is used.

The first and foremost quality measure of a solution is the number of boxes that could

not be placed into a solution. The box plot in Figure 9.1(a) shows that when informed

mutation is used (in combination with stack-mutation), percentage of boxes left over

is decreased. Figure 9.1(b) shows the effect of stack-mutation in combination with the

various mutation operators. Stack-mutation generally has an improving effect when

more informed mutation operator is used. Also, a slight negative effect can be observed

when the stack-mutation operator is used in combination with the uninformed mutation

operator. Table 9.1 shows the number of boxes that have been left over by the various

combinations of mutation operator, and show the same effects as described before.
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Table 9.1: Number of Boxes Left Over. Summed over all solutions. Stack mutation
alleviates negative effect of informed mutation on the number of boxes left over. Stack
mutation has a negative effect when combined with uninformed mutation.

Without Stack Mutation With Stack Mutation

Uninformed 625 630

25% Informed 615 617

50% Informed 622 622

75% Informed 631 609

100% Informed 660 619

9.1.2 Quality of Loaded Boxes
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(a) Difference in Penalty per Loaded Box (default).

Comparison of penalty per loaded box between the four

levels of informed-mutation (with stack-mutation) com-

pared and unininformed mutation.
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(b) Difference in Penalty per Loaded Box (stack).

Comparison of penalty per loaded box between muta-

tion operators, with and without stack-mutation.

Figure 9.2: Influence of Mutation Operators on the Penalty Per Loaded box. Informed
mutation yields a slight improvement in penalty value per loaded box when compared
to uninformed mutation. Stack mutation no real effect on the penalty per loaded box.

The plot in Figure 9.2(a) describes the effect the informed mutation has on the quality

of the placement of the loaded boxes. A slight improvement can be observed in the

penalty per box, when any ratio of informed mutation is used. The same holds for when

stack-mutation is used (see Figure 9.2(b)). Table 9.2 shows the average penalty per box

for all the solutions generated with a certain set of parameters.
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Table 9.2: Average Penalty per Loaded Box. Averaged over all solutions of the problem
instances. Average penalty value is consistent across all test parameters.

Without Stack Mutation With Stack Mutation

Uninformed 48.04 47.34

25% Informed 44.98 44.61

50% Informed 45.51 44.52

75% Informed 45.47 43.77

100% Informed 47.61 45.73

9.1.3 Violating Placements
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(a) Difference in Percentage of Violating Placements

(default). Comparison of percentage of violating place-

ment in solution between the four levels of informed

mutation compared and unininformed mutation.
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(b) Difference in Percentage of Violating Placements

(stack). Comparison of percentage of violating place-

ment in solution between mutation operators, with and

without stack-mutation.

Figure 9.3: Influence of Mutation Operators on Placement Violations. More informed
mutation causes less violations, stack mutation has no influence.

Figure 9.3(a) shows the improvement in the percentage of violating placements when

more informed mutation is used. Additionally, Figure 9.3(b) shows that using stack-

mutation in the automated solver has no noticeable effect on the percentage of violating

placements.
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Table 9.3: Number Of Violations. Summed over all solutions of the problem instances.
More informed mutation reduces the number of violations.

Without Stack Mutation With Stack Mutation

Uninformed 6310 6214

25% Informed 5932 5992

50% Informed 5880 5844

75% Informed 5702 5707

100% Informed 5372 5509

Table 9.3 shows the total number of violating placements that are present in the solu-

tions. The same effects can be observed as described before, where informed-mutation

reduces the total number of violations by about 12%.

9.1.4 Run-Time

Table 9.4: Average Run-Time Uninformed Building Function. Averaged over 10 runs
of the same problem instance. Informed mutation operator has no noticeable influence
on run-time.

Average Standard Deviation

100% Informed, No Stack-Mutation 316 s 12 s

75% Informed, No Stack-Mutation 311 s 14 s

50% Informed, No Stack-Mutation 315 s 8 s

25% Informed, No Stack-Mutation 320 s 9 s

Uninformed, No Stack-mutation 316 s 14 s

100% Informed, Stack-Mutation 326 s 15 s

75% Informed, Stack-Mutation 318 s 8 s

50% Informed, Stack-Mutation 315 s 6 s

25% Informed, Stack-Mutation 315 s 9 s

Uninformed, Stack-mutation 316 s 10 s

Table 9.4 shows the average run-time of the automated solver with the various mutation

operators. No real difference in run-time can be observed.
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9.2 Building Function

Section 8.5 describes three sets of experiments for testing the informed building function.

These three set will be compared to the results of the uninformed building function. The

same metrics are used to measure the performance of the proposed building function, as

have been used for the variation operator (see Section 9.1).

9.2.1 Boxes Left Over
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Figure 9.4: Percentage of Boxes Left Over. Comparison of percentage of boxes left
over for the three levels of search depth. All three levels are able to fit about 1%-2%
more boxes into a solution. The mutation operator used for the informed building
function is: 100%-informed, stack-mutation.

Both Figure 9.4 and Table 9.5 show that the percentage of boxes that are being left

over is reduced when compared to the uninformed building function. Even though

only the results from the informed building function in combination with the 100%-

informed stack-mutation is displayed, all three ratios of informed mutation (uninformed

no stack-mutation, 50%-informed stack-mutation and 100%-informed stack-mutation)
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show the same performance increase in the number of boxes that have been left out of

the solutions.

Table 9.5: Number of Boxes Left Over. Summed over all solutions. No noticable
difference in number of boxes left over when looking at search-depth

Search Depth 0 Search Depth 1 Search Depth 6

Uninformed, No Stack-mutation 516 516 507

50% Informed, Stack-mutation 513 516 508

100% Informed, Stack-mutation 518 512 513

9.2.2 Quality of Loaded Boxes
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Figure 9.5: Difference in Penalty Per Loaded Box. The proposed building function
has a slightly lower penalty loaded per box.

Figure 9.5 shows a slight decrease in the penalty per box that is incurred when the

informed building function is used in the automated solver. Table 9.6 shows the average

penalty per box for all the tested combinations for mutation operator and informed

building function.
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Table 9.6: Average Penalty per Loaded Box. Averaged over all solutions. Average
penalty value is consistent across all test parameters.

Depth 0 Depth 1 Depth 6

Uninformed, No Stack-mutation 47.01 45.73 45.20

50% Informed, Stack-mutation 44.03 44.16 43.11

100% Informed, Stack-mutation 45.95 45.99 46.00

9.2.3 Violating Placements

1
0
0
%

 I
n
fo

rm
e
d

 D
e
p
th

 1

5
0
%

 I
n
fo

rm
e
d

 D
e
p
th

 1

U
n
in

fo
rm

e
d

 D
e
p
th

 1

1
0
0
%

, 
S
ta

ck
 D

e
p
th

 2

5
0
%

, 
S
ta

ck
 D

e
p
th

 2

U
n
in

fo
rm

e
d

 D
e
p
th

 2

1
0
0
%

 I
n
fo

rm
e
d

 D
e
p
th

 6

5
0
%

 I
n
fo

rm
e
d

 D
e
p
th

 6

U
n
in

fo
rm

e
d

 D
e
p
th

 6

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

U
n
in

fo
rm

e
d
,

N
o
 S

ta
ck-M

u
ta

tio
n
,

O
rig

in
a
l B

u
ild

in
g
 Fu

n
ctio

n

Figure 9.6: Difference in Percentage of Violating Placements. Comparison of the un-
informed building function with the informed building function and the various muta-
tion operators. All options get a similar score; less violations than the default parameter
setting.

In the box plot of Figure 9.6 the difference in percentage of violating placements is dis-

played, where informed building function if able to decrease the percentage of violations.

However, something that is difficult to observe from this figure is the fact that a deeper

search prevents more violating placements. This result can more clearly be observed in

Table 9.7.
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Table 9.7: Number of Violations. Summed over all solutions. A deeper search reduces
the number of violations.

Search Depth 0 Search Depth 1 Search Depth 6

Uninformed, No Stack-mutation 4817 4753 4573

50% Informed, Stack-mutation 4774 4706 4434

100% Informed, Stack-mutation 4739 4603 4520

9.2.4 Run-Time

Table 9.8: Average Run-Time Informed Building Function. Averaged over 10 runs of
the same problem instace. Deeper search takes longer.

Average Standard Deviation

Builing-Depth 0, 100% Informed, Stack-Mutation 809 s 56 s

Builing-Depth 0, 50% Informed, Stack-Mutation 844 s 40 s

Builing-Depth 0, Uninformed, No Stack-Mutation 840 s 62 s

Builing-Depth 1, 100% Informed, Stack-Mutation 898 s 68 s

Builing-Depth 1, 50% Informed, Stack-Mutation 911 s 40 s

Builing-Depth 1, Uninformed, No Stack-Mutation 939 s 54 s

Builing-Depth 6, 100% Informed, Stack-Mutation 991 s 65 s

Builing-Depth 6, 50% Informed, Stack-Mutation 1018 s 78 s

Builing-Depth 6, Uninformed, No Stack-Mutation 1004 s 66 s

When Table 9.8 is compared to Table 9.4, a significant increase in run-time can be seen,

where the run time at least doubles. Furthermore, when the search depth is increased

in the informed building function, the average run-time increases as well.

9.3 Penalty Function

To measure the influence of the correction factor for the sub-penalty weights as de-

scribed in Chapter 7, we will use 2 sets of solutions. The first set is comprised of

user-generated solutions. The second set consists of solutions generated by the auto-

matic solver. Even though the automatically generated solutions perform well when

the non-corrected penalty is used to evaluate them, domain experts have indicated that
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these solutions are of insufficient quality to be used in practice. Thus, we have one set

of “good” solutions and one set with “bad” solutions namely, user-generated solutions

and automatically generated solutions respectively. These two sets will be compared by

their penalty values with the non-corrected sub-penalty weights and both the proposed

corrected sub-penalty weights.
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Figure 9.7: Difference in Penalty Value. Comparison of user-generated solutions
with solver-generated solutions. Corrected sub-penalty weights rank solutions more
accurately than non-corrected sub-penalty weights. Since penalty values are no longer
in the same range, the left axis denotes the penalty value for the original and the right
axis denotes the penalty values for the corrected penalties.

When we observe Figure 9.7, we can see that, when using the non-corrected sub-penalty

weights, our solutions incur a lower penalty value for the loaded boxes. However, when

the corrected sub-penalty values are used, the solver-generated solutions perform worse

than the user-generated solutions. Moreover, a subjective analysis of the solutions pro-

vided by the automated solver that makes use of the corrected sub-penalty weights

indicates that those solutions show a lot more of the characteristics seen in solutions

generated by human planners.
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Conclusions and Future Work

Truck Loading problems from practice require a lot of objectives and constraints to be

taken into account. Van Rijn et al. [21] propose to use a Self-Adaptive Genetic Algorithm

(SAGA) to automatically solve instances of Highly Constrained Truck Loading (HCTL).

This approach does not make use of any information provided by the user in generating

and modifying solutions. In our earlier work [16] we introduce a method for deriving

information from user-generated solutions. This information is then introduced into the

optimization approach, to improve its performance. In this thesis we continue upon that

work by integrating more user-derived information into the optimization process.

10.1 Building Function

Van Rijn et al. [21] propose an uninformed building function that converts solution

representations into actual solutions that can be evaluated for quality. In Chapter 5 an

informed building function is proposed that uses statistics derived from user-accepted

solutions. This function gives preference to placements of boxes that have also been

placed in that manner by the user.

The results presented in Section 9.2 show that the use of the informed building function

reduces the percentage of violating placements in the automatically generated solutions.

Another benefit of the informed building function is that it is able to load more boxes

into the container, in many of the solutions. This is can possibly be attributed to two

factors that are introduced by the proposed building function.

First, the informed building function gives preference to stacking boxes, as opposed to

creating new stacks, to accommodate a box. The uninformed building function does

not have this preference. The second factor that influences the number of boxes that
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can be loaded in a solution comes from the fact that placement of boxes is performed

according to statistics that have been derived from the user. This causes boxes with

similar dimensions to be stacked on top of each other, since this is how the user usually

places these boxes. This is usually more space-efficient.

However, the informed building function comes with a drawback: It takes the automated

solver over twice as long to produce a solution. This is due to the fact that the building

function needs to investigate a lot more possible placements to find one that conforms

to the user-derived placement rules.

The penalty per box that is incurred shows no real improvement by using the informed

building function. This is remarkable, since each of the penalties can only increase

when an extra box is placed into a solution, and we are able to fit more boxes into the

solutions.

10.2 Variation Operator

The paper by Van Rijn et al. [21] uses an uninformed mutation operator. In our ear-

lier work [16], we proposed an informed mutation operator that uses information from

user-generated solutions (see Chapter 6). Moreover, a stack-mutation operator was in-

troduced to alleviate the fact the informed mutation operator can only place boxes in

relation to other boxes, which reduced the freedom of variation.

We put forward in our earlier paper [16] that it might be beneficial to increase the

frequency of the stack-mutation operator, but that further investigation was needed to

determine that with certainty. To this end, we proposed a new method that determines

the frequency of stack-mutation. Not only is this rate higher than in our earlier paper,

we also propose to make it depend on how much the informed mutation operator is used.

The informed mutation operator has an inherent sorting behaviour for boxes that are in

the same stack. Since boxes are planned in the order they appear in the representation

and the informed mutation operator puts boxes that are in the same stack directly after

each other, the invasiveness of the stack mutation operator is reduced.

In our earlier paper, the results showed that when only the informed mutation operator

is used (in combination with stack mutation), the number of boxes that could be fit

into a solution was less then when only the uninformed mutation operator was used.

However, the results presented in this thesis (see Section 9.1) do not show this problem.

These results were obtained with the use of the proposed stack-mutation frequency.

This affirms the suspicion put forward in our earlier work [16], that the stack-mutation
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frequency was too low for the higher rates of informed mutation to alleviate the reduction

of freedom in variation of the informed mutation operator.

Furthermore, the results reported in our earlier paper [16], are reaffirmed by the results

presented in this thesis, that have been obtain over a different set of problem instances.

The percentage of violating placements is reduced when more informed mutation is

used in the optimization process. Moreover, a bigger number of boxes can be fit into

solutions when informed mutation is used. The penalty per box that is incurred in the

automatically generated solutions does not vary by a lot when comparing the various

mutation operator strategies. The stack mutation operator seems to have no noticeable

effect on the penalty per box.

10.3 Penalty Function

The penalty function described in Chapter 7 uses weighted aggregation (the multiplica-

tion of a sub-penalty with a certain factor) to combine the sub-penalties defined into one

single penalty value. Experiments performed by Van Rijn et al. [21] and in our earlier

work [16], indicate that automatically generated solutions are on par with or slightly

better than solutions generated by the users. However, a subjective hand analysis of the

automatically generated solutions shows that these solutions still have some shortcom-

ings. This could indicate that the sub-penalties are not weighted properly, given that

the sub-penalties themselves are accurate.

To alleviate this problem, two methods are proposed that determine a factor to correct

the weighting of the sub-penalties. Both methods utilize user-generated solutions to

determine the correction factor. Each solution is evaluated using the non-corrected

sub-penalty weights. These values can then by used to calculate each correction factor

by assuming that the user has accepted each of the sub-penalty values. Therefore, a

sub-penalty with a high value is apparently of less importance to the user.

The results presented in Section 9.3 show that after the correction of the sub-penalty

weights, automatically generated solutions generally get penalized more than the solu-

tions put forward by the user. Further investigation of these observations is needed to

determine the exact efficacy of each proposed correction factor.

10.4 Discussion

Even with the extensions proposed in our earlier work [16] and in this thesis, the auto-

mated solver still has shortcomings. These shortcomings are listed below.
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New Types of Boxes. Whenever a new type of box is introduced, no information is

available about it. By placing this new box, a user needs to indicate what needs to be

done with this box. This gives a period wherein the automated solver is unable to load

a box into a solution according to how it should be loaded. Furthermore, we still rely

on the manually defined placement rules to at least give us some guidance as to which

placement are undesirable.

Hard User-Derived Placement Rules. Another failing of the proposed approach

occurs when the user-derived box-types are used to define hard placement rules, that

indicate where boxes are allowed to be placed. Boxes that are quite similar could be given

different box-types because one of the parameters that is used to determine the box-type

is slightly different. This is due to the use of the binning algorithm (see Section 4.1.2),

where close values can end up in different bins. To alleviate this problem, a different

classification strategy might need to be applied to determine box-types.

Number of Boxes Left Over as Main Measure of Solution Quality. In the HCTL

problems studied in this thesis, the number of boxes that are loaded into a solution is

the biggest part of solution quality. However, a problem arises when a type of solution

needs to be provided where this is not the case. The building function used to convert

the indirect representation into a solution that can be evaluated, always tries to load

as many boxes as possible into a solution. In order to solve instances of HCTL where

the number of loaded boxes is not the main measure for solution quality, the building

function should be extended to make a choice to place a box or not.

10.5 Future Work

For future work several subjects warrant further investigation

Improvements of the Variation Operator. An improvement for the variation oper-

ator would be a pre-processing step where, for each of the boxes in a problem instance,

the areas are determined that the box actually fits in. Boxes that do not fit into certain

area, should be excluded from being moved (via mutation or the building function) to

that area. This should decrease the number of variations that are non-beneficial to the

solution.

Another improvement that could be made to the variation operator is to determine,

for each box-type, the frequency with which a box is placed in a certain area. This

information can be used to further improve the variation operator by giving higher

probabilities to areas a box is more frequently placed in.
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User-Solver Interaction. A good area for further research is the user-solver interplay,

where a system needs to be implemented that is able to give feedback to the user, and

implements a method for the user to directly influence the solver. A description of

factors that are of influence on such a system is given in Section 4.2.

Evaluation of Representation. Most of the run-time of the automated solver is spend

on converting the solution representation to a solution that can be evaluated by the

penalty function. An improvement to the solver can be made by defining a derivative of

the penalty function that can by used to (partially) evaluate the representation, without

the need for a conversion step.

Different Representation. The current indirect representation has one major draw-

back: The automated solver has no possibility to make a deliberate choice to leave a box

out. This means that the building function will always try to place a box, even when it

is better to leave a certain box out.

Sub-Penalty Weighting Even though results seem to indicate that the correction for

the sub-penalty weight has a positive effect on how solutions are evaluated, investigation

of solutions generated with these corrected sub-penalty weights should determine their

efficacy.
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Appendix A

Data Structure

The boxes in the problem instances under consideration are defined by a lot of parame-

ters, listed in Table A.1.

Table A.1: Parameters in box-array

Variable Name Description

Client ID An id given to client to represent the order of servicing

Width Width Of The Box

Height Height of the Box

Length Length Of The Box

Weight Weight Of The Box

Pallet Configuration

Hash

A hashed version of the pallet configuration variable (for

efficient storage)

Product Group Hash
A hashed version of the product group variable (for

efficient storage)

File Number Unique identifier for problem instance the box is from

List ID Unique identifier for box within problem instance

Current ID
Index of current row (to count the total number of

boxes) even if part of data is lost

Below ID
Index of row in array that contains information of the

box planned below

Calculated Volume Length ∗Width ∗Height

Surface Area Length ∗Width



74 Appendix A – Data Structure

Parameters in box-array (Continued)

Variable Name
Description

Density Weight
Calculated Volume

Pallet Configuration Sequential indices for Pallet Configuration Hash

Product Group Sequential indices for Product Group Hash

PC-PG Index
Sequential indices for each combination of Pallet

Configuration and Product Group

Surface Area Index
Sequential indices to indicate Surface Area Bin

(Section 4.1.2)

Weight Index Sequential indices to indicate Weight Bin (Section 4.1.2)

Density Index Sequential indices to indicate Density Bin (Section 4.1.2)

Above-Type Index Sequential indices representing the above-box-type

Below-Type Index Sequential indices representing the below-box-type

Not Bridge Or Small
Boolean variable that indicates if a box is not under the

bridge or a ”small” box

Top Most
Boolean variable to store if current box is on top of its

stack

Single Collo Stack
Boolean variable to store if current box is the only box

in its stack (it is both the top and bottom box)

Columns 0 through 10 and 22 through 26 are actually saved, the other columns are

recalculated on-the-fly. Column 22 through 26 are boolean parameters.


