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Abstract
A pattern recognition pipeline consists of three stages: data pre-processing,
feature extraction, and classification. Traditionally, most research effort is put
into extracting appropriate features. With the advent of GPU-accelerated
computing and Deep Learning, appropriate features can be discovered as
part of the training process. Understanding these discovered features is im-
portant: we might be able to learn something new about the domain in which
our model operates, or be comforted by the fact that the model extracts “sen-
sible” features. This work discusses and applies methods of visualizing the
features learned by Convolutional Neural Networks (CNNs). Our main con-
tribution is an extension of an existing visualization method. The extension
makes the method able to visualize the features in intermediate layers of a
CNN. Most notably, we show that the features extracted in the deeper layers
of a CNN trained to diagnose Diabetic Retinopathy are also the features used
by human clinicians. Additionally, we published our visualization method in
a software package.
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1. Introduction
Today Convolutional Neural Networks (CNNs) are the dominating classi-
fier on many image recognition tasks [1]. A predecessor of the CNN was
already introduced in a 1980 paper [8]. Perhaps the most popular CNN is
LeNet-5 [19], a network specialized in character recognition. For a long time
this remained the only application of CNNs because of computational con-
straints. In 2011 computational performance was substantially improved by
using GPUs [3], and in 2012 the best performance on multiple image datasets
was substantially improved through the use of CNNs and GPUs [4].

CNNs are part of the “Deep Learning” approach to machine learning, where
the learning algorithms try to learn high level abstractions or features of the
data. In a traditional pattern recognition pipeline most research effort is put
into finding such appropriate features. With Deep Learning and CNNs these
features are discovered by the algorithm.

Manually crafting features has the advantage that the machine learning
pipeline is very transparent. The model does not have access to hidden pat-
terns during training, and thus will not use them. With Deep Learning fea-
tures are not explicitly given to the algorithm, so it is no longer obvious what
features are used.

Consider the task of recognizing faces. It might be that during data collection,
the face of person A is always featured on a blue background, and the face
of person B is always featured on a red background. If we manually extract
features, we would not use the color of the background as a feature. Still,
this feature might be used by a Deep Learning model. Thus, we might be
interested in understanding the features learned by a CNN simply to validate
the approach the network took to solving the task.

Another reason we might be interested in the features learned by a CNN is
because they can make us aware of features that are significant to a certain
domain, but that we were previously unaware of. If we manage to visualize
the features learned by a CNN, we might be able to discover new knowledge.

This work looks at how to visualize the features in the intermediate layers
of a CNN. We first introduce CNNs (Chapter 2). Next, we discuss existing
methods for visualizing features learned by deep neural networks, and an
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extension to one of these methods (Chapter 3). We show the results of our
proposed extensions on two datasets (Chapters 4 and 5), and summarize and
discuss our findings (Chapter 6).

This report is the result of a Master Thesis project for the master Com-
puter Science at the Leiden Institude of Advanced Computer Science. The
work was completed under supervision of Dr. W.J. Kowalczyk and Dr. W.A.
Kosters. The main contributions of the paper are: 1) extending a method
for computing salient areas in the input image as proposed by Simonyan,
Vedaldi, and Zisserman in [25] to be applicable to convolutional layers; 2)
showing that—by using this extension—a CNN trained to detect Diabetic
Retinopathy uses features that are similar to those used by trained clini-
cans to diagnose the disease; 3) publishing source code for generating the
visualizations of CNNs [16].
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2. Convolutional Neural

Networks
Consider the task of counting the number of visible spots in an image of a
die. A simple approach would be to predefine a template of a dot on a die
and structurally look for matches of these templates in the input image. A
possible structural approach would be to slide the template over the image,
writing a 1 whenever the template matches the area it is currently covering,
and a 0 otherwise. We could then solve the task by counting the number of
1s in this binary map (Fig. 2.1).

, →













0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0













⇒ 2

Figure 2.1: A näıve approach to solving the problem of counting the number
of visible spots in an image of a die. The colors indicate the relationship
between the alignment of regions of the input image (left) and the template
(center). Everywhere the template matches the region sufficiently, we place a
1, and everywhere else a 0. This produces a binary map (right). In practice,
it is desirable to have the regions overlap.

This approach is somewhat näıve since it assumes our single template matches
all kinds of spots. If the spots occur in different scales and rotations, we might
instead employ a variety of templates and create multiple binary maps. In
this case, counting the number of occurrences is too näıve; multiple tem-
plates may match the same dot. Instead, we could use the maps as input for
a Multi-Layer Perceptron (MLP) and try to learn how to optimally combine
these maps. Here we assumed that we know a priori what templates to use.
Depending on the task, this might not be obvious at all. Instead, we may also
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parameterize the templates or filters and try to learn optimal filters. This is
exactly what Convolutional Neural Networks (CNNs) try to do.

CNNs are a specialized version of neural networks that generally perform well
on data that has a known grid topology, because this topology is hard-coded
into the network architecture. MLPs have only a single layer type, called a
dense or fully connected layer. These layers take an input vector and multiply
this vector with a weight matrix, creating an activation vector. Next, a non-
linearity is applied to this activation vector, creating the output vector (which
may again be the input vector for a subsequent layer). In a dense or fully
connected layer each output node is fully connected with the input nodes.
This is not the case with convolutional layers, because two assumptions are
made about the data: first, the data is assumed to have some grid topology
(e.g., time series, images), so we expect relevant patterns to occur in small
neighborhoods in the grid; second, we assume that the occurrence of a pattern
is interesting irrespective of the location of the pattern in the grid.

These two assumptions allow us to use weight or parameter sharing and
sparse connectivity. Both of these substantially reduce the number of param-
eters in the neural network, allowing us to stack many convolutional layers
on top of each other without overfitting. In Section 2.1 we describe the convo-
lutional layers, and most notably the convolutional operator in more detail.
The non-linearities that follow a convolutional layer are described in Sec-
tion 2.2. Another important layer type is a subsampling or pooling layer,
which we describe in Section 2.3. We conclude by defining the concept of a
receptive field in Section 2.4.

2.1 The Convolution Layer

Consider an MLP that operates on images of size 512 × 512. An MLP with
10 hidden nodes would have 2 621 440 (= 512 ∗ 512 ∗ 10) parameters in the
first layer, suggesting that an MLP is not a good approach. Convolutional
layers do not fully connect the neurons. Instead, they use something called
kernels or filters. The number of parameters in such a filter is independent of
the input size. The kernel might be 11× 11 in size and if 64 kernels are used,
then the number of parameters is only 7 744 — a mere 2% of the parameters
used by the first dense layer of the MLP.
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Kernel convolutions are an important concept in image processing [6]. A
kernel is a small matrix that when convolved with an image, can, for example,
detect edges in that image (Fig. 2.2). The convolution operator does this by
producing a new matrix that has large values where edges occur in the original
image, and small values where they do not. The exact function performed
depends on the element values of the kernel. In convolutional networks these
kernels are parameterized, so that they may be optimally configured for the
task at hand.





1 0 −1
0 0 0

−1 0 1









0 1 0
1 −4 1
0 1 0









−1 −1 −1
−1 8 −1
−1 −1 −1





Figure 2.2: Examples of kernels (top row) that, when convolved with an image
(bottom left), detect certain types of edges in that image (bottom row).

A convolution is achieved by centering the kernel (which is of odd width
and height) on each pixel of the processed image, then, for each pixel, the
corresponding entries in the kernel and image are multiplied, followed by
summing. The resulting matrix is called a feature map (Fig. 2.3 shows an
example).

More formally, let K be a k × ℓ matrix representing the kernel, let I be a
p× q matrix representing the image, with p ≥ k and q ≥ ℓ, then elements of
the feature map F at position (i, j) can be defined as:

F (i, j) = (I ∗K)(i, j) =
k
∑

m=1

ℓ
∑

n=1

I(i−m+ 1, j − n+ 1)K(m,n) (2.1)

Notice that, even when the feature map is translated by (p−1)/2 and (q−1)/2
this definition still does not exactly correspond with centering the kernel on
top of a pixel in the image, and taking the sum of the element wise product
of the overlapping region — instead, the kernel is first flipped horizontally
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Figure 2.3: Example of a valid convolution of a 6 × 6 input I with a 3 × 3
kernel K, producing a 4×4 feature map. Colors mark the region of the input
considered for computing an output element.

and vertically (for example, by left and right multiplying the kernel with the
anti-diagonal identity matrix).

Instead of the convolution operator, we typically use the cross-correlation op-
erator (denoted ⋆). If we first flip the filter K both horizontally and vertically
and call this K ′, we get:

F (i, j) = (I ∗K)(i, j) = (I ⋆K ′)(i, j) =
k
∑

m=1

ℓ
∑

n=1

I(i+m−1, j+n−1)K ′(m,n)

(2.2)
This operator corresponds better to our intuition, where we view the kernel
as a template of the pattern we are looking for.

The cross-correlation operator is only used in the context of CNNs specifi-
cally. In the context of image processing the convolution operator is typically
preferred to cross-correlation, since it is commutative (and cross-correlation is
not); when using multiple kernels to process an image the kernels can first be
convolved together, followed by a single convolution with the image. In CNNs
this optimization is not possible, since we need the intermediate activations
(i.e., elements of the feature maps) for backpropagation, and the activations
are typically transformed using a non-linearity (Section 2.2). From hereon
we assume that convolution layers calculate cross-correlation, unless stated
otherwise.
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Special care must be taken when performing convolutions at the boundaries
of the input. There are multiple ways to handle the boundaries. For one, we
could consider only valid convolutions [20, 18, 24]. That is to say, convolutions
where every element in K overlaps with some element in I. In this case,
pixels at the boundaries of the image are somewhat ignored (being relevant
to perhaps only a single element in the feature map, while pixels in the center
of the image are part of the computation of k × ℓ elements). This type of
convolution produces a feature map of dimensions (p− k + 1)× (q − ℓ+ 1).

Another approach is to require that each pixel is part of the same number
of convolutions. This is typically called a full convolution [20, 18, 24]. In
this case we pad the matrix I with k − 1 elements on both sides of the first
dimension and ℓ − 1 elements on both sides of the second dimension. As
padding a neutral value should be chosen (such as 0 for standardized data).
This produces a feature map of dimensions (p+ k − 1)× (q + ℓ− 1).

A very convenient form of padding is one where the dimensions of the input
image and the output feature map are identical. This is called same convo-
lution [20, 18, 24]. In this case we pad with (k− 1)/2 elements on both sides
of the first dimension and (ℓ − 1)/2 elements on both sides of the second
dimension. This approach simplifies network architecture design, as layers
can simply be stacked upon each other indefinitely, while also preserving at
least some of the information at the boundaries of the input.

Notice how each element in the feature map F depends on the same param-
eterized kernel K. This means all entries in F share parameters. Therefore,
we have only k × ℓ parameters, no matter how large the input is. These pa-
rameters have two interesting relationships with the parameters of an MLP.
First, if we were to make the kernel the same size as the image, a convo-
lutional layer performs the same computation as a dense layer (assuming a
single hidden node and kernel). Second, if we constrain the weight matrix of
a dense layer to have zero values at the right positions, a dense layer would
perform the same computation as a convolutional layer; a convolutional layer
can thus be interpreted as a dense layer with enforced sparse connections.

So far we have only considered the case where the image is a 2-D matrix,
and a single 2-D kernel is used. In practice a single convolutional layer con-
tains f different three-dimensional kernels (denoted by a 4-D tensor K with
dimensions f × k× ℓ× c), that are convolved with a three-dimensional input
V with dimensions p×q×c. At the first convolutional layer, p represents the
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height of the input, q the width of the input, and c the number of channels
of the input (e.g., one channel for each RGB component, or a single channel
for a grayscale image). For a same convolution, this produces a p × q × f
tensor Z.

The definition of Zi,j,k is as follows:

Zi,j,k =
c
∑

u=1

k
∑

v=1

ℓ
∑

w=1

Vu,j+v−1,k+w−1Ki,u,v,w (2.3)

Depending on the type of padding used not all entries may be valid.

In practice a stride (s1, s2) is sometimes used during the computation of the
convolution. Remember that conceptually computing the convolution is as
simple as centering the kernel on each pixel, doing the multiplications and
summing the result. After obtaining the entire feature map we can perform
downsampling, by for example keeping only every third row, and every other
pixel in those rows. Instead of discarding many computations, we can simply
perform only the computations for every third row and every other pixel
in those rows. This would correspond to a stride of (3, 2), and reduces the
number of computations by a factor of 6.

If we first define a function r that generates a sequence of stride indices when
given start , end , and stride as follows:

r(start , end , stride) = (start , start + stride, . . . ,

⌊

end − start + 1

stride

⌋

× stride),

then Eq. (2.3) can be modified to account for strides as follows:

Zi,j,k =
c
∑

u=1

∑

v∈r(1,k,s1)

∑

w∈r(1,ℓ,s2)

Vu,j+v−1,k+w−1Ki,u,v,w (2.4)

The output of the convolutional layer is typically transformed using a non-
linearity. We discuss the commonly used non-linearities in the next section.

2.2 Non-Linearities

CNNs use, just like MLPs, nonlinear activation functions. Without them, the
network would simply compute a linear function of the inputs, regardless of
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the number of layers or depth of the network (since a linear composition of
linear functions is again a linear function). Typically, an activation function
is associated with a neuron on the network. We call the input to an acti-
vation function the neuron’s activation and denote this using z, while the
corresponding output is called the neuron’s output and is denoted using h.

A variety of activations exists. Historically, the sigmoid (Eq. (2.5)) and the
tanh (Eq. (2.6)) have been popular activation functions:

σ(x) = 1/(1 + e−x) (2.5)

tanh(x) = 2σ(2x)− 1 = (ex − e−x)/(ex + e−x) (2.6)

The downside of these sigmoidal activation functions is that they saturate: if
the activation of a neuron becomes too large or small, the gradient tends to
zero. Since the gradient is backpropagated through the network, a saturated
neuron in a deep layer can disturb the training process of all the neurons that
are indirectly connected to it. An additional problem of the sigmoid function
is that it is not zero centered, which can cause saturation problems in the
layer that follows the sigmoid output.

The sigmoidal activation functions have been replaced by the Rectified Lin-
ear Unit or ReLU (Eq. (2.7)) and its descendants. ReLUs have been found to
greatly speed up the convergence of stochastic gradient descent when com-
pared to sigmoidal functions [17]. Additionally, the ReLU is computationally
less expensive to calculate than the sigmoidal functions.

ReLU (x) = max(0, x) (2.7)

Unfortunately the gradient of the ReLU is zero for certain inputs. The Leaky
ReLU (Eq. (2.8)) attempts to solve this by having a nonzero slope α (and
thus also a nonzero gradient). Sometimes this slope is parameterized and
learned during training, creating a Parameterized ReLU [10].

Leaky ReLU (x) = ✶(x < 0)(αx) + ✶(x >= 0)(x), 0 < α < 1 (2.8)

Here ✶ denotes the indicator function.

Another interesting activation function is the maxout [13] non-linearity. The
maxout activation learns a piecewise linear function by combining activations
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and taking their maximum. Maxout in CNNs aggregates over the activations
of n feature maps, i.e., if Zi,j,k is the activation at position (i, j) in the k-th
feature map, and n = 2, then the output of the ℓ-th maxout node would be
max(Zi,j,2l−1,Zi,j,2l).

More formally maxout can be defined as a non-linearity that takes a vector
of activations ~z ∈ R

d as input, and produces a single output:

maxout(~z) = max
i∈[1,d]

zi (2.9)

The maxout non-linearity thus aggregates over the third dimension of the
activations of a convolutional layer. This is similar to pooling, where we ag-
gregate over the two spatial dimensions.

2.3 Pooling Layers

Pooling layers aggregate or pool their inputs along the spatial dimension.
Much like convolution layers they can be thought of as sliding a window over
the input, and computing a function that aggregates the values within the
window. We call the size of the sliding window the pool size. Just like convo-
lutional layers a pooling layer operates with a certain stride. The purpose of
pooling is to make the network invariant to small translations of the input,
and to reduce the number of computations. Pooling only makes sense if we
assume that the exact location of a feature is not important to the task we
are trying to solve; it does not matter if a feature occurs at position (i, j) or
at position (i+ 1, j).

The most popular pooling method is max pooling, where we simply take the
maximum of the sliding window. Taking the average, L2 norm, or weighted
average based on the distance from the central pixel are other popular meth-
ods. Typically the stride in a pooling layer is larger than 1, causing the layer
to also perform downsampling. Fig. 2.4 shows an example of the different
pooling methods.
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Figure 2.4: Examples of 2 × 2 pooling with a stride of 2 on a 4 × 4 input.
Entries in the resulting matrices are computed by applying the aggregation
operator shown on top of the resulting matrix, to on the correspondingly
colored submatrix of the input. For example, 15.17 ≈

√
62 + 72 + 82 + 92.

2.4 Receptive Field

The region of the input to which a neuron in a CNN is connected is called that
neuron’s receptive field. The receptive field size is the same for all neurons
in a given layer. In the first layer, the receptive field size is simply the size
of the neuron’s filter; as the network depth increases a neuron is aggregating
over a larger and larger input area (Fig. 2.5). Clearly, since the size of our
input images is limited, so is the sensible depth of a CNN.

The receptive field size is only interesting in convolution and pooling layers
— after a dense layer each neuron is fully connected to the input. Both the
convolution and pooling layer use a neighborhood size, i.e., the filter size or
the pooling size, and a stride. The receptive field size can be determined by
starting at the layer of which we wish to know the receptive field size, and
working our way back towards the input. Consider for example Fig. 2.5. To
generate a single output in the deepest layer, we need 2 × 2 outputs in the
previous layer, since this is the deepest layer’s filter size. To generate the first
of those 2×2 outputs in the first layer, we need just the neighborhood size for
the first output, and any subsequent outputs require stride0,1 and stride0,2
inputs across the first and second dimension. This makes the receptive field
size 6× 6 (= (2− 1) ∗ 3 + 3 across both dimensions).

More formally: the receptive field size rfs for the ℓ-th layer can be computed
with the following formula, where size i,k and stride i,k respectively denote the
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neighborhood size and stride of the layer at depth i in the k-th dimension:

rfs(ℓ)k =
∑

i∈[0,ℓ]

size i,k
∏

j∈[0,i−1]

stridej,k −
∑

i∈[0,ℓ−1]

stride i,k (2.10)

stride1 = (1, 1), size1 = 2× 2

stride0 = (3, 3), size0 = 3× 3

Figure 2.5: Illustration of how the depth of the network affects the receptive
field. The neuron in the deepest layer uses a filter of size 2× 2. Because the
layer below uses a filter of size 3× 3 and a stride of (3, 3), the receptive field
size of the deepest neuron is 6× 6.
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3. Methods
We would like to visualize the features learned by a CNN. A naive approach
would be to take the data on which the CNN is trained, and for each class c
visualize the examples in the data of which the network is the most certain
that they should be classified as c. We might display a top n for each class,
and try to manually detect commonalities within this top n and assume that
this is what the network looks for.

Clearly, there are some problems with this. Firstly, it is very sensitive to
human bias. We might already understand the classification problem very
well, and would be inclined to assume that if the network performs well, it
is computing a function similar to the one computed by human classifiers.
Secondly, it does not make it any easier to discover new knowledge about
a problem; we could have obtained the same insights by simply inspecting
samples of each class, or by talking to the experts that labeled the class.

A better approach localizes the areas in the input that the network considers
important, which we will call salient areas. Another good approach would be
to construct artificial input that the network strongly considers important.
We will call such inputs exemplars. These two approaches are not only ap-
plicable to the network’s final output, but can also be used to gain insight in
what regions individual kernels consider important, hopefully shedding light
on the individual features that the network uses to classify an image and the
effect of network depth.

3.1 Visualizing Exemplars

We previously mentioned how selecting a few examples that maximize the
network’s posterior output for a certain class provides us with limited in-
sight. Ideally, we would like to be more general. The literature suggests two
approaches. The first is Activation Maximization, where we try to find the
input that maximizes a neuron’s activation. The second is a Deconvolutional
Network, where we try to invert the operations performed by a CNN, allowing
us to project a filter back into input space.
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3.1.1 Activation Maximization

Consider the situation where, in the final layer, a network computes the pos-
terior for class c on some input x, and that the network has some parameters
θ: P (c|x; θ). During training, we try to find values for θ such that some error
is minimized on the training set.

When finding the exemplars, we can reverse the situation. Instead of assum-
ing that the input x is fixed, we assume that the parameters θ are fixed
and that we would like to find the optimal x∗ such that the posterior is
maximized:

x∗ = argmax
x such that ||x||=ρ

P (c|θ; x), (3.1)

where ρ is a norm constraint to prevent unbounded solutions, and || · || is the
L2-norm.

The above procedure is not only limited to neurons in the top most layer.
Erhan et al. introduced and used this method called Activation Maximization
in [7] to visualize what was learned by Deep Belief Networks and Stacked
Denoising Autoencoders in layers preceding the final layer.

They using suggest gradient ascent to find solutions, and characterizing the
unit by either the different local optima found, the best local optima found,
or the average of the local optima found. They also note that in practice they
find the same optima when starting from different random initializations.

Proposed Extension

Deep Belief Networks and Stacked Denoising Autoencoders are fully con-
nected, so each intermediate neuron considers the entire input. We suggest
that this method can be extended to be applicable to the neurons in in-
termediate layers of CNNs by simply optimizing a neuron’s receptive field.
Remember that in a convolution layer many neurons share the same filter,
so these neurons will naturally have the same exemplar input. It is therefore
more natural to speak of the exemplar input of the filter or feature.
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3.1.2 Deconvolutional Networks

Deconvolutional Networks are proposed by Zeiler and Fergus in [28] to map
filter activity in the intermediate layers back to input pixel space. A Decon-
volutional Neural Network is attached to a CNN, providing for each layer in
the CNN a reversing layer that maps features to pixels (instead of pixels to
features).

The procedure for visualizing a specific filter using a Deconvolutional Neural
Network is as follows: first perform a forward pass on an input image using
the CNN. Then, set all feature maps in the filter’s layer to zero, with the ex-
ception of the feature map of the filter itself. Now project back to input space
by performing a downward pass. During the downward pass the pooling op-
erations are inverted by unpooling and convolutional operations are inverted
by rectifying followed by filtering with a flipped filter. We now describe the
inverse operations in more detail.

Consider the following example, where a matrix represents the activations
that are about to pass through a max pool layer with a filter size of 2, and
a stride of 2:









1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6









On the first iteration of the pooling operation the following submatrix is
considered:

(

1 2
5 6

)

Here the maximum is 6, located on position (2, 2). The 6 is saved in the first
position of the pooling result, while the position of the maximum, a so-called
switch, is also recorded (this is what allows an approximate construction of
the inverse of the pooling operation).

Eventually we end up with the following pooling result and switches:
(

6 8
9 6

)

,
(

(2, 2), (2, 4), (3, 1), (4, 4)
)

If we then start with a matrix of the same size as the original input, and enter
our recorded maxima on the switch positions recorded and zeros everywhere
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else we get the following approximation:









0 0 0 0
0 6 0 8
9 0 0 0
0 0 0 6









This concludes the unpooling operation.

To invert the convolution the Deconvolutional Neural Net first rectifies the
reconstructed output, followed by convolutional filtering using a transposed
version of the filter.

Because the Deconvolutional Neural Network needs an inverse layer for each
layer in the CNN the approach is limited to layers for which such an approx-
imate inverse can be found. Zeiler and Fergus propose such inverse layers for
max pooling layers, and convolutional layers that use rectified linear units.

3.2 Visualizing Salient Areas

In contrast to the previous approaches that try to visualize the filter in the
original input space, the following two approaches try to determine what a
filter considers important in the input by creating a saliency map. A saliency
map S assigns to each pixel in the input image a real valued saliency score;
for an n×m× c input image (where c is the number of channels, e.g., 1 for
grayscale and 3 for RGB images) an n×m saliency map is produced.

3.2.1 Gradient Based

The Gradient Based method [25] is proposed by Simonyan, Vedaldi, and Zis-
serman as a method of determining the relative importance of each input
pixel according to some node in a neural network. They start with the obser-
vation that if the activation of each node would be a simple linear function
of the input image I, the activation hn(I) of a node n would look as follows:

hn(I) = ~w′I + b, (3.2)
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where ~w represents the linear weights and b a bias term, and the matrix
representing the image is assumed to be unrolled into a vector.

If we assume that the elements of I are generally of similar magnitude then
the magnitude of the elements of ~w can be interpreted as the relative impor-
tance of the corresponding input pixel.

Obviously the assumption that hn is a linear function of I does not hold for
CNNs. However, hn can be approximated with a linear function in the neigh-
borhood of some image I0 by computing the first order Taylor expansion:

hn(I) ≈ ~w′I + b =
∂hn

∂I

∣

∣

∣

∣

I0

I + hn(I0), (3.3)

In other words, the gradient of a neurons activation with respect to a certain
input at a certain point can be interpreted as an approximation of the im-
portance of the pixels in input space. For a n ×m × c image, the gradients
will take the same form. To get the saliency map one can simply take the
maximum over the third dimension.

Proposed Extension

All neurons in the intermediate layers that are part of the same feature
map share their parameters (see Eq. (2.2), page 9). It is these parameters
that primarily determine the pattern that is recognized. Since a feature map
can contain many different neurons all looking for the same pattern, it makes
more sense to create a saliency map with respect to the feature map itself than
with respect to the individual neurons. The method proposed in [25] is only
suitable for scalar valued functions. Because of this we suggest aggregating
over the values in the feature map using either the max or sum as aggregation
function. The feature that produces feature map F can be visualized by
computing the saliency maps for the following functions:

Fmax = max
i,j

F (i, j) (3.4)

Fsum =
∑

i

∑

j

F (i, j) (3.5)
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The saliency maps S of the pixels in an image I0 thus become:

Smax =
∂Fmax

∂I

∣

∣

∣

∣

I0

(3.6)

Ssum =
∂Fsum

∂I

∣

∣

∣

∣

I0

(3.7)

3.2.2 Image Occlusion

One approach to constructing a saliency map is by systematically removing
or occluding parts of the image and observing the change in neuron’s output.
Zeiler and Fergus used this method to show that their model trained on
the ImageNet dataset “is truly identifying the location of the object in the
image,” and not “[. . . ] just the surrounding context” [28]. By occluding (in
turn) both the object in the image and the context in which the image occurs
while observing the effects on the posterior output they were able to conclude
that the object was the most relevant part of the input.

The computation of a saliency map using the occlusion method reminds us
much of the computation of a feature map in a convolution layer. An occlusion
kernel of size q × q containing all zeros is centered on top of a pixel (i, j),
and the corresponding values in the original image are replaced by the values
in the kernel, creating a new perturbed image. The reason for choosing all
zeros is that this is a neutral value for zero centered data (and CNN input is
typically zero centered). A neuron’s output on this perturbed image is then
observed, and can be contrasted with the output on the original image: if the
output has dropped, then the occluded region was positively salient to the
neuron; if the neuron of a specific class has risen, then the occluded region
was negatively salient to the neuron; if the output remains the same, then
the neuron is indifferent to the occluded region. This process is repeated for
every pixel, and the systematical occlusion visualized in Fig. 3.1.

The downside of this method is the computational complexity; for a 512×512
image, roughly 260 000 feed forward passes are required. For neurons in the
intermediate layers only the receptive field needs to be occluded, which can
be much smaller—but there can be many intermediate neurons. Running
time can be reduced at the cost of accuracy by introducing a stride, much
like the stride used by convolutional layers.
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Figure 3.1: Example of systematic occlusions of a 111 × 111 image with an
occlusion kernel of 41 × 41 and a stride of (17, 17). The occlusion kernel is
shown in red. The total number of occlusions is 49 (12 are shown).

3.3 Conclusion

We described two existing approaches to visualizing the exemplars of a filter.
Exemplars are inputs that strongly activate a given filter. These methods are
called Activation Maximization [7] and Deconvolutional Networks [28].

We also described two existing approaches to visualizing the salient areas of
a filter. Salient areas are regions in a specific image that a filter considers
important. These methods are called the Gradient Based method [25] and
the Occlusion method [28]. Our contribution is an extension to the Gradient
Based method: by using an aggregation function we claim that it can be used
to visualize the features in intermediate layers of the network as well as the
features in the final layer.
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4. Experiment: Diabetic Retin-

opathy
Diabetic Retinopathy (DR) is an eye disease associated with long-standing
diabetes, and the leading cause of blindness in the working age population
of the developed world. The World Health Organization estimates that 347
million people world wide have the disease. Trained clinicians diagnose the
disease by evaluating digital color fundus photographs of the retina. “It is
estimated that in 2002 diabetic retinopathy accounted for about 5% of world
blindness, representing almost 5 million blind” [22]. It should come as no
surprise then that automated grading of the DR presence in retinal fundus
images is well studied.

On the 17th of February 2015 Kaggle started a competition on this prob-
lem [14]. They made available 88 702 fundus photographs of which 35 126
were labeled on a five grade scale. In total 661 teams competed over 7 months
for a total prize pool of $100 000, of which $50 000 was awarded to first place,
and $30 000 and $20 000 to second and third place respectively. The goal of
the competition was to maximize the quadratic weighted kappa on a test
set of 53 576 photographs. Kaggle of course kept the labels of this test set
private. By the end of the competition top submissions were performing on
par with human experts [15].

To receive the prize money winners need to document their solutions and
deliver the source code used to generate the solution within 14 days. Pre-
sumably because of this teams are eager to share code and documentation at
the end of the competition, even if they did not win any prize money. From
this documentation we can conclude that all top teams used Deep CNNs to
solve this task [27, 2, 9, 21, 5]. Training Deep CNNs is not an easy task, but
fortunately De Fauw provided the values of the learned parameter values of
the network with which he finished 5th place [5] (scoring a kappa of 0.83—1st
place scores a kappa of 0.85). It is this model which we will experiment with.

The remainder of this chapter covers background information on DR. We
will describe the different gradations, what different features are present in a
fundus photograph, and how those features are used to determine the pres-
ence and severity of DR. We then describe the CNN architecture suggested
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by De Fauw, apply visualizations techniques to determine what aspects and
features of the fundus image this network considers important, and compare
those features with the features used to diagnose DR by clinicians. We lastly
summarize our findings.

4.1 Background Information

We first take a brief look at the main features of a fundus image, followed by
features that are specific to DR, and then discuss the classification scheme
used in the Kaggle DR challenge.

4.1.1 Main Features of a Fundus Image

The two most prominent features of a fundus image are the macula and
the optic disk. The macula contains the fovea—which contains the largest
number of cone cells and thus is important for good vision—and is located in
the center of the fundus image if the patient looks straight into the camera.
The optic disk is located in the direction of a patients nose, and is the main
entry point for the major blood vessels that supply the retina. Figure 4.1
shows an annotated fundus image.

The fundus images used in the Kaggle challenge are graded according to
the International Clinical Disease Severity Scale [26]. This grading scheme
focuses on the following features:

Microaneurysms small areas of balloon-like swelling in the retina’s blood
vessels (Fig. 4.2);

Hemorrhages blood from a ruptured blood vessel (Figs. 4.2 and 4.3);

Hard Exudates lipid residues of serous leakage from damaged capillaries
(Fig. 4.2);

Venous beading bulges in the walls of the veins (Figs. 4.2 and 4.3);

Venous loops looping blood vessels;

Neovascularization protrusions and outgrowth of capillary buds from pre-
existing blood vessels (Fig. 4.3).
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Figure 4.1: A fundus image in which the macula, fovea and optic disc are
annotated (source [12]).

The location of such features matters. If exudates are present near the fovea,
this means the disease is more severe than if they are far away from the fovea.

4.1.2 Grading

The fundus images used in the Kaggle challenge are graded according to the
International Clinical Disease Severity Scale [26]. This scale has five levels:

1. No Diabetic Retinopathy (DR)

2. Mild Non-Proliferative Diabetic Retinopathy (NPDR)

3. Moderate NPDR

4. Severe NPDR

5. Proliferative DR

The first level is characterized by the absence of any DR features; the second
by the presence of a few microaneurysm; the third by the presence of mi-
croaneurysms, intraretinal hemorrhages or venous beading. The fourth level
requires that all previously mentioned features are present but in larger quan-
tities. The fifth level is characterized by neovascularization, and by the pres-
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Figure 4.2: Annotated fundus image classified as NPDR. Thin arrows: hard
exudates; thick arrow: blot intraretinal hemorrhage; triangle: microaneurysm
(source: [11]).

Figure 4.3: Annotated fundus image classified as PDR. White arrow: venous
beading; blue arrow: stalk of neovascularization; black arrow: fan at the end
of stalk; green arrow: preretinal hemorrhage (source: [23]).
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ence of DR features at the fovea.

4.2 Used Architecture

The architecture and parameter settings used was provided by De Fauw [5]
and is shown in Fig. 4.4. The model consists of 31 layers total, of which 23
are parameterized, giving a total of 20 923 690 parameters (nearly 20 times
the size of the training and test set combined—although the train and test
set were artificially augmented). Such a deep network was common among
the competition’s victors: networks of depths 25 [21]; 21, 25, 27 [9]; 21 [2];
and 21, 22, 23, 25, 27 [27] were used.

The network operates in batches of even size, because it considers a patient’s
left and right eye at the same time. Considering both eyes is crucial for
good performance (classifying each eye of a patient with the class of the
patient’s other eye leads to a quadratic weighted kappa score of 0.85, which
also happens to be the final score of the number one team—although the
test and training set were split by patient, not by eye). The network also
considers the resolution of the original fundus image as a feature.

All convolutional layers use leaky rectifiers with leakiness set to 0.5 as their
non-linearity, while all but the last dense layer use maxout as their non-
linearity, and the last dense layer uses a softmax non-linearity.

All convolutional layers use filters of size 3 and a stride of 2, with the ex-
ception of the first convolutional layer which uses filters of size 7. The max
pooling layers use filters of size 3 and a stride of 2, so that the pooling ar-
eas overlap. Whenever maxout is used it computes the maximum of 2 linear
functions. Multiple dropout layers are used with a dropout probability of 0.5.

4.3 Visualizing Salient Areas

We use the Gradient Based and Occlusion visualization methods described
in Chapter 3 to visualize the features learned by the network. Because of the
depth of the network we visualize the features at the five pooling layers only.
The pooling layers consist of 32, 32, 64, 128, and 256 features respectively,
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2× 3× 512× 512InputLayer

1× 3× 512× 512Left Eye 1× 3× 512× 512 Right Eye

2× 32× 256× 256ConvLayer(7, 2)
2× 32× 127× 127PoolLayer(3, 2)
2× 32× 127× 127ConvLayer(3, 1)
2× 32× 127× 127ConvLayer(3, 1)
2× 32× 63× 63PoolLayer(3, 2)
2× 64× 63× 63ConvLayer(3, 1)
2× 64× 63× 63ConvLayer(3, 1)
2× 64× 31× 31PoolLayer(3, 2)
2× 128× 31× 31ConvLayer(3, 1)
2× 128× 31× 31ConvLayer(3, 1)
2× 128× 31× 31ConvLayer(3, 1)
2× 128× 31× 31ConvLayer(3, 1)
2× 128× 15× 15PoolLayer(3, 2)
2× 256× 15× 15ConvLayer(3, 1)
2× 256× 15× 15ConvLayer(3, 1)
2× 256× 15× 15ConvLayer(3, 1)
2× 256× 15× 15ConvLayer(3, 1)
2× 256× 7× 7PoolLayer(3, 2)
2× 256× 7× 7DropoutLayer(0.50)

2× 1024DenseLayer(1024)
2× 512MaxoutLayer(2) 2× 2 Original Dimensions

2× 514ConcatLayer
1× 1028ReshapeLayer
1× 1028DropoutLayer(0.50)
1× 1024DenseLayer(1024)
1× 512MaxoutLayer(2)
1× 512DropoutLayer(0.50)
1× 10DenseLayer(10)
2× 5ReshapeLayer
2× 5SoftmaxLayer

Figure 4.4: The network used in [5] to place 4th in the Kaggle competition. It
takes as input the preprocessed fundus photographs of the left and right eye of
a patient, as well as the original input dimensions of said fundus photographs.
In the topmost layers the representations of the left and right eye of the
same patient are combined. The complete network has a total of 20 923 690
parameters (nearly 20 times the size of the training and test set combined).
For a convolutional layer ConvLayer and pooling layer PoolLayer the two
arguments are the filter size and stride. For the maxout layer MaxoutLayer
the argument is the number of features to take the maximum over. For the
dense layer DenseLayer the argument is the number of hidden nodes in the
layer.
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and each visualization is done with respect to a single input image. As such
it is infeasible to show all visualizations in printed format, and we merely
highlight and summarize. For each of the features in the pooling layer we
visualize the feature on the 9 fundus photographs that most strongly activate
that feature, hoping this will summarize the feature.

Each of the methods produces a saliency map, i.e., for every pixel a real value
indicating the importance of said pixel. To provide sufficient context we use
the following visualization procedure. First, we use Gaussian smoothing with
a small kernel on the saliency map. Then, a watershed algorithm is used to
threshold to smoothed saliency map. This creates a binary map, marking each
pixel as either important or unimportant. We then project this binary map
on top of the original input by increasing the brightness in important areas.
Additionally we delineate all important areas using a green marker. A blue
marker is used to mark the receptive field of the neuron that is visualized.

We inspect the visualizations to see how the features learned by the filters
of the network contrast to the features used by clinicians to diagnose DR.
It might be that we see interesting features emerge simply because we are
biased. To prevent this bias we contrast the visualizations of the trained
network with the visualizations of a randomly initialized network that has
the same architecture.

For each of the pooling layers we describe the learned features and highlight
some interesting results. We summarize the learned features in Table 4.1 on
page 37.

4.3.1 The First Pooling Layer

The first pooling layer (with a pool size of 3 and stride of 2) occurs after
a single convolutional layer with a kernel size of 7 and a stride of 2 and
contains 32 features total. The receptive field is already of size 11. This layer
recognizes no features directly related to DR. The topmost activations are
virtually always occurring at the edges of the fundus, suggesting that the
network is detecting simple edges at this stage (Fig. 4.5). The randomly
initialized network also always has the topmost activations occurring at the
edge of the fundus.
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Figure 4.5: First pooling layer features of the trained network (left) and
randomly initialized network (right). All features are focused on recognizing
the fundus edge. The trained network contains a single feature that seems
focused on blood vessels, while a random feature is detecting text.

4.3.2 The Second Pooling Layer

The second pooling layer (again, with a pool size of 3 and a stride of 2)
occurs after two convolutional layers with a kernel size of 3 and a stride of 1
and contains 32 features total. The receptive field size is 35 × 35. Both the
features of the trained network and the features of the randomly initialized
network are most interested in images that have overexposed edges. Only in
2 out of 32 features the network detects something other than fundus edges;
namely the optic disk (Fig. 4.6).

4.3.3 The Third Pooling Layer

The third pooling layer (with a pool size of 3 and a stride of 2) occurs after
two convolutional layers with a kernel size of 3 and a stride of 1 and contains
64 features total. The receptive field size is 83× 83. In this layer the features
of the random network and the trained start to differ. The random network is
still only recognizing simple edges, while the trained network detects white
glare spots, the blood vessels of the optic disk, and microaneurysms. The
filters are not yet consistent; features that detect microaneurysms also detect
the blood vessels of the optic disk (Fig. 4.7).
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Figure 4.6: Second pooling layer features of the trained network (left) and
randomly initialized network (right). Both the features of the trained network
and the features of the randomly initialized network are most interested in
images that have overexposed edges. Only in 2 out of 32 features the network
detects something other than fundus edges; namely the optic disk.

4.3.4 The Fourth Pooling Layer

The fourth pooling layer (with a pool size of 3 and a stride of 2) occurs after
four convolutional layers with kernel size 3 and stride of 1 and contains 128
features total. The receptive field size is 243× 243. Microaneurysm detectors
are present and seem consistent (Fig. 4.8). Hard exudates are sometimes
confused with the optic disk (Fig. 4.9). The fovea can be mistaken for a
hemorrhage (or the other way around) (Fig. 4.10). A specialized feature for
detecting glare spots exists (Fig. 4.11). Some features recognize multiple DR
features (Fig. 4.12), while others recognize image artifacts (Fig. 4.13). The
optic disk is also detected (Fig. 4.14).

The random features are still primarily recognizing fundus edges, and acti-
vating most strongly on images with many artifacts.

Figure 4.8: Example of a microaneurysm detector in the fourth pooling layer.
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Figure 4.7: Sample of the third pooling layer features, of both the trained
network (top 4 images), and the randomly initialized network (bottom cen-
ter). The random network is still only recognizing simple edges, while the
trained network detects white glare spots, the blood vessels of the optic disk,
and microaneurysms.
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Figure 4.9: Hard exudates are sometimes confused with the optic disk.

Figure 4.10: The fovea can be mistaken for a hemorrhage.

Figure 4.11: A specialized feature for detecting glare spots exists.

Figure 4.12: Some features detect multiple features of DR.

Figure 4.13: Some features recognize image artifacts.

Figure 4.14: The optic disk is detected.
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4.3.5 The Fifth Pooling Layer

The fifth and final pooling layer (pool size 3, stride 2) occurs after 4 more
convolutional layers with kernel size 3 and stride 1. It contains 256 features
total, and has a receptive field size of 563× 563 (the original input image is
512× 512, but each convolutional layer adds some padding).

Microaneurysm detectors are still present, although they occasionally mix
in hemorrhages as well (Fig. 4.15). Hard exudate detectors are now more
prevalent, occurring 8 times (Fig. 4.16). Hemorrhages are detected individ-
ually (Fig. 4.17). While in the previous layers detection was often localized
to a single spot within the receptive field, now more complex shapes excite
a neuron. This allows the detection of clusters of hemorrhages (Fig. 4.18).

Not all features are sensible at this level. For example, we have no idea
what the feature in Fig. 4.19 detects. Blood vessels are now also detected
(Fig. 4.20), but it is hard to say what makes them significant; these blood
vessels show no signs of beading or neovascularization. Some features de-
tected are hard to classify, but obviously indicate that something is wrong
(Fig. 4.21).

Even at the deepest layer the features of the random network still seem
centered around detecting edges in overexposed images.

Figure 4.15: Example of a microaneurysm detector in the fifth pooling layer.
The visualization methods are: Gradient Based with Max Aggregation, Gra-
dient Based with Sum Aggregation, and Occlusion using an 11×11 occlusion
window.

34



Figure 4.16: Example of a hard exudate detector in the fifth pooling layer.

Figure 4.17: Example of a hemorrhage detector in the fifth pooling layer.

Figure 4.18: Example of a cluster of hemorrhages detector in the fifth pooling
layer.
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Figure 4.19: Not all features are easy to understand

Figure 4.20: Example of a blood vessel detector in the fifth pooling layer.

Figure 4.21: Example of detectors that are difficult to classify as DR features,
but that seem to indicate disease.
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Frequency of Features
Pooling
Layer

Depth Receptive
Field Size

Number
of Fea-
tures

Hard
Exu-
dates

Micro-
aneurysms

Hemor-
rhages

Optic
Disk

Blood
Vessels

Other

First 1 11× 11 32 32
Second 4 35× 35 32 32
Third 7 83× 83 64 9 14 27
Fourth 12 243× 243 128 1 17 2 1 29
Fifth 17 563× 563 256 8 16 7 2 17

Table 4.1: Summary of the characteristics of the pooling layers and their recognized features. Frequency of
features was determined by manually labeling the results of either 50 feature visualizations, or by labeling
visualizations for all features in a layer if there were fewer than 50 features in that layer. Features were
labeled as “Other” when they seemed to either recognize features unrelated to the task (typically image
artifacts), or when they seemed to recognize a mixture of features.
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4.4 Visualizing Exemplars

We visualized the exemplars (inputs that most strongly activate a given fea-
ture) using the Activation Maximization method (Section 3.1.1). To choose
a starting point for gradient descent we used three different initialization
methods: maximum, mean, and random initialization. Each feature consid-
ers only part of the input: the receptive field. During maximum initialization
we took a stratified sample of the dataset, we then computed the feature
maps of the sample for a given feature, and for these feature maps we looked
for the most strongly activated neuron. We used the input to this neuron’s
receptive field as a starting point. During mean initialization we computed
the mean image of the entire dataset and used a patch from this mean image
as starting point. During random initialization we generated random input
with the size of the receptive field such that the input’s mean was zero and
the input’s standard deviation one.

We visualized the exemplars by destandardizing the maximizers found by
the Activation Maximization procedure. Figure 4.22 shows three exemplars
for features recognizing different DR features. We find the results difficult to
interpret. When we visualize the intermediate (non-converged) results of the
Activation Maximization procedure the results seem more sensible: a blood
vessel feature indeed marks the blood vessels (Fig. 4.23), while a microa-
neurysm marks microaneurysms (Fig. 4.24). We found that the difference
between the activation of a neuron on regular input and a maximized input
is large: large activations on the training and test data would still be smaller
than 10; activations on optimized inputs can be as large as 10 000. Activation
Maximization was previously used in the context of Deep Belief Networks,
which used a sigmoid activation function [7]. The non-saturating nature of
the rectified linear unit (ReLU) could explain the difference in the quality of
the produced visualizations.

We found that mean and maximum initialization are easier to converge from,
but no method consistently converges to a better local maximum. We found
the local maximum of any initialization to be as much as a factor 2 larger
than for the local maximum of a different initialization method. Visually
the results seem similar for each of the initialization methods. Figure 4.25
shows an example. The visualizations seem to become more shapely or sparse
as depth increases. In Fig. 4.26 we show exemplars of features at the third,
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fourth, and fifth pooling layer. As the depth increases the filter starts ignoring
information at the edges of the receptive field, even though all convolutional
layers used same padding (which tries to prevent this).

(a) Exemplar for a
feature recognizing mi-
croaneurysm (see also
Fig. 4.15, page 34)

(b) Exemplar for a fea-
ture recognizing hemor-
rhages (see also Fig. 4.17,
page 35)

(c) Exemplar for a fea-
ture recognizing hemor-
rhages (see also Fig. 4.20,
page 36)

Figure 4.22: Examples of exemplars for different types of features.

4.5 Conclusion

At each layer the network extracts certain features using the network fil-
ters. We showed for each filter in the lower pooling layers the top 9 inputs
that most strongly activated the filter. At the first two layers the filters are
focused on detecting fundus edges, while deeper layers combine these indi-
vidual filters to detect much more interesting shapes, such as hard exudates
or microaneurysms. We saw that randomly combining filters does not lead to
the emergence of interesting new features; when we visualized the features of
a randomly initialized network, features in deeper layers were still the most
strongly activated by the fundus edges.

At lower levels the filters seem sensitive to outliers. The inputs that most
strongly activate a filter are typically part of an image that is overexposed
or contains some other artifacts. As the network increases in dept it becomes
less sensitive to these outliers, suggesting the network has learned to filter
outliers. We were unable to determine how the network does this.
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Figure 4.23: Intermediate results during the Activation Maximization pro-
cedure on a feature recognizing blood vessels when using maximum initial-
ization. Notice how initially blood vessels are marked, but as the algorithm
converges only some blood vessels at the boundaries of the input remain
marked.
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Figure 4.24: Intermediate results during the Activation Maximization proce-
dure on a feature recognizing microaneurysms when using maximum initial-
ization. Notice how the microaneurysm at the boundaries of the input are
marked.
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(a) Maximum (b) Mean (c) Random

Figure 4.25: Exemplars found by different initialization methods. Despite the
large discrepancy in activation value (shown on top), the results still seem
visually similar.

(a) Third Pooling Layer (b) Fourth Pooling Layer (c) Fifth Pooling Layer

Figure 4.26: Exemplars for different layers. The exemplars of the fourth
and fifth pooling layer were both found to recognize microaneurysms by the
method in the previous section.
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By using the salient areas methods we were able to localize the important
aspects of the input much more strongly than we would have been able if
we were to just zoom in on the receptive field. Especially in deeper layers,
where the receptive field size is large, showing just the input that is part of
the receptive field as characterizing a feature is misleading: we found that it
is often a very specific and localized part of the receptive field that is most
relevant to a feature.

The salient areas found by all three methods, Gradient Based Max Aggre-
gation, Gradient Based Sum Aggregation, and Occlusion, were similar. The
Max Aggregation and Occlusion method both responded strongly to a very
specific region only. This allows one to quickly grasp what a feature is about.
The Sum Aggregation can subsequently be used to show some more details.
The Gradient Based methods seemed to show more details than the Occlu-
sion method, but this might be due to our choice of occlusion window size
(11×11). By far the biggest drawback of the Occlusion method is the running
time. Generating 9 Gradient Based maps for each feature in all five pooling
layers takes in the order of hours on a GeForce GTX 980 Ti, while generating
Occlusion based maps takes roughly a week.

We showed that most features used by clinicians to diagnose DR are learned
by the network as the networks depth increases. We are unable to conclude
whether this depth is a requirement to learn such features, or that a more
shallow network would also be able to learn such features. It might be the
case that in deep networks there are not enough constraints on the earlier
layers to force them to learn features specific to this task. However, since all
the well performing networks of Kaggle’s Diabetic Retinopathy competition
are very deep, there is some evidence to suggest that the depth is required.

Not all DR features are recognized in equal quantities. We found that most fil-
ters focused on spots—i.e., hemorrhages, microaneurysms and hard exudates.
Blood vessel related filters are less abundant, and where they are present it
is not possible to tell what specific features of the blood vessels such a filter
is interested in. This might be a limitation in the domain knowledge of the
author, the visualization method, the network, or the dataset.

We found that most features used by clinicians to diagnose DR are learned by
the network. This has both a positive and negative interpretation. Positively,
it is comforting that the network has learned to perform the task similarly
to how humans perform it (alternatively the network could instead have
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found some “nonsensical” patterns that are also related to the target variable
and used these for classification instead). Negatively, we have not discovered
anything new about Diabetic Retinopathy.

The fact that we were unable to learn about new features relevant to DR
shows a limitation with our experimental setup. Humans have predetermined
the features, and classified the fundus images according to these features. The
network correctly learns these features and this classification scheme. A setup
in which the network has to determine features in an unsupervised manner
could lead to more knowledge discovery.

We found that characterizing a feature by visualizing the input that produces
the strongest activation leads to results that are difficult to interpret. This
method was used to visualize the features learned by a Deep Belief Network in
previous work [7]. We found that optimal inputs have a significantly stronger
activation than samples from the training data. This can not be the case for
the Deep Belief Network, since it uses sigmoid activations. It might be that
the unbounded nature of the ReLU is the cause of the poor visual results.
We tested this hypothesis by starting from a dataset sample and running the
optimization method for a few iterations. After inspecting features of which
we determined their meaning by visualizing the salient areas, we thought it to
be plausible that the same meaning could be derived from the non-converged
Activation Maximization visualization, suggesting that the unbounded na-
ture of the ReLU allows the input to become too different from the original
input space, causing the results to become incomprehensible.
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5. Experiment: Die360
For this experiment we train a variety of neural networks on the task of
counting the number of spots on the most prominent face of a die. We gen-
erated the data by creating 2-D projections under different rotations of a
3-D die model and called this the Die360 dataset. This is an interesting task;
we already know CNNs can handle translations on the input very well be-
cause this is hard-coded in the architecture. This task is instead focused on
rotations of the input. We also consider how well MLPs perform on this task.

For humans, there seems only one obvious way to solve this task: by counting
the number of spots on the most prominent face of the die. However, there is
a relationship between the number of spots on the most prominent face and
the number of spots on less prominent faces. Such relationships could also
be considered by the network.

The dataset is described in Section 5.1. The architectures of the trained
neural networks are described Section 5.2. The exemplars and salient areas
are visualized in Section 5.3 and Section 5.4. Section 5.5 concludes.

5.1 The Dataset

The dataset was generated by taking a 3-D model of a die and creating 2-D
projections of this die under different rotations. We rotate around all three
axes, so if we allow one degree rotations, we end up with 3603 = 46 656 000
different projections. However, we restricted the task to classifying each pro-
jection as the number of spots on the “most prominent” face, where the
“most prominent” face is defined as the bottom-right face, and only images
are included where this bottom-right face is visually most prominent.

To understand the concept of visually most prominent, consider Fig. 5.1. In
Fig. 5.1a we see that the bottom-right face is the most visually prominent, so
this projection is part of the dataset, with corresponding class label “two”.
In Fig. 5.1b we see that it has become ambiguous as to which face is most
visually prominent, so this projection is discarded. Fig. 5.1c is an example of
a projection that is also discarded, since the most prominent face is not the
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bottom-right face.

After discarding the ambiguous and not visually prominent samples we are
left with 49 200 samples. The samples are greyscale images of size 32× 32.

(a) A projection where
the most prominent face
is the face containing
two spots.

(b) A projection that is
discarded because the vi-
sually most prominent
face is ambiguous.

(c) A projection that
is discarded because the
bottom-right face is not
the most visually promi-
nent.

Figure 5.1: Examples of accepted and discarded projections, clarifying the
concept of right-most “visually prominent” face. Examples are shown in
higher resolution than the actual networks were trained on (128 × 128 and
32× 32 respectively).

5.2 Used Architectures

We train both MLPs and CNNs. The setup for any MLP is always a network
consisting of two dense layers, with either 5, 10, or 20 hidden units and the
sigmoid non-linearity in the first layer, and 6 output units (one for each class)
and the softmax non-linearity in the output layer. We denote these networks
with d<num hidden>.

The CNNs consist of either 1, 2, 3, or 4 convolution layer and pooling pairs,
followed by a fully connected layer with 6 output nodes (one for each class)
and the softmax non-linearity. All convolutional layers use 3 filters with filter
size 3× 3, a stride 1 and same padding. All pooling layers use a pool size of
2× 2 and a stride 2. We denote these networks with c<num layers>.
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network number of parameters validation accuracy

c1 4 644 0.9971+0.0011
−0.0025

c2 1 272 0.9966+0.0006
−0.0015

c3 492 0.9945+0.0023
−0.0040

c4 360 0.9764+0.0110
−0.0124

c9 996 0.9991+0.0009
−0.0012

d5 5 161 0.9966+0.0017
−0.0011

d10 10 316 0.9990+0.0004
−0.0007

d20 20 626 0.9995+0.0002
−0.0002

Table 5.1: Number of parameters, average validation accuracy, and distance
from the mean to the minimum and maximum validation accuracy for each
network configuration. A convolutional neural network with <num layers>

convolutional layers is denoted using c<num layers>. A two-layer perceptron
with <num hidden> hidden nodes is denoted using d<num hidden>. The rea-
son c9 has so many parameters is because it alternates three convolutional
layers with a pooling layer, while all other convolutional networks alternate
each convolutional layer with a pooling layer.

Additionally we train one more CNN variant, this time alternating three
convolutional layers (again, 3 filters with filter size 3× 3, stride 1, and same
padding in every layer), with a pooling layer with a pooling size of 2× 2 and
stride 2. This alternation is repeated three times (for 9 convolutional layers
total). We denote this network with c9.

We train our networks on a 80/20% train/validation split using stochastic
gradient descent with appropriate training parameters (i.e., momentum and
learning rate settings that perform well based on experimental results). This
task is fairly simple, as the training and validation set are very similar. All
networks score at least 97%. Table 5.1 shows the performance details and the
number of parameters of each network.
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5.3 Visualizing Exemplars

For each of the convolutional networks we visualized the exemplars. The
results are shown in Table 5.2, page 49. For the c9 network the first feature
in the first pooling layer strongly recognizes a spot-like shape. The other
networks do not recognize a similar shape until the second pooling layer.
This is probably because the c9 network has already applied 3 convolutional
layers at the first pooling layer, while the other networks have applied only
1 convolutional layer at that point. For most exemplars in the deeper layers,
the exemplars have zero values at the bottom-right corner, indicating that
that part of the input is ignored. We were unable to come up with a suitable
explanation. The convolutional layers use same padding, suggesting that if
the padded input would be ignored, the exemplar should be centered, rather
than be top-left aligned.

5.4 Visualizing Salient Areas

We can order the images corresponding to each class by choosing an ordering
such that for each image and its successor, the images are projections where
the rotational parameters of the 3-D model differ a single degree. For a given
class this gives us an ordered sequence of images. We can then visualize the
salient area of a feature for each of the images in the sequence, creating an
animation.

The visualization can differ significantly between two images that follow in
sequence (Fig. 5.2). This suggests that the features are not invariant to rota-
tions. A similar effect is observed for the softmax output, where the posterior
that a network predicts for a certain class can be greatly different between
two subsequent images (Fig. 5.5).

Much like with the Diabetic Retinopathy dataset we used the Gradient Based
method to construct the saliency maps for features in the pooling layers
(Figs. 5.3 and 5.4).
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layer c1 c2 c3 c4 c9

1

2

3

4

Table 5.2: Exemplars for the features of the pooling layers of different CNN architectures trained on the
Die360 dataset. For the c9 network a pooling layer is preceded by multiple convolutional layers. Because
of this the receptive field is bigger, and hence the exemplars are of higher resolution. Three exemplars are
shown at each layer, as each convolutional layer has three filters.
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Figure 5.2: Visualization of the same feature on two images where the ro-
tational parameters that generated the images differ by a single degree. A
small change in rotation can lead to a large change in the visualization.

(a) Background (b) Face edge (c) Spots (using
Sum aggregation)

Figure 5.3: The features in the first pooling layer seem consistent across all
networks. Most features are either recognizing the background, or the edge
of the die face. Only the c9 network recognizes spots directly.

(a) Background (b) Face edge (c) Spots (using
Sum aggregation)

Figure 5.4: Features still seem mostly focused on background or edge of the
die face. In the second pooling layer the c4 network recognizes spots directly,
while the c9 network no longer does.

50



Figure 5.5: Image with the largest disagreement (center, row 4) and a stacked
bar plot of the posteriors predicted by each network, together with neighbor-
ing images and their respective posteriors. Notice how, despite being visually
very similar, a small rotation can lead to a big jump in the network’s predic-
tion.
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5.5 Conclusion

We found that the Die360 dataset is an easy dataset to learn, presumably
because for every image in the dataset there are many images much like it.
For example, for nearly every given image there are 6 images for which the
rotational parameters by which they were generated differ by a single degree
from the rotational parameters used to generate the given image. With a
80/20 train/validation split, it is likely that for every image in the test set,
at least one very similar image will end up in the training set.

We found that the networks with the most parameters performed the best on
this task (which is to be expected because of the similarity of the validation
and training set), and these were typically dense networks. However, we also
found that increasing the depth of the convolutional networks was also a very
effective method of improving performance, even scoring 100% accuracy on
one of the validation folds.

We found that some features are focused on detecting background, possibly
because the amount of background can contain information about the rota-
tion of the die (Figs. 5.3a and 5.4a). Other features considered the face edge
(Figs. 5.3b and 5.4b), but under different rotational conditions would also
recognize spots, or follow the highlighting caused by the lamp in the 3-D
scene in which the die was rendered. Spot detectors also occurred, but would
be unable to distinguish between the spots on the most prominent face and
the spots on other faces (Figs. 5.3c and 5.4c).
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6. Summary and Conclusion
This work tries to answer the question: “How to visualize the features learned
by Convolutional Neural Networks (CNNs)?”. We considered two different
approaches: 1) visualizing exemplars, and 2) visualizing salient areas in the
original input. The main contributions of this work are: 1) extending a
method for computing salient areas in the input image as proposed by Si-
monyan, Vedaldi, and Zisserman in [25] to be applicable to convolutional
layers; 2) showing that—by using this extension—a CNN trained to detect
Diabetic Retinopathy (DR) uses features that are similar to those used by
trained clinicians to diagnose the disease; 3) publishing source code for gen-
erating the visualizations of CNNs [16].

We applied the different visualization approaches on networks trained on two
different tasks: classifying DR and classifying the number of dots on the most
prominent face of a die. For the DR task we used a CNN provided by the
team that finished 5th place in the corresponding Kaggle competition. For
the Die360 task we trained a variety of different networks on a synthetic
dataset.

The literature suggests two methods for visualizing exemplars: Activation
Maximization and Deconvolutional Networks. Activation Maximization uses
gradient ascent to find inputs that most strongly activate a given feature,
while Deconvolutional Networks try to reverse the process of a CNN: rather
than projecting an input into some different representation, they try to
project the new representation back into the input space. Due to the limita-
tions of this method we did not apply it.

We did not have success with applying the Activation Maximization method.
This method was suggested to visualize the features of Deep Belief Networks.
These networks use sigmoid activation functions: a function that quickly
saturates, so gradient ascent converges quickly. We observed a very large
difference between the magnitude of the activations on the training data,
and the magnitude of the activations on the optimized input. We hypothesize
that because the rectified linear unit is non-saturating the optimized input
can become too different from the training set input to be interpretable.
This hypothesis was in part confirmed by initializing the optimization from
a training sample, and then stopping early in the optimization process. In
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that case, it seemed easier to distinguish what kind of feature was recognized.

We extended the Gradient Based method to also be applicable to interme-
diate layers of a CNN, by using an aggregation function on the feature map
activations. We found that using the maximum or the sum as aggregation
function worked well. The maximum aggregation function was less distract-
ing, while the sum aggregation function gave more detailed results. We found
that visually the results were very similar to the Occlusion method, but the
Gradient Based method shows more details and scales much better to larger
inputs.

By visualizing the salient areas we found that on the DR problem the features
learned by the network become very similar to the features used by clinicians
to diagnose DR as the depth of the network increases. For example, of the 50
inspected features in the third pooling layer a total of 27 features could not
be classified as one of the features used by clinicians to diagnose DR, while
in the fifth and final pooling layer only 17 out of 50 could not be classified
as such.

6.1 Discussion

This work focused on different visualization methods. The visualizations pro-
duced often seemed sensible, because we found what we were looking for.
Unfortunately this work lacks a good methodology to objectively evaluate
the visualizations, nor were we able to provide a formal argument why one
method is better than the other. It also seems that without prior knowledge
of the expected features, extracting novel information based on the visual-
izations of a CNN is still a daunting task, even with the methods presented
in this work.

6.2 Applications

By visualizing the features the classification process of the CNN becomes
slightly more transparent. For example, the CNN trained on the DR task
may be used to assist optometrists in grading the severity of DR. But using
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the methods in this work, we could, instead of simply reporting classification
confidences, highlight areas that the network considers important. This way
the network might make the optometrist aware of aspects that he had not
considered yet.

6.3 Future Work

We did not compare networks of different depths on the DR task, although
we found that the interesting features do not emerge until the last and penul-
timate pooling layer. Future work could try to find CNN architectures that
have different depth, but perform as well or better as the network architec-
ture used in this work. By using a more shallow network one could investigate
whether depth is a requirement for interesting features to emerge, or that the
more interesting features do not emerge in the lower layers of deeper networks
because it is simply not required to learn interesting features until the final
layers. By using a deeper network one could investigate if more difficult to
recognize features, such as blood vessels, become more prevalent.

In this work we looked at the DR problem. The CNN had to learn to grade
DR according to some standard invented by humans. The relevant patterns
were predetermined by humans and encoded in a labeled dataset. Because
of this it is not very surprising that the CNN indeed learns features used
by humans to grade. Future work could look at a task where the class is an
objective measurement, for example the quality of sight. We could then try
to learn what visual features seem related to poor sight, possibly suggesting
new methods to improve eye sight, or to prevent deterioration of sight.

Additionally future work could look at unsupervised neural networks, and
visualize the features learned by these networks, hopefully improving our un-
derstanding of the unsupervised task. This seems the most challenging future
work; a specific task gives a certain context to evaluate the visualizations in.
This context is missing for unsupervised learning, so the results might be
even more difficult to interpret.

55



Bibliography
[1] Rodrigo Benenson. “Classification Datasets Results”. url: http://

rodrigob.github.io/are_we_there_yet/build/classification_

datasets_results.html (visited on 06/17/2016).
[2] Robert Bogucki. “Diagnosing Diabetic Retinopathy with Deep Learn-

ing”. 2015. url: http://deepsense.io/diagnosing- diabetic-
retinopathy-with-deep-learning/ (visited on 05/17/2016).

[3] Dan Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella,
and Jürgen Schmidhuber. “Flexible, High Performance Convolutional
Neural Networks for Image Classification”. Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI). Vol. 22.
2011, pp. 1237–1242.

[4] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber. “Multi-Column
Deep Neural Networks for Image Classification”. 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). IEEE.
2012, pp. 3642–3649.

[5] Jeffrey De Fauw. “Detecting Diabetic Retinopathy in Eye Images”.
2015. url: http://jeffreydf.github.io/diabetic-retinopathy-
detection/ (visited on 05/17/2016).

[6] Paulo Diniz, Eduardo da Silva, and Sergio Netto. “Digital Signal Pro-
cessing”. 2010, pp. 397–422. url: http://dx.doi.org/10.1017/
CBO9780511781667.

[7] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent.
“Visualizing Higher-Layer Features of a Deep Network”. University of
Montreal 1341 (2009).

[8] Kunihiko Fukushima. “Neocognitron: A Self-Organizing Neural Net-
work Model for a Mechanism of Pattern Recognition Unaffected by
Shift in Position”. Biological Cybernetics 36 (1980), pp. 193–202.

[9] Ben Graham. “Kaggle Diabetic Retinopathy Detection Competition
Report”. 2015. url: https://github.com/btgraham/SparseConvNet/
blob/kaggle_Diabetic_Retinopathy_competition/competitionreport.

pdf (visited on 05/17/2016).
[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving

Deep into Rectifiers: Surpassing Human-Level Performance on Ima-

56

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://deepsense.io/diagnosing-diabetic-retinopathy-with-deep-learning/
http://deepsense.io/diagnosing-diabetic-retinopathy-with-deep-learning/
http://jeffreydf.github.io/diabetic-retinopathy-detection/
http://jeffreydf.github.io/diabetic-retinopathy-detection/
http://dx.doi.org/10.1017/CBO9780511781667
http://dx.doi.org/10.1017/CBO9780511781667
https://github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/competitionreport.pdf
https://github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/competitionreport.pdf
https://github.com/btgraham/SparseConvNet/blob/kaggle_Diabetic_Retinopathy_competition/competitionreport.pdf


geNet Classification”. CoRR abs/1502.01852 (2015). url: http://
arxiv.org/abs/1502.01852.

[11] Ahmed Al-Hinai, Mohammed Al-Abri, and Rayah Al-Hajri. “Diabetic
Papillopathy with Macular Edema Treated with Intravitreal Bevacizumab”.
Oman Journal of Ophthalmology 4 (2011), pp. 135–138. doi: 10.4103/
0974-620X.91270. url: http://doi.org/10.4103/0974-620X.
91270.

[12] Danny Hope. “Photograph of the Retina of the Human Eye, with Over-
lay Diagrams Showing the Positions and Sizes of the Macula, Fovea,
and Optic Disc”. 2014. url: https://en.wikipedia.org/wiki/
Macula_of_retina#/media/File:Macula.svg.

[13] Ian Goodfellow and David Warde-farley and Mehdi Mirza and Aaron
Courville and Yoshua Bengio. “Maxout Networks”. International Con-
ference on Machine Learning (ICML) 28 (2013), pp. 1319–1327.

[14] Kaggle Inc. “Diabetic Retinopathy Detection”. 2015. url: https://
www.kaggle.com/c/diabetic-retinopathy-detection/ (visited on
05/17/2016).

[15] Kaggle Inc. “Winning Models from @CHCFNews Diabetic Retinopa-
thy Comp are on par with Human Performance!” 2015. url: https:
//twitter.com/kaggle/status/626148867961147392 (visited on
05/17/2016).

[16] Jan Kalmeijer. “CNN-Vizlib — A Python Package for Visualizing the
Features Learned by Convolutional Neural Networks”. 2016. url: https:
//github.com/jkalmeij/cnn-vizlib (visited on 06/22/2016).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “Imagenet Clas-
sification with Deep Convolutional Neural Networks”. Advances in Neu-
ral Information Processing Systems. 2012, pp. 1097–1105.

[18] LISA lab. “Conv — Ops for Convolutional Neural Nets — Theano
0.8.2 Documentation”. url: http://deeplearning.net/software/
theano/library/tensor/nnet/conv.html#theano.tensor.nnet.

conv.conv2d (visited on 06/07/2016).
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