A Visual Method for Teaching
Grammatical Concepts to Primary and
Secondary Schoolers:

An Interactive Sentence Assembly Tool
on the Internet *

Master’s Thesis by
Camiel van Breugel
http://www.wi.leidenuniv.nl/home/cvbreuge/
cvbreuge@cs.leidenuniv.nl

Department of Computer Science
Leiden University, Netherlands

September 1, 1998

*http://www.wi.leidenuniv.nl/home/cvbreuge/bin/spookjes.html

Contents

1 Introduction 3
2 Initial Grammar Instruction 4
2.1 Traditional grammar instruction)
2.2 Drawbacks of traditional grammar instruction)
3 Visualizing grammar 6
3.1 Sentence diagrams o0 7
3.2 Examples of sentence diagrams 8
4 What goes on within the brain of a language user 9
4.1 Lexical frames. L 10
4.2 Using lexical frames for a new type of exercise 12
5 Applying Lexical Frames in a new kind of grammar exercises 14
5.1 Design philosophy oo, 15
5.2 New exercises for grammar instruction 18
5.3 Access through internet 20
6 Implementation 21
6.1 Drawing the ghost-like shapes 24
6.2 Shape description L. oL 24
6.3 Livingeyes 26
6.4 Bracketed string notation 0oL 27
6.5 Constructing a Lexical Frame into SegmentShapes 28
6.6 The syntactic properties in the Feature Matrix 29
6.7 Interaction on lexical frames 29
6.8 Free-edit mode 30
7 Conclusion 32
7.1 Future extensionso 33
Appendix A 35
References 37

Preface

There are several serious problems with conventional grammar instruction for
young children. The biggest problem of all is that grammatical concepts are often
too abstract for them. Furthermore, conventional grammar instruction proves
to be de-motivating and causes many children to lose interest in language edu-
cation. In traditional grammar instruction the children’s primary task consists
mainly of the rather monotonous exercise of analyzing sentences. One concept
that might help is that of edutainment, which is, not very surprisingly, the com-
bination of education and entertainment. Edutainment might turn learning into
a more attractive process and draw the children’s attention more easily than
conventional educational methods. What I propose is an alternative approach
by which children develop grammar skills by building sentences, i.e. constructing
them out of several different building blocks which results in complete sentence
diagrams. My work resulted in the design and implementation of a prototype of
such a computer application in the form of an interactive grammar puzzle. The
big advantages in this design are that abstract names for grammatical concepts
can be replaced by visual shapes like the pieces of a puzzle, and that the under-
lying cognitive models of the grammar visualization method are very suitable as
building blocks. These models were designed by Kempen [11] and are explained
briefly in this document. To maximize accessibility I try to exploit the current
rise in multimedia possibilities and availability by presenting the grammar exer-
cises by means of an interactive computer puzzle that will be accessible through
the internet.

1 Introduction

This document describes the prototype that I designed and implemented of a
computer application for computer assisted grammar learning and training for
children in the higher grades of primary education and the lower grades of sec-
ondary education. It forms part of my graduation project that was done at the
Department of Computer Science at Leiden University in cooperation with the
Experimental and Theoretical Psychology Unit of the Department of Psychology
at Leiden University. It deals with the main psycholinguistic and educational
aspects of this project, the prototype’s design and design philosophy and the
major aspects of the implementation. It is concluded by an overview of the
possibilities of this system and some ideas for future development. I will start
this paper with a short overview of the current state of grammar instruction
in section 2. Section 3 is a short introduction to initial grammar visualization
by means of sentence diagrams. Next, in section 4, I describe in short a psy-
chological model of cognitive structures named lexical frames that can serve as
building blocks for constructing these sentence diagrams. Section 5 deals with
the interface design of a computer game for grammar instruction for children
that is based on these lexical frames. The actual design and implementation
of the system and the main data structures and algorithms of the computer

application are described in section 6. This paper ends with a short summary
and some ideas for further progress in section 7.

2 Initial Grammar Instruction

Language is certainly the most powerful medium that we humans possess to
express ourselves. Even if we wanted to we would never be able to stop joking,
chatting, tittle-tattling, debating and discussing with others. We write things
down in order to preserve the best (or worst) of our thoughts and studies, to
send letters to people at distance or just to keep notes. More rambling souls
may write poetry, dramatic plays or even fiction. Serving all kind of purposes
spoken and written language play a very central role in the life of all speakers,
listeners, readers and writers. It is the very foundation of our culture. Lud-
wig Wittgenstein has put it this way: The limits of language are the limits of
my world. For innumerable things such as convincing, selling, keeping acquain-
tances, explaining, tale telling and many other things it is a huge advantage for
one to be an expert user of his or her language. This is why during basic educa-
tion children should be drilled extensively in speaking, listening, orthography,
reading and writing to try and make them experienced language users. It would
be more than an educational goal alone to teach students to comprehend and
use their language fully and experience all of its rich possibilities. However, as
one observes the numerous errors and poor quality that students produce in
writing, one is almost forced to believe that this is not possible for the larger
part of the students. They lack the necessary insights and fail to see what their
mistakes are and why. The Dutch language contains lots of word pairs that are
pronounced the same while their orthography differs and depends on their role
in the sentence. This is probably the main source of misspelling in Dutch [11].
This problem can only be tackled by some form of grammar instruction that
unveils the structure of a sentence and the relations between the words. But not
only writing skills benefit by grammar instruction. Reading does require a lot
of grammatical experience too.

Unfortunately, it cannot be said that grammar instruction has been very
successful in the past: There is often poor feedback and it can be de-motivating
for both teachers and students. The lack of enough time at schools for teaching
grammar to pupils is not the only reason for this. To begin with there is the
pitiful delimitation that grammar instruction in the sense of simply learning
the rules by heart does not yield the benefits wished for. Children manage to
learn a language without consciously knowing the rules and imposing these
rules on them only tends to confuse them. With this in mind many methods
were developed for the Dutch language over the years, which I shall now and
then refer to as traditional grammar instruction.

2.1 Traditional grammar instruction

For Dutch grammar instruction there are a number of several commonly applied
methods such as Taal-actief, Montessori, Grammatica in balans, and Taaltoren.
What most of these have in common is that the developing language user is
provided with exercises that concentrate on the orthography of the finite verb,
analysis of the sentence structure, the parts of speech, while the difficulty level
is increased gradually. There is a lot more to say about them of course but I
shall first give the most important aspects [14] of these methods. Grammar in-
struction often follows the path of confrontation with a new rule followed by its
application to concrete sentences. There is no direct connection with the other
forms of language instruction like training in spelling, writing, speaking, and
listening, but it takes place in separate courses. The main concept is learning by
training exercises, not by the exchange of ideas or much discussion. They deal
with rules for classification of constituents (predicate, subject, direct object, indirect
object), parts of speech (noun, adjective, article) and sentence types (affirmative,
interrogative, imperative). And they touch upon dealing with rules for recogni-
tion and production of conjugations and inflections (tense, active/passive voice,
1st/2nd/3rd person, imperative), adjective (comparative form and inflectional form),
noun (singular/plural, case), analysis and punctuation marks (main/subordinate
clause, point, comma, exclamation mark, interrogation-mark) and stylistic construc-
tions (indirect/direct speech, clause length, choice of words, references). The average
pupil subjected to this approach should probably be able to improve his perfor-
mances in comprehensive reading and logical thinking a great deal. But there
are still a number of important drawbacks to overcome. Apart from this the
question rises whether traditional grammar instruction still meets the modern
educational standards.

2.2 Drawbacks of traditional grammar instruction

Evers [7] mentions some major disadvantages of traditional grammar instruction
like that it takes away children’s natural wonder about speech and language,
employs unrealistic use of language in the exercises, and provides knowledge of
grammar but not directly the understanding of everyday speech. Her main con-
clusion is that traditional grammar instruction is too abstract and too difficult
for young children so that tricks are needed, that it is insufficiently integrated
in the education of reading and that it is often de-motivating for children. Kem-
pen [11] mentions low level of motivation in pupils and teachers, little time for
practising, late and fragmented feedback, insufficient scaffolding and the little
room for explanatory learning. The cause of all the troubles that children en-
counter when dealing with grammar rules lies mainly in their inability to think
abstractly. Roughly speaking it can be said that children aged under twelve can
only perform concrete operations. It is not until the age of about eleven years
that they enter the abstract phase. The main problem of traditional grammar
instruction is that it prescribes rules that are not concrete enough. And a rule
that is too abstract to be fully understood is not likely to mean a lot to one. No

wonder that making those exercises is not regularly regarded by children as a
very interesting occupation. It is simply not the natural way for young children
to learn by starting with a sequence of rules. They have a completely different
learning mechanism of playful and effortless discovery and challenge. They are
stimulated a lot when they are given the chance to compete with others. How-
ever later on in their development this mechanism seems to be replaced more
and more by explicit and logical reasoning. All this forms a strong argument
that it would be better if somehow the young students were guided to discover
the rules themselves. What is needed most to accomplish this is having easier
exercises with the same effect with immediate result and feedback. Computer
assisted language learning probably might offer just the necessary possibilities.
Doing exercises with the good old-fashioned pencil and paper still might be
useful of course, but this activity takes a lot of valuable time and a different
kind of effort which can distract from the intended learning. And it takes a
lot of the teacher’s time to correct the worked out exercises. This time can be
spent more efficiently when that task is taken over by some form of computer
assisted learning. One of the promising things about computer assisted learning
is that it allows scaffolding. This is a concept by which the learner is stim-
ulated and guided to follow the desired behavioral patterns repeatedly, which
hopefully results in the correct behaviour. For practical use in grammar instruc-
tion, scaffolding should be used to keep the children busy with the construction
of sentences out of a set of suitable building blocks that are limited in their
use only by the nature of their grammatical properties. This has the enormous
advantage of immediate feedback which would normally seem impossible for a
teacher with twenty pupils or more. In this project I try to exploit modern mul-
timedia technology to support the exercises in an interactive setting as a new
effort in this field. The exercises can be presented in the form of a puzzle or as a
work of construction. The element of game is a very important and sometimes
underestimated aspect of the children’s learning mechanisms.

3 Visualizing grammar

The first thing to be done when making abstract terms more concrete is applying
visualization. There are several aspects of visualization in general that are worth
noting with respect to computer assisted learning. To begin with, it can be
used as an analogical representation that can serve as an external memory and
provide contextual clues. Such an analogical representation is often strong in
combination with a direct manipulation interface [17]. Structures become more
concrete because visualization builds an imaginative bridge between task and
concept. Furthermore, it can be used to draw attention, especially when it looks
funny and it is not disturbing or confusing. In the case of grammar instruction,
the sentence structure can be unveiled at once or in steps, which hopefully
improves comprehension. Next, I shall describe the sentence diagrams in which
grammatical relations of sentences usually are expressed.

3.1 Sentence diagrams

The common method for visualizing the structure of a sentence is drawing a
sentence diagram. Generally there are two kinds of sentence diagrams. In the
first one, every single word is to be labelled with the proper part-of-speech label.
In the second sentence diagram the syntactic relations between the words and
word groups in the sentence are represented in a diagram as a hierarchical tree
structure. This distinction is known as part-of-speech tagging versus syntactic
parsing (in Dutch: taalkundig ontleden versus redekundig ontleden). An example of
these sentence diagrams is illustrated for the Dutch sentence De schildpad ver-
sloeg de haas (English: The turtle has beaten the hare) in figures 1 and 2. The

I w zn ZWW I w zn

De schildpad versloeg de haas

Figure 1: Part-of-speech sentence diagram of The turtle has beaten the hare in
Dutch

ZIN
/
OND HED LV
NG NG
/\ /\
det hfd det hfd

De schildpad versloeg de haas

Figure 2: Syntactic parse tree of The turtle has beaten the hare in Dutch

labels, in Dutch, indicate the various grammatic terms '. Parts-of-speech labels
and phrasal category labels are shown in bold font, whereas the identifiers and
the syntactic function labels are printed with plain characters. I use capitals

'Tn Appendix A a list of abbreviations can be found with the English translations

only for syntactic function labels in the second row and for all phrasal category
labels. As one can see the parse tree in figure 2 is slightly different than one
would remember or expect to see with his own education in mind. This is a so-
called head-driven parse tree. It is like the sentence diagram of old but now the
constituents are subdivided into more detailed subtrees. The leading member
of such a subtree is called hoofd (English: head). In the sentence of figure 2, for
instance, the main verb versloeg plays the role of head of the sentence, and both
nouns schildpad and haas are heads in a noun phrase. The other members of a
subtree also play a role in that subtree. E.g. article de plays the role of deter-
miner in both noun groups. Most grammar instruction methods let the students
perform some sort of part-of-speech tagging and syntactic parsing. Their task
in the latter case is to analyse sentences by finding the subject, the finite verb,
the direct object, the indirect object, etcetera. For the majority of the students
it can be said that their skills in part-of-speech tagging outrun those in syntactic
parsing. This could well be explained by the assumption that the classification
of words with part-of-speech tagging is more concrete and therefore easier than
the rather abstract definitions and large number of possible phrasal categories
with syntactic parsing.

3.2 Examples of sentence diagrams

To introduce the part-of-speech labels I have provided two sentences, ik vraag me
af waar die is in figure 3 and Er wordt me door niemand verteld dat die en haar
twee jonge zussen elkaar vaak besproeien in de tuin in figure 4. Together these
sentences contain most part-of-speech labels that exist. These two sentences

ZIN
oW HEFD MV PRT CMP
NlG I\|K3 B\ll‘G le N
héd hjl_d hid K'\—/O/W—H—Fl‘D
e NG
hj:fd h%d

pers.vn ZWW wednd. vn bw vrag.vn betr.vn kww
I I I I I I I

ik vraag me af waar die is

Figure 3: Example of a sentence diagram in Dutch ‘ik vraag me af waar die is’

already use a lot of segments. Figure 5 shows the most important segments that
are needed for Dutch grammar.

ZIN

BEP PV MV BEP HFD CMP
B\‘IG HI‘.F' l\‘G VQG ZI‘N
hf‘d hj‘fd héd hfd vzgobj 0s oW LV BEP BEP HE“D
N a6 e R
héd hf‘d nevhfd/[_\nev héd hf‘d hmobj
N "o N
| 1 —1
hfd det teller bep hfd det hfd
B e BN oo
héd hf‘d hf‘d h‘fd
bw hww pers.vn vz onbep. vn zww ond.vgw betr.vn nev.vgw bez‘. vnte‘lw b‘n zn wedi g.vn bw vz I‘w zn zww
e‘r wo]‘rdt m‘e do‘or nier‘nand verleld da‘t dle e‘n ha‘ar tw‘ee jox‘1ge zus‘sen elk‘aar va‘ak i‘n d‘e tu‘in bespr‘oeien

Figure 4: Example sentence diagram in Dutch

4 What goes on within the brain of a language
user

Among other things, Kempen is studying the ins and outs of sentence perception
and production for years now, seeking explanations for slips of the tongue and
slips of the pen by language users. It shall always be the case that people create
ill-formed sentences and misspell words. And some perfectly correct sentences
are in some ways so nasty that one can almost predict the mistakes a reader
is going to make when reading them aloud. Another example is every year’s
Dutch event of the 'Nationaal Dictee’ where a TV-presentator reads aloud a
dictation and a selected group of Dutch language users tries to write it down
attempting not to miss any. It has to be said that this dictation is often bulking
of uncommon and difficult words, not really every day speech.

Many cognitive models of linguistic structures in language users are being
developed in an attempt to explain human language behaviour. Maybe the sim-
plest way to look at these structures is to see them as little elements that contain
conceptual, morpho-phonological or syntactic information that are activated or
connected when needed. One theoretical model of brain structures at the syn-
tactic level is based on lexical frames (or word frames). Kempen has composed
these lexical frames in his earlier research [9]. They are small elementary gram-
matical units that are modeled after the cognitive structures that might well
exist somehow in the brain of a language user. In the next section I will give a
short overview of the design and the possibilities of these lexical frames.

NG NG NG NG NG DG

hfd det teller bep VZVW hfd
zn/vn DG TWG BNG VZG ZIN VZG I'w bzit.vn/aanw. vn/ NG
BNG BNG BNG BNG BNG ™G
hfd bep vzZVw 1v mv hfd
bn BWG VZG NG NG tw
VZG VZG VZG VZG BWG BWG
hfd vzgobj bep cmp hfd bep
vz NG BWG BWG ZIN bw BWG
ZIN ZIN ZIN ZIN HLP
HFD PV oS PRT hfd
zw kww HLP ond. vgw VZE BWE BNG NG hww
ZIN ZIN ZIN ZIN ZIN ZIN ZIN ZIN
KV IVL MV VZVW ow LV CMP BEP

NG BNG VZE ZIN vz NG VZG ZIN VZG NG ZI'N NG ZI'N ZI N BWH VZd ZI N NG

Figure 5: The most important segments for Dutch grammar

4.1 Lexical frames

Kempen utilizes the hierarchical tree structures mentioned above to visualize
the grammatical concepts within a sentence. He distinguishes twenty different
parts of speech, five different word groups and fifteen syntactic functions. These
are not very different from those generally used in schools. Word groups, but also
single parts of speech, may perform one of the syntactic functions. Furthermore,
there are seventeen different syntactic properties that belong to some of the
nodes. A complete table of their names and translation in English can be found
in Appendix A. An important feature of the sentence diagrams proposed by
Kempen is that the two sentence diagrams in figures 1 and 2 are combined
into one now. The part-of-speech labels are connected to the leaf nodes of the
syntactic parse tree as is shown in figure 6. The structure of this two-in-one
sentence diagram shows a repeating pattern in the vertical direction. First comes
a phrasal category ZIN (sentence), then the role (or syntactic function) of each

10

ZIN

/
OND HFD Lv
NG NG
/N\ /\
det hfd det hfd
Iw zn zZwwv Iw zn
De schildpad versloeg de haas

Figure 6: Combined sentence diagram of the parse tree and the part-of-speech
labels

subtree, such as OND (subject) and LV (direct object), and then again another
phrasal category of a subtree followed by a syntactic function again. The two
nodes at the bottom of each subtree finally contain only the part-of-speech
label and the word label. This pattern makes it possible to split the tree into
small segments. Every sequence phrasal category—syntactic function—phrasal
category/part-of-speech label is one segment. The top label is called the root,
the second one function and the third one foot. Figure 7 shows the segments
for the sentence The turtle has beaten the hare. Two or more segments with
the same root label can be joined back again by a horizontal link operation
as shown in figure 8. A number of segments that are joined in this way, with
precisely one segment playing the role of head, forms the basis of one lexical
frame. Every segment contains also syntactic properties like case, person, etc.
that belong to that segment. These are stored in an array named the feature
matriz. The lexical frames at the bottom of a parse tree have an additional row
labeled by the words of the sentence. So, a lexical frame may have four rows
with labels: a phrasal category, called the root, next a number of n grammatical
functions, each with a part-of-speech label and a word label attached to it.
When the third label is another phrasal category there are only three rows of
labels. Lexical frames can be linked by connecting a root of one lexical frame to
a foot node of another lexical frame. This process of linking is called unification.
Figure 9 shows an abstract example of such an unification. Unification of two
lexical frames can only be done when the root label of the first lexical frame is
the same as the foot label of the second lexical frame and these labels where not
connected yet. This limitation is needed for making correct sentence diagrams.

11

ZIN ZIN ZIN

OND HED LV

[n] [z [nG]
ne] [l e] [

det hfd det htd

w] [zn] lw] [zn]

Figure 7: The segments of The turtle has beaten the hare

Figure 10 shows an example of some lexical frames that can be used to create a
sentence diagram. Figure 11 shows how these lexical frames must be unified to
obtain the sentence ‘De toehoorders leunden nog meer naar voren’. The resulting
sentence diagram is shown in figure 12. To ensure that only grammatically
correct sentence diagrams can be built there are yet more conditions that must
be satisfied before unification is allowed. This is were the syntactic properties
come into the story. For instance, the plural subject de nachten (the nights)
cannot be combined with the singular form of the finite verb verdwijnt (vanishes),
and this also applies to the combination of de nacht (the night) and verdwijnen
(vanish), although the foot and root labels involved are both NG. But de nachten
verdwijnen and de nacht verdwijnt are completely legal combinations. The same
holds for the 3rd person noun James and first person finite verb cook. In general,
unification can only be grammatically valid if and only if when the syntactic
properties in the involved feature matrices match. To put it simple: matching
means the intersections of the syntactic properties belonging to the to-be-unified
segments do not yield the empty set.

4.2 Using lexical frames for a new type of exercise

Grammar instruction may become more successful with a new type of exercise
enabling students to perform the same task as the brain does while putting
words together during the formation of any ordinary sentence. Students should
exercise in constructing sentence diagrams out of elementary grammatical build-

12

A
b 4 &

Figure 8: Illustration of the horizontal linking process of two segments

Figure 9: Illustration of the vertical linking process of two lexical frames where
the root label X in the lexical frame at the right side is attached to the foot
label X in the left one

ing blocks and learn this way what sentences can be built in a valid way and
what sentences cannot. Although they were primarily developed to model hu-
man language behaviour, lexical frames are very appropriate to serve as building
blocks. The next section describes the design and interface of a computer ap-
plication that uses these lexical frames and actually allows the user to unify
lexical frames together into one sentence diagram as a kind of jig-saw puzzle.
It is important that this kind of building is restricted to the construction of a
syntactically valid sentence diagram for scaffolding.

13

ZIN

I S
oW HEFD BEP BEP
| | I |
NG ZWW BWG VZG
|
leunden
/NS VZG
/\ /\
th hfd bep hfd hfd bep
| I I I
DG ZTW BWG bIW vz BWG
|
DGtoehOOrderS meer naar
| BVG BWG
hfd ! |
| hfd hid
| w ! |
| bw bw
de ! |
nog voren

Figure 10: Example of some lexical frames

5 Applying Lexical Frames in a new kind of gram-
mar exercises

Early experiments with the construction of sentence diagrams were done with
the computer program Palladio. Figure 13 shows a screen-dump. The sentence
diagram was shown in the shape of an ancient Greek temple with some blocks
missing. The missing blocks were lying around, labeled with grammatical terms.
The student’s job was to fit the loose blocks so that a valid construction was
made and the corresponding sentence diagram was completed. This is one pos-
sible implementation for sentence construction out of building blocks. However
the interface is not up to date with modern multimedia technology any more.
Furthermore it is not possible now to use bigger blocks than one label or to play
the game without the labels within view. So it was decided to start from scratch
again with a new design that was sketched by Nomi Olsthoorn depicted in fig-
ure 14. This time, the design is totally based on the idea of the lexical frame.
Lexical frames are now shown in the form of ghost-like figures with heads and
limbs. The segment that plays the role of head gets a real head and has arms
representing the others grammatical functions. Great improvement in this de-
sign is also its possibility to replace the labels by shape, texture and color as
illustrated in figure 15. The lexical frames can be used as flexible building blocks

14

ZIN

/N
oW HEFD BEP BEP
I
ZWW BWG
I
leunden
det hfd hfd hfd bep
I I
Zr|1W b|W VZ BWG
I
tjoehoorders meer naar
BWG
hfd
| hfd hfd
| w ! |
| bw bw
de ! |
nog voren

Figure 11: Ellipses indicating some possible unifications that can be applied on
the lexical frames of figure 10

in the form of ghost-like shapes and unification is done by connecting the head
of a lexical frame to an empty hand that fits.

Only one alteration to the combined syntactic trees is really needed: making
sure that all leaf nodes are the head of a word group. Until now I used an
abbreviated form of syntactic trees to keep things clear. For instance, the article
de played the role of determiner in figure 6. It must now be made the head in a
‘determiner phrase’ which now gets the role of determiner in the noun phrase.
The same goes for count nouns, particles and auxiliary verbs. This results in
additional entries DG, HLP and TW(@ in table 4 in appendix A. Figure 16 shows
the extended version of the syntactic tree of figure 6.

5.1 Design philosophy

There are several aspects of interface design that are of crucial importance for
a successful educational application. Some of them apply especially for chil-
dren. In the case of grammar instruction they might need, more than others,
something familiar that helps them understanding the novel subject matter.
Children know about puzzles and fitting shapes together. So what shapes can
be found that are more flexible and capable of representing abstract concepts

15

ZIN

Oow HFD BEP BEP
| | |
NG BWG VZG
— 1 1 M
det hfd bep hfd hfd bep
| | |
DG BWG BWG
| | |
hfd hfd hfd
| | |
' w znw ZWW bw bw vz bw
| | | | | | |
de toehoorders leunden nog meer naar voren

Figure 12: Result after unification

than a ghost-like shape, except an octopus perhaps. For instance, the ghost-like
creatures in figures 14 and 15 can be combined in some sort of family portrait. I
tried to enliven them by giving the creatures moving eyes that follow the mov-
ing mouse cursor. Something similar can easily be done too for the shape of
the mouth in order to express a creature’s mood: an ‘ill tempered’ ghost with
empty hands can be made ‘happier’ by undergoing a successful unification. A
desirable interface quality is to allow the user to reach a high mental workload
of which only a minor part is taken by the complexity of interface, so that the
rest can all be used for performing the task. The interface itself should be as
simple as possible, with low visual complexity and all unnecessary information
hidden. It can be argued that some aspects of an interface like having multiple
windows are confusing [5]. For this reason I have chosen for having only one
playing-field and without buttons. I believe that it is a good thing to make scaf-
folding an essential part of the interface. This means that the student is allowed
only to make correct decisions and is warned immediately before the mistake
is actually made, so that only correct patterns can be trained. An interface
can become easier when it creates the illusion of manipulatable objects with
reversible operations [18], and an immediate visual effect of each mouse action.
Effects of animation and moving objects must not be overdone, however. They
are useful when they express a reward or a penalty, but otherwise they only
increase the visual complexity [16]. A learning environment for initial grammar
instruction that uses sentence diagrams cannot do without an automatic layout
of the sentence structure. It is very important to introduce the labels step by
step by showing only relevant information, For instance a nine years old child
in his first experience with grammar instruction should not be confronted with
all different labels of nodes or properties at once. Later on, when 11 years old,
he should gradually become capable of working his way around through these

16

Figure 13: Finished sentence diagram in the shape of a Greek temple

labels. Eventually, the student can reach a level where also the feature matching
process is visualized after a failing attempt to unify two ghosts, indicating the
reason for failure. Labels must be placed at a plausible place and be hide-able so
that only a few distinctive shapes remain. An important concept is information
hiding. In the case of grammar instruction, complicated names for grammatical
constructions can be hidden and replaced by a set of distinctive two-dimensional
shapes. This way difficult names for things can be avoided until their meaning
and role is understood. By leaving the labels out, younger children can start
without knowing all the grammatical terms. When certain graphical effects are
coupled to discoveries this can be a great stimulant to keep searching. All these
considerations led to my design of a sentence diagram visualization of which the
diagram in figure 17 is an example. It is my attempt to create a new attractive
visualization for sentence diagrams. Each lexical frame structure is visualized by
a little ghost. All segments with the function label head are shown with a head
and a torso. The other segments are represented as limbs with a stretched hand.
The ghost’s torso contains the identifier. The root label is positioned on top of
each head and the shape of that head is unique for that label. Only hands with
the same label as foot fit onto this head. So there is a distinctive hand shape
for every separate word group that is drawn instead or beneath the foot label

17

verm PUppY

persona NAaLN

possesve

cdiectve
PrOTEHN e

Figure 14: New sentence diagram design with ghost-shaped lexical frames

that fits exactly the head with that word group as root label. And there is a
distinctive color of the hand that is drawn instead or beneath a function label
for every syntactic function. I tried to use distinctive and fancy colors, like a
yellow background, white ghosts and black lines and labels. During the game
only the identifiers are shown to the children, as shown in figure 18 obtained
from Aesop’ fables [1]. To keep track of the entire sentence, the word labels are
put once more on a horizontal line at the bottom of the screen, as a kind of
anchor.

5.2 New exercises for grammar instruction

At this stage the user can unify the creatures by dragging the head and limbs
onto each other. While a shape is dragged, the program tests whether this
shape can unify with one of the other lexical frames on the playing-field. This is
shown in color. When two segments collide, the color of their edge changes from
black(default) to green when they fit, or to red if not. The reverse operation of
unification is called de-unification and can be done by double-clicking on the
limb or head involved.

18

Figure 15: Sentence diagram design of figure 14 without labels

This new interface can be used in several other ways during grammar lessons.
A novice user could start with completion of an almost finished sentence, or with
watching a demonstration of bouncing ghosts that may try unification at a col-
lision. After this introductory phase, a pupil may construct whole sentences out
of lexical frames. In a more advanced stage the task can be pointing to a certain
type of grammatical function like subject, finite verb, etcetera. At the highest
level the student would have to determine whether the sentence is correct or
perform a top-bottom analysis of structures from different levels of representa-
tion. Some other tasks are also useful, like determining the correct sequence of
words. Still a lot of work must be done and some of the extensions described in
section 7.1 must be added to make this prototype a full-fledged application. The
next step would be to offer children a complete direct manipulation interface for
lexical frames. This would eventually enable them to manipulate and play with
grammar and its syntactic properties to help and stimulate their mental model
building.

19

-
ow HFD LV
I I
NG NG
— 1 — 1
det hfd det hfd
I I
DG DG
I I
hfd hfd
I I
I w zn ZWW I w zn
I I I I I
de schildpad versloeg de haas

Figure 16: Extended sentence diagram

5.3 Access through internet

When developed further, the prototype’s design has every potential to result
in an application that can be used at schools. Before I started, the question
has risen which platform and which programming language could be used best.
There are schools that use Macintosh computers, but others use personal com-
puters with Windows. There aren’t many programming languages that are really
platform independent. The new programming language Java seems the only ap-
propriate one. The creation of applications in Java offers a great opportunity to
circumvent the restrictions that all other program languages suffer. Java is the
first byte-interpreted programming language that is available on all modern op-
erating systems these days. When compiled as an applet it can even be accessed
through any modern internet browser. Its concepts of events and threads make
Java very suited for combining multimedia and interaction in one application
that will run on all platforms. Not all standard multimedia support seems to be
included yet but this shall improve soon. The only serious problem is the limited
speed. Java source code is not compiled into machine code as with ordinary com-
puter programs but into byte code that is executed by a local Java interpreter.
Older computers might not be fast enough to be capable of a reasonable perfor-
mance that is needed. So this is the price to pay for platform portability. The
gain is that it is very easy to construct a website to support this project with,
in addition, a demo of the game that can be played online through the internet.
This site may be used to offer new sentences for the game to be downloaded
from internet and might present an online version of the game along with the
results and correspondence of participating schools. But the main reason for my
choice to use Java lies in its platform independence. This resulted in one and
the same applet which is tested and known to work, without recompiling, in the

20

de mestkever sprak hem bemoedigend toe

Figure 17: Sentence diagram with ghost-shaped lexical frames with labels

same manner under Linuz, SGI, Macintosh, Windows95, WindowsNT, HP and
Sun as well as the Java-enabled internet browsers Netscape and Explorer. Java
forces the programmer to use all sorts of high-level programming techniques,
like Object-Oriented-Programming for instance, i.e. subdividing program data
into classes and into methods that operate on the classes. In the next section,
describe the main issues of the implementation.

6 Implementation

The proposed ghost-like figures place high demands on a well-designed graphical
interface that allows flexible manipulation of shapes. I chose to create dynamic
shapes that would be able to be moved and could be filled, as opposed to static
ones that would allow fast and fancier animation. Dynamic shapes are needed

21

denoedigéend

de mestkever sprak hem bemoedigend toe

Figure 18: Sentence diagram with ghost-shaped lexical frames with hidden labels

for the automatic layout of the sentence diagrams. Due to the design it should
not be difficult to create a tweening-effect when a shape’s form is altered. When
a new ghost first appears, or a new arm is added to it, or the ghost vanishes from
the playing-field, this could be shown as a smooth transformation. In order to
present the exercises in a game, I have designed a hierarchical graphical model
that enables me to draw and manipulate lines, labels and flexible shapes. First
I'll sketch its design that allows drawing the very complex shapes I wanted.
An important structure that I composed to form the basis of all the graphical
elements is the class Shape. It occupies the lowest level of my graphical object
hierarchy. It is now time to describe this class in some detail because the graph-
ical possibilities of this system heavily depend on the design of this class. Every
instance of class Shape may contain a list of children, containing instances of
Shape or subclasses of Shape with additional information added. Shapes are
added to the list children by the methods addShape() and insertShape(). A

22

variable/function

description

ancestor a shape can be attached to another shape, the ancestor shape
in which case this shape’s offset depends on the ancestor’s offset

children a linked list of attached other shapes

x x-coordinate relative to ancestor

midX () calculates the horizontal center, (minX () + mazX())/2

minX () determines the left border of this shape

mazX () determines the right border of this shape

width() mazX () —minX ()

of fsetX () absolute z-coordinate

Y y-coordinate relative to ancestor

midY () calculates the vertical center, (minY () + maz¥ ())/2

minY () determines the top border of this shape

mazy () determines the bottom border of this shape

height() mazY () — minY ()

of fsetY ()

absolute y-coordinate

isOn(s)
distance(z,y)
getNearest(z,y)

true, if this shape collides with shape s
gets the minimal distance between (z,y) and this shape
gets the nearest element to (z,y) from the children-list

Table 1: Shape methods and properties

Shape is drawn by the method paint() at a position (z,y) relative to its an-
cestor, the offset. This facilitates the movement of entire subtrees by changing
only one set of coordinates. A shape is usually moved by function move(). By
changing only the two variables (x,y) at the top Shape of a subtree, the offset
of all the members of that subtree alters automatically by the same amount.
Function distance(z, y) determines the minimum Euclidean distance from point
(z,y) to the shape’s children, or when there are none attached, to the shape’s
of fset. This method is used by function getNearest() to get the nearest child
of this shape to some point (x,y). There are several additional attributes for
a Shape, like a color and a pop-up window to streamline the behaviour of the
various subclasses. Finally, the class Shape defines the geometric properties over
all of its children as described in table 1. This includes width(), height(), midX(),
midY(), minX(), minY(), mazX(), maz¥(), offsetX() and offsetY(). This class
Shape forms the basis for various other shapes with specialized behaviour. In
object-oriented design this means that these specialized shapes are all subclasses
of Shape and inherit (=share) the same geometric properties and operations.
For example, a shape that draws a label can be defined as a Shape with its
center at its offset. The geometric boundaries are now defined by the size of the
label in the picture. I defined for that purpose class LabelShape which contains
a string and a font. The classes PolygonShape and BSplineShape are defined, re-
spectively, in order to draw polygons and a sophisticated type of smooth curves,

23

B-splines®.

6.1 Drawing the ghost-like shapes

Given a complete lexical frame it is still difficult to draw the flexible parts like
hands and limbs in a natural manner. The static parts of the ghosts I could
fortunately draw, before I had my own B-spline algorithm (see section 6.2), by
means of a program by S. Spaans. This resulted in the sets of control points
for distinctive hands, heads, and torsos as shown in figure 19. There are four
different torsos, one for ghosts with arms on both sides, one for ghosts with
only arms on the right, one for ghosts with only arms at the left, and the
last one is for ghosts without arms. Every head-segment gets the appropriate
torso and head, with a structure on top of the head which depends on the root
label of that segment. For every non-head attached to a head segment, extra
control points are added to the head and torso of the head in order to create the
dynamic arms. These are first ordered by their xz-offset. The control points are
then added following a sine curve from the previous arm (or the head) to the
hand. The points for going backwards are put onto the stack. Each arm then
gets its own shape of hand, which depends on the foot label of that segment.
And now the other half of the arm can be completed by emptying the stack. To
ensure a natural way of drawing, these arms are coerced horizontally by their
neighbouring arms.

U R VR U N I T

855}

Figure 19: Control points for the static parts of the ghosts, connected by straight
lines

6.2 Shape description

Most standard graphic libraries are limited to the drawing of pixels, lines, rect-
angles, polygons and ovals. These are very primitive and simply cannot satisfy

2The B-spline algorithm is explained later in section 6.2.

24

the demand for smooth flexible shapes themselves. Fortunately, a range of shape
descriptions have been invented to describe a wide range of curves. In general a
shape description is a mathematical formula in the form of a parametric function
that is applied on a number of control points and describes some sort of curve.
Once a suitable parametric function p(t) = (z(t), y(t)) is found, it suddenly be-
comes very easy to draw the corresponding curve by substituting some sequence
to,t1,ta, ... for t where t; < t;11. This makes parametric functions powerful tools
for generating and representing curves. Some of them have become very pop-
ular in interactive graphic design. The most important ones are spline curves.
A spline curve is a blend of vectors that uses piecewise polynomial blending
functions which make the curve continuous at each point. One class of splines,
the Bezier curve, defines a curve over a sequence of pg,p1, -.., pp control points.
The Bezier curve formula as a parametric function is as follows:

p(t) = peBE(t)
k=0

where
Bi(t) = ()1 —)" F¢t
are the Bernstein polynomials ((}) = ﬁlk), for n > k). These Bernstein

polynomials have the elegant property that their weighted sum Y ;_, BR(¢) is
always 1, while they shift the share of the participating control points in the
weighted sum p(t) = >°;_, pr. B (t) gradually from py to p, as parameter ¢ in-
creases. Nice things about these Bezier curves are that they start at pp and end
at p,, precisely, and whenever they need to be subjected to an affine transforma-
tion such as scaling, rotation, translation, etc., it is only necessary to transform
the control points rather than every single point on the curve. However, by the
way they are defined they bring a serious disadvantage for design purposes.
When one control point is moved a bit, as little as it may be, the entire curve
shall have to change as every point on the curve is a weighted sum of all control
points. This makes local control impossible. Because it is desirable to have local
control to manipulate a curve, a similar curve description that calculates the
weighted sum over only a limited number of adjacent control points would be
very welcome. Fortunately, such splines exist. Given any sequence of adjacent
curve points, there is a set of blending functions that form the basis for the
spline. This means that any spline whatsoever can be formed by choosing the
appropriate control points. One such class of splines that defines a basis is the
B-spline. Here is its parametric function:

p(t) = PN m (t)
k=0

where k is the number of control points, m is the order of the polynomial
functions,
tk+m -1

t—t
e Nim-1(t) +

Nem(t) = ——— _kT
m(®) thtm—1 — Tk thtm — Tkt

Net1,m-1(t)

25

and ,
1, if th <t<=tp

Nip = {
kat 0, otherwise

In the case of fourth order B-splines, (m = 4), the spline consists of a set
of curves each based on four adjacent control points: p;, pit1, Dit2, Pits, & =
0..n — 4. Figure 20 shows the control points sets of figure 19, but now connected
by means of the B-spline algorithm.

w11 o Ny oy e VY

A

Figure 20: Control points for the static parts of the ghosts, connected by smooth
B-spline curves

6.3 Living eyes

A rather funny effect it is to position the little eyes on the figures as if they are
watching something, for example the mouse cursor, as depicted in figure 6.3. To
do this one can draw the black oval of an eye, instead of at position (x,y), at

(z +1-sin(angle),y + [- cos(angle))

where angle is the direction of the line between the mouse cursor and the eye
and [is the minimum of the Euclidean distance between the mouse cursor and
the eye and the radius of the eye minus the radius of the pupil. And when in
state of sleeping, an arc can be drawn which represents a closed eye. Nothing can
be more simple! Class eyeShape is used to create this funny effect. As a subclass
of Shape it can easily be attached to every other Shape. Every instance of an
eyeShape has defined one radius for the pupil and one for the whole eye itself.
When an eye is to be painted, the position of the pupil is simply translated by
some vector ¥. The direction of the imaginary line between mouse-cursor and
its position gives #’s direction. Of course, the pupil may not exceed the border
of the eye. This is why the length of that ¥ is set to the minimum of the radius

26

) T
e

Figure 21: Example of ghosts with limbs

of the eye minus the radius of the pupil and the distance between the center of
the eye and the mouse position. In formula becomes

sin(angle))

¥ =min(| m — €|,eye radius — pupil radius) -
cos(angle)

where m and € are vectors containing respectively the mouse and eye positions.

() ()

Figure 22: The eyes of the ghost-like creatures, in several states.

6.4 Bracketed string notation

The sentence diagrams are stored in a string in which every subtree is sur-
rounded by brackets except the identifier and the parts-of-speech label which
are separated by a space. The example in table 2 shows the complete string for

27

the sentence diagram in figure 23 obtained from Aesop [1]. At the start of the
program, these sentence diagrams are loaded from disk, and the segments in
these sentence diagrams are collected, which can be used later, as explained in
section 6.8.

(ZIN (OW (NG(det(DG(hfd(LW Een))))
(hfd(ZN adelaar))))
(HFD (ZWW zat))
(LV (NG(det (DG(hfd(LW een))))
(hfd(ZN haas))))
(PRT (BWG(hfd(bw achterna)))))

Table 2: Example of a sentence diagram in bracketed string notation

ZI'N
OwW HE'D Lv PRT
— 1 — I

det hfd det hfd hfd
e e
héd héd
I IW zn ZWW I IW zn bw
eén adelaar zallt e;n halas ach‘lcerna

Figure 23: Sample sentence diagram

6.5 Constructing a Lexical Frame into SegmentShapes

As described in section 4, sentence diagrams can be divided into segments. I
define a SegmentShape as subclass of class Shape that contains the labels and
the lexical properties of that segment. In fact a lexical frame is put together
from a number of instances of these SegmentShapes that are joined horizontally
through a linked list of brothers. The SegmentShape can be connected at both
ends to other SegmentShapes through variable parent for the root, and variable

28

tail for the foot. When a non-head segment receives a call to move, it passes this
call to the head itself, this way the entire lexical frame shall be moved. In turn,
the head is moved and moves along all of its brothers and their children. In the
model there is exactly one head for every lexical frame. Every segment contains
a link called head to it. An array label[] is used to store all available labels. And
the syntactic properties that come with the root and foot labels are stored in
two separate FeatureMatrices of that segment. To create a sequence of lexical
frames out of a sentence diagram, class LabelTree is used to convert sentences
in bracketed-string notation into a tree structure. Then, for every lexical frame,
the segments are cut out and linked horizontally with method horizontalLink().
No matter in what SegmentShape is started, method getRoot() finds always
the top node of that tree structure by recursive calls to the same function in its
parent. Geometric properties are altered in only one aspect with respect to those
in class Shape. Functions minX(), mazX(), minY(), mazY() of a head-segment
are determined not only over the children (in this case, the labels) but also over
the brothers and their children.

6.6 The syntactic properties in the Feature Matrix

The syntactic properties for every SegmentShape are constructed by class Fea-
tureMatriz. It simply adds the syntactic properties with a choice list of all pos-
sible values to the pop-up panel of the SegmentShape, i.e. one segment, to
which it belongs. For every label of a SegmentShape the appropriate properties
can be found in that diagram. Every label of the SegmentShape may bring in
a number of properties. At this moment the values for the syntactic properties
are not set, yet. During unification they are simply ignored. Some database must
be explored to set the correct values of the properties.

6.7 Interaction on lexical frames

To start with, I made a simple puzzle mode in which the lexical frames in their
ghost-like appearance are shown on a rectangular playing-field and can be con-
trolled by the computer mouse. The ghosts are equipped with the limbs corre-
sponding exactly to the edges in the sentence diagram. They can be dragged
to be unified or double-clicked to be de-unified again after which the shapes
are automatically re-arranged. Figure 24 shows an example. Normally, only the
identifiers (in the ghosts’ torsos) are shown, but here I left them to illustrate
that the ghost shapes fit onto the labels quite well. In this first prototype of the
grammar game mouse behaviour is quite simple:

e mouseEnter causes the state awake and the eyes of the little ghosts become
opened.

o mouseMove highlights the nearest shape to the mouse cursor in blue.

e mouseDown causes variable current to become the nearest ghost; double-
click de-unifies current, control-click removes the nearest limb (an entire
lexical frame is removed when control-click is done near head-segment)

29

e mouseDrag moves shape current. If the nearest shape for current is close-
by enough, then they both become green when they may be unified, or
red otherwise

e mouseUp checks if current can be linked to an empty slot of another shape.
If so, unification is performed and the layout is reshaped automatically.

e mouseFEzit returns the state to sleeping, and the eyes of the little ghosts
close.

After a unification or a de-unification operation, a randomly selected audio-
sample is played. I use two separate sets of samples, one set for unification and
one for de-unification. This concludes the simple scheme of puzzle mode. In this
stage only puzzles can be made of the set of about 50 example sentence diagrams
that I have in bracketed string notation(see section 6.4).

Grammar Instruction (O]

| De haas was reddeloos verloren

was verloren reddeloos haas

Figure 24: Sample of puzzle mode

6.8 Free-edit mode

A more advanced mode than puzzle mode is free-edit mode. Figure 25 shows an
example. This mode allows the user to choose the words from a random selection

30

Applet Viewer: GrammarGame.class | (O] x|

Applet

af -
bemoedigend
o jaszak

durven
klam doen
terecht
stofzuiger
.
dikkertje_da
s e
uit
de d.aar
tim
is
voorzichtig

praten
plein
breukelen |
wou
grote
mensen
bij

hele

op klom de trap
SCRAMBLE |

Applet started.

Figure 25: Screen-dump of free-edit mode

of all the words in the available sentences. These are placed in a column at the
right side of the screen. By pushing button SCRAMBLE the user obtains a new
random selection of words. Selecting a word results in the birth of a new ghost
on the playing-field with the appropriate labels. And any ghost can be removed
from the playing-field by clicking on that ghost, while the Control-key is pressed.
The new ghost will get the same part-of-speech label as in the example sentence
where it came from. And of course, as all segments with an identifier, it will
be functioning as head. The only problem is that it is not always certain which
root label should be given, as some part-of-speech labels fit into more than one
type of constituent. For now, I choose the root label randomly from the list of
root labels for that part-of-speech label, which I create automatically during the
reading of the sentence diagrams from file. Not all grammatical constructions are
now present in the existing sentence diagrams. So some new sentences diagrams
with the still missing grammatical constructions are needed to complete the set
of allowed segments. A newly created ghost will start on an empty location on

31

the playing-field and without limbs. Whenever another ghost comes nearby, a
new limb is formed by adding a segment to the lexical frame of the ghost and
redrawing the shape. This new segment consists always of a set of labels that
is valid for the lexical frame it belongs to. If the two ghosts can be unified, the
limb will be equipped with the root label of the other ghost, and with a proper
function. This choice of function is not deterministic however, e.g. an NG fits
into many roles to a ZIN, like OW, LV, MV, etcetera. Whenever this occurs, it
is probably best to assign a function to that segment which is not present in the
lexical frame yet. Now, like in puzzle mode, a hand shape that fits onto that
head can be attached to it. With free-edit mode and puzzle mode the user has
all freedom to build his own sentence diagrams. These schemes shall become
fully operational when I use a database to set the syntactic properties. In the
last section, I shall suggest some other possible extensions that can be added to
improve this program.

7 Conclusion

Grammar instruction is an important means to help children learning advanced
aspects of language. However, there are not true satisfactory grammar instruc-
tion methods available given the limited available time at schools. What I believe
is needed are three things, scaffolding, visualization and immediate feedback. This
can probably best be done in combination with computers in a playful interac-
tive setting. The prototype I designed and implemented is a considerable step
towards such a system. It proves that it is possible to actually build a useful
application for grammar instruction. Sentence diagrams can be built by link-
ing lexical frames which are building blocks that originated from psychological
models. The building blocks are to be constrained only by their grammatic prop-
erties. My prototype needs a lot of additional work yet, before it can actually be
used by pupils. For practical use, some educational material must be developed
first, but the advantages and possibilities of interactive grammar instruction
are already clear. Direct manipulation can give pupils the feeling of having con-
trol over a system. With lots of practise they can obtain self-confidence about
dealing with grammar. This stands in sharp contrast with the red ink feedback
that is given by some teachers. This particular design is based on construction
and visualization of sentence diagrams in which the grammatical terms can be
hidden while a unique distinctive shape or color remains visible. This might
work out well, as it has often been observed that visual aids to memory appear
to be more effective than the abstract terms [15]. Grammar instruction is of-
ten regarded as unattractive. The best response to this probably is to present
it in the form of a game, which is supposed to be attractive. Games, in gen-
eral, are an important way to learn coping with situations and gaining control.
The more creativity is allowed the better. I expect that the role of computers
in basic education will become more and more important in the future, and
many educational software packages are proving themselves already in several
different areas. However, not much software seems to be available for (Dutch)

32

grammar education yet. Interactive educational computer games like this pro-
vide schools with a new generation of modern computer tools in new areas. With
these tools, results and progress of pupils can be measured and compared, while
frequent mistakes in specific areas can be tracked down and hopefully resolved.
My present system is in Dutch, but the implemented system needs not to be
altered much for most other West-european languages. It is up to psychologists,
teachers and pupils to find out whether this system provides a worthwhile im-
provement upon or addition to conventional grammar education. Considering
the complexity of grammar education and the limited time available at schools,
grammar instruction can only be successful when extensive training is combined
with effective exercises. Replacing traditional grammar instruction by sentence
construction can be a big step forward [8] and lead to more efficient learning [2].

7.1 Future extensions

The quality of learning processes depends on the frequency, level, quality and
type of feedback [3]. Some additional dialog structures must be added to ensure
this and to facilitate more efficient mental model building. Artificial Intelligence
can be added for smart training, presenting to the student the difficult parts
that are not yet comprehended, or trying to provide easier exercises to train
these tasks. During playtime it may happen that a user makes the same type of
mistakes. It would be an idea to extend this program with a special unit that
monitors such frequent errors. Some control module could then take action and
explain the things that went wrong and or present the solution to a problem by
means of a windowed dialog. Something could also be done to make the challenge
and difficulty level rise for experienced users. A frequency table as in [12] that
contains the frequencies of used words for youth lecture under twelve could be
used for this by starting with frequently used words and gradually proceed to the
less frequently ones with more syllables. Another thing would be to do first some
explaining by spoken text or through a dialog. I for myself prefer to present the
user short dialogs during a demo of the unification of an entire sentence diagram.
This to demonstrate which are the possible actions, the reversible actions and the
mistakes. In a final product it would be best to include a time/point system with
points and a high score list for competition, though the speed depends sometimes
on the computer on which the game is played. In the prototype there are audio-
effects coupled to events. This kind of immediate feedback seems a very good
approach. Multi-modal learning environments get hold of the attention from
both auditive and visual channels so there probably is less distraction possible.
When using only visual or only auditive information, an important part of the
input side of the user is neglected on which there is no control or influence. And
without necessary attention of the pupils learning probably is not as effective
as it could be. Audio effects can be helpful in expressing rewards or penalties.
Apart from that it is an idea to send the freshly formed sentence constructions
in spoken language to the loud speaker. Instructions can be given in the form
of a pre-recorded message. Speech output can be disturbing however and it has
been found that (adult) people can handle interfaces with textual information

33

faster [13]. Audio effects now are used in general as a reward when unification
is accomplished by the pupil, but could easily be done to warn the player that
he runs out of time or when something else occurs. It shall be very difficult
to circumvent all of the short-comings of traditional grammar instruction, but
on the other hand this can be regarded as a challenge as well. Wouldn’t it
be wonderful if it were not necessary to overflow poor performing pupils with
negative feedback in red ink anymore.

Acknowledgements

I would like to thank all people who brought new ideas or contributed in any
other way, especially Nomi Olsthoorn for her support and great drawings of
what now are nice little computer-animated ghosts. None of this would have
been possible without the psycholinguistic models developed by, and support
of, Gerard Kempen.

34

Appendix A: Tables with grammatical terms

English Dutch abbreviation
main verb zelfstandig werkwoord ZWW
auxiliary verb hulpwerkwoord HWW
copula verb koppelwerkwoord KWW
substantive, noun zelfstandig naamwoord ZN
article lidwoord LW
adjective bijvoeglijk naamwoord BN
numeral telwoord ™
preposition voorzetsel VZ
adverb bijwoord BW
coordinating conjunction | nevenschikkend voegwoord NEG.VGW
subordinating conjunction | onderschikkend voegwoord OND.VGW
interjection tussenwerpsel TUSSENW
personal pronoun persoonlijk voornaamwoord PERS.VN
possessive pronoun bezittelijk voornaamwoord BZIT.VN
demonstrative pronoun aanwijzend voornaamwoord | AANW.VN
interrogative pronoun vragend voornaamwoord VRAG.VN
indefinite pronoun onbepaald voornaamwoord ONBEP. VN.
reflexive pronoun wederkerend voornaamwoord | WEDND.VN
reciprocal pronoun wederkerig voornaamwoord WEDIG.VN
relative pronoun betrekkelijk voornaamwoord | BETR.VN
Table 3: Parts of speech
English Dutch abbreviation
sentence zin ZIN
noun phrase naamwoordgroep NG
adjectival phrase bijvoeglijk-naamwoordgroep BNG
adverbial phrase bijwoordgroep BWG
prepositional phrase voorzetselgroep VZ.G
determiner phrase determineerdergroep DG
auxilary verb phrase hulpwerkwoordsgroep HLP
numeral phrase telwoordsgroep TWG

Table 4: Phrasal categories

35

English Dutch abbreviation
subject onderwerp OND
direct object lijdend voorwerp LV
indirect object meewerkend voorwerp MV
prepositional object voorzetselvoorwerp VZVW
predicate koppelvoorwerp KV

head hoofd HFD
auxilary hulp HLP
particle partikel PRT
subordinator onderschikker 0S
complement complement CMP
complementer complementeerder CMPR
determiner determineerder DET
quantifier teller TEL
prepositional object voorzetselgroepobject VZGOBJ
modifier bepaling BEP

Table 5: Syntactic functions

English Dutch

tense tijd

number getal

person persoon

finite verb persoonsvorm
participle deelwoord

subjunctive mood
infinitive mood
indicative mood
imperative mood
transitive

gender
definiteness

case

countable
diminutive form

superlative, comparative form

inflection
separable

aanvoegende wijs
onbepaalde wijs
aantonende wijs
gebiedende wijs
overgankelijk
geslacht

naamval
telbaar
verkleinvorm

verbuiging
scheidbaar

Table 6: Word properties

36

wijze van bepaaldheid

overtreffende, vergelijkende trap

References

[1]
[2]

3]

[4]

[14]
[15]

Aesopus. Alle fabels. Amsterdam: De Driehoek, 1990.

J.H. Boonman and W.A.M. Kok. Kennis verwerven uit teksten. RUU,
VOU, Utrecht, 1986.

S. Brown, S. Armstrong, and G. Thompson. Motivating students. Staff and
Educational Development Systems, 1988.

J.M. Caroll, J. Reitman Olson, and A. Arbor. Mental models in human
computer interaction. In M. Helander(Ed), Handbook of Human Computer
Interaction. Amsterdam: Elsevier Science Publishers, 1988.

J.M. Carroll, R.L. Mack, and W.A. Kellogg. Interface metaphors and user
interface design. In M. Helander(Ed), Handbook of Human Computer In-
teraction. Amsterdam: Elsevier Science Publishers, 1988.

J. A. Adams D. F. Rogers. Mathematical Elements for Computer Graphics.
McGraw-Hill International Editions, 1990.

S. Evers. Grammatica, van ontleden tot zelf zinnen bouwen en zelf ont-
dekken. Samson H.D. Tjeenk Willink, Alphen aan de rijn, 1997.

G. Jr. Hillocks. Research on written for teaching, new directions for teach-
ing. Urbana, Illinois, NCRE/ERIC, 1986.

G. Kempen. Visuele Grammatica, een constructieve methode om zinnen te
ontleden. Department of Psychology, Leiden University, February 1996.

G. Kempen. Grammatical Performance in Human Sentence Production and
Comprehension. Department of Psychology, Leiden University, September
1997.

G. Kempen. Visual grammar: Multimedia for grammar and spelling instruc-
tion in primary education. In K. Cameron(Ed.), CALL: Media, Design and
Applications. Lisse: Swetz and Zeitlinger, 1998.

G. Staphorsius, R.S.H. Krom, and K. de Geus. Frequenties van woordvor-
men en letterposities in jeugdlectuur. Cito, Arnhem, 1988.

L.A. Streeter. Cgi to collect synthesis. In M. Helander(Ed), Handbook
of Human Computer Interaction. Amsterdam: Elsevier Science Publishers,
1988.

A. van Gelderen. Taalbeschouwing, wat is dat ? SCO, 1998.

L. Verhoeven(Ed.). Handboek lees- en schrijfdidaktiek. Amsterdam/Lisse:
Swets and Zeitlinger, 1992.

37

[16] W.L. Verplank. Graphic challenges in designing object-oriented userinter-
faces. In M. Helander(Ed), Handbook of Human Computer Interaction.
Amsterdam: Elsevier Science Publishers, 1988.

[17] D.D. Woods and E.M. Roth. Cognitive systems engineering. In M. He-
lander(Ed), Handbook of Human Computer Interaction. Amsterdam: Else-
vier Science Publishers, 1988.

[18] J.E. Ziegler and K.-P. Féhnrich. Direct manipulation. In M. Helander(Ed),
Handbook of Human Computer Interaction. Amsterdam: Elsevier Science
Publishers, 1988.

38

