
1

Internal Report 2014-number July 2014

Universiteit Leiden

Opleiding Informatica

Dynamic 3D visualization of Mycobacterium

marinum infection modelling

in zebrafish using the Petri Net formalism.

Jeroen van den Heuvel

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

2

Contents

1. Introduction ... 4

2. Materials and methods ... 6

2.1. Language .. 6

2.2. Graphics libraries .. 6

2.3. Petri Net and Snoopy.. 6

2.4. Other libraries... 7

3. The biological process ... 8

3.1 Abstractions ... 8

4. The Petri Net model .. 10

5. Design .. 12

5.1. Zebrafish ... 12

5.2. Bounding boxes .. 12

5.3. Mycobacterium marinum ... 12

5.4. Macrophages .. 13

5.5. Proliferation .. 14

5.6. Granulomas .. 14

5.7. Iteration .. 15

5.8. Class structure .. 16

6. Implementation ... 18

6.1. The updateLocation function of the macrophage class ... 18

6.2. Input ... 19

6.3. Output .. 20

6.4. Interface ... 20

8. Improvements over Croes’ research ... 21

9. Conclusions and discussion ... 22

10. Further research .. 23

11. References ... 24

3

Calvalho et al modelled the infection of Mycobacterium marinum in zebrafish in the Petri Net
formalism.iv To complement this model we propose a graphical representation of the model. We
translate as many of the model’s features as possible and as faithfully as possible. Furthermore, our
visualization accepts a Petri Net state as input, which lets us recreate any execution of the Petri Net
model in a 3D model. This supports in understanding the abstract visuals of the Petri Net model.

4

1. Introduction
Computer science is used to solve problems for other disciplines and create tools to support
research. One of the disciplines that benefits from computer science is biology. This thesis proposes a
visualization tool usable in the research of Mycobacteria.

Though it is generally considered a curable and preventable disease, tuberculosis (TB) still claims over
one million lives every year.i This makes it the second most lethal infectious agent in the world. To
better understand the disease research continues. Much research is done on animal models, these
provide valuable insight into the process. One of the animal species used for research is the
zebrafish.

The zebrafish, or Danio rerio, is a useful addition to the set of species used for TB research. It is not
susceptible to the Mycobacterium tuberculosis (Mtb), the agent responsible for the TB infection in
humans. Still, an infectious agent called Mycobacterium marinum (Mm) is genetically very similar to
Mtb, and creates similar symptoms in zebrafish.ii

Compared to mammalian models based on Mtb the zebrafish in vivo model has some advantages.
Zebrafish are easily bred and kept. Zebrafish are transparent while they are embryos, which makes it
possible to easily monitor the state of the infection, without terminating the host. Researchers have
even created a genetically modified zebrafish that remains transparent as an adult.iii Furthermore,
because zebrafish do not develop their adaptive immune system until “several weeks after
fertilization”ii, the innate immune system1 can be researched in a more isolated manner, revealing a
specific part of the reaction of the host. This is particularly interesting because zebrafish have an
innate immune system similar to that of humans; its workings are important in understanding the
complete set of reactions in zebrafish hosts.

To complement the in vivo zebrafish model, researchers of the Leiden Institute for Advanced
Computer Science at Leiden University have created an in silico model.iv This abstraction of the real
life Mm infection has been implemented in the Petri Net (PN) mathematical formalism. The model
follows the in vivo model by simulating Mm infection and proliferation inside macrophages,
phagocytosis, granuloma formation and dissemination. The foundations of this thesis are formed by
this PN model along with the paper describing.

In this thesis a visualization for the model, created by Carvalho et al in 2012, is proposed. We take
the PN model as input for our visualization. Thus, we reimagine the purely functional, symbolic
graphics and data of the PN model to a 3D model. This was our objective for the project.

The main research question of this thesis is how to visualize the biological process of Mm infection in
zebrafish, as is detailed in the PN model. Attempting to answer this question raises some other
questions. Which parts of the PN model are we actually visualizing? Some parts of the PN occur at
such a low level in the biology that it is not feasible or sensible to attempt to visualize these. What is
the desired balance between a biologically faithful recreation on one hand, and an abstract model on
the other? To answer these questions, we keep two things in mind: whether it supports in the
understanding of the PN model and whether it keeps the code of the visualization user-friendly.

These research questions have consequences for my approach of the problem. Since the intention is
to visualize as much of the PN model as possible, every element of this model is considered. We then

1 The innate immune system is a basic defence against infections. It is distinguished from the adaptive immune
system, which develops later an provides increased protection against numerous encounters, unlike the innate
immune system.

5

look at the importance of each element within the model, and the gain of implementing the element
in the visualization. In this way the different elements are evaluated, and the decision to implement
or not is made.

By following this method, we discovered the PN model was not intended to be a 3D visualization. We
found that certain parts of the PN model were difficult to translate to a 3D visualization, and
encountered information that was not complete enough for our purpose. In these cases we looked at
the biology as a source of inspiration, and a possible alternative answer when the PN model was
unusable. Since the objective of this project was not to model the biological process, biological
accuracy is of no importance.

In 2012 Croes has done similar work. He has given us an example on how to visualize the infection
and dissemination processes,v showing us it is possible. Therefore, our problem is how to visualize
the infection process, not determine whether it is possible.

6

2. Materials and methods
In this chapter we will look at the technologies used for this project. We start with the language used
to write the code for this project, after which we look at the materials and methods that are
increasingly more specific to our project.

2.1. Language
Our project has been written in the object orientated programming language C++. We used
Microsoft’s IDE Visual C++ 2013 and its compiler. Visual C++ 2013 generally complies with the C++ 11
standard.vi Our software is backwards compatible with Visual C++ 2010; older versions of Visual C++
and other compilers have not been tested. To complement C++, we use several libraries, the most
important of which are the graphic libraries.

2.2. Graphics libraries
The main requirements for the graphics solution is the simplicity of both the code. A constraint is the

time required to implement our visualization in a certain graphics solution. The goal is to spend as

much time as possible on the proper and accurate functioning of the software, not on graphics.

Croes used openGL 4.4 as his graphics solution. For window management and the input of keyboard
and mouse he uses freeglut 2.8.1. This is an extension of the openGL library and provides among
others many key back end functions. Many of the code structures were already present in Croes’
code. Using Croes’ code was highly beneficial and saved a lot of time, complying with our constraint.
Both openGL and freeglut were found to be easy to use; we did not feel the need to try other
solutions.

Croes opted for an object oriented programming (OOP) approach for his thesis, combined with the
model-view-controller (MVC)2 design pattern. We decided to implement both MVC and OOP to make
our project as much object oriented as possible. OOP facilitates in making the code easily understood
and adaptable; others need to be able to use the code alongside the software itself. OOP
modularizes the program into rigidly defined objects. This lets the user digest the code section by
section, and provides quicker understanding.

Besides the approach, there are more elements of Croes’ software we could use. He created an
openGL and glut structure that handled various basic functions. Because both Croes’ project and our
project deal with a 3D visualization, these structures could be reused. We used this as a code base
for our software. Since the objective of Croes’ work differed fundamentally from ours, and we did
not agree with Croes’ implementation choices, the rest his software was discarded in favour of an
original implementation. The biggest difference is the input: Croes’ software lacked any input, and
we used input in the form of a Petri Net model.

2.3. Petri Net and Snoopy
The Petri Net formalism is a modelling language based on graphs. It primarily consists of places and
transitions, with arcs between the two. By firing a transition, tokens can move from one place to
another. This formalism has applications in a wide range of fields, one of which is modelling
biological processes.vii The model created by Carvalho et al. is implemented in an extension of the PN
formalism, called the Coloured Petri Net.viii To run and analyse Petri Nets, a variety of software
solutions can be used.

2 Programming design pattern that separates the interface from the calculations.

7

To completely visualize all aspects of the Petri Net model, we were required to have complete
information of the net, for every time step. None of the software we tried to use provided this.
Snoopy came closest to this requirement, by offering files that contain one state of the model. In
chapter 4, The Petri Net model, we will see how this is a problem, and how we deal with it. We use
files saved by Snoopy3 as input for our visualization; they are currently the only type of file our
software can read. Snoopy is the software Carvalho used to model the PN model in, which means the
implementation has already been thoroughly tested. One more reason to use the Spoopy tool is the
difficulty to port the model to other tools, caused by greatly differing feature sets. Snoopy was not
the only tool we used for our software.

2.4. Other libraries
We had the requirement to read XML files, since the main input data are saved in this format. We
chose to include a third party XML parser, called tinyXML, version 2.6.2.ix TinyXML enables us to read
XML with more flexibility than a proprietary parser could do. In the event of edited XML input or PN
model, tinyXML functions reliably. Using a parser also makes it easy to expand the code, should more
input from the PN model be desired. TinyXML is lightweight and easy to use, making it more
desirable than other parsers.

Another requirement deals with the implementation of position in 3D space. We needed some way
to handle calculations of positions. Because these positions are used in various calculations, we
thought it preferable to include a third party library. For this project vectors are most suitable,
because they can be used for positioning and also for lighting. We have chosen vmath 0.10 by Jan
Bartipan,x because it is lightweight, easy to use, and contains enough functionality. By using a library
for vector calculations, our software becomes easier to understand. Assuming vmath has been
thoroughly tested, bugs are less likely. It decreases the number of lines, and separates the math from
the implementation.

3 The Snoopy software uses the XML format to save files.

8

3. The biological process
Mycobacterium marinum causes infections in zebrafish. In this chapter we will describe how this
infection spreads within the zebrafish, from a biological viewpoint. This will help in understanding the
next chapters on the PN model and the design.

Macrophages are the main white blood cells with the task to digest pathogens such as Mm.xi Once
the macrophages have absorbed an Mm, several conflicting processes occur. The macrophage begins
phagocytosis, with which it intends to digest the Mm infection using lysosomes. As is a property of
mycobacteria, the Mm escapes the lysosomes and survives within the macrophage. The Mm keeps
itself alive by inhibiting the fusion of phagosomes and lysosomes, impair the identification through
inhibiting antigen presentation, inhibiting apoptosis and other antibacterial responses.xii

Not only is Mm able to survive the harsh conditions within the macrophage, it proliferates in them.
Infected macrophages attract uninfected macrophages. Furthermore, the parasitic infection makes
the macrophage gain weight. If the macrophage has reached a certain weight it will exit the main
blood stream, and “migrate to deeper tissue”.iv This migrated macrophage attracts other
macrophages; together they form a structure called granuloma.

The granuloma, a typical property of the Mycobacterium infection, is the merged structure of
multiple macrophages and other immune cells.iv Their boundaries become unclear, and they can be
seen as one structure. When the infected macrophage becomes unable to contain the increasing
number of bacteria, it bursts. This sends out the bacteria in all directions, infecting the neighbouring
tissues.

Some macrophages will be infected and ejected from the granuloma structure. These find their way
back into the blood stream, and from that point the process repeats itself. The newly infected
macrophage succumbs to its Mm infection and eventually forms a new granuloma.

This short description is only a part of the process. Since this is a biological process, one could add
processes at a smaller scale repeatedly. Implementing every scale was not realistic for Carvalho’s
project, he needed to make choices on what to implement and what not to.(Carvalho 2012) Because
we use the model proposed in that paper (hereafter referred to as PN model), most of the
abstractions of our software originate from choices made by Carvalho et al. From here I discuss some
of the biological features missing in both the PN model and consequently also in our visualization.

3.1 Abstractions
Mm infections are not always obvious, but can be dormant for long periods of time. While

macrophages are sufficiently equipped to suppress the infection, they have great trouble removing

the infection permanently. Often, the host is asymptomatic, and leaves Mm dormant. When the host

is weakened, Mm becomes active again.xiii This behaviour is not included the PN model nor in our

graphical representation of the PN. In the abstraction, the infection develops immediately.

To fight any bacterial infection, zebrafish have innate and adaptive immune systems, as is the case in
humans. When zebrafish are in the embryo stage, the adaptive immune system is not yet developed.
The PN model and our simulation only take the innate immune system into account. Though this is
very useful for researching the innate immune system, it makes the PN model and our visualization
inapplicable for adult zebrafish research.

Mm does not only infect macrophage cells. Neutrophils are also susceptible, and they play a
significant role in the control of the infection.xiv Their behaviour has not been implemented in the PN
model, nor in our visualization.

9

All infected macrophages attract other macrophages. In the PN, and in our software, the macrophage
only starts to attract other macrophages when it has migrated, and has died.

Time, as with all biological processes, is essential. But the PN model, and our visualization, do not
consider time. While the PN formalism does have its own concept of time, this does not correspond
with the meaning for the biology. The same can be said about our visualization.

10

4. The Petri Net model
Petri Nets, introduced in chapter 2.3. Petri Net and Snoopy, are very useful in describing biological
processes. By turning knowledge about the biology in to a set of equations and rules one can
recreate such a process in silico. The advantage of this approach is the ease with which one can
analyse the process, change the conditions of the model, and predict the outcome.iv Thus the PN is a
natural fit for describing a Mm infection in zebrafish. We have seen what parts of the biology the PN
model does not seek to emulate, but what does the PN model simulate? In this chapter the PN model
is analysed.

Fig. 1 The zebrafish Petri Net model iv

The PN model introduces the concept of relative position. Both the Mm and macrophage objects
have a position defined by an integer ranging from 1 up to and including 10. The tenth position is
linked with the first, forming a circular list. This identifies the object’s location relative to the other
objects.

The position of the Mm is initialized in an arbitrary position in the PN model. It attracts a macrophage
from a place called Immune System, and starts to proliferate inside it, as described in the biology
chapter. Whereas the amount of Mm individuals is unspecified in the biology, it has been given a
value in the PN. The amount of Mm bacteria in a macrophage doubles 8 times, until the proliferation
stops at 256 individuals. For every increase in bacteria, the macrophage’s position increments by 1,
where increments over 10 return the macrophage to position 1. Thus the macrophage always moves
8 boxes before the proliferation stops. Particularly this movement is interesting as it is not directly
translatable to a visual equivalent, as we will see in chapter 5 on Design.

After the proliferation process, the macrophage dies according to the PN. A dead macrophage always
attracts 4 uninfected macrophages from the Immune System place. (The Immune System place holds
10 macrophages, one for each position. Macrophages are not removed when they are attracted to

11

Mm or other macrophages.) The 5 macrophages together form a granuloma, which is then stored in
the place called Maturation.

Fig. 2 The Maturation place

Fig. 2 depicts a screenshot of the Maturation place in snoopy. Every line denotes an entry of the
place. The first number of a line is the number of macrophages, and the first number within the
parenthesis tells us the position of the macrophages. Notice the place holds the number of
macrophages, instead of the number of granulomas. Recall that granulomas generally have 5
macrophages. Thus 20 macrophages translate to 4 granulomas. Then why is there only 1 macrophage
in position 1?

Not all granulomas behave equally in the PN. We discern two variations: introductory granulomas
and non-introductory granulomas. Only the introductory granulomas have been assigned the ability
to disseminate macrophages and form new granulomas. The introductory granulomas always cast
away 4 macrophages. Implicit is that the dead macrophage is the remaining one. The disseminated
macrophages go through the proliferation process in the same way as directly infected macrophages.

As explained earlier in chapter 2.3. Petri Net and Snoopy, the PN model has been created using

Snoopy. Snoopy is a powerful tool for editing, visualizing and calculating Petri Nets, but it lets us save

only the state that is being displayed. Generally this is the initial state, which in the PN only contains

relevant tokens in another place, called infection. It does not contain information of the end state (or

the dead state as Snoopy calls it), which specifies where the granulomas are in the model. To find this

information, we let Snoopy run the Net using Anim-mode until it reaches that state. Subsequently

Anim-mode must to be closed, taking care to use the check the Always keep marking when closing

box (the Keep Marking button seems to be non-functional). Afterwards the Net can be saved. The

saved net now contains the end state, which our visualization will use as input. Note that the initial

state is lost in the resulting file. Implications for this limitation are described in chapter 7.2 on input.

12

5. Design
Our visualization uses the Petri Net model as a basis; we attempted to visually recreate the PN model

rather than the biological processes themselves. Furthermore, we use the PN model as input, which

makes it all the more important to closely follow the PN model. Some of the design has a one to one

counterpart in the PN model, and some needed to be translated to create a workable visualization in

3 dimensions. We will now explore the design of our software, and the origin of our design choices

by looking at our objects and processes in the order of appearance.

5.1. Zebrafish
The function of the model is symmetrical, that is to say, the head of the zebrafish does not differ

functionally from the tail. Still, we wanted the user to be able to distinguish the tail from the head,

because it aids in the comprehension of the situation pictured. The host entity is translated to the

polygon mesh shown in Fig. 3. The polygon mesh has no other function in our software.

Fig. 3 The zebrafish polygon mesh

5.2. Bounding boxes
To complement the lack of function of the zebrafish model, we included 10 yellow bounding boxes,

as displayed in Fig. 4. They are contained within the polygon mesh, and correspond directly with the

position concept from the PN model. The boxes are lined up sequentially, so the higher the position

in the PN model, the farther back in the fish. This graphical representation means the first divergence

from the PN model. In the PN model the first box comes after the last, creating a circular list; in our

representation the first and last boxes are not linked together. All of the objects exist within a

bounding box.

Fig. 4 The 10 segments or boxes of the zebrafish

5.3. Mycobacterium marinum
The Mm is visualized by a tiny red dot. Its appearance changes when proliferating, as detailed in

chapter 5.4. Macrophages. First we look at the positioning of the Mm.

13

The virtual Mm infection starts immediately once the program is running. Though the biology might

constrain the possible locations for bacteria injection, we follow the PN model. In the PN model,

Mms can be in every position. For our visualization, we try to retrace the origin of the infection based

on the introductory granulomas. All granulomas that can disseminate have been created by the initial

Mm injection. And recall that infected macrophages always move 8 positions before migrating. Thus,

for every introductory granuloma in the final state, there was an initial bacterium 8 positions prior.

This means we know the initial position of the bacteria, if and only if the infection they cause leads to

a granuloma that disseminates. Whether all first generation granulomas disseminate is dependent on

the settings with which the PN model is run. In the worst case we only know the initial position of

one bacterium.

Eventually every Mm is captured by a macrophage. From this point on the position (in 3D space) of

the bacterium is synchronized to the position of its host. Under no circumstances can it get detached

from this macrophage.

5.4. Macrophages
After the Mms have been initialized the host’s immune system activates. The fish starts to form
macrophages from a specified position inspired by biology. The newly initialized macrophage is
visualized by a small white sphere. Because the macrophages can be in several conditions, we
created different visuals depending on the state of the infection. An infected macrophage is
identifiable by the visible red dot representing Mm in its centre; along with the proliferation the
macrophage turns more red and shows more Mm dots; a migrated macrophage dies immediately
and its colour switches to black. See Fig. 5 for examples.

1 Uninfected

2 Recently infected

3 Advanced infection

4 Badly infected

5 Dead

Fig. 5 Various visualizations of macrophages according to the level of bacteria proliferation

14

In the PN model, macrophages that are taken from the Immune System are immediately replaced by

new ones. The result is that macrophages are continuously present in all boxes. Consequently we

discover the requirement that every box must contain a macrophage. Directly translating the PN

model would result in unnatural behaviour: macrophages remaining stationary and cloning

themselves. Thus we decided to divert from the PN model. Our boxes don’t have an infinite stock of

macrophages. Instead we implemented a system drawing more from the biology. Our macrophages

cycle through each of the 10 boxes, as if they were circulating the blood stream (this will be referred

to as the ‘circulation’ in the future).

Inherent to the nature of circulating blood, two paths were necessary: one in the direction of the tail,

and one towards the head. We arbitrarily chose the macrophage that moves in the upper path to

move in the direction of the tail. Thus macrophages can be in either the upper part of a bounding box

or the lower part. Since the macrophages continuously move through the boxes, each bounding box

contains or soon will contain a macrophage. This could slightly alter the order of infections, but time

was never part of the PN model, so there is no conflict. In this manner we have a functional

equivalent of the PN model.

Because the number of macrophages is finite in the visualization, it decreases when macrophages

migrate to deeper tissue, or are attracted to previously migrated macrophages. To prevent the

depletion of macrophages creating conflicts with the PN model, the zebrafish introduces a new

macrophage for each that exits the circulation. This behaviour has been inspired by the biology,

where the infection triggers the release of new macrophages.xv

In the PN model the macrophages always move 8 times before they migrate to deeper tissue and

form a granuloma. But the shift from the PN models’ position system to the creates a conflict: 8 steps

in the PN model does not necessarily lead the macrophage to the same box as 8 steps in our

visualization. To keep the end result of our visualization in line with the PN model’s final state, we

chose to take the position of the granuloma as the macrophage’s target. Consequently in our

visualization the macrophages will not necessarily move 8 boxes, but migrate to deeper tissue the

moment they’ve reached the target box, as determined by the PN input.

5.5. Proliferation
In the PN model, along with every position change in the PN model, the number of Mm bacteria

doubles. Should the macrophage migrate before having travelled 8 boxes, the number of Mm

bacteria will not reach 256. Since this is not relevant for the result of the visualization, we decided to

keep this inconsistency. Along with the proliferation, the macrophages’ weight increases and

movement speed decreases slightly. This will let other macrophages, that all move at the same

speed, overtake the infected macrophage. We decided to minimize this effect, so the user would not

feel hindered by the delay. This is not a feature of the PN model, and has been inspired by the

biology. After the migration of the macrophage the formation of the granuloma begins.

5.6. Granulomas
As can be seen in Fig. 6 the granuloma is represented by a yellow sphere. It is formed when a fifth

macrophage joins an existing cluster of macrophages. A requirement determined by the PN model is

the distinction between introductory and non-introductory granulomas. If the granuloma that forms

is an introductory granuloma, the dead macrophage will burst, sending out bacteria to the

surrounding macrophages. The other macrophages will get infected and disseminate. The remains of

the granuloma, containing just the dead macrophage, remain visible, analogous to the single

macrophage that stays in the PN model’s Maturation place.

15

The non-introductory granulomas do not disseminate. They remain filled with 5 macrophages for the

duration of the simulation, exactly like in the PN model.

5.7. Iteration
The released macrophages return to the circulation, and the Mm starts proliferating. This is

analogous to the change of the macrophage’s position in the PN model. The macrophage circulates

as long as necessary to reach the box in which it will form a granuloma, and form a granuloma the

same way the introductory granuloma was formed. The difference in these second generation

granulomas is that they are always non-introductory. As is evident in the set of 5 macrophages

representing such a granuloma in the Maturation place, they are not capable of dissemination.

1 Formation

2 Dissemination

3 Introductory

4 Non-introductory

Fig. 6 Various visualizations concerning the granuloma

16

5.8. Class structure
Our program contains the following classes.

1. Zebrafish

2. Bounding Box

3. Sub box

4. Mm

5. Macrophage

6. Granuloma

7. PN

The relations between each class become clear once we look at the diagram of Fig. 7. Granulomas
contain up to 5 macrophages, and macrophages contain up to 1 Mm object. This is different from the
visual representation. Programmatically just one Mm object exists within a macrophage, but each
Mm is visualized by up to three dots. The number of dots is determined by the integer
bacteriaProliferation of the macrophage class. Mm do not need to be part of a macrophage, nor do
macrophages need to be part of a granuloma. The zebrafish, of which there exists just one, has 10
bounding boxes. Each bounding box has two sub boxes, to distinguish between the upper and lower
parts of the box. Both macrophages and bacteria have pointers to the sub boxes that signify their
positions. The list of attributes and operations is by no means complete, but primarily means to
illustrate the general structure of the code. In the rest of this chapter we will look at some key
aspects of the implementation.

17

Fig. 7 Class structure

Two sub boxes complement the function of the bounding box. Where the bounding box structure is

the translation of the position property in the PN model, the sub boxes facilitate the functioning of

the circulation.

Part of this class structure has been created by Croes for his 2012 thesis. He used the granuloma,

Mm, macrophage, zebrafish and bounding box classes. Croes created the visual representation of the

zebrafish: the bounding box class with the 10-segment layout, complemented by the polygon mesh.

He created the object classes (bacteria, macrophage and granuloma), and the visuals used for each

object. The implementation of the classes of Croes’ project could not be used, and original solutions

had to be created.

18

6. Implementation
In this chapter we will look at how we have implemented the design described in chapter 6 on

Design. We will not describe trivial parts of the implementation, and have made a selection of several

parts that were problematic or difficult. First we describe the process that determines the position of

the macrophage, then the input and output, and finally the interface of the software.

6.1. The updateLocation function of the macrophage class
This function captures the most essential behaviour of our visualization, the movement of the
macrophages. For that reason, we discuss it in more detail than other aspects, using the pseudo code
in Fig. 8. The function is divided into two sections separated by an if statement, and preceded by two
calls to other functions.

void Macrophage::updateLocation(PN *pn){

 setTarget(pn);

 granSink();

 if (there is no target){

 if (the bacteria have proliferated maximally){

 //turn the infection dormant

 infected = false;

 bacteriaProliferation = 1;

 movementSpeed = 100;

 }

 updateCirculation();

 }

 else{ //There is a target

if ((!designatedGran || bacteriaProliferation > 0) &&

subbox->boxIndex == targetBox){

 goTowards(target);

 }

 else{

 updateCirculation();

 }

 }

}

Fig. 8 Pseudo code for the updateLocation function

These first calls set the macrophage’s target (we define target as: the granuloma the macrophage will
go towards, along with the specific location in 3D space within the boundaries of the granuloma).
They do so for two very specific situations.

1) setTarget sets the target for macrophages infected by bacteria. This function is also divided
in two subsections. One sets the target for macrophage infected by loose (injected) bacteria.
The other sets the target for disseminating macrophages. The target is always determined by
calling the getMacrTarget function of the Petri Net parameter.

2) granSink sets the targets when the macrophage is uninfected, and it is attracted to a
granuloma in the same box.

With all possible ways for macrophage to get a target covered, we can look at the rest of the
function. If these functions have yielded no target, the macrophage will follow the circulation for
now, with one exception. If the bacteria inside the macrophage have proliferated maximally, the
infection will turn dormant. This has been implemented as a fail-safe for macrophages that are not
given a target, and it gives to the user extra flexibility when manually inputting targets. This
dormancy has been inspired by biology, but is not intended to be an accurate reflection of the
biology involved.

19

If setTarget or granSink did yield a target, the macrophage circulates until it is in the same box as the
target, at which point it will go towards the target. It will not be able to go towards a target
immediately after infection (bacteriaProliferation > 0), to give the user the image that the
macrophage needs to return to the circulation before disseminating, as happens in the PN model.
GoTowards will be called repeatedly from the first change of direction, through the arrival at the
target, until the macrophage returns to circulation.

The circulation is in reality a set of 20 predetermined points, along which circulating macrophages
travel. These points are called entry points, and belong to a sub box. The entry point is derived from
the dimensions of the bounding box of which the sub box is a part. Macrophages travel from the
entry point of one box to the entry point of the next. A pointer structure determines the order of the
sub boxes, and with it the direction of the circulation. In the upper sub box of a bounding box, the
macrophages travel towards the tail. In the final bounding box that represents the tip of the tail, the
macrophage switches from the upper sub box to the lower sub box. Then it returns in the other
direction, towards the head.

Macrophages only leave this circulation if their target is set. The macrophage’s target in 3D space is

determined by the granuloma they are going to be a part of. The granuloma picks a random spot

within its circumference. We initialize the granuloma the moment the target of a macrophage is set.

Granulomas start to attract other macrophages after the first macrophage arrives at its target, and

become visible when the fifth arrives. The granuloma becoming visible corresponds with the

formation of the granuloma in the PN model. The extremely early initialization of granulomas is not a

part of the PN model, nor of the biology. The reason for this is that we need to reserve a space for

the granuloma to occupy, within the box.

6.2. Input
We included separate modes for input from PN model files and manual input by the user. Reading

data from a file is the main functionality. The Snoopy software creates these files in XML format, and

they contain all information we use in the visualization before the visualization starts. Alternatively

the user can decide to manually input the data normally found in the files. We decided to include this

because of testing purposes, and because it gives the user extra flexibility in getting the desired

visualization. Both input modes use the same pathways for expressing the input.

The PN class represents a single state of the model, with the data saved in the macrInput array (see

Fig. 7 Class structure). This array represents the data in the same way the PN model does: as the

number of macrophages per position. Another array part of this class, macrState, array holds the

current state of the visualization, in the same terms.

Infected macrophages ask the currently used PN object for a target. The getTargetBox function

determines where to form the new granuloma. The return value of this function is determined by

two aspects: the difference between the macrInput and macrState arrays, and secondly the

introductoryGran parameter that indicates whether to fetch an introductory granuloma or a non-

introductory granuloma. Every successful fetch updates the macrState array, so each desired

granuloma is created once.

In the case of manual input, the user chooses in what box to form a granuloma through the numeric

keys. Any numeric input will fill the macrInput array appropriately, using the manualInput function.

There are several functional differences as opposed to the reading of the PN file. One is the inability

to set the amount of introductory granulomas. This information is not available without full

knowledge of the PN. For manual input this amount is by default set to 3. The other is the extra

flexibility described previously. The user can choose to postpone the input of subsequent numerals.

20

The desired position of bacteria is derived from the macrState array, and functions in a structure

similar to that for macrophages. Because bacteria are immediately initialized, the macrophage data

must be available from the start of the program. Because this is not the case in manual input, the

position of bacteria is unrelated to the workings of the PN model.

6.3. Output
The software outputs two windows. One provides a log of the program run, which contain significant

information that is useful for debugging purposes. The other contains the actual visualization.

The visualization window shows the zebrafish model, and the bounding boxes, that roughly follow

the edges of the model. To show all our features and make the effect of the input clear to the user,

both are displayed by default. This can be changed any time during execution, as will become clear in

the next paragraph on the interface.

6.4. Interface
To provide the user even more flexibility in the usage of the software, we implemented some

auxiliary functions, called by specific keyboard keys and the mouse. The interface buttons were

chosen to intuitively make sense. Unfortunately, this was not possible for all functions. Some of

these functions are implemented for user convenience, and some can change the look of the

visualization.

Various elements of the graphical presentation of the program can be changed by the user during

runtime. Flat shading has been implemented to make the fish appear to have physical substance. The

opacity of the model can be changed by the user, by using the ‘<’ and ‘>’ keys. The inside of the fish

can be rendered invisible by maximizing the opacity. Alternatively one can turn off drawing the

model by minimizing the opacity. This is useful for less powerful machines. The drawing of the

bounding boxes can also be turned off by the user, for a cleaner visualization.

This is the full set of interface keys with their effect.

 The ‘p’ button pauses the flow of the macrophages.

 The ‘r’ button resets the software: clears all objects so the user can start over.

 The ‘z’ button resets the speed of the visualization to 1; the ‘x’, ‘c’, ‘v’ buttons set the

speed to respectively 2, 5 and 10.

 The ‘b’ button toggles the drawing of the bounding boxes.

 The ‘<’ button decreases, and the ‘>’ button increases the transparency of the zebrafish

polygon mesh by 10 percent.

 The ‘w’, ‘a’, ‘s’, ‘d’ buttons and holding the left mouse button each play a part in moving

the camera.

 The scroll wheel of the mouse moves the camera in the direction it is facing.

 The numeric keys are used for manual input, as described earlier in this paragraph.

 Numeric keys set the input mode to manual, and inputs the key pressed.

21

8. Improvements over Croes’ research
There are many similarities between Croes’ thesis and this thesis. Both visualize the infection of Mm
in zebrafish. Both use a 3D visualization, and both use the same assets. There are also several
significant differences.

When first studying his work, a encountered several problems with his solution. The keyword that
describes his visualization best is random. The z coordinate of the injected bacterium is generated
randomly; the granuloma that disseminates is chosen randomly; the location of granulomas is not
even specified, though presumably this is random too. Though Croes used the same amount of
bounding box, they were not used to specify the position of the objects. The result is a program of
which the outcome cannot be determined beforehand. It at best visualizes one possible instance of
the Mm infection. This limits us in the practical applications of the visualization.

As opposed to Croes’ software, our software always behaves predictably. Our visualization functions
with (but is not dependent on) the input of a PN save file that has been run to the final state. The
location of the granulomas (and macrophages), relative to the position of other objects, is
determined beforehand by the PN model. By editing the PN model, the user can change the
visualization as desired.

Researchers who use the PN model are not restricted to the abstract visuals of the PN software,
Snoopy. This leads them to a better understanding of the results of the PN, and of any changes they
make to the PN model. This is not possible in Croes’ visualization.

22

9. Conclusions and discussion
The visualization we proposed reads a Snoopy file that contains the result of the PN model. To date it

is not yet possible to ability to read all states of a PN model, therefore we decided to read only the

final state. This contains all the information on the presence and location of granulomas, including

how many macrophages they contain. From this information, we can retrace the origin of some of

the bacteria that infected the macrophages. Using the read end state, and calculated begin state, we

interpolate the behaviour in between macrophage infection and the end result. This makes our

visualization a generally accurate graphical representation of the PN model.

The underlying model differs in several non-critical points. The position system in the PN model has

not retained the same ordering in our visualization. The position of bacteria can currently not be read

by our software. We can reliably retrace the information, but only when the file has been created

using the preferred setting.

We separated the visual element of the PN model from the calculations and data. Our software

interprets and translates this visual element. The data of the PN model often inhibits comprehension

of the process. Biologists researching the process are not trained to comprehend mathematical

formalisms, and even graphical ones such as the Petri Net can be difficult to read. Hence, using our

visualization, these biologists’ understanding of the PN model is simplified.

Another application of our visualization is its use in demonstrations. The function of the PN model

can be explained through the use of a live demonstration or a video (with 3rd party recording

software) of the program execution. By changing the marking of the PN input, the user can exactly

visualize the desired process. If the Snoopy file input doesn’t produce a visualization that suits the

user’s needs, manual input provides even more flexibility. Additionally the user can change visual

options during runtime, and easily modify the code if necessary. The result is unprecedented

flexibility for a visualization of Mm infection in zebrafish.

This, complemented by the option of manual input gives the user a fully customizable visualization.

This in contrast with Croes’ software, that produced one random visualization that could not be

customized to fit the user’s preferences. The flexibility makes our software much more useful in the

scenario’s we described. This success is attributable to using the PN model as input for our

visualization.

23

10. Further research
For this particular PN model, the visualization is generally accurate. But should the PN model be

expanded upon or otherwise changed, the assumptions we make, and the information we derive

from the final state could no longer hold true. The ensuing loss of accuracy is already the case if the

preferred settings in Snoopy are not chosen.

Therefore, we think it would still be desirable to implement what we did not yet accomplish: to have

the ability to read all states of the PN model. It would greatly increase the usefulness of the software,

and make the software future-proof by being more flexible with the PN model readout. Because of

the importance of this future work, we took this expansion into account while writing the code. This

and the OOP approach to the problem will make it relatively easy to adapt the software when the

need arises. A PN class has been set up, the objects of which define a single state in the PN model.

One would only have to cycle through the states of the PN model, and the visualization will update

accordingly.

Carvalho’s current, unpublished research is to expand the PN model we used for our visualization.xvi

It delves deeper into biological processes the 2012 paper only considers superficially, if at all. Many

of these sub-processes deal with specific substances such as calcium or low level processes like

apoptosis inhibition. Expanding the visualization to include these elements is probably not realistic,

but it is worth researching whether there are other parts of the expanded model we can implement.

24

11. References

i World Health Organisation. “Tuberculosis”. http://www.who.int/mediacentre/factsheets/fs104/en/. Last
accessed at 18 Mar. 14.
ii A. H. Meijer, A. M. van der Sar, C. Cunha, G. E.M. Lamers, M. A. Laplante, Hiroshi K., W. Bitter, T. S. Becker, H.
P. Spaink. “Identification and real-time imaging of a myc-expressing neutrophil population involved in
inflammation and mycobacterial granuloma formation in zebrafish.” Developmental and Comparative
Immunology, vol. 32, no. 1, pp. 36–49, 2008.
iii R. M. White, A. Sessa, C. Burke, T. Bowman, J. LeBlanc, C. Ceol, C. Bourque, M. Dovey, W. Goessling, C. Erter
Burns, and L. I. Zon. “Transparent adult zebrafish as a tool for in vivo transplantation analysis” Cell Stem Cell.
Vol. 2, no. 2, pp 183-9. 2008.
iv R. V. Carvalho, J. Kleijn, A. H.Meijer and F. J. Verbeek. “Modeling Innate Immune Response to Early
Mycobacterium Infection”. Computational and Mathematical Methods in Medicine. Vol. 2012. 2012
v X. Croes. “3D Visualization of Mycobacterium infection on zebrafish”. Internal report. 2012
vi Microsoft. “Support For C++11 Features”. http://msdn.microsoft.com/en-us/library/hh567368.aspx. Last
accessed at 18 Mar. 14.
vii F. Liu and M. Heiner, “Colored Petri nets to model and simulate biological systems,” CEUR Workshop. Vol.
827, pp. 71–85. 2010.
viii K. Jensen and L. M. Kristensen, L. Wells. “Coloured Petri Nets and CPN Tools for modelling and validation of
concurrent systems”. International Journal on Software Tools for Technology Transfer. Vol. 9(3), pp.213-254.
2007.
ix L. Thomason. http://www.grinninglizard.com/tinyxmldocs/index.html. . Last accessed at 18 Mar. 14.
xJ. Bartipan. http://bartipan.net/vmath/doc/. Last accessed at 18 Mar. 14.
xi D.O. Adams, T.A. Hamilton. “Molecular basis of macrophage activation: diversity and origin” from “The
Macrophage”, Oxford University Press, pp. 75–114. 1992.
xii E.N. Houben, L. Nguyen, J. Pieters. “Interaction of pathogenic mycobacteria with the host immune system.”
Curr. Opin. Microbiol., Vol. 9, pp. 76–85. 2009.
xiii V. Sundaramurthy, J. Pieters. “Interactions of pathogenic mycobacteria with host macrophages.” Microbes
and Infection. Vol. 9. pp 1671-9. 2007.
xiv C. T. Yang, C. J. Cambier, J. M. Davis, C. J. Hall, P. S. Crosier, and L. Ramakrishnan. “Neutrophils exert
protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected
macrophages.” Cell Host & Microbe, vol. 12, no. 3, pp. 301–312. 2012.
xv Personal communication with dr. F. Verbeek.
xvi Personal communication with R. Carvalho.

http://www.who.int/mediacentre/factsheets/fs104/en/
http://msdn.microsoft.com/en-us/library/hh567368.aspx
http://www.grinninglizard.com/tinyxmldocs/index.html
http://bartipan.net/vmath/doc/

