
Universiteit Leiden

Opleiding Informatica

Learning to Play Hearthstone

Using Machine Learning

Name: Frank van Rijn

Date: 26/10/2016

1st supervisor: Prof. dr. Aske Plaat
2nd supervisor: Dr. Walter Kosters

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Learning to Play Hearthstone
Using Machine Learning

Frank van Rijn: 0725102

October 28, 2016

1

Abstract

The subject of this thesis is a new game called Hearthstone. It is
a strategy card game developed by Blizzard Entertainment, in which
players duel with each other with cards they collected. The game of
Hearthstone provides a challenge for developing an artificial intelli-
gence (AI) agent. The agent has to be able to deal with unknown
information and stochastic events in a large search space. In this the-
sis four different strategies are explored to create such an AI agent
for playing the game of Hearthstone; a simple random bot, a rule-
based bot, a Monte Carlo bot and a Monte Carlo Tree Search bot are
implemented and compared with each other.

2

Contents

1 Introduction 4
1.1 Topic . 4
1.2 Problem Statement . 4
1.3 Legitimization . 5
1.4 Method . 5
1.5 Contributions . 5
1.6 Structure . 6

2 Literature 7
2.1 MCTS . 7
2.2 Determinization . 8

3 Hearthstone 12
3.1 Example Game . 14

4 Bots 18
4.1 Random Bot . 18
4.2 Rule-based Bot . 18
4.3 Monte Carlo Bot . 19
4.4 MCTS Bot . 21

5 Experiments and Results 22
5.1 The Number of Determinizations 22
5.2 Cheating MCTS versus Standard MCTS 23

5.2.1 Extra Experiment 1: Only Minions 23
5.2.2 Extra Experiment 2: Adding Spells 24
5.2.3 Extra Experiment 3: Extreme cards 24

5.3 Tournament . 25

6 Conclusion and Future Work 27

References 31

A Cards 33
A.1 Extra Cards . 34

B Decks 35
B.1 Deck with only Minions 35
B.2 Deck with Flamestrike and Deathwing 35
B.3 Ordered deck with David and Goliath 36
B.4 Deck with Spells . 37

3

1 Introduction

In the area of Artificial Intelligence (AI) games have always been an
interesting area of research. Many games have been subject of research
and AI strategies have been developed to play games, such as Checkers
[18], Chess [6], Poker [4], Go [19] and many more.

In this thesis a new game is added to that list, namely Hearth-
stone [10]. Hearthstone is a new game developed by Blizzard Enter-
tainment, who describe their game as: ”A fast-paced strategy card game
for everyone. Deceptively Simple. Insanely Fun”. It is a free to play,
online, turn based, collectible card game for two players. Players play
the game and acquire cards to build their deck and use these decks
to play versus other players in a ranked ladder system. With the ulti-
mate goal to reach the legendary rank. In this thesis we will look into
developing AI strategies for this new game.

1.1 Topic

The object of this thesis is to investigate different AI strategies for the
game of Hearthstone. We are only interested in playing the game. Deck
building and acquiring cards, which are also challenging problems in
the game of Hearthstone; are not a part of this thesis. Collectible Card
Games such as Hearthstone, are complex games for AI strategies to
deal with. Issues that arise from these type of games are: having to
deal with imperfect information and having a lot of options each turn.
In this thesis a first attempt is made to tackle these known issues for
the game of Hearthstone.

1.2 Problem Statement

In this thesis the main research question is: Can a computer program,
known as a bot, learn to play Hearthstone? To be able to answer this
question the following research questions will be addressed:

1. Does the field of Artificial Intelligence provide algorithms for
creating a Hearthstone bot?

2. Is Monte Carlo Tree Search a suitable technique for playing
Hearthstone?

3. Does determinization help to deal with unknown information?

4

1.3 Legitimization

Hearthstone is a relatively new game, the official release was on the
11th of March in 2014. The game is a huge success and by the 22th
September of 2014 Blizzard Entertainment announced that they had
20 million individual players [9]. The popularity of the game is still
growing. In February 2015 it was estimated that there are already 25
million registered Hearthstone accounts. With the development of an
Android version of the game and a version playable on iPhone the
number of players has only increased since. To the best of our knowl-
edge no papers on the subject of Hearthstone have been published.

1.4 Method

In this thesis Hearthstone will be investigated by using experimen-
tal research; multiple experiments are done with different bots that
play Hearthstone. Four strategies will be compared with each other:
A random bot, a rule-based bot, a Monte Carlo bot and a Monte Carlo
Tree Search (MCTS) bot will be implemented. The question how these
strategies will match up against each other will be answered.

1.5 Contributions

In this thesis an implementation of MCTS for Hearthstone is proposed
and compared to other AI strategies. Hearthstone is an interesting
game, not only because of its popularity, but it is also interesting
from a game theoretical perspective. It is a challenging game because
any AI agent playing the game has to deal with drawing random cards
and unknown information, the cards the opponent is holding are not
known. In the game itself there are some game modes to play against
an AI agent implemented in the game, but it is not a challenge for
players with experience. Only by letting the AI agent “cheat” are they
able to create a difficult opponent in the single player mode. The game
lets the AI agent cheat by giving the agent extra starting life and extra
powerful heroic abilities. It would be a much nicer experience if the AI
agent would provide a challenge by playing intelligently. Contributions
of this thesis are:

• Describing the new game called Hearthstone.

• Implementing MCTS for Hearthstone.

• Showing that using multiple determinizations does not always
aid the algorithm.

• Showing that the addition of spells make Hearthstone a more
complex game.

5

1.6 Structure

The rest of this thesis is structured as follows: In Section 2 literature
is discussed and in Section 3 the game of Hearthstone is explained.
Then in Section 4 the functionality of the different Hearthstone bots is
explained. The different experiments and their results are described in
Section 5 and a conclusion is drawn in Section 6, where also possible
future work is described.

This thesis is written as part of the computer science master pro-
gram at the Leiden Institute of Advanced Computer Science (LIACS)
at Leiden University. It is written under the supervision of Prof. Dr.
Aske Plaat and Dr. Walter Kosters.

6

2 Literature

Hearthstone, like many other card games such as Magic the Gathering,
Poker and Bridge, is a stochastic game with imperfect information. It
is a two player zero-sum game: there are two people playing each other
and it is either a win for one of the players or a draw. Since this is
a new game there is no known evaluation function for a given board
state. It is not even known if such a reliable evaluation function can
be found, since only parts of the game are visible to a player. Be-
cause a useful evaluation function is lacking, techniques are needed
that do not require an evaluation function, such as MCTS. In this sec-
tion literature regarding MCTS is described and literature regarding
determinization; an extension of the MCTS algorithm in order to deal
with imperfect information is presented.

2.1 MCTS

Monte Carlo Tree Search has caused huge progress in playing strength
of AI in games where there is no good evaluation function and where
bots have to deal with a very large search space. The best example
is the game of Go. For a long time it seemed unlikely that computer
players could challenge good human Go players, because of the large
search space without a good evaluation function. However, the MCTS
algorithm was able to compete with human players without the need
for an evaluation function [15]. Recently even a professional Go player
was defeated by a new Go playing bot using MCTS in combination
with deep networks [19].

MCTS uses four steps to build up a partial subtree and explore
promising areas of the search space. The four steps are selection, ex-
pansion, simulation and backpropagation. In the selection stage, start-
ing from the root a new node is selected, using the Upper Confidence
Bound for Trees (UCT) [14] algorithm until a leaf node in the Tree is
reached. UCT algorithm selects the node that maximizes:

x̄j +

√
2 lnn

nj
(1)

where x̄j is the average reward of child j gained by dividing the wins
of child j by the number of times it has been visited; n is the total
number of simulations so far and nj is the number of times child j has
been selected. This selection is repeated until a leaf node is selected.
When a leaf node is selected using the UCT algorithm this node is
expanded. If it is a terminal node this means nothing needs to be
done and the result can be backpropagated. If it is a non-terminal

7

Figure 1 – Scheme of the Monte Carlo Tree Search algorithm [7].

node its children are added to the tree and the next phase is entered,
the simulation phase. From the nodes added in the previous step a
random playout is done and the result is being backpropagated in the
next step. From the newest nodes added to the tree the result of the
simulation is being updated upward in the tree. Each (grand)parent
node of the added nodes gets an extra visit and if the playout is a win
from that nodes perspective, the number of wins is also updated. In
Figure 1 the four steps of the Monte Carlo Tree Search algorithm are
shown.

2.2 Determinization

This standard version of MCTS is not directly applicable to games
with imperfect information, since decisions have to be made for both
players while constructing the game tree. Dealing with imperfect in-
formation has always been a problem for artificial agents. One way to
deal with imperfect information is to take all the possible moves into
account. However, for Hearthstone that is not feasible. Currently there
are 889 different cards. Without taking into account other moves, even
playing a single card that the opponent is holding would already re-
sult in a branching factor of 889. To circumvent this we assume the
content of the opponent’s deck is known. This brings the amount of
possible cards back to 30 (the number of cards in the deck of the op-
ponent). This looks like a big assumption, but in reality it is not that
big. Since most good decks are shared on the internet it is possible to
know what deck the opponent is using after seeing a couple of cards.
There is a tool built for predicting the opponent deck using machine
learning [5], which shows very good results. It achieves 97% successful
prediction rate after seeing only three cards. Even with the informa-
tion about the content of the deck of the opponent, considering all
options results in quite a high upper bound branching factor. Imagine

8

a mid-game where both players have three minions and the opponent
has one card in hand. This gives the opponent 12 possible attacks,
adding 30 possible cards to play, plus ending the turn and using hero
power makes a branching factor of 44 possible moves. Having such an
high branching factor leads to very undeep search trees.

Determinization is a technique that deals with imperfect informa-
tion without letting the branching factor explode. The concept of de-
terminization is that all unknown information is guessed in such a way
that it resolves into a viable game state. This technique has been used
on different games and combined with MCTS it is also called Perfect
Information Monte Carlo (PIMC). Especially in card games PIMC
has been successfully implemented, card games such as Bridge [11],
Poker [12] and Magic the Gathering [8, 20] to name a few.

Determinization is not a perfect technique. It suffers from two ma-
jor problems, as is explained by Frank and Basin [3], called strategy
fusion and non-locality. Figure 2 depicts an example of the problem
of strategy fusion. The square represents a choice for the maximizing
player, while the circle represents a choice for the minimizing player.
In this example there are two possible determinizations, resulting in
two possible trees. A random unknown factor determines which tree
represents the correct rewards at the leaf nodes. The players do not
know the outcome of this random event and thus do not know which
tree has the correct reward values and which tree is a wrong derminiza-
tion. There is clearly a superior choice for the maximizing player in the
first decision point, since choosing the right option will always result
in a reward of 1, regardless of choosing the correct determinization.
However the MCTS algorithm does not prefer this over the left option,
because it wrongly assumes it can make the correct choice later in the
tree again. However if it happens to choose the wrong determinization,
the algorithm will make the wrong choice and the maximizing player
will wrongly choose a leaf node with score 0.

Figure 3 shows the problem of non-locality. Again the square rep-
resents a choice for the maximizing player and the circle a choice for
the minimizing player. Two possible determinizations are shown by
the two trees. The minimizing player does not know which tree has
the correct reward values, the left world or the right world. The max-
imizing player does know whether the left world or the right world is
the correct world. If the maximizing player makes the left move, and
thus the next move is determined by the minimizing player, the min-
imizing player does not know if he or she should choose left or right
since he or she does not know which world is the true world. However
in reality the minimizing player can know the left world must be the
correct world, since if it was the case that the right world is the correct

9

Figure 2 – An example of strategy fusion; MCTS does not prefer the
right option over the left option.

world, the maximizing player would have chosen the right option to
get a guaranteed outcome of 1. The problem lies in the fact that the
algorithm makes choices based upon a certain game state, not taking
into account the game history. MCTS will not detect this kind of sit-
uation and thus the algorithm will be wrong in some cases where it
could have known what the correct play would have been.

10

Figure 3 – An example non-locality; MCTS does not detect it can make
the correct decision based on other parts of the search tree.

Even though there are theoretical shortcomings to the algorithm,
it yields strong play in different games. Long, Sturtevant, Buro and
Furtak try to explain in their paper [16] why this is the case and
even try to predict what kind of games are suitable for MCTS with
determinization. They come up with three properties that can pre-
dict whether a game is suitable for using determinizations. The three
properties are:

• Leaf Correlation, the probability for terminal nodes with the
same parent to have the same outcome.

• Bias, the probability the game is biased towards one player or
the other.

• Disambiguation Factor, a factor that determines how quickly
hidden information is revealed during the game.

Hearthstone has very high leaf correlation, when a player is close
to winning very often there are many winning lines. The critical deci-
sions are usually made in the mid game. Hearthstone is a little biased
towards the starting player, but not by much. During the game players
play cards revealing hidden information to their opponents, resulting
in a relatively high disambiguation factor. These features would sug-
gest that MCTS with determinizations is a good algorithm to play
Hearthstone.

11

3 Hearthstone

In this section the basic rules of Hearthstone are explained.
Hearthstone is a 1 vs. 1 player card game with cards that are

designed for this game, based upon the characters of the popular online
multi-player game World of Warcraft. Each player chooses one out of
nine possible heroes and builds a deck of 30 cards.

The game starts with both players having 30 life points and each
player drawing their opening hand of three cards when starting and
four cards when going second. The players get to resolve their mulli-
gan; Each player can select any number of cards from their opening
hand they wish to replace with a random card from their deck. The
objective of the game is to reduce the life total of the opponent to
0 or below. The most common way this is done, is by attacking the
opponent with minions. Figure 4 shows an example of such a minion.
The name of the minion is shown in the middle, in this case Bloodfen
Raptor. In the top left corner the mana cost of the minion is depicted
by the value in the blue crystal; for the Bloodfen Raptor the mana
cost is 2. Each minion has an attack value, shown in the bottom left
corner, and a health value shown in the bottom right corner. In this
thesis Attack and health value are notated inside square brackets, for
example Bloodfen Raptor is a 2 mana [3,2] minion. The players start
without mana crystals and at the start of each turn they gain a mana
crystal and replenish all mana crystals used in the previous turn. This
means that in a normal game a player has one mana in his or her
first turn, two in his or her second, three in his or her third and so
on. As the game progresses a player can play more powerful and more
expensive minions, however the maximum of mana crystals a player
can obtain is 10.

In addition to minions, there are also cards that are spells. These
spells can, for instance, kill minions of the opponent, or gain you life,
or even deal damage to opponents, such as the spell Fireball shown in
Figure 2. Note that a spell does not stay on the battlefield after it is
played and also does not have an attack and health value, its effect is
resolved and then it is discarded.

At the start of each turn the player draws a card and then he or
she can play out cards from his or her or her hand. He or she can
attack with minions, however minions can only attack if they were in
play at the beginning of that player’s turn. This means that a minion
that has just been played cannot attack, unless this minion has an
ability called charge giving the minion the power to attack the turn
it comes into play. There are several abilities that minions can have
to grant them with extra power. A minion can also attack minions of

12

Figure 4 – An example of a
minion: Bloodfen Raptor [1].

Figure 5 – An example of a
spell: Fireball [1].

the opponent instead of directly attacking the opponent. The choice
to attack certain minions or attack the opposing hero is one of the
important decisions that a player has to make in the game.

Some minions have a keyword on them: these keywords grant min-
ions an extra effect. The keywords used on the cards that are used in
this thesis are:

• taunt

• charge

• battlecry

Taunt forces the opponent to first attack the minions with taunt. It
is not possible to attack a non-taunt minion while the opponent has
a taunt minion on the battlefield. Charge grants a minion to be able
to attack the turn it comes into play, while normal minions have to
wait a turn before being able to attack. Minions with battlecry have
an effect when they are played. The effect is explained on the card
itself. For example the card Gnomish Inventor has battlecry: Draw a
card. So when you play Gnomish Inventor from your hand you draw
a card.

Each of the nine possible heroes has a hero power which can be
used by each player once during his or her turn for two mana. Some
examples of hero powers are shown in Figure 6.

13

Figure 6 – Examples of hero powers of different heroes; in order from
left to right: hunter, warlock, paladin and mage [1].

3.1 Example Game

Figure 7 – Screenshot of the game; it is the first turn of the hunter, a
Murloc Raider has been cast.

In this Section an example game is shown to give a more in depth
explanation of the game of Hearthstone for readers who are unfamiliar
with the game. Readers who know the game already can skip this
Section. In this game a hunter is playing a warlock, the game is shown

14

from the perspective of the hunter. The hunter is the starting player.
In the first screenshot shown in Figure 7, mulligans have already been
resolved and the hunter played its first minion the Murloc Raider. At
the top and bottom in the middle of the screen the hero portraits
are shown, with the life totals of the hunter and the warlock both at
30 life. At the bottom right the mana crystals are shown. This being
turn one the hunter has access to one mana, which has been used to
play the Murloc Raider. At the top above the warlock portrait, the
mana crystals of the warlock are shown. Since the warlock has not had
any turn it has 0 mana crystals. The backside of cards the warlock
is holding are also visible. At the bottom under the hunter portrait
the hand of the hunter is shown who is now holding Bluegill Warrior,
Gnomish Inventor and Ironfur Grizzly. The only possible move left is
the end turn button, which becomes green because there is no other
move left.

Figure 8 – The beginning of the second turn of the hunter.

In Figure 8 the start of the turn of the hunter is shown. The hunter
has drawn a card for this turn, namely Frostwolf Warlord, and has
gained an extra mana crystal. He now has two out of two mana avail-
able. The warlock has used his first turn to use The Coin to cast an
Acidic Swamp Ooze. On the left side there is a small log of the game.

15

All three cards played up to this point are shown there. The hunter
has different options for this turn. Notice that the Bluegill Warrior
in hand and the Murloc Raider on the board have a green border,
this is because they respectively can be played and attack. The end
turn button is now yellow and not green since the hunter has other op-
tions. The hero power of the hunter depicted at the right of the hunter
portrait is also green, because it can also be used for two mana.

Figure 9 – The second turn of the hunter, the Murloc Raider is attack-
ing the Acidic Swamp Ooze.

In Figure 9 the second turn of the hunter is played out. The hunter
chose to play the Bluegill Warrior and since it has charge it can attack
immediately. It opted to attack the opponent and now the Warlock
is at 28 life. The Murloc Raider is about to attack the Acidic Swamp
Ooze, which will result in both minions dying and being removed from
the board.

16

Figure 10 – The final turn of the hunter, the hunter can put his oppo-
nent at 0 life and win the game.

In Figure 10 the game has been fast forwarded eighth turns now
being turn ten of the hunter. The hunter has a total of twelve attack
power and the warlock is currently at 14 life. The twelve attack plus
two damage from the hero power of the hunter is enough to win this
game. Thus the game will result in a win for the hunter, barring that
the hunter player notices this and does not attack the minions of the
warlock. Notice that the [5,4] Bootybay Bodyguard has a shield around
it, this how the game visually shows that the minion has taunt.

17

4 Bots

In this section the four bots, the random bot, rule-based bot, the
Monte Carlo bot and the Monte Carlo Tree Search bot and their work-
ings are explained.

4.1 Random Bot

The first and most simple AI implementation is the Random bot. The
Random bot finds all possible moves and randomly selects one of these
moves. Every possible move has the same probability of being selected.
This type of strategy does not require any domain knowledge of the
game, which makes it easy to implement for new games. Random play
usually does not result in strong performance, it does however function
as a benchmark to test other strategies. Any useful strategy should
outperform the random player. The Random bot is also used in other
strategies. The algorithm for the random bot is shown in Algorithm
1.

Algorithm 1 Random bot

Input (Game G)
1: Find all legal moves M = {m1,m2, ...,mk} in G
2: Uniform randomly select a number i from [1, k]
3: return mi

4.2 Rule-based Bot

The second algorithm is the Rule-based bot. The Rule-based bot is
implemented by using domain knowledge to derive rules for the bot
to follow.

The first rule is to check if there is a sequence of moves that defeats
the opponent directly. This is done by checking if the opponent has
no taunt minion and if the bot has enough attack power to defeat the
opponent. If this is the case, the first move that attacks the opponent
directly is selected. If that is not the case, the bot proceeds to the
next rule.

The algorithm tries to find what is called a good trade. It tries to
make an attack in which the opponent loses more than the bot does.
A good example is attacking with a Murloc Raider into a Bloodfen
Raptor. You lose 2 points of attack and 1 point health on your minions,
but the opponent loses 3 attack and 2 points of health (see appendix
A).

18

If there are no good trades available the next rule is to attack the
opponent directly, unless the opponent has a taunt minion in which
case the taunt minion is attacked. If no attacks are possible, the algo-
rithm tries to play a minion, because in most cases playing a minion
is better then not playing a minion. When none of the above rules led
to the selection of a move, a random move is selected in the same way
as for the Random bot. In Algorithm 2 the working of the Rule-based
bot is shown.

Algorithm 2 Rule-based bot

Input (Game G)
1: Find all legal moves M = {m1,m2, ...,mk} in G
2: attval←

∑
attack value of minions

3: if (attval > Oppolife and not Taunt) then
4: select mi ∈M , where mi attacks opponent
5: return mi

6: end if
7: for all mi ∈M do
8: if (mi = value trade) then
9: return mi

10: end if
11: end for
12: for all mi ∈M do
13: if (mi = attack opponent) then
14: return mi

15: end if
16: end for
17: for all mi ∈M do
18: if (mi = play a minion) then
19: return mi

20: end if
21: end for
22: mi ← Randombot(G)
23: return mi

19

4.3 Monte Carlo Bot

The third algorithm is the Monte Carlo bot. The Monte Carlo bot
works by random sampling of game playouts to determine the best
move. The algorithm has a budget, b, which determines the number
of sample games the algorithm will play out. First, the bot finds all
possible moves; suppose there are m of these possible moves. For each
move b/m random playouts are executed. The move with the highest
number of wins is most likely the best move and therefore chosen as
the next move. Before the random playouts, the game-state needs to be
randomized, or else the algorithm could learn information that is not
available to the algorithm, for example, the next card that is drawn,
or the cards the opponent is holding in its hand. During the playout
of the game these unknown cards will influence the win percentages
of the possible plays of the bot. This would be an unfair advantage
because the bot has no way to know what the opponent is holding or
what cards the bot is drawing next.

Randomizing the game state is done by shuffling the deck of the
bot, then the cards the opponent is holding are put back into his or
her deck. The deck of the opponent is shuffled and then the opponent
draws as many cards as it was holding before randomizing the game
state. The algorithm is shown in Algorithm 3.

Algorithm 3 Monte Carlo bot

Input (Game G, Integer b)
1: Find all legal moves M = {m1,m2, ...,mk} in G
2: for i = 1 to k do
3: Gc ← Copy(G)
4: Do move mi on Gc

5: for ` = 1 to b/m do
6: Do random playout of Gc using Random bot
7: if win for current player then
8: wini ← wini + 1
9: end if

10: end for
11: end for
12: Select move mi ∈M with highest wini

13: return mi

20

4.4 MCTS Bot

The fourth algorithm is the Monte Carlo Tree Search bot. The MCTS
bot works by constructing a search tree to find the best move. The
algorithm has two parameters the budget, b; and the number of de-
terminizations, d. First, the algorithm uses determinization to get rid
of the random and the unknown information. Each determinization
works the same as the randomization for the MC bot, except that for
MCTS with determinizations a tree is constructed and for each de-
terminization a new randomized state is created, with its own search
tree. For all determinizations a search tree is build using the four steps
of the MCTS algorithm. Recursively a leaf node is selected using the
UCB algorithm. This leaf node is expanded (unless it is a terminal
node), by doing a random playout for each possible move from that
point. The new nodes are added to the game tree as leaf nodes. The
result of the playout is then backpropagated through the tree, updat-
ing the amount of visits each node has had and the amount of winning
playouts.

Algorithm 4 MCTS bot

Input (Game G, Tree T , Integer b, Integer d)
1: for j = 1 to d do
2: Game H ← Determinize(G)
3: Find all legal moves M = {m1,m2, ...,mk} in G
4: for ` = 1 to b/d do
5: Select(node) using UCB
6: if selected node = leafnode then
7: expand(T)
8: simulate random playout using Random bot
9: backpropagate result updating nodes in T

10: end if
11: end for
12: end for
13: Select move mi ∈M with most visits
14: return mi

21

5 Experiments and Results

In this section the different experiments that are conducted and their
results are explained. Note that for this research only a subset of the
complete Hearthstone game is implemented, to keep the programming
task of recreating the game feasible. In the version of Hearthstone
implemented only two out of the nine existing heroes are implemented;
those two heroes are the hunter and the warlock.

The hero power of the Hunter is Steady Shot, for two mana the
hunter deals two damage to the opponent. The hero power of the
Warlock is Life Tap, for two mana the warlock deals two damage to
itself and it draws a card. These specific powers were chosen because
they are considered the best hero powers in the game. The warlock is
strong for generating card advantage and the hunter power is strong
for allowing a player to deal the final damage without having any
minions on the board.

5.1 The Number of Determinizations

For the MCTS algorithm with determinizations, the parameter d,
which determines the number of determinizations, is important for
the performance of the algorithm. An experiment was set up to find
a good value for this parameter. The algorithm was run for different
values of d, namely 1, 5, 10, 15, 20, 30 and 40. For each of those values
of d two hundred playouts against all other values of d were done; first
hundred times being the starting player and then a hundred times
letting the other value start. This was done four times for each pair
of hunter and warlock (hunter vs. hunter, hunter vs. warlock, warlock
vs. hunter and warlock vs. warlock). Note that the pairs having same
values of d, for instance d = 5 vs. d = 5, are omitted. This leads to
16800 played games. For this experiment a simple deck was used with
only minions, that can be found in Appendix B.1. The results were
added and are shown in Figure 11.

The lines show the number of wins versus the MCTS version on
the horizontal axis, the legenda shows which version of MCTS is rep-
resented by which line.

The red line is the performance of MCTS with 1 determinization
versus the other values of d. As can be seen the performance improves
as it plays against higher values of d. This leads to the conclusion that
using multiple determinizations leads to worse performance, which is
a very unexpected result. To understand this a series of extra experi-
ments are conducted.

22

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40

N
u
m

b
er

of
w

in
s

MCTS version

’mcts1’
’mcts5’

’mcts10’
’mcts15’
’mcts20’
’mcts30’
’mcts40’

Figure 11 – Graph showing the results how Determinizations influence
the win-percentages of the MCTS algorithm

5.2 Cheating MCTS versus Standard MCTS

In these extra experiments two versions of Monte Carlo Tree Search
were tested against each other; a standard MCTS version with one de-
terminization to deal with the imperfect information(MCTS-D) versus
MCTS with perfect information (MCTS-PI), basically a cheating ver-
sion of MCTS that can see all the cards. The hero class Hunter was
used for all experiments for both players. Three different decks were
used during the three extra experiments to understand how the cards
used have an effect on the performance of the algorithm.

5.2.1 Extra Experiment 1: Only Minions

For this experiment the same simple deck, with only minions, as for
the previous experiment was used, see Appendix B.1 for a complete
list. Thousand games were played where MCTS-D was the starting
player and another thousand games where MCTS-PI was the starting
player. This resulted in an expected win ratio of 0.5375 for MCTS-
PI. This was a bit unexpected, intuitively a larger percentage of the
games should be won by MCTS-PI; Being able to see all the cards
should give a player an unfair advantage. The non-cheating version

23

could still win over 50% of the games when it starts, winning 525 of
the thousand games. In conlusion; starting is a larger advantage then
being able to see all the cards.

5.2.2 Extra Experiment 2: Adding Spells

A second experiment was conducted. Some minions were removed and
spells were added to create more complexity. The idea is that minions
are too much alike. Thus, the advantage of knowing all the cards
is almost non-existent, because they almost all do the same thing.
The Archmages were removed from the deck and replaced with higher
impact cards. The card Flamestrike was added. Flamestrike is a spell
that deals four damage to all enemy minions. Another card called
Deathwing was also added. Deathwing is an eight mana [7,6] minion
that has a battlecry effect. When you cast it, you must discard your
hand and it destroys all other minions on the battlefield. The idea
behind the addition of these specific cards is that it is very useful
to know whether the opponent is holding these cards. In case the
opponent is holding cards that can destroy multiple minions, it might
be better to not play all your minions and hold some in hand. The
hypothesis is that this would give an advantage to MCTS-PI. The
decklist used can be seen in the Appendix B.2.

The result is a win-ratio for MCTS-PI 0.546. It does indeed increase
the win percentage of the cheating MCTS version, but maybe not
as much as expected. In conclusion, even now starting is a bigger
advantage than looking at the cards, MCTS-D wins 555 of the games
on the play.

5.2.3 Extra Experiment 3: Extreme cards

A third experiment was done to see if MCTS-PI would win in an
extreme situation where looking at cards clearly should give the al-
gorithm the upper hand. A card called Goliath was created. Goliath
is a two mana minion that is [15,10], which is completely absurd for
the game. For comparison, a two mana minion is usually [2,3] or [3,2].
Also another card called David was added to the deck. David is a
spell that checks if the opponent has Goliath in play and if so you win
the game, if not you deal five damage to yourself. Knowing whether
the opponent does or does not have David in hand clearly changes
the outcome if you should play Goliath or not. For this experiment
the decks were ordered and not shuffled to ensure that both players
had access to both David and Goliath. The decks can be found in the
Appendix B.3.

24

Now MCTS-PI has a win-ratio of 1.0, which is exactly what would
be expected. The cheating version can see that the opponent is holding
David and thus will never play Goliath, while the non cheating version
has to make a determinization and since these determinizations are
random it will eventually make the mistake in thinking that MCTS-
PI is not holding David. If the opponent is not holding David, playing
Goliath is a very strong move and will be chosen as the next move.
Resulting the MCTS-PI playing David and winning the game.

5.3 Tournament

In this experiment the four bots are matched up against each other
and play a thousand games against each other on the play and on
the draw. All the bots use the same hero, namely the Hunter and
they use the same deck with spells. The exact decklist can be found
in Appendix B.4. The results are shown in Table 1. Each histogram
shows the results of one of the four bots. The red part shows the
number of wins while starting. The green part shows the number of
wins while drawing. Note that each bot also plays thousand games
against itself and always wins those thousand games.

As Table 1 shows, the performance of the random bot is really bad,
which was to be expected. Playing randomly is a very poor strategy
in this game. It manages to get a few wins against the rule-based
bot, but out of two thousand games against both MC and MCTS it
does not manage to win a single game. The rule-based bot is already
an improvement over the random bot, almost winning all the games
versus the random bot and winning some games against the MC and
MCTS bots. Again the MC bot is much better than the rule-based
bot, with a performance that is almost as good as the MCTS bot.
In almost all the cases the MCTS bot is slightly better then the MC
bot, except versus the rule-based bot on the draw it achieves the same
amount of wins or better then the MC bot.

25

Random bot Rule Based bot

Monte Carlo bot Monte Carlo Tree Search bot

Table 1 – The performance of the four bots playing against each other.

26

6 Conclusion and Future Work

In this thesis the game of Hearthstone was investigated. In this section
the research questions are answered and a conclusion is drawn. The
first question as proposed in Section 1 is:

Does the field of Artificial Intelligence provide algorithms
for creating a Hearthstone bot?

If a game is too straightforward it does not make sense to use
complex algorithms to solve the game of Hearthstone. For instance
the game of Tic-Tac-Toe is very simple to solve and can be easily
brute forced. Such trivial games are not very suitable for the use of
machine learning algorithms. Hearthstone does provide a challenging
problem space. The game is an imperfect information, stochastic zero-
sum combinatorial game. Using a brute force algorithm, calculating
all possible moves and their outcome, is definitely not a possibility.
Finding the correct play is not trivial and since brute forcing is not
possible, heuristic algorithms are necessary to find good plays for any
Hearthstone bot. For this game there is no known evaluation function,
nor is it trivial to find such a function, which limits the amount of use-
ful algorithms. The game of Go has struggled with this issue, being
a combinatorial game without a known evaluation function. A strong
playing bot was thought to be many years away. The development and
the use of Monte Carlo Tree Search was a huge breakthrough in the
playing strength of Go bots, because it was able to deal with the size
of the problem space of Go without the use of an evaluation function.
This leads to the next research question:

Is Monte Carlo Tree Search a suitable technique for playing
Hearthstone?

As is shown in Section 2 standard MCTS can not directly be used
to play Hearthstone. Standard MCTS is not designed to deal with
imperfect information and with stochastic uncertainty. Not knowing
what cards your opponent is holding or what cards you are going to
draw makes it impossible for the algorithm to build a search tree.
The solution is to create determinizations, just create a possible game
state in which the algorithm does know everything. Most likely the
determinized game state is not correct, but now MCTS can be used
to play Hearthstone. So in conclusion, MCTS with determinizations
is suitable for playing Hearthstone. The last research question is:

27

Does determinization help to deal with unknown informa-
tion?

To be able to use MCTS for a game with imperfect information,
some technique is necessary to deal with imperfect information. In
some games it is possible to circumvent the use of determinizations
by investigating all possible moves, for example this is done in the
game of Scotland Yard [17]. Scotland Yard is a board game in which
a group of players, representing the police, try to catch a criminal in
London. The location of the criminal is the unknown factor. However,
the number of possible locations where the criminal could be is limited.
For the game of Hearthstone this is not possible, because the number
of possible moves grows exponentially with the number of cards the
opponent is holding, making it infeasible to investigate all possible
moves. Thus in the game of Hearthstone the use of determinizations
is very useful and does help to deal with the imperfect information.

The use of determinizations adds another parameter to the al-
gorithm, namely the number of determinizations used. In Section 5
experiments were conducted to find the best value for this parame-
ter and interestingly it was found that the best number was only one
determinization. A series of extra experiments were conducted to in-
vestigate why this was the case. It was shown that being able to see
all unknown information was not a great advantage in the simple ver-
sion of Hearthstone. This could explain why one is the best number
of determinizations, since using more determinizations is not free. For
each determinization a new search tree is built and each tree has to
share the budget (usually the budget is the number of total random
playouts). The idea is that using more determinizations the best move
is identified more often, since using only one determinization it could
be that the guessed game state is an extreme game state that is far
from the real game state. By using more determinizations the aver-
age best move is chosen and extremes are filtered out. Since having
perfect information only helps a little in identifying the correct best
move, spending budget on getting better information is not wise and
just using more budget in constructing a bigger search tree results in
better play. This could be true other games as well.

Adding complexity to the game in Hearthstone is done by adding
spells to the game. They change the interaction in the game, a player
being ahead on the board can easily be set back by spells. This is
much harder to accomplish with only minions, since they cannot attack
immediately when they enter the board. The opponent can attack
those minions first and thus has the opportunity to make attacks that
favor that player.

28

The main research question as proposed in Section 1 is:

Can a computer program, known as a bot, learn to play
Hearthstone?

In this thesis four strategies to play the game of Hearthstone were
implemented and compared to each other. A random bot was cre-
ated to be a very simple beatable strategy for other bots to compete
against. It was expected that all other strategies would easily be able
to beat the random bot. The second strategy was the rule-based bot;
a bot that follows rules, made up by mimicking the train of thought
of a human player playing the game. This bot could indeed easily
beat the random bot. The next bot used a more intelligent strategy,
namely Monte Carlo, which uses random sampling to evaluate different
possible moves. This bot outperformed the random bot and the rule-
based bot. The last bot was implemented using a more sophisticated
strategy, namely Monte Carlo Tree Search. MCTS is a state-of-the-art
algorithm and was expected to dominate all the previous strategies. It
does indeed beat the random and the rule-based bot by a fair margin,
however it does not dominate the performance of the Monte Carlo bot.
The Monte Carlo bot does perform better against the rule-based bot.
Between the two bots MCTS does win more than half of the games,
but not as many as expected.

In conclusion the answer is yes, the computer can indeed learn to
play Hearthstone. The random bot, which is the benchmark of a player
who cannot learn the game, is easily beaten by all strategies. The rule-
based bot could be seen as the equivalent of a novice player, and the
MC and MCTS bot can definitely beat the rule-based bot. The MCTS
bot in the current version could be seen as an advanced player, but
not of the strength of an expert Hearthstone player. Improvements
have to be made to get to the level of human expert players, which
leads to the future work.

For future work there are many possibilities, exploring strategies
in Hearthstone is not close to finished. For starters strategies in differ-
ent areas of Artificial Intelligence come to mind. Natural computing
techniques like genetic algorithms and neural networks and deep learn-
ing networks can come up with totally different solutions for playing
this game. For a genetic algorithm an evaluation function would be
needed, which might prove to be complex to formulate, but is not
infeasible. For neural networks large data sets of games are needed,
which are not available now. The game does not automatically store
played games. Blizzard does have access to the games that are played
on their servers, but they do not release this valuable data.

29

The rule-based bot proposed in this thesis is not a very refined
version of a rule-based bot. With using more expert domain knowledge
a better performing version of a rule-based algorithm is definitely a
possibility.

The Hearthstone version used in this thesis should be extended to
a full version of Hearthstone, if bots would like to compete against real
players. At this point not all cards and mechanics are implemented,
which makes it impossible to use the bot in the real game. The full
version of Hearthstone also leads to the use of more spells and minions
with more advanced mechanics which could add to the complexity of
the game. As has been shown, adding complexity to the game helps
the more advanced algorithms outperform the more straightforward
algorithms. With a full implementation of the game, bots could be
tested in the real game. Every month there is a ladder ranking sys-
tem which lets players climb from rank 25 to rank 1 and if enough
games are won at rank 1 a players reaches the legendary status. Each
season around 0.5% of the players reach this rank. This would be a
great achievement if a bot can be developed that reaches this rank
consistently.

The game provides a real challenge for AI strategies and a Hearth-
stone league or competition would be a very nice platform for differ-
ent algorithms to compete against each other, similar to world chess
championships [13].

Another possible improvement could be opponent modeling. By
using inference to make better determinizations and stick to those in-
stead of using random ones every time. Now the bot has the tendency
to play around cards for one turn and forget about it the next turn,
and stop playing around it, resulting in inconsistent play. Adding op-
ponent modeling to the MCTS algorithm could improve the algorithm.
Another possible improvement for the MCTS algorithm could be the
use of multithreading, especially when the algorithm uses multiple de-
terminizations, the use of multiple threads could really speed up the
algorithm allowing for more random playouts in the same time.

30

References

[1] http://hearthstone.gamepedia.com/Hearthstone_Wiki.

[2] http://hearthcards.net.

[3] Search in games with incomplete information: A case study using
bridge card play. Artificial Intelligence, 100(1):87–123, 1998.

[4] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane
Szafron. Poker as a testbed for ai research. In Robert E. Mer-
cer and Eric Neufeld, editors, Advances in Artificial Intelligence:
12th Biennial Conference of the Canadian Society for Compu-
tational Studies of Intelligence, AI’98 Vancouver, BC, Canada,
June 18–20, 1998 Proceedings, pages 228–238, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[5] Elie Bursztein. Predicting Hearthstone opponent deck using
machine learning. https://www.elie.net/blog/hearthstone/

predicting-hearthstone-opponent-deck-using-machine-learning,
2015. Accessed:18-02-2016.

[6] Murray Campbell, A Joseph Hoane, and Feng-hsiung Hsu. Deep
Blue. Artificial intelligence, 134(1):57–83, 2002.

[7] Guillaume Chaslot, Mark H.M. Winands, H. Jaap van den Herik,
Jos W.H.M. Uiterwijk, and Bruno Bouzy. Progressive strategies
for monte-carlo tree search. New Mathematics and Natural Com-
putation, 04(03):343–357, 2008.

[8] Peter I. Cowling, Colin D. Ward, and Edward J. Powley. Ensem-
ble determinization in Monte Carlo Tree Search for the imper-
fect information card game Magic: The Gathering. IEEE Trans.
Comput. Intellig. and AI in Games, 4(4):241–257, 2012.

[9] Blizzard Entertainment. 20 million Hearthstone play-
ers. http://eu.battle.net/hearthstone/en/blog/15982639/
20-million-hearthstone-players-22-09-2014. Accessed:06-
04-2015.

[10] Blizzard Entertainment. Hearthstone: Heroes of Warcraft offi-
cial game site. http://us.battle.net/hearthstone/en/, 2013.
Accessed:31-03-2015.

[11] Matthew L. Ginsberg. GIB: Imperfect information in a compu-
tationally challenging game. CoRR, abs/1106.0669, 2011.

[12] Johannes Heinrich and David Silver. Self-play Monte-Carlo Tree
Search in computer poker. 2014.

[13] ICGA. World computer software championship. http://icga.

leidenuniv.nl. Accessed:28-07-2016.

31

[14] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo
planning. In Proceedings of the 17th European Conference on
Machine Learning, ECML’06, pages 282–293, Berlin, Heidelberg,
2006. Springer-Verlag.

[15] Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot, Jean-
Baptiste Hoock, Arpad Rimmel, Olivier Teytaud, Shang-Rong
Tsai, Shun-Chin Hsu, and Tzung-Pei Hong. The Computational
Intelligence of MoGo Revealed in Taiwan’s Computer Go Tour-
naments. IEEE Transactions on Computational Intelligence and
AI in games, 2009.

[16] Jeffrey Richard Long, Nathan R. Sturtevant, Michael Buro, and
Timothy Furtak. Understanding the success of perfect informa-
tion Monte Carlo sampling in game tree search. 2010.

[17] J (Pim) AM Nijssen and Mark HM Winands. Monte-Carlo Tree
Search for the game of Scotland Yard. In 2011 IEEE Conference
on Computational Intelligence and Games (CIG’11), pages 158–
165. IEEE, 2011.

[18] Jonathan Schaeffer, Yngvi Björnsson, Neil Burch, Akihiro Kishi-
moto, Rob Lake, Paul Lu, Steve Sutphen, and Martin Muller.
Solving checkers. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, pages 292–297. Morgan
Kaufmann Publishers Inc., 2005.

[19] David Silver, Aja Huang, Christopher J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Ko-
ray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of Go with deep neural networks and tree search. Na-
ture, 529:484–503, 2016.

[20] C.D. Ward and P.I. Cowling. Monte Carlo search applied to card
selection in Magic: The Gathering. In Computational Intelligence
and Games, 2009. IEEE Symposium on CIG 2009., pages 9–16,
2009.

32

A Cards

The cards that are used in the experiments for this thesis.

33

Figure 12 – The existing cards used in all experiments in this thesis [1].

A.1 Extra Cards

The cards that do not exist in the full version of Hearthstone, but were
implemented for this thesis. Deathwing is an existing card in the full
game, but in the full game it is a 10 mana [12,12] minion. Its mana
cost was lowered to have more impact during the experiments, because
sometimes games are ended before players reach 10 mana. The attack
and health values were also altered to keep the card balanced, the
battlecry effect is unchanged from the original card. The cards David
and Goliath, were created specially for experiments and do not exist
in the full version of Hearthstone.

Figure 13 – Cards that were created to do extra experiments [2].

34

B Decks

All the decklists of the decks that are used for the experiments in this
thesis.

B.1 Deck with only Minions

A simple deck with only minions, similar to what a beginning player
would use. This deck is used for the experiments in Sections 5.1 and
5.2.1.

2 Murloc Raider

2 Acid Swamp Ooze

2 Bloodfen Raptor

2 Bluegill Warrior

2 Iron Grizzly

2 Wolf Rider

2 Senjin Shield Masta

2 Chillwind Yeti

2 Dragonling Mechanic

2 Gnomish Inventor

2 Frostwolf Warlord

2 Bootybay Bodyguard

2 Archmage

2 Boulderfist Ogre

2 Corehound

B.2 Deck with Flamestrike and Deathwing

Flamestrikes and Deathwing are added to the simple deck. This deck
is used for the experiments in Section 5.2.2.

2 Murloc Raider

2 Acid Swamp Ooze

2 Bloodfen Raptor

2 Bluegill Warrior

2 Iron Grizzly

2 Wolf Rider

2 Senjin Shield Masta

2 Chillwind Yeti

2 Dragonling Mechanic

2 Gnomish Inventor

2 Frostwolf Warlord

2 Bootybay Bodyguard

35

2 Boulderfist Ogre

2 Corehound

1 Flamestrike

1 Deathwing

B.3 Ordered deck with David and Goliath

This deck is used for the experiments in Section 5.2.3. The cards David
and Goliath are added to the deck, in the experiments the deck is not
shuffled.

1 Goliath

1 David

1 Deathwing

1 Flamestrike

2 Bloodfen Raptor

2 Bluegillwarrior

2 Bootybay Bodyguard

2 Boulderfirst Ogre

2 Chillwind Yeti

2 Corehound

2 Senjin Shield Masta

2 Dragonling Mechanic

2 Murloc Raider

2 Iron Grizzly

2 Frostwolf Warlord

2 Gnomish Inventor

2 Wolfrider

36

B.4 Deck with Spells

This deck is used for the tournament run in Section 5.3.

2 Murloc Raider

2 Bloodfen Raptor

2 Bluegill Warrior

2 Iron Grizzly

2 Wolf Rider

2 Senjin Shield Masta

2 Chillwind Yeti

1 Dragonling Mechanic

1 Gnomish Inventor

2 Frostwolf Warlord

2 Boulderfist Ogre

1 Corehound

2 Darkbomb

2 Fireball

1 Arcane Intellect

2 Flamestrike

37

