
Universiteit Leiden

Opleiding Informatica

Refitting PIPE: Extending the Petri Net tool PIPE 5

Name: Dico Duba
Studentnr: 1455060

Date: 21-08-2016

1st supervisor: Jetty Kleijn
2nd supervisor: Bas van Stein

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Refitting PIPE
Extending the Petri Net tool PIPE 5

Dico Duba

Abstract

Elementary nets (EN) are the most fundamental class of Petri nets. For this reason they are useful to teach

about the basics of Petri nets before moving on to higher level Petri nets. The Platform Independent Petri

net Editor (PIPE) is an open-source tool to draw and analyse Petri nets. It has been originally developed by

students at Imperial College London in 2004. PIPE 5 is the latest version of this program, created during a

master project in 2014.

In this thesis we report on a bachelor project to adapt PIPE 5 and make it suited for students to create and

analyse EN systems. For this, three modules were created: An EN converter and validator, a state space

generator and a process generator. Besides this, numerous bugs have been fixed and several improvements

related to usability have been made to turn using PIPE for education purposes into a smooth experience.

i

ii

Contents

Abstract i

1 Introduction 3

1.1 Petri nets . 3

1.2 PIPE . 3

1.3 Goals . 4

1.4 Report structure . 5

2 Definitions 7

2.1 Preliminaries . 7

2.2 Elementary Net systems . 7

2.3 Place/Transition systems . 9

2.4 Other nets in PIPE . 11

2.4.1 Coloured Petri net . 11

2.4.2 Generalized Stochastic Petri net . 13

2.5 Analysis of Petri nets . 13

2.5.1 State space . 14

2.5.2 Process nets . 15

3 Overview of PIPE 17

3.1 Animation . 18

3.2 Modules . 19

3.2.1 State Space Explorer . 20

3.2.2 GSPN Analysis . 21

3.3 Code base of PIPE 5 . 21

3.4 Github projects . 22

4 Contributions 25

iii

4.1 P/T systems in PIPE . 27

4.2 EN validator and converter . 27

4.2.1 Dialog . 27

4.2.2 Validation and conversion . 28

4.3 State space explorer . 29

4.4 Process generator . 31

4.4.1 Dialog . 32

4.4.2 Algorithm . 32

4.5 Bugs . 33

4.5.1 Fatal bug . 33

4.5.2 Compilation errors . 34

4.5.3 Usability . 34

4.5.4 Drawing . 37

4.5.5 Animation . 39

4.5.6 Graphical . 40

5 Conclusions 41

5.1 Future work . 42

Bibliography 42

A Added examples 45

B Source code 49

B.1 EN module . 49

B.1.1 ENValidator.form . 49

B.1.2 ENValidator.java . 53

B.2 Process generator module . 57

B.2.1 ProcessGenerator.form . 57

B.2.2 ProcessGenerator.java . 59

B.3 State space module . 70

B.3.1 ReachabilityGraph.java . 70

iv

List of Figures

2.1 “Producer-consumer” EN system with contact . 8

2.2 Simple P/T system. 10

2.3 Net with a self-loop. 10

2.4 Reachability graph for “producer-consumer” EN system. 12

2.5 T0 has contact in P4. 16

3.1 PIPE 5 in drawing mode. 18

3.2 PIPE 5 in animation mode. 19

3.3 Old State Space Explorer module. 20

4.1 Dialog of EN Validator and Converter. 26

4.2 Place p with complement place p′, simulating a place with capacity 3. 27

4.3 Reachability graph for a simple P/T system. 30

4.4 “All places must have inf. . . ” error. 30

4.5 Process generator dialog for invalid fire sequence. 31

4.6 Side-by-side comparison of the place edit dialog. 34

4.7 Side-by-side comparison of the application exit dialog. 34

4.8 Inconsistent Petri net after renaming component. 37

4.9 Inconsistent Petri net after deleting component. 38

4.10 Incorrectly enabled transition. 39

4.11 Incorrectly enabled transition for multi-colour nets. 40

A.1 EN system with seasons . 45

A.2 “Producer-consumer” EN system without contact . 46

A.3 EN system with conflict and confusion . 46

A.4 Large EN system without contact . 47

A.5 EN system without contact . 48

A.6 “Producer-consumer” EN system with contact . 48

1

2 LIST OF FIGURES

Chapter 1

Introduction

1.1 Petri nets

Petri nets are mathematical models to describe and analyse distributed systems [13]. Petri nets can be vi-

sualized as directed graphs with places, transitions and arcs. This visual representation allows for a more

intuitive representation of a particular system.

Several types of Petri nets exist. In this thesis we are mostly interested in Place/Transition (P/T) systems

and Elementary Net (EN) systems. Higher level Petri nets exist, but these type of systems are usually more

complex and more focussed on practical problems. For education it is preferred to start with simple Petri

nets, with EN systems being the most fundamental model.

In Petri nets, active elements are represented by transitions and passive elements by places. Places contain

local information. This information is displayed as so-called “tokens” in these places. The arrangement of

tokens in the net is called a configuration, modelling the global state over the places. The net can be animated

by activating transitions (called “firing”). Then tokens disappear and appear, creating a new configuration.

Firing transitions only changes the configuration, not the structure of the net.

1.2 PIPE

PIPE (Platform Independent Petri net Editor) was developed originally by students at Imperial College in

London. The earliest release was in 2004, and the latest official release was by this group in 2007 with version

2.5 [4]. The source code was then moved to Sourceforge [3]. Between 2007 and 2010 PIPE 3 was developed,

and between 2010 and 2013 PIPE 4 was developed. Development of PIPE 3 and 4 happened by volunteers all

3

4 Chapter 1. Introduction

over the world. While the functionality of PIPE was improved greatly between 2007 and 2013, the quality of

the code deteriorated. The code of PIPE 4 was highly tangled [15]. During this period modules were added

and editing more types of Petri nets became possible. In 2013, PIPE 5 was moved to Github1 and rebuilt

using the model-view-controller (MVC) and the publisher-subscriber software design pattern [15]. At the

beginning of 2016 only the basic program is implemented. This version still has numerous bugs, unfinished

implementations and some questionable design choices that would make usage of this program harder.

1.3 Goals

The mathematical concepts behind Petri nets are important, but when teaching students about Petri nets it is

helpful to have them visualize the Petri nets when talking about certain behaviour. In 2010, PIPE was chosen

to be best fit to teach about simple Petri nets in the Theory of Concurrency course at LIACS [6], because

it was open source and modular. At other universities the program is used to design and analyse General

Stochastic Petri Nets [12] [8].

It has been briefly considered to use a different tool during the Theory of Concurrency course. Petri-LLD

was the only tool we found that supports EN systems natively, but development has stopped on this tool in

2006 [1]. We did not find it worth the effort to update this version to work correctly on multiple platforms

and extend this version to support the analysis we want to do on EN systems. None of the other tools listed

in the extensive database of Petri Net World support EN systems natively [2]. Since PIPE is still maintained,

and Zwijger found this tool the best fit to teach about simple Petri nets in 2010 [6], we will also work with

PIPE. PIPE 2.5, and later PIPE 4 have a number of problems that make them difficult or unreliable to use.

Besides this, both versions have some problems where the tool does not behave as the mathematical model

dictates. We have chosen to extend version 5 over version 4, because version 4 is unmaintained since 2013,

and the code base of PIPE 5 is much cleaner than of version 4.

The goal of the project described in this thesis is to create a version of PIPE 5 that can be used at LIACS to

teach about Petri nets. First and foremost, PIPE 5 needs to support EN systems. To analyze EN systems, a

module to create process nets and a module to create reachability graphs for EN systems have to be made.

Finally the program needs to be bug free and intuitive to use for end-users. This thesis will provide the

theoretical background and both an overview of newly added features and fixed bugs. The final product will

be made available to LIACS, as well as to the general public via Github2. Changes made to PIPE by us will

be proposed as so-called pull requests on the main Github projects by Tattersall.

1https://github.com/search?q=user%3Asarahtattersall+PIPE
2https://github.com/search?q=user%3Adcduba+PIPE+fork%3Atrue

https://github.com/search?q=user%3Asarahtattersall+PIPE
https://github.com/search?q=user%3Adcduba+PIPE+fork%3Atrue

1.4. Report structure 5

1.4 Report structure

First we will establish the mathematical definitions of the models discussed in this thesis in chapter 2. In

chapter 3 we will look at what was in PIPE 5 before this project began. Then, in chapter 4, we look at what

modules were added to PIPE, and which bugs were fixed in this project. In chapter 5 we look at how well we

accomplished the goals as well as suggest future work.

6 Chapter 1. Introduction

Chapter 2

Definitions

2.1 Preliminaries

N denotes the set of natural numbers: {0, 1, 2, 3, . . .} and N+ the set of all positive natural numbers:

{1, 2, 3, . . .}. Similarly, R+ = {x|x ∈ R, x > 0} denotes the set of all positive real numbers.

In the set N∪ {ω}, ω is a special symbol representing an “infinite number”. By convention, ∀n ∈N : n < ω.

We use P(x) to denote the power set of x.

2.2 Elementary Net systems

Definition 1. [7] A net is a triple N = (P, T, F), where:

(1) P and T are finite sets with P ∩ T = ∅ and

(2) F ⊆ (P× T) ∪ (T × P).

P is the set of places of N, T the set of transitions of N and F comprises the arcs between these elements.

A net can be represented graphically, with places, transitions and the arcs between them represented by

circles, rectangles and arrows. See Figure 2.1 for an example.

For a net N = (P, T, F), respectively we define the input-set of x ∈ P ∪ T as •x = {y ∈ P ∪ T | (y, x) ∈ F}.

Similarly, we define the output-set of x ∈ P∪ T as x• = {y ∈ P∪ T | (x, y) ∈ F}. From the definition it follows

that the input-set and the output-set of a place contain only transitions, and the input and the output-set of

a transition contain only places. In other words, N is a directed bipartite graph.

7

8 Chapter 2. Definitions

Figure 2.1: “Producer-consumer” EN system. Places are represented with circles. Transitions are represented by black
rectangles. P1 and P2 contain a token represented by a black dot.

Definition 2. A configuration (or marking) C of a net N is a subset of P.

A configuration denotes the current state of the net. When a place p ∈ P belongs to C, we say that P is

marked (in C) or that there is a “token” in P (in C).

A token is represented graphically by a dot in the corresponding place. See Figure 2.1 for an example of a

marked place in a Petri net.

The following definition is based on [7], but adds restrictions that will be explained later.

Definition 3. An elementary net system (EN system) is a quadruple M = (P, T, F, Cin), where:

(1) (P, T, F) is a net and

(2) Cin ∈ P is the initial configuration.

(3) ∀t ∈ T : •t ∩ t• = ∅

(4) ∀t ∈ T : •t 6= ∅ 6= t•

The initial configuration Cin of M = (P, T, F, Cin) is the set of places that initially contain a token, where

P \ Cin is the set of places without a token.

Definition 4. A transition t ∈ T is enabled (to occur) in a net N = (P, T, F) for configuration C if:

(1) ∀p ∈ •t : p ∈ C and

(2) ∀p ∈ t• : p /∈ C.

To denote that t is enabled in C, we write t con C.

2.3. Place/Transition systems 9

Definition 5. When an enabled transition t occurs (is “fired”) in an EN system in configuration C, the new

configuration is C′ = (C \ •t) ∪ t• .

We write C [t〉 C′ to denote that t was enabled and fired in configuration C, and this resulted in the new

configuration C′.

An EN system can be animated by firing enabled transitions. This is sometimes referred to as the “token

game”. From the initial configuration transitions are fired, and the tokens in the graphical representation of

the system are moved to represent the new configuration.

To denote firing multiple transitions in a sequence we write C [t1, . . . , tn〉 C′ if ∃C0, . . . , Cn ⊆ P such that

Ci−1 [ti〉 Ci for 1 ≤ i ≤ n. If an arbitrary sequence is fired from C0 resulting in Cn, we can instead write

C0 [seq〉 Cn where seq denotes this arbitrary sequence.

2.3 Place/Transition systems

Definition 6. [7] A multi-net is a tuple N = (P, T, F, W, K), where:

(1) (P, T, F) is a net,

(2) W : F →N+ is the weight function, and

(3) K : P→N+ ∪ {ω} is the capacity function.

The weight function for (p, t) ∈ F, p ∈ P, t ∈ T denotes the number of tokens that are removed from p if t

fires. The weight function for (t, p) ∈ F, p ∈ P, t ∈ T denotes the number of tokens that are added to p if t

fires.

The capacity function denotes the maximum number of tokens that are allowed in that place, where ω means

that the capacity is unbounded.

The graphical representation is like a normal net (definition 1), with the following differences:

• If W(f) > 1 (the weight for arc f is more than 1) for f ∈ F, then W(f) is displayed as a number on arc

f .

• If K(p) 6= ω (the capacity for place p is not infinite) for p ∈ P, then K(p) is displayed as a number next

to p.

10 Chapter 2. Definitions

Figure 2.2: Simple P/T system

Figure 2.3: Net with a self-loop: P1
• ∩ •P1 6= ∅

Definition 7. A configuration (or marking) of a multi-net N is a function C : P → N, such that ∀p ∈

P : C(p) ≤ K(p).

A configuration denotes the current state of the net. The marking of a place is represented by the number of

tokens currently in the place.

Definition 8. [7] A place/transition system (P/T system) is a tuple M = (P, T, F, W, K, Cin), where:

(1) (P, T, F, W, K) is a multi-net and

(2) Cin : P→N is the initial configuration.

The initial configuration gives the number of tokens initially present in each place of M. See figure 2.2 for an

example of a P/T system.

By definition, places in an EN system can contain at most one token. Places in P/T systems have a capacity,

and can any number of tokens up until that capacity. These places only behave like places in EN systems if

the capacity is exactly 1, and at most 1 token is in the place. Similar to this, in an EN system a transition

takes all tokens from inbound places, and puts tokens in every outbound place. For the net to behave like an

EN system, and since we can never add more tokens to a place than its capacity, the weight on every arc to

and from a transition must therefore be 1.

2.4. Other nets in PIPE 11

The transition enable rule for P/T systems as defined in definition 9 does not automatically work the same as

the enable rule in EN systems as defined in definition 4. If the net contains so-called self-loops (Figure 2.3),

where there is a place p ∈ P for which p• ∩ •p 6= ∅, the transition t in that self-loop behaves differently

in a P/T system than it does in an EN system. If no token is in p, both the enable rule for P/T systems

(definition 9 and EN systems (definition 4) fail on the first condition. If p would contain a token, the transition

would be enabled in a P/T system. With the restrictions in the previous paragraph, the first condition holds:

W(p, t) ≤ C(p) = 1 ≤ 1. The second condition, C(p) +W(t, p)−W(p, t) ≤ K(p) = 1+ 1− 1 ≤ 1 = 1 ≤ 1 also

holds. In EN systems, the first condition for the enable rule holds (p ∈ C = true), but the second condition

does not hold (p /∈ C = false).

Thus, in EN systems, such a transition should not be enabled. Changing the constants we defined in the pre-

vious paragraph will not matter, because by definition W(p, t) = W(t, p), so the condition C(p) + W(t, p)−

W(p, t) ≤ K(p) will always be C(p) ≤ K(p), which is by definition true. In conclusion, to simulate an EN

system in a P/T system, the P/T system may not contain any self-loops.

Definition 9. A transition t ∈ T is enabled in a net N = (P, T, F, W, K) for configuration C if:

(1) ∀p ∈ •t : W(p, t) ≤ C(p) and

(2) ∀p ∈ t• : C(p) + W(t, p)−W(p, t) ≤ K(p)

Definition 10. When an enabled transition t occurs (is “fired”) in a P/T system N = (P, T, F, W, Cin) in

configuration C, the new configuration C′ is ∀p ∈ P : C′(p) = C(p)−W(p, t) + W(t, p).

2.4 Other nets in PIPE

Only one type of Petri net exists in PIPE. The features of this Petri net in PIPE are covered by two high-level

Petri nets: Coloured Petri nets and Generalised Stochastic Petri nets. In this section we will give the definition

of these two types of Petri net and show how we can emulate P/T systems using these types of nets.

2.4.1 Coloured Petri net

Definition 11. [9] A Coloured Petri net (CPN) is a tuple M = (P, T, A, Σ, Col, G, N, E, Cin), where:

(1) P ∩ T = P ∩ A = T ∩ A = ∅,

(2) Σ is a set of colour sets,

(3) Col : P→ Σ is the colour function,

(4) G : T → bexpr is a boolean guard function,

12 Chapter 2. Definitions

(5) N : A→ (P× T) ∪ (T × P) is the arc mapping function,

(6) E : A→ expr is the arc weight expression function and

(7) Cin is the initial configuration mapping places p ∈ P to a multiset of tokens with colours corresponding

to Col(p).

In PIPE multiple arcs between the same elements are joined together into one arc.

In CPN’s, multiple arcs can exist between the same two components, where in nets (definition 1) and multi-

nets (definition 6) only one arc can exist between every combination of place and transition.

The numeric expression expr in the function E dictates the “weight” for each token colour on a particular arc.

This expression can contain special variables that correspond to the number of tokens in a particular place.

The boolean expression expr in the function G dictates if a transition can fire. Again, this expression can

contain special variables that correspond to the number of tokens in a particular place.

A CPN system behaves like a P/T system where the capacity of each place is unbounded under the following

circumstances.

• Only one colour exists in a P/T system. Σ must thus be a set with only one colour in it. Similarly Col

now maps every place into that one colour.

• Only one arc can exist between two components in a P/T system. When only one such arc exists,

(P, T, A, N) can be reduced to (P, T, F) as defined in definition 1.

• In P/T systems, a weight is in N+. This is a valid mathematical expression, so if E : A → N+ the

weight function E for CPN systems behaves like the weight function W for P/T systems.

• P/T systems have no guard function, so if we take true as the special value of the boolean expression

for N, the guard function will never prevent a transition from being enabled that would otherwise be

enabled.

Figure 2.4: Reachability graph for “producer-consumer” EN system in figure 2.1.

2.5. Analysis of Petri nets 13

2.4.2 Generalized Stochastic Petri net

Definition 12. [5] A Generalised Stochastic Petri net (GSPN) is a tuple G = (P, T, Π, I, O, H, ∆, Cin), where:

(1) P ∩ T = ∅,

(2) Π : T →N+ is the priority function,

(3) I, O, H : T → P∗ are the input, output and inhibition functions mapping transitions to multisets of

places,

(4) ∆ : T → R+ is the transition rate and weight function and

(5) Cin : P→N is the initial configuration.

T in this definition consists of immediate transitions (Ti) and timed transitions (Tt). When an (enabled)

immediate transition fires, no time passes. When an (enabled) timed transition fires, some time passes

based on its associated transition rate. A transition can never be both an immediate and a timed transition

(Ti ∩ Tt = ∅).

The priority function dictates which transition should fire first. By convention, all immediate transitions

fire before any timed transition fires. Immediate transitions have a weight that can be used to calculate the

likelyhood of an immediate transition firing when it is in conflict with an other immediate transition, where

an equal weight means that both are equally likely to fire.

A GSPN system behaves like a P/T system where the capacity of each place is unbounded under the following

circumstances.

• A P/T system does not have inhibitor arcs. When H = ∅, we can reduce (P, T, I, O, H) to (P, T, F) as

defined in definition 1.

• In P/T systems only immediate transitions exist, and each of these transitions is equally likely to fire

when they are enabled. This means that for a GSPN system to behave like a P/T system, each transition

must have the same priority and the same weight. We can set both to the constant 1.

2.5 Analysis of Petri nets

Several ways of analysing Petri nets exist. In this section we define what a reachability graph and a cover-

ability graph is for P/T systems. The reachability graph and coverability graph for GSPN systems are similar

to those of P/T systems, but due to the timed transitions in GSPN systems they are usually constructed

differently. Their definitions are not given here, but instead the differences are highlighted in the relevant

parts of chapter 4. We also define what process nets are, but we only do this for contact-free EN systems.

14 Chapter 2. Definitions

2.5.1 State space

Definition 13. [7] An edge-labelled directed graph is a tuple G = (V, Γ, Σ, vin), where:

(1) V is a finite set of nodes,

(2) Σ is a finite set of edge labels,

(3) Γ ⊆ V ×P(Σ)×V is a set of labelled edges and

(4) vin is the starting node.

Each triple (vstart, label, vend) ∈ Γ is an edge from vstart to vend with label label.

Definition 14. A sequential configuration graph (SCG) or reachability graph for a P/T system N = (P, T, F, W, K, Cin)

with initial configuration Cin is a edge-labelled graph G = (V, Γ, Σ, vin) with all reachable configurations from

a Petri net, where:

(1) V = {C′ | seq ∈ T∗, Cin [seq〉 C′},

(2) Σ ⊆ T,

(3) Γ = {(vstart, t, vend) | vstart, vend ∈ V, t ∈ T, t con vstart, vstart [t〉 vend} and

(4) vin = Cin.

In other words, the graph contains an edge labelled by t between two reachable configurations if a transition

t is enabled in the first configuration, and firing t in that configuration yields the second configuration. In

the definition above vstart and vend nodes are configurations. Thus nodes and configurations are in a one to

one correspondence.

The SCG for an EN system is always finite. A SCG for a P/T system may be infinite. See figure 2.4 for an

example of a SCG for an EN system.

Definition 15. A marking C covers configuration C′ if ∀p ∈ P : C(p) ≥ C′(p).

When C covers C′, we can say C ≥ C′.

Definition 16. [10] A coverability set S of a P/T system N = (P, T, F, W, K, Cin), where the capacity of every

place is unbounded, is a subset of (N∪ {ω})P such that the two following conditions hold:

(1) for every reachable configuration C ∈ CN , there is a marking C′ ∈ S such that C′ ≥ C,

(2) for every configuration C′ ∈ S \ CN , there is an infinite strictly increasing sequence of reachable config-

urations converging to C′.

2.5. Analysis of Petri nets 15

A coverability set S is minimal if and only if no proper subset of S is a coverability set of N. The minimal

coverability set is used to describe the state space of a P/T system with a finite number of states. Every

configuration covers itself by definition. S \ CN is a set of states where the marking in one or more places

is set to the arbitrary large symbol ω. An infinite strictly increasing sequence of reachable configurations

means that for all configurations that are not in S (D = CN \ S), ∀D0, D1 ∈ D : D0 [seq〉 D1, D1 ≥ D0. These

configurations will eventually converge to the configurations where the number of tokens in one or more

places are infinite, represented by ω.

The (minimal) coverability graph has some nodes with reachable configurations from a Petri net and special

nodes for configurations that cover previous configurations. For configurations that are not strictly greater

than an other configuration the arcs are the same as in sequential configuration graphs. For nodes that have

an infinite strictly increasing sequence of reachable configuration converging to it, there is one arc for each

configuration that eventually leads to that configuration, labelled with each transition that would lead to a

precursor to that configuration.

Definition 17. [14] A minimal coverability graph of a P/T system N = (P, T, F, W, Cin), where the capacity

of every place is unbounded, is a finite edge-labelled graph G = (V, Γ, Σ, vin), where:

(1) V is the minimal coverability set,

(2) Σ ⊆ T,

(3) Γ = {(vstart, t, vend) | vstart, vend ∈ V, t ∈ T, t con vstart, vstart [t〉 vend} and

(4) vin = Cin

In this definition, each node mentioned in definition 16 part 2 represents all configurations that coverge to

that node. This means that if we have a configuration Cstart represented by node vstart, a configuration Cmiddle

and a configuration Cend represented by node vend, we can say vstart [t〉 vend if and only if Cstart [t〉 Cmiddle and

an infinite increasing sequence of reachable configurations converging exists between Cmiddle and Cend. Both

Cmiddle and Cend are represented by vend.

2.5.2 Process nets

Definition 18. [11] An EN system has contact in configuration C if ∃t ∈ T, where:

(1) •t ⊆ C and

(2) t• ∩C 6= ∅.

“Contact” is a situation where a transition t would be enabled based on •t, but is not enabled because one or

more of its output places is filled. See figure 2.5 for an example.

16 Chapter 2. Definitions

Figure 2.5: T0 is not enabled, because it has contact in P4.

Definition 19. [11] A concurrent run for an EN system N = (PN , TN , FN , CinN) is a tuple Co = (PCo, TCo, FCo, L),

where:

(1) ∀p ∈ PCo : |•p| ≤ 1∧ |p•| ≤ 1,

(2) Co is an acyclic net,

(3) L : Co→ N is a labelling function,

(4) L(PCo) ⊆ PN and L(TCo) ⊆ TN ,

(5) ∀p ∈ PCo, if •p = ∅, then L(p) ∈ CinN and

(6) ∀t ∈ TCo : L(•t) = •(L(t)) ∧ L(t•) = (L(t))• .

Concurrent runs are used to describe the concurrent flow and the causal dependencies of an EN system. This

definition does not enforce that elements cannot occur concurrently to themselves. However, contact-free EN

systems are guaranteed to never have this problem [11].

Definition 20. A process net Proc = (PProc, TProc, FProc, L) of a contact-free EN system N = (P, T, F, Cin) is a

concurrent run of that system.

All states in this process net can be mapped to states in N with L. If a transition t in Proc can be fired from a

configuration CProc resulting in C′Proc, there exists a corresponding configuration CN for N where L(t) can be

fired resulting in C′N , where L(CProc) = CN and L(C′Proc) = C′N .

Chapter 3

Overview of PIPE

PIPE is an open-source program written in java to build and analyse Petri nets. It provides the means to

build several types of high-level Petri nets, such as GSPN and CPN systems (definition 11 and 12), as well as

regular P/T systems (definition 8). When PIPE is started, it is automatically in “Drawing mode”, shown in

Figure 3.1. The user can add elements by clicking the corresponding button in the toolbar and next clicking

in the drawing area in the bottom-left. Places, transitions and annotations are added by clicking the button

and clicking in an empty space. Arcs are added by clicking the source element, then optionally clicking in an

empty area to create a bend, and finally clicking on the target element. PIPE only allows creation of proper

arcs; that is both an arc between two elements of the same type and also an arc between two elements that

already have a similar arc connecting them is not allowed.

Right-clicking on Petri net elements allows the user to open a dialog box to edit the properties of that element,

and gives an option to delete that element. Deletion will always leave the net in a consistent state, meaning

that if a place or transition is deleted, all arcs that are connected to it are deleted as well.

Places in PIPE have a unique identifier (name), a (possibly unbounded) capacity and a number of tokens for

each token colour (e.g. 2 default tokens, 3 blue tokens). The number of tokens in each place defines what the

starting configuration is.

Transitions in PIPE have a unique identifier (name), and can be marked as timed transitions or immediate

transitions. Timed transitions reserve input tokens and output them after a certain delay based on a rate

parameter. Immediate transitions behave as a timed transition, but with no delay. Transitions can be marked

as single servers or infinite servers. A single server can only reserve one batch of tokens before it must output

the tokens, even if it is still enabled after reserving the tokens. An infinite server can reserve as many batches

of tokens als it can, as long as the transition is enabled. Timed transitions are usually only used in normalized

Petri nets where each place has an unbounded capacity, where reserved batches of tokens can never overflow

17

18 Chapter 3. Overview of PIPE

Figure 3.1: PIPE 5 in drawing mode. Top: menu bar and tool bar. Bottom left: Module manager. Bottom right: Tabbed
view with drawing area for “Petri Net 0”.

the output places. Immediate transitions can be given a priority. Enabled transitions with a higher priority

must be fired before other enabled transitions can be fired.

There are two types of arcs in PIPE, regular arcs and inhibitor arcs. Regular arcs are directed arcs between

a place and a transition, or between a transition and a place. Regular arcs can have a weight for each token

type. This weight determines how many of each token is removed from, or added to, a place if a transition

is fired. An inhibitor arc is a directed arc between a place and a transition, and disables the transition if one

or more tokens are in the connected place. Per type, only one arc can exist between a place and a transition

and between a transition and a place.

3.1 Animation

PIPE allows the user to enter animation mode to fire transitions and change states, based on the initial

configuration defined in the drawing phase. This mode can be started by clicking the flag button in the

toolbar, or by selecting the option in the menu bar. The interface now shows an additional panel “Animation

History” in the bottom left showing previous fired transitions. Enabled transitions are now displayed in red.

(Figure 3.2)

3.2. Modules 19

Figure 3.2: PIPE 5 in animation mode. Bottom left: Record of previously fired transitions (Animation History). Bottom
right: Animated net “Petri Net 0” with enabled transition T0.

There are three ways a user can fire transitions from a given configuration. The first method is to click a

transition they want to fire. Enabled transitions are marked in red to make it easier for the user to identify

such a transition. The user can also click a button in the toolbar to select a random enabled transition to fire.

Lastly the user can click a button in the toolbar to fire a number of transitions with a specified delay.

The animation history in the bottom left shows which transitions have been fired. Buttons in the toolbar

allow the user to go back a step or go forward a step in the fire sequence. Animation does not change the

underlying net, or the initial marking. Once the user exits animation mode the net with its original, initial

marking will be displayed again.

3.2 Modules

PIPE has a system in place which allows for easy integration of custom modules in PIPE, even without

recompiling the program. These modules work on the underlying Petri net and can both alter the net or

analyse it. At the start of this project two modules exist: A state space explorer and a GSPN analysis module.

The state space explorer generates reachability graphs and coverability graphs. The GSPN analysis module

calculates some characteristics of GSPN’s such as the steady state distribution, the average token counts in

each place and the transition throughputs. The modules can be started by double clicking the name of the

20 Chapter 3. Overview of PIPE

Figure 3.3: Old State Space Explorer module.

module in the Module Manager on the left side of the program as shown in Figure 3.1. Modules can be run

as stand-alone programs by loading the jar file and then instead of starting PIPE, starting the module.

3.2.1 State Space Explorer

The state space explorer (Figure 3.3) generates reachability graphs and coverability graphs. The module can

generate a graph for the currently displayed Petri net, generate a graph for a Petri net loaded from a file or

load a previously generated graph from a binary file. In addition, the user can choose if they want to display

vanishing states in the graph. In context of GSPN systems with timed and immediate transitions, vanishing

states are those states in which an immediate transition can be fired. By convention immediate transitions

are fired before timed transitions, so by resolving all immediate transitions invisibly, a cleaner reachability

and coverability graph is created. If a Petri net contains a loop with immediate transitions, generating a

coverability graph without vanishing states will result in a so-called “timeless trap”. This means that the

explorer can not find the next steady state (where all immediate transitions are resolved), and thus can not

generate the graph. For P/T and EN systems where only immediate transitions exist, vanishing states are

states that have outbound arcs. To create correct reachability and coverability graphs for P/T and EN systems,

vanishing states should always be included in the graph.

The user can also select if they want to generate a reachability graph or a coverability graph. Since reachability

graphs are potentially unbounded, an upper bound for the number of states has to be given. The program

will not generate states anymore when this number is reached. Moreover the number of threads in which the

state space is calculated can be given. This can speed up generation of graphs for larger Petri nets [15].

3.3. Code base of PIPE 5 21

When the button “Generate!” is clicked, the reachability or coverability graph is generated on the canvas

below the button. States are numbered based on the order they have been derived, and arcs show the

throughput of tokens between two states. When hovering the mouse over a state, the marking in that state

should be shown.

In the bottom left is a button to save the graph as a binary file. This binary file contains the states and arcs as

displayed on the canvas, and can be used to load the reachability or coverability graph again without needing

to generate it again from the Petri net.

3.2.2 GSPN Analysis

The GSPN Analysis module analyses various properties of the current Generic Stochastic Petri net. For each

of the tangible states it calculates the marking of that state. It also displays the steady state distribution, the

average token count for each place in these tangible states and the average timed throughput through timed

transitions. Since this thesis is not about these type of nets and this module has not been changed we will

not go into detail about these properties.

3.3 Code base of PIPE 5

PIPE 5 is developed as several “independent” Github projects with several software design patterns kept in

mind. Design patterns are used in software engineering to better structure and create easier to maintain code.

We identified the following design patterns in the existing code base of PIPE.

Model-view-controller pattern

The model-view-controller design pattern splits up code into three parts: Code that strictly handles

what the user sees (the view), code that strictly handles how data is stored (the model), and code that

handles interaction between the user and the program (the controller).

Publisher-subscription pattern

The publisher-subscription pattern decouples code by letting parts of code subscribe to events that

signify changes in other pieces of code. For example, when the user creates a place and transition, then

connects these two elements with an arc, the arc will “listen” to changes of the position of the place and

transition. When the place is moved over the canvas, it will generate events that its x or y coordinate

has changed. The arc that listened to these events can use this to update the coordinates of its end

points so that the arc is still visually connected to the place.

22 Chapter 3. Overview of PIPE

Visitor pattern

The visitor pattern allows to perform an action on an instance of a class, without extending that partic-

ular class. This is used in various places, such as when adding or removing an element from the Petri

net. This way a component can be removed as an abstract component rather than a specific component.

3.4 Github projects

The code is split up in four Github projects containing five parts, namely PIPEGui, PIPEModuleGui, PIPECore,

PIPEMarkovChain and PIPEAnalysis. This is a summary of what the code of each part contains.

PIPEGui

PIPEGui is the main project of PIPE. It is the graphical interface of the program. This project contains

the views and controllers of PIPE. The application builder creates the top view “PipeApplicationView”

and creates for each of the buttons, menu items and comboboxes in the toolbar and menus an “Action”.

These actions denote what should happen when the user clicks a button or menu item.

The “PipeApplicationController”, the controller for the “PipeApplicationView” is in charge of the tabs

containing Petri nets and the “PetriNetController” instances that correspond to those tabs. Besides that,

it contains functionality to save Petri nets. Drawable components each have their own controllers to

provide an easy way to change their properties.

As described earlier, right-clicking components of a Petri net allows users to open a dialog where

properties of that component can be edited. The gui description of these dialogs can be found in

this Github project. Besides this, this Github project contains mouse and keyboard input handlers

for anything that happens on the canvas inside a tab. The handlers will behave differently based on

whether the application is currently in drawing mode or in animation mode. To undo and redo actions

an entire group of classes dedicated to “history actions” is included in this project. These classes dictate

how various actions have to be undone, or redone. The module manager is also included in this project

and for each module that is compiled with this project, a stub is included that calls the actual class

located in PIPEModuleGui.

PIPEModuleGui

PIPEModuleGui contains the classes that are called by the module manager in PIPEGui. The classes

create a dialog, and execute the logic behind that dialog. Each of these classes could theoretically

be executed as stand-alone program, as they all include a “main” method (default called method on

startup).

3.4. Github projects 23

PIPECore and PIPEMarkovChain

PIPECore contains the model part of the model-view-controller design pattern of the PIPE application.

The model for most of the application is, not surprisingly, a Petri net. For each element of a Petri net

there is at least one class in the model. The logical model behind how to animate a net is also included

here.

To save a Petri net, it needs to be serialized. The input-output classes are included in PIPECore. GSPN

systems are built directly on top of Markov chains. To decouple the code further, that part of the code

is split out to its own project PIPEMarkovChain. PIPEMarkovChain also included a reader and writer

to serialize states as found in the State Space Explorer.

In PIPECore we can also find the data models for naming a Petri net, visitors for Petri net components

in the visitor pattern, possible exceptions that can be thrown and parsers for functional weights and the

grammars it can contain.

PIPEAnalysis

PIPEAnalysis contains the implementation of a multithreaded MapReduce-style state explorer and a

parallel Gauss-Seidel steady state solver. This project is only referenced in the two modules that were

included by Tattersall in her rewrite of PIPE [15].

24 Chapter 3. Overview of PIPE

Chapter 4

Contributions

The goal of this project is to create a version of PIPE that works better than the existing version of PIPE 4.

While the code of this version of PIPE is a lot cleaner than that of version 4, the program is very bare-bones.

Many features from PIPE 4, including zoom functionality and export as an image are missing. The code is

incomplete in certain areas, and some unit tests seem to be written to pass for the current implementation

rather than to describe logical behaviour. Some examples of problems include:

• Places that can not be modified.

• A wide range of problems related to improper handling of renaming Petri net elements such as being

unable to delete elements when they are renamed and being able to create multiple arcs between two

elements.

• An animation mode that still does take in account already deleted components.

• Undo and redo buttons that potentially leave the Petri net model in an inconsistent state.

• Modules that work for the GSPN systems they were intended for, but break when used on other types

of Petri nets implemented in PIPE, or when the Petri net is modified.

In this section we will give a brief description of the modules that will be created to be able to use PIPE 5

during the Theory of Concurrency course at LIACS. Besides creating these modules, most issues mentioned

earlier will be fixed. The code for the added modules is available in Appendix B.

Support of EN systems

Although EN systems in itself are specific P/T systems (definition 8), it is a laborious process to create

such a system in PIPE. Besides this, the program is to be used by students who are not yet very familiar

with Petri nets, or the specific differences between EN systems and the nets simulated in PIPE. For this

25

26 Chapter 4. Contributions

reason, a module is to be created that views a given Petri net as a net that behaves in every way like an

EN system.

Configuration graph and coverability graph

There already exists a module for a configuration graph and a coverability graph, but these graph are

not useful for the purposes we want to use them. The graphs display too little information and nodes

are often displayed on top of each other. Moreover, the markings in the tooltips when hovering over a

state are unreadable, and sometimes even missing. To be more useful, the nodes should instead show

the markings and the tooltip should include the markings in a more human-readable format. An effort

has to be made to prevent overlapping nodes as much as possible. Edges should include transition

names that resulted in that edge.

The coverability graph uses an arbitrary large number instead of ω to replace infinitely growing states.

The graph was found to generate graphs that were incorrect, because the generator made assumptions

about capacity of places where it should not. This has to be fixed too.

Support of process generation

There currently does not exist a way to create process nets (definition 20) from a source net. An

“unfolding” button exists, but this functionality has been disabled since the implementation was flawed

in PIPE 4. Even then, unfolding takes into account every possible fire sequence while we are only

interested in creating a net for a single fire sequence. The goal here is to create a module that takes a

fire sequence as input, then checks if that fire sequence is even possible, and then creates a process net

from this fire sequence.

Figure 4.1: Dialog of EN Validator and Converter for net in figure 2.3.

4.1. P/T systems in PIPE 27

Figure 4.2: Place p with complement place p′, simulating a place with capacity 3.

4.1 P/T systems in PIPE

The nets simulated in PIPE are a combination of GSPN nets (definition 12) and CPN nets (definition 11). We

have already shown how P/T systems where the capacity of places is unbounded can be simulated in these

types of nets. Places with finite capacity can be simulated in these nets by complementing a place (figure 4.2).

Complementing a place p is done by adding a place p′, and setting •p′ = p• and p′• = •p. The combined

number of tokens in p and p′ is the capacity of p. However, PIPE already provides us with a feature that

allows us to set the capacity of a place, so no complement places are required. This allows us to fully simulate

P/T systems, as long as we take specific values for the functionality we don’t need.

The rule that tests if a transition is enabled in PIPE is complicated, because it has to work for any net that is

drawn. When all components and features that are not needed in P/T systems are trivialized, the enable rule

is indeed equal to the rule defined in definition 9.

4.2 EN validator and converter

In PIPE it is not easy to change the underlying Petri net model on the fly. One could change this model, but

this means that one instance of PIPE has to be compiled for EN systems and one instance has to be compiled

for GSPN systems. This approach is impractical. Instead EN systems are defined as a GSPN/CPN system

as already implemented, but with certain restrictions. In section 4.1 we showed how to view P/T systems as

a combined GSPN/CPN system. In definition 8 we showed that we can only simulate EN systems in P/T

systems if the Petri net does not contain any self-loops, and all weights and capacities are set to 1.

4.2.1 Dialog

The new EN validator and converter module opens a dialog as shown in figure 4.1. In the top is a field that

shows which checks were passed and which have not. To the right of that field is an image that allows the

28 Chapter 4. Contributions

user to verify if a net is a valid EN system with just a glance. Below that a detailed breakdown of the issues

is given. At the very bottom is a refresh icon that runs the module again on the current net. The majority of

the space is taken up by the convert button that changes certain things in a net so that it will behave as an

EN system.

4.2.2 Validation and conversion

As a general guideline, the module only converts a net if it visually looks like the EN system we want to

emulate in PIPE. All checks that did not pass are reported to the user. First the module will check if all places

have a capacity of 1. When the net is converted, the capacity of all places is set to 1, regardless of what their

capacity used to be. Then the module will check if all places contain at most 1 token, because by definition

∀p ∈ P : C(p) ≤ K(p). In definition 11 we mentioned that to simulate a P/T system in a CPN net, we had

to define a colour set with one token type. We choose this token type to be a black token named “default”, as

this is the token type every new net begins with. If a place has tokens, they are replaced by a single “default”

token. After this, no coloured tokens will be left in the net.

The third check ensures that only immediate transitions are in the current net as described in section 4.1.

On conversion, all timed transitions are converted to immediate transitions. PIPE allows the user to mark

transitions as “single server” or “infinite server”. A “single server” can only “reserve” a single batch of

tokens, while an infinite server can reserve an infinite amount of batches of tokens. However, this only has

an observable effect on timed transitions. Since those type of transitions do not exist in P/T or EN systems,

we normalize these on conversion to single servers, as this graphically better represent transitions found in

EN systems. The fourth check will ensure that all arc weights are 1. On conversion all arc weights are set to

a single “default” token, regardless of what it was.

The last three checks require the user to change the net manually before conversion is possible. Self-loops

as discussed earlier can have transitions that are enabled in P/T systems, but should not be enabled in EN

systems. There is no elegant way of converting such loops. The following conversions were considered, but

ultimately rejected:

• Since a transition t in a self-loop should never be enabled in an EN system, we could add an empty

place p to •t. Since •p = ∅, no tokens will ever appear in p, and thus t will never be enabled. There

are however two problems with this approach. First of all we don’t know if t would ever be enabled.

To find out if this is the case, the entire state space must be generated, and subsequently analysed for

occurrence of t on an edge. This potentially an expensive operation for large nets. If we would not

check this, and simply add an empty input place to t, we would add a place every time the convert

button is clicked. This adds a lot of clutter. The second problem is that this would introduce a new

4.3. State space explorer 29

place in the net, while that place can not be easily removed with the undo button. Since we don’t know

why this self-loop was introduced, we don’t know if this self-loop was intentional, and if the user wants

us to correct it.

• Similar to the first option, we could remove this transition and all arcs connected to it. This has the same

problem as the first option, as the removed transition and arcs can not easily be put back by clicking

the undo button.

• If we would assume the self-loop was introduced on purpose, we could expand the self-loop to a

sequence of 2 places and 2 transitions. This would significantly alter the sequential configuration

graph, and we can’t be sure the user added the self-loop on purpose. This change can also not be

easily undone.

The other check ensures that the net contains no inhibitor arcs. We can not guarantee that between a place

and transition there is only one normal arc, or one inhibitor arc. While it makes no sense that both exist

between a place and transition, as it would always disable that transition, we would need to remove the

inhibitor arc if a normal arc already existed. This has the same problem as already mentioned for self-loops:

We can not easily undo this.

Lastly we check if no isolated transitions (•t = ∅ or t• = ∅) exist. Such transitions cause problems when

generating the SCG of an EN system, because they can nearly always occur. They are not automatically

removed because of the same reason as why we do not make structural changes for the last two checks: The

changes can not be easily undone. Instead, the user should remove the transition themselves, or complete the

EN system they were creating.

If the net contains self-loops, inhibitor arcs, isolated transitions or already is a valid EN system, the convert

button is greyed out and thus prevents the user from converting the net.

4.3 State space explorer

PIPE 5 already has a state space explorer as described in section 3.2.1, which can draw the sequential config-

uration graph.

To make the graph usable without hovering over places we first created an easier way to show the configura-

tion in a specific node. When the Petri net has only places with capacity 1, the configuration can be displayed

as a set of places that contain a token as shown in figure 2.4. This is by far the easiest way to interpret the

information displayed on the node. When the capacity of one of the places is more than one, we have to

display how many tokens are in each place. This is done by creating a tuple that displays the number of

30 Chapter 4. Contributions

Figure 4.3: Reachability graph for the P/T system in figure 2.2.

tokens for each place in a fixed order as shown in figure 4.3. This allows for easy comparison between two

states. When multiple types (or colours) of tokens exist within the Petri net, the number of tokens in each

place is displayed as a tuple, with a fixed order for the type of tokens. A representation of a state with 2

token types and 3 places could be something like “((0, 1), (1, 2), (3, 0))”.

When the user hovers over a place, a box with a detailed view is displayed. Since there is a lot more room

in this box each place is displayed on a new line, with the number and type of tokens behind it. To have an

easier time figuring out what the initial state of a configuration graph is, the first node is now displayed in a

different colour and labelled differently.

Previously, only a throughput rate was displayed on edges between states. For EN and P/T systems we are

more interested in which transitions are fired. This information was not easily available in the old code base,

and has been implemented from the ground up. Now, the transitions that could have been fired to go from

state to state are displayed on the edge too.

Figure 4.4: Error message shown when generating coverability graph when a place doesn’t have infinite capacity.

4.4. Process generator 31

Figure 4.5: Process generator dialog for invalid fire sequence.

In PIPE 5 the coverability graph did not display ω when the number of tokens in a place could grow infinitely.

This has been fixed in the current implementation. Furthermore, the algorithm that was used assumed that

the capacity on all places was infinite, but this was never verified. Since this resulted in wrong coverability

graphs for Petri nets with limited capacity, an error has been added when this is tried instead of showing a

potentially wrong coverability graph. This error suggests complementing places with a capacity, then setting

all capacities to infinite. (Figure 4.4)

4.4 Process generator

PIPE originally only supported modules that only work on a single Petri net. The process generator module

must create new Petri nets, and to support this a new type of module had to be created. This new module base

class is intended to be used for modules that modify Petri nets instead of analysing them. It provides an event

listener (section 3.3) that the module can use to send custom events to the application. The application then

acts appropriately to the custom event. This way we don’t need to trust the module to leave the application in

a consistent state, especially if something in the application is changed. This way there is also only one extra

32 Chapter 4. Contributions

module type required for any module that needs to change anything in the application, where otherwise

controllers would need to be passed to the module to do it manually.

4.4.1 Dialog

When the user starts the module, they are presented with a dialog as shown in figure 4.5. In the top is an

input field where the user can input a fire sequence manually, either by typing or by pasting text. Below

that there is a field that shows information to the user. If the current fire sequence is invalid, the problems

are displayed first. Below that suggestions for the next fired transition are given. Lastly an error message is

shown with the exact reason why no process net can be generated in the current situation. At the bottom is

a checkbox that allows the user to let the process net be more compact. The expansive version shows each

transition in the fire sequence in its own column. This way it is easy to follow how the given fire sequence

results in the process net that is displayed. The compact version moves each transition as far left as possible.

This makes it easier to identify transitions that are sequential or concurrent. Finally there is a button that

generated a process net in a new tab in the application.

Behind an error line two links are displayed. The first link allows the user to select the wrong transition, so

they can more easily find it, and potentially correct it. The second link allows the user to remove the wrong

transition. Behind a suggestion a link is displayed to automatically add the transition to the fire sequence.

This way a fire sequence can quickly be built without needing to type.

4.4.2 Algorithm

The algorithm that is used simply simulates the given fire sequence on a copy of the source net. It assumes

that when a transition is fired, all tokens are removed from all input places, and put in the output places.

This way only one place corresponding to the place in the original net can contain tokens. Because of this,

the module is restricted to nets where all places have capacity 1, such as EN systems.

“Contact” is a situation as shown in figure 2.5, when in a certain configuration C there is a transition t for

which •t ⊆ C (all input places contain tokens), but t• ∩ C 6= ∅ (there are tokens in output places). The

transition is thus not enabled, because its output places are not empty. Such a situation does not translate

well to a process, because the transition is not necessarily disabled in a process in the same situation. This

means that if a process net would be generated when there is contact in a net, one can find other sequences

of transitions that can be fired in sequence in the process net, but not in the source net.

The module will generate the state space for a source net and make a collection of all possible configurations.

For each configuration it will check for all transitions if there is contact. If it detects such a situation the

4.5. Bugs 33

module will not generate a process net, but instead give an error message containing the configuration in

which contact occurs. The solution is to complement the place in which contact occurs (Figure 4.2).

When we find that there is no contact in the given Petri net, and the given fire sequence is valid for that net,

the process net is generated. The algorithm keeps track of the last place instance for each original place in

the source net. Initially, it only contains the places that contained a token in the original net in the starting

configuration. Then it will go through the fire sequence. For each transition it will find the transition with

that name in the source net, and add a transition with an unique name based on the original name to the

process net. For each arc in the original net pointing into that transition, the source place is looked up in the

list of places that currently do not have outbound arcs in the process net, and an arc is added to the place

that corresponds to the original place. If no such place exists, an error is shown, but this should not happen

unless the source net is inconsistent. Then the same is done for outbound arcs from the transition. Again, if

there is already a place in the process net with that name as an end point, an error is shown. This should not

happen in a consistent net. Each of the places and transitions is positioned in the right column (horizontally),

but not yet vertically.

Then places and transitions are formatted. Per column, places and transitions are sorted alphabetically and

layed out with a minimum distance between each other. On the second pass, each transition is checked.

All inbound places are sorted vertically so that arcs don’t cross over other places pointing into the same

transition. Any places below that, who now would be too close to a moved place will be moved further

down.

4.5 Bugs

4.5.1 Fatal bug

On Windows, PIPE did not compile or start, while there was no such issue on Linux or Mac. In this case, the

pipe icon displayed in the title bar could not be loaded and crashed the application.

The problem was that a call to getResource(..) was done with a constant that relied on the system defined

path separator. On Linux and Mac, this path separator is a forward slash (/). On Windows however, the

path separator is a backslash (\). The getResource(..) function expects a relative path, or an absolute path

beginning with a forward slash. This caused Java to search for a relative path instead of an absolute path on

Windows, resulting in this crash. Simply replacing the prefix of the path fixed this issue.

34 Chapter 4. Contributions

(a) Old place dialog. (b) New place dialog.

Figure 4.6: Side-by-side comparison of the place edit dialog.

(a) Old exit dialog. (b) New exit dialog.

Figure 4.7: Side-by-side comparison of the application exit dialog.

4.5.2 Compilation errors

PIPE did not work correctly in Java 8. Compilation with the JDK for Java 8 would produce several errors.

This was caused by two issues. One issue was with a test that tried to cast an Object null to a T null.

Explicitly defining T in the template so this conversion was not made those tests pass. A bigger issue was

that for previous versions of Java an outdated XML parser was loaded. This XML parser was already available

natively in Java 7 and 8, so removing the dependency for this outdated XML parser fixed the issue.

4.5.3 Usability

Place editor dialog

When creating a Petri net, the user could right-click on a place to open an place edit dialog as shown in

figure 4.6a. There were several things wrong with this dialog:

• The spinner modal behind “Capacity” didn’t allow the user to click the arrows. Doing so would

result in an exception in the background. Manually changing the capacity by selecting the number

and typing did work.

• If the number of tokens in the starting configuration exceeded the capacity, an exception would be

thrown in the background. However, part of the dialog was still saved.

4.5. Bugs 35

• If a place had a capacity that was not infinite, there was no way to edit the place anymore. Any

change would result in an exception being thrown in the background.

• The capacity spinner has a magic value “0”, which encoded “infinite capacity”. This in itself is

counter-intuitive, but a result of how infinite capacity is stored in the underlying code. What was

worse is that the hint behind the capacity spinner would not update when the value was updated,

and would disappear if the capacity was not infinite.

To address these issues, the place edit dialog was reworked. The new dialog, as shown in figure 4.6b,

replaced the capacity spinner with a combination of a spinner and a checkbox. When the checkbox for

“infinite capacity” is checked, the capacity spinner is greyed out, as its value is irrelevant in that case.

The spinner now has a minimum value of “1” and when the place does not have infinite capacity, that

value is used instead. When the sum of tokens in the starting configuration of this place exceeds the

capacity, an error is shown and the dialog is not saved before this issue is resolved.

Application exit dialog

The dialog boxes that were shown when closing a Petri net tab with unsaved changes, or the application

while one or more tabs had unsaved changes, were inconsistent. The dialog box that was shown when

closing the application (Figure 4.7a) had options “Yes” , “No” and “Cancel”, while there were only two

possible outcomes of the dialog: The application would close or it would not. The first and default

option was the unsafe option, as it would close the application without saving. To understand what

the buttons did, the user had to read the dialog very carefully. Dialogs like these are shown to prevent

accidental lost work when the user is not paying attention, or distracted by something else, and such

users are unlikely to carefully read the content of the dialog box.

The dialog was redesigned as shown in figure 4.7b. The new dialog has three clear interaction paths

when this dialog is shown. The button “Save and exit” will save each unsaved Petri net using the

filename it was already saved as, or shows a save dialog when that Petri net was never saved. To

visualize to the user which Petri net is being saved, the application will change to the tab containing

that Petri net. The application only exits after each Petri net has been saved, so the user does not lose

work when aborting a save action by clicking cancel. The button “Don’t save and exit” simply exits the

application. The button “Cancel” closes the dialog and lets the user do what they want to do.

A similar issue existed with the standard template for error messages. This template had a “Yes” and

a “No” button, but both options did nothing. The error dialog is primarily used to notify the user of

something that is not possible, and should be manually fixed. Since these two buttons did not make

any sense in that context, they have been replaced by a single “OK” button.

36 Chapter 4. Contributions

Load and save dialog

The load and save dialog used to be the most plain version the operating system offered. When the

user entered a filename that didn’t have an extension, correction code would be run later to add the

extension. The plain version of a load/save dialog has an empty filename field on Windows, and

“Untitled” in the filename field on linux/mac. This was confusing for users that did not know what the

proper extension for their saved file was.

The new load and save dialogs give a hint in the filename field which extension is expected by displaying

“*.ext”, where ext is the actual extension. Operating systems that support this also limit the displayed

files to only those files with the extension the dialog expects.

Disabled functionality

PIPE 5 contains several buttons that could also be found in the previous version of PIPE, but the

implementation of the functionality that was provided by those buttons is missing from PIPE. Some of

these buttons just did nothing when clicked, other buttons did display an error dialog encouraging the

user to open a ticket on Github if they felt that this functionality is important. In either case, having a

clickable button gives the user the expectation that this button does something. To prevent this, buttons

of functionality that is not implemented have been disabled, so they appear grey and not clickable.

While PIPE still works with coloured Petri nets, and will open previously saved coloured Petri nets,

the button that allowed users to add or remove tokens has been disabled. The reason for this is that

this dialog, and the code that should add or remove token types from Petri nets, contains several bugs.

When adding token types, the Petri net does not update weights on arcs to reflect this. When removing

token types, the net can become inconsistent without a way to recover from this. When filling in a field

to add a token type, the user has to press enter before closing the dialog, or the change will not take

effect. Since this thesis is not focussed on these type of Petri nets, and the program will not be used at

LIACS to analyse or build coloured Petri nets, the safest way to provide a robust and fool-proof build

of PIPE is by disabling the functionality until it is fixed.

Numbering of components

PIPE 5 used to number places and transitions starting with P0 and T0. This is not incorrect, but it does

not match the literature that is used at LIACS [7]. To be able to more easily recreate Petri nets found in

this work numbering now starts with 1.

Export to image

While not really a bug, the functionality to export a Petri net to an image was not implemented. This

functionality is useful, especially when using the Petri net outside of PIPE. This functionality was

implemented by using the Painter that usually paints the Petri net on the canvas in the Petri net tab

4.5. Bugs 37

Figure 4.8: Inconsistent Petri net after renaming the transition and drawing an extra arc.

on a Graphics2D instance. First the bounding borders of the Petri net components were calculated to

create the Graphics2D object, then the painter was offset so the top-left component would be painted

in the top-left corner. Finally all components would be drawn on the Graphics2D object, and exported

using Java’s built-in image export function to a png file.

Added examples

PIPE is distributed with some examples that can be accessed via a menu item “Examples”. The existing

examples would not be displayed, because the placeholder text was never replaced with the actual

internal directory where the examples were located. Some new examples were added based on the

Petri nets used for exercises during the Theory of Concurrency course. These examples can be found at

Appendix A.

4.5.4 Drawing

Renaming

Renaming items was not handled correctly in both the controller and the model. Arcs in the model have

a hidden id that must be unique, which is based on the two components that arc is connected to. This

id used to be only set when the arc was created. Whenever a new arc is created, it checks its generated

id against all the existing ids in the model. The problem was that if a component was renamed after

an arc was already attached to that component, a new arc could be connected. The The Petri net in

figure 4.8 shows a net where originally the transition was named “T0” and an arc was drawn between

P0 and that transition. The arc would get a hidden id “P0 to T0”. After renaming T0 to Renamed, the

name of the arc would stay the same. The new drawn arc would have hidden id “P0 to Renamed”, which

does not clash with the previously drawn arc. If a new arc would have been drawn without renaming,

the arc would not have been accepted by PIPE.

The controller maintains a map that maps component names to the model. When a component is

added, this map is updated with that component’s name. Similar to the problem with the model, when

a component was renamed, this map was not updated. This resulted in components not being able to

38 Chapter 4. Contributions

Figure 4.9: Inconsistent Petri net after deleting the middle place.

delete when they were renamed. When they were renamed back to their original name, they could be

deleted again as expected.

When a component is renamed, it sends out a change event that other classes can listen to. The fix to

both problems was to use the publisher-subscriber pattern to update the model and the controller when

such a change event happened.

Deletion

Deleting components resulted in inconsistent Petri nets. Furthermore, undoing deletions did not result

in getting the original Petri net back. As a side-effect of deleting components, other components could

only be moved horizontally. This was caused by several issues, mostly relating to unfinished code.

The most visible problem was that deleting a component would only result in deleting that component,

and deleting all outbound arcs of that component. All inbound arcs would remain, as shown in fig-

ure 4.9. The result is not a valid Petri net. The cause of this problem was that there was no code related

to deleting inbound arcs at all. Simply extending the existing deletion code to also take into account

inbound arcs solved that problem.

Undoing deletion was not possible at all. There were two problems causing this. The first problem

was that the undoable events that were generated by deletion were not registered with the undoable

event listener that is used by the undo and redo actions. Since those events were lost, they could not

be undone. The other problem was that the deletion event assumed only one component was removed,

even if that component was a place or transition with arcs attached to it. The solution to this problem

was to pass on the right event listener, and to use the MultipleEdit class to group together deletions

of multiple components.

MultipleEdit is a sequence of undoable events, in the order that they are performed. This sequence

always leaves the Petri net in a consistent state. However, when undoing such a sequence, it did

sometimes throw an exception before the whole MultipleEdit was undone. The problem here was that

the events in MultipleEdit were undone and redone in the same arbitrary order.

4.5. Bugs 39

Figure 4.10: T0 appears enabled in animation mode, while the current structure of the Petri net does not allow T0 to fire.

This proves to be problematic when, for example, an arc is added to the Petri net, but the components

the arc should be connected to are not yet in the net. This problem was fixed by making the sequence

an ordered list, where undoing the edit will traverse the list in reverse order. This will ensure the net is

always in a consistent state, even when undoing an undoable event.

4.5.5 Animation

Caching

When animating a Petri net, the animated net could behave wrongly if it was animated before. In

particular, transitions could appear enabled in animation mode while they were not. Firing transitions

would not always result in the correct configuration.

The controller responsible for animating the Petri net has a cache for state changes. When a transition

is fired that is not already in this cache, it is added to the cache. When in the same configuration at a

later point in time, the cache is used to display the next state. Since the structure of a Petri net does

not change during animation this works fine during a single animation run. However, when places are

kept the same, but transitions or arcs are changed, the cached configuration changes of the old net are

used if they were calculated then. This is visible in figure 4.10, where during the first animation mode

the arcs were pointing from P0 to T0 and from T0 to P1. After firing T0, the structure of the net was

changed by reversing the arcs. T0 now shows up as enabled, because the cache says it is, but from the

structure of the net we know that this is not the case. The solution to this problem was just clearing the

cache every time animation mode is started.

Multi-coloured nets

When a Petri net contained more than one type of token, only transitions where all input places

contained all types of tokens were enabled, even if not all types of tokens were required. In figure 4.11

all three transitions should be enabled. Only T0 shows up as enabled, because P0 contains both types of

tokens.

Arcs in PIPE may have an expression as weight instead of a natural number. It seems an attempt was

done to prevent transitions from being able to fire if this expression evaluated to 0. The code that did

40 Chapter 4. Contributions

Figure 4.11: T1 and T2 do not show up as enabled.

this originally tested if there was a token type where the number of tokens was −1, likely a signal value

of some kind. Later this test was rewritten to not enable if there was any token type that had a 0 token

count. The code now tests if at least 1 token of any type is removed from the place, which works better.

It is unknown if this is the intended enable rule, but the unit tests on which this is tested now pass

again. In the end it does not matter much for this thesis, as coloured Petri nets are disabled for this

build.

4.5.6 Graphical

Mouse events

When drawing arcs in PIPE, the end point of an edge would not update when hovering over other

elements (places, transitions, labels, other edges), causing stuttering movement of the end point of the

arc. Normally when mouse events are passed to an element on a canvas, the mouse event “bubbles”

up through parents of that element until it reaches the canvas container. To perform a certain task,

one binds an event handler to the most appropriate component, which will be called when the event

bubbles up far enough.

In this case, the event never bubbled up, causing the event to never reach the event handler when the

mouse hovered over anything else than the background of the canvas. The fix for this was to manually

let the event bubble up through the parent, while translating to the coordinate system to that of the

parent.

Capacity

Capacity is displayed in PIPE as a tooltip. The capacity that was shown in the tooltip would not change

until something else was changed too. This was caused by a missing change event when the capacity

was changed. Adding this made the tooltip update automatically.

Chapter 5

Conclusions

The goal of this project was to build a version of PIPE 5 that supported EN systems and a way to analyse

them. During this project we created three modules. The first module analyses a Petri net and determines

if it will behave like an EN system. This module can also transform Petri nets that look like EN systems to

Petri nets that behave like EN systems. The second module can create useful configuration and coverability

graphs for EN systems and P/T systems. The third module can create process nets based on a fire sequence

for an EN system.

To make PIPE 5 usable by students, a large number of bugs in the parts of the program students are likely

to use were fixed during this project. The drawing mode and animation mode should now be bug-free when

being used for EN systems and P/T systems. To facilitate students using this program further, some small

tweaks were made to improve the experience with the program, such as improved dialogs for loading and

saving Petri nets and exiting the program, as well as visually disabling functionality that is not implemented.

The final build will be available as 4 Github projects1. The changes that were made during this project have

been proposed as pull requests for the original PIPE project on Github2. At the time of writing, some of the

changes have been approved, while others are still pending.

1https://github.com/search?q=user%3Adcduba+PIPE+fork%3Atrue
2https://github.com/search?q=user%3Asarahtattersall+PIPE

41

https://github.com/search?q=user%3Adcduba+PIPE+fork%3Atrue
https://github.com/search?q=user%3Asarahtattersall+PIPE

42 Chapter 5. Conclusions

5.1 Future work

The support for coloured Petri nets in PIPE is currently not complete. It is currently not possible to add a

guard function to transitions and to add explicit colour sets to places. Besides this, the way PIPE handles

adding new token types is very error-prone. The dialog to add and remove tokens should be reworked and

the graphical representation should be updated immediately. Changes to token types should be undoable

and never put the Petri net in a state where it is no longer editable or can no longer be animated.

PIPE is still missing zoom functionality. Zooming allows someone to zoom out and view a larger portion of

a Petri net on the screen, or zoom in to observe a small section of the Petri net. It is also missing the ability to

create a branching process of the current Petri net. The button to use an algorithm to layout the Petri net is

disabled as well. Finally, the option to export the Petri net as the portable Timed Net format, or the Postscript

format for use outside PIPE are not implemented.

Views of arcs in particular are still messy, and a bug still exists where the control points of an arc do not

always become invisible when the connected transition or place is deleted. The interface currently gives

options to delete the control points on either end of an arc. While the bug has been fixed that actually deleted

these points, resulting in an arc with no end point, the option should still be made invisible. Similarly

splitting the control point at the end of an arc currently yields an invisible runtime error. The option should

either be hidden, or split the edge before the end point.

Bibliography

[1] Petri-lld on sourceforge. https://sourceforge.net/projects/petrilld/files/petrilld/. Accessed:

21 August 2016.

[2] Petri nets world: Complete overview of petri nets tools database. http://www.informatik.

uni-hamburg.de/TGI/PetriNets/tools/complete_db.html. Accessed: 21 August 2016.

[3] Platform independent petri net editor download on sourceforge. https://sourceforge.net/projects/

pipe2/. Accessed: 15 August 2016.

[4] Bonet, P., Lladó, C. M., Puijaner, R., and Knottenbelt, W. J. PIPE v2. 5: A Petri net tool for perfor-

mance modelling. In Proc. 23rd Latin American Conference on Informatics (CLEI 2007) (2007).

[5] Chiola, G., Marsan, M. A., Balbo, G., and Conte, G. Generalized stochastic Petri nets: A definition

at the net level and its implications. IEEE Transactions on software engineering 19, 2 (1993), pp. 89–107.

[6] de Zwijger, W. Demonstration tools for petri nets. Bachelor thesis, Leiden University, March 2010.

[7] Engelfriet, J., and Rozenberg, G. Lecture notes Theory of Concurrency, 1998.

[8] Esparza, J., and Meyer, P. Petri nets - homework 1.

https://www7.in.tum.de/um/courses/petri/SS2015/exercises/ex1.pdf. Accessed: 15 August 2016.

[9] Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1. Springer Science

& Business Media, May 1997.

[10] Larsen, K. G. Computer Aided Verification: 3rd International Workshop, CAV’91. Springer Science & Busi-

ness Media, April 1992.

[11] Lomazova, I. A. On occurrence net semantics for Petri nets with contacts. In International Symposium on

Fundamentals of Computation Theory (1997), Springer, pp. 317–328.

[12] McGill University. Petri nets assignment.

http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/assignments/PN. Accessed: 15 August 2016.

43

https://sourceforge.net/projects/petrilld/files/petrilld/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/complete_db.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/complete_db.html
https://sourceforge.net/projects/pipe2/
https://sourceforge.net/projects/pipe2/
https://www7.in.tum.de/um/courses/petri/SS2015/exercises/ex1.pdf
http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/assignments/PN

44 BIBLIOGRAPHY

[13] Reisig, W., and Rozenberg, G. Lectures on Petri nets, LNCS 1491, 1492, 1998.

[14] Rozenberg, G. Advances in Petri Nets 1987, vol. 266. Springer Science & Business Media, 1987.

[15] Tattersall, S. PIPE — The great re-plumbing. Master thesis, Imperial College London, June 2014.

Appendix A

Added examples

Figure A.1: EN system with seasons

45

46 Appendix A. Added examples

Figure A.2: “Producer-consumer” EN system without contact

Figure A.3: EN system with conflict and confusion

47

Figure A.4: Large EN system without contact

48 Appendix A. Added examples

Figure A.5: EN system without contact

Figure A.6: “Producer-consumer” EN system with contact

Appendix B

Source code

This appendix contains the source code of the three modules that were added. During this project, changes

were made in 118 files scattered over 4 Github projects. Listing all these changes in this appendix would

create an unreadable mess. The reader is encouraged to review the changes that were made on Github1.

B.1 EN module

B.1.1 ENValidator.form

<?xml version=” 1 . 0 ” encoding=”UTF−8” ?>

<form xmlns=” h t t p : //www. i n t e l l i j . com/uides igner/form/” version=”1” bind−to−c l a s s =” pipe . gui . v a l i d a t i o n . ENValidator ”>

<grid id=”27 dc6” binding=”mainPanel” layout−manager=”FormLayout”>

<rowspec value=” center :max (d ; 4 px) :noGrow”/>

<rowspec value=” top:4dlu:noGrow ”/>

<rowspec value=” center :max (d ; 4 px) :noGrow”/>

<rowspec value=” top:4dlu:noGrow ”/>

<rowspec value=” center :d :grow ”/>

<rowspec value=” top:4dlu:noGrow ”/>

<rowspec value=” center :max (d ; 4 px) :noGrow”/>

<rowspec value=” top:4dlu:noGrow ”/>

<rowspec value=” center :max (d ; 4 px) :noGrow”/>

<co lspec value=” f i l l : d : g r o w ”/>

<c o n s t r a i n t s>

<xy x=”20” y=”19” width=” 484 ” height=” 551 ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s />

<border type=”none”/>

<ch i ldren>

<s p l i t p a n e id=” ec84 ”>

<c o n s t r a i n t s>

<grid row=”2” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”3” hsize−pol i cy=”3” anchor=”1” f i l l =”1” indent=”0” use−parent−layout=” f a l s e ”>

<preferred−s i z e width=”200 ” height=” 200 ”/>

</grid>

<forms d e f a u l t a l i g n−v e r t=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

1https://github.com/search?q=user%3Adcduba+PIPE+fork%3Atrue

49

https://github.com/search?q=user%3Adcduba+PIPE+fork%3Atrue

50 Appendix B. Source code

<continuousLayout value=” true ”/>

<d i v i d e r S i z e value=”0”/>

<resizeWeight value=” 1 . 0 ”/>

</ p r o p e r t i e s>

<border type=”none”/>

<ch i ldren>

<grid id=” 62816 ” layout−manager=”GridLayoutManager” row−count=”9” column−count=”1” same−s ize−h o r i z o n t a l l y =” f a l s e ” same−s ize−v e r t i c a l l y =” f a l s e ” hgap=”−1

” vgap=”−1”>

<margin top=”0” l e f t =”0” bottom=”0” r i g h t =”0”/>

<c o n s t r a i n t s>

<s p l i t p a n e p o s i t i o n =” l e f t ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s />

<border type=”none”/>

<ch i ldren>

<component id=” f2919 ” c l a s s =” javax . swing . JLabe l ”>

<c o n s t r a i n t s>

<grid row=”0” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”0” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<t e x t value=” EN Val idat ion checks ”/>

</ p r o p e r t i e s>

</component>

<vspacer id=”b3828”>

<c o n s t r a i n t s>

<grid row=”1” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”6” hsize−pol i cy=”1” anchor=”0” f i l l =”2” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

</vspacer>

<component id=”7 f92 ” c l a s s =” javax . swing . JCheckBox” binding=” capacityCheck ”>

<c o n s t r a i n t s>

<grid row=”2” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”3” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” f a l s e ”/>

<t e x t value=” Places have c a p a c i t y 1”/>

</ p r o p e r t i e s>

</component>

<component id=”dbb63” c l a s s =” javax . swing . JCheckBox” binding=”tokenCheck”>

<c o n s t r a i n t s>

<grid row=”3” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”3” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” f a l s e ”/>

<t e x t value=” Places conta in a t most 1 token ”/>

</ p r o p e r t i e s>

</component>

<component id=” e39c8 ” c l a s s =” javax . swing . JCheckBox” binding=” simpl ic i tyCheck ”>

<c o n s t r a i n t s>

<grid row=”4” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”3” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” f a l s e ”/>

<t e x t value=”Net conta ins only places and immediate t r a n s i t i o n s ”/>

</ p r o p e r t i e s>

</component>

<component id=”69 bcb” c l a s s =” javax . swing . JCheckBox” binding=” sel f loopCheck ”>

<c o n s t r a i n t s>

<grid row=”6” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”3” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” f a l s e ”/>

<s e l e c t e d value=” f a l s e ”/>

<t e x t value=”Net conta ins no s e l f−loops ”/>

</ p r o p e r t i e s>

<c l i e n t P r o p e r t i e s>

<hideActionText c l a s s =” java . lang . Boolean ” value=” f a l s e ”/>

<html . d i s a b l e c l a s s =” java . lang . Boolean ” value=” f a l s e ”/>

</ c l i e n t P r o p e r t i e s>

</component>

<component id=”9d68c” c l a s s =” javax . swing . JCheckBox” binding=”arcWeightCheck”>

B.1. EN module 51

<c o n s t r a i n t s>

<grid row=”5” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”3” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” f a l s e ”/>

<t e x t value=”Arcs have weight 1”/>

</ p r o p e r t i e s>

</component>

<component id=” e164c ” c l a s s =” javax . swing . JCheckBox” binding=” inhibi torArcCheck ”>

<c o n s t r a i n t s>

<grid row=”7” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”3” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” f a l s e ”/>

<t e x t value=”Net conta ins no i n h i b i t o r a r c s ”/>

</ p r o p e r t i e s>

</component>

<component id=”2 c73 ” c l a s s =” javax . swing . JCheckBox” binding=” iso la t ionCheck ”>

<c o n s t r a i n t s>

<grid row=”8” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”3” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” f a l s e ”/>

<t e x t value=”No i s o l a t e d t r a n s i t i o n s ”/>

</ p r o p e r t i e s>

</component>

</chi ldren>

</grid>

<grid id=”9b419” layout−manager=”GridLayoutManager” row−count=”1” column−count=”1” same−s ize−h o r i z o n t a l l y =” f a l s e ” same−s ize−v e r t i c a l l y =” f a l s e ” hgap=”−1

” vgap=”−1”>

<margin top=”0” l e f t =”0” bottom=”0” r i g h t =”0”/>

<c o n s t r a i n t s>

<s p l i t p a n e p o s i t i o n =” r i g h t ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s />

<border type=”none”/>

<ch i ldren>

<component id=”c0d24” c l a s s =” javax . swing . JLabe l ” binding=” v a l i d a t i o n I c o n ”>

<c o n s t r a i n t s>

<grid row=”0” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”4” hsize−pol i cy=”4” anchor=”0” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<t e x t value=”En v a l i d a t i o n icon ”/>

<too lT ipText value=”Does t h i s P e t r i net v a l i d a t e as an EN system”/>

</ p r o p e r t i e s>

</component>

</chi ldren>

</grid>

</chi ldren>

</ s p l i t p a n e>

<grid id=” ea027 ” layout−manager=”GridLayoutManager” row−count=”1” column−count=”1” same−s ize−h o r i z o n t a l l y =” f a l s e ” same−s ize−v e r t i c a l l y =” f a l s e ” hgap=”−1”

vgap=”−1”>

<margin top=”4” l e f t =”4” bottom=”4” r i g h t =”4”/>

<c o n s t r a i n t s>

<grid row=”0” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”0” anchor=”9” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

<forms d e f a u l t a l i g n−v e r t=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s />

<border type=”none”/>

<ch i ldren>

<component id=” a3 f c1 ” c l a s s =” javax . swing . JLabe l ” binding=” informationLabel ”>

<c o n s t r a i n t s>

<grid row=”0” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”0” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<t e x t value=” I f a P/T net holds the fol lowing proper t ies , the net behaves as an elementary net (EN) . ”/>

</ p r o p e r t i e s>

</component>

</chi ldren>

</grid>

52 Appendix B. Source code

<grid id=”115 f6 ” layout−manager=”GridLayoutManager” row−count=”1” column−count=”1” same−s ize−h o r i z o n t a l l y =” f a l s e ” same−s ize−v e r t i c a l l y =” f a l s e ” hgap=”−1”

vgap=”−1”>

<margin top=”4” l e f t =”4” bottom=”4” r i g h t =”4”/>

<c o n s t r a i n t s>

<grid row=”4” column=”0” row−span=”2” col−span=”1” vsize−pol i cy=”4” hsize−pol i cy=”3” anchor=”0” f i l l =”3” indent=”0” use−parent−layout=” f a l s e ”/>

<forms d e f a u l t a l i g n−v e r t=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s />

<border type=”none”/>

<ch i ldren>

<s c r o l l p a n e id=”68dd0”>

<c o n s t r a i n t s>

<grid row=”0” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”7” hsize−pol i cy=”7” anchor=”0” f i l l =”3” indent=”0” use−parent−layout=” f a l s e ”>

<preferred−s i z e width=”−1” height=”500 ”/>

</grid>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” true ”/>

<v e r t i c a l S c r o l l B a r P o l i c y value=”22”/>

</ p r o p e r t i e s>

<border type=”none”/>

<ch i ldren>

<component id=”440 be” c l a s s =” javax . swing . JTextArea ” binding=” r e s u l t P a n e l ”>

<c o n s t r a i n t s />

<p r o p e r t i e s>

<e d i t a b l e value=” f a l s e ”/>

<enabled value=” true ”/>

<lineWrap value=” true ”/>

</ p r o p e r t i e s>

</component>

</chi ldren>

</ s c r o l l p a n e>

</chi ldren>

</grid>

<s p l i t p a n e id=”ad940”>

<c o n s t r a i n t s>

<grid row=”8” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”3” hsize−pol i cy=”3” anchor=”0” f i l l =”1” indent=”0” use−parent−layout=” f a l s e ”>

<preferred−s i z e width=”200 ” height=” 200 ”/>

</grid>

<forms/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<d i v i d e r S i z e value=”0”/>

<enabled value=” f a l s e ”/>

</ p r o p e r t i e s>

<border type=”none”/>

<ch i ldren>

<component id=”b88bc” c l a s s =” javax . swing . JButton ” binding=” convertButton ”>

<c o n s t r a i n t s>

<s p l i t p a n e p o s i t i o n =” r i g h t ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<p r e f e r r e d S i z e width=”500 ” height=”32”/>

<s e l e c t e d value=” f a l s e ”/>

<t e x t value=”Convert”/>

<v i s i b l e value=” true ”/>

</ p r o p e r t i e s>

</component>

<component id=”3b6e8” c l a s s =” javax . swing . JButton ” binding=” re f reshBut ton ”>

<c o n s t r a i n t s>

<s p l i t p a n e p o s i t i o n =” l e f t ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<t e x t value=””/>

<too lT ipText value=” Val idate again ”/>

</ p r o p e r t i e s>

</component>

</chi ldren>

</ s p l i t p a n e>

</chi ldren>

B.1. EN module 53

</grid>

<buttonGroups>

<group name=”loadGroup”>

<member id=” 3408b”/>

<member id=”35 f8e ”/>

<member id=” ac1b4 ”/>

</group>

</buttonGroups>

</form>

B.1.2 ENValidator.java

package pipe . gui . v a l i d a t i o n ;

import org . apache . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s ;

import uk . ac . imper ia l . pipe . except ions . Inval idRateExcept ion ;

import uk . ac . imper ia l . pipe . models . p e t r i n e t .∗ ;

import j ava . io . F i l e ;

import j avax . swing .∗ ;

import j ava . awt . F i l e D i a l o g ;

import j ava . awt . event . ActionEvent ;

import j ava . awt . event . Act ionLis tener ;

import j ava . io . IOException ;

import j ava . net .URL;

import j ava . u t i l .∗ ;

import j ava . u t i l . concurrent . ExecutionException ;

import j ava . u t i l . concurrent . ExecutorServ ice ;

import j ava . u t i l . concurrent . Executors ;

/∗∗

∗ P e r f o r m s t h e e x p l o r a t i o n and s t e a d y s t a t e a n a l y s i s o f a P e t r i n e t .

∗ D i s p l a y s u s e f u l p e r f o r m a n c e a n a l y s i s m e t r i c s

∗/

public c l a s s ENValidator {

private s t a t i c f i n a l S t r i n g PLACE INTRO = ”## Places ##\n” ;

private s t a t i c f i n a l S t r i n g TRANS INTRO = ”## T r a n s i t i o n s ##\n T r a n s i t i o n s in EN systems are immediate , have no p r i o r i t y and are s i n g l e s e r v e r s .\n” ;

private s t a t i c f i n a l S t r i n g ARC INTRO = ”## Arcs ##\nArcs in EN systems can not have a weight (other than 1) . S e l f−loops are not allowed , because in an EN

system a t r a n s i t i o n i s only enabled i f a l l output p laces do not conta in a token , while in P/T systems a t r a n s i t i o n i s enabled i f the r e s u l t i n g number

of tokens in output p laces does not exceed the c a p a c i t y .\n” ;

private JPanel mainPanel ;

private JLabe l v a l i d a t i o n I c o n ;

private JCheckBox capacityCheck ;

private JCheckBox tokenCheck ;

private JCheckBox simpl ic i tyCheck ;

private JCheckBox sel f loopCheck ;

private JCheckBox arcWeightCheck ;

private JCheckBox inhibi torArcCheck ;

private JCheckBox iso la t ionCheck ;

private JLabe l informationLabel ;

private JButton convertButton ;

private JButton re f reshBut ton ;

private JTextArea r e s u l t P a n e l ;

54 Appendix B. Source code

private Petr iNet net ;

/∗∗

∗ S e t s up t h e UI

∗/

private void setUp () {

ImageIcon icon = new ImageIcon (getImageURL (” r e f r e s h . png”)) ;

re f reshBut ton . s e t I c o n (icon) ;

/ / S e l e c t c o r r e c t c h e c k b o x e s upon open ing form

val idateNet () ;

convertButton . addActionListener (new Act ionLis tener () {

@Override

public void actionPerformed (ActionEvent e) {

convertNet () ;

va l idateNet () ;

}

}) ;

re f reshBut ton . addActionListener (new Act ionLis tener () {

@Override

public void actionPerformed (ActionEvent e) {

val idateNet () ;

}

}) ;

}

private URL getImageURL (S t r i n g name) {

return t h i s . ge tClass () . getResource (”/” + ”images” + F i l e . separa tor + name) ;

}

private void convertNet () {

Col lec t ion<Place> places = net . g e t P l a c e s () ;

Co l lec t ion<Trans i t ion> t r a n s i t i o n s = net . g e t T r a n s i t i o n s () ;

Co l lec t ion<InboundArc> inboundArcs = net . getInboundArcs () ;

Co l lec t ion<OutboundArc> outboundArcs = net . getOutboundArcs () ;

for (P lace place : p laces) {

i f (p lace . getNumberOfTokensStored () > 1) {

/ / Working on a copy , so t h e HashMap d o e s not change w h i l e chang ing t h e a c t u a l t o k e n s

for (Map. Entry<Str ing , Integer> entry : new HashMap<Str ing , Integer>(p lace . getTokenCounts ()) . e n t r y S e t ()) {

place . removeAllTokens (entry . getKey ()) ;

}

place . setTokenCount (” Defaul t ” , 1) ;

}

place . se tCapac i ty (1) ;

}

for (T r a n s i t i o n t r a n s i t i o n : t r a n s i t i o n s) {

t r a n s i t i o n . s e t P r i o r i t y (1) ;

t r a n s i t i o n . s e t I n f i n i t e S e r v e r (f a l s e) ;

t r a n s i t i o n . setTimed (f a l s e) ;

}

for (InboundArc inboundArc : inboundArcs) {

for (Map. Entry<Str ing , Str ing> entry : inboundArc . getTokenWeights () . en t r y Se t ()) {

inboundArc . setWeight (entry . getKey () , ””) ;

}

inboundArc . setWeight (” Defaul t ” , ”1”) ;

}

for (OutboundArc outboundArc : outboundArcs) {

for (Map. Entry<Str ing , Str ing> entry : outboundArc . getTokenWeights () . e n t r y Se t ()) {

outboundArc . setWeight (entry . getKey () , ””) ;

}

outboundArc . setWeight (” Defaul t ” , ”1”) ;

}

}

B.1. EN module 55

private void val idateNet () {

Col lec t ion<Place> places = net . g e t P l a c e s () ;

Co l lec t ion<Trans i t ion> t r a n s i t i o n s = net . g e t T r a n s i t i o n s () ;

Co l lec t ion<InboundArc> inboundArcs = net . getInboundArcs () ;

Co l lec t ion<OutboundArc> outboundArcs = net . getOutboundArcs () ;

ImageIcon icon ;

boolean hasENCapacity = t rue ;

boolean hasENTokens = t rue ;

boolean isSimpleNet = t rue ;

boolean h a s S e l f l o o p s = f a l s e ;

boolean hasArcWeights = f a l s e ;

boolean h a s I n h i b i t o r A r c s = f a l s e ;

boolean h a s I s o l a t e d T r a n s i t i o n s = f a l s e ;

S t r i n g v a l i d a t i o n R e s u l t = ”” ;

Set<Trans i t ion> inboundConnectedTransitions = new HashSet<>() ;

Set<Trans i t ion> outboundConnectedTransitions = new HashSet<>() ;

/∗ An EN system c o n s i s t s o f on ly s i m p l e p l a c e s and t r a n s i t i o n s , where p l a c e s

∗ have a c a p a c i t y o f 1 , and a t most 1 t o k e n . A P / T sys t em with t h e s e p r o p e r t i e s

∗ on ly b e h a v e s as an EN syst em i f i t c o n t a i n s no s e l f l o o p s .

∗/

v a l i d a t i o n R e s u l t += PLACE INTRO ;

for (P lace place : p laces) {

i f (! p lace . h a s C a p a c i t y R e s t r i c t i o n () || place . getCapaci ty () > 1) {

v a l i d a t i o n R e s u l t += ”− Place ” + place . get Id () + ” has ” + (place . h a s C a p a c i t y R e s t r i c t i o n () ? (”a c a p a c i t y of ” + place . getCapaci ty ()) : ”

an i n f i n i t e c a p a c i t y ”) + ” and should have c a p a c i t y 1 .\n” ;

hasENCapacity = f a l s e ;

}

i f (p lace . getNumberOfTokensStored () > 1) {

v a l i d a t i o n R e s u l t += ”− Place ” + place . get Id () + ” has ” + place . getNumberOfTokensStored () + ” tokens and should have a t most 1 token .\n”

;

hasENTokens = f a l s e ;

}

}

i f (hasENCapacity && hasENTokens) {

v a l i d a t i o n R e s u l t += ”− None\n” ;

}

v a l i d a t i o n R e s u l t += ”\n” + TRANS INTRO ;

for (T r a n s i t i o n t r a n s i t i o n : t r a n s i t i o n s) {

i f (t r a n s i t i o n . isTimed () || t r a n s i t i o n . g e t P r i o r i t y () != 1 || t r a n s i t i o n . getRate () . getRateType () != RateType .NORMAL RATE || t r a n s i t i o n .

i s I n f i n i t e S e r v e r ()) {

v a l i d a t i o n R e s u l t += ”− T r a n s i t i o n ” + t r a n s i t i o n . get Id () + ” i s not a \”simple\” t r a n s i t i o n .\n” ;

isSimpleNet = f a l s e ;

}

}

i f (isSimpleNet) {

v a l i d a t i o n R e s u l t += ”− None\n” ;

}

v a l i d a t i o n R e s u l t += ”\n” + ARC INTRO ;

for (InboundArc inboundArc : inboundArcs) {

Place s t a r t = inboundArc . getSource () ;

T r a n s i t i o n middle = inboundArc . getTarget () ;

for (OutboundArc outboundArc : outboundArcs) {

i f (outboundArc . getSource () == middle && outboundArc . getTarget () == s t a r t) {

v a l i d a t i o n R e s u l t += ”− Place ” + s t a r t . get Id () + ” loops to i t s e l f via t r a n s i t i o n ” + middle . get Id () + ” .\n” ;

h a s S e l f l o o p s = t rue ;

}

}

}

for (InboundArc inboundArc : inboundArcs) {

Place s t a r t = inboundArc . getSource () ;

T r a n s i t i o n end = inboundArc . getTarget () ;

i f (inboundArc instanceof InboundInhibitorArc) {

v a l i d a t i o n R e s u l t += ”− An i n h i b i t o r arc between ” + s t a r t . get Id () + ” and ” + end . get Id () + ” e x i s t s while none should e x i s t . ” ;

56 Appendix B. Source code

h a s I n h i b i t o r A r c s = t rue ;

}

for (Map. Entry<Str ing , Str ing> entry : inboundArc . getTokenWeights () . en t r y Se t ()) {

i f (entry . getKey () . equals (” Defaul t ”) && ! entry . getValue () . equals (”1”)) {

v a l i d a t i o n R e s u l t += ”− The arc between ” + s t a r t . get Id () + ” and ” + end . get Id () + ” has weight \”” + entry . getValue () + ”\”

while a weight of \”1\” i s expected .\n” ;

hasArcWeights = t rue ;

} e lse i f (! entry . getKey () . equals (” Defaul t ”) && ! entry . getValue () . equals (””) && ! entry . getValue () . equals (”0”)) {

v a l i d a t i o n R e s u l t += ”− The arc between ” + s t a r t . get Id () + ” and ” + end . get Id () + ” has a weight f o r tokens of type ” + entry .

getKey () + ” while none i s expected .\n” ;

hasArcWeights = t rue ;

}

}

inboundConnectedTransitions . add (end) ;

}

for (OutboundArc outboundArc : outboundArcs) {

T r a n s i t i o n s t a r t = outboundArc . getSource () ;

P lace end = outboundArc . getTarget () ;

for (Map. Entry<Str ing , Str ing> entry : outboundArc . getTokenWeights () . e n t r y Se t ()) {

i f (entry . getKey () . equals (” Defaul t ”) && ! entry . getValue () . equals (”1”)) {

v a l i d a t i o n R e s u l t += ”− The arc between ” + s t a r t . get Id () + ” and ” + end . get Id () + ” has weight \”” + entry . getValue () + ”\”

while a weight of \”1\” i s expected .\n” ;

hasArcWeights = t rue ;

} e lse i f (! entry . getKey () . equals (” Defaul t ”) && ! entry . getValue () . equals (””) && ! entry . getValue () . equals (”0”)) {

v a l i d a t i o n R e s u l t += ”− The arc between ” + s t a r t . get Id () + ” and ” + end . get Id () + ” has a weight f o r tokens of type ” + entry .

getKey () + ” while none i s expected .\n” ;

hasArcWeights = t rue ;

}

}

outboundConnectedTransitions . add (s t a r t) ;

}

inboundConnectedTransitions . r e t a i n A l l (outboundConnectedTransitions) ;

i f (t r a n s i t i o n s . s i z e () > inboundConnectedTransitions . s i z e ()) {

h a s I s o l a t e d T r a n s i t i o n s = t rue ;

t r a n s i t i o n s . removeAll (inboundConnectedTransitions) ;

for (T r a n s i t i o n t r a n s i t i o n : t r a n s i t i o n s) {

v a l i d a t i o n R e s u l t += ”− T r a n s i t i o n ” + t r a n s i t i o n . get Id () + ” should have both inbound and outbound a r c s .\n” ;

}

}

i f (! h a s S e l f l o o p s && ! hasArcWeights && ! h a s I n h i b i t o r A r c s && ! h a s I s o l a t e d T r a n s i t i o n s) {

v a l i d a t i o n R e s u l t += ”− None\n” ;

}

/ / The c h e c k b o x e s g i v e e a s y c o n f i r m a t i o n which c o n d i t i o n s a r e not met

capacityCheck . s e t S e l e c t e d (hasENCapacity) ;

tokenCheck . s e t S e l e c t e d (hasENTokens) ;

s impl ic i tyCheck . s e t S e l e c t e d (isSimpleNet) ;

se l f loopCheck . s e t S e l e c t e d (! h a s S e l f l o o p s) ;

arcWeightCheck . s e t S e l e c t e d (! hasArcWeights) ;

inhibi torArcCheck . s e t S e l e c t e d (! h a s I n h i b i t o r A r c s) ;

i so la t ionCheck . s e t S e l e c t e d (! h a s I s o l a t e d T r a n s i t i o n s) ;

/ / We canno t c o n v e r t i f i t c o n t a i n s s e l f l o o p s , b e c a u s e we do not know how t h e u s e r wants t o s o l v e t h i s

i f (h a s S e l f l o o p s) {

convertButton . setEnabled (f a l s e) ;

convertButton . setToolTipText (” Please remove a l l s e l f l o o p s before convert ing to an EN system”) ;

v a l i d a t i o n R e s u l t += ”\n\nPlease remove a l l s e l f l o o p s before convert ing to an EN system . ” ;

} e lse i f (h a s I n h i b i t o r A r c s) {

convertButton . setEnabled (f a l s e) ;

convertButton . setToolTipText (” Please remove a l l i n h i b i t o r a r c s before convert ing to an EN system”) ;

v a l i d a t i o n R e s u l t += ”\n\nPlease remove a l l i n h i b i t o r a r c s before convert ing to an EN system . ” ;

} e lse i f (h a s I s o l a t e d T r a n s i t i o n s) {

convertButton . setEnabled (f a l s e) ;

convertButton . setToolTipText (” Please remove a l l t r a n s i t i o n s t h a t do not have both an inbound and outbound arc . ”) ;

v a l i d a t i o n R e s u l t += ”\n\nPlease remove a l l t r a n s i t i o n s t h a t do not have both an inbound and outbound arc . ” ;

B.2. Process generator module 57

} e lse i f (hasENCapacity && hasENTokens && isSimpleNet && ! h a s S e l f l o o p s && ! hasArcWeights && ! h a s I s o l a t e d T r a n s i t i o n s) {

convertButton . setEnabled (f a l s e) ;

convertButton . setToolTipText (”System i s already an EN system”) ;

} e lse {

convertButton . setEnabled (t rue) ;

convertButton . setToolTipText (” Cl ick to r e s o l v e a l l problems highl ighted above”) ;

}

/ / Easy c o n f i r m a t i o n i f sys t em i s a c t u a l l y EN syst em v i a l a r g e i c o n with checkmark / c r o s s

v a l i d a t i o n I c o n . s e t T e x t (null) ;

i f (hasENCapacity && hasENTokens && isSimpleNet && ! h a s S e l f l o o p s && ! hasArcWeights && ! h a s I n h i b i t o r A r c s && ! h a s I s o l a t e d T r a n s i t i o n s) {

icon = new ImageIcon (getImageURL (” enval id . png”)) ;

} e lse {

icon = new ImageIcon (getImageURL (” eninva l id . png”)) ;

}

v a l i d a t i o n I c o n . s e t I c o n (icon) ;

r e s u l t P a n e l . s e t T e x t (v a l i d a t i o n R e s u l t) ;

}

public ENValidator (Petr iNet petr iNet , F i l e D i a l o g f i l e D i a l o g) {

t h i s . net = petr iNet ;

setUp () ;

}

/∗∗

∗ Main method f o r running t h i s e x t e r n a l l y w i t h o u t PIPE

∗

∗ @param a r g s command l i n e arguments

∗/

public s t a t i c void main (S t r i n g [] args) {

/ / Does not make s e n s e t o run t h i s a s a s tand−a l o n e program

}

public JPanel getMainPanel () {

return mainPanel ;

}

}

B.2 Process generator module

B.2.1 ProcessGenerator.form

<?xml version=” 1 . 0 ” encoding=”UTF−8” ?>

<form xmlns=” h t t p : //www. i n t e l l i j . com/uides igner/form/” version=”1” bind−to−c l a s s =” pipe . gui . process . ProcessGenerator ”>

<grid id=”27 dc6” binding=”mainPanel” layout−manager=”GridLayoutManager” row−count=”6” column−count=”1” same−s ize−h o r i z o n t a l l y =” f a l s e ” same−s ize−v e r t i c a l l y =”

f a l s e ” hgap=”−1” vgap=”−1”>

<margin top=”0” l e f t =”0” bottom=”0” r i g h t =”0”/>

<c o n s t r a i n t s>

<xy x=”20” y=”20” width=” 911 ” height=” 561 ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s />

<border type=”none”/>

<ch i ldren>

<grid id=” 8949b” layout−manager=”GridLayoutManager” row−count=”1” column−count=”1” same−s ize−h o r i z o n t a l l y =” f a l s e ” same−s ize−v e r t i c a l l y =” f a l s e ” hgap=”−1”

vgap=”−1”>

<margin top=”4” l e f t =”4” bottom=”4” r i g h t =”4”/>

<c o n s t r a i n t s>

<grid row=”0” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”7” anchor=”1” f i l l =”1” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s />

<border type=”none”/>

<ch i ldren>

<component id=” 1043b” c l a s s =” javax . swing . JLabe l ”>

<c o n s t r a i n t s>

58 Appendix B. Source code

<grid row=”0” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”7” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<t e x t value=” Generate a process net from a f i r e sequence (s e r i e s of f i r e d t r a n s i t i o n s) . Enter the t r a n s i t i o n names , seperated with commas and/or

spaces in the f i e l d below . ”/>

</ p r o p e r t i e s>

</component>

</chi ldren>

</grid>

<component id=” e608 f ” c l a s s =” javax . swing . J T e x t F i e l d ” binding=” f i r e S e q u e n c e T e x t F i e l d ”>

<c o n s t r a i n t s>

<grid row=”1” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”7” anchor=”9” f i l l =”1” indent=”0” use−parent−layout=” f a l s e ”>

<preferred−s i z e width=”150 ” height=”−1”/>

</grid>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” true ”/>

<too lT ipText value=” Input a f i r e sequence ”/>

</ p r o p e r t i e s>

</component>

<s c r o l l p a n e id=”b8176” binding=” i n f o S c r o l l P a n e ”>

<c o n s t r a i n t s>

<grid row=”2” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”7” hsize−pol i cy=”7” anchor=”0” f i l l =”3” indent=”0” use−parent−layout=” f a l s e ”>

<minimum−s i z e width=”−1” height=” 400 ”/>

</grid>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<enabled value=” true ”/>

<v e r t i c a l S c r o l l B a r P o l i c y value=”22”/>

<v i s i b l e value=” true ”/>

</ p r o p e r t i e s>

<border type=”none”/>

<ch i ldren>

<component id=”783 ce ” c l a s s =” javax . swing . JTextPane ” binding=” infoTextPane ”>

<c o n s t r a i n t s />

<p r o p e r t i e s>

<contentType value=” t e x t /html”/>

<e d i t a b l e value=” f a l s e ”/>

<minimumSize width=”6” height=” 400”/>

</ p r o p e r t i e s>

</component>

</chi ldren>

</ s c r o l l p a n e>

<component id=”920da” c l a s s =” javax . swing . JButton ” binding=” generateButton ”>

<c o n s t r a i n t s>

<grid row=”5” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”3” hsize−pol i cy=”3” anchor=”0” f i l l =”1” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<t e x t value=” Generate ”/>

<too lT ipText value=” Generate a process net in a new tab ”/>

</ p r o p e r t i e s>

</component>

<component id=” ee8df ” c l a s s =” javax . swing . JCheckBox” binding=”condenseCheckBox”>

<c o n s t r a i n t s>

<grid row=”3” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”3” anchor=”8” f i l l =”0” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s>

<t e x t value=”Make process net as compact as p o s s i b l e ”/>

</ p r o p e r t i e s>

</component>

<component id=”7 aaec ” c l a s s =” javax . swing . JProgressBar ” binding=” progressBar ”>

<c o n s t r a i n t s>

<grid row=”4” column=”0” row−span=”1” col−span=”1” vsize−pol i cy=”0” hsize−pol i cy=”6” anchor=”0” f i l l =”1” indent=”0” use−parent−layout=” f a l s e ”/>

</ c o n s t r a i n t s>

<p r o p e r t i e s />

</component>

</chi ldren>

</grid>

</form>

B.2. Process generator module 59

B.2.2 ProcessGenerator.java

package pipe . gui . process ;

import org . apache . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s ;

import org . apache . commons . lang . S t r i n g U t i l s ;

import org . rendersnake .∗ ;

import s t a t i c org . rendersnake . HtmlAttr ibutesFactory .∗ ;

import uk . ac . imper ia l . pipe . except ions . Inval idRateExcept ion ;

import uk . ac . imper ia l . pipe . models . p e t r i n e t .∗ ;

import uk . ac . imper ia l . pipe . animation . PetriNetAnimator ;

import uk . ac . imper ia l . pipe . except ions . PetriNetComponentNotFoundException ;

import uk . ac . imper ia l . pipe . except ions . PetriNetComponentException ;

import uk . ac . imper ia l . pipe . naming . ComponentNamer ;

import uk . ac . imper ia l . pipe . models . p e t r i n e t . name .∗ ;

import uk . ac . imper ia l . u t i l s . Pa i r ;

import uk . ac . imper ia l . s t a t e . C l a s s i f i e d S t a t e ;

import uk . ac . imper ia l . s t a t e . Record ;

import uk . ac . imper ia l . pipe . v i s i t o r . ClonePetr iNet ;

import pipe . gui . widget . StateSpaceLoader ;

import pipe . gui . widget . StateSpaceLoaderException ;

import pipe . r e a c h a b i l i t y . algorithm .∗ ;

import j ava . io . F i l e ;

import j avax . swing .∗ ;

import j avax . swing . event .∗ ;

import j ava . awt . GridBagConstraints ;

import j ava . awt . GridBagLayout ;

import j ava . awt . Component ;

import j ava . awt . F i l e D i a l o g ;

import j ava . awt . event . ActionEvent ;

import j ava . awt . event . Act ionLis tener ;

import j ava . awt . event . FocusLis tener ;

import j ava . awt . event . FocusEvent ;

import j ava . io . IOException ;

import j ava . net .URL;

import j ava . u t i l .∗ ;

import j ava . u t i l . concurrent . ExecutionException ;

import j ava . u t i l . concurrent . ExecutorServ ice ;

import j ava . u t i l . concurrent . Executors ;

import j ava . u t i l . logging . Level ;

import j ava . beans . PropertyChangeEvent ;

import j ava . beans . PropertyChangeListener ;

import j ava . beans . PropertyChangeSupport ;

import j ava . lang . Math ;

import pipe . gui . ModuleBridge ;

/∗∗

∗ P e r f o r m s t h e e x p l o r a t i o n and s t e a d y s t a t e a n a l y s i s o f a P e t r i n e t .

∗ D i s p l a y s u s e f u l p e r f o r m a n c e a n a l y s i s m e t r i c s

∗/

public c l a s s ProcessGenerator {

private JPanel mainPanel ;

private J S c r o l l P a n e i n f o S c r o l l P a n e ;

private JTextPane infoTextPane ;

private J T e x t F i e l d f i r e S e q u e n c e T e x t F i e l d ;

private JButton generateButton ;

private JCheckBox condenseCheckBox ;

private JProgressBar progressBar ;

60 Appendix B. Source code

private f i n a l Petr iNet net ;

private Petr iNet animatedNet ;

private f i n a l PropertyChangeSupport changeSupport ;

private PetriNetAnimator animator ;

private S t r i n g e r r o r ;

private f i n a l i n t PROCESS NET LEFT PADDING = 1 0 0 ;

private f i n a l i n t PROCESS NET TOP PADDING = 2 0 0 ;

private f i n a l i n t PROCESS NET COLUMN DISTANCE = 7 5 ;

private f i n a l i n t PROCESS NET ROW DISTANCE = 1 0 0 ;

private f i n a l i n t PROCESS NET ANNOTATION MIN WIDTH = 6 0 0 ;

private f i n a l S t r i n g NOT ENABLED = ”TRANSITION NOT ENABLED” ;

private f i n a l S t r i n g NOT EXIST = ”TRANSITION DOES NOT EXIST” ;

private f i n a l S t r i n g PROTOCOL REMOVE = ” t r a n s i t i o n−remove” ;

private f i n a l S t r i n g PROTOCOL SELECT = ” t r a n s i t i o n−s e l e c t ” ;

private f i n a l S t r i n g PROTOCOL ADD = ” t r a n s i t i o n−add” ;

/∗∗

∗ We can on ly g e n e r a t e g u a r a n t e e d c o r r e c t p r o c e s s n e t s f o r n e t s wi th p l a c e s t h a t have c a p a c i t y 1

∗ @return

∗/

private boolean i sVal idNet () {

StateSpaceLoader stateSpaceLoader = new StateSpaceLoader (net , null) ;

Map<Trans i t ion , Pair<Set<Str ing >,Set<Str ing>>> transi t ionMap = new HashMap<>() ;

StateSpaceLoader . Resul t s s t a t e S p a c e = null ;

for (P lace place : t h i s . net . g e t P l a c e s ()) {

i f (p lace . getCapaci ty () > 1 || ! p lace . h a s C a p a c i t y R e s t r i c t i o n ()) {

t h i s . e r r o r = ” Process net generator only works on EN systems ” ;

return f a l s e ;

}

}

t r y {

Sta teSpaceExplorer . S ta teSpaceExplorerResu l t s r e s u l t s =

stateSpaceLoader . c a l c u l a t e R e s u l t s (new StateSpaceLoader . ExplorerCreator () {

@Override

public E x p l o r e r U t i l i t i e s c r e a t e (Petr iNet petr iNet) {

return new BoundedExplorerUt i l i t i es (petr iNet , 1000) ;

}

} , new StateSpaceLoader . VanishingExplorerCreator () {

@Override

public VanishingExplorer c r e a t e (E x p l o r e r U t i l i t i e s u t i l s) {

return new SimpleVanishingExplorer () ;

}

} , 1

) ;

s t a t e S p a c e = stateSpaceLoader . loadStateSpace () ;

} catch (Inval idRateExcept ion | TimelessTrapException | IOException | InterruptedExcept ion | ExecutionException | StateSpaceLoaderException e) {

t h i s . e r r o r = ”Unable to generate s t a t e space f o r contact−d e t e c t i o n ” ;

}

for (T r a n s i t i o n t r a n s i t i o n : net . g e t T r a n s i t i o n s ()) {

Set<Str ing> inboundPlaces = new HashSet<>() ;

Set<Str ing> outboundPlaces = new HashSet<>() ;

for (InboundArc arc : net . inboundArcs (t r a n s i t i o n)) {

inboundPlaces . add (arc . getSource () . get Id ()) ;

}

for (OutboundArc arc : net . outboundArcs (t r a n s i t i o n)) {

outboundPlaces . add (arc . getTarget () . get Id ()) ;

}

B.2. Process generator module 61

transi t ionMap . put (t r a n s i t i o n , new Pair<>(inboundPlaces , outboundPlaces)) ;

}

S t r i n g tokenName = null ;

for (C l a s s i f i e d S t a t e s t a t e : s t a t e S p a c e . stateMappings . values ()) {

Map<Str ing , Map<Str ing , Integer>> tokenMap = s t a t e . asMap () ;

Set<Str ing> c o n f i g u r a t i o n = new HashSet<>() ;

for (Map. Entry<Str ing , Map<Str ing , Integer>> entry : tokenMap . en t r yS e t ()) {

i f (tokenName == null) {

for (S t r i n g token : entry . getValue () . keySet ()) {

tokenName = token ;

break ;

}

}

i f (entry . getValue () . get (tokenName) == 1) {

c o n f i g u r a t i o n . add (entry . getKey ()) ;

}

}

for (Map. Entry<Trans i t ion , Pair<Set<Str ing >,Set<Str ing>>> entry : transi t ionMap . en t r yS e t ()) {

i f (c o n f i g u r a t i o n . c o n t a i n s A l l (entry . getValue () . g e t L e f t ())) {

for (S t r i n g outboundPlace : entry . getValue () . getRight ()) {

i f (c o n f i g u r a t i o n . conta ins (outboundPlace)) {

t h i s . e r r o r = ” T r a n s i t i o n ” + entry . getKey () . get Id () + ” has c o n t a c t in c o n f i g u r a t i o n (” +

S t r i n g U t i l s . j o i n (conf igurat ion , ” , ”) + ”) ” ;

return f a l s e ;

}

}

}

}

}

return true ;

}

/∗∗

∗ S e t s up t h e UI

∗/

private void setUp () {

f i n a l PropertyChangeListener c h i l d L i s t e n e r = new PropertyChangeListener () {

@Override

public void propertyChange (PropertyChangeEvent e) {

S t r i n g innerProperty = e . getPropertyName () ;

System . out . p r i n t l n (” place : ” + e . getPropertyName ()) ;

i f (innerProperty . equals (PlaceablePetriNetComponent .X CHANGE MESSAGE) ||

innerProperty . equals (PlaceablePetriNetComponent .Y CHANGE MESSAGE) ||

innerProperty . equals (PlaceablePetriNetComponent .WIDTH CHANGE MESSAGE) ||

innerProperty . equals (PlaceablePetriNetComponent .HEIGHT CHANGE MESSAGE)) {

/ / We do not need t o change a n y t h i n g

return ;

}

setUpDialog () ;

}

};

setUpDialog () ;

progressBar . s e t V i s i b l e (f a l s e) ;

t h i s . net . addPropertyChangeListener (new PropertyChangeListener () {

@Override

public void propertyChange (PropertyChangeEvent e) {

S t r i n g property = e . getPropertyName () ;

i f (property . equals (Petr iNet .NEW PLACE CHANGE MESSAGE)) {

((Place) e . getNewValue ()) . addPropertyChangeListener (c h i l d L i s t e n e r) ;

} e lse i f (property . equals (Petr iNet .NEW TRANSITION CHANGE MESSAGE)) {

((T r a n s i t i o n) e . getNewValue ()) . addPropertyChangeListener (c h i l d L i s t e n e r) ;

}

62 Appendix B. Source code

System . out . p r i n t l n (”main : ” + property) ;

setUpDialog () ;

}

}) ;

for (P lace place : t h i s . net . g e t P l a c e s ()) {

place . addPropertyChangeListener (c h i l d L i s t e n e r) ;

}

for (T r a n s i t i o n t r a n s i t i o n : t h i s . net . g e t T r a n s i t i o n s ()) {

t r a n s i t i o n . addPropertyChangeListener (c h i l d L i s t e n e r) ;

}

/ / C a l l e d l i v e dur ing e d i t i n g

f i r e S e q u e n c e T e x t F i e l d . getDocument () . addDocumentListener (new DocumentListener () {

public void changedUpdate (DocumentEvent e) {

updateState () ;

}

public void removeUpdate (DocumentEvent e) {

updateState () ;

}

public void insertUpdate (DocumentEvent e) {

updateState () ;

}

}) ;

/ / C a l l e d a f t e r l o s i n g f o c u s

f i r e S e q u e n c e T e x t F i e l d . addFocusListener (new FocusLis tener () {

@Override

public void focusGained (FocusEvent e) {

/ / Do n o t h i n g

}

@Override

public void focusLost (FocusEvent e) {

updateState () ;

}

}) ;

generateButton . addActionListener (new Act ionLis tener () {

@Override

public void actionPerformed (ActionEvent e) {

generateFormattedPetr iNet (getFireSequence () , condenseCheckBox . i s S e l e c t e d ()) ;

}

}) ;

infoTextPane . addHyperlinkListener (new Hyperl inkListener () {

public void hyperlinkUpdate (HyperlinkEvent e) {

i f (e . getEventType () == HyperlinkEvent . EventType .ACTIVATED) {

Lis t<Str ing> f i reSequence = getFireSequence () ;

S t r i n g [] a c t i o n = e . g e t D es c r ip t i on () . s p l i t (” : : ”) ;

i f (a c t i o n [0] . equals (PROTOCOL REMOVE)) {

f i reSequence . remove (I n t e g e r . p a r s e I n t (a c t i o n [1])) ;

se tF i reSequence (f i reSequence) ;

} e lse i f (a c t i o n [0] . equals (PROTOCOL ADD)) {

addToFireSequence (a c t i o n [1]) ;

} e lse i f (a c t i o n [0] . equals (PROTOCOL SELECT)) {

S t r i n g i n p u t S t r i n g = f i r e S e q u e n c e T e x t F i e l d . getText () ;

i n t s t a r t ;

i n t entryIndex = I n t e g e r . p a r s e I n t (a c t i o n [1]) ;

i f (entryIndex == 0) {

/ / Ther e can be w h i t e s p a c e b e f o r e t h e e n t r y

s t a r t = i n p u t S t r i n g . indexOf (f i reSequence . get (entryIndex)) ;

} e lse {

i n t commastart = S t r i n g U t i l s . ordinalIndexOf (inputStr ing , ” , ” , entryIndex) ;

s t a r t = i n p u t S t r i n g . indexOf (f i reSequence . get (entryIndex) , commastart) ;

}

i n t end = s t a r t + f i reSequence . get (entryIndex) . length () ;

B.2. Process generator module 63

f i r e S e q u e n c e T e x t F i e l d . requestFocusInWindow () ;

f i r e S e q u e n c e T e x t F i e l d . s e t C a r e t P o s i t i o n (s t a r t) ;

f i r e S e q u e n c e T e x t F i e l d . moveCaretPosition (end) ;

} e lse {

System . out . p r i n t l n (a c t i o n [0] + ” i s unknown ! ”) ;

}

}

}

}) ;

}

private void setUpAnimator () {

t h i s . animatedNet = ClonePetriNet . c lone (t h i s . net) ;

i f (t h i s . animatedNet == null) {

JOptionPane . showMessageDialog (getMainPanel () , ”Could not c lone current P e t r i net : P e t r i net might be i n c o n s i s t e n t . ” , ” Error ” , JOptionPane .

OK OPTION) ;

getMainPanel () . getRootPane () . s e t V i s i b l e (f a l s e) ;

}

t h i s . animator = new PetriNetAnimator (t h i s . animatedNet) ;

}

private void setUpDialog () {

i f (i sVal idNet ()) {

t h i s . e r r o r = null ;

/ / We can use a f i r e s e q u e n c e on t h i s n e t

f i r e S e q u e n c e T e x t F i e l d . setEnabled (t rue) ;

/ / The n e t used f o r an imat ing might be d i f f e r e n t

setUpAnimator () ;

/ / S i n c e t h e n e t was changed , t h i s i n f o r m a t i o n might be out o f d a t e

updateState () ;

} e lse {

f i r e S e q u e n c e T e x t F i e l d . setEnabled (f a l s e) ;

generateButton . setEnabled (f a l s e) ;

generateButton . se tToolTipText (t h i s . e r r o r) ;

updateInfo () ;

}

}

private void addToFireSequence (S t r i n g t r a n s i t i o n) {

Lis t<Str ing> sequence = getFireSequence () ;

sequence . add (t r a n s i t i o n) ;

f i r e S e q u e n c e T e x t F i e l d . s e t T e x t (S t r i n g U t i l s . j o i n (sequence , ” , ”)) ;

}

private void updateState () {

ProcessResul t r e s u l t = reca lcu la teAnimat ions (getFireSequence ()) ;

i f (r e s u l t . e r r o r s . s i z e () == 0) {

generateButton . setEnabled (t rue) ;

generateButton . se tToolTipText (” Generate a process net with given f i r e sequence ”) ;

t h i s . e r r o r = null ;

} e lse {

generateButton . setEnabled (f a l s e) ;

generateButton . se tToolTipText (”Given f i r e sequence i s i n v a l i d ”) ;

t h i s . e r r o r = ”Given f i r e sequence i s i n v a l i d . ” ;

}

updateInfo (r e s u l t) ;

}

/∗∗

∗ P r o c e s s e s i n p u t s t r i n g i n t o names o f t r a n s i t i o n s

∗ @return t o k e n i z e d s t r i n g with names o f f i r e d t r a n s i t i o n s

∗/

private Lis t<Str ing> getFireSequence () {

64 Appendix B. Source code

S t r i n g unparsedFireSequence = f i r e S e q u e n c e T e x t F i e l d . getText () ;

S t r i n g [] part lyParsedSequence = unparsedFireSequence . s p l i t (”[\\s\\u0085\\p{Z}]∗ ,[\\s\\u0085\\p{Z}]∗”) ;

L i s t<Str ing> parsedSequence = new ArrayList<>() ;

for (S t r i n g t r a n s i t i o n : part lyParsedSequence) {

S t r i n g parsedTrans i t ion = t r a n s i t i o n . tr im () ;

i f (! parsedTrans i t ion . equals (””)) {

parsedSequence . add (parsedTrans i t ion) ;

}

}

return parsedSequence ;

}

private void se tF i reSequence (L i s t<Str ing> f i reSequence) {

f i r e S e q u e n c e T e x t F i e l d . s e t T e x t (S t r i n g U t i l s . j o i n (f i reSequence , ” , ”)) ;

}

/∗∗

∗ S i m u l a t e s t h e c u r r e n t f i r e s e q u e n c e , d e t e c t s i m p o s s i b l e s i t u a t i o n s and c a l c u l a t e s t r a n s i t i o n s t h a t can be f i r e d

∗ @return

∗/

private ProcessResul t reca lcu la teAnimat ions (L i s t<Str ing> f i reSequence) {

animator . s a v e S t a t e () ;

Set<Str ing> a v a i l a b l e T r a n s i t i o n s = new HashSet<>() ;

ArrayList<Pair<Integer , S tr ing>> e r r o r s = new ArrayList<>() ;

i n t las tE lement = f i reSequence . s i z e () − 1 ;

for (i n t i = 0 ; i < f i reSequence . s i z e () ; i ++) {

S t r i n g f i r e d T r a n s i t i o n = f i reSequence . get (i) ;

i f (! f i r e d T r a n s i t i o n . equals (””)) {

t r y {

T r a n s i t i o n t r a n s i t i o n = animatedNet . getComponent (f i r e d T r a n s i t i o n , T r a n s i t i o n . c l a s s) ;

i f (! animator . ge tEnabledTrans i t ions () . conta ins (t r a n s i t i o n)) {

e r r o r s . add (new Pair<>(i , NOT ENABLED)) ;

} e lse {

animator . f i r e T r a n s i t i o n (t r a n s i t i o n) ;

}

} catch (PetriNetComponentNotFoundException e) {

i f (! (f i r e S e q u e n c e T e x t F i e l d . hasFocus () && i == las tElement)) {

e r r o r s . add (new Pair<>(i , NOT EXIST)) ;

}

}

}

}

for (T r a n s i t i o n t r a n s i t i o n : animator . ge tEnabledTrans i t ions ()) {

a v a i l a b l e T r a n s i t i o n s . add (t r a n s i t i o n . get Id ()) ;

}

animator . r e s e t () ;

return new ProcessResul t (a v a i l a b l e T r a n s i t i o n s , e r r o r s) ;

}

private void updateInfo (ProcessResul t r e s u l t) {

HtmlCanvas html = new HtmlCanvas () ;

L i s t<Str ing> f i reSequence = getFireSequence () ;

t r y {

html . html () . head () . head () ;

html . body () ;

i f (r e s u l t . e r r o r s . s i z e () > 0) {

html . b () . content (”The fol lowing i s s u e s c u r r e n t l y e x i s t ”) ;

html . ul () ;

for (Pair<Integer , S tr ing> e r r o r : r e s u l t . e r r o r s) {

html . l i () . wri te (f i reSequence . get (e r r o r . g e t L e f t ()) + ” : ”) ;

i f (e r r o r . getRight () . equals (NOT ENABLED)) {

html . wri te (” T r a n s i t i o n ” + (e r r o r . g e t L e f t () +1) + ” i s not enabled . ”) ;

} e lse i f (e r r o r . getRight () . equals (NOT EXIST)) {

html . wri te (”No t r a n s i t i o n with such a name e x i s t s . ”) ;

B.2. Process generator module 65

} e lse {

html . wri te (”UKNOWN ERROR”) ;

}

html . wri te (” (”) ;

html . a (hre f (PROTOCOL REMOVE + ” : : ” + e r r o r . g e t L e f t ())) . content (”Remove”) . wri te (” | ”) ;

html . a (hre f (PROTOCOL SELECT + ” : : ” + e r r o r . g e t L e f t ())) . content (” S e l e c t ”) ;

html . wri te (”) ”) ;

html . l i () ;

}

html . u l () ;

}

html . b () . content (”The fol lowing t r a n s i t i o n s can be f i r e d ”) ;

html . ul () ;

for (S t r i n g a v a i l a b l e T r a n s i t i o n : r e s u l t . a v a i l a b l e T r a n s i t i o n s) {

html . l i () . wri te (a v a i l a b l e T r a n s i t i o n) ;

html . wri te (” (”) ;

html . a (hre f (PROTOCOL ADD + ” : : ” + a v a i l a b l e T r a n s i t i o n)) . content (”Add”) ;

html . wri te (”) ”) ;

html . l i () ;

}

html . u l () ;

i f (t h i s . e r r o r != null) {

html . b () . content (”Cannot generate process net ”) ;

html . ul () ;

html . l i () . wri te (t h i s . e r r o r) ;

html . l i () ;

html . u l () ;

}

html . body () . html () ;

infoTextPane . s e t T e x t (html . toHtml ()) ;

} catch (IOException e) {

infoTextPane . s e t T e x t (”<html><head></head><body>Error</body></html>”) ;

}

}

private void updateInfo () {

HtmlCanvas html = new HtmlCanvas () ;

t r y {

html . html () . head () . head () . body () ;

i f (t h i s . e r r o r != null) {

html . b () . content (”Cannot generate process net ”) ;

html . ul () ;

html . l i () . wri te (t h i s . e r r o r) ;

html . l i () ;

html . u l () ;

}

html . body () . html () ;

infoTextPane . s e t T e x t (html . toHtml ()) ;

} catch (IOException e) {

infoTextPane . s e t T e x t (”<html><head></head><body>Error</body></html>”) ;

}

}

private void generateFormattedPetr iNet (f i n a l Lis t<Str ing> f i reSequence , f i n a l boolean condensed) {

f i n a l Petr iNet processNet = new Petr iNet () ;

f i n a l Petr iNet localAnimatedNet = ClonePetr iNet . c lone (t h i s . net) ;

/ / S e t up t h e b a s i c s o f t h i s n e t

PetriNetName name = new NormalPetriNetName (localAnimatedNet . getNameValue () + ” process (” + S t r i n g U t i l s . j o i n (f i reSequence , ” , ”) + ”) ”) ;

processNet . setName (name) ;

Thread thread = new Thread () {

@Override

public void run () {

generateButton . setEnabled (f a l s e) ;

progressBar . s e t V i s i b l e (t rue) ;

progressBar . setValue (0) ;

66 Appendix B. Source code

Map<Place , Place> processPlaceMap = new HashMap<>() ;

L i s t<Lis t<PlaceablePetriNetComponent>> columns = new ArrayList<>() ;

Map<Place , PlaceNamer> placeNamers = new HashMap<>() ;

Map<Trans i t ion , TransitionNamer> transi t ionNamers = new HashMap<>() ;

Comparator<PlaceablePetriNetComponent> comparator = new Comparator<PlaceablePetriNetComponent >() {

@Override

public i n t compare (PlaceablePetriNetComponent component1 , PlaceablePetriNetComponent component2) {

i f (component2 . getX () − component1 . getX () != 0) {

/ / L e f t−most component s h o u l d be a f t e r r i g h t−most e l e m e n t

return component2 . getX () − component1 . getX () ;

} i f (component1 . getY () − component2 . getY () != 0) {

/ / Top−most component must be b e f o r e components be low i t

return component1 . getY () − component2 . getY () ;

} e lse {

return component1 . get Id () . compareTo (component2 . ge t Id ()) ;

}

}

};

progressBar . setValue (1) ;

for (Token token : localAnimatedNet . getTokens ()) {

processNet . addToken (token) ;

}

for (i n t i = 0 ; i < (f i reSequence . s i z e () +1)∗2 ; i ++) {

columns . add (new ArrayList<PlaceablePetriNetComponent >()) ;

}

t r y {

progressBar . setValue (1 0) ;

/ / S t a r t i n g c o n f i g u r a t i o n and i n i t i a l i s a t i o n

for (P lace place : localAnimatedNet . g e t P l a c e s ()) {

Place processPlace = null ;

placeNamers . put (place , new PlaceNamer (processNet , localAnimatedNet , place . get Id ())) ;

i f (p lace . getNumberOfTokensStored () > 0) {

processPlace = new D i s c r e t e P l a c e (placeNamers . get (place) . getName ()) ;

processPlace . setTokenCounts (place . getTokenCounts ()) ;

processPlace . setX (PROCESS NET LEFT PADDING) ;

/ / Y c o o r d i n a t e i s f u r t h e r r e f i n e d l a t e r

processPlace . setY (PROCESS NET TOP PADDING) ;

columns . get (0) . add (processPlace) ;

processNet . add (processPlace) ;

}

processPlaceMap . put (place , processPlace) ;

}

for (T r a n s i t i o n t r a n s i t i o n : localAnimatedNet . g e t T r a n s i t i o n s ()) {

transi t ionNamers . put (t r a n s i t i o n , new TransitionNamer (processNet , localAnimatedNet , t r a n s i t i o n . get Id ())) ;

}

progressBar . setValue (3 0) ;

/ / P r o c e s s t r a n s i t i o n s in f i r e s e q u e n c e

for (i n t i = 0 ; i < f i reSequence . s i z e () ; i ++) {

S t r i n g transitionName = f i reSequence . get (i) ;

i f (transit ionName . equals (””)) {

continue ;

}

T r a n s i t i o n t r a n s i t i o n = localAnimatedNet . getComponent (transitionName , T r a n s i t i o n . c l a s s) ;

T r a n s i t i o n p r o c e s s T r a n s i t i o n = new D i s c r e t e T r a n s i t i o n (transi t ionNamers . get (t r a n s i t i o n) . getName ()) ;

Set<Place> inboundPlaces = new HashSet<Place >() ;

Set<Place> outboundPlaces = new HashSet<Place >() ;

i n t transit ionColumn = 0 ;

processNet . add (p r o c e s s T r a n s i t i o n) ;

for (InboundArc inboundArc : localAnimatedNet . inboundArcs (t r a n s i t i o n)) {

B.2. Process generator module 67

Place inboundPlace = inboundArc . getSource () ;

P lace processPlace = processPlaceMap . get (inboundPlace) ;

i f (processPlace == null) {

JOptionPane . showMessageDialog (getMainPanel () , ” T r a n s i t i o n ” + transitionName + ” f i r e d , but i t ’ s inbound place ”

+ inboundPlace . get Id () + ” was not yet in the process net . ” , ” Error ” , JOptionPane . OK OPTION) ;

return ;

}

processPlaceMap . put (inboundPlace , null) ;

i n t placeColumn = (processPlace . getX () − PROCESS NET LEFT PADDING) / PROCESS NET COLUMN DISTANCE ;

i f (transit ionColumn <= placeColumn) {

transit ionColumn = placeColumn + 1 ;

}

InboundArc processInboundArc = new InboundNormalArc (processPlace , processTrans i t ion , inboundArc . getTokenWeights ()) ;

inboundPlaces . add (processPlace) ;

processNet . add (processPlace) ;

processNet . add (processInboundArc) ;

}

i f (! condensed) {

/ / I f no t in c o n d e n s e d format , e a c h t r a n s i t i o n i s in i t ’ s own column

transit ionColumn = 1 + i ∗2 ;

}

p r o c e s s T r a n s i t i o n . setX (PROCESS NET LEFT PADDING + transit ionColumn ∗ PROCESS NET COLUMN DISTANCE) ;

for (OutboundArc outboundArc : localAnimatedNet . outboundArcs (t r a n s i t i o n)) {

Place outboundPlace = outboundArc . getTarget () ;

i f (processPlaceMap . get (outboundPlace) != null) {

JOptionPane . showMessageDialog (getMainPanel () , ” T r a n s i t i o n ” + transitionName + ” f i r e d , but i t ’ s outbound place ”

+ outboundPlace . get Id () + ” was already in the process net . ” , ” Error ” , JOptionPane . OK OPTION) ;

return ;

}

Place processPlace = new D i s c r e t e P l a c e (placeNamers . get (outboundPlace) . getName ()) ;

processPlace . setX (PROCESS NET LEFT PADDING + (transit ionColumn + 1) ∗ PROCESS NET COLUMN DISTANCE) ;

processPlaceMap . put (outboundPlace , processPlace) ;

OutboundArc processOutboundArc = new OutboundNormalArc (processTrans i t ion , processPlace , outboundArc . getTokenWeights ()) ;

outboundPlaces . add (processPlace) ;

processNet . add (processPlace) ;

processNet . add (processOutboundArc) ;

}

columns . get (transit ionColumn) . add (p r o c e s s T r a n s i t i o n) ;

columns . get (transit ionColumn + 1) . addAll (outboundPlaces) ;

}

progressBar . setValue (5 0) ;

/ / I n i t i a l h e i g h t

for (i n t i = 0 ; i < columns . s i z e () ; i ++) {

Lis t<PlaceablePetriNetComponent> column = columns . get (i) ;

for (PlaceablePetriNetComponent component : column) {

i n t y = component . getY () ;

Co l lec t ion<Arc> a r c s = new HashSet<Arc>() ;

i f ((i % 2) == 0) {

a r c s . addAll (processNet . inboundArcs ((Place) component)) ;

} e lse {

a r c s . addAll (processNet . inboundArcs ((T r a n s i t i o n) component)) ;

}

for (Arc arc : a r c s) {

y += arc . getSource () . getY () ;

}

i f (a r c s . s i z e () > 0) {

y = y / a r c s . s i z e () ;

}

i f (y < PROCESS NET TOP PADDING) {

68 Appendix B. Source code

y = PROCESS NET TOP PADDING ;

}

component . setY (y) ;

}

C o l l e c t i o n s . s o r t (column , comparator) ;

ensureRowDistance (column) ;

}

progressBar . setValue (6 0) ;

/ / Fine−tun ing o f h e i g h t b a s e d on t r a n s i t i o n s

for (i n t i = 1 ; i < columns . s i z e () ; i += 2) {

Lis t<PlaceablePetriNetComponent> column = columns . get (i) ;

for (PlaceablePetriNetComponent component : column) {

Lis t<PlaceablePetriNetComponent> places = new ArrayList<>() ;

Co l lec t ion<Arc> a r c s = new HashSet<Arc>(processNet . inboundArcs ((T r a n s i t i o n) component)) ;

for (Arc arc : a r c s) {

places . add (arc . getSource ()) ;

}

C o l l e c t i o n s . s o r t (places , comparator) ;

i n t y = 0 ;

i n t num = 0 ;

y += ensureRowDistance (p laces) ;

num += places . s i z e () ;

p laces . c l e a r () ;

a r c s = new HashSet<Arc>(processNet . outboundArcs ((T r a n s i t i o n) component)) ;

for (Arc arc : a r c s) {

places . add (arc . getTarget ()) ;

}

C o l l e c t i o n s . s o r t (places , comparator) ;

y += ensureRowDistance (p laces) ;

num += places . s i z e () ;

i f (num > 0) {

component . setY (y / num) ;

}

}

}

for (L i s t<PlaceablePetriNetComponent> column : columns) {

ensureRowDistance (column) ;

}

progressBar . setValue (8 0) ;

/ / F i n i s h i n g t o u c h e s

Annotation annotat ion = new AnnotationImpl (1 0 0 , 100 , ” Process net f o r ” + S t r i n g U t i l s . j o i n (f i reSequence , ” , ”) , Math . max(

PROCESS NET ANNOTATION MIN WIDTH, columns . s i z e ()∗PROCESS NET ROW DISTANCE) , 30 , f a l s e) ;

processNet . add (annotat ion) ;

progressBar . setValue (1 0 0) ;

progressBar . s e t V i s i b l e (f a l s e) ;

generateButton . setEnabled (t rue) ;

} catch (PetriNetComponentNotFoundException e) {

JOptionPane . showMessageDialog (getMainPanel () , ”Could not f ind a P e t r i net component , even though we e s t a b l i s h e d somewhere e l s e t h a t i t

should e x i s t . ” , ” Error ” , JOptionPane . OK OPTION) ;

return ;

} catch (PetriNetComponentException e) {

JOptionPane . showMessageDialog (getMainPanel () , ”Could not add a component to process net , even though we made sure they were unique . . . ” , ”

Error ” , JOptionPane . OK OPTION) ;

return ;

}

changeSupport . f irePropertyChange (ModuleBridge . MODULE ADD PETRINET MESSAGE, null , processNet) ;

}

B.2. Process generator module 69

};

thread . s t a r t () ;

}

public ProcessGenerator (Petr iNet petr iNet , F i l e D i a l o g f i l e D i a l o g , PropertyChangeSupport changeSupport) {

t h i s . net = petr iNet ;

t h i s . changeSupport = changeSupport ;

setUp () ;

}

private i n t ensureRowDistance (Col lec t ion<PlaceablePetriNetComponent> components) {

i n t y = 0 ;

i n t l a s t Y = PROCESS NET TOP PADDING − PROCESS NET ROW DISTANCE ;

for (PlaceablePetriNetComponent component : components) {

i f (component . getY () − l a s t Y < PROCESS NET ROW DISTANCE) {

component . setY (l a s t Y + PROCESS NET ROW DISTANCE) ;

}

l a s t Y = component . getY () ;

y += l a s t Y ;

}

return y ;

}

/∗∗

∗ Main method f o r running t h i s e x t e r n a l l y w i t h o u t PIPE

∗

∗ @param a r g s command l i n e arguments

∗/

public s t a t i c void main (S t r i n g [] args) {

/ / Does not make s e n s e t o run t h i s a s a s tand−a l o n e program

}

public JPanel getMainPanel () {

return mainPanel ;

}

private f i n a l c l a s s ProcessResul t {

public f i n a l Set<Str ing> a v a i l a b l e T r a n s i t i o n s ;

public f i n a l ArrayList<Pair<Integer , S tr ing>> e r r o r s ;

ProcessResul t (Set<Str ing> a v a i l a b l e T r a n s i t i o n s , ArrayList<Pair<Integer , S tr ing>> e r r o r s) {

t h i s . a v a i l a b l e T r a n s i t i o n s = a v a i l a b l e T r a n s i t i o n s ;

t h i s . e r r o r s = e r r o r s ;

}

}

private c l a s s PlaceNamer extends ComponentNamer {

PlaceNamer (Petr iNet petr iNet , Petr iNet o r i g i n a l P e t r i N e t , S t r i n g placeName) {

super (petr iNet , placeName + ” ” , Petr iNet .NEW PLACE CHANGE MESSAGE, Petr iNet . DELETE PLACE CHANGE MESSAGE) ;

for (P lace place : o r i g i n a l P e t r i N e t . g e t P l a c e s ()) {

names . add (place . get Id ()) ;

}

}

}

private c l a s s TransitionNamer extends ComponentNamer {

TransitionNamer (Petr iNet petr iNet , Petr iNet o r i g i n a l P e t r i N e t , S t r i n g transit ionName) {

super (petr iNet , transitionName + ” ” , Petr iNet .NEW TRANSITION CHANGE MESSAGE, Petr iNet . DELETE TRANSITION CHANGE MESSAGE) ;

for (T r a n s i t i o n t r a n s i t i o n : o r i g i n a l P e t r i N e t . g e t T r a n s i t i o n s ()) {

names . add (t r a n s i t i o n . get Id ()) ;

}

}

}

}

70 Appendix B. Source code

B.3 State space module

B.3.1 ReachabilityGraph.java

package pipe . gui . r e a c h a b i l i t y ;

import net . sourceforge . jpowergraph . Edge ;

import net . sourceforge . jpowergraph . Node ;

import net . sourceforge . jpowergraph . d e f a u l t s . DefaultGraph ;

import net . sourceforge . jpowergraph . layout . Layouter ;

import net . sourceforge . jpowergraph . layout . spring . SpringLayoutStrategy ;

import net . sourceforge . jpowergraph . l ens .∗ ;

import net . sourceforge . jpowergraph . manipulator . dragging . DraggingManipulator ;

import net . sourceforge . jpowergraph . manipulator . popup . PopupManipulator ;

import net . sourceforge . jpowergraph . swing . SwingJGraphPane ;

import net . sourceforge . jpowergraph . swing . SwingJGraphScrollPane ;

import net . sourceforge . jpowergraph . swing . manipulator . SwingPopupDisplayer ;

import net . sourceforge . jpowergraph . swtswinginterac t ion . c o l o r . JPowerGraphColor ;

import pipe . gui . widget . GenerateResultsForm ;

import pipe . gui . widget . StateSpaceLoader ;

import pipe . gui . widget . StateSpaceLoaderException ;

import pipe . r e a c h a b i l i t y . algorithm .∗ ;

import uk . ac . imper ia l . pipe . except ions . Inval idRateExcept ion ;

import uk . ac . imper ia l . pipe . models . p e t r i n e t . Petr iNet ;

import uk . ac . imper ia l . s t a t e . C l a s s i f i e d S t a t e ;

import uk . ac . imper ia l . s t a t e . Record ;

import uk . ac . imper ia l . pipe . models . p e t r i n e t . P lace ;

import uk . ac . imper ia l . u t i l s . Pa i r ;

import org . apache . commons . lang . S t r i n g U t i l s ;

import j avax . swing .∗ ;

import j ava . awt . Container ;

import j ava . awt . F i l e D i a l o g ;

import j ava . awt . event . ActionEvent ;

import j ava . awt . event . Act ionLis tener ;

import j ava . io . IOException ;

import j ava . u t i l . ArrayList ;

import j ava . u t i l . C o l l e c t i o n ;

import j ava . u t i l . C o l l e c t i o n s ;

import j ava . u t i l . HashMap ;

import j ava . u t i l . L i s t ;

import j ava . u t i l .Map;

import j ava . u t i l . Se t ;

import j ava . u t i l . HashSet ;

import j ava . u t i l . concurrent . ExecutionException ;

import j ava . u t i l . logging . Level ;

import j ava . u t i l . logging . Logger ;

/∗∗

∗ GUI c l a s s used t o d i s p l a y and run t h e r e s u l t s o f r e a c h a b i l i t y and c o v e r a b i l i t y c l a s s e s

∗/

public c l a s s Reachabil i tyGraph {

/∗∗

∗ C l a s s l o g g e r

∗/

private s t a t i c f i n a l Logger LOGGER = Logger . getLogger (Reachabil i tyGraph . c l a s s . getName ()) ;

/∗∗

∗ Maximum number o f s t a t e s t o g r a p h i c a l l y d i s p l a y

∗/

private s t a t i c f i n a l i n t MAX STATES TO DISPLAY = 1 0 0 ;

private JPanel panel1 ;

B.3. State space module 71

/∗∗

∗ C o n t a i n s t h e graph b a s e d r e s u l t s o f s t a t e s p a c e e x p l o r a t i o n

∗/

private JPanel r e s u l t s P a n e l ;

/∗∗

∗ Check box t o d e t e r m i n e i f we i n c l u d e v a n i s h i n g s t a t e s in t h e e x p l o r a t i o n

∗/

private JCheckBox includeVanishingStatesCheckBox ;

/∗∗

∗ For s a v i n g s t a t e s p a c e r e s u l t s

∗/

private JButton saveButton ;

private JLabe l t e x t R e s u l t s L a b e l ;

private JPanel t e x t R e s u l t s P a n e l ;

private JRadioButton r e a c h a b i l i t y B u t t o n ;

private JRadioButton c o v e r a b i l i t y B u t t o n ;

private J T e x t F i e l d maxStatesFie ld ;

private JPanel s tateLoadingPanel ;

private JPanel generatePanel ;

private DefaultGraph graph = new DefaultGraph () ;

private StateSpaceLoader stateSpaceLoader ;

/∗∗

∗ Asks u s e r t o s e l e c t a p e t r i n e t . ” use c u r r e n t P e t r i n e t ” can be used t o use c u r r e n t p e t r i n e t

∗

∗ @param l o a d D i a l o g t h e d i a l o g t o be shown

∗ @param p e t r i N e t c u r r e n t p e t r i n e t

∗/

public Reachabil i tyGraph (F i l e D i a l o g loadDialog , Petr iNet petr iNet) {

stateSpaceLoader = new StateSpaceLoader (petr iNet , loadDialog) ;

setUp () ;

}

/∗∗

∗ C a l c u l a t e s t h e maximum c a p a c i t y o f a l l p l a c e s in t h i s p e t r i N e t

∗

∗ @return i n t 0 i f i n f i n i t e , o t h e r w i s e maximum c a p a c i t y

∗/

private i n t getMaxCapacity () {

i n t maxCapacity = 1 ;

Pe t r iNet petr iNet = stateSpaceLoader . g e tP e t r i Ne t () ;

for (P lace place : petr iNet . g e t P l a c e s ()) {

i f (! p lace . h a s C a p a c i t y R e s t r i c t i o n ()) {

/ / Ther e i s n o t h i n g l a r g e r than i n f i n i t y

return 0 ;

} e lse i f (p lace . getCapaci ty () > maxCapacity) {

maxCapacity = place . getCapaci ty () ;

}

}

return maxCapacity ;

}

/∗∗

∗

∗ @return r e t u r n t r u e i f a l l p l a c e s have i n f i n i t e c a p a c i t y , and f a l s e i f a t l e a s t 1 has a l i m i t e d c a p a c i t y

∗/

private boolean hasOnlyInf in i teCapac i ty () {

Petr iNet petr iNet = stateSpaceLoader . g e tP e t r i Ne t () ;

72 Appendix B. Source code

for (P lace place : petr iNet . g e t P l a c e s ()) {

i f (p lace . h a s C a p a c i t y R e s t r i c t i o n ()) {

return f a l s e ;

}

}

return true ;

}

/∗∗

∗ S e t up a c t i o n l i s t e n e r s

∗/

private void setUp () {

JPanel pane = setupGraph () ;

r e s u l t s P a n e l . add (pane) ;

s tateLoadingPanel . add (stateSpaceLoader . getMainPanel () , 0) ;

Ac t ionLis tener d i s a b l e L i s t e n e r = new Act ionLis tener () {

@Override

public void actionPerformed (ActionEvent e) {

r e a c h a b i l i t y B u t t o n . setEnabled (f a l s e) ;

c o v e r a b i l i t y B u t t o n . setEnabled (f a l s e) ;

includeVanishingStatesCheckBox . setEnabled (f a l s e) ;

}

};

Ac t ionLis tener e n a b l e L i s t e n e r = new Act ionLis tener () {

@Override

public void actionPerformed (ActionEvent e) {

r e a c h a b i l i t y B u t t o n . setEnabled (t rue) ;

c o v e r a b i l i t y B u t t o n . setEnabled (t rue) ;

includeVanishingStatesCheckBox . setEnabled (t rue) ;

}

};

/ /

stateSpaceLoader . addPetr iNetRadioListener (e n a b l e L i s t e n e r) ;

s tateSpaceLoader . a d d B in a r i e s L i s t en e r (d i s a b l e L i s t e n e r) ;

saveButton . addActionListener (new Act ionLis tener () {

@Override

public void actionPerformed (ActionEvent e) {

s a v e B i n a r y F i l e s () ;

}

}) ;

GenerateResultsForm resultsForm = new GenerateResultsForm (new GenerateResultsForm . GoAction () {

@Override

public void go (i n t threads) {

c a l c u l a t e R e s u l t s (threads) ;

}

}) ;

generatePanel . add (resultsForm . getPanel ()) ;

}

/∗∗

∗ S e t s up t h e graph and r e t u r n s t h e J P a n e l t o add t o

∗ t h e r e s u l t s P a n e l

∗/

private JPanel setupGraph () {

SwingJGraphPane pane = new SwingJGraphPane (graph) ;

LensSet l e n s S e t = new LensSet () ;

l e n s S e t . addLens (new RotateLens ()) ;

l e n s S e t . addLens (new TranslateLens ()) ;

l e n s S e t . addLens (new ZoomLens ()) ;

CursorLens draggingLens = new CursorLens () ;

l e n s S e t . addLens (draggingLens) ;

l e n s S e t . addLens (new Toolt ipLens ()) ;

l e n s S e t . addLens (new LegendLens ()) ;

l e n s S e t . addLens (new NodeSizeLens ()) ;

pane . setLens (l e n s S e t) ;

pane . addManipulator (new DraggingManipulator (draggingLens , −1)) ;

B.3. State space module 73

pane . addManipulator (new PopupManipulator (pane , (Toolt ipLens) l e n s S e t . getFirstLensOfType (Toolt ipLens . c l a s s))) ;

pane . setNodePainter (TangibleStateNode . c lass , TangibleStateNode . getShapeNodePainter ()) ;

pane . setNodePainter (VanishingStateNode . c lass , VanishingStateNode . getShapeNodePainter ()) ;

pane . setNodePainter (TangibleStar tStateNode . c lass , TangibleStar tStateNode . getShapeNodePainter ()) ;

pane . setNodePainter (VanishingStartStateNode . c lass , VanishingStartStateNode . getShapeNodePainter ()) ;

pane . se tEdgePainter (DirectedTextEdge . c lass ,

new PIPELineWithTextEdgePainter (JPowerGraphColor .BLACK, JPowerGraphColor .GRAY, f a l s e)) ;

pane . se tEdgePainter (SpacerEdge . c lass ,

new PIPESpacerEdgePainter (JPowerGraphColor .BLACK, JPowerGraphColor .GRAY, f a l s e)) ;

pane . s e t A n t i a l i a s (t rue) ;

pane . setPopupDisplayer (new SwingPopupDisplayer (new PIPESwingToolTipListener () ,

new PIPESwingContextMenuListener (graph , new LensSet () , new I n t e g e r []{} , new I n t e g e r []{}))) ;

return new SwingJGraphScrollPane (pane , l e n s S e t) ;

}

/∗∗

∗ C a l c u l a t e s t h e s t e a d y s t a t e e x p l o r a t i o n o f a P e t r i n e t and s t o r e s i t s r e s u l t s

∗ in a t emporary f i l e .

∗

∗ These r e s u l t s a r e th en r e a d in and t urne d i n t o a g r a p h i c a l r e p r e s e n t a t i o n us ing mxGraph

∗ which i s d i s p l a y e d t o t h e u s e r

∗ @param t h r e a d s number o f t h r e a d s t o use t o e x p l o r e t h e s t a t e s p a c e

∗/

private void c a l c u l a t e R e s u l t s (i n t threads) {

i f (c o v e r a b i l i t y B u t t o n . i s S e l e c t e d () && ! hasOnlyInf in i teCapac i ty ()) {

JOptionPane . showMessageDialog (getMainPanel () ,

”The c o v e r a b i l i t y graph algorithm only works f o r P e t r i nets where every place has i n f i n i t e c a p a c i t y . P lease complement a l l p laces

t h a t have a c a p a c i t y and s e t t h e i r c a p a c i t y to i n f i n i t e , then t r y again . ” ,

” All p laces must have i n f i n i t e c a p a c i t y ” ,

JOptionPane .ERROR MESSAGE) ;

return ;

}

t r y {

Sta teSpaceExplorer . S ta teSpaceExplorerResu l t s r e s u l t s =

stateSpaceLoader . c a l c u l a t e R e s u l t s (new StateSpaceLoader . ExplorerCreator () {

@Override

public E x p l o r e r U t i l i t i e s c r e a t e (Petr iNet petr iNet) {

return g e t E x p l o r e r U t i l i t i e s (petr iNet) ;

}

} , new StateSpaceLoader . VanishingExplorerCreator () {

@Override

public VanishingExplorer c r e a t e (E x p l o r e r U t i l i t i e s u t i l s) {

return getVanishingExplorer (u t i l s) ;

}

} , threads

) ;

updateTextResults (r e s u l t s . numberOfStates , r e s u l t s . processedTrans i t ions) ;

i f (r e s u l t s . numberOfStates <= MAX STATES TO DISPLAY) {

StateSpaceLoader . Resul t s s t a t e S p a c e = stateSpaceLoader . loadStateSpace () ;

updateGraph (s t a t e S p a c e . records , s t a t e S p a c e . stateMappings) ;

}

} catch (Inval idRateExcept ion | TimelessTrapException | IOException | InterruptedExcept ion | ExecutionException e) {

LOGGER. log (Level . SEVERE , e . t o S t r i n g ()) ;

JOptionPane . showMessageDialog (panel1 , e . t o S t r i n g () , ” S t a t e space explorer e r r o r ” , JOptionPane .ERROR MESSAGE) ;

} catch (StateSpaceLoaderException e) {

JOptionPane . showMessageDialog (panel1 , e . getMessage () , ”GSPN Analysis Error ” , JOptionPane .ERROR MESSAGE) ;

}

}

/∗∗

∗ C o p i e s t h e t emporary f i l e s t o a permanent l o a c t i o n

74 Appendix B. Source code

∗/

private void s a v e B i n a r y F i l e s () {

stateSpaceLoader . s a v e B i n a r y F i l e s () ;

}

/∗∗

∗ C r e a t e s t h e e x p l o r e r u t i l i t i e s b a s e d upon whe the r t h e c o v e r a b i l i t y or r e a c h a b i l i t y graph

∗ i s b e i n g g e n e r a t e

∗

∗ @param p e t r i N e t p e t r i n e t

∗ @return e x p l o r e r u t i l i t i e s f o r g e n e r a t i n g s t a t e s p a c e

∗/

private E x p l o r e r U t i l i t i e s g e t E x p l o r e r U t i l i t i e s (Petr iNet petr iNet) {

i f (c o v e r a b i l i t y B u t t o n . i s S e l e c t e d ()) {

return new C o v e r a b i l i t y E x p l o r e r U t i l i t i e s (new UnboundedExplorerUti l i t ies (petr iNet)) ;

}

return new BoundedExplorerUt i l i t i es (petr iNet , I n t e g e r . valueOf (maxStatesFie ld . getText ())) ;

}

/∗∗

∗ Vanish ing e x p l o r e r i s e i t h e r a {@link p i p e . r e a c h a b i l i t y . a l g o r i t h m . S i m p l e V a n i s h i n g E x p l o r e r} i f

∗ v a n i s h i n g s t a t e s a r e t o be i n c l u d e d in t h e graph , e l s e i t i s {@link p i p e . r e a c h a b i l i t y . a l g o r i t h m . OnTheF lyVani sh ingExp lor e r}

∗

∗ @param e x p l o r e r U t i l i t i e s p r e v i o u s l y g e n e r a t e d e x p l o r e r u t i l i t i e s

∗/

private VanishingExplorer getVanishingExplorer (E x p l o r e r U t i l i t i e s e x p l o r e r U t i l i t i e s) {

i f (includeVanishingStatesCheckBox . i s S e l e c t e d ()) {

return new SimpleVanishingExplorer () ;

}

return new OnTheFlyVanishingExplorer (e x p l o r e r U t i l i t i e s) ;

}

/∗∗

∗ Updates t h e t e x t r e s u l t s wi th t h e number o f s t a t e s and t r a n s i t i o n s

∗

∗ @param s t a t e s number o f s t a t e s

∗ @param t r a n s i t i o n s number o f t r a n s i t i o n s

∗/

private void updateTextResults (i n t s t a t e s , i n t t r a n s i t i o n s) {

S t r i n g B u i l d e r r e s u l t s = new S t r i n g B u i l d e r () ;

r e s u l t s . append (” Resul t s : ”) . append (s t a t e s) . append (” s t a t e s and ”) . append (t r a n s i t i o n s) . append (” t r a n s i t i o n s ”) ;

t e x t R e s u l t s L a b e l . s e t T e x t (r e s u l t s . t o S t r i n g ()) ;

}

/∗∗

∗ Updates t h e mxGraph t o d i s p l a y t h e r e c o r d s

∗

∗ @param r e c o r d s s t a t e t r a n s i t i o n s from a p r o c e s s e d P e t r i n e t

∗ @param stateMap s t a t e map

∗/

private void updateGraph (I t e r a b l e<Record> records , Map<Integer , C l a s s i f i e d S t a t e> stateMap) {

graph . c l e a r () ;

Map<Integer , Node> nodes = getNodes (stateMap) ;

Col lec t ion<Edge> edges = getEdges (records , nodes) ;

graph . addElements (nodes . values () , edges) ;

layoutGraph () ;

}

/∗∗

∗ @param stateMap s t a t e map

∗ @return A l l nodes t o be added t o t h e graph

∗/

private Map<Integer , Node> getNodes (Map<Integer , C l a s s i f i e d S t a t e> stateMap) {

i n t maxCapacity = getMaxCapacity () ;

Map<Integer , Node> nodes = new HashMap<>(stateMap . s i z e ()) ;

for (Map. Entry<Integer , C l a s s i f i e d S t a t e> entry : stateMap . en t r yS e t ()) {

C l a s s i f i e d S t a t e s t a t e = entry . getValue () ;

B.3. State space module 75

i n t id = entry . getKey () ;

i f (maxCapacity == 1) {

nodes . put (id , createSimpleNode (s t a t e , id)) ;

} e lse {

nodes . put (id , createRegularNode (s t a t e , id)) ;

}

}

return nodes ;

}

/∗∗

∗ A l l e d g e s t o be added t o t h e graph

∗

∗ @param r e c o r d s r e c o r d s o f s t a t e s , and a l l s t a t e s t h a t can be r e a c h e d from e a c h s t a t e

∗ @param nodes map o f i d s t o t h e c o r r e s p o n d i n g s t a t e nodes

∗ @return a l l d i r e c t i o n a l e d g e s be tween s t a t e nodes A and B , where B can be r e a c h e d from A

∗/

private Col lec t ion<Edge> getEdges (I t e r a b l e<Record> records , Map<Integer , Node> nodes) {

Col lec t ion<Edge> edges = new ArrayList<>() ;

Map<Node , Set<Node>> connect ions = new HashMap<>() ;

for (Record record : records) {

i n t s t a t e = record . s t a t e ;

for (Map. Entry<Integer , Pair<Double , Co l l ec t ion<Str ing>>> entry : record . s u c c e s s o r s . en t r y Se t ()) {

i n t succ = entry . getKey () ;

ArrayList<Str ing> transit ionNames = (ArrayList<Str ing>) entry . getValue () . getRight () ;

C o l l e c t i o n s . s o r t (transit ionNames) ;

double r a t e = entry . getValue () . g e t L e f t () ;

Node startNode = nodes . get (s t a t e) ;

Node endNode = nodes . get (succ) ;

edges . add (new DirectedTextEdge (startNode , endNode ,

S t r i n g . format (”%s (%.2 f) ” , S t r i n g U t i l s . j o i n (transitionNames , ” , ”) , r a t e))) ;

/ / Keep t r a c k o f a l l s i n g l e c o n n e c t i o n s

addToSet (startNode , endNode , connect ions) ;

addToSet (endNode , startNode , connect ions) ;

}

}

return edges ;

}

private void addToSet (Node key , Node val , Map<Node , Set<Node>> c o l l e c t i o n) {

Set<Node> r e s u l t ;

i f (! c o l l e c t i o n . containsKey (key)) {

r e s u l t = new HashSet<>(1) ;

r e s u l t . add (val) ;

c o l l e c t i o n . put (key , r e s u l t) ;

} e lse {

r e s u l t = c o l l e c t i o n . get (key) ;

r e s u l t . add (val) ;

}

}

private boolean i n S e t (Node key , Node val , Map<Node , Set<Node>> c o l l e c t i o n) {

return c o l l e c t i o n . containsKey (key) && c o l l e c t i o n . get (key) . conta ins (val) ;

}

/∗∗

∗ P e r f o r m s l a y i n g out o f i t e m s on t h e graph

∗/

private void layoutGraph () {

Layouter layouter = new Layouter (new SpringLayoutStrategy (graph)) ;

l ayouter . s t a r t () ;

}

/∗∗

∗ C r e a t e s a node t h a t d i s p l a y s which p l a c e s c o n t a i n a t o k e n . Only t o be used i f maxCapac i ty == 1

76 Appendix B. Source code

∗

∗ @param s t a t e c l a s s i f i e d s t a t e t o be tu rned i n t o a graph node

∗ @param i d s t a t e i n t e g e r i d

∗ @return T a n g i b l e o r Vanish ing s t a t e node with s i m p l e n o t a t i o n

∗/

private Node createSimpleNode (C l a s s i f i e d S t a t e s t a t e , i n t id) {

S t r i n g label = ”” ;

S t r i n g too lT ip = ”” ;

L i s t<Str ing> places = new ArrayList<Str ing >() ;

for (S t r i n g place : s t a t e . g e t P l a c e s ()) {

places . add (place) ;

}

Map<Str ing , Map<Str ing , Integer>> tokenMap = s t a t e . asMap () ;

C o l l e c t i o n s . s o r t (p laces) ;

i n t numberOfTokens = tokenMap . get (p laces . get (0)) . s i z e () ;

i f (numberOfTokens > 1) {

/ / Well , t h a t was a was t e o f t ime . . .

return createRegularNode (s t a t e , id) ;

}

S t r i n g token = ”” ;

for (S t r i n g onlyToken : tokenMap . get (p laces . get (0)) . keySet ()) {

token = onlyToken ;

}

Lis t<Str ing> preparedLabel = new ArrayList<Str ing >() ;

L i s t<Str ing> preparedToolTip = new ArrayList<Str ing >() ;

for (S t r i n g place : p laces) {

i n t tokenCount = tokenMap . get (place) . get (token) ;

i f (tokenCount == 1) {

preparedLabel . add (place) ;

}

preparedToolTip . add (”” + place + ”: ” + tokenCount) ;

}

label = S t r i n g U t i l s . j o i n (preparedLabel , ” , ”) ;

too lT ip = S t r i n g U t i l s . j o i n (preparedToolTip , ”
”) ;

return createNode (s t a t e , label , toolTip , id) ;

}

/∗∗

∗ C r e a t e s a node t h a t d i s p l a y s t h e number o f t o k e n s p e r type , p e r p l a c e f o r t h i s s t a t e in a t u p l e

∗

∗ @param s t a t e c l a s s i f i e d s t a t e t o be tu rned i n t o a graph node

∗ @param i d s t a t e i n t e g e r i d

∗ @return T a n g i b l e o r Vanish ing s t a t e node with t u p l e n o t a t i o n

∗/

private Node createRegularNode (C l a s s i f i e d S t a t e s t a t e , i n t id) {

S t r i n g label = ”” ;

S t r i n g too lT ip = ”” ;

L i s t<Str ing> places = new ArrayList<Str ing >() ;

for (S t r i n g place : s t a t e . g e t P l a c e s ()) {

places . add (place) ;

}

Lis t<Str ing> tokens = new ArrayList<Str ing >() ;

Map<Str ing , Map<Str ing , Integer>> tokenMap = s t a t e . asMap () ;

C o l l e c t i o n s . s o r t (p laces) ;

i n t numberOfTokens = tokenMap . get (p laces . get (0)) . s i z e () ;

for (S t r i n g token : tokenMap . get (p laces . get (0)) . keySet ()) {

tokens . add (token) ;

}

C o l l e c t i o n s . s o r t (tokens) ;

L i s t<Str ing> preparedStr ings = new ArrayList<Str ing >() ;

L i s t<Str ing> preparedToolTipStr ings = new ArrayList<Str ing >() ;

label += ” [” + I n t e g e r . t o S t r i n g (id) + ”] ” ;

B.3. State space module 77

for (S t r i n g place : p laces) {

Lis t<Str ing> tokenCountForPlace = new ArrayList<Str ing >() ;

L i s t<Str ing> toolTipTokenCountForPlace = new ArrayList<Str ing >() ;

S t r i n g preparedStr ing ;

for (S t r i n g token : tokens) {

i n t tokenCount = tokenMap . get (place) . get (token) ;

i f (tokenCount == I n t e g e r .MAX VALUE) {

tokenCountForPlace . add (” ”) ;

toolTipTokenCountForPlace . add (” ” + token) ;

} e lse {

tokenCountForPlace . add (I n t e g e r . t o S t r i n g (tokenCount)) ;

toolTipTokenCountForPlace . add (I n t e g e r . t o S t r i n g (tokenCount) + ” ” + token) ;

}

}

preparedStr ing = S t r i n g U t i l s . j o i n (tokenCountForPlace , ” , ”) ;

i f (numberOfTokens > 1) {

preparedStr ings . add (” (” + preparedStr ing + ”) ”) ;

} e lse {

preparedStr ings . add (preparedStr ing) ;

}

preparedToolTipStr ings . add (”” + place + ”: ” + S t r i n g U t i l s . j o i n (toolTipTokenCountForPlace , ” , ”)) ;

}

label += ” (” ;

label += S t r i n g U t i l s . j o i n (preparedStr ings , ” , ”) ;

label += ”) ” ;

too lT ip = S t r i n g U t i l s . j o i n (preparedToolTipStr ings , ”
”) ;

return createNode (s t a t e , label , toolTip , id) ;

}

/∗∗

∗ @param s t a t e c l a s s i f i e d s t a t e t o be tu rned i n t o a graph node

∗ @param S t r i n g l a b e l t o be used on t h e node

∗ @param S t r i n g t o o l t i p t o be used when h o v e r i n g o v e r node with mouse

∗ @param i d s t a t e i n t e g e r i d

∗ @return T a n g i b l e o r Vanish ing s t a t e node

∗/

private Node createNode (C l a s s i f i e d S t a t e s t a t e , S t r i n g label , S t r i n g toolTip , i n t id) {

i f (s t a t e . i s T a n g i b l e () && id == 0) {

return new TangibleStar tStateNode (label , toolTip , id) ;

} e lse i f (s t a t e . i s T a n g i b l e ()) {

return new TangibleStateNode (label , toolTip , id) ;

} e lse i f (id == 0) {

return new VanishingStartStateNode (label , toolTip , id) ;

} e lse {

return new VanishingStateNode (label , toolTip , id) ;

}

}

/∗∗

∗ C o n s t r u c t o r d e a c t i v a t e s use c u r r e n t p e t r i n e t r a d i o b u t t o n s i n c e none i s s u p p l i e d .

∗

∗ @param l o a d D i a l o g t h e d i a l o g t o be shown

∗/

public Reachabil i tyGraph (F i l e D i a l o g loadDialog) {

stateSpaceLoader = new StateSpaceLoader (loadDialog) ;

setUp () ;

}

/∗∗

∗ Main method f o r running t h i s e x t e r n a l l y w i t h o u t PIPE

∗

∗ @param a r g s command l i n e arguments

∗/

public s t a t i c void main (S t r i n g [] args) {

JFrame frame = new JFrame (” Reachabil i tyGraph ”) ;

78 Appendix B. Source code

F i l e D i a l o g s e l e c t o r = new F i l e D i a l o g (frame , ” S e l e c t p e t r i net ” , F i l e D i a l o g .LOAD) ;

frame . setContentPane (new Reachabil i tyGraph (s e l e c t o r) . panel1) ;

frame . setDefaul tCloseOperat ion (WindowConstants . EXIT ON CLOSE) ;

frame . pack () ;

frame . s e t V i s i b l e (t rue) ;

}

/∗∗

∗ @return main p a n e l o f t h e GUI

∗/

public Container getMainPanel () {

return panel1 ;

}

}

	Abstract
	Introduction
	Petri nets
	PIPE
	Goals
	Report structure

	Definitions
	Preliminaries
	Elementary Net systems
	Place/Transition systems
	Other nets in PIPE
	Coloured Petri net
	Generalized Stochastic Petri net

	Analysis of Petri nets
	State space
	Process nets

	Overview of PIPE
	Animation
	Modules
	State Space Explorer
	GSPN Analysis

	Code base of PIPE 5
	Github projects

	Contributions
	P/T systems in PIPE
	EN validator and converter
	Dialog
	Validation and conversion

	State space explorer
	Process generator
	Dialog
	Algorithm

	Bugs
	Fatal bug
	Compilation errors
	Usability
	Drawing
	Animation
	Graphical

	Conclusions
	Future work

	Bibliography
	Added examples
	Source code
	EN module
	ENValidator.form
	ENValidator.java

	Process generator module
	ProcessGenerator.form
	ProcessGenerator.java

	State space module
	ReachabilityGraph.java

