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Abstract

Many problems in robotics have unknown, high-dimensional and highly non-
linear dynamics. One of that problems is robotic car racing in a very realistic
simulator. The key difficulties that arise are: i) It is difficult to build a good
dynamics model. ii) It is often difficult to write down a formal specification
of the task that has to be performed. iii) It is computationally expensive to
find closed-loop controllers for this high-dimensional domain.

We use algorithms from the apprenticeship learning setting — the setting
when expert demonstrations of the task are available — in order to solve
these problems for the task of autonomous car racing for a robotic car in the
Simulated Car Racing Championship. This results in a basic dynamics model
that is able to capture most important aspects of the dynamics of the car. We
show that an advanced inverse reinforcement learning algorithm is not robust
enough to work in this complex domain. Furthermore we use a reinforcement
learning algorithm with the dynamics model built and a hand-engineered
spefication of a basic racing task to build a controller for the racing car.
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Chapter 1

Introduction

This work focuses on controlling a robotic car in the Simulated Car Racing
Championship. This is an international competition where the goal is to design
a controller for a racing car. This racing car will compete on a set of unknown
tracks, first alone (against the clock) and then against other drivers. The
championship is built on top of a realistic state-of-the-art car racing simulator,
which makes controlling a car in this simulator a challenging and complex
task. To learn a robotic car the task of autonomous racing we have to consider
several learning strategies. Atkeson proposed general learning strategies in [1]:

• Learning by being taught. A teacher (or programmer) tells the robot
explicitly what to do in various situations by teaching or programming
rules.

• Learning by imitation. The robot learns by observing (human) experts
doing the task or related tasks.

• Learning by thinking or dreaming. The robot learns the task by plan-
ning or mentally practicing the task. While doing the task, the most
appropriate plan is chosen and modified to the current situation.

• Learning by doing. The robot learns from practicing the task.

1
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For the task of autonomous racing we focus on a combination of imita-
tion learning and learning by thinking, called apprenticeship learning. These
strategies seem more appropriate than the other strategies. Explicitly telling
the robot what to do (being taught or programmed) can work well in some
situations, but it is much too hard to describe rules for all possible situations
in complex environments. Learning by doing without any prior knowledge
will probably require a huge amount of trials, before a good policy has been
learned [2]. However, this strategy can be useful to optimize task performance
by performing real trials (practising).

1.1 Apprenticeship learning

Apprenticeship learning [3], also called learning from demonstrations, is a
form of indirect imitation learning. For imitation learning, we distinguish
direct and indirect approaches [4]. With direct imitation learning, the robot
does not make any assumptions about the intent of the expert demonstrating
the task. It only tries to mimic the expert’s behaviour when a similar situation
occurs. Therefore, this approach is more useful for “reactive” tasks, where no
planning for future actions is involved.

With indirect imitation learning or apprenticeship learning, the goal is to
find the expert’s intent or the objective the expert is trying to optimize in its
demonstrations. Often it is much easier for an expert to demonstrate a task
than to formulate this in a form understandable for an apprentice (how to
formulate “driving well”?) [3, 5]. The expert’s intention can be viewed as a
formal description of the task. Then this description can be used for planning
actions (learning by thinking).

For planning actions two key elements are required. Beside the goal we
want to achieve, a robot requires knowledge about how actions affect the
current situation (how the system evolves over time). This knowledge is called
a dynamics model. With such a model, intuitively, a robot can simulate
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Optimal
control

Cost
function Controller

Dynamics
model

Figure 1.1: Typical optimal control or model-based reinforcement learning
method.

multiple possible experiences and choose the behaviour that performs best in
simulation. To learn the dynamics model, a robot can use the expert’s and its
own demonstrations or the physical principles could be taught (programmed)
by a teacher. A combination is possible as well.

To summarize, with apprenticeship learning a robot can leverage demon-
strations from an expert to learn a dynamics model and a formal task descrip-
tion. To describe these elements we use the formalism of Markov Decision
Processes (MDPs), which are described in Chapter 2. To learn a control policy
by thinking we make use of model-based reinforcement learning [6] algorithms.
We note that the fields of model-based reinforcement learning and optimal
control are similar. Methods in these fields typically work in the same way.
As input these methods need a dynamics model of the system and a cost or
reward function that describes what is good or bad behaviour (see Figure 1.1).
Then the method outputs a control strategy that attempts to minimize the
cost in the dynamical system.
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1.2 Contributions

The main contributions of this work are: (i) modeling the dynamics of a car
in the Simulated Car Racing Championship, (ii) learning a task specification
for several racing tasks using apprenticeship learning algorithms and (iii)
combining (i) and (ii) with existing reinforcement learning algorithms to design
autonomous racing controllers. Here we focus on maximizing performance in
the real system and not in the system modeled by (i).

1.3 Related work

There are several works that relate to components of our research. Most
related is Abbeel’s work using apprenticeship learning for the real-world task
of acrobatic helicopter flight [7, 8]. Unlike Abbeel, we are, as well as [9], not
particulary interested in learning to follow a pre-supplied or learned reference
trajectory. We are interested in optimizing performance relative to a high
level objective, such as racing towards the finish line. This means that we do
not have a separate trajectory planner and then a controller that penalizes
for deviation along that trajectory. In our approach the controller has to
solve the entire problem and so we aim to obtain a controller that not blindly
follows a trajectory.

Apprenticeship learning in various forms is also used to learn a four-
legged robot to climb across challenging terrains [10] and for parking lot
navigation [11].

If we look at the task of autonomous driving the most famous work is
probably the Google driverless car [12]. This car has successfully completed
thousands of miles of driving without human intervention. This car uses
much of the work developed for Stanford’s autonomous research vehicle
Junior, Stanford’s entry in the 2007 DARPA Urban Challenge [13]. This car
uses a lot of sophisticated algorithms for aspects that including mapping
of the environment, localization, trajectory planning, dynamical modeling
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and control. The goal of the control system is to take the upcoming planned
trajectory and generate the inputs (throttle/braking, steering) in order to
follow this trajectory. The difference with our work is that we do not use an
advanced trajectory planner, but let the controller plan a trajectory itself.

Also research into the task of autonomous racing in a real challenging
environment is performed with performance only slightly less than a skilled
human driver [14]. Here different aspects are used to compute a trajectory,
which a controller then has to follow.

1.4 Outline

Background material on model-based reinforcement learning and MDPs is
presented in Chapter 2. We describe the iterative LQR algorithm to find
a control policy for an MDP in Chapter 3 and the Simulated Car Racing
Championship (SCRC) in Chapter 4. The state and action spaces of the MDP
we model for the SCRC can be found in Chapter 5 and the dynamics model
in Chapter 7. We focus on the reward function in Chapter 8. Experiments are
mentioned in Chapter 9. Some extra work about a state representation using
unsupervised learning is presented in Chapter 6. Conclusions and possibilities
for future work are given in Chapter 10.



Chapter 2

Background

We present a basic background on (model-based) reinforcement learning and
the formalism of MDPs (for a broader introduction, see [15]). We will focus
on those algorithms that we will later build upon.

2.1 States and controls

With a state we describe the current situation of the system in which the
robot is acting. We mean the set of those elements of the system in which
the agent is acting that are relevant to the system’s change over time. These
elements are typically not directly specified by the agent. For instance, for a
robotic car, the state may consist of the robot’s position, orientation plus the
velocities and angular velocities. To denote the state of the system, we will
use the notation

s ∈ Rn, (2.1)

where n is the dimension of the state space. We will use a discrete-time setting,
where time is discretized in short intervals. At each timestep t the state of
the system is defined by a point st in the n-dimensional space.

Controls (also called actions) specify those elements that the agent can

6
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specify directly and with which the agent can act upon the system. For the
car, the controls could correspond to the gas pedal, brake pedal and steering
wheel. To denote controls, we will use the notation

u ∈ Rm, (2.2)

where m is the dimension of the control space. Thus, there are m controls
the agent can use at each time t to act upon the system.

2.2 First-order Markov models

The state of the system in which the agent is acting evolves as a function of
past states and control inputs. Starting from state st at time t, the next state,
denoted as st+1, is specified as a function of previous states and controls:

st+1 = f(st, ut, st−1, ut−1, . . . ). (2.3)

However, such general models can be quite cumbersome, because the next
state could depend on a long history of controls. In the control literature,
it is common to restrict to first-order Markov models, where the next state
depends only on the current state and control:

st+1 = f(st, ut). (2.4)

In a first-order Markov model, the state and control input contain everything
needed to determine the next state of the system, where the controls and
states respectively represent those quantities that the agent can and cannot
directly affect. With a model, the agent does have some knowledge about how
possible actions affect the state of the system. However, in some cases st and
ut do not give enough information to predict the next state st+1 and we do
need also previous states (st−1, . . . , st−k) and control inputs (ut−1, . . . , ut−k).
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To keep a first-order Markov model we can augment the state st at time t
with these k previous states and control inputs. The parameter k indicates
the number of past states and control inputs that we need.

2.3 Stochastic models

In practice we do not have perfect knowledge of the current state and control
for complex systems. Our parametrization of the state is typically incomplete:
we choose some representation for the state so that most of the system’s
evolution can be described using a first-order Markov model, but there are
almost always certain elements that affect the system evolution to some degree
that we cannot observe or do not want to include in the model. In a car,
for instance, this could be the fuel level, tire wear or airflow around the car.
However, this is hard to measure and has a relatively negligible effect on the
system. Thus, we can instead add some amount of stochasticity to account for
unmodeled effects. Stochasticity can be represented by a model of the form

st+1 = f(st, ut) + εt, (2.5)

where εt denotes some zero-mean noise term, such as a Gaussian random
variable with covariance Σ:

εt = N (0,Σ). (2.6)

2.4 Control policies

A control policy (also referred to as a controller) is an entity that chooses
control actions based on the current state. Formally, we define a policy

π : Rn 7→ Rm (2.7)
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as a mapping from states to actions. When state spaces are continuous, we
work with parameterized policies, where the policy function is specified by a
set of parameters. A common example is a linear policy, where the controls
are prescribed as a linear function of the state

π(st) = K st (2.8)

with K ∈ Rm×n a matrix of the policy parameters. Another common form of
policies are those linear in state features

π(st) = K φ(st) (2.9)

where φ : Rn 7→ Rp is a function mapping from states to some p-dimensional
feature space and K ∈ Rm×p is again a matrix of parameters.

2.5 Optimal control

To determine how to choose a policy that can control an agent in some
environment, it is necessary to specify what is “good” behaviour in that
environment. The typical method for doing this is with a reward or cost
function, that specifies the desirability for being in a certain state and taking
a certain control action in that state (some control actions could have a higher
cost than others). We could consider a reward function as a description of
the task that has to be learned. Reward functions are specified as a mapping
from states and controls to a real number:

R : Rn × Rm 7→ R. (2.10)
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The goal of a control policy is then to maximize the expected sum of reward
over some time horizon H.1 Formally, the value function for a policy π and
state s starting at time t is defined as the sum of expected rewards, starting
at time t in state s and acting according to policy π

V π
t (s) = E

[
t+H∑
t′=t

R(st′ , π(st′))

∣∣∣∣st′+1 = f(st′ , π(st′)) + εt′ , st = s

]
. (2.11)

The value function V π
t satisfies a recurrence relation known as Bellman’s

equation
V π
t (s) = R(s, π(s)) + E[V π

t+1(f(s, π(s))) + ε]. (2.12)

This equation says that the value of a state is equal to the reward of that
state and the subsequent action, plus the expected value of the next state,
following policy π.

The optimal policy π? is the policy that maximizes the value function over
all possible policies. The value function for this optimal policy, sometimes
referred to as Bellman’s optimality equation, is defined as follows:

V ?
t (s) = max

u

[
R(s, u) + E[V ?

t+1(f(s, u)) + ε]

]
. (2.13)

2.6 Markov Decision Processes

In reinforcement learning, often the formalism of Markov Decision Processes
(MDPs) [6] is used. Intuitively, an MDP is simply a structure that contains all
the elements described previously: state and control spaces, a dynamics model
(also called transition probabilities), a reward function (or cost function, which
corresponds to negative reward), a time horizon and a distribution over initial
states. Formally, an MDP is a tuple M = (S, U, T,R,H,D) where S and U
are the state and control spaces, T is a set of transition probabilities given

1In the case of a cost function, we want to minimize the expected sum of cost over some
time horizon H.
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by the dynamics model, D is a distribution over initial states, H is the time
horizon and R is the reward function. There are many different formulations
for MDPs, such as those with an infinite (often discounted) value function
instead of the finite time horizon described above.



Chapter 3

Iterative Linear-Quadratic
Regulator

Linear Quadratic Regulator (LQR) control is based upon a special case of
dynamics and costs (negative reward) for continuous state and action spaces.
For MDPs which meet these requirements, the solution to Bellman’s optimality
equation can be derived analytically [16].

3.1 Linear dynamics and quadratic costs

The LQR setting assumes the dynamics of an MDP obey

st+1 = Ast +But (3.1)

with st and ut the state and control input at time t; A ∈ Rn×n and B ∈ Rn×m

[16]. Furthermore it assumes a cost function1 in the form:

C(s, u) = sTQs+ uTRu (3.2)
1A cost function can be considered as a negative reward function.

12
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with Q ∈ Rn×n � 0 and R ∈ Rm×m � 0.2 A cost function in this form
is always convex, which means that there is only one minimum. The cost
function shows that the goal is to maintain at the all-zeros state, s = 0, while
applying zero control, u = 0.

For this special class of MDPs, Bellman’s optimality equation could be
solved analytically to find the optimal value function [16]. We initialize the
value function at time H as

V ?
H(s) = sTPHs. (3.3)

Here we can choose PH to penalize deviations from the all-zeros state at the
end. Then the value function at time H − 1 is

V ?
H−1(s) = min

u
[sTQs+ uTRu+ V ?

H(As+Bu)]

= min
u

[sTQs+ uTRu+ (As+Bu)TPH(As+Bu)].
(3.4)

To find the minimum over u, we set the gradient with respect to u to 0. This
yields

∇(. . .)u = 2Ru+ 2BTPH(As+Bu) = 0. (3.5)

Solving this equation gives

u = −(R +BTPHB)−1BTPHAx. (3.6)

Substituting this expression back into equation (3.4) gives a quadratic equation

V ?
H−1(s) = sTPH−1s (3.7)

2Here X � 0 and X � 0 denote positive definite and positive semidefinite matrices
respectively. For a square matrix X we have X � 0 if and only if for all vectors z we have
zTXz > 0. We have X � 0 if and only if for all vectors z we have zTXz ≥ 0. Hence any
state and any input different from the all-zeros state or all-zeros input yields a non-zero
cost.
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for
PH−1 = Q+KT

H−1RK
T
H−1 + (A+BKH−1)

TPH(A+BKH−1)

and
KH−1 = −(R +BTPHB)−1BTPHA.

This shows that VH−1 is quadratic, just like VH . This update is the same
for all times t = H,H − 1, . . . , 1, 0. Thus in general, the solution to an LQR
control problem is as follows:

• Initialize PH

• For t = H − 1, . . . , 0:

Kt = −(R +BTPt+1B)−1BTPt+1A

Pt = Q+KT
t RK

T
t + (A+BKt)

TPt+1(A+BKt)
(3.8)

Then the optimal policy at time t is given by

π(s) = Kts (3.9)

and the value function at time t is given by

Vt(s) = sTPts. (3.10)

This policy tries to keep the system with linear dynamics and quadratic cost
at the all-zeros state, while preferring to keep the control input small. The
restrictions on the dynamics and cost function may seem restrictive, but the
algorithm can be extended to certain more general settings:

• The algorithm can be generalized to time-varying dynamics and costs:

st+1 = Atst +Btut, Ct(s, u) = sTQts+ uTRtu.
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The difference is that the dynamics and costs can now be different for
each time t. The derivation is identical, so the resulting equations for
Kt and Pt have the form:

Kt = −(Rt +BT
t Pt+1Bt)−1BT

t Pt+1At

Pt = Qt +KT
t RtK

T
t + (At +BtKt)

TPt+1(At +BtKt).

• LQR can be applied to affine systems

st+1 = Atst +Btut + a

by adding a constant term to the state and applying LQR to the
augmented system

s̄ =

[
s

1

]
, Ā =

[
A a

0 1

]
, B̄ =

[
B

0

]
, Q̄ =

[
Q 0

0 0

]
, R̄ = R.

3.2 Nonlinear dynamics

The constraint of linear models is a large restriction. However, the algorithm
can be extended (approximately) to nonlinear dynamics. A general nonlinear
dynamics model has the form

st+1 = f(st, ut). (3.11)

To apply LQR to this setting we linearize around a reference state-input
trajectory s?0, u?0, s?1, u?1, . . . , s?H , u?H . Linearization means finding a linear ap-
proximation to a function at a given point. We need the reference trajectory
for the initial linearizations of the algorithm. We linearize around each point in
the state-input trajectory to obtain linear, time-varying dynamics. In practice,
a linearized model is typically a good approximation to a nonlinear dynamics
model for regions “close” to the point where we linearized. To obtain the
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matrices At and Bt for all time steps t, we linearize the dynamics around s?t
for all t with a first-order Taylor expansion

st+1 ≈ f(s?t , u
?
t ) +

∂f

∂s
(s?t , u

?
t )(st − s?t ) +

∂f

∂u
(st?,u

t?)(ut−u?t ).(3.12)

The partial derivatives can be approximated with a finite difference method.
The approximate matrices are

At ≈
∂f

∂s
(s?t , u

?
t ), Bt ≈

∂f

∂u
(s?t , u

?
t ) (3.13)

for all t. Now instead of equation (3.12) we can write

st+1 − s?t+1 = A(st − s?t ) +B(ut − u?t ). (3.14)

Here we assume the trajectory we linearized around is a realizable trajectory,
thus s?t+1 = f(s?t , u

?
t ). We get a time-varying LQR format if using

zt = st − s?t , vt = ut − u?t (3.15)

Then we have
zt+1 = Atzt +Btvt (3.16)

and a non time-varying cost function

C(z, v) = zTt Qzt + vTt Rvt. (3.17)

This is an LQR problem that can be solved to obtain a policy vt = Kzt.
Because

vt = ut − u?t = K(st − s?t ), (3.18)

the optimal control input ut for time t can be computed with

ut = u?t +K(st − s?t ). (3.19)
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3.3 Iterative LQR

The method described above is still limited, because it requires as initialization
a realizable state-input trajectory. A generic optimal control problem has the
form

min
u0,...,uH

H∑
t=0

C(st, ut) (3.20)

subject to st+1 = f(st, ut) for all t. This problem can be solved by iteratively
approximating it and using the fact that the LQR formulation is easy to solve.
The iterative LQR algorithm is as follows [16]:

1. Pick either (a) an (arbitrary) control policy π(0) or (b) an (arbitrary)
sequence of states s(0)0 , s

(0)
1 , . . . , s

(0)
H and control inputs u(0)0 , u

(0)
1 , . . . , u

(0)
H .

With (a) go to Step (2), with (b) go to Step (3).

2. Execute the current policy π(i) and record the resulting state-input
trajectory s(0)0 , u

(0)
0 , s

(0)
1 , u

(0)
1 , . . . , s

(0)
H , u

(0)
H .

3. Compute the approximation for the matrices At, Bt, Qt and Rt around
the obtained state-input trajectory by computing a first-order Taylor
expansion of the dynamics model. The Qt and Rt matrices can be
approximated by two second order Taylor expansion. Here we assume a
cost function C(st, ut) = g(st) + h(ut).

4. Use the approximations from the previous step to solve for the optimal
control policy π(i+1).

5. Set i = i+ 1 and go to Step (2).

With the approximations we obtain a standard time-varying linear system
zt+1 = Atzt + Btvt with quadratic cost zTt Qtzt + vTt Rtvt. The linearization
around (s

(i)
t , u

(i)
t ) in iteration i of the algorithm gives us

st+1 ≈ f(s
(i)
t , u

(i)
t ) +

∂f

∂s
(s

(i)
t , u

(i)
t )(st − s(i)t ) +

∂f

∂u
(s(i), u(i))(ut − u(i)t ).
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Subtracting the term s
(i)
t on both sides gives the format we want. Hence we

get the standard format if we use

zt =

[
st − s(i)t

1

]
vt = ut − u(i)t

At =

[
∂f
∂s

(s
(i)
t , u

(i)
t ) f(s

(i)
t , u

(i)
t )− s(i)t

0 1

]

Bt =

[
∂f
∂u

(s(i), u(i))

0

]
.

The derivations for Qt and Rt are somewhat different. With the second-
order Taylor expansion around s(i)t to approximate g(st), we get

g(st) ≈ j0 + (st − s(i)t )T j +
1

2
(st − s(i)t )TJ(st − s(i)t ) (3.21)

where j0 = g(s
(i)
t ), j = ∂g

∂s
(s

(i)
t ) and J = ∂2g

∂s2
(s

(i)
t ). This equation is not in

quadratic form, but can be written as

zTt

[
1
2
J 1

2
j

1
2
jT 1

2
j0

]
zt = zTt Qtzt. (3.22)

The derivation for Rt is similar.
Often Differential Dynamic Programming (DDP) is used to refer to this

algorithm, while strictly speaking iterative LQR involves a minor simplification
of the classical DDP algorithm [16].

3.4 Practicalities

In practice, the optimal policy for the approximation might end up not staying
close to the sequence of points around which the approximation was computed
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by the Taylor expansion. A solution for this is a cost function that forces the
resulting policy to stay close3

(1− α)C(st, ut) + α(||st − s(i)t ||22 + ||ut − u(i)t ||22). (3.23)

In each iteration the value for α (starting near to 1) is decreased. So the
second term will ensure that only small steps toward the optimal policy are
taken.

Note that the algorithm will only work is the cost function is convex. If
the approximated matrices Qt and Rt are not positive (semi)definite α can
be increased until this is the case.

3.5 Receding horizon

At convergence of iterative LQR the linearizations are around the state-input
trajectory the algorithm converged to. In practice the agent could not be on
this trajectory due to various reasons. A solution to this problem is to resolve
the control problem at each time t for the time steps t until H (as applied
in [8]). Replanning the entire trajectory is often impractical. In practice we
could replan only for a smaller number of timesteps until a horizon h. This
requires a cost function V ?

t+h which accounts for all remaining timesteps from
t + h to H. This cost function could be taken from the offline run which
planned the entire trajectory.

3.6 Preventing highly oscillating control inputs

On real systems often high frequency control inputs get generated [16]. This
means control inputs over time are not smooth. This is typically undesirable

3With ||·||2 we denote the 2-norm, also called the Euclidean norm. In general the p-norm

is defined as ||x||p =

(
n∑

i=1

|xi|p
)1/p

.
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and can result in poor performance. To solve this we can reformulate the
LQR problem and penalize for change in control inputs:[

zt+1

vt

]
=

[
At Bt

0 I

][
zt

vt−1

]
+

[
Bt

I

]
∆v

with ∆v the change in control inputs between time t− 1 and time t. The new
cost matrices are now

Q′t =

[
Qt 0

0 Rt

]
and R′t which penalizes change in controls.

3.7 Summary

We described the iterative LQR algorithm, which iteratively approximates the
dynamics and cost function along a state-action trajectory to get a standard
LQR format. Then the standard solution for an LQR problem is used to
find an optimal policy for an MDP. Iterative LQR is a local, trajectory-
based method, which means that computational effort is focused along likely
trajectories and generated controllers are only valid in a local region of the
state space. In this way the algorithm is not directly subject to the curse of
dimensionality and is suitable for learning controllers in high-dimensional,
highly nonlinear systems with continuous state and action spaces.



Chapter 4

Simulated Car Racing
Championship

In this work we build a controller for the Simulated Car Racing Championship
(SCRC) [17]. This is a simulated car racing competition first organized in
2008. The championship consists of several races on different tracks. The
competition is build around a complex car racing game, the open-source
racing game The Open Car Racing Simulator.

4.1 The Open Racing Car Simulator

The Open Car Racing Simulator (TORCS) is an open-source car racing
simulator [18]. It provides a physics engine, full 3D visualization and several
tracks and models of cars. The car dynamics is very accurately simulated
and the physics engine takes into account many aspects such as traction,
aerodynamics and fuel consumption.

Each car is controlled by an automated driver. At each control step
(approximately every 0.02 seconds), a driver can access the current game
state through its sensors. Sensors include information about the car and the
track, as well as information about the distance to other cars on the track

21
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Name Range (unit) Description
angle [−π, +π] (rad) Angle between the car direction and the di-

rection of the track axis.
curLapTime [0, +∞) (s) Time elapsed during current lap.

distFromStart [0, +∞) (m) Distance of the car from the start line along
the track line.

distRaced [0, +∞) (m) Distance covered by the car from the begin-
ning of the race.

gear {−1, 0, 1, . . . , 7} Current gear: −1 is reverse; 0 is neutral.
lastLapTime [0, +∞) (s) Time to complete the last lap.

rpm [2000,7000] (rpm) Number of rotations per minute of the car
engine.

speedX (−∞,+∞) (km/h) Speed of the car along the longitudinal axis
of the car.

speedY (−∞,+∞) (km/h) Speed of the car along the transverse axis of
the car.

speedZ (−∞,+∞) (km/h) Speed of the car along the z axis of the car.
track [0,200] (m) Vector of 19 range finder sensors: each sensor

returns the distance between the track edge
and the car within a range of 200 meters.
The configuration of the range finder sensors
(the angle with respect to the car axis) can
be configured before the beginning of each
race. When the car is outside of the track, the
returned values are not reliable.

trackPos (−∞, +∞) Distance between the car and the track axis.
The value is normalized with respect to the
track axis, it is 0 when the car is on the axis,
−1 when the car is on the right edge of the
track and +1 when it is on the left edge of
the car. Values greater than 1 or smaller than
−1 mean the car is outside of the track.

wheelSpinVel [0, +∞] (rad/s) Vector of 4 sensors representing the rotation
speed of wheels.

z [−∞, +∞] (m) Distance of the car mass center from the sur-
face of the track along the z axis.

Table 4.1: Description of the most important sensors. Ranges are reported
with their unit of measurement (where defined). For a full overview of available
sensors and effectors, see [17].
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Name Range Description
accel [0,1] Virtual gas pedal (0 means no gas, 1 full gas).
brake [0,1] Virtual gas pedal (0 means no brake, 1 full

brake).
clutch [0,1] Virtual clutch pedal (0 means no clutch, 1

full clutch).
gear {−1,0,1,. . . ,7} Set gear value.

steering [−1,1] Steering value: −1 and +1 means respectively
full right and left, that corresponds to an
angle of 0.785398 rad.

Table 4.2: Description of the available effectors.

(Figure 4.1). The car can be controlled by using the gas and brake pedal, the
clutch, the gear stick and the steering wheel. For the most important sensors,
see Table 4.1. For the available effectors, see Table 4.2.

Figure 4.1: Range finder sensors return the distance to the track edge (red
lines). Opponent sensors return the distance to the closest opponent in the
covered area (blue). (Figure taken from [19].)
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4.2 Competition organization

The competition is organized like a real Formula 1 championship. The competi-
tions consist of different Grand Prix, each on a different racetrack. Competitors
do not know the racetracks in advance. In general, the length of a racetrack
is approximately between 2500 and 6000 meters. Each Grand Prix has three
stages:

• During the warming-up (also called training) each driver races alone
for 100,000 game ticks, which corresponds to approximately 33 minutes
and 20 seconds of actual racing time. The warming-up can be used to
form a model of the track.

• In the qualifying stage each driver races alone for 10,000 game ticks
(approximately 3 minutes and 20 seconds). The eight drivers that cover
the largest distance during the qualifying stage are qualified for the
actual Grand Prix race.

• During the race the goal is to complete five laps and finish as first. At
the end of the race the drivers are scored: 10 points to the first driver
that completes the five laps, 8 points to the second one, 6 to the third
one, 5 to the fourth one, 3 to the sixth one, 2 to the seventh one and 1

to the eighth one. In addition, the driver performing the fastest lap in
the race and the driver completing the race with the smallest amount
of damage receive 2 additional points each.

At the end, the team who scored most points summed over all Grand Prix
wins the competition.

4.3 Competitors

In previous editions of the championship the best drivers had their parameters
tuned using an evolutionary algorithm (to tune the parameters of a neural
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network or a hand-coded controller). Fully hand-tuned controllers did not
perform very well. Several competitors included some form of online (during
the race) learning to remember previous crash situations so as to adapt
their driving style in subsequent laps. Winner of the Simulated Car Racing
Championship 2011 and 2012 was an advanced competitor called Mr. Racer
[20, 21]. This competitor used the warming-up to generate a track model that
estimates curvatures of the next part of the track. Then a controller can use
this model together with expert knowledge and an evolutionary algorithm.

Imitation-based learning approaches have not been not very successful.
Some competitors, including [22], tried to develop drivers by imitating human
players using forms of supervised learning (a direct imitation approach). The
performance of these competitors was limited and the approach has been
abandoned by most of the participants. This is coherent with the published
works which show that, in car racing, imitation-based learning generally fails
to produce competitive controllers [23].



Chapter 5

States and Controls

To model the control problem of racing with a car on a racetrack for the
Simulated Car Racing Championship we use a Markov Decision Process
(MDP). We model the following elements to form this MDP. The MDP is a
tuple M = (S, U, T,D,H,C) where S and U are the state and control spaces.
In this chapter we describe the elements we choose to form the state and
control space.

5.1 State elements

We use the following elements to describe the state:

• ẋ is the velocity of the car along the longitudinal axis of the car (in
m/s). Thus, the velocity is expressed in the body (or robot centric)
coordinate frame.

• ẏ the velocity of the car along the transversal axis of the car (in m/s).

• ω̇ is the angular velocity of the car, also called yaw rate. The angular
rate of the car is expressed in rad/s.

26
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• p is the distance of the car from the start line along the track axis in
meters (corresponding to distFromStart in Table 4.1).

• q is the normalized distance between the car and the track axis. The
value is normalized with respect to the track width. It is 0 when the car
is on the axis, −1 when the car is on the right edge of the track and +1

for the left edge (corresponding to trackPos in Table 4.1).

• α is the angle between the car direction and the direction of the track
axis in radians (corresponding to angle in Table 4.1).

The body coordinate representation specifies the vehicle state using a
coordinate frame in which the x and y axes are forward and sideways relative
to the current orientation of the vehicle, instead of north and east. Intuitively,
using this coordinate frame is the most natural way to describe velocities.

We augment the state st at time t with k previous states and control
inputs st−1, ut−1, . . . , st−k, ut−k to be able to model state transitions more
accurately. By including previous states and controls in the current state the
Markov property (the future depends only upon the current state) is not
violated. We rotate linear velocities (ẋ and ẏ) at previous timesteps to the
body frame at time t (see Chapter 7 for more details).

Note that our current state description does not include information about
upcoming parts of the track and positions of opponents. Also we assume
the car drives in a 2-dimensional plane and we do not include 3-dimensional
elements, such as roll, pitch and velocity in the z direction. This is because
these effects are negligible on most tracks and we do not have enough sensor
information to measure them.

Most state elements are given directly by sensors. This is not the case
for the yaw rate. The car has no gyroscope to measure the yaw rate directly
and no compass from which we can derive the yaw rate. Fortunately, we can
estimate the yaw rate with the use of velocity and rangefinder sensors.
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5.2 Yaw rate estimation

The rangefinder sensors measure the distance to the track edge. To find the
yaw rate we can estimate the rotation between two scans when we know the
translation.1 The rangefinders at time t− 1 form the reference scan R and
the rangefinders at time t form the current scan C. Now we want to find
the rotation around the position of the car at time t such that the current
scan matches the reference scan, see Figure 5.1. We pose this as the following
optimization problem:

ω̇ = argmin
β

(dist(rot(C, β), R))/∆t (5.1)

Here ∆t is the time elapsed between time t− 1 and t. By dividing the angle β
by ∆t we can get an estimate for the yaw rate ω̇t at time t; dist is a distance
function which measures the distance between the current scan C rotated by
an angle β and the reference scan R.

5.3 Control elements

The state is affected by the controls. We define the following controls which
form the control space U :

• u1 controls the speed of the car and is a combination of the gas and the
brake pedal. The range is [−1,+1] with −1 meaning full brake and +1

full gas. An input of 0 means no braking and no gas.

• u2 controls the steering wheel ([−1,+1]) and affects the heading of the
vehicle in this way, with −1 meaning full right steering and +1 full left.

Gear and clutch are controlled by some fixed rules and are thus not controlled
directly by the controller.

1We also tried a simplification of the Polar Scan Matching algorithm [24], which works
directly in the polar coordinate system. However, this gave less accurate results.
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Figure 5.1: The rotation of the blue circles (current scan C at time t) around
the blue diamond (new position at time t+ 1) such that the blue points lie on
the curve formed by the red squares (reference scan R at time t−1) estimates
the rotation the car has made. The red diamond at (0, 0) represents the initial
position of the car at time t−1. The new position is estimated with the linear
velocities ẋ and ẏ at time t− 1. So we plotted the scan C in the coordinate
frame of scan R at time t− 1 and than search for the rotation this scan C
has to made to fit to the track edges already present. In (b) the result is
shown after a search for the rotation angle that results in a minimal distance
between the scans. Hence we have a estimate for the rotation between the two
consecutive times t− 1 and t and so we obtain an estimate for the angular
velocity ω̇ at time t.



Chapter 6

Learning Features

In our state representation described in Chapter 5 we have no information
about the upcoming part of the track. If the car is approaching a sharp left
or right turn, then it has to anticipate and lower its speed. In the standard
formulation for iterative LQR (Chapter 3) we assume a fixed horizon H. Then
we compute a time-varying policy, meaning that we have a separate policy for
each timestep t. If we have to deal with an infinite horizon or we want a more
robust policy, then we want a non time-varying policy. However, to have such
a policy we need a more expressive state representation. Our state also has
to represent the track curvature for the upcoming part of the track. In this
chapter we propose ideas on learning features corresponding to curvatures of
track parts with the use of unsupervised feature learning. The goal is to have
k features that are each sensitive for a specific track segment. For example, if
our car approaches a sharp right turn we want one of the feature detectors to
become active and another one if the car approaches a sharp left curve.

6.1 Unsupervised feature learning

The field of unsupervised feature learning [25] has become very active in
recent years. The goal is to learn feature representations from unlabeled data.
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When the feature representations are used to learn a new set of features one
can build a deep hierarchical representation of features. When using unlabeled
image data features in the first layer can correspond to edges and features
in higher layers can become sensitive to objects parts. When building very
deep models from very large amounts of data features in the higher layer can
correspond to faces, pedestrians or cats [26].

6.2 Learning features

We use unlabeled data to learn a dictionary of features. If we have a new
example of a track segment we want to encode this to a feature vector.

The first component needed is an unsupervised learning algorithm to
learn a number of features. Clustering algorithms, like Mixture of Gaussians,
K-means, auto-encoders and Restricted Boltzmann Machines are possible.

The second component is a feature encoding that maps each new example
into a feature vector.

The unsupervised learning algorithm we choose to use is K-means because
of its simplicity. It is a fast and relatively simple algorithm. Although it is
a simple algorithm [27] showed that k-means methods match or outperform
more sophisticated methods on various classification tasks in computer vision.
The feature encoding we use is the “triangle” method from [27]. Given the
centroids D obtained by K-means the feature encoding φ is defined by:

φk = max(0,mean(v)− vk) (6.1)

where vk =
∣∣∣∣x−D(k)

∣∣∣∣
2
is the Euclidean distance between the new example

and the k-th centroid. The mean of the elements in v is computed by mean(v).
If the distance to a feature is “above average” then φk will become 0. This
will set roughly half of the feature vector to zero and encourages some sort of
competition between features.

Given features and a feature encoding we are able to map any track patch
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of length r to a K-dimensional feature vector φ. This vector can be interpreted
as a track segment representation of reduced dimension.

In Figure 6.1 the learned bases by the K-means algorithm are visualized.
We see some curves to the left and some curves to the right. However, most
patches go straight ahead. More research is needed to learn really useful
features from track patches. Here we presented some initial directions to
start with. Because there are some curves visible in the learned bases, it is a
promising direction for more research.

Figure 6.1: Learned bases after 50 iterations of K-means.



Chapter 7

Dynamics Model

The dynamics describe how a system evolves over time. Modeling these
dynamics is often the most difficult element to specify in an MDP. We have to
build a function st+1 = f(st, ut) that can predict the next state st+1 given the
current state st and control input ut at time t. This function can be specified
using physical principles, learned from data generated on the real system or a
combination of both. In this chapter we describe how to build a dynamics
model from real data and some physical principles for the Simulated Car
Racing Championship. First we focus on how to predict linear and angular
velocities for the next state. Predicting the new position and orientation with
respect to the track axis is then fairly simple, supposing we have built a map
of the track.

7.1 Non-Markovian dynamics

Inspecting a state-input trajectory shows non-Markovian effects. An example
is shown in Figure 7.1. We see that full left or right steering at time t does
affect the yaw rate at time t+ 1 and future times. Therefore, to be able to
predict the next state, we need information from previous states and controls.
As described in Chapter 5, state and control elements from the last k timesteps
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Figure 7.1: Effect of steering input u2 (blue dashed) on yaw rate ω̇ (red solid).

are included into the current state.

7.2 Acceleration prediction model

By using the body coordinate frame in the state representation for the
velocities certain symmetry properties are already encoded into the model,
such as that the dynamics for the velocities are the same regardless of position,
orientation and heading. We build a model that can predict accelerations,
because forces and torques (and thus accelerations) are often a fairly simple
function of state and controls [28].1 By using the following update equation
from physics we can update the velocities (ẋ, ẏ) in the body coordinate frame:

(ẋ, ẏ)t+1 = R(ω̇t+1) · ((ẋ, ẏ)t + (ẍ, ÿ)t ∆t)

Here, R(ω̇t+1), is the rotation matrix that rotates the body-coordinate frame
from time t to the body frame at time t+ 1 (and is determined by the yaw

1Remember Newton’s second law of motion: F = m · a.
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rate)2. This equation makes clear that the change in velocity expressed in the
body coordinate frame does not correspond directly to physical accelerations,
because the body coordinate velocities at times t and t+ 1 are expressed in
different coordinate frames. Thus, ẋt+1 − ẋt is not the forward acceleration.
To obtain the acceleration the velocity at time t+ 1 must be rotated into the
body frame at time t before taking the difference. Doing this makes it easier
to capture sideslip into the model, the effect that the heading of the car is
not aligned with its direction of motion when turning.

We use the following parameterization, partially based on the helicopter
model in [7], to predict the accelerations (ẍ, ÿ, ω̈) as a function of state and
control inputs:

ẍt = B1(ẏtω̇t) + Axẋt +

C1

C2

C3


T (ua)t−1

(ua)t−2

(ua)t−3

+

C4

C5

C6


T (ub)t−1

(ub)t−2

(ub)t−3

 ,
ÿt = B2(ẋtω̇t) + Ayẏt,

ω̈t = Aωω̇t + C7(u2)t +

B3

B4

B5


T  ẋtω̇t

ẋt−1ω̇t−1

ẋt−2ω̇t−2

+


C8

C9

C10

C11

C12



T 
∆(u2)t

∆(u2)t−1

∆(u2)t−2

∆(u2)t−3

∆(u2)t−4

 .

Here the acceleration control u1 is separated again in a gas pedal value ua
and a brake pedal value ub, because negative accelerations due to braking are
in general much greater than positive accelerations due to pushing the gas
pedal.3 With ∆(u2)t we describe the difference in steering input between time
t and t− 1. The number of parameters from previous timesteps is selected

2We use ωt+1 instead of ωt, because ωt+1 is the best estimate for the rotation made.
3The values ua (gas) and ub (brake) are in the range [0, 1]. Values for u1 smaller than 0

result in a positive value for ub. Values for u1 greater than 0 result in a positive value for
ua.
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using cross-validation. The free parameters A, B and C are to be learned from
racing data. The parameters A model damping, B the influence of control
inputs and C the influence of state features.

The model is relatively simple and has a sparse dependence on the current
velocities, angular rates and inputs. In the model some simplifying assumptions
are made. We do not model gear changes and clutch effects. Furthermore it
assumes that the control inputs are independent from each other, u1 does only
control ẋ and u2 does only control ω̇ directly. With the complex dynamics of
a car this is probably not true, but a model of this form should be able to
capture the most dominant aspects.

7.3 Parameter learning

To learn the free parameters we collect a state-input trajectory from an expert
driver. For each time t we compute the corresponding accelerations (ẍ, ÿ, ω̈)t.
We use linear regression to find the parameters which minimize the mean
squared prediction error:

1

H

H∑
t=1

(ẍt − x̂t)2 (7.1)

for the true accelerations ẍ and predicted accelerations x̂, with H the number
of consecutive timesteps. The same holds for the other accelerations ÿ and ω̈.

7.4 Building a track map

To predict the new position and orientation (p, q, α)t+1 with respect to the
track axis we need a map of the track. Most other controllers use a simple
heuristic to estimate the curvature of the upcoming track segment. They rely
on the longest of the 19 rangefinders. This leads to problems for tight curves
as indicated by [20], see Figure 7.2. With a map of the track this type of
curve is recognized early.
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Figure 7.2: Two identical rangefinder scans for approaching two different
curves in (b) and (d) for the two totally different curves (a) and (c). The
sensor information is misleading in this case. (Figure taken from [20].)

We build this map from a state trajectory of one lap. With a state
trajectory containing (p, q, α)Ht=1 with H timesteps (see Chapter 5) we can
compute H − 1 points in a fixed coordinate frame that lie on the track
axis for each time t. Then we compute the distance and rotation between
these consecutive points. The resulting map is a sequence of tuples M =

(pi, αi, di)
H
i=1. Here pi is the position of a point along the track axis (in meters),

αi is the rotation the axis makes when going to the next point on the axis and
di is the distance to the next point. We do not define the map as a sequence
of points in a fixed coordinate frame, because the points are estimates and
we do not want to introduce accumulated errors into the map. In Figure 7.3
we have a reconstruction of the track from the map we build from one lap of
racing data.
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Figure 7.3: The map of the track that is build from data from one lap. The
start is located at (0, 0). As we can see, the map is not perfect. The end of
the track is not directly connected to the start at the (0, 0) point. This is
probably due to inaccurate yaw rate estimations. Hence we cannot make of
perfect map of the curves in the track. However, because the end of the track
is nearby the start we assume the map is reasonable at distances of a few
hundred meters. Further looking ahead while racing is probably not necessary.
The original track in the simulator is a reconstruction of the Suzuka Circuit
in Japan [29].
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Training Test
Acceleration MSE Signs MSE Signs

ẍ 3.52 0.93 3.22 0.93
ÿ 97.74 0.88 111.50 0.88
ω̈ 7.67 0.80 8.83 0.79

Table 7.1: Results on both the training and test set. Mean-squared error and
relative number of signs predicted correctly are reported.

7.5 Predicting position and orientation using a

track map

With the predicted velocities and yaw rate we have an estimate of the new
position and orientation relative to the current position and orientation.
With the map of the corresponding track of the map we can now compute
(p, q, α)t+1, the new position and orientation with respect to the track axis.

7.6 Results

First we describe results of our acceleration model. We collect a demonstration
from an expert driver [21] of approximately 10 minutes at a race track with a
lot of variation in curves. We use one part of this demonstration (70%) to
train our acceleration model and the other part (30%) as a test set to report
results. We report the mean-squared error and the relative number of signs
(positive or negative acceleration) predicted correctly over both the training
and test set in Table 7.1.

To test also the performance up to 10 simulation steps (0.2 seconds) we
report the mean-squared error for the 6 relevant state elements ẋ, ẏ, ω̇, p,
q, α. The results are in Figure 7.4. Here we use the acceleration model and
the map to predict the linear velocity, angular velocity and the position and
orientation relative to the track axis. We do not only predict this for the next
timestep, but over a longer period of 10 timesteps.
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Figure 7.4: Mean-squared prediction error throughout 0.20 second simulations
(10 simulation steps) for the linear velocities ẋ and ẏ, the angular velocity
ω̇ and the position and orientation state-elements p, r and α. The time is
plotted on the horizontal axis in seconds (t(s)) versus the mean-squared error
on the vertical axis.
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Because we have no other model to compare our results with, we zoom in
on a particular part of the real raced trajectory. We compare this part with
the prediction of our model for this part for a period of 4 seconds. The part
of the trajectory is in a curve, so also steering and yaw rate are involved. We
show the prediction for this particular part in Figure 7.5.

We show the real trajectory for this particular part together with the
predicted trajectory on the map of the track we build in Figure 7.6. The pre-
dicted trajectory is shown on the map with use of the position and orientation
elements of the predicted state. The inputs u1 and u2, for accelerating/braking
and steering during the predicted period, are in Figure 7.7.

7.7 Discussion

In this chapter we built a dynamics model for the Simulated Car Racing
Championship. In the results for the 4-second simulation we see that in
the case for the choosen part of the trajectory the angular velocity ω̇ is
underestimated during the first 2 seconds. Hence the predicted trajectory
goes off the track and the error for lateral track position q increases. During
the last 2 seconds of the simulation the angular velocity ω̇ is overestimated.
Hence we see a sharp curve in the predicted trajectory that goes back to the
track axis.

Based on this simulation we can say that the trends and directions in
the linear and angular velocities are predicted reasonably, although the exact
magnitude is not very accurate. However, we think this is comparable with
an average human driver. When you push the gas or brake pedal you expect
an increase or decrease in speed respectively, while you do not know the exact
magnitude of the acceleration. When you steer to the left you expect the
vehicle is turning to the left and vice versa for steering to the right, but how
much the vehicle will turn exactly is not known. During making the turn
you see if the turn will be too short or too wide and then you correct your
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Figure 7.5: The state elements and predictions for a particular part of the
trajectory (4 seconds). The predicted state trajectory started in exactly the
same state as the real trajectory and has the same control inputs over a
period of 4 seconds (200 simulation steps, the real time t(s) is shown on the
horizontal axis). The blue dotted line shows the predicted state elements over
the predicted period and the dashed red line shows the real values.
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Figure 7.6: The real raced trajectory and the predicted trajectory shown on
the map of the track for a period of 4 seconds. Both trajectories start from
exactly the same state. The blue one is the real raced trajectory and the black
one is the predicted trajectory, drawn on the map using predicted states. The
red line is the track axis. The track itself is shown in purple. The predicted
trajectory can go off the track, because the dynamics model does not take
the track edge into account.
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steering. The ideas of using reinforcement learing with inaccurate models
are exploited in [2, 15]. With the use of these algorithms for inaccurate
models in reinforcement learning and practising the task during trials to refine
performance it might be possible to use the dynamics model described in this
chapter for a racing task in the Simulated Car Racing Championship.



Chapter 8

Reward Function

In the previous chapter we focussed on building a dynamics model. In a
Markov Decision Process another important element is the reward function.
The reward function is a description of the task that has to be performed.
The agent’s goal is to collect as much reward as possible. Specifying a reward
function for complex tasks is not simple, because how to formulate a reward
function for “driving well”? Intuitively, you might know what you want, but
can not say it. Inverse Reinforcement Learning (IRL), also known as inverse
optimal control (IOC), tries to recover an unknown reward function from
expert demonstrations in a Markov Decision Process (MDP). This learned
reward function can be used to infer the expert’s goal or generalize the expert’s
behaviour to new situations. Work on IRL for driving tasks in a continuous
simulator is reported in [30]. Actions in their simulator, similar to our work,
correspond directly to gas, brake and steering control. In [30] a controller
learns an aggressive driving style (cutting of other cars), an evasive one
(driving fast, but keeping plenty of clearance) and a tailgater style (following
other cars very closely) from expert demonstrations. We try to implement
the linear variant of the algorithm from [30] to learn a reward function from
demonstrations.
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8.1 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) tries to recover the intention from
expert demonstrations in a form understandable for computer algorithms. In
reinforcement learning the reward or cost function is the most generalizable
representation of the behaviour of an agent (see Figure 8.1). Therefore IRL
tries to recover this reward function from the demonstrations, to generalize
the expert’s behaviour to new situations. An example where this is applied
succesfully is learning humanoid locomotion from demonstration of human
running [31]. Here naturalistic running behaviours could be used in new
environments, including rough terrain.

In IRL we assume the expert is trying to collect as much reward as possible
in an MDP with an unknown reward function. IRL tries to find a reward
function that makes the demonstrated behaviour of the expert (near-)optimal.
Once we have found such a reward function, any reinforcement learning
technique can be used to find an optimal policy for the MDP which does now
include a reward function.

Trajectory Policy Value
function

Reward
function

Figure 8.1: Ordering in terms of generalizability from least generalizable
(trajectory) to most generalizable (reward function) [32].

In IRL two variants for the form of a reward function are used. It can be
either a linear combination of provided features or a nonlinear combination of
features. In the simpler but less expressive case of a linear combination, IRL
algorithms try to recover the feature weights. Still there is a need for smart
engineering of the reward features. In the case of a nonlinear function the
reward function is represented as a Gaussian process [33]. In this case more
general reward features are possible, because the Gaussian process can also
find nonlinear relationships.
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8.2 Algorithm

The first IRL algorithm that can deal with high-dimensional and continuous
state and action spaces is presented in [30], we use the linear variant of this
algorithm. We have a dynamics function st+1 = f(st, ut) and assume an
unknown reward function r(st, ut), where st is the state and ut the action at
time t. The optimal actions are given by

u = max
u

∑
t

r(st, ut) (8.1)

An IRL algorithm tries to find a reward function r under which the
optimal actions match the expert’s demonstrations. Reward features are given
to the algorithm, f : (st, ut)→ R. These features can be used to represent the
unknown reward as

r(st, ut) =
∑
j

θjfj(st, ut) (8.2)

Real demonstrations are rarely perfectly optimal. Therefore we require a
model that can explain this suboptimality or “noise”. In [34] such a model
is presented, called the maximum entropy IRL (MaxEnt) model. With this
model, the probability of a sequence of actions u = u1, . . . , uH , for an action
sequence of H steps given an initial state, is proportional to the exponential
of the rewards collected along that trajectory:

P (u|s0) =
1

Z
exp

(∑
t

r(st, ut)

)
(8.3)

where Z is the partition function that describes the total exponential of the
reward for all possibilities of the action sequences u. In discrete environments
Z can be written as

Z =
n∑
i=1

∑
t

r(xt, ut) (8.4)
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with n the number of possibilities for the action sequence u. However, for
continuous environments we need to write Equation 8.4 with an integral over
all possibilities

P (u|x0) = er(u)
[∫

er(ũ)dũ

]−1
(8.5)

The reward along paths for all ũ can be approximated with a second order
Taylor expansion of r around u:

r(ũ) = r(u) + (ũ− u)T
∂r

∂u
+

1

2
(ũ− u)T

∂2r

∂u2
(ũ− u) (8.6)

With some derivations shown in [30] we can obtain the approximate log
likelihood of an action sequence u given an initial state as

` =
1

2
gTH−1g +

1

2
log | −H| − du

2
log 2π (8.7)

Here g is the gradient of the total reward with respect to the action sequence,
H is the Hessian and du is the dimensionality of the action.

Determining the reward weights θ that maximize the approximate log
likelihood is possible with gradient-based optimization (for example L-BFGS1).
This requires the gradient ∂`

∂θ
. With the algorithm in [30] this gradient can be

computed and the weights θ can be learned.

8.3 Features

The algorithm has to be presented with demonstrations and reward features.
We use demonstrations with a length of 10 seconds (500 samples). The
demonstrations are from parts everywhere on the track.

We propose a number of reward features with which we can build the
reward function. The features are:

1Limited-memory BFGS (L-BFGS) is an advanced method for solving nonlinear opti-
mization problems.
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• Distance from track edge. Distance from the track edge is rewarded
with

f1 = 1− q2t (8.8)

with qt the lateral position with respect to the track axis element at
time t. Most important for the car is of course to stay on the track.
This feature gives most reward for driving in the middle of the track.
However, to take a curve optimally an expert driver will approach the
curve from the outside, then go to the inside to end the curve at the
outside again. This behaviour cannot be captured with this feature.

• High-speed. Speed in longitudinal direction ẋ is another reward feature

f2 = ẋt (8.9)

A high longitudinal speed is good for most parts of the track. However,
when going into a curve the speed cannot be too high, because of the
danger of loosing control and going off the track.

• Distance covered. This seems a very important feature. This feature is
computed with

f3 = pt − pt−1 (8.10)

with pt the distance of the car from the start line along the track axis
at time t. The goal is to race as fast as possible, thus to cover as many
meters as possible along the track axis each timestep.

• Lateral speed. The lateral speed feature is

f4 = ẏ2t (8.11)

where ẏ is lateral speed. Lateral speed is something we want to avoid in
most cases. A car with high lateral speed is difficult to control.
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• Angle. The angle with respect to the track axis αt is another feature

f5 = α2
t (8.12)

A too big angle means the car is facing a wrong direction, so this is
something that also should be avoided.

• Steering effort. The steering feature looks like

f6 = u22 (8.13)

where u2 is the steering input. Too abrupt steering can lead to loss of
control of the car.

The features chosen contain no discontinuities. For each reward feature
the gradient and the Hessian with respect to the state and the action are
computed. These gradients and Hessians will be denoted by g̃(k), ĝ(k), H̃(k)

and Ĥ(k) with k the feature index.

8.4 Results

We run the linear variant of the algorithm described in [30]. An extra regular-
izer feature is added as also described in [30]. This is done in order to make
the determinant of the negative Hessian in Equation 8.7 positive. Otherwise
the log determinant is undefined. This regularizer feature is a constant 1 for
all states.

However, when running the algorithm the initial weight of the regularizer
feature is doubled until the negative Hessians of all example paths are positive
definite. In practive, with our example demonstrations, this weight keeps
being doubled until the maximum number of iterations is reached. So no
feature weights are found that say something about the objective that the
expert is trying to optimize.
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8.5 Discussion

It turned out the IRL algorithm from [30] works well on the more simple and
artificial examples in [30]. However, on more realistic data from a detailed
racing simulator the algorithm seems to be not robust enough. The algorithm
does not succeed in making the matrices positive semi-definite. This could
have to do with the shape of the features. However, very simple features
without discontinuities are tried in our experiments.

An alternative IRL algorithm that does probably have more chance to be
successful is described in [31]. This is an LQR-based dynamic programming
algorithm. This method tends to be more stable and robust. It is math-
ematically equivalent and just a more stable way of computing the same
thing.

By learning a linear combination of features the reward function is still
limited in its expressiveness. The linear features have to form a good basis of
the reward function. Instead of learning weight for a linear combination of
reward features we can use a Gaussian process as a reward function [33]. In
comparison to a linear reward function this can yield a reward that is nonlinear
in its features. This method can work with less expressive features. However,
it comes with the bias and variance tradeoff that arrive with the increased
complexity of the model. The possibilities of nonlinear reward functions are
not further explored in this work.

So IRL algorithms try to recover a reward function from expert demon-
strations, but still the reward features need to be engineered by hand. Future
research has to find out whether it is possible to automatically extract reward
features from state-action trajectories of an expert. In many applications deep
learning has already replaced hand-engineerded features by features learned
from data successfully [35].



Chapter 9

Experiments

In this chapter we describe an experiment with a reinforcement learning
algorithm. We apply the iterative LQR algorithm as described in Chapter 3 to
find an optimal controller for the Markov Decision Process (MDP) described
in the previous chapters. We use the dynamics model learned in Chapter 7.
We define an experiment to test the controller. A trajectory is provided to
initialize the iterative LQR algorithm.1

9.1 Constant speed

In this experiment the car has to reach a constant longitudinal speed (ẋ) of
50 km/h (13.89 m/s), while not turning. The car starts from zero speed. The
duration of the experiment is 250 timesteps (approximately 5 seconds). We
define a cost function that quadratically penalizes deviations from the desired
longitudinal speed and yaw rate (yaw rate penalties are also multiplied by 10

because of the difference in order of magnitude). Also change in control inputs
is penalized. This experiment is relative simple, but the car has to control

1The reference trajectory used for the first iteration of the algorithm is a trajectory
raced by a driver, called SimpleDriver, on the same race track. This driver follows simple
heuristics to stay on the track and accelerate where possible.
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the gas, brake and the steering wheel. Therefore this experiment requires a
dynamics model with knowledge of how to control longitudinal speed and yaw
rate with the use of these controls. Results are reported in Figure 9.1. We can
see that the controller is able to go to the desired speed, while not turning.
Three iterations of the iterative LQR algorithm are used. The α-values are
decreasing from 0.5 to 0.25 to 0.



CHAPTER 9. EXPERIMENTS 55

0 1 2 3 4 5 6
0

10

20

30

Time (s)

ẋ
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Figure 9.1: (Best viewed in color.) Generated control inputs by the controller.
In (a) we see the time on the horizontal axis and the resulting speed ẋ on the
left vertical axis and the generated control u1 at the right vertical axis. The
gas pedal is pushed to the limit until the desired speed is reached. In (b) the
yaw rate ω̇ is on the left vertical axis and the steering control u2 on the right
vertical axis. Steering is around 0 (no steering) to keep the yaw rate at zero.
The right steering in the beginning does not have much effect because of the
low speed.



Chapter 10

Conclusions

In this work we focused on controlling a car in the Simulated Car Racing
Championship. We used apprenticeship learning, an indirect form of imitation
learning. This means that demonstrations of an expert for the task to be
performed are available. These demonstrations are useful for learning the two
key elements that are needed before a reinforcement learning/optimal control
algorithm could be used: i) a dynamics model and ii) a reward/cost function.

The formalism of a Markov Decision Process is used to describe the task
of racing in the Simulated Car Racing Championship. A state and action
space is proposed and using these elements of the MDP a dynamics model
is build. The model is built using data from the demonstrations and some
physical principles. An attempt is made to learn a reward function from the
demonstrations available and the iterative LQR algorithm is used to come up
with a policy for a relatively simple task in the real racing simulator.

When looking to the results of the dynamics model we can conclude
that the model is not perfect, but does a reasonable job in predicting the
accelerations. The model can be inaccurate sometimes, but most important
is that the signs of the accelerations are predicted correctly in most cases.

Learning a reward function from demonstrations turned out to be difficult
for a task in a very realistic and complex environment. The inverse optimal
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control algorithm that was succesful for other simpler environments did not
succeed in our complex environment.

Also applying the iterative LQR algorithm for this environment turned
out to be far from simple. To keep the matrices required for the cost function
positive (semi-)definite, large values for deviation from the trajectory linearized
about have to be choosen. Also bounds for the control inputs are not included
in this algorithm, so generated inputs can be outside the possible bounds.
However, for the relatively simple task of accelerating to a constant speed,
while not turning, this was not a problem. A controller for this task was
created successfully with the dynamics model learned and a manually defined
cost function.

10.1 Future work

It can be too difficult to capture all the dynamics in one “global” model. How-
ever, we can use multiple “local” models. When making a new prediction for
a certain state-action pair we consider only data points in the neighbourhood
of this query point to build the model. One drawback of this method is that
it is very expensive, because we have to build a new model for every predic-
tion. This method is called Locally weighted linear regression [36]. Another
possibility is to deal with the inaccuracies in the dynamics model and use
algorithms that can handle this [2, 15]. With enough trails it is then still
possible to achieve good performance. Most of these methods look at the
signs of the derivatives. Here our dynamics model scored well.

For learning a reward functions from demonstrations the method tried in
this work turned out to be not successful. However, an alternative method is
described in [31]. This comes with some extra assumptions. A LQR based
dynamic programming has to be used, which was the case in this work with the
iterative LQR algorithm. In this work and in others on inverse reinforcement
learning it is still the case that the features provided to the algorithm are
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manually engineered. Deep learning provides a promising way to automatically
learn features. In Chapter 6 a first step in this direction was taken.

Perhaps other reinforcement learning algorithms can be used. The iterative
LQR algorithm is commonly used for trajectory following. It turns out it is
difficult to apply the algorithm for other tasks, because then it is difficult
to obtain positive-definite Q and R matrices. Another class of reinforcement
learning algorithms that can deal with continuous states and actions are
policy gradient methods [37].
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