
Universiteit Leiden

Opleiding Computer Science

Specifying and Analyzing Paradigm Diagrams

through UML Diagrams

Name: Dennis Mohorko

Date: 15/02/2016

1st supervisor: Dr. L.P.J. (Luuk) Groenewegen
2nd supervisor: Dr. M.M. (Marcello) Bonsangue

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Specifying and Analyzing Paradigm

Diagrams through UML Diagrams

Dennis Mohorko

E-mail: d.mohorko@umail.leidenuniv.nl
Student number: 1335170

Computer Science – Master Project, 4343MRP42

Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

February 15, 2016

1

Abstract

This master thesis presents a specification of a linear pipeline written
in the coordination language Paradigm. This pipeline example illustrate
the goals in this master thesis. A pipeline exist of a filter and a buffer,
which collaborate on a producer and consumer manner. The main goal of
this master research is to translate the given Paradigm pipeline diagrams
to the thirteen Unified Modeling Languages (UML) 2.0 diagrams. The
translation through UML is a possible enhancement, as UML is more
rich then Paradigm. This thesis will indicate if it is actually possible to
translate the Paradigm models through all the thirteen UML 2.0 diagrams.

2

Acknowledgments

A lot of studying and researching, a lot of thinking and brainstorming
and a lot of sheets, maybe more then hundred, with concept models which
are used in this thesis. My goal of writing the thesis now has been fulfilled.

First of all, I would like to thank my thesis supervisor Dr. Luuk Groe-
newegen of Universiteit Leiden, LIACS, for his support and inspiration,
his wide view of Paradigm and always his very interesting talks about
Paradigm.

I would also like to thank Dr. Marcello Bonsangue of Universiteit Leiden,
LIACS, as the second supervisor of this thesis, and his valuable comments
on this thesis.

Finally, I must express my very profound gratitude to my family and
friends for providing me with unfailing support and continuous encour-
agement in my years of study. This would not have been possible without
them.

Thank you, from the bottom of my heart.

- Dennis Mohorko

3

Contents

1 Introduction 5
1.1 Research Questions . 5

2 A brief overview of Paradigm and UML 5
2.1 Paradigm . 6
2.2 A Paradigm model . 7
2.3 A basic architecture for a Paradigm model 10
2.4 UML . 14

3 Translating Paradigm into UML models 17
3.1 STD, partition and role . 17

3.1.1 Prod filter . 17
3.1.2 Cons filter . 21
3.1.3 Prod and Cons filter . 24
3.1.4 Sink buffer . 24
3.1.5 Source buffer . 28
3.1.6 Sink and Source buffer . 31

3.2 Structure overview . 31
3.3 Consistency rules . 37

4 Conclusion 47

4

1 Introduction

Paradigm is an State Transition Diagram (STD)-based coordination modeling
language, where so-called vertical communication and horizontal communication
is applied. Vertical is between a component and its role port and between a port
and its mirrored role. Horizontal is between components or between mirrored
roles. Paradigm models together with the special component McPal, can be
dynamically adapted via self-adaptation. This means that a Paradigm can be
improved or extended with components from a AsIs model to a new ToBe model.
Paradigm uses one diagram type, an STD. Paradigms key notions are an STD,
a phase, a trap, a role STD and a consistency rule, only the consistency rule
does not have a explicit Paradigm diagram, but the other four notions have a
visualization based on an STD.

When designing with Paradigm, some UML models, like an UML composite
structure diagram can be used to clarify the concrete Paradigm model. And, to
visualize the Paradigm consistency rules, an UML activity diagram can show
the exact steps which the Paradigm consistency rules are taking. This means
that the two languages already is some case are connected with each other.

By visualizing the Paradigm key notions as UML diagrams, the Paradigm
modeling language can be understood using UML tools and techniques, as UML
is a more widely used modeling language in the world problems. Also, it can
help to enhance the model, as there are more aspects in UML which can be
taken in mind.

In Chapter 2 a short introduction to Paradigm and UML is described. In
this chapter the STDs of the filter and buffer is visualized and described. Then
an architecture of the given pipeline model is visualized and described. In
Chapter 3 the actual translation from the given Paradigm diagrams in Chapter 2
are translated to the UML 2.0 diagrams. The last chapter, Chapter 4 will give
the conclusion.

1.1 Research Questions

There are five research questions:

RQ 1: To what extent can Paradigm models be translated into UML 2.0 model?

RQ 2: Which UML sub-languages are (minimally) needed?

RQ 3: What does this mean for coherence/consistency of these sub-languages?

RQ 4: What other UML sub-languages could be involved (useful) for more/better
understanding?

RQ 5: To what extent could the remaining sub-languages of UML be used in
this context?

2 A brief overview of Paradigm and UML

A short overview to Paradigm and UML which underpin the introduction in
Chapter 1 is given.

5

2.1 Paradigm

A system architecture is organized along specific collaboration dimensions, called
partitions. A partition is a well-chosen set of sub-behaviors of the local behavior
of a component, specifying the phases the component goes through when taking
part in a collaboration.

At a higher layer in the architecture, the component participates via its role,
an abstract representation of the phases.

As progress within a phase is completely local to the component, the use of
phase transfer, where a phase transfer is a change between more phases with
traps, instead of state transfer, where a state transfer is between states in one
particular phase, is the key concept of Paradigm. This makes it possible to
model, at the same time and separated from one another, both behavioral local
changes per component, and global changes across architectural layers [1].

Formal definitions are defined in the paper by Andova et al [1] and are
given in the following list structure which underpin the above motivation and
explanation.

• An STD is a triple Z =<ST, AC, TR> with ST the set of states containing
one particular starting state, AC the set of actions and TR ⊆ ST x AC x
ST the set of transitions of Z, notation x

a−→ x′.

• a phase S of an STD Z = <ST, AC, TR> is an STD S = <st, ac, tr>
such that st ⊆ ST, ac ⊆ AC and tr ⊆ {(x, a, x′) ∈ TR | x, x′ ∈ st, a ∈
ac}.

• A trap t of a phase S = <st, ac, tr> of STD Z is an non-empty set of states
t ⊆ st such that x ∈ t and x

a−→ x′ ∈ tr imply x′ ∈ t. If t = st, the trap is
called trivial. A trap t of phase S of STD Z connects phase S to a phase
S’ = <st’, ac’, tr’> of Z if t ⊆ st’. Such trap-based connectivity between

two phases of Z is called a phase transfer and is denoted as S
t−→ S′.

• A partition π = { (Si, Ti) | i ∈ I } of an STD Z = <ST, AC, TR>, I a
non-empty index set, is a set of pairs (Si, Ti) consisting of a phase Si =
<sti, aci, tri> of Z and of a set Ti of traps of Si.

• A role Z (π) at the level of a partition π = { (Si, Ti) | i ∈ I } of an STD

Z = <ST, AC, TR> is an STD role Z (π) = <ŜT , ÂC, T̂R> with ŜT ⊆
{ Si | i ∈ I }, ÂC ⊆

⋃
i∈I Ti and T̂R ⊆{Si

t−→ Sj | i, j ∈ I, t ∈ ÂC} a set
of phase transfers. Z is called the detailed STD underlying global STD
Z (π), being role Z (π).

• A consistency rule ρ for an set of roles Z1(π1), . . . , Zk(πk) is a mechanism
for synchronizing the transitions mention in ρ, mainly from roles in the
ensemble. As such a consistency rule ρ is denoted as a string starting with
an ”*” followed by a non-empty comma-separated list of phase transfers
taken from different roles from the ensemble. The string may be preceded
by one transition from a non-role STD Z. In the presence of a transition
from a non-role STD Z a so-called change clause Z:[y := expr] can be
part of the list, overwriting the variable y accessible for Z by the value
of the expr of appropriate type. If a change clause is inserted, the list of
phase transfers may be empty. An STD Zk occurring in the list of phase

6

transfers, is called a participant of ρ; if a transition of a non-role STD
Z occurs in ρ, Z is called a conductor of ρ. A consistency rule with a
conductor is also called an orchestration step; a consistency rule without
a conductor is also called a choreography step.

• A Paradigm model is an set of STDs, roles thereof and consistency rules.

• A subset P of the consistency rules from a Paradigm model, is called
protocol P if for any role Zi(πi) occurring in a rule from P, role Zi(πi)
does not occur in whatever consistency rule outside P. Any consistency
rule ρ belonging to a protocol P is called a protocol step of P. A protocol
P is called a choreography, if all consistency rule in P are choreography
steps. A protocol not being a choreography is called an orchestration. The
conductor of an orchestration step in orchestration P is called a conductor
of P too.

2.2 A Paradigm model

The component Filteri is given as an STD in Figure 1. The example given is
a variant of a second example from the paper by Groenewegen et al [2]. An
STD, in this case, of Filteri exist of four states and four actions. The filter is
based on producing and consuming an item in one full cycle via its Prod role
for producing and Cons role for consuming.

The component Bufferi is given as an STD in Figure 2. The buffer is
based on storing an item into the buffer, with a storecycle via its Sink role and
popping one item out of the buffer with a popcycle via its Source role.

Filteri

Figure 1: STD of Filteri

The states are Wanting, Transforming, Finished and Ready. The actions
are take, produce, give and resume.

The starting state is Wanting, where the filter is looking for new input from
the buffer. By taking action take it gets the input in the form of one item.

In the second state, Transforming, it transforms this item in a new item.
By taking action produce the new item is made available for being put into the
buffer.

In the third state, Finished, it indicates availability of the new item for
being put into the buffer. By taking action give it puts the new item into the
buffer.

In the fourth and last state, Ready, the filter is done with producing and
consuming activities. By taking action resume it resumes to the first state
Wanting where it is waiting for a new item to be taken from the buffer.

7

Buffer1

Figure 2: STD of Buffer1

The component Bufferi where i = 1 is given as an STD in Figure 2. An
STD, in this case of Bufferi, the states are 0 to n, which are visualized in the
middle layer of the buffer. The starting state of the buffer is 0, which means
that the buffer is empty. State n means that the buffer is full, but only filled
with natural numbers.

As can see, there is a 0+ state in between states 0 to state 1 for adding an
item into the buffer. State 0+ is there for adding an item via action planStore
and via action store to state 1. The actions planStore and store are a storecyle
for storing an item.

The state 1− in between states 1 to state 0 is there for removing an item
out of the buffer. State 1− is there for removing an item via action planPop
and via action pop to state 0. The actions planPop and pop are a popcycle for
removing an item.

This two actions planStore and planPop are for deciding when to do a store
or when to do a pop action. Depending on the decision always a store or a pop
will follow.

(a) Partition of Filteri (b) Role Filteri

Figure 3: Partition and role for Filteri(Prod)

The partition and role behavior of Filteri(Prod) are given in Figure 3. Fig-
ure 3a visualizes two phases named, NotGiving and Giving. Each phase has a
trap. The trap in phase NotGiving, where state Finished lies in trap request
is there that the pipeline behavior cannot move to another state or cannot leave
the trap once the trap has been entered. The trap in phase Giving is much
larger then the trap in phase NotGiving. The states Wanting, Transforming
and Ready lie in trap done.

In case of phase NotGiving where state Finished lies in trap request, the
filter wants to put a renewed item into the buffer. In case of phase Giving, the
filter places this renewed item into the buffer indeed.

Therefore, Figure 3b visualizes the role behavior. Via the trap, the phase
moves from one phase to another phase, a phase transfer. The starting phase is

8

NotGiving where the phase transfer is from phase NotGiving via trap request
to phase Giving. The second phase transfer is from phase Giving via trap done
back to phase NotGiving.

(a) Partition of Filteri (b) Role Filteri

Figure 4: Partition and role for Filteri(Cons)

Where Figure 3 visualizes the filter with its Prod role. The filter with its
Cons role, Filteri(Cons) is visualized in Figure 4. Figure 4a visualizes the
partition. This partition has two phases NotTaking and Taking. In phase
Taking, state Wanting lies in trap request where the filter wants to get an
item from the buffer. In phase Taking the states Transforming, Finished
and Ready lie in trap done where it cannot ask again for a new item from state
Wanting.

The role behavior of Filteri(Cons) is visualized in Figure 4b. The starting
phase is NotTaking where the phase transfer is from phase NotTaking via trap
request to phase Taking. The second phase transfer is from phase Taking via
trap done back to phase NotTaking.

(a) Partition of Bufferi(Sink) (b) Role Bufferi(Sink)

Figure 5: Partition and role for Bufferi(Sink)

A store cycle, for storing items in the buffer, is done in two steps: by taking
the actions planStore and store. The phases Stable, Collecting and Stabilizing
are visualized in Figure 5a. Phase Stable will do no action planStore or action
store for a store cycle. Phase Collecting will do the first step of a store cycle,
taking action planStore. Phase Stabilizing will do the second step of the store
cycle, taking action store. All three phases allow all possible pop cycles, but at
most one step of a store cycle.

9

(a) Partition of Bufferi(Source)
(b) Role
Bufferi(Source)

Figure 6: Partition and role for Bufferi(Source)

A pop cycle, for popping items out of the buffer, is done in two steps: by
taking actions planPop and pop. The phases Stable, Providing and Stabilizing
are visualized in Figure 6a. Phase Stable will do no step of a pop cycle. Phase
Providing will do the first step of the pop cycle, the action planPop. Phase
Stabilizing will do the second step of the pop cycle, the action pop. All three
phases allow all possible store cycles, but at most on step of a pop cycle.

2.3 A basic architecture for a Paradigm model

In Figure 7 a basic architecture is visualized with four filters and three buffers.
This filters and buffers together are forming a linear pipeline where Filteri where
i = 1 produces input to Bufferi where i = 1 and where Filteri+1 consumes
output out of Bufferi. To clarify the roles, in this visualization, the Prod role
belongs to Filteri, the Source and Sink role belongs to Bufferi and the Cons
role belongs to Filteri+1. Filteri+1 then has an additional role, the Prod role.
Bufferi+1 then has Sink and Source role and so forth till the last Filteri+1.

It visualizes a simple pipeline architecture with six collaborations, Production1.1
and Consumption1.2. The first collaboration, Production1.1, has two roles the
Prod role, producer, for producing items toward Bufferi. The second role
is the Sink role, for handling the producer items. The second collaboration,
Consumption1.2 also has two roles, the Cons role, consumer, for consuming
items from Bufferi.

Figure 7: A linear pipeline architecture for a Paradigm model

10

Figure 8: Communications from detailed STD to Collaboration

Figure 8 visualizes a vertical asynchronous communication between the STD,
components port and mirrored collaboration of the filter where some role steps
occur here. Asynchronous means that a send, for example an item, from the
components port Prod to the collaboration port CProd is received some time
later in the collaboration port CProd. When this is reversed, a send from the
collaboration CProd to the components port is then received some time later in
the components port.

Figure 8 is not an existing used UML 2.0 diagram, but is based pure on a
Paradigm model. It gives a nice overview to clarify the steps to take among
the state machine diagrams involved. One cycle for one phase transfer exist
of the steps one, two, three and four. When the new phase is changed and
imposed, the next cycle with again the steps one, two, three and four will occur.
Thus, when the full cycle of trap and phase information is done, the cycle will
start over in step one, but then in its current phase which is imposed. To
clarify the four communication steps, the first and second communication steps
are trap information and the third and fourth communication steps are phase
information. These four steps are explained in more detail:

The first communication step is from the detailed STD, Filteri where i =
1 to the role port Prod. The current phase imposed is NotGiving where trap
triv has been entered. In this first communication step, trap request has been
entered. This means that state Finished is reached in the detailed STD. In this
transfer there is a OR possibility that in the next cycle trap done has been
entered instead of trap request.

The second communication step is from the role port Prod to the mirrored
collaboration CProd. Also here is a OR possibility, which means that in the first
cycle the phase transfer is from phase NotGiving via trap request. The second
cycle then is from phase Giving via trap done. This second communication step
means that it sends the trap information that the trap has been entered to the
collaboration prod CProd. In case of the sending ”trap request entered” there

are two enablings: NotGiving
request−−−−−→ NotGiving and NotGiving

request−−−−−→
Giving and in case of ”trap done entered” there is one enabling: Giving

done−−−→
NotGiving.

The third communication step is from the mirrored role port CProd, back
to the component role port Prod. This third transition changes in the first cycle

11

the phase from phase NotGiving via trap request to the new phase Giving. In
the second cycle in the changes the new imposed phase Giving via trap done
back to phase NotGiving,

The fourth communication step is from the role port Prod back to the de-
tailed STD, Filteri. This fourth transition means that the new phase has been
imposed.

Figure 9: Communications from detailed STD to Collaboration

The communications in Figure 9 are similar to the communications in Fig-
ure 8. The taken cycles, steps and description are the same, but now with the
STD of Filteri+1, component port Cons and collaboration role CCons which
have other phase names.

Figure 10: Communications from detailed STD to Collaboration

The asynchronous communications for the Sink buffer between the STD of
Bufferi where i = 1, component port Sink and collaboration port CSink are
given in Figure 10 where the manner is the same as in Figure 8 and Figure 9.
Due to the buffer has three phase changes, it has three cycles, one cycle for one
phase change. Thus, it will cycle three times through the steps one, two, three
and four.

12

Figure 11: Communications from detailed STD to Collaboration

Figure 11 gives the overview for the Source port buffer. Here the way is
also the same as in Figure 8, Figure 9 and Figure 10. Respectively described in
section 3.1.1, 3.1.2 and 3.1.4. The Bufferi remains the same but now with the
component port Source and collaboration role CSource.

The consistency rules for the linear pipeline are given in the following rules
3–10. Consistency rules 1–4 define the Prod role and Sink role steps while the
consistency rules 5–8 define the Cons role and Source role steps.

∗Filteri(Prod) : NotGiving
request−−−−−→ NotGiving,Bufferi(Sink) : Stable

notFull−−−−−−→ Collecting (1)

∗Filteri(Prod) : NotGiving
request−−−−−→ Giving,Bufferi(Sink) : Collecting

toGet−−−−→ Collecting (2)

∗Filteri(Prod) : Giving
done−−−→ NotGiving,Bufferi(Sink) : Collecting

toGet−−−−→ Stabilizing (3)

∗Bufferi(Sink) : Stabilizing
ready−−−−→ Stable (4)

Rule 1 addresses that Filteri(Prod) starts in NotGiving where via action
request it stays in the same phase NotGiving. Bufferi(Source) transfers from
phase Stable to phase Collecting via action notFull.

Rule 2 addresses that NotGiving now transfers via action request to Giving.
Bufferi(Sink) transfers from Collecting via action toGet to the same phase
Collecting.

Rule 3 addresses that Filteri(Prod) transfers from Giving via action done
to NotGiving. Bufferi(Sink) transfers from Collecting to Stabilizing via
action toGet.

Finally, for the production role, rule 4 addresses that Bufferi(Sink) trans-
fers from Stabilizing via action ready to Stable.

∗Filteri+1(Cons) : NotTaking
request−−−−−→ NotTaking,Bufferi(Source) : Stable

nonEmpty−−−−−−−−→ Providing (5)

∗Bufferi+1(Source) : Providing
toPut−−−−→ Stabilizing (6)

∗Filteri+1(Cons) : NotTaking
request−−−−−→ Taking,Bufferi(Source) : Stabilizing

ready−−−−→ Stable (7)

∗Filteri+1(Cons) : Taking
done−−−→ NotTaking (8)

13

The description of the rules 5–8 is similar to the description of the rules 1–4
but then with the phases of the Cons and Source roles. Also the indices are
different. In this case for the filter the index changes to Filteri+1.

2.4 UML

The Unified Modeling Language, UML, is a general-purpose modeling language
that is used to visualize, understand, describe and design a software system [3].

UML has some different diagrams which actually mean the same. As defined
in the book by Fowler [4]: UML is a family of graphical notations, backed by a
single meta-model, that help in describing and designing software system. And,
as defined in the book by Rumbaugh et al [5]: UML is a general-purpose visual
modeling language that is used to specify, visualize, construct, and document the
artifacts of a software system. It captures decisions and understanding about
systems that must be constructed. It is used to understand, design, browse,
configure, maintain, and control information about such system. It is intended
for use with all development methods, life-cycle stages, application domains,
and media.

UML is a widely applicable modeling language. It is not only a modeling
language for software systems, but it is also applicable for modeling business
processes and non-software systems.

UML has thirteen different diagram types as mentioned in the book by
Fowler [4]. This table is given in table 1 with a short description of the purpose
and use of a specific UML diagram. The table summarizes the translated dia-
grams used in this paper and in the context of the above pipeline example. Note
that a state machine is put as the first diagram. This is due to a state machine
diagram is very important, because Paradigm models are actually some kind of
state machine diagrams.

Diagram Purpose and short description
State machine Local behavior about an object. Gives a de-

tailed view of states and transitions. All state
machine diagrams are based on the STDs. A
pipeline consist in Paradigm of the STDs; Fil-
teri, Bufferi, Filteri role Prod, Filteri role Cons,
Bufferi role Sink and Bufferi role Source. Also
the roles in the collaborations are STDs, CProd,
CCons, CSink and CSource.

Communication Shows the communication paths between par-
ticipants. The participant are in this case for
Filteri: Filteri, Prod and CProd. For Fil-
teri+1: Filteri+1, Cons and CCons. For Bufferi:
Bufferi, Sink and CSink and the last for Bufferi:
Bufferi, Source, CSource. This means that for
each Prod, Cons, Sink and Source a communi-
cation path is represented.

14

Sequence Interaction between participants. The sequence
diagram is based on the communication in the
communication diagram, but is now made in a
sequence diagram. Like the communication di-
agram, a sequence diagram is not numbered.
The sequence diagram is based on reading it
vertically. The arrowhead of a message tran-
sition shows a message is synchronous or asyn-
chronous.

Composite structure Shows the structure of the pipeline with the fil-
ters, buffers and the role ports. It looks like a
linear data flow from a part and role port to the
next role port and part.

Collaboration A collaboration is a sub-sublanguage and ac-
tually belongs to the composite structure dia-
gram. The composite structure diagram uses
this collaboration. In the collaboration the roles
CProd, CCons and CSink, CSource are indi-
cated. With the collaboration a filter communi-
cates via role CProd and CSink with the buffer.
It also communicates via the buffers CSource
with filter CCons.

Component Structure and connections of components used
with ports. A component represents a filter
and a buffer. A collaboration is also made as a
component to visualize the coupling of CProd,
CSink and CSource, CCons called a component
collaboration. A filter has provided interface
where a port has a required interface. The same
manner is used for the buffer.

Class Shows the incoming and outgoing signals of a
class. A class is one STD, this means that there
is a class for Filteri, Bufferi, Prod, Cons, Sink,
Source, CProd, CCons, CSink and CSource.
There is also a Prod and Cons represented with
a composition. For Prod this is CProd and
CSink and for the Cons a composition is to
CSource and CCons. Where the composition is
used, the class is seen as a collaboration. This
means that Prod an Cons, belongs to that class,
via a composition.

15

Package A package diagram represents packages for Fil-
teri, Bufferi and one collaboration package. The
nested packages for Filteri are Prod and Cons.
The nested packages for Bufferi are Sink and
Source. For the collaborations also there are
made two packages. The collaboration packages
then have for Prod: CProd and CSink and for
Cons: CSource and CCons.

Deployment Gives the physical aspects of a pipeline. There
is a filter, a buffer, a collaboration Prod and a
collaboration Cons.

Activity Global behavior among classes and objects. Ob-
jects may be components or packages. Swim
lanes give which objects are doing something,
sometimes together. Attributes (data) and the
names of the actions, messages and procedures.
This means that an activity diagram can actu-
ally model the activity which is made by a given
model.

Interaction overview Is a mix of sequence and activity diagrams. The
sequence diagrams which are used for visual-
izing, for example, the flow Filteri, Prod and
CProd are one sequence diagram for Prod. The
same is made for the sequence diagram of Cons,
Sink and CSink. The consistency rules give a
parallel flow of Prod, Sink and Cons, Source.
The interaction is based on the sequence dia-
gram, the consistency rules behavior and the
activity diagram.

Timing Gives an overview of the interaction between
the participants. A participant is as earlier said
for example a Filteri, Prod and CProd. Filteri
has some states, the same for Prod and CProd,
which also have states. A timing diagram shows
behavior of these states and how long it takes
to be in a current state.

Use case How users interact with a system. Shows how
specific users, named actors, are using the sys-
tem. The use case diagram is based on Filteri
and Bufferi with the states used in those models
as use cases. A use case description of a use case
clarifies the use case diagram.

Table 1: The UML diagrams which are used to visualize the behavior of a
pipeline which is given in Paradigm

16

3 Translating Paradigm into UML models

The Paradigm models of the pipeline with filter and buffer and all ports and
roles in Section 2.1 are translated to the thirteen UML 2.0 diagrams.

3.1 STD, partition and role

The STD of Filteri where i = 1, 2 or 3 and Bufferi where i = 1 or 2 are translated
to an UML state machine diagram. Also, the role ports Prod, Cons, Sink and
Source are translated to an UML state machine diagram. The communication
in this models is based on vertical communication. If taking the Paradigm
figures 8, 9, 10 and 11, the communication between Filteri, role Prod and role
CProd, and role Cons and role CCons is called vertical communication. This
is also applicable for the communication between Bufferi, role Sink and CSink,
and role Source and CSource. The communication between CProd and CSink,
CSource and CProd is called horizontal communication. The communication
between Filteri, Prod and CProd is represented with a communication diagram
and a sequence diagram. The same applies for Bufferi, Sink, CSink and Bufferi,
Source, CSource and Filteri, Cons, CCons.

3.1.1 Prod filter

The Paradigm model in Figure 8 of the vertical communication between un-
derlying STD and role ports Prod and collaboration CProd is translated to
an UML communication diagram in Figure 12. A lifeline represents the par-
ticipants Filteri where i = 1, 2 or 3, Prod and CProd. The diagrams shows
two cycles with a total of eight messages. The first cycle is the transfer from
NotGiving to Giving and the second cycle is the transfer from Giving back to

NotGiving. Take in mind that the 1.2.1, NotGiving
request−−−−−→ NotGiving and

1.2.2, NotGiving
request−−−−−→ Giving and 2.2.1, Giving

request−−−−−→ NotGiving are not
the phase transfer to Giving or back to NotGiving, but it checks the specific con-
sistency rule. The phase transfer to Giving or NotGiving happens in 1.3 and 2.3.

Filter1, Filter2, Filter3

Figure 12: Communication diagram of filter

An alternatively visualization of Figure 8 is also made with a sequence dia-
gram, visualized in Figure 13. This sequence diagram has also, like the commu-
nication diagram, three lifelines Filteri where i = 1,2 or 3, Prod and CProd. The
first message from Filteri to Prod is a synchronous message. The second message
from Prod to CProd is a asynchronous message. The message being synchronous

17

or asynchronous, is noticeable on the arrowhead, the synchronous is a closed
black arrowhead and the asynchronous is a open white arrowhead. If looking at

the consistency rule 1 in Section 2.3, the rule NotGiving
request−−−−−→ NotGiving is

going back to NotGiving. This is only applicable in the CProd role. Therefore
a self-call in CProd is given in the sequence diagram, where the NotGiving is
immediately taken. When the first cycle then is completed and the Giving phase
has been taken and imposed, the second cycle Giving in the sequence diagram
will be activated.

Filter1, Filter2, Filter3

Figure 13: Communication diagram of filter

Filteri where i = 1, 2 or 3 are the underlying detailed STDs in Paradigm.
The Paradigm visualization of Filteri is given in Figure 1. This underlying STD
are translated to state machine diagrams.

A transition can exist of three parts: a trigger, a guard and/or a transitional
behavior. A formal definition for this three parts are [4]: trigger [guard] /transi-
tional behavior. In the coming three figures, Figure 14, Figure 15 and Figure 16,
this parts will be split up to form the most simple part overview to the the full
part overview of the filters. Not all three parts are required to use in a state
machine diagram.

Filter1, Filter2, Filter3

Figure 14: State machine diagram of filter with transitional behavior.

18

Figure 14 visualize a very simple overview with only the transitional behav-
ior. This state machine diagram gives four states. This are exact the same
amount of states as given in the STD of the filters in Figure 1. Also, the tran-
sitions are the same.

The first transition is from Wanting to Transforming via transition take.
The transitional behavior /take is the action which occurs during the transi-
tion. The second transition is from Transforming to Finished via transition
produce. The third transition is from Finished to Ready via transition give.
The last transition, the fourth, is from Ready back to Wanting via transition
resume.

Filter1, Filter2, Filter3

Figure 15: State machine diagram of filter with guards.

A guard is added in the state machine diagram given in Figure 15. Guard
Phase NotGiving is being imposed and guard Phase Giving is being imposed are
given for visualizing if phase NotGiving or Giving is being imposed. The guard
must be true before the transition can be taken. Thus, if guard Phase NotGiving
is being imposed is true, state Transforming transfers to state Finished. This
is also applicable for guard Phase Giving is being imposed, when guard Phase
Giving is being imposed is true, state Finished transfers to state Ready. If the
guard is false, then the transition will not be taken and waits as long it gets
true.

19

Filter1, Filter2 and Filter3

Figure 16: State machine diagram of filter with guards and transitional behav-
ior.

Figure 16 gives the full transition description of a state machine diagram for
the Prod filters. The send action is defined by using ∧ before the activity name,
where the activity exist of p.m, where p is the port and m the message [6]. The
p means to which port role it goes and m to which trap or phase. A send action
Prod.request is added together with produce as the transitional behavior. This
send action means that the transition information, the trap information is send
to port role Prod with the message trap request. This refers to the STD Prod
role port with the traps request or done.

(a) Component role port Prod (b) Collaboration role port CProd

Figure 17: Phase and trap entered role ports

A refined description of the port Prod en CProd role, are visualized in
Figure 17. A trigger is a receive action [7] [8] and is combined in a guard.
A refined description means that all phases including triv are visualized. In
Figure 17a the refined state machine diagram description for the role port of
the component is visualized and in Figure 17b the refined state machine diagram
description for the role port of the collaboration is visualized.

This means that when in Figure 16 guard Phase NotGiving is being imposed
is reached, thus true, the sent action to port Prod with message trap request

20

is sent to the role port Prod. This message sent means that role port Prod
now will go to trap request. What is sent in the role port Prod in the same
transition is received in the mirrored collaboration role port CProd, also in the
same transition, but some time later. Thus, request is sent in role port Prod
and request is received in role port CProd.

In Figure 17a this receive is defined by using in a guard. This is also
applicable for guard Phase NotGiving is being imposed. When guard Phase
NotGiving is being imposed is reached, the send action to port Prod with mes-
sage trap request is sent to the component role port Prod. The component
role port Prod then receives this message, and when the guard is true, thus
the message is received, the components role port Prod sends the message to
CProd.request that the state NotGiving(request) will be entered. The collabo-
ration port CProd receives this message from Prod.request and CProd transfers
to NotGiving(request). Filteri is in state finished and port Prod and port CProd
are now in trap NotGiving (request).

The second transition step now goes from role port CProd to role port
Prod. CProd does not have any guards, this means that the transfer from
NotGiving(request) to Giving(triv) occurs and a send action Prod.Giving is
sent to Prod that the state in CProd has been changed to Giving(triv), thus
a phase transfer occurred from NotGiving to Giving. Prod receives this send
action and sends an action to Filteri and then also transfers to the new state
Giving(triv), which is also a phase transfer.

The third transition step is now in the new phase Giving. This means that
guard Phase Giving is being imposed is true in Filteri, due to the ports Prod
and CProd are in Giving(triv). Filteri now will send a Prod.done that it will
enter trap done when it enters state Ready. Role port Prod receives this send
action and sends an CProd.done action and then transfers to Giving(done).
Role port CProd receives this action, thus true, and transfers from Giving(triv)
to Giving(done).

The fourth and last step is where in CProd from Giving(done) to NotGiv-
ing(triv) sends a Prod.NotGiving and transfers to NotGiving(triv). This means
that CProd now has made a phase transfer back to NotGiving(triv). This
CProd.NotGiving is received by Prod and then Prod sends a Filteri.NotGiving
to Filteri that Prod will also transfer to NotGiving(triv). The new current phase
NotGiving(triv) has now been imposed, again.

3.1.2 Cons filter

The same way is used as for the production communication diagram, but now
with other messages and other role which are applicable for the consumption
filter. The Paradigm model in Figure 9 of the vertical communication between
underlying STD and role ports Cons and collaboration CCons is translated to an
UML communication diagram in Figure 18. A lifeline represents the participants
Filteri where i = 1, 2 or 3, Cons and CCons. The diagrams shows two cycles
with a total of eight messages. The first cycle is the transfer from NotTaking
to Taking and the second cycle is the transfer from Taking back to NotTaking.

21

Filter1, Filter2, Filter3

Figure 18: Communication diagram of filter

Also for this consumption filter, an alternatively visualization of Figure 9 is
made with a sequence diagram, visualized in Figure 19. This sequence diagram
has also, like the communication diagram, three lifelines, which are different
then in the production filer. Filteri where i = 1, 2 or 3, Cons and CCons
represents the lifelines. The first message from Filteri to Cons is also a syn-
chronous message. The second message from Cons to CCons is also a asyn-
chronous message. If looking at the consistency rule 5 in Section 2.3, the rule

NotTaking
request−−−−−→ NotTaking is going back to NotTaking. This is only appli-

cable in the CCons role. Therefore a self-call in CCons is given in the sequence
diagram, where the NotGiving is immediately taken. The same applies for the
rest of this rules. When the first cycle then is completed and the Taking phase
has been taken and imposed, the second cycle Taking in the sequence diagram
will be activated.

Filter1, Filter2, Filter3

Figure 19: Sequence diagram of filter

The state machine diagram given in Figure 20 of Filteri where i = 1, 2 or
3, immediately gives the full transition description of the consumption filters.
Note that for the consumption filter the states and transitional behavior are the
same as for the production filters.

22

Filter1, Filter2 and Filter3

Figure 20: State machine diagram of filter with guards and transitional behav-
ior.

The state machine diagram transitional description of the consumption filters
is in Figure 20 on the side where only the transitional behavior is described
compared to the state machine diagram for the Prod filters in Figure 16.

The guards are in the consumption filters given as Phase NotTaking is being
imposed and Phase Taking is being imposed. The send actions are Cons.request
and Cons.done. This refers to the STD Cons role port with the traps request
or done.

(a) Component role port Cons (b) Collaboration role port CCons

Figure 21: Phase and trap entered role ports

Also, the communications from the Cons filters, the components role Cons
and collaboration role port CCons are likely the same as for the Prod filters
in section 3.1.1. The starting states of the Cons filters is Wanting. When
in state Ready and the guard Phase NotTaking is being imposed, a send to
Cons.request is made. This send action is received by the Cons role port and
then sends a CCons.request. The CCons receives this message and transfers to

23

state NotTaking(request) and then it sends a Cons.Taking, where the Taking is
the new phase and transfers to Taking(triv). The Cons receives this message
and sends a Filteri+1.Taking about the phase transfer. Both role ports are now
in Taking(triv) and phase Taking is imposed.

Phase Taking is being imposed and sends a Cons.done. This message is
received by Cons and sends a CCons.done and enters state Taking(done). The
message is received by port CCons and CCons also transfers to Taking(done).
Then it sends a message to Cons.NotTaking, that it will make a phase transfer
back to NotTaking, and enters state NotTaking(triv). The message that the
CProd already made the phase transfer is received by the Cons and sends a
message to Filteri+1 about the phase transfer. Both ports are now back in the
starting state NotTaking(triv).

3.1.3 Prod and Cons filter

Filter1, Filter2 and Filter3

Figure 22: State machine diagram of production and consumption filters in one
state machine diagram

In Figure 22 the state machine diagrams of Figure 16 and Figure 20 are
coupled together in one Filteri state machine where i = 1, 2 or 3. The partition
with traps and role of the production filter is given in Figure 3 and the consump-
tion filter is given in Figure 4. This means that Filteri, like in the Paradigm
partitions with traps, has production activities and has consumption activities.
This indeed means that both activities are actually in Filteri.

3.1.4 Sink buffer

The Paradigm model in Figure 10 of the vertical communication between the
underlying STD and role ports Sink and collaboration CSink is translated to
an UML communication diagram in Figure 23. A lifeline represents the par-
ticipants Bufferi where i = 1 and 2, Sink and CSink. The diagrams now not
shows two cycles like for the filers, but show three cycles with a total of twelve

24

messages. The first cycle is the transfer from Stable to Collecting, the second
cycle is the transfer from Collecting to Stabilizing and the last en third cycle is
the transfer from Stabilizing back to Stable.

Buffer1 and Buffer2

Figure 23: Communication diagram of buffer

Like for the production and consumption filters, an alternatively visualiza-
tion of Figure 10 is made with a sequence diagram, visualized in Figure 24.
This sequence diagram has also, like the communication diagram, three life-
lines. Bufferi where i = 1 and 2, Sink and CSink represents the lifelines.

Buffer1 and Buffer2

Figure 24: Communication diagram of buffer

The first message from Bufferi to Sink is a synchronous message. The second
message from Sink to CSink is a asynchronous message. If looking at consis-

tency rule 2 in Section 2.3, the rule Collecting
toGet−−−→ Collecting is going back

to Collecting. This is only applicable in the CSink role. Therefore a self-call
in CSink is given in the sequence diagram, where the Collecting is immediately
taken. When the first cycle is completed and the Collecting phase has been
taken and imposed, the second cycle for the Collecting phase in the sequence

25

diagram will be activated. When the second cycle is completed and the Stabiliz-
ing phase has been taken and imposed the last and third cycle will be activated
for taking and impose the back to the Stable phase.

Buffer1 and Buffer2

Figure 25: State machine diagram of buffer with guards, sends and actions.

In Figure 25 adding one single item to the buffer is translated to a state
machine diagram. The visualization of the state machine is only that one item
is being stored, thus in state 1. If there are more items to be stored in the buffer,
it are the same guards and transitional behavior on the same transitions. The
end of the states in the STD in Figure 2 have the name n which could be every
natural number. If phase collecting is imposed it sends to port Sink with trap
message toGet that it will enter trap toGet when transferred to state 1+ and
for phase Stabilizing it sends to port Sink with trap message ready that is will
enter trap ready when transferred to state 1. When the guard Phase Stable is
being imposed is true it sends to port Sink with trap message notFull that it
will enter trap notFull when the buffer capacity is more then 1. The transitional
behavior planPop and pop has no restrictions.

26

(a) Component role port Sink (b) Collaboration role port CSink

Figure 26: Phase and trap entered role ports

When Phase Stable is being imposed it sends a message to port Sink. This
message notFull is received by the port Sink where it sends a message to the
collaboration CSink and then transfers to state Stable(notFull). The message
is received by CSink and CSink then also transfers to Stable(notFull). The
CSink then sends to Sink a message that phase Collecting will transfer to the
new phase state Collecting(triv) and then indeed transfers to Collecting(triv).
The message is received by Sink and sends this message information to Buffer1
and then Sink also transfers to the new phase Collecting(triv).

Now guard Phase Collecting is being imposed in Buffer1 is now true where
a message Sink.toGet is send. This message is received by Sink and Sink then
sends a message to CSink.toGet and transfers to state Collecting(toGet). This
message is received by CSink and CSink then also transfers to Collecting(toGet).
The CSink sends a message to Sink.Stabilizing that it will transfer to the
new phase Stabilizing(triv), then it indeed transfers from Collecting(toGet) to
Stabilizing(triv). Sink receives this message that CSink has changed to the
new phase Stabilizing(triv). Sink then sends this information to the buffer that
Sink will transfer also to Stabilizing(triv). Sink then indeed transfers to the
new phase Stabilizing(triv).

Guard Phase Stabilizing is being imposed in Buffer1 is now true and sends
a message to Sink.ready. This message is received by Sink and Sink then sends
a message to CSink.ready and transfers to state Stabilizing(ready). CSink
receives that it may transfer to Stabilizing(ready), and then indeed transfers
to state Stabilizing(ready). After that, CSink sends Sink.Stable and transfers
to Stable(triv), Sink receives this message and sends this information to the

27

Buffer1. Sink then also transfers to Stable(triv).

3.1.5 Source buffer

The Paradigm model in Figure 11 of the vertical communication between the
underlying STD and role ports Source and collaboration CSource is translated
to an UML communication diagram in Figure 27. Like sink buffer a lifeline
represents the participants Bufferi where i = 1 and 2, Source and CSource. The
source buffer shows three cycles with a total of twelve messages. The first cycle
is the transfer from Stable to Providing, the second cycle is the transfer from
Providing to Stabilizing and the last en third cycle is the transfer from Stabi-
lizing back to Stable.

Buffer1 and Buffer2

Figure 27: Communication diagram of buffer

Like for the production and consumption filters and sink buffer, an alterna-
tively visualization of Figure 10 is made with a sequence diagram, visualized in
Figure 28. This sequence diagram has also, like the communication diagram,
three lifelines. Bufferi where i = 1 or 2, Source and CSource represents the
lifelines.

28

Buffer1 and Buffer2

Figure 28: Communication diagram of filter

The first message from Bufferi to Source is a synchronous message. The
second message from Sink to CSource is a asynchronous message. Like in the
production, consumption and sink sequence diagrams, in the source sequence
diagram there is no self-call message applicable. When the first cycle is com-
pleted and the Providing phase has been taken and imposed, the second cycle
for the Providing phase in the sequence diagram will be activated. When the
second cycle is completed and the Stabilizing phase has been taken and imposed
the last and third cycle will be activated for taking and impose the back to the
Stable phase.

Buffer1 and Buffer2

Figure 29: State machine diagram with guards, sends and actions.

The buffer state machine diagram for popping one single item is visualized
in Figure 29. The idea is similar as in Figure 25 but now with no self-call
transition. The starting state is state 0. After guard Phase Stable is being
imposed, Source.nonEmpty is sent. After guard Phase Providing is being im-
posed, Source.toPut is sent and after guard Phase Stabilizing is being imposed
then Source.ready is sent. Transitional behavior planStore has no restrictions.

29

(a) Component role port Source (b) Collaboration role port CSource

Figure 30: Role ports and refined role

Also, the communications from the Bufferi where i = 1, the components port
Cons and collaboration port CCons are likely the same as in section 3.1.4. The
starting state of Bufferi is 0. When in state 0+ and the guard Phase Stable
is being imposed, a send Source.nonEmpty is made. This send action is re-
ceived by the Source port and then sends a CSource.nonEmpty. The CSource
receives this message and transfers to state Stable(nonEmpty) and then it sends
a Source.Providing, where the Providing is the new phase and transfers to Pro-
viding(triv). The Source receives this message and sends a Bufferi.Providing
about the phase transfer. Both role ports are now in Providing(triv).

Phase Providing is being imposed and sends a Source.toPut. This mes-
sage is received and sends a CSource.toPut and enters state Providing(toPut).
The message is received by port CSource and CSource also transfers to Provid-
ing(toPut). CSource then does a send message Source.Stabilizing, that it does
a phase transfer to Stabilizing, and enters state Stabilizing(triv). The message
that the CSource already made the phase transfer is received by the Source role
port and sends a message to Bufferi about the phase transfer. Both ports are
now in Stabilizing(triv).

Phase Stabilizing is being imposed and sends a Source.ready. This message
is received and sends CSource.ready and enters state Stabilizing(ready). The
message is received by role port CSource and CSource also transfers to Stabi-
lizing(ready). Then it sends a message Source.Stable, that it will make a phase
transfer back to starting state Stable, and then indeed enters the starting state
Stable(triv). The message that the CSource already made the phase transfer is
received by the Source role port and sends a message to Bufferi about the phase
transfer. Both role ports are now back in the starting state Stable(triv).

30

3.1.6 Sink and Source buffer

Buffer1 and Buffer2

Figure 31: State machine diagram with guards, sends and actions.

Like for production and consumption Filteri, the sink and source of Bufferi
where i = 1 and 2 are coupled. In Figure 31 the state machine diagrams of
Figure 25 and Figure 29 are coupled together in one Bufferi state machine
diagram. The partition with traps and role of the production filter is given
in Figure 5 and the consumption filter is given in Figure 6. This means that
Bufferi, like in the Paradigm partitions with traps, has sink activities and has
source activities. Thus, also for buffer, both activities are actually in Bufferi.

Between state 1+ and 1 a choice is visualized. This is because of Phase
Stabilizing is being imposed and, Phase Stable is being imposed, are on the
same transition when the two models are coupled together, on this manner only
one transition can be activated at the same time.

3.2 Structure overview

Often in Paradigm there is a Paradigm flavored composite structure diagram and
collaboration diagram used. A Paradigm flavored composite structure diagram
is visualized in Figure 7, to clarify the Paradigms structure. These structure
diagram gives a top-level overview of a model. An UML 2.0 composite structure
diagram with collaborations translate this Paradigm flavored structures to UML.
The composite structure diagram, collaborations and composition diagram with
collaborations are respectively visualized in Figure 32 and in Figure 33 and in
Figure 34.

Figure 32: A pipeline architecture as a composite structure diagram

The filters using role port Prod and role port Cons and are connected with
association without aggregation to use the other ports functionalities. The

31

producer role port Prod is there for producing items towards the buffer. The
consumer port Cons is there for consuming the items from the buffer.

The buffer has the role ports, Sink and Source, where this role ports are
handling the producing and consuming activities of the two filters.

(a) Collaboration Prod (b) Collaboration Cons

Figure 33: Collaboration of the Prod and Cons role

Figure 33 visualizes two collaboration. One for Prod and one for Cons.
Figure 33a gives the visualization of collaboration Prod. Figure 33b gives the
visualization of collaboration Cons. A participant is named by the role and its
interface or class type and is written as Role : Type [7] [4]. The collaboration
Prod exist of role CProd with type cprod and role CSink with type csink and
the collaboration Cons exist of role CSource with type csource and role CCons
with type ccons.

Figure 34: A pipeline architecture in six collaboration diagrams

Figure 34 gives an overview of an UML composite structure diagram with
classifiers and ports which are connected to the collaborations [9]. Prod and
Cons. The collaborations Prod and Cons are a collaboration occurrence which
are connected with role binding to a port Prod, Sink, Source or Cons of a
classifier filter or buffer. This means that for Filteri where i = 1 is connected
with the Prod port to the CProd in the Prod collaboration. For Bufferi where
i = 1 the port Sink is connected with the CSink, also in the Prod collaboration.
But Bufferi is also connected via role port Source with the CSource in the Cons
collaboration. The Filteri+1 is connected via role port Cons with the CCons in
the Cons collaboration. The same implies for the rest of the buffers and filters.

32

Figure 35: A component diagram

Figure 35 gives an overview of a component diagram. Where a component
Filteri with component Prod and Cons, component Bufferi with component Sink
and Source, Collaboration Prod with components CProd and CSink, Collabo-
ration Cons with components CSource and CCons are represented. As can see,
a collaboration is also a component. This is due to it gives an overview that
the components CProd, CSink and CCons, CSource belongs to the collabora-
tion Prod and Cons. This corresponds to the collaborations given in Figure 33.
Filteri corresponds to Figure 22 and Bufferi corresponds to Figure 31. Based on
that figures, that for a filter the Prod and Cons are in one state machine this
means that the Filteri requires the interfaces Prod and Cons in one component.
The same is used for the buffer, where in Bufferi the Sink and Source are in one
state machine. Bufferi then requires the interfaces Sink and Source.

Another point of view by using this manner, is that Filteri on the starting
phase, where it has an input, it does not have a Cons role but only a Prod
role. In this case Filteri where i = 2 has an Prod and a Cons role. In the
component diagram this is represented that Filteri where i = 1 will only use the
Prod component. Filteri where i = 2 will use the Prod component and the Cons
component. Filteri where i = 3 will also use the Prod and Cons component.
The last, Filteri where i = 4 will only use the Cons component, and not the
Prod component. Yes, Filteri where i = 4 can have a Prod component if there
is a Bufferi where i = 4. But in the given models this is not the case. This
means that Filteri where = 1, 2, 3 or 4, will use the Prod or Cons component
based on which is specified, and needed. Take in mind that the Collaboration
Components are also not always the same components which are used. For
example, Filteri where i = 3 will not use the same CProd, CSink and CSource,
CCons components which Filteri where i = 2 has used.

Filteri provides a Prod and Cons interface. Bufferi provides a Sink and
Source interface. On the collaboration component. The Collaboration Compo-
nent Prod has a port with a required interface for Prod and a required interface
for Sink. The provided interface of Filteri Prod is connected together with a ball
and socket. The port is connected with a delegation connector to the CProd role
port component, inside the Prod component. The CSink has required interface

33

Sink, Bufferi requires this Sink and is connected with a ball and socket. The
same manner is used for the Collaboration Component Cons, but then for the
components CSource and CCons.

In the rest of the structure diagrams in UML this manner with one Filteri
and one Bufferi is used. This manner is used to clarify the models but at most
to generalize the models.

Figure 36: A class diagram

34

Based on the composite structure diagram with collaborations and on the
state machine diagram with the sends and receives between the Prod and CProd,
Sink and CSink, Source and CSource and Cons and CCons a class diagram is
made which is visualized in Figure 36.

There are three different stereotypes. A protocol stereotype is referred to a
collaboration. A type and port stereotype is referred to a class. A class Filteri
where i = 1,2 or 3 is connected to Prod and Cons. A class Bufferi where i= 1 or
2 is connected to Sink and Source. The CProd and CSink are connected with a
composition to the protocol class Prod. The same is for the CCons and CSource,
they are connected to the protocol class Cons. This protocol collaboration has
no internal incoming and outgoing activities [10].

Take for example the Filteri state machine diagram, it has incoming signals
from Giving and NotGiving in Prod, NotTaking and Taking in Cons. Filteri
has also outgoing signals Giving and NotGiving which are used in the Prod role
and Taking and NotTaking which are used in the Cons role. This means when
a send Filteri.Giving is made, the Giving belongs to the class of Filteri [11] [12].

Another example is the role port Prod. It has incoming signals request and
done from Filteri, Giving and NotGiving from CProd. The outgoing signals are
request and done from Filteri and Giving and Giving from CProd.

As can see, in Bufferi the incoming signals Stable and Stabilizing are two
times defined in one class. The same is applicable for the outgoing signals
Stabilizing and Stable are two times defined in one class. Due to Bufferi uses
Sink and Source there always is one Stable or one Providing or one Stabilizing
used. The class for the incoming and outgoing is made that the first three
incoming signals are for a Sink role and the last three incoming signals are for
a Source role. The first three outgoing signals are then also for a Sink role and
the last three outgoing signals are then also for a Source role.

Figure 37: A package diagram

A package diagram of Filteri and Bufferi is given in Figure 37 with nested
packages. An assumption is made that the Filter and Buffer are physical sys-

35

tems. Filteri then can see if it is the Prod package or the Cons package which
will be used. The same applies for Bufferi, but Bufferi always uses the Sink
and Source. Filteri has two nested packages, Prod and Cons and Bufferi has
two nested packages Sink and Source. A collaboration is also represented as
a package. One collaboration Prod package, with nested packages CProd and
CSink and one collaboration Cons package with nested packages CSource and
CCons.

The Filteri nested package Prod is connected with an dependency relation-
ship to the Collaboration Prod nested package CProd. This means that Prod
requires the CProd package in the model. The same is for the Bufferi nested
package Sink, which is connected with the dependency relationship to the Col-
laboration Prod nested package CSink. In this way when a Collaboration is also
a package, it is noticeable to see the relationship between the Filteri and Bufferi
packages, and the CProd, CSink and CSource, CCons, where all the behavior
happens in Filteri and Bufferi.

Figure 38: A deployment diagram

A deployment diagram of a pipeline with Filteri and Bufferi is given in
Figure 38. A deployment diagram gives an overview of the physical aspects of
a system. It not shows how the inside nodes work with each other, but is shows

36

how the device nodes are working with each other. A node represents all STDs
yet known and uses two single devices: the device Collaboration Prod and the
device Collaboration Cons nodes for the collaboration. A filter, with Filteri
where i = 1,2 and 3 has one device node, with the Prod and the Cons execution
nodes. The Filter node is connected with a message bus to exchange messages
to the Collaboration Prod node and to the Collaboration Cons node. The same
is applicable for the buffer device node, Bufferi where i = 1 and 2 is connected
to the Collaboration Prod device node and to the Collaboration Cons device
node with a message bus.

This means that a single system is used for the Filter, a single system is used
for the Buffer, a single system is used for the Collaboration Prod and a single
system is used for the Collaboration Cons. In this manner, every STD, where
it depends on which STD belongs to filter or to buffer has its own single system
and task. Also by using a collaboration as a node, the connection between the
filter and buffer is made to exchange message between them, by using the nodes
which are applicable for example Prod.

3.3 Consistency rules

(a) Activity diagram Prod (b) Activity diagram Cons

Figure 39: Activity diagrams of production and consumption consistency rules

37

Figure 39 gives an activity diagram overview of only collaborations Production,
Prod and Consumption, Cons. Figure 39a gives an overview of an activity
diagram. This activity diagram is based on the consistency rules 1–4. Figure 39b
gives an overview of an activity diagram. This activity diagram is based on the
consistency rules 5–8.

The activity names are NotGiving and Giving for Filteri(Prod) and the
activity names Stable, Collecting and Stabilizing for Bufferi(Sink). NotGiving
is three times given in Filteri(Prod) and Collecting and Stable are two times
given. This activity names are always the same activity, thus it not means that
in Filteri(Prod) three times another NotGiving activity is used.

38

Figure 40: A refined activity diagram

39

Figure 40 represents the activity diagram with refined roles as activities,
which are used in role ports description in Figure 17 and Figure 26. The mid-
dle two swim lanes are actually the collaboration roles, like its visualized in
Figure 39. As can see, the triv activities are represented in Figure 40 and
not in Figure 39. The middle layer is also the initial node, for Filteri this is
NotGiving(triv) and for Bufferi this is Stable(triv). This also corresponds to
the role Prod and Cons in Figure 3b and Figure 5b. When the activity comes
by a fork node it needs to be activated. This means that NotGiving(request)
and Stable(notFull) are parallel activated to transfer to respectively to NotGiv-
ing(request) and Collecting(triv). Thus, not only NotGiving(request) is possible
to transfer to NotGiving(request), it needs to wait as long as the activity Sta-
ble(notFull) is also there. A fork node has a note with CS Rule 1, which stands
for consistency rule 1. This means that then consistency rule 1 is being acti-
vated.

Also the activity diagram visualizes the interaction between the Filteri, Prod,
CProd and Bufferi, Sink, CSink. This clarifies the communication between
different communication diagrams and sequence diagrams which are given in
section 3.1.1, 3.1.2, 3.1.4 and 3.1.5. Based on the fork node the filter and buffer
communicate with each other, exactly what the consistency rules just are doing.
As can see for, NotGiving(request) in CProd first transfers to Giving(triv) in
CProd and then Giving(triv) activates Giving(triv) in Prod. This is exactly like
it is described in the state machine refined roles.

Such an activity diagram will look approximately the same for Filteri+1 and
Bufferi. But then the activities name change instead of the given names. This
is for Filteri+1, Cons, CCons and Bufferi, Source, CSource.

40

F
ig

u
re

4
1
:

A
in

te
ra

ct
io

n
ov

er
v
ie

w
d

ia
g
ra

m

41

The interaction overview diagram in Figure 41 visualizes four sequence di-
agrams, where the sd stands for sequence diagram. The initial node directly
starts in a decision. Where the decision is if it is used for Production or if it is
used for Consumption. In this case, by using the interaction diagram. The flow
between the collaborations is visualized, based on the choice which is needed.

If it is the Production then the sd prod and sd sink will run in parallel. It
indeed is correct that not every detail is known when for example the sd prod
sequence diagram already is done and the sd sink is still doing the last cycle.
when both sequence diagrams, sd prod and sd sink are done, then it is finalized
for the production cycle. The same applies for the Consumption, sd cons and
sd source run in parallel and end when both diagrams are finalized. Other UML
diagrams show the exact steps and cycles which are taken, for example a state
machine diagram of activity diagram. The interaction overview is in this case
used to model the interaction in the collaborations on a high level.

Figure 42: A timing diagram

In Figure 42 a timing diagram is visualized with three timing frames. The
timing diagram is based on the communication diagram and sequence diagram.
Therefore each frame represents a lifeline, like a participant, with the actual
states in which a lifeline remains. Filteri has states Ready, Finished, Trans-
forming and Wanting, this corresponds to Figure 1. Prod has states Giving and
NotGiving, which corresponds to Figure 3b. CProd has also the states Giving
and NotGiving, but as known, CProd is the mirrored role of Prod it therefore
is also base on Figure 3b.

All parts of refined activity diagram in Figure 40 likely the same as in this
timing diagram. This is due to this timing diagram has also states, like the
activity diagram. Except the collaboration between sd prod and sd sink.

42

The time is given in seconds where the whole time frame is 33 seconds. The
time given is an assumption, because Paradigm does not specify how long it
actually takes to do for example one cycle. This means that Filteri is for 10
seconds in state Wanting and then transfers to Transforming where it also stays
for 10 seconds. The line is indicating how long it remains in the current state en
and when it will change to the next state. At the start, when the current state
is Finished, there is a message sent, trap request entered, to the Prod lifeline
to state NotGiving. Because the Prod and CProd are asynchronous there is
a 2 seconds time between the Prod passes message, phase transfer NotGiving
via trap request to the new phase enabled, to the lifeline CProd. CProd then
also waits 2 seconds before is passes message, phase transfer NotGiving via
trap request to phase Giving taken to the Giving state of lifeline Prod. This
means that the current state of Prod yet now changes, to Giving. Giving then
after 1 second sends a message that phase Giving newly is imposed, and the
state of Filteri changes to Ready, which means that trap done is entered. This
corresponds to the partition given in Figure 3a, and of course also how the state
machines are visualized.

Filteri+1 Cons and Bufferi Sink and Source can also be made in an timing
diagram. These are not presented because the idea is similar to the timing
diagram given above.

(a) STD Filter (b) STD Buffer

Figure 43: An use case diagram

An use case diagram is visualized in Figure 43. The use case is based on
the Paradigm STD of Filter in Figure 1 and the STD of Buffer in Figure 2.
The system boundary is named as STD Filter and STD Buffer. The actor is
Filteri for STD Filter and Bufferi for STD Buffer. The use cases representing
the states which are given in the figures of the Paradigm STD filter and STD
buffer. This means that if it is based on the Paradigms STDs, it is also based
in on the UML state machine diagrams for filter and buffer.

Using use cases for this kind of a pipeline model is a little bit odd. The first
is that there is not a real human being actor, but a system. The second is that
states in filter or buffer are always working together, but this looks not like a

43

problem because the first filter and buffer also are not yet working with each
other. A use case diagram not really shows how the different states working
together. A use case diagram actually visualizes a set of actions that a system
can do with one or more actors, it fulfill one or more of the users requirements[7].
The assumption is made that Filteri provides some functionality. Filteri provides
Wanting, Filteri provides Transforming, Filteri provides Finished and Filteri
provides Ready. The same for Bufferi, it provides 0, 0+, 1 and 1-.

The use case description is based on the use case diagram in Figure 43. For
each use case in the diagram there is a use case description made. This use case
description clarifies a lot how, it clarifies how the actual filter of buffer works
and what is needed and what it will make.

Use case name Wanting
Goal in context The filter wants a new item
Preconditions The filter has made a resume
Successful end condition There is a item available from else-

where
Failed end condition There is no item available from else-

where
Primary actors Filter
Secondary actors None
Trigger Input in the filter
Main flow Step Action

1 Looking for new input from else-
where

Table 2: Use Case description

Use case name Transforming
Goal in context The filter transforms an item
Preconditions Gets the input in the form of a new

item
Successful end condition Transforms an item to a new item
Failed end condition Does not transforms an item to a

new item
Primary actors Filter
Secondary actors None
Trigger Input to the filter
Main flow Step Action

1 Transforms the gotten item in new
item

Table 3: Use Case description

44

Use case name Finished
Goal in context A new item is finished
Preconditions Made available for being put else-

where
Successful end condition The filter shows availability
Failed end condition The filter shows no availability
Primary actors Filter
Secondary actors None
Trigger Input in the filter
Main flow Step Action

1 Indicates availability

Table 4: Use Case description

Use case name Ready
Goal in context A new item is ready
Preconditions Puts new item to elsewhere
Successful end condition Item has been produced or con-

sumed
Failed end condition Item has not been produced or con-

sumed
Primary actors Filter
Secondary actors None
Trigger Input in the filter
Main flow Step Action

1 Filter done with producing and con-
suming

Table 5: Use Case description

Use case name 0
Goal in context The buffer is empty
Preconditions There is no must be an item planned

to be popped out
Successful end condition The buffer is empty
Failed end condition The buffer has an item
Primary actors Buffer
Secondary actors None
Trigger Item from the filter
Main flow Step Action

1 Buffer has popped an item

Table 6: Use Case description

45

Use case name 0+
Goal in context An item is planned to store in the

buffer
Preconditions Input from the filter
Successful end condition The filter has made an item to be

available in the buffer
Failed end condition The filter has not made an item to

be available in the buffer
Primary actors Buffer
Secondary actors None
Trigger Item from the filter
Main flow Step Action

1 Buffer is planning to store an item

Table 7: Use Case description

Use case name 1
Goal in context An item is stored in the buffer
Preconditions There must be store planned
Successful end condition An item has been stored in the

buffer
Failed end condition No item has been stored in the

buffer
Primary actors Buffer
Secondary actors None
Trigger Produce item from the filter
Main flow Step Action

1 An item is stored in the buffer

Table 8: Use Case description

Use case name 1-
Goal in context An item is planned to be popped out

of the buffer
Preconditions There must be at least one item in

the buffer
Successful end condition The buffer has planned to pop out

the item
Failed end condition The buffer didn’t planned to pop

out the item
Primary actors Buffer
Secondary actors None
Trigger Consume item from filter
Main flow Step Action

1 An item is planned to be popped out

Table 9: Use Case description

46

4 Conclusion

The different approaches in this master thesis to translate the Paradigm dia-
grams to UML 2.0 diagrams visualize and describe that it is possible to make
this translation. All the thirteen UML 2.0 diagrams can be used to model
the Paradigm diagrams. The research questions has been taken in mind and
processed during the master thesis to give the conclusion.

To explain the Paradigm models, often there have been used examples which
look simple on the first hand, but it definitely is not a simple language, yet to use
yet to understand. If the assumption is made that Paradigm has five diagrams,
where it can explain a whole model, where UML 2.0 has thirteen languages
possibly used for it, it can be said that Paradigm is a very advanced modeling
language. Some UML diagrams are used to model the same behavior, like
the UML communication diagram and sequence diagram. Paradigm has done
this in one diagram, based on a UML composite structure diagram, where it
combines the communication diagram, sequence diagram, interaction diagram,
composite structure diagram with collaborations and component diagram. So
it also can be said that Paradigm is a more compact modeling language then
UML 2.0. On the other hand, UML is much more used than Paradigm. When
you combine this two languages, a lot of people will understand the Paradigm
language, especially the people who are interested in UML. Together it could
be a powerful language to visualize the design of a system.

Paradigm works on a basis that there is a model, in this case an STD of a
filter. This filter then has some additional behavior, like a trap and a phase.
A role then uses this trap and phase to control this behavior. The consistency
rules then are there for control this role behavior. This means that there is
consistency between all this Paradigm models. The same applies for UML,
a state machine gives the overview of states, but not the collaborations, but
a collaboration diagram shows indeed this behavior. A component diagram
models the same behavior as a sequence diagram, also it means the same.

Not all UML diagrams are needed to explain Paradigm. Based on the cur-
rent research, the most needed diagrams are on the first place state machine
diagrams. Then, composite structure diagrams with collaborations and activity
diagrams. Especially the activity diagrams can model the state machine dia-
grams and collaborations in one diagram. This means that an activity diagram
exactly shows the picture of the communications of a detailed STD, role port of
a components STD and the mirrored role at the collaboration. The consistency
rules control this behavior. The activity diagram visualizes the communications
in the collaborations, which means that the whole communication model of filter
and buffer is visualized in one specific model. A class diagram also show this
behavior that a filter and a buffer communicate on the basis of Prod and Sink
and Cons and Source. On high-level a component diagram, package diagram
and deployment diagram visualize the pipeline with no detailed information.

An interaction diagram and use case diagram do not visualize and give more
details then already is visualized in the other UML diagrams. This means that
those two diagrams not give more input to the translation then already is given
with the other eleven diagrams.

Take in mind that Paradigm also uses McPal component for self-adaptation.
UML doesn’t have these kind of diagrams and functionalities to model self-
adaptation. Who is interested in UML, could also understand Paradigm, but

47

then on an UML point of view.
A new research topic in this area is to model the McPal component in UML.

This research area should point out if it is possible to model McPal in UML
and to use this UML models, maybe with some possible enhancement, to model
self-adaptation in UML. Another research topic in this area is to add some
buffers and filters to the UML model through self-adaptation by using McPal
and UML.

48

References

[1] S. Andova, L. Groenewegen, and E. de Vink, “Dynamic adaptation with
distributed control in paradigm,” Science of Computer Programming, 2013.

[2] L. Groenewegen, E. de Vink, and R. Kuiper, “Towards a proof method for
paradigm,” Accepted for publication in 2016, 2016.

[3] I. J. Grady Booch, James Rumbaugh, Unified Modeling Language User
Guide, The, 2nd Edition. Pearson Education India, 2005.

[4] M. Fowler, UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional, 2004.

[5] J. Rumbaugh and I. Jacobson, “G. booch,” the unified modeling language
reference manual,” isbn 020130998x,” 1998.

[6] S. Janisch, Behaviour and Refinement of Port-Based Components with Syn-
chronous and Asynchronous Communication. BoD–Books on Demand,
2010.

[7] R. Miles and K. Hamilton, Learning UML 2.0. ” O’Reilly Media, Inc.”,
2006.

[8] T. Schäfer, A. Knapp, and S. Merz, “Model checking uml state machines
and collaborations,” Electronic Notes in Theoretical Computer Science,
vol. 55, no. 3, pp. 357–369, 2001.

[9] O. Group et al., “Unified modeling language: Superstructure, version 2.0,”
2005.

[10] B. Selic, “Using uml for modeling complex real-time systems,” in Lan-
guages, Compilers, and Tools for Embedded Systems, pp. 250–260, Springer,
1998.

[11] A. Knapp, S. Merz, and C. Rauh, “Model checking timed uml state ma-
chines and collaborations,” in Formal Techniques in Real-Time and Fault-
Tolerant Systems, pp. 395–414, Springer, 2002.

[12] A. Knapp and J. Wuttke, “Model checking of uml 2.0 interactions,” in
Models in Software Engineering, pp. 42–51, Springer, 2007.

49

