
Opleiding Informatica

A study of different approaches for improving the stitching

of spherical panoramas

Ruben van der Waal

Supervisors:

Dr. Michael S. Lew & Dr. Erwin M. Bakker

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 15/08/2017

Abstract

We introduce and compare different strategies to stitching spherical panoramas. Three different techniques are

explored, namely blurring, blending and dynamic stitching. These techniques perform differently in our tests

and their advantages and disadvantages are discussed. The source images are taken with the Samsung Gear

360, an all-in-one spherical panoramic camera. The software included with the device performs poorly in some

cases. Problems exist with alignment, ghosting and content cropped in the result. The proposed techniques

are directly compared with output of Samsung’s software. Preliminary results show promising improvement

especially on more complex, text-containing input.

Acknowledgements

In the first place I would like to express my appreciation to my supervisor Dr. Michael S. Lew for his continued

feedback, time and for providing the device for me during the entirety of the project.

I would also like to thank my parents for their support and encouragement throughout the project.

3

Contents

Acknowledgements 2

1 Introduction 1

2 Survey 3

2.1 Image Capturing . 5

2.2 Global Alignment . 5

2.3 Color Adjustment . 7

2.4 Image Blending . 10

2.5 Immersive Viewing . 12

3 Color Contrast 13

4 Projections 16

5 Manual Positioning 20

6 Blurring 22

7 Blending 26

7.1 Poisson blending . 26

7.2 Tests . 27

8 Dynamic stitching 30

8.1 Color distance . 31

8.2 Shortest path . 32

9 Comparison 37

9.1 Blurring . 39

9.2 Blending . 39

9.3 Dynamic Stitching . 40

10 Evaluation 42

4

11 Conclusions 43

Bibliography 44

Chapter 1

Introduction

The process of stitching two images together is complicated with many options along the way. Since many

differences can exist making the transition harder to hide when photos are taken from different positions, at

different times or with different exposures. The process of stitching spherical panoramas introduces some

unique problems as well, such as the fish-eye input and having to stitch an image to the same one twice on

both ends.

This bachelor thesis is made under supervision of Dr. Michael S. Lew and Erwin M. Bakker of the Leiden

Institute of Advanced Computer Science (LIACS).

For this paper the object of interest is the Samsung Gear 360. A 360 degree high-resolution panorama camera

marketed for the general public. The device consists of two 180+ degree camera’s. The camera’s are aimed

away from each other to create a full 360 degree panorama. At 4 megapixel each the resulting image is around

8 megapixel in size. See Figure 1.1

Figure 1.1: The Samsung Gear 360

1

However a lot of critique arose from costumers when they saw the stitching results from the included software.

The transition between the two images is sometimes very visible, the alignment is not done well and worst of

all content is lost on the transition. While all these problems are avoidable since both cameras create sufficient

overlap for a correct stitch.

As approach for the project a new implementation from the ground up seemed to be the best course of action.

The option of correcting the results from Samsung was there, but one of the problems we wanted to improve

upon was fixing the missing content at the borders. This is not possible with just the output from Samsung.

Figure 1.2: Example output from Samsung

Note how the writing on the monitor in Figure 1.2 is supposed to spell out “Sample Writing”, yet some letters

are missing. This scene is the main example in the paper because it contains various different transition types.

There is the wooden desk area with a very simple texture, various straight lines to check alignment and the

more complex writing on the screen.

This thesis will start off with a survey of the current state of the technology on this subject and will also

further identify the problems of the process. The rest of the thesis consists of the different parts of the stitching

process with for each stage a dedicated chapter. Results of each stage are given at the end of the chapters and

afterwards compared against Samsung’s results in a separate chapter.

2

Chapter 2

Survey

The goal of this survey is to review the state-of-the-art stitching techniques and the different steps leading up

to this process, categorize them on the different stages of the stitching process and identify problems.

Many difficulties are connected to the stitching process. Issues can arise due to, but are are not limited to,

lens faults, differences or changes in illumination, parallax, complex scenery near borders, constraints on

processing time and noise in the image. Spherical panoramas add more difficulty in terms of correcting the

fish-eye distortion, have less lean way in terms of positional error and have a more severe vignetting effect.

Image stitching finds many uses in today’s technology:

• Efficient panorama creation for mobile devices.

• Various street view services use many spherical panoramas to map out cities.

• Insertion of objects into images, for example sky replacement in scenic images.

• Texture synthesis for various uses.

In the work of Chu et al [LCC+
15] six major stages are defined in the stitching process. See Figure 2.1.

3

Figure 2.1: Pipeline of panorama stitching

In the context of this project the stages refer to the following:

• Image Capturing: Image Capturing is executed with the Samsung Gear 360. The raw data is obtained

from the memory card in JPG-format. Images are roughly 8000 by 4000 pixels in dimension.The image

content is in fish-eye format.

• Image Matching: The process of positioning multiple image in the correct arrangement. A trivial step in

the case of this project since there are only two images and it is known that they need to be positioned

side by side. Stitching one side before the other is also trivial.

• Bundle Adjustment: Camera angles on objects in the picture can differ due to the photos not being cap-

tured from the exact same point. This is called parallax. Bundle adjustment is applying a transformation

on the image to correct this.

• Color Adjustment: Among color adjustment belongs equalizing the contrast between both images.

Lighting can be different for both cameras creating a contrast between the images. Secondly fish-eye

lenses are notorious for creating a so-called vignetting effect in their pictures. The vignetting effect is an

effect where the outer parts of the image appear to be darker than the inside. This is especially noticeable

when viewing panoramas as a whole as opposed to zoomed in.

• Image Blending: Now that the images are correctly arranged, aligned and corrected they still need to be

joined together in a way the transition between the two images is maximally invisible.

• Immersive Viewing: For spherical panoramas some tools exist to view the image as if projected on the

inside of a globe. Images can also be viewed in virtual reality for an enhanced and more immersive

viewing experience.

The papers in the survey will be categorized by these different stages, with emphasis on the stages focused on

in this project. Since most papers do not specialize in either image matching or bundle adjustment these stages

are grouped in this survey as Global Alignment.

4

2.1 Image Capturing

Chu et al [LCC+
15] proposes an interactive method to capture panoramas on a mobile device. The user is

guided through creating his panorama systematically using the device’s gyroscope. The program lets the user

line up the photo by alignment with white rectangles on the screen. These rectangles are stationary in the

scene and turn orange upon successful capture of the image. This method ensures that all data is captured to

create a spherical panorama. See Figure 2.2.

(a) User lines camera up with the white rectangle (b) Image is captured

Figure 2.2: Example of panorama capturing process in Chu et al [LCC+
15].

2.2 Global Alignment

In the work of Petkova and Nuri [PN11] a new method of feature point detection is proposed. The method

divides images into a height map and detects planes. From these planes the contours are used as feature

points for matching. See Figure 2.3. This method is faster than edge or corner detection but results in many

more feature points, which slows down the matching process. To combat this a feature points are reduced,

combined and grouped. Groups are then matched with their closest match in the corresponding image.

Figure 2.3: Left is the input image, Middle the 3D presentation, Right extracted Feature points that outline objects. [PN11]

In the work of Bian et al [BXXL12] an impressive algorithm is shown that propagates deformation near the

stitching edge gradually throughout the image. To do this first feature descriptors are extracted using SURF.

These points are then matched and used to calculate a deformation vector. For the matching points an eight

dimensional vector is calculated. This deformation now needs to be smoothly spread across the image. Every

deformation vector uses an edge in the image as its guide line. After applying all the deformations the image

5

can be reconstructed with use of the Poisson equation. Some results can be seen in Figure 2.4. Noticeable is

how much care is put in the design of the algorithm to preserve edges.

(a) Image is matched wrong intentionally.

(b) Image stitching result using Deformation Propagation [BXXL12].

Figure 2.4: Deformation propagation example

Bundle adjustment is generally done only through matched feature points, but in the specific case that Pesti et

al. [PEH+
08] covers this is not enough to adjust the images. The algorithm deals with orthographic imagery

which are images taken from above the surface of the earth straight down to make maps. These are used in

popular applications such as Google Maps, MapQuest, Yahoo! Maps and Microsoft Virtual Earth. These maps

need to be geographically correct. Popular applications use highly advanced planes and cameras to take the

photos, minimizing the difficulty in the adjustment and stitching process. Pesti et al proposes to use user

annotation to set reference points in the images and use these as anchor points.

6

Figure 2.5: A straight road appears to be curving without geographical constraints.

In Figure 2.5 an example of the accumulating error can be seen. The images curve further and further away

from their corresponding geographical position, even though the stitching is seamless. The proposed algorithm

follows these steps:

• Initial estimates for camera model parameters are made for each camera in a “not estimated” state, that

has sufficient ground reference pairs.

• Nonlinear optimization (bundle adjustment) is used to globally optimize the parameters of all cameras

with estimates. Both the user-supplied ground reference pairs and constraints introduced by feature

match pairs are used in this global optimization step.

• Synthetic ground reference pairs are temporarily created where two images overlap and at least one

has a camera with a known model. These are used to initialize camera parameter estimates in future

iteration steps.

This process is repeated until all images are corrected. The main contributions this research gives is that due

to the robustness of the algorithm much less expensive hardware can be used. Therefore greatly increasing the

amount of regions that can be mapped.

2.3 Color Adjustment

Multiple solutions to equalize color and luminance in panoramas exist. In the work of Pham and Pringle [PP95]

color correction is performed using polynomial mapping functions. The overlapping area is used to establish a

mapping function that maps corresponding pixels to each other. This achieves excellent results, however the

prerequisite is that the alignment of the images is perfect. Otherwise the mapping is incorrect as well as the

resulting function. In our case due to a relatively small overlap and high levels of parallax in situations where

7

objects are near the device such an approach is difficult.

A second option is to construct a mapping function from the color histograms in the overlap, as proposed by

Zhang et al. [MJYD01] The color correction used in the source image is then also used in the adjacent image.

This method does not rely on exact alignment of the images and one-to-one pixel correspondence. Therefore

this method is a lot more robust, however the results are not as good as with the polynomial mapping.

Tian et al. [TGTC02] introduces another method that calculates the averages of each channel in the overlapping

area and equalizes these to the corresponding channels of the adjacent image. This calculated is done in sRGB

space. sRGB space is gamma-corrected RGB space. sRGB uses a non-linear value system to fit a higher range

of colors. Therefore averaging out a channel in sRGB space does not correspond to the actual average as

perceived by humans.

Various similar approaches have been proposed by scientists using different color spaces, examples are the

work of Ha et al. [HKL+
07] and Brown and Lowe [BL07]. Another method is to only consider certain channels,

as in the work of Meunier and Borgmann [MB00].

The work of Xiong and Pulli [XP09] performs the operations in linearized RGB color space. A global adjust-

ments is performed to minimize correction across images. A problem when correcting the color in images

is that when images are corrected sequentially an error can accumulate. Doing the global adjustment helps

smooth out the color across images. The algorithm is designed for mobile devices and is highly efficient.

Results of the color correction can be seen in Figure 2.6

(a) original

(b) color corrected using Xoing and Pulli. [XP09]

Figure 2.6: Color correction

A second problem related to color adjustment is the vignetting effect, see Figure 2.7. This is generally caused

by physical limitations of the lens. Especially fish-eye lenses are notorious for this.

8

Figure 2.7: Example of vignetting effect

Chu et al [LCC+
15] corrects the vignetting effect before applying global corrections. Luminance y in scene

point X and irradiance EX :

y = f (kEX)

where k is the exposure value, is a composite of gain value, exposed time and aperture value. Function f is

the camera response function. We now rewrite the irradiance E as the product of scene radiance L and the

vignette correction function M:

y = f (kM(θ)LX)

Where θ = atan(xp/ f), xp is the distance of the pixels to the center of the image. f is the focal length (in pixel

unit). M is the vignette model: M(θ) = 1 + v(cos4(θ)− 1), where v is the vignette parameter to be estimated.

(a) No Vignette Correction (b) With Vignette Correction

Figure 2.8: Result of Vignette Correction [LCC+
15]

In Figure 2.8 can be seen that the vignette effect has been strongly reduced.

9

2.4 Image Blending

In the work of Ozawa et al [OKK12] the issue that when faces are near edges of the panorama source photos

are distorted is addressed. The transition can cut through the faces. Especially when time parallax is present in

the image this causes extreme distortion in faces. Time parallax is caused by the source photos of the panorama

not being taken at the exact same time. Movement happens between the exposures and difference in the scene

are introduced. A solution is proposed where facial recognition is incorporated in the stitching process. So

besides color difference between corresponding pixels faces are also taken into account. The following formula

is used to calculated the seam between the images:

Ct(i, j) = αcCc(i, j) + α f (j)

Where i is the current pixel and j is a neighbouring pixel. Cc(i, j) is the cost function for color continuity, C f (j)

is the cost function for if a face is detected at the pixel j. αc and α f are weights.

Cc(i, j) = 1/Nc{||A(i)− B(i)||L2 + ||A(j)− B(j)||L2}

Here A and B are two matched color vectors in the images, A = [RA, GA, BA]
T and B = [RB, GB, BB]

T . The

normalization constant Nc normalizes the value to lay between 0 and 1. The total set of edge transitions is

considered and a shortest path is found using Dijkstra’s algorithm.

(a) Total cost (b) Color cost (c) Face detected cost (d) Result

Figure 2.9: Different steps involving the algorithm of Ozawa et al [OKK12].

As can be observed in Figure 2.9 the added difficulty calculated by the face cost guides the stitching line away

from the face so that it does not cut across it.

In the work of Greg Ward [War06] a technique is introduced that works well even when images are not

perfectly aligned or with identical exposure and works in HDR (High Dynamic Range). The technique is based

on two observations:

10

• Low frequencies may be blended without introducing visible artifacts.

• High frequency splices are interpreted as edges, but can be hidden by edges in the input.

The input is divided in low frequency bands and a single high frequency band. The low frequencies are

blended together using a sinusoidal blend function. The high frequency band is spliced rather than blended.

An edge is detected in the input and this is where the transition occurs.

(a) A simple splice (b) Photoshoptm (c) Burt-Adelson method
[BA83]

(d) Greg Ward [War06].

Figure 2.10: Two HDR images stitched with different techniques.

In Figure 2.10d the result of a stitch performed with the proposed technique can be seen. A good result but

upon closer inspection some errors in the rolling mist can be seen, namely creation of edges where they should

not be as defined.

The work of Yan et al [YHLX13] details a method to create infinite panoramas of stereo images. Stereo imagery

is a technique to encode 3D into a 2D image. Stereo images contain disparity, keeping this consistent between

images and avoiding artifacts on seams is an extra challenge when stitching stereo images. The method

contains three steps. First graph cuts are used to find an optimal seam to stitch a pair of stereo images. Second

the disparity range of one stereo image is adjusted to maintain consistency. Lastly the two images are blended

together using gradient domain optimization [PGB03]. Key improvements in this research are:

• The disparity-aware energy function used with the graph cut algorithm.

• A revised warping-based disparity scaling technique. This maintains consistency across images in

disparity.

Figure 2.11: A panorama produced of five separate stereo images using Yan et al [YHLX13].

Also images that do not necessarily belong to the same scene can be stitched together creating infinitely wide

11

stereo panoramas.

2.5 Immersive Viewing

An interesting proposal was done by Pohl and Grau [PG16] to improve the viewing experience when viewing

spherical panoramas in 2D. When viewing the image in 2D it is in the equirectangular format. The equirectangu-

lar format has the property it can be shifted around and no complex recalculations need to be done. Therefore

Pohl and Grau propose to have the face of the photographer in the center, see Figure 2.12. The paper describes

the face of the photographer as area of interest. Others area of interest could also be defined such as groups

of faces or another object of importance. Allegedly the photographer is not always the center piece of the photo.

(a) Photographer’s face detected in 2D spherical panorama (b) Panorama centered on photographer

Figure 2.12: Automatic shifting for spherical panoramas [PG16]

The work of Chu et al [LCC+
15] also proposes a method of interactively viewing the panoramas. Pan360

projects the image onto a sphere and the user can navigate the viewpoint by motion sensor, touch gesture or

default motion. The downward direction of the sphere is aligned with gravity and zooming is always possible

with the pinch gesture. See Figure 2.13.

Figure 2.13: Illustration of the view direction controlled by INS [LCC+
15].

12

Chapter 3

Color Contrast

One of first problems that can be observed in the raw photo data is that the contrast and brightness in the

two images is not equal. Especially if one camera is aimed towards a light source and the other is not a big

difference can be seen.

A technique that can be applied to combat this is called ”histogram equalization”, a standard feature of the

OpenCV library. A map is created of how many pixel have which intensity. The resulting values are then

smoothed out. A visualization of this process can be seen in Figure 3.1. Note how this is an approximation.

(a) Before equalization. (b) After equalization.

Figure 3.1: Histogram equalization

However histogram equalization only works on a single channel. A solution could be to split the RGB channels

and equalize each one and then merge them together again. This seems tempting at first but is based on a

wrong interpretation of how the equalizing process works. Equalization should be performed on the intensity

13

values of the image, not the color components themselves. In other words we do not want to disturb the color

balance in the image.

To still apply histogram equalization to a RGB image we need to first convert to a different color space. A

color space that has separate channels for intensity values and color. Candidates are: YCbCr, HSV, HLS, YUV.

(a) original (b) YCrCb

(c) HSV (d) RGB

Figure 3.2: Color histogram equalization in different color spaces.

Figure 3.2b is the RGB image converted to YCrCb with the Y-channel equalized. Figure 3.2c is converted to

HSV with the V-channel equalized. Figure 3.2d is the RGB image with all channels equalized.

Both the corrected YCrCb and HSV images show definite improvement in overall contrast and a bit more

similarity between the different parts.

Interesting is that there is still some difference to be observed between the HSV and YCrCb histogram equal-

ization. YCrCb has a more white-washed overall appearance and HSV retains richer colors. For comparison

the RGB is included, clearly some of the colors in the image have been shifted with tones of blue and purple

near the borders.

One of the issues with the contrast not being addressed by this operation is the so-called vignetting effect. In

this case due to physical limitations with fish-eye lenses in general the edges of the image are darker than the

middle. Histogram equalization does not effect this problem.

14

(a) HSV (b) YCrCb

Figure 3.3: Different color spaces comparing noise amplification.

Another problem is that histogram equalization can amplify noise present in images, as seen in Figure 3.3b.

With testing this seemed to be more of an issue with the YCrCb color space and histogram equalization. This

deemed to be another reason to choose the HSV color space.

15

Chapter 4

Projections

The initial problem at hand is the input data itself. The device outputs two high resolution fish-eye images.

However for convenience the stitching process requires a rectangular image. It is possible to perform calcula-

tions on the raw fish-eye image as seen in the work of Kazhdan and Hoppe [KH10].

There are many ways to project a circle to a square image. As can be seen in Figure 4.1 and the work of

Fong [Fon15].

(a) Basic mapping (b) Schwarz-Christoffel Mapping.

(c) Fernandez-Gausti Mapping

Figure 4.1: Display of different circle to square transformations. [Fon15]

While these transformations produce images that could in theory be stitched together, they can not easily be

projected on a globe.

The natural pick for square to globe projections is the same one used for world maps, the equirectangular

projection.

16

Figure 4.2: Equirectangular projection

To achieve this transformation the following conversions are done:

• 2D equirectangular to longitude/latitude

longitude = π ∗ i

latitude = π ∗ j

Where i denotes the equirectangular x coordinate and j the y coordinate.

• longitude/latitude to 3D vector

Px = cos(latitude) ∗ cos(longitude)

Py = cos(latitude) ∗ cos(longitude)

Pz = sin(latitude)

Where P denotes the positional vector in 3D space.

• 3D vector to 2D fish-eye

θ = arctan(Pz, Px)

φ = arctan(
√

P 2
x + P 2

z , Py)

r = φ/FOV

x = r ∗ cos(θ)

y = r ∗ sin(θ)

Where the FOV (field of view) is the maximum angle the camera lens can observe in radials, r the

distance from the center of the circle to the fish-eye coordinate and x and y are the fish-eye coordinates.

This conversion is between the unit circle and a 1:1 rectangle. In other words the coordinates are normalized.

Therefore translation and scaling needs to be done before and after conversion.

17

We now still need to find the FOV of the cameras. The following test setup is used to acquire this. See

Figure 4.3.

(a) Test setup layout. D is the position of the device, S1 is
screen 1 and S2 is screen 2.

(b) Screen layout.

Figure 4.3: Test setup overview.

Every square in 4.3b is exactly 5cm by 5cm. The device is positioned perpendicular to both screens and in the

middle, meaning the overlaps between the device’s view are positioned aimed at the middle of both screens.

The distance of the device to either screen is 50cm. See Figure 4.3a. The distance from the camera to both

screens is equal. Also both screens are placed parallel to each other.

Figure 4.4: Test photo, one camera only

18

Due to the device being fairly compact it is difficult to aim the camera facing exactly perpendicular to the

screen. Therefore we take the average of both overlaps to calculate the true FOV.

On the side of the black and white screen the overlap is roughly 2cm. On the side of the green and red screen

the overlap is 6cm. With basic trigonometry we can now calculate the angle of the overlap.

tan(α) = opposite edge/adjacent edge

αrg = atan(6/50)

αrg ≈ 0.12π

αbw = atan(2/50)

αbw ≈ 0.04π

α = (αrg + αbw)/2

α = (0.12π + 0.4π)/2 = 0.08π

Here αrg is the angle by which the camera overlaps on the red-green screen and αbw is the angle by which the

camera overlaps on the black-white screen. We can conclude from this that the total FOV of one camera is

1.08π radians or 194°. Implementing this gives the following results. See Figure 4.5.

(a) Raw output of the device. (b) Equirectangular transformation, FOV = 1.08π = 194°.

Figure 4.5: Equirectangular transformation.

As can be seen in Figure 4.5 lines that previously appeared to curve are now straightened out. The image has

the correct proportions.

19

Chapter 5

Manual Positioning

The next step in the process is positioning the image so that every corresponding point aligns optimally. At

first an attempt was made to implement automatic positioning, this was discontinued due to a lack of time

and the focus in the project shifted to the stitching process.

Figure 5.1: A possible rotation

In Figure 5.1 an example orientation is shown, the orientation is obviously not correct. At this stage of the

process the user is asked to give their input for the optimal positioning. Using the keyboard keys both images

can be manipulated independently. The degrees of freedom for each image half are:

• Translation over the y-axis.

• Cropping the image on the right side.

20

• Rotating the image.

• Applying a trapezoid transformation see Figure 5.2.

All transformations are done in real time. In order to achieve this the the original image is down-scaled to one

fourth of it‘s original size and the transformations are applied on this copy. Upon finalization the orientation is

modified to fit the full size image.

(a) original (b) Trapezoid transformed

Figure 5.2: Trapezoid transformation

The transformation in Figure 5.2 is sometimes necessary because the cameras in the device seem to not be

aimed exactly at the same angle away from each other. This transformation can correct that to a degree.

21

Chapter 6

Blurring

Blurring or also known as smoothing is the process of averaging out pixels to their neighbours in various ways

and reducing the overall sharpness of the image. This means loss of texture, detail and edges.

As simple as this operation sounds there are still some options for how the blurring can be performed. There

are many types of blurring. Box blur, Gaussian blur, median blur, bilateral blur, to name a few possible

candidates.

The most standard of these is the box-blur, this simply takes for every pixel a k by k pixels square around

the pixel and calculates the mean. This mean becomes the new value of the pixel. For every blurring method

holds that the larger the value for k the stronger the blurring effect becomes. See Figure 6.1.

(a) source image (b) box-blur, k = 7 (c) box-blur, k = 15 (d) box-blur, k = 21

Figure 6.1: Different levels of box-blur applied to an image.

Gaussian blur is similar except that the distances from the pixels to the target pixel are also taken into the

equation. So the new pixel value is the mean of the sum of the surrounding pixels multiplied by the distance

from the target pixel. See Figure 6.2.

22

(a) source image (b) Gaussian blur, k = 7 (c) Gaussian blur, k = 15 (d) Gaussian blur, k = 21

Figure 6.2: Different levels of Gaussian blur applied to an image.

Median blur is fairly straightforward, it takes the median of the pixels neighbours as target value. This

smoothing creates large portions of bland color. Which is not fit to hiding transitions. See Figure 6.3.

(a) source image (b) median blur, k = 7 (c) median blur, k = 15 (d) median blur, k = 21

Figure 6.3: Different levels of median blur applied to an image.

Bilateral filtering [PKT+
09] is the most complex techniques of these. It is similar to Gaussian blurring in that

it also assigns weights to every pixel in range. These weights have two components to them, the first is the

same as for Gaussian blur, the distance of the pixel to the evaluated pixel. Referred to as σspace. The second is

the difference in intensity between the evaluated pixel and the neighbouring pixel. Referred to as σcolor. It is

possible to control how much the two components to the weights effect the evaluated pixel via the σ values. In

our example both σspace and σcolor are set to 75 for every image. Higher settings strengthens the effect. While

altering the balance between the different σ’s changes the balance of the effects. See Figure 6.4. Notice how

hard edges and features of the cat are preserved while the fur texture is smoothed out.

(a) source image (b) bilateral blur, k = 7,
σ = 75

(c) bilateral blur, k = 15,
σ = 75

(d) bilateral blur, k = 21,
σ = 75

Figure 6.4: Different levels of bilateral filtering applied to an image.

23

For the blurring process the Gaussian blur came out as the best candidate. Whilst being slightly more time

intensive than box-blur the result is smoother. Median blur tends to produce plain areas, which will only make

the transition more obvious. Bilateral filtering gives interesting effects but the feature of preserving edges in

the content is not beneficial to hiding the transition in the image.

(a) Guassian blur 400 pixels wide, k = 55 (b) Gaussian blur 400 pixels wide, k = 155

Figure 6.5: Different levels of Gaussian blur to smooth transition.

In Figure 6.5 it is evident that some level of blurring is beneficial to smoothing out irregularities in the

transition. The exact amount will differ between images and also on how well the positioning is done. A

problem that is not addressed by this method is the difference in contrast that can exist between the two

images. Another problem that is introduced by this method is the sudden transition between the blurred area

and the normal parts of the image. Essentially this creates two new edges per transition. In order to reduce

this effect the blurring can be done gradually.

(a) Guassian blur 400 pixels wide,
5 sections, k = 15, 45, 75, 45, 15

(b) Gaussian blur 400 pixels wide,
7 sections, k = 15, 35, 55, 75, 55, 35, 15

Figure 6.6: A gradual Gaussian smoothing using multiple sections.

In Figure 6.6 the blurring is done gradually by dividing the blurred area into sections and increasingly and

then decreasingly blurring the sections. Since Gaussian blurring is a linear effect, this can be observed from

the testing, every section has a linearly increased or decreased k-size.

Lastly the width of the blurring is important, the seem needs to be wide enough to ensure some obvious

discontinuities in the image are masked. But when the seam becomes to wide the blurring becomes more

obvious in the image reducing the quality of the result again. See Figure 6.7.

24

(a) Gaussian blur 400 pixels wide,
7 sections, k = 15, 35, 55, 75, 55, 35, 15

(b) Gaussian blur 600 pixels wide,
7 sections, k = 15, 35, 55, 75, 55, 35, 15

Figure 6.7: A gradual Gaussian smoothing using multiple sections, with different widths.

From these tests the best result is figure 6.7a. The total time to apply the blur to the image is roughly 0.5

seconds. This is the fastest solution to stitch the images out of the three proposed ones.

(a) No blurring (b) Gaussian blur 600 pixels wide,
7 sections, k = 15, 35, 55, 75, 55, 35, 15

Figure 6.8: A highlight comparison between a blurred transition and no blurring.

In Figure 6.8 a highlight is shown of how blurring can help smooth out transitions. In the figure a close up of

the monitor stand can be seen. In the before shot there is a slight misalignment and a contrast difference. The

blurring removes the sharpness of the transition and the contrast difference is not immediately noticeable in

the result. However the sharpness of the image near the transition is permanently lost.

25

Chapter 7

Blending

Blending is a good method to hide transitions when the content in the image is very repetitive. When image

content gets more complex it becomes easier to see semantic inconsistencies like ghosting.

The type of blending used in this implementation is Poisson blending. Generally Poisson blending is used

to blend a source image into a destination image. As opposed to blending the edges of two images together,

which we want to accomplish. Some creativity is needed there and will be discussed later.

7.1 Poisson blending

Poisson blending [PGB03] requires a source image and a target image. The source image has a specified area

to transfer from and the target image an area to transfer to. The area around the target location is known and

we want to have a smooth transition from the target image to the source image pasted content. This leaves us

with an interpolation problem. It is enough to solve the interpolation for each color component independently

and then merge the channels.

Figure 7.1: Guided interpolation notations. Unknown function f interpolates in domain Ω the destination function f ∗,
under guidance of vector field v, which might be or not be the gradient field of a source function g [PGB03].

In Figure 7.1 the notation is explained. So Ω is our target area which we need to interpolate with an unknown

function f . We have the known function f ∗ outside Ω. g denotes the source content we need to transform and

v the content of the target image at the specified place. We can use the guidance field v with the minimization

26

problem derived from the interpolation problem to create a new minimization problem which we can solve

using the Poisson equation [PGB03].

7.2 Tests

To apply this in the image stitching process an overlap area is specified. This is an area from the top of the

transition to the bottom and is centered around the transition. It is certain amount of pixels wide, referred to

as the overlap. This overlapping area is taken from either of the images and determines how wide the blended

area will be.

This area is used as the source image and square regions are repeatedly taken from the source image and

blended with the corresponding area in the target image. In essence they are patched over the seam. Since the

source image on one side is identical to the target image the blending there is seamless. Problems as seen with

blurring such as where the blurring introduces new transitions are avoided.

(a) Poisson blending sample size = 20 (b) Poisson blending sample size = 30

(c) Poisson blending sample size = 40 (d) Poisson blending sample size = 50

Figure 7.2: Poisson blending with different sample sizes.

What can be observed from Figure 7.2 is that a small amount of blending can already mask the sharp line of

the transition. In general bigger errors in the transition need more blending, so an optimal amount of blending

depends on the quality of the positioning. In this image most inconsistencies are resolved at a sample size of

50 pixels. Some close-ups of this will be discussed later.

27

sample size (pixel) time(s)

20 45

30 154

40 691

50 2087

A 30 by 30 pixel area is sampled from a 30 by 4000 overlap area. 40 by 40 pixels is gives a 40 by 4000 overlap

area, meaning an increase with a factor of 1.33. The increase in time however is from 154 seconds to 691

seconds, a 4.5 times increase. Therefore the processing time grows exponentially for larger overlap sizes. See

above table.

(a) no blending (b) Poisson blending, sample size = 50

Figure 7.3: A highlight side by side comparison of a simple situation

In Figure 7.3 a side by side comparison can be seen of the initial situation and after processing with Poisson

blending very little of the transition can be noticed on the wood texture. Also the cloth areas in the image

have a smooth transition. The image transitions seamlessly into the blended area as well. Also the difference

in contrast is taken into account with this method. There is a gradual transition in contrast between the two

images. It is evident from this example that simple textures are blended very well with Poisson blending.

28

(a) no blending (b) Poisson blending, sample size = 50

Figure 7.4: A highlight side by side comparison of complex situation.

In Figure 7.4 a more complex scene can be seen. What makes this scene more complex is that sleight semantic

inconsistencies in writing are easily noticed. Inconsistencies in wood textures are much harder to spot. In

this blending example some problems with the implementation can be seen. Since the blending is done with

the content of the left image in this case a badly overlapping part of the image is taken and blended into

the right part. This causes the letter “i” to be deformed. Some improvement can still be seen on the letter

”r”, the misalignment errors are masked in this case. Poisson blending clearly does not perform as well on

semantically strict content.

29

Chapter 8

Dynamic stitching

The dynamic stitching method is a bit different from earlier discussed techniques since it does not try to hide

a seem but rather try to make the seem follow a path where it is hard to see the actual transition. In order to

do this some steps need to be taken.

First off the images need to be positioned in a way where the overlapping parts are exactly positioned over top

each other with the symmetry axis in the center of the image. See figure 8.1.

(a) Left side, transition 1 (b) Right side, transition 1 (c) Left side, transition 2 (d) Right side, transition 2

Figure 8.1: Both sides of both transition positioned exactly over each other.

30

8.1 Color distance

We then calculate the Euclidean distance between the pixels corresponding pixels to obtain a map of weights

for the transition. We can do this in different color spaces. In this test we show RGB and HSV color space. The

Euclidean distance D is calculated as follows:

D = (le f t.r− right.r)2 + (le f t.g− right.g)2 + (le f t.b− right.b)2

For the RGB color space.

D = (le f t.h− right.h)2 + (le f t.s− right.s)2 + (le f t.v− right.v)2

For the HSV color space.

To be precise this is the squared Euclidean distance, but since we are comparing distance with each other

inside the same image it saves computing power to leave the value squared. A fundamental problem with this

approach is that both RGB and HSV Euclidean distances do not accurately represent how humans perceive

color similarity. HSV does come closer in terms of correctness, but is still not close to perfect.

Figure 8.2: Gradient of hues.

In figure 8.2 a gradient of all possible hues can be seen. From this we can observe some of the problems with

using the hue as basis of similarity. For one both sides of the spectrum end with red which in our calculation

would be maximally different. Also not all colors are perceived by humans to be similar in the same quantities

as the Euclidean distance makes them out to be.

31

(a) Weights based on
Euclidean RGB distance, tran-
sition 1

(b) Weights based on
Euclidean RGB distance, tran-
sition 1

(c) Weights based on
Euclidean HSV distance, tran-
sition 1

(d) Weights based on
Euclidean HSV distance, tran-
sition 1

Figure 8.3: Weights for Euclidean distance, normalized to [0 and 255]
Darker pixels is lower weights.

8.2 Shortest path

Now we need to calculate the shortest path from the top of the image to the bottom. In this case we use the

A-star algorithm. However given the complexity and complexity of the problem finding the shortest path from

top to bottom is too big a problem. The search space being roughly 2000 by 4000 weights. Therefore we divide

the problem into smaller sections. Four points evenly along the center of the image are set and the shortest

path between each pair is calculated and combined as the full solution. For practical use if a pair takes too

long to finish it is timed out and a straight line is used instead.

32

(a) Shortest path based on
RGB weights, transition 1

(b) Shortest path based on
RGB weights, transition 2

(c) Shortest path based on
HSV weights, transition 1

(d) Shortest path based on
HSV weights, transition 2

Figure 8.4: Weights for Euclidean distance, normalized to [0 and 255]
Darker pixels is lower weights, shortest path in red

The results can be seen in figure 8.4. For RGB transition 1 the lowest quarter of the map was not completed.

For HSV transition 1 the lower middle part and for transition 2 the top quarter. Paths that timed out do not

show up in this image. Time out occurs after 5 minutes.

Every point in the path is iterated and a mask is created from this, this mask is then applied to the images for

the result. See Figure 8.5

33

(a) Dynamic stitch based on RGB

(b) Dynamic stitch based on HSV

Figure 8.5: Complete result dynamic stitching

Whilst the differences between RGB and HSV based dynamic stitching are hard to predict from the weight

maps. The differences on the results are significant. See figure 8.5. We will display some highlights with key

differences in performance. Areas that timed out will not be taken in consideration.

34

(a) RGB highlight, chair (b) HSV highlight, chair

(c) RGB highlight, head (d) HSV highlight, head

Figure 8.6: Different scenes for comparison RGB and HSV weights

Figure 8.6 contains two comparisons between different regions in the result. In Figure 8.6a and 8.6b similar

performance can be seen between RGB and HSV based stitching. However in more complex scenes, see figure

8.6c and 8.6d more drastic improvements can be seen. The border can still be seen because of the contrast

difference but notice how the transition in the image avoids the area with the hair in the HSV highlight.

The shortest path tends to avoid big shifts in color so objects with large contrast against the background are

avoided as a result.

35

(a) (b)

Figure 8.7

The effect of avoiding objects with large contrast is especially evident when stitching text. See Figure 8.7.

Further discussion and comparison continues in chapter 9.

36

Chapter 9

Comparison

The three different stitching techniques all have their own benefits and drawbacks. In this chapter some

highlights are shown with different source images to compare them to Samsung’s implementation of the

stitching.

Figure 9.1: Sample output of Samsung’s implementation

In Figure 9.1 Samsung’s result can be seen. This is the same image we have used throughout the paper for

testing. A quick observation shows that Samsung is most likely using some form of blending to join the

images. Notice the places where sharp transitions exist in Figure 9.1 and how the color fades over here. Also

the vignetting effect is successfully removed either by this blending or an extra step reducing the effect as seen

in the work of Chu et al [LCC+
15].

37

(a) Original (b) Output from Samsung

Figure 9.2: Failure to align images.

Sometimes Samsung’s alignment process fails to recognize and match the right feature points. This leads to

image content being lost near transitions as in Figure 9.2. Another result of this can be ghosting, the opposite

of the before mentioned effect. Ghosting is the repeat of content near image transition due to misalignment.

See Figure 9.3. The image is a close-up of a photo containing a railroad. The tree and the overhead line holding

pole are repeated here.

Figure 9.3: Failure to align images, output from Samsung

First we will show some examples of Samsung’s output versus the blurring technique of chapter 6. Then a

comparison between Samsung’s blending and the Poisson blending shown in chapter 7. Lastly we compare

with results of the dynamic stitching technique of chapter 8.

38

9.1 Blurring

Blurring is a very basic method and does not compare well to the output of Samsung’s algorithm. The stitching

edge is fairly obvious. However in the case of heavy misalignment blurring can help to cover up big semantic

inconsistencies.

(a) Result of Samsung
(b) 400 pixel wide gradual blur.

Figure 9.4

In Figure 9.4 the wrong alignment in the chairs back support is more obscured by the blur. Outside of the

heavy misalignment Samsung’s algorithm performs better across the board.

9.2 Blending

Samsung uses a type of blending as well. However the process is much faster than the implementation with

only a few seconds per image needed.

39

(a) Result of Samsung. (b) 50 pixel overlap Poisson blending.

Figure 9.5: Comparison between Samsung’s blending and the blending of the implementation.

With good manual positioning the proposed blending performs similar to the blending implemented by

Samsung. See Figure 9.5. The clouds are blended very similarly as well as the foreground. The same problem

with aligning the images was also present in our method.

9.3 Dynamic Stitching

A problem with Samsung’s stitching is that it does not take into account image content when deciding the

stitching line. There is a generous overlap, however the stitching line is always straight down the middle. In

most scenes this produces a visually pleasing stitching line regardless, though when a semantically strict

content such as text is near image borders blending can give a bad result.

40

(a) Result of Samsung

(b) Dynamic stitch based on HSV color space.

Figure 9.6: Comparison between Samsung’s result and the dynamic stitching.

In Figure 9.6 a text reading “Sample-writing” is near the transition. In the results of Samsung the text is cut off

due to incorrect alignment and the letters are also blended with the background. In the result of the dynamic

stitch proposed letters are avoided by the stitching line. The letters retain their sharp contours.

Overall some interesting proposals have been done to improve the stitching for the Samsung Gear 360. Most

promising is the dynamic stitching. Combining this with a light blending to remove the contrast difference

would be a great improvement. Alternatively a method as proposed in Ward [War06] is also a great method to

both retain edges and blend textures in scenes.

41

Chapter 10

Evaluation

I can honestly say now that the project is finished that I learned a lot throughout the entire course of it. Before

I started I had very little knowledge of computer graphics and computer vision. I learned how by reading

papers and surveys you can quickly get familiar in a new field. Also the OpenCV library was a great choice

for its extensive tutorials and plenty support existing online to get started and find solutions to technical

problems.

The bachelor class sets clear deadlines for progress in the project throughout the year. This gives a good

framework to pace yourself around when writing and developing. The tutorials given in the course were

helpful and for the most part timely to the progress in the project.

I am content with my achievements in the project. I managed to achieve a result rivalling the results from

Samsung. The dynamic stitching is especially interesting with its ability to avoid make transitions less complex

and therefore improve the stitching.

If I was given the opportunity to expand more on the program and paper I would try again to implement

automatic positioning. The process of feature point detection extraction and matching is an interesting but

complex one. Also combining the techniques of dynamic stitching and blending would definitely give even

better results. Lastly a working implementation of a devignetting process would greatly help the overall result.

42

Chapter 11

Conclusions

We have compared different approaches to stitching to improve the quality of the raw output of the Samsung

Gear 360. A 360° panorama camera. The tests in the Chapters 6, 7 and 8 show how the different techniques give

definite improvement over simply splicing. In particular cases the output of one of our methods outperforms

the output of Samsung’s software. Most notably the dynamic stitching method shown in Chapter 8 shows

significant improvements when stitching complex scenes.

43

Bibliography

[BA83] Peter J. Burt and Edward H. Adelson. A multiresolution spline with application to image mosaics.

ACM Trans. Graph., 2(4):217–236, October 1983.

[BL07] Matthew Brown and David G. Lowe. Automatic panoramic image stitching using invariant features.

Int. J. Comput. Vision, 74(1):59–73, August 2007.

[BXXL12] Chunxiao Bian, Chuangbai Xiao, Huiqin Xi, and Yi Liu. Stitching line and deformation propagation

for seamless image stitching. In Proceedings of the 27th Conference on Image and Vision Computing New

Zealand, IVCNZ ’12, pages 262–267, New York, NY, USA, 2012. ACM.

[Fon15] Chamberlain Fong. Analytical methods for squaring the disc. arXiv preprint arXiv:1509.06344, 2015.

[HKL+
07] S. J. Ha, H. I. Koo, S. H. Lee, N. I. Cho, and S. K. Kim. Panorama mosaic optimization for mobile

camera systems. IEEE Transactions on Consumer Electronics, 53(4):1217–1225, Nov 2007.

[KH10] Michael Kazhdan and Hugues Hoppe. Metric-aware processing of spherical imagery. ACM Trans.

Graph., 29(6):149:1–149:10, December 2010.

[LCC+
15] Yu-Hsin Lin, Yu-Mei Chen, Lun-Cheng Chu, Andre Chen, Scott Chien-Hung Liao, and Edward Y.

Chang. Pan360: Ins assisted 360-degree panorama (demo description). In Proceedings of the 23rd

ACM International Conference on Multimedia, MM ’15, pages 795–796, New York, NY, USA, 2015.

ACM.

[MB00] Laurent Meunier and Moritz Borgmann. High-resolution panoramas using image mosaicing. Final

Project, 2000.

[MJYD01] Zhang Maojun, Xie Jingni, Li Yunhao, and Wu Defeng. Color histogram correction for panoramic

images. In Proceedings Seventh International Conference on Virtual Systems and Multimedia, pages

328–331, 2001.

[OKK12] Tomohiro Ozawa, Kris M. Kitani, and Hideki Koike. Human-centric panoramic imaging stitching.

In Proceedings of the 3rd Augmented Human International Conference, AH ’12, pages 20:1–20:6, New

York, NY, USA, 2012. ACM.

44

[PEH+
08] Peter Pesti, Jeremy Elson, Jon Howell, Drew Steedly, and Matt Uyttendaele. Low-cost orthographic

imagery. In Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, GIS ’08, pages 24:1–24:8, New York, NY, USA, 2008. ACM.

[PG16] Daniel Pohl and Oliver Grau. Concept for content-aware, automatic shifting for spherical panoramas.

In Proceedings of the 22Nd ACM Conference on Virtual Reality Software and Technology, VRST ’16, pages

321–321, New York, NY, USA, 2016. ACM.

[PGB03] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In ACM Transactions on

graphics (TOG), volume 22, pages 313–318. ACM, 2003.

[PKT+
09] Sylvain Paris, Pierre Kornprobst, Jack Tumblin, Frédo Durand, et al. Bilateral filtering: Theory and

applications. Foundations and Trends® in Computer Graphics and Vision, 4(1):1–73, 2009.

[PN11] Yulka Petkova and Nuri Nuri. An algorithm for fast image registration and feature matching for the

purposes of image stitching. In Proceedings of the 12th International Conference on Computer Systems

and Technologies, CompSysTech ’11, pages 228–233, New York, NY, USA, 2011. ACM.

[PP95] B. Pham and G. Pringle. Color correction for an image sequence. IEEE Computer Graphics and

Applications, 15(3):38–42, May 1995.

[TGTC02] Gui Yun Tian, D. Gledhill, D. Taylor, and D. Clarke. Colour correction for panoramic imaging. In

Proceedings Sixth International Conference on Information Visualisation, pages 483–488, 2002.

[War06] Greg Ward. Hiding seams in high dynamic range panoramas. In ACM SIGGRAPH 2006 Research

Posters, SIGGRAPH ’06, New York, NY, USA, 2006. ACM.

[XP09] Yingen Xiong and Kari Pulli. Color correction for mobile panorama imaging. In Proceedings of the

First International Conference on Internet Multimedia Computing and Service, ICIMCS ’09, pages 219–226,

New York, NY, USA, 2009. ACM.

[YHLX13] Tao Yan, Zhe Huang, Rynson W. H. Lau, and Yun Xu. Seamless stitching of stereo images for

generating infinite panoramas. In Proceedings of the 19th ACM Symposium on Virtual Reality Software

and Technology, VRST ’13, pages 251–258, New York, NY, USA, 2013. ACM.

45

