Internal Report 2012-B-2012-02 April 2012

Universiteit Leiden

Opleiding Informatica

Niching for finding robust optima

Frank van Rijn

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Niching for finding robust optima.

Frank van Rijn

March 9, 2012

Preface

In this paper a robustness scheme with niching is presented for extending an evo-
lution strategy to an evolution strategy with a niching technique and robustness
scheme. This gives the algorithm more explorative power and better chances of
finding robust optima. The proposed schemes are implemented and experiments
are run on nine different test functions. The conclusion is that, for the majority
of the test functions the extended algorithm perform wells and outperform the
benchmark algorithms. However, interestingly enough, the extended algorithm
did not outperform the benchmark algorithms on the multipeak functions, al-
though that was the hypothesis.

Chapter 1

Introduction

Evolution strategies are optimization techniques to find a high quality solu-
tions for complex non-linear optimization problems. Given an objective func-
tion f(x) — min,x € RY the evolution strategy (ES), will try to minimize this
function and find the best solution. However, the input variables are not always
fully controllable. Practical realizations of solutions can deviate, requiring a
robust solution that performs well under these deviations.

The normal fitness function does not take the possible deviations into ac-
count. Therefore, a robust individual will not be rewarded with a higher fitness.
A new fitness function is created that estimates the fitness under deviations.
The new fitness function is called the effective fitness function [5] and is an ex-
pected fitness function. feg = E[f(x+2)], where z ~ pdf(d) is some continuous
probability variable.

Robustness schemes proposed in literature [4,9] perform well on locally zoom-
ing into the robust optimum, but they are not able to consistently determine
the more robust parts of the search area. In this paper it is investigated whether
niching can help with identifying the more robust parts of the search area.

Niching is a technique that enforces spatial diversity within a population. In
the approach of Shir [7], at every generation niche leaders are chosen that are at
least a distance p from each other. These spatiality separated niche leaders are
thereafter used for generating several separated sub-populations. This prevents
the whole population from converging to one point or area, therewith giving
the algorithm more exploratory power. In this paper, niching will be combined
with sampling schemes for finding robust solutions. The intuition is that this
will improve the algorithm’s ability to find the more robust parts of the search
space, which will result in better robust optima. The studies performed in this
paper serve to underpin this hypothesis.

CHAPTER 1. INTRODUCTION 3

The remainder of the paper is structured as follows: Chapter 2 explains the
chosen evolution strategy. Chapter 3 shows how the niching is implemented.
Chapter 4 explains the robustness scheme that was used. In Chapter 5 niching
and robustness are combined. Chapter 6 presents the experiments and their
results, ending with a conclusion and outlook in Chapter 7.

Chapter 2

Evolution Strategy

The Evolution Strategy (ES) that is used for the implementation is the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [3]. It is a state-of-
the-art algorithm for unconstrained continuous optimization that is suitable for
extending it with niching techniques and robustness schemes.

Algorithm 1 CMA-ES

Input parameters()\,)
1: Initialize internal parameters: o, C and X,pcan
2: while not terminate do
3: fori=1:Xdo

4: Zi ~ N(O, I)

5: Xi<—Xmean+0'\/6'Zi

6: f; < evaluate(x;)

7. end for

8 Xmean <weighted average of the p best individuals
9: update o

10: update C
11: end while
Output (best x)

Algorithm 1 subsumed the working mechanism of the CMA-ES. After ini-
tializing the global stepsize o, the covariance matrix C and the recombinant
Xmean the main evolution loop begins. The A offspring are created by adding
a random vector z,z ~ N(0,0C) t0 Xmean. The new offspring are evaluated
by the fitness function and the p best are recombined into a new recombinant,
Xmean, for the next generation. The step size ¢ and the covariance matrix C are
updated and a new iteration of the loop is started until the stopping conditions
are met, then the best found solution is returned. For a detailed descriptions of
the working mechanism of the algorithm see [3].

Chapter 3
Niching

A property of evolution strategies is that populations converge with a high
probability to a (local) optimum. When that happens diversity of the population
is lost. As explained earlier, when looking for robust optima it could be very
useful to maintain diversity in the population. A technique to keep diversity in
the population is niching.

Niching as defined by [7], works by evolving ¢ different subpopulations par-
allel to each other, and forcing these subpopulations to stay separated. This
creates a ({g1,...,1q},q - \)-strategy, where pq, ..., y, denotes the number of
parents of the subpopulations. Algorithm 2 describes the identification of the
best individuals per niche (see appendix A for a matlab implementation of the
algorithm).

Algorithm 2 works as follows: It assumes that the population Pop is sorted
by fitness (the fittest individual is Pop;). The population is an array that con-
sists of A - ¢ vectors. Each vector is an candidate solution {X1,...,Xx.q}. The
algorithm calculates the DPS. The DPS is a set of vectors, which are candidate
solutions. Initially the DPS is set to (). Then, for every individual 7 in the popu-
lation, it is checked, if its distance to all the elements in the DPS is bigger then
the niching radius p. If this is the case and the number of elements in DPS is
smaller than g, then ith individual is also a niche leader and is added to the DPS.

In Figure 3.1, the working mechanism of the algorithm is illustrated. Figure
3.1a shows the population. Then in, Figure 3.1b, the best individual is checked.
At this point the DPS is still empty, so its distance to all elements in DPS is
larger than p. This makes the best individual a new niche leader. It is colored
blue. The blue circle around it shows the niching radius and is added to the
DPS. In Figure 3.1c, the second best individual is checked and it is within the
niching radius of one of the members of the DPS. Hence, it is not a new niche
leader and it is not added to the DPS. After that, the next best individual
is checked in Figure 3.1d. It lies outside the niching radius of the member in
the DPS, so the individual becomes a niche leader. It is colored red and the
niching radius is shown around it with a circle, then it is added to the DPS.

CHAPTER 3. NICHING 6

Algorithm 2 Dynamic Peak Identification

Input (Pop,), ¢, p) {assume that Pop is sorted on fitness}
1: 14+ 1
2: numpeaks < 0
3: DPS < 0
4: while (numpeaks < g and i < \-¢q) do
5. 1s_niche_leader < true
6 for k =1 : numpeaks do
7 if distance(Pop;, DPSk) < p then
8 is_niche_leader + false
9

end if
10: end for
11: if is_niche_leader == true then
12: DPS + DPS U Pop;
13: numpeaks < numpeaks + 1
14: end if

15: 1+ i+1
16: end while
Output DPS

This process continues in the other Figures 3.1e and 3.1f.

3.1 Niching radius

An important parameter for niching is the niching radius p. In [7], a suggestion
is made how to set this parameter. Given the number of peaks g in the search
space, every peak is considered to have a n-dimensional hypersphere surround-
ing the peaks with radius p, which encloses % of the volume of the search space.
Two assumptions are made: 1) the number of peaks ¢ can be estimated or is
given, and 2) the peaks lie at least a distance of 2p from each other.

The volume of a hypersphere is
V =c(n)r™. (3.1

where ¢(n) is a positive constant depending on the dimensions and r is given
by:

where xu denotes the upper bound and x1 denotes the lower bound. V is divided
into g spheres

= —c(n)r™. (3.3)

CHAPTER 3. NICHING 7

(c) Second best individual is
inside niching radius

(d) New niche found (e) Inside niche (f) New niche found

Figure 3.1: Illustration of the dynamic peak identification procedure with three
niches found

To calculate p:

(3.4)

When dealing with a search space that is a cube the volume of the circum-
scribed sphere is taken as the volume of the search space, however, the volume
of the circumscribed sphere is much larger then the volume of the cube. This
can result in a p that is too large.

For example the 10-dimensional problem with the lower bound for every
dimension being —5 and the upper bound for every dimension 5 and dividing
that into 4 volumes, q = 4.

i=1 158114
V4 V4

Since the maximum distance for two points the search space is 31.6228 and the
suggested niching radius for ¢ = 4 is 13.7646, the chances that the peaks lie a
distance of at least 2p from each other are not so high. The sphere function only
has one peak, but the p is not depended on the function only on the bounds of
the search space and the number of niches.

= 13.7646. (3.5)

CHAPTER 3. NICHING 8

As an alternative we propose another procedure to calculate p, by taking
the incircle of the search space instead of the circumscribed circle. The r is now
be given by:

1 1 n
r:i-ﬁ;b(ui—xlﬂ. (3.6)

For the 10-dimensional problem with the same bounds this results into a p of:

n
1.1
5-52:1\X11i—>di| 5
i=
= = = 4.3528 3.7
P {l/a 1\0/1) ()
which appears to be a better value for p.
30 -
/-"’
/.—-‘
2ar ///
-
-
-
/.—-"
20F P
-
-
//
@ -~
= 151 e
= -
-
//
10 - o
y e _
T -
A
oF P
/./
D | | 1 1 1 | | |]
1 2 3 4 & i 7 & 9 10
dimensions

Figure 3.2: A plot of two different niching radii versus the diagonal of the search
space. The blue slasheddotted line shows the niching radius derived from the
inner circle. The red slashed line indicates th niching radius derived from the
circumscribed circle. The green line indicates * times the length of the diagonal
of the search space, ¢ = 4 the lowerbounds are —10 and the upperbounds are
10.

Figure 3.2, shows that p taken from the circumscribed circle grows faster
for higher dimensions than p derived from the incircle. The green constant line
shows the growth of the diagonal of the search space. The blue line stays closer
to the green line than the red line.

CHAPTER 3. NICHING 9

3.2 CMA-ES with niching

Algorithm 3 shows the niching technique implemented into the CMA-ES. To
add the niching technique to the CMA-ES, some changes have to be made to
the CMA-ES as presented in Algoritm 1. Instead of having one o, X,neqn and
C, every niche has its own o, X;,eqn and C. When creating new offspring the
0, Xmean and C of the niche leader are used.

Algorithm 3 CMA-ES with niching

Input parameters(\, u, q)
1: Initialize internal parameters: o1,...,04,C1,...,Cy Xmeanss - - - » Xmeangs P
2: while not terminate do
3: forj=1:qdo

4: fori=1:Xdo

5: Zj i~]\/V(O7 I)

6: Xji < Xmean; +0;- \/@ “Zjg

7: f;; + evaluate(x; ;)

8: end for

9: end for

100 (X1:1,- .., Xqea) = sort(x11,f1.1), -+, (Xq,x; fg,0){In ascending order}

11: DPS = dpi(x)
122 for j=1:qdo

13: Xmean,j < DPSJ'
14: update o;
15: update C;

16: end for
17: end while
Output (best individual)

Two problems occur when updating X,,eqn and creating offspring. How to
deal with the case when there are less then p individuals in a niche? This
problem can be overcome by taking the mean of the individuals that exist in
the niche, instead of taking the mean of p individuals.

The other problem is more difficult. When the new offspring are created
and regrouped in ¢ niches, it is possible that two individuals that are now in
the same niche have different parents. Updating ¢ and C becomes a problem,
because it is not reasonable to combine two (or multiple) covariance matrices
and two step sizes. The solution is to allow for only one parent per niche, p = 1.
Changing the CMA-ES from a (u, A)-strategy into the CMA-ES with niching,
which is a ({1, .., tq}, g - A)-strategy, where every p = 1.

Chapter 4

Robustness

A robust solution is a solution that performs well when the variables are effected
by a disturbance 8. In Figure 4.1, two peaks are shown, the left peak has a better
optimum. The right peak is more robust, and might be a better robust solution
depending on the disturbance §. Note that is assumed that § is known, but that
assumption holds for many of real life problems, without a known ¢§ it would
not be possible to have an effective fitness function.

N2k

0.3

04tk

05F

OBF

07r

08k 1

08F 1

-1] 1 1]
0z 025 0.3 0.35 0.4 0.45 0.5 0.55

Figure 4.1: Two peaks: The left peak has the better optimum for minimization.
The right peak is the more robust peak.

10

CHAPTER 4. ROBUSTNESS 11

Robustness is important because it is not always possible to control the input
variables. Especially in industrial applications where candidate solutions cannot
be realized with arbitrary precision.

When there are a lot of peaks it is very hard to find the more robust peaks.
Robustness schemes perform well on zooming in locally into the robust optimum.
But they perform poorly in identifying the more robust parts of the search space.

What niching can add to this is, is that keeping the population spread out
over the search space it finds more peaks. This should result in better chances
of finding more robust peaks.

The robustness scheme that was chosen is the multi-evaluation-model (MEM).
It does not just calculate the fitness from an individual x, but it takes m differ-
ent random samples of the disturbance § from an individual. MEM calculates
the fitness of those m points and takes the mean of those values as the fitness
for the individual x, i.e.,

1 m
fesr(x = ; x+9;),0; ~ 4. (4.1)

The evaluation can be done with the recycling of the disturbance samples or
for every individual take a new disturbance sample. In the first case, denoted
MEMT, the same disturbance is added to every individual and its fitness is
then calculated. In the second case, denoted MEM ™, every individual has its
own disturbance which is evaluated. For this algorithm the recycling method,
MEMT, is chosen.

Chapter 5

Niching and finding robust
optima

In Algorithm 4, the result of combining the MEM scheme with Algorithm 3 is
shown (see appendix B for a matlab implementation of the algorithm).

In the MEM scheme, the parameter m, the number of samples, needs to
be set. To find the best setting for m the algorithm, with ¢ = 4, is tested on
a 10 dimensional instance of Branke’s multipeak problem. It’s a modification
of the Branke function [1] and it has many peaks. The peaks are positioned
like a grid. All the peaks are positioned at the -1 and 1 coordinates. The
more -1 coordinates the more robust the peak is. Hence, the global optimum is
x=(-1,-1,-1,-1,-1,—-1,—-1,—1,—-1,—1). So each found peak has a score
for the number of dimensions the coordinate is smaller then zero. The most
robust peak has a score of 10.

The algorithm is a run 100 times for each setting of m. The most robust
niche was identified by counting in how many dimensions x < 0. For how many
dimensions that was true is plotted in Figure 5.1

As can be seen in Figure 5.1, m = 1 is the best. It finds the most robust
peak the most often and has a lower average fitness. MEM with m = 1 is a
special case of the MEM-scheme, called single evaluation method (SEM).

12

CHAPTER 5. NICHING AND FINDING ROBUST OPTIMA 13

Algorithm 4 CMA-ES with niching and the MEM evaluation scheme for find-
ing robust optima

Input parameters(\, u,q,m)
1: Initialize internal parameters: o1,...,04,C1,..., Cy, Xmeany s - - - s Xmeang > P
2: while not terminate do
3 6 ~0l=1-,m

4 for j=1:qdo

5 fori=1:)\do

6: sumf =0

7 Zji~ N(O, I)

8 Xji & Xmean,; +0j \/ij “ 2y

9 for!=1:m do

10: sumf = sumf+ evaluate(x;; + ;)
11: end for

12: end for

13: fo;; + uml

14: end for

150 (X1:1,...,Xq2) < sort(x, fo){In ascending order}

16: DPS = dpi(x)
17: for j=1:qdo

18: update Xy,can,;
19: update o;
20: update C;

21: end for
22: end while
Output (best individual)

CHAPTER 5. NICHING AND FINDING ROBUST OPTIMA 14

i i i L i i i i i i L i
a 1 2 3 4 5 B a 1 2 3 4

(a) m = 1, average fitness = 0.4601 (b) m = 2, average fitness = 0.4791

(c) m = 3, average fitness = 0.4845 (d) m = 4, average fitness = 0.4730

35

2 g W

2t

(e) m =5, average fitness = 0.4649

Figure 5.1: Number of times peak found versus robustness score of the peaks
for different instances of the CMA-ES with niching and the MEM™ for finding
robust optima.

Chapter 6

Experimental results

6.1 Proof of concept

An experiment on a two-dimensional problem is done to see if the CMA-ES
with niching and MEM has potential to find the more robust parts of the search
space. Three algorithms are compared namely, the CMA-ES, the CMA-ES with
niching and the CMA-ES with niching and the MEM™. The three algorithms
are run on a two-dimensional instances of Branke’s multipeak function, and
again by counting in how many dimensions the solution is smaller then zero
it is calculated which peak is found. The more dimensions smaller than zero,
the more robust the optimum is. The two dimensional instance of Branke’s
multipeak function has four peaks: (1,1),(—1,1),(1,—1),(—1,—1). Each peak
is given a score equal to the number of —1 they have. The three algorithms
need to find as often as possible the peak with score two. The settings for the
algorithms are: ¢ = 2 and m = 1. For the niching algorithms the peak with the
higher score is chosen. The results are plotted in Figure 6.1.

The results shown in Figure 6.1, indicate that niching alone is not enough to
identify the more robust parts of the search area. The algorithm with niching
and MEM however, performs better then the normal CMA-ES in finding the
more robust parts of the search area. The differences are marginal, and a more
systematic testing approach is needed and will be conducted in Chapter 6.2.

6.2 Experiments

The CMA-es with niching and the MEM evaluation scheme is compared with
a normal CMA-ES, a CMA-ES with niching and a CMA-ES with the MEM
scheme (without niching). The four algorithms are compared on nine artificial
test functions.

15

CHAPTER 6. EXPERIMENTAL RESULTS 16

a0

80

70+

g0

a0

40

nurmber of times found
nutnker of tines found
nurmber of times found

30

20r

10

1]

: sl 4
0 1 2 a 1 2
cra, which peak found niching, which peak found robust niching, which peak found

Figure 6.1: Number of times peak found vs robustness score of the peaks.

6.3 Test functions

f1: Sphere problem (from [6])

€ [_575]Na6 ~ U(_]-,]-)7 and Xyro = 0.

f2: Heavyside sphere problem (from [4])

n

_ 1 1 1
f2(x) —n 1;1 1t+e(3@it3) + 14100z —4)

x € [-10,101V,8 ~ U(-1,1), and X, = [1,1,0,---,0].

f3: Sawtooth problem (from [2])

f3(x) =1-
x € [-1,1]V,8 ~ U(-0.2,0.2), and X, = 0.

2”: (x; +0.8) if; <02Az; > —0.8
— 1 0 else

)

3|~

CHAPTER 6. EXPERIMENTAL RESULTS 17

f4: Volcano problem (from [5])

o= { =1 il

0 else
x € [-10,10/V,8 ~ U(-1.5,1.5), and X, = O.
5: Modded branke multipeak problem (from [1])
1 (z+1)? ifao; <OANz; > -2
¢ c- 208wl if g > 0A2 >0
c1 = 1.37X S [_272]Na6 ~ U(_05705)7 and Xro = -1

f6: Pickelhaube problem (from [5])

fo(x) = c1a — max(foases f1as f1v, f2),
flaicla’(lf%)a
f1b201b'(1—%>7
fa=ca- (1 - 5,‘(‘);%3)‘4‘12) ;
fbase =0.1-exp(—3 - [|x]]),

5 _ 625
Cla = 57757 C16 = Gaa>
co = 1.5975528761621545,ds = 1.1513175769876054,
x € [-10,10/V,8 ~ U(-1,1), and X0 = 5.

f7: FNIM {2 problem

(a—a3)+1 3 a?
_ =3
f7(X) =TT (@Z4b)—27

a=50b=1x¢c[-55",6 ~U(-1,1), and Xc = 5.

f8: Multipeak fl problem (from [8])
fo) = 1 3o e(=2m20555D)* Tsin(5ra;)| if 0.4 < z; > 0.6
®] 22055’ ginb (5w else

x €[0,1]V,8 ~ U(—0.0625,0.0625), and X, ~ 0.4911.

)

f9: Multipeak f2 problem

fo(x) =1 3 2sin(10 exp(—0.2z;) - x;) - exp(—0.25z;).
i=1
x € [-10,10/V,8 ~ U(-1,1), and X0 = 5.

In Figure 6.2 the nine test problems are shown in two dimensions.

CHAPTER 6. EXPERIMENTAL RESULTS 18

6.4 Results

Each of the four algorithms is run 25 times on each of the nine test problems.
Each run has 10,000 function evaluations. The parameters ¢ and m are re-
spectively set to 4 and 3. In Figures 6.3 to 6.11, the average fitness versus the
function evaluations are shown.

6.5 Discussion of the results

In Figures 6.3 to 6.11, it can be seen that the CMA-ES with niching and the
MEM evaluation scheme performs the best on four out of the nine test functions,
namely the heavy side sphere problem, the volcano problem, the FNIM problem
and Multipeak f2. The CMA-ES with the MEM evaluation scheme, without
niching, only is the best for two test problems, namely the sawtooth problem
and the multipeak fl1 problem. The CMA-ES with niching and MEM scheme,
outperforms the CMA-ES with the MEM scheme in a total of 6 out of 9. Adding
niching give the algorithm an improvement for the majority of the test problems.

What is very interesting to see is that the CMA-ES with niching and the
MEM evaluation scheme does not perform well on Branke’s multipeak function
and the Multipeak fl1 function. While the intuition was that niching would
help in a multipeak problems it seems like that is not always the case. The
reason for this is not clear. It is possible that a niche leader gets stuck at a
local minimum that has a distance to the global minimum that is smaller then
p. In that case the niching radius prevents other niches from finding the global
minimum. The niche which has the global minimum in its niching radius might
have zoomed in too far at a local minimum to be able to jump to the global
minimum. This presumption gets reinforced by the fact that the CMA-ES with
niching and MEM does perform well on the Multipeak f2 function, where the
global minimum is located further away from other peaks.

CHAPTER 6. EXPERIMENTAL RESULTS 19

= — T T\
e ey —r T v
e e s 4 2 o 2 4 8 &8 1

(b) Heavy side sphere problem fa.

;W%Y i

i

”/‘ |
0

—

=}
——1

=]

0
I
I

— 1

D
i
il
il
/I/////{{;//f;’ i

Uiy
Wl
il Uty

iy

iy

0
i //(/l////f””lll//,lf;/

i

~
5 s

(g) FNIM f2 problem, f7. (h) Multipeak f1 problem, fg. (i) Multipeak f2 problem, fg.

Figure 6.2: Two dimensional representations of the nine test problems.

CHAPTER 6. EXPERIMENTAL RESULTS 20

median fithess

median fitness

70

ro sphere problem fithess development median

2]
o

3]
o

Y
o

(2]
o
I

ro cmaes mem

ro niching cmaes mem

cmaes

N
o

10+

- niching cmaes

3.5

2000 4000 6000 8000 10000
evaluations

Figure 6.3: Sphere problem, f;.

ro heavyside sphere problem fithess development median

N
tn

N

-
[3,]
T

cmaes

niching cmaes

ro cmaes mem

)
pae

S

."""‘" ro niching cmaes mem
"."\'\.‘V’"“"""‘ﬁ v“‘\f""\"ﬁ”"""" sl v ey ‘;"-’.,'n_,,ﬁu /,/ o]

I et
el I,

0

2000 4000 6000 8000 10000
evaluations

Figure 6.4: Heavy side sphere problem fs.

CHAPTER 6. EXPERIMENTAL RESULTS 21

ro sawtooth problem fitness development median

0.7-
0.65 cmaes
0.6
0_557 o TR S———
g 051 Mw "~ niching cmaes
T 045
o F
B 0.4 o
1S 3 ro niching cmaes mem
0.35-
et xjf‘-'n'»," Mo .
03 r‘,“"“a .. o Ry YN L S
LI s’
0.25- | rocmaes mem
0.2 I | i
0 2000 4000 6000 8000 10000
evaluations
Figure 6.5: Sawtooth problem, f3.
ro vulcano problem fithess development median
3 _
cmaes
2.5
®» ichi
3 2 k /nIC INg cmaes
s
c
8
Q 1.5
£ ro cmaes mem
1
- ro niching cmaes mem
0.5 1 1 1 L
0 2000 4000 6000 8000 10000

evaluations

Figure 6.6: Volcano problem, f;.

CHAPTER 6. EXPERIMENTAL RESULTS 22

median fitness

median fitness

ro branke multipeak problem fithess development median
0.85-

0.8 /niching cmaes

0.75

0.7
ro niching cmaes mem
0.65
0.6 ' 1 AW ————

0.55

ro cmaes mem
0.5

0.45

....... I i YT TP

0.4

__~cmaes

0'350 2000 4000 6000 8000 10000

evaluations

Figure 6.7: Branke multipeak problem, f5.

ro pickelhaube problem fitness development median

1.8+ /niching cmaes

1.6

-
F-N

ro cmaes mem

-
N
S

-
s

// ro niching cmaes mem

|

e
(=]
T

o
»
T
« vy smar O

L s

1
N
T
e

cmaes

&

Nl
0.2

0 2000 4000 6000 8000 10000
evaluations

Figure 6.8: Pickelhaube problem, fg.

CHAPTER 6. EXPERIMENTAL RESULTS 23
ro FNIM 2 problem fithess development median
14
ro cmaes mem
12

] niching cmaes
[<}]

&

P

©

S

(1]

£ cmaes

2 %
l‘""“'.-'"-‘.;n.,-w. i e, . | _—ro niching cmaes mem
0 L
0 2000 4000 6000 8000 10000
evaluations
Figure 6.9: FNIM {2 problem, f;.
ro multipeak f1 problem fitness development median
-0.3

median fithess

/ niching cmaes

ro niching cmaes mem

_1 M
: o~

L hY

-0.55: W cmaes
: Sy
B “m\:‘*«v‘,—.‘ sone
0.6 B 1 TR (A TR PR

| ro cmaes mem

0 2000 4000 6000 8000 10000
evaluations

Figure 6.10: Multipeak f1 problem, fs.

CHAPTER 6. EXPERIMENTAL RESULTS

median fithess

24

ro multipeak f2 problem fitness development median

i,

niching cmaes

cmaes

ro cmaes mem

MV
Vo

H H H H
e e Poensnzmmmes s o wuns e fue ywonaRumunnn sun sns e wons mang

ro niching cmaes mem

2000 4000 6000 8000 10000
evaluations

Figure 6.11: Multipeak 2 problem, fq.

Chapter 7

Conclusion and Outlook

In this paper we have proposed an CMA-ES with niching and the MEM evalua-
tion scheme. The proposed strategy has been tested against three other versions
of the CMA-ES algorithm on nine 10 dimensional test problems. It has shown
that the CMA-ES with niching and the MEM evaluation scheme can outper-
form on the majority of the test problems, but the original hypothesis is not
completely confirmed. Because the original idea was that niching would help
with finding the more robust parts of the search area, and thus perform better
on the multipeak problems, but it does not perform better on the multipeak
problems. The reason for this could not be found.

For future work it would be interesting to find the exact reason why the
CMA-ES with niching and MEM does perform well on functions with sharp
edges, but not so well on multipeak functions, while the intuition is the opposite.

Other future work could consist of exploring the possibilities of increasing
the size of u per niche. The problem of having multiple ¢’s, C’s can be overcome
by different ways. For example, taking the C and o of the best individual of
each niche, or taking the average of them. It is possible that this could improve
the algorithm.

Another thing that is be worth looking into, is the role of q. How to set this
parameter to have the most chance of finding the robust peak, but not wasting
too many function evaluations. Having a variable ¢ sounds like viable option.
Starting with many niches to have big explorative power and then towards the
end of the budget decreasing the size to continue with the best niches.

25

Bibliography

1]

J. Branke. Creating Robust Solutions by Means of Evolutionary Algorithms.
In Parallel Problem Solving from Nature (PPSN V), LNCS, pages 119-128.
Springer-Verlag, 1998.

J. Branke. Reducing the Sampling Variance when Searching for Robust
Solutions. In Genetic and Evolutionary Computation Conference (GECCO
2001), pages 235-242. Morgan Kaufmann, 2001.

N. Hansen. The CMA Evolution Strategy: A Tutorial. 2011.

Johannes Kruisselbrink, Michael Emmerich, and Thomas Béck. An archive
maintenance scheme for finding robust solutions. In Robert Schaefer, Carlos
Cotta, Joanna Kolodziej, and Giinter Rudolph, editors, Parallel Problem
Solving from Nature — PPSN XI, volume 6238 of Lecture Notes in Computer
Science, pages 214-223. Springer Berlin / Heidelberg, 2011.

Johannes W. Kruisselbrink, Edgar Reehuis, André Deutz, Thomas Béck,
and Michael Emmerich. Using the uncertainty handling cma-es for finding
robust optima. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pages 877-884, New York, NY,
USA, 2011. ACM.

J.W. Kruisselbrink, M.T.M. Emmerich, A.H. Deutz, and T. Back. A Robust
Optimization Approach using Kriging Metamodels for Robustness Approx-
imation in the CMA-ES. In IEEE Congress on Evolutionary Computation
(CEC 2010), pages 1-8, 2010.

Ofer M. Shir and Thomas Back. Niching with derandomized evolution strate-
gies in artificial and real-world landscapes. 8:171-196, March 2009.

O.M. Shir, M.T.M Emmerich, and T. Bick. Adaptive Niche Radii and Niche
Shapes Approaches for Niching with the CMA-ES. FEvolutionary Computa-
tion, 18(1):97-126, 2010.

Shigeyoshi Tsutsui and Ashish Ghosh. Effects of adding perturbations to
phenotypic parameters in genetic algorithms for searching robust solutions,
pages 351-365. Springer-Verlag New York, Inc., New York, NY, USA, 2003.

26

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Appendix A

Dynamic peak identification

function [num_peaks, dps| = dynamic_peak_identification(n, q, rho, xo,
% [] = dynamic_peak_identification()
% Input:
s - N Number of dimensions
% - n Size of the population lambda * g
% - q Number of peaks to identify
% - rho The niching radius
% - xo The current population
% - sortf Order of the indices
%
% Output:
% - num_peaks Number of peaks found
% - niches Niches found
i=1;
num_peaks = 0;
dps = —1 * omnes(q,1);
while (num_peaks < q && i <= n)
is_niche_leader = true;
k = 1;
while (k <= num_peaks && is_niche_leader = true)
if (norm(xo(:,dps(k)) — xo(:,sortindex(i))) < rho)
is_niche_leader = false;
end
k = k+1;
end
if (is_niche_leader)
num_peaks = num_peaks + 1;
dps (num_peaks) = sortindex(
end
i=1i+4 1;
end

end

27

sortindex)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

Appendix B

CMA-ES with niching and
MEM

function [stat] = ro_niching_cmaes_mem(problem_specification,
algorithm_parameters, run_parameters)

% [stat] = cmaes(problem_specification,

% run_parameters, algorithm_parameters)

h
% Implementation of the mem scheme and niching into CMA-ES algorithm

%

% Input:

% - problem_specification - A struct containing the problem

% definition with:

% - problem_type - A string holding description of

% the problem type

% - problem_name - A string holding the name of

A the test function

% - objective_function - A function handle to the

% objective function
A - N - The number of dimensions

% of the search space
% - 1b - A vector of the upper bounds of

A the search interval
yA - ub - A vector of the lower bounds of

% the search interval
YA

% - run_parameters - A struct containing the run

% parameters with:

% - max_generations_termination - The maximum number of generations

% - max_evaluations_termination - The maximum number of evaluations

% - min_fitness_termination - Stop when a solution is found below
yA this value

A - history_statistics - Maintain history statistics

% - internal_parameters_statistics - Maintain statistics of the internal

28

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

52

53

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

APPENDIX B. CMA-ES WITH NICHING AND MEM 29

%
%
h
%
%
h
%
%
"
%
%
h
h
%
h
%
%
A
h
%
"
%
%
%
h

parameters

- report_intermediate - Report statistics while running

- report_after_termination - Report after termination

- report_fct - A handle to the report function

- restart_log_intermediate - Maintain a logfile to allow for
restarts

- restart_log_after_termination - Store a logfile to allow for

restarts after completing an optimization run
- restart_log_logfile - Filename of the restart logfile
- algorithm_parameters - A struct containing algorithm

specific parameters

- bch_fct - A handle to the box constraint
handling function
- sampling_fct - The sampling function used for
obtaining the samples for the robustness approximations
- m - The number of samples used for the
robustness approximations
- reuse_disturbances - Specify whether or not to use the
same disturbances for all individuals in the population
Output:
- stat -

Last modified: December 9, 2011

% Problem specification

fitnessfct = problem_specification.objective_=fct;
N = problem_specification.N;

1b = problem_specification.1b;

ub = problem_specification.ub;

ur_sigma = problem_specification.ur_sigma;

% Run parameters

stopeval = run_parameters.max_evaluations_termination;

stopgen = run_parameters.max_generations_termination;

minfitness = run_parameters.min_fitness_termination;

history_statistics = run_parameters.history_statistics;

internal_parameter_statistics =
run_parameters.internal_parameter_statistics;

report_intermediate = run_parameters.report_intermediate;

report_after_termination = run_parameters.report_after_termination;

report_fct = run_parameters.report_fct;

restart_log_intermediate = run_parameters.restart_log_intermediate;

restart_log_after_termination =
run_parameters.restart_log_after_termination;

if (restart_log_intermediate || restart_log_after_termination)

restart_log_logfile = run_parameters.restart_log_logfile;
end

APPENDIX B. CMA-ES WITH NICHING AND MEM 30

% Algorithm parameters
bch_fct = algorithm_parameters.bch_fct;

sampling_fct = algorithm_parameters.sampling_fct;
m — algorithm_parameters.m;
q = algorithm_parameters.q;

%count times of niche restart

restart = 0;

% Set lambda, mu and the weights for recombination
r = 0.5 % norm(ub — 1b);

rho =t / q (1/N);

lambda = 4 + floor (3 * log(N));

mu = 1; %only works for mu = 1

weights = log(mu + 1) — log(l:mu)’;

weights = weights / sum(weights);

mueff = sum(weights) 2 / sum(weights. 2);

% Set parameters
cc =4/ (N + 4);
cs = (mueff + 2) / (N + mueff + 3);
mucov = mueff;
ccov = (1 / mucov) % 2 / (N + 1.4)"2 + (1 — 1 / mucov)
* ((2 % mueff — 1) / ((N + 2)°2 + 2 % mueff));
(mueff — 1) / (N + 1)) — 1) + cs;
) + 1/ (21 = N"2));

damps = 1 + 2 % max(0, sqrt(

(
m
chiN = N"0.5 = (1 — 1 / (4 * N

% Initialize xmean and step size

if (isfield(algorithm_parameters, ’zmean_-init’))
xmean = algorithm_parameters.xmean_init;
else

xmean = repmat(lb, 1, q) + repmat(ub — 1b, 1, q) .* rand(N,q);
end

if (isfield(algorithm_parameters, ’sigma_init’))
sigma = algorithm_parameters.sigma_init;
else

sigma = repmat ((norm(ub — 1b)) / (3 % q * sqrt(N)), 1, q);
end

% Test reuse_disturbances parameter

if (isfield(algorithm_parameters, ’‘reuse_disturbances’))
reuse_disturbances = algorithm_parameters.reuse_disturbances;
else
reuse_disturbances = true;
end

% Initialize matrices and vectors of the CMA-ES
pc = zeros(N,q);
ps = zeros(N,q);
B = ones(N,N,q);

132

133

134

136

137

138

139

163

164

165

166

177

178

179

181

APPENDIX B. CMA-ES WITH NICHING AND MEM

D = ones(N,N,q);

C = ones(N,N,q);

for i=1:q,
pc(:,i) = zeros(N,1);
ps(:,1i) = zeros(N,1);
B(:,:,i) = eye(N,N);
D(:,:,i) = eye(N,N);
c(:, ,A) = eye(N,N);

end

% Initialize counters
evalcount = 0;
gencount = 0;

% Statistics administration parameters

stat.optimizer_name = ’ro_niching.-CMA—ES’;

stat.run_status = ’Incomplete ’;

estimated_stopeval = max(stopeval, stopgen * lambda);
estimated_stopgen = max(stopgen, ceil(stopeval / lambda));
stat.gencount = 0;

stat.evalcount = 0;

stat.x_opt = zeros(N,q);
stat.f_opt = zeros(1l,q);
stat.rho = rho;

if (history_statistics)

stat.
stat .

stat
stat

stat.
stat.

end

evalvsgen = zeros(l, estimated_stopgen);
hist_x_opt = zeros(N, g, estimated_stopgen);

.hist_f_opt = zeros(q, estimated_stopgen);

.hist_x = zeros(N, estimated_stopeval);
hist_f = zeros(l, estimated_stopeval);
hist_xmean = zeros(N, estimated_stopgen);

if (internal_parameter_statistics)

stat.

stat

stat .
stat.

stat

stat .
stat .
stat.
stat.

end

N)
.hist_B = zeros(N, N, estimated_stopgen);
N)

hist_sigma = zeros(l, q, estimated_stopgen);
.hist_ps = zeros(N, estimated_stopgen);
hist_pc = zeros(N, estimated_stopgen);
hist_C = zeros(N7 , estimated_stopgen);

hist_D = zeros(N, , estimated_stopgen);
hist_dps = zeros(q, estimated_stopgen);
hist_q = q;
hist_N = N;

% If restart then load restart log logfile
if (run_parameters.do_restart && exist(restart_log_logfile,
load (sprintf(’%s ’,restart_log_logfile));

stat.

end

run_status = ’Incomplete ’;

31

file)

APPENDIX B. CMA-ES WITH NICHING AND MEM

% Initialization for speedup

xo = zeros(N, q * lambda);
zo = zeros(N, g * lambda);
fo = zeros(l, q * lambda);
zmean = zeros(N,q);

% Evolution loop

while ((stopeval =— —1 || evalcount < stopeval)
&& (stopgen =— —1 || gencount < stopgen)
&& stat.f_opt(l) > minfitness)

% Statistics administration

gencount = gencount + 1;
stat.gencount = gencount;
if (internal_parameter_statistics)
for i=1:q,
stat.hist_sigma(:,i,gencount) = sigma(:,i);
end
stat.hist_ps (:,gencount) = ps(:,1);
stat.hist_pc (:,gencount) = pc(:,1);
stat.hist_C(:,:,gencount) = C(:,:,1);
stat.hist_B(:,:,gencount) = B(:,:,1);
stat.hist_D(:,:,gencount) = D(:,:,1);

end

% Generate a sample set of input parameter disturbances if they are reused

if (reuse_disturbances)

x_dists = sampling_fct(m, N, —ur_sigma’, ur_sigma’)
end
fo_dists = zeros(1l,m);
xo_dists = zeros(N,m);

% Generate and evaluate lambda offspring
for j=1:q
i=(j— 1) *x lambda;
for k=1:1lambda,
% Generate a sample set for every individual
if ("reuse_disturbances)

x_dists = sampling_fct(m, N, —ur_sigma’, ur_sigma’) ’;

end
zo (:,k+i) = randn(N,1);
x0(:,k+i) = xmean(:,j) + sigma(:,j) * (B(:,:,3)

N D(:’:’j) * zo(:,k+i));

xo (:,k+i) = feval(bch_fct, xo(:,k+i), 1b, ub);

for 1=1:m,

xo_dists(:,1) = xo(:,k+i) + x_dists(:,1);

)
fo_dists(l) = feval(fitnessfct, xo_dists(:,1)7);

end
fo(k+i) = mean(fo_dists);

32

)

APPENDIX B. CMA-ES WITH NICHING AND MEM 33

% Statistics administration

evalcount = evalcount + 1;

stat.evalcount = evalcount;

if (history_statistics)
stat.hist_x(:,evalcount)
stat.hist_f (evalcount) =

end

end
end

= xo0(:,k+i);
fo(k+i);

% Sort by fitness and compute weighted mean into xmean
[T, sortindex]| = sort(fo); # M I NI MI ZATTION
[num_peaks, niches] = dynamic_peak_identification(lambdaxq, q,
tho, xo, sortindex);

parxmean = xmean;
parsigma = sigma;
parC = C;

parB = B;

parD = D;

parps = ps;

parpc = pc;

for i=1:num_peaks,
dps_parents = niches(i,:);
par = ceil(dps_parents / lambda);

zmean (: ,i) = zo(:,dps_parents) #* weights;
Bn = squeeze(parB(:,:,par));

Cn = squeeze(parC(:,:,par));

Dn = squeeze (parD(:,:,par));

xmean (:,i) = feval(bch_fct, parxmean(:,par)

+ parsigma(par) * (Bn * Dn % zmean(:,i)), 1lb, ub);

% Cumulation: Update evolution paths
ps(:,i) = (1 — cs) * parps(:,par) + sqrt(cs * (2 — cs)
* mueff) % (Bn x zmean(:,i))
hsig = norm(ps(:,i)) / sqrt(l — (1 — cs)"(2 * evalcount / lambda))
/ chiN < 1.4 + 2/(N + 1);
pc(:,i) = (1 — cc) * parpc(:,par) + hsig % sqrt(cc *x (2 — cc)
x mueff) % (Bn % Dn * zmean(:,1i));

)

% Adapt covariance matrix C
Cn = (1 — ccov) % Cn + ccov * (1 / mucov) x...
(pe(:,i) * pc(:,i)” + (I1—hsig) * cc * (2 — cc) * Cn) +
ccov * (1—1/mucov) x*...
(Bn * Dn * zo(:,dps_parents)) * diag(weights)

APPENDIX B. CMA-ES WITH NICHING AND MEM 34

% (Bn % Dn * zo(:,dps_parents))

% Adapt step size sigma
sigma(i) = parsigma(par) % exp((cs / damps)

* (norm(ps(:,i)) / chiN — 1));

% Update B and D from C
Cn = triu(Cn) + triu(Cn,1l)’;

[Bn,Dn] = eig(Cn

)

D(:,:,i) = diag(sqrt(diag(Dn)));

C(:,:,i) = Cn;
B(:,:,i) = Bn;
end

while (num_peaks < q)
num_peaks = num_peaks + 1;
restart = restart + 1;

xmean (: ,num_peaks)

= 1b + (ub — 1b) .x rand(N,1);

if (isfield(algorithm_parameters, ’sigma_init’))
sigma (num_numpeaks) = algorithm_parameters.sigma_init;

else

sigma(num_peaks)

end
pc (: ,num_peaks)
ps (: ,num_peaks)

B(:,:,num_peaks)

D(:,:,num_peaks)

C(:,:,num_peaks)
end

= (norm(ub — 1b)) / (3 * q * sqrt(N));

% Statistics administration

for i=1:q,

if (niches(i) < 0)

hstat.x_opt(:,1)

else

stat.x_opt (:,1

end
end

for i=1:q,
if (niches(i,l)
stat.f_opt (i)
else
stat.f_opt (i)
end
end

)

= [inf, inf];

= xo(:,niches(i));

0)
Inf;

fo(sortindex(niches(i,1)));

if (history_statistics)
stat.evalvsgen(stat.gencount) = evalcount;
stat.hist_x_opt(:,:,gencount) = stat.x_opt;
stat.hist_f_opt (:,gencount) = stat.f_opt;

?.
)

332

333

334

336

337

338

339

363

364

365

366

APPENDIX B. CMA-ES WITH NICHING AND MEM 35

stat.hist_xmean (:,gencount) = xmean(:,1);
stat.hist_dps (:,gencount) = niches(:,1);
end

% Store log for restart
if (restart_log_intermediate)

save (sprintf("%s’ ’

,restart_log_logfile), ’‘zmean’, ’sigma’,

'ps’, 'B’, ’D’, ’C’, ’evalcount’, ’gencount’

end

% Report statistics
if (report_intermediate)
report_fct(stat, problem_specification,

’pC

>

“stat ’);

algorithm_parameters, run_parameters)

end
end

% Complete statistics struct
if (history_statistics)

stat.evalvsgen = stat.evalvsgen(l:gencount);
stat.hist_x = stat.hist_x(:,l:evalcount);
stat.hist_f = stat.hist_f (:,l:evalcount);
stat.hist_x_opt = stat.hist_x_opt (:,:,1l:gencount);
stat.hist_f_opt = stat.hist_f_opt (:,l:gencount);
stat.hist_xmean = stat.hist_xmean (:,l:gencount);

end

if (internal_parameter_statistics)
stat.hist_sigma = stat.hist_sigma(:,:,1l:gencount);
stat.hist_ps = stat.hist_ps(:,l:gencount ,:);
stat.hist_pc = stat.hist_pc(:,l:gencount ,:);
stat.hist_C = stat.hist_C(:,:,l:gencount ,:);
stat.hist_B = stat.hist_B(:,:,1l:gencount ,:);
stat.hist_D = stat.hist_D(:,:,l:gencount ,:);

end

stat.run_status = ’‘Complete’;

% Store log
if (restart_log_intermediate || restart_log_after_termination)
save (sprintf('%s’ Y

end

% Plot statistics
if (report_after_termination)

report_fct(stat, problem_specification, algorithm_parameters,

,restart_log_logfile), ’‘zmean’, ’sigma’, ’pc
'B’, ’'D’, ’C’, ’evalcount’, ’gencount’

’

s ps,
‘stat ’);

run_parameters)

end
stat.hist_restart = restart;

end

