
Internal Report 2012–B-2012-02 April 2012

Universiteit Leiden

Opleiding Informatica

Niching for finding robust optima

Frank van Rijn

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1
2333 CA Leiden

The Netherlands

Niching for finding robust optima.

Frank van Rijn

March 9, 2012

Preface

In this paper a robustness scheme with niching is presented for extending an evo-
lution strategy to an evolution strategy with a niching technique and robustness
scheme. This gives the algorithm more explorative power and better chances of
finding robust optima. The proposed schemes are implemented and experiments
are run on nine different test functions. The conclusion is that, for the majority
of the test functions the extended algorithm perform wells and outperform the
benchmark algorithms. However, interestingly enough, the extended algorithm
did not outperform the benchmark algorithms on the multipeak functions, al-
though that was the hypothesis.

1

Chapter 1

Introduction

Evolution strategies are optimization techniques to find a high quality solu-
tions for complex non-linear optimization problems. Given an objective func-
tion f(x)→ min,x ∈ R

N the evolution strategy (ES), will try to minimize this
function and find the best solution. However, the input variables are not always
fully controllable. Practical realizations of solutions can deviate, requiring a
robust solution that performs well under these deviations.

The normal fitness function does not take the possible deviations into ac-
count. Therefore, a robust individual will not be rewarded with a higher fitness.
A new fitness function is created that estimates the fitness under deviations.
The new fitness function is called the effective fitness function [5] and is an ex-
pected fitness function. feff = E[f(x+z)], where z ∼ pdf(δ) is some continuous
probability variable.

Robustness schemes proposed in literature [4,9] perform well on locally zoom-
ing into the robust optimum, but they are not able to consistently determine
the more robust parts of the search area. In this paper it is investigated whether
niching can help with identifying the more robust parts of the search area.

Niching is a technique that enforces spatial diversity within a population. In
the approach of Shir [7], at every generation niche leaders are chosen that are at
least a distance ρ from each other. These spatiality separated niche leaders are
thereafter used for generating several separated sub-populations. This prevents
the whole population from converging to one point or area, therewith giving
the algorithm more exploratory power. In this paper, niching will be combined
with sampling schemes for finding robust solutions. The intuition is that this
will improve the algorithm’s ability to find the more robust parts of the search
space, which will result in better robust optima. The studies performed in this
paper serve to underpin this hypothesis.

2

CHAPTER 1. INTRODUCTION 3

The remainder of the paper is structured as follows: Chapter 2 explains the
chosen evolution strategy. Chapter 3 shows how the niching is implemented.
Chapter 4 explains the robustness scheme that was used. In Chapter 5 niching
and robustness are combined. Chapter 6 presents the experiments and their
results, ending with a conclusion and outlook in Chapter 7.

Chapter 2

Evolution Strategy

The Evolution Strategy (ES) that is used for the implementation is the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [3]. It is a state-of-
the-art algorithm for unconstrained continuous optimization that is suitable for
extending it with niching techniques and robustness schemes.

Algorithm 1 CMA-ES

Input parameters(λ, µ)
1: Initialize internal parameters: σ,C and xmean

2: while not terminate do
3: for i = 1 : λ do
4: zi ∼ N(0, I)
5: xi ← xmean + σ ·

√
C · zi

6: fi ← evaluate(xi)
7: end for
8: xmean ←weighted average of the µ best individuals
9: update σ

10: update C
11: end while
Output (best x)

Algorithm 1 subsumed the working mechanism of the CMA-ES. After ini-
tializing the global stepsize σ, the covariance matrix C and the recombinant
xmean the main evolution loop begins. The λ offspring are created by adding
a random vector z, z ∼ N(0, σC) to xmean. The new offspring are evaluated
by the fitness function and the µ best are recombined into a new recombinant,
xmean, for the next generation. The step size σ and the covariance matrix C are
updated and a new iteration of the loop is started until the stopping conditions
are met, then the best found solution is returned. For a detailed descriptions of
the working mechanism of the algorithm see [3].

4

Chapter 3

Niching

A property of evolution strategies is that populations converge with a high
probability to a (local) optimum. When that happens diversity of the population
is lost. As explained earlier, when looking for robust optima it could be very
useful to maintain diversity in the population. A technique to keep diversity in
the population is niching.

Niching as defined by [7], works by evolving q different subpopulations par-
allel to each other, and forcing these subpopulations to stay separated. This
creates a ({µ1, . . . , µq}, q · λ)-strategy, where µ1, . . . , µq denotes the number of
parents of the subpopulations. Algorithm 2 describes the identification of the
best individuals per niche (see appendix A for a matlab implementation of the
algorithm).

Algorithm 2 works as follows: It assumes that the population Pop is sorted
by fitness (the fittest individual is Pop1). The population is an array that con-
sists of λ · q vectors. Each vector is an candidate solution {x1, . . . ,xλ·q}. The
algorithm calculates the DPS. The DPS is a set of vectors, which are candidate
solutions. Initially the DPS is set to ∅. Then, for every individual i in the popu-
lation, it is checked, if its distance to all the elements in the DPS is bigger then
the niching radius ρ. If this is the case and the number of elements in DPS is
smaller than q, then ith individual is also a niche leader and is added to the DPS.

In Figure 3.1, the working mechanism of the algorithm is illustrated. Figure
3.1a shows the population. Then in, Figure 3.1b, the best individual is checked.
At this point the DPS is still empty, so its distance to all elements in DPS is
larger than ρ. This makes the best individual a new niche leader. It is colored
blue. The blue circle around it shows the niching radius and is added to the
DPS. In Figure 3.1c, the second best individual is checked and it is within the
niching radius of one of the members of the DPS. Hence, it is not a new niche
leader and it is not added to the DPS. After that, the next best individual
is checked in Figure 3.1d. It lies outside the niching radius of the member in
the DPS, so the individual becomes a niche leader. It is colored red and the
niching radius is shown around it with a circle, then it is added to the DPS.

5

CHAPTER 3. NICHING 6

Algorithm 2 Dynamic Peak Identification

Input (Pop, λ, q, ρ) {assume that Pop is sorted on fitness}
1: i← 1
2: numpeaks← 0
3: DPS← ∅
4: while (numpeaks < q and i ≤ λ · q) do
5: is niche leader ← true
6: for k = 1 : numpeaks do
7: if distance(Popi,DPSk) ≤ ρ then
8: is niche leader ← false
9: end if

10: end for
11: if is niche leader == true then
12: DPS← DPS ∪ Popi
13: numpeaks← numpeaks+ 1
14: end if
15: i← i+ 1
16: end while
Output DPS

This process continues in the other Figures 3.1e and 3.1f.

3.1 Niching radius

An important parameter for niching is the niching radius ρ. In [7], a suggestion
is made how to set this parameter. Given the number of peaks q in the search
space, every peak is considered to have a n-dimensional hypersphere surround-
ing the peaks with radius ρ, which encloses 1

q
of the volume of the search space.

Two assumptions are made: 1) the number of peaks q can be estimated or is
given, and 2) the peaks lie at least a distance of 2ρ from each other.

The volume of a hypersphere is

V = c(n)rn. (3.1)

where c(n) is a positive constant depending on the dimensions and r is given
by:

r =
1

2

√

√

√

√

n
∑

i=1

(xli − xui)2, (3.2)

where xu denotes the upper bound and xl denotes the lower bound. V is divided
into q spheres

c(n)ρn =
1

q
c(n)rn. (3.3)

CHAPTER 3. NICHING 7

(a) Population (b) First niche found (c) Second best individual is
inside niching radius

(d) New niche found (e) Inside niche (f) New niche found

Figure 3.1: Illustration of the dynamic peak identification procedure with three
niches found

To calculate ρ:

ρ =
r
n
√
q
. (3.4)

When dealing with a search space that is a cube the volume of the circum-
scribed sphere is taken as the volume of the search space, however, the volume
of the circumscribed sphere is much larger then the volume of the cube. This
can result in a ρ that is too large.

For example the 10-dimensional problem with the lower bound for every
dimension being −5 and the upper bound for every dimension 5 and dividing
that into 4 volumes, q = 4.

ρ =

1
2

√

n
∑

i=1

(xli − xui)2

n
√
q

=
15.8114

10
√
4

= 13.7646. (3.5)

Since the maximum distance for two points the search space is 31.6228 and the
suggested niching radius for q = 4 is 13.7646, the chances that the peaks lie a
distance of at least 2ρ from each other are not so high. The sphere function only
has one peak, but the ρ is not depended on the function only on the bounds of
the search space and the number of niches.

CHAPTER 3. NICHING 8

As an alternative we propose another procedure to calculate ρ, by taking
the incircle of the search space instead of the circumscribed circle. The r is now
be given by:

r =
1

2
· 1
n

n
∑

i=1

|xui − xli|. (3.6)

For the 10-dimensional problem with the same bounds this results into a ρ of:

ρ =

1
2 · 1n

n
∑

i=1

|xui − xli|
n
√
q

=
5

10
√
4
= 4.3528, (3.7)

which appears to be a better value for ρ.

Figure 3.2: A plot of two different niching radii versus the diagonal of the search
space. The blue slasheddotted line shows the niching radius derived from the
inner circle. The red slashed line indicates th niching radius derived from the
circumscribed circle. The green line indicates 1

q
times the length of the diagonal

of the search space, q = 4 the lowerbounds are −10 and the upperbounds are
10.

Figure 3.2, shows that ρ taken from the circumscribed circle grows faster
for higher dimensions than ρ derived from the incircle. The green constant line
shows the growth of the diagonal of the search space. The blue line stays closer
to the green line than the red line.

CHAPTER 3. NICHING 9

3.2 CMA-ES with niching

Algorithm 3 shows the niching technique implemented into the CMA-ES. To
add the niching technique to the CMA-ES, some changes have to be made to
the CMA-ES as presented in Algoritm 1. Instead of having one σ,xmean and
C, every niche has its own σ,xmean and C. When creating new offspring the
σ,xmean and C of the niche leader are used.

Algorithm 3 CMA-ES with niching

Input parameters(λ, µ, q)
1: Initialize internal parameters: σ1, . . . , σq,C1, . . . ,Cq,xmean1

, . . . ,xmeanq
, ρ

2: while not terminate do
3: for j = 1 : q do
4: for i = 1 : λ do
5: zj,i ∼ N(0, I)
6: xj,i ← xmeanj

+ σj ·
√

Cj · zj,i
7: fj,i ← evaluate(xj,i)
8: end for
9: end for

10: (x1:1, . . . ,xq:λ)← sort(x1,1, f1,1), · · · , (xq,λ, fq,λ){In ascending order}
11: DPS = dpi(x)
12: for j = 1 : q do
13: xmean,j ← DPSj
14: update σj

15: update Cj

16: end for
17: end while
Output (best individual)

Two problems occur when updating xmean and creating offspring. How to
deal with the case when there are less then µ individuals in a niche? This
problem can be overcome by taking the mean of the individuals that exist in
the niche, instead of taking the mean of µ individuals.

The other problem is more difficult. When the new offspring are created
and regrouped in q niches, it is possible that two individuals that are now in
the same niche have different parents. Updating σ and C becomes a problem,
because it is not reasonable to combine two (or multiple) covariance matrices
and two step sizes. The solution is to allow for only one parent per niche, µ = 1.
Changing the CMA-ES from a (µ, λ)-strategy into the CMA-ES with niching,
which is a ({µ1, . . . , µq}, q · λ)-strategy, where every µ = 1.

Chapter 4

Robustness

A robust solution is a solution that performs well when the variables are effected
by a disturbance δ. In Figure 4.1, two peaks are shown, the left peak has a better
optimum. The right peak is more robust, and might be a better robust solution
depending on the disturbance δ. Note that is assumed that δ is known, but that
assumption holds for many of real life problems, without a known δ it would
not be possible to have an effective fitness function.

Figure 4.1: Two peaks: The left peak has the better optimum for minimization.
The right peak is the more robust peak.

10

CHAPTER 4. ROBUSTNESS 11

Robustness is important because it is not always possible to control the input
variables. Especially in industrial applications where candidate solutions cannot
be realized with arbitrary precision.

When there are a lot of peaks it is very hard to find the more robust peaks.
Robustness schemes perform well on zooming in locally into the robust optimum.
But they perform poorly in identifying the more robust parts of the search space.

What niching can add to this is, is that keeping the population spread out
over the search space it finds more peaks. This should result in better chances
of finding more robust peaks.

The robustness scheme that was chosen is the multi-evaluation-model (MEM).
It does not just calculate the fitness from an individual x, but it takes m differ-
ent random samples of the disturbance δ from an individual. MEM calculates
the fitness of those m points and takes the mean of those values as the fitness
for the individual x, i.e.,

feff(x) =
1

m

m
∑

i=1

(x+ δi), δi ∼ δ. (4.1)

The evaluation can be done with the recycling of the disturbance samples or
for every individual take a new disturbance sample. In the first case, denoted
MEM+, the same disturbance is added to every individual and its fitness is
then calculated. In the second case, denoted MEM−, every individual has its
own disturbance which is evaluated. For this algorithm the recycling method,
MEM+, is chosen.

Chapter 5

Niching and finding robust

optima

In Algorithm 4, the result of combining the MEM scheme with Algorithm 3 is
shown (see appendix B for a matlab implementation of the algorithm).

In the MEM scheme, the parameter m, the number of samples, needs to
be set. To find the best setting for m the algorithm, with q = 4, is tested on
a 10 dimensional instance of Branke’s multipeak problem. It’s a modification
of the Branke function [1] and it has many peaks. The peaks are positioned
like a grid. All the peaks are positioned at the -1 and 1 coordinates. The
more -1 coordinates the more robust the peak is. Hence, the global optimum is
x = (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1). So each found peak has a score
for the number of dimensions the coordinate is smaller then zero. The most
robust peak has a score of 10.

The algorithm is a run 100 times for each setting of m. The most robust
niche was identified by counting in how many dimensions x < 0. For how many
dimensions that was true is plotted in Figure 5.1

As can be seen in Figure 5.1, m = 1 is the best. It finds the most robust
peak the most often and has a lower average fitness. MEM with m = 1 is a
special case of the MEM-scheme, called single evaluation method (SEM).

12

CHAPTER 5. NICHING AND FINDING ROBUST OPTIMA 13

Algorithm 4 CMA-ES with niching and the MEM evaluation scheme for find-
ing robust optima

Input parameters(λ, µ, q,m)
1: Initialize internal parameters: σ1, . . . , σq,C1, . . . ,Cq,xmean1

, . . . ,xmeanq
, ρ

2: while not terminate do
3: δl ∼ δ, l = 1, · · · ,m
4: for j = 1 : q do
5: for i = 1 : λ do
6: sumf = 0
7: zj,i ∼ N(0, I)
8: xj,i ← xmeanj

+ σj ·
√

Cj · zj,i
9: for l = 1 : m do

10: sumf = sumf+ evaluate(xj,i + δl)
11: end for
12: end for
13: foj,i ← sumf

m

14: end for
15: (x1:1, . . . ,xq:λ)← sort(x, fo){In ascending order}
16: DPS = dpi(x)
17: for j = 1 : q do
18: update xmean,j

19: update σj

20: update Cj

21: end for
22: end while
Output (best individual)

CHAPTER 5. NICHING AND FINDING ROBUST OPTIMA 14

(a) m = 1, average fitness = 0.4601 (b) m = 2, average fitness = 0.4791

(c) m = 3, average fitness = 0.4845 (d) m = 4, average fitness = 0.4730

(e) m = 5, average fitness = 0.4649

Figure 5.1: Number of times peak found versus robustness score of the peaks
for different instances of the CMA-ES with niching and the MEM+ for finding
robust optima.

Chapter 6

Experimental results

6.1 Proof of concept

An experiment on a two-dimensional problem is done to see if the CMA-ES
with niching and MEM has potential to find the more robust parts of the search
space. Three algorithms are compared namely, the CMA-ES, the CMA-ES with
niching and the CMA-ES with niching and the MEM+. The three algorithms
are run on a two-dimensional instances of Branke’s multipeak function, and
again by counting in how many dimensions the solution is smaller then zero
it is calculated which peak is found. The more dimensions smaller than zero,
the more robust the optimum is. The two dimensional instance of Branke’s
multipeak function has four peaks: (1, 1), (−1, 1), (1,−1), (−1,−1). Each peak
is given a score equal to the number of −1 they have. The three algorithms
need to find as often as possible the peak with score two. The settings for the
algorithms are: q = 2 and m = 1. For the niching algorithms the peak with the
higher score is chosen. The results are plotted in Figure 6.1.

The results shown in Figure 6.1, indicate that niching alone is not enough to
identify the more robust parts of the search area. The algorithm with niching
and MEM however, performs better then the normal CMA-ES in finding the
more robust parts of the search area. The differences are marginal, and a more
systematic testing approach is needed and will be conducted in Chapter 6.2.

6.2 Experiments

The CMA-es with niching and the MEM evaluation scheme is compared with
a normal CMA-ES, a CMA-ES with niching and a CMA-ES with the MEM
scheme (without niching). The four algorithms are compared on nine artificial
test functions.

15

CHAPTER 6. EXPERIMENTAL RESULTS 16

Figure 6.1: Number of times peak found vs robustness score of the peaks.

6.3 Test functions

f1: Sphere problem (from [6])

f1(x) =
n
∑

i=1

x2
i ,

x ∈ [−5, 5]N , δ ∼ U(−1,1), and xro = 0.

f2: Heavyside sphere problem (from [4])

f2(x) =
1
n

n
∑

i=1

1

1+e
(2
5
(xi+3))

+ 1
1+e10(xi−4) ,

x ∈ [−10, 10]N , δ ∼ U(−1,1), and xro = [1, 1, 0, · · · , 0].

f3: Sawtooth problem (from [2])

f3(x) = 1− 1
n

n
∑

i=1

{

(xi + 0.8) if xi < 0.2 ∧ xi ≥ −0.8
0 else

,

x ∈ [−1, 1]N , δ ∼ U(−0.2,0.2), and xro = 0.

CHAPTER 6. EXPERIMENTAL RESULTS 17

f4: Volcano problem (from [5])

f4(x) =

{ √

||x|| − 1 if ||x|| > 1
0 else

,

x ∈ [−10, 10]N , δ ∼ U(−1.5,1.5), and xro = 0.

f5: Modded branke multipeak problem (from [1])

f5(x) =
1
n

n
∑

i=1

c−
{

1− (x+ 1)2 if xi < 0 ∧ xi ≥ −2
c · 2(−8·|xi−1|) if xi ≥ 0 ∧ 2 ≥ xi

,

c1 = 1.3,x ∈ [−2, 2]N , δ ∼ U(−0.5,0.5), and xro = −1.

f6: Pickelhaube problem (from [5])

f6(x) = c1a −max(fbase, f1a, f1b, f2),

f1a = c1a ·
(

1− ||x+5||
5· 4√

N

)

,

f1b = c1b ·
(

1− ||x+5||
5·N2

)

,

f2 = c2 ·
(

1− ||x−5||
5·(

√
N)d2

)

,

fbase = 0.1 · exp(− 1
2 · ||x||),

c1a = 5
5−

√
5
, c1b =

625
624 ,

c2 = 1.5975528761621545, d2 = 1.1513175769876054,

x ∈ [−10, 10]N , δ ∼ U(−1,1), and xro = 5.

f7: FNIM f2 problem

f7(x) = −
(a−x2

2)+
1
n

n∑

i=3
x2
i

(x2
i
+b)−x2

1
,

a = 5, b = 1,x ∈ [−5, 5]N , δ ∼ U(−1,1), and xro = 5.

f8: Multipeak f1 problem (from [8])

f8(x) =
1
n

n
∑

i=1

{

e(−2 ln 2(x−0.1
0.8)2

√

| sin(5πxi)| if 0.4 < xi ≥ 0.6

e(−2 ln 2(x−0.1
0.8)2 sin6(5πxi) else

,

x ∈ [0, 1]N , δ ∼ U(−0.0625,0.0625), and xro ≈ 0.4911.

f9: Multipeak f2 problem

f9(x) =
1
n

n
∑

i=1

2 sin(10 exp(−0.2xi) · xi) · exp(−0.25xi).

x ∈ [−10, 10]N , δ ∼ U(−1,1), and xro = 5.

In Figure 6.2 the nine test problems are shown in two dimensions.

CHAPTER 6. EXPERIMENTAL RESULTS 18

6.4 Results

Each of the four algorithms is run 25 times on each of the nine test problems.
Each run has 10,000 function evaluations. The parameters q and m are re-
spectively set to 4 and 3. In Figures 6.3 to 6.11, the average fitness versus the
function evaluations are shown.

6.5 Discussion of the results

In Figures 6.3 to 6.11, it can be seen that the CMA-ES with niching and the
MEM evaluation scheme performs the best on four out of the nine test functions,
namely the heavy side sphere problem, the volcano problem, the FNIM problem
and Multipeak f2. The CMA-ES with the MEM evaluation scheme, without
niching, only is the best for two test problems, namely the sawtooth problem
and the multipeak f1 problem. The CMA-ES with niching and MEM scheme,
outperforms the CMA-ES with the MEM scheme in a total of 6 out of 9. Adding
niching give the algorithm an improvement for the majority of the test problems.

What is very interesting to see is that the CMA-ES with niching and the
MEM evaluation scheme does not perform well on Branke’s multipeak function
and the Multipeak f1 function. While the intuition was that niching would
help in a multipeak problems it seems like that is not always the case. The
reason for this is not clear. It is possible that a niche leader gets stuck at a
local minimum that has a distance to the global minimum that is smaller then
ρ. In that case the niching radius prevents other niches from finding the global
minimum. The niche which has the global minimum in its niching radius might
have zoomed in too far at a local minimum to be able to jump to the global
minimum. This presumption gets reinforced by the fact that the CMA-ES with
niching and MEM does perform well on the Multipeak f2 function, where the
global minimum is located further away from other peaks.

CHAPTER 6. EXPERIMENTAL RESULTS 19

(a) Sphere problem, f1. (b) Heavy side sphere problem f2. (c) Sawtooth problem, f3.

(d) Volcano problem, f4. (e) Branke multipeak problem, f5. (f) Pickelhaube problem, f6.

(g) FNIM f2 problem, f7. (h) Multipeak f1 problem, f8. (i) Multipeak f2 problem, f9.

Figure 6.2: Two dimensional representations of the nine test problems.

CHAPTER 6. EXPERIMENTAL RESULTS 20

Figure 6.3: Sphere problem, f1.

Figure 6.4: Heavy side sphere problem f2.

CHAPTER 6. EXPERIMENTAL RESULTS 21

Figure 6.5: Sawtooth problem, f3.

Figure 6.6: Volcano problem, f4.

CHAPTER 6. EXPERIMENTAL RESULTS 22

Figure 6.7: Branke multipeak problem, f5.

Figure 6.8: Pickelhaube problem, f6.

CHAPTER 6. EXPERIMENTAL RESULTS 23

Figure 6.9: FNIM f2 problem, f7.

Figure 6.10: Multipeak f1 problem, f8.

CHAPTER 6. EXPERIMENTAL RESULTS 24

Figure 6.11: Multipeak f2 problem, f9.

Chapter 7

Conclusion and Outlook

In this paper we have proposed an CMA-ES with niching and the MEM evalua-
tion scheme. The proposed strategy has been tested against three other versions
of the CMA-ES algorithm on nine 10 dimensional test problems. It has shown
that the CMA-ES with niching and the MEM evaluation scheme can outper-
form on the majority of the test problems, but the original hypothesis is not
completely confirmed. Because the original idea was that niching would help
with finding the more robust parts of the search area, and thus perform better
on the multipeak problems, but it does not perform better on the multipeak
problems. The reason for this could not be found.

For future work it would be interesting to find the exact reason why the
CMA-ES with niching and MEM does perform well on functions with sharp
edges, but not so well on multipeak functions, while the intuition is the opposite.

Other future work could consist of exploring the possibilities of increasing
the size of µ per niche. The problem of having multiple σ′s,C′s can be overcome
by different ways. For example, taking the C and σ of the best individual of
each niche, or taking the average of them. It is possible that this could improve
the algorithm.

Another thing that is be worth looking into, is the role of q. How to set this
parameter to have the most chance of finding the robust peak, but not wasting
too many function evaluations. Having a variable q sounds like viable option.
Starting with many niches to have big explorative power and then towards the
end of the budget decreasing the size to continue with the best niches.

25

Bibliography

[1] J. Branke. Creating Robust Solutions by Means of Evolutionary Algorithms.
In Parallel Problem Solving from Nature (PPSN V), LNCS, pages 119–128.
Springer-Verlag, 1998.

[2] J. Branke. Reducing the Sampling Variance when Searching for Robust
Solutions. In Genetic and Evolutionary Computation Conference (GECCO
2001), pages 235–242. Morgan Kaufmann, 2001.

[3] N. Hansen. The CMA Evolution Strategy: A Tutorial. 2011.

[4] Johannes Kruisselbrink, Michael Emmerich, and Thomas Bäck. An archive
maintenance scheme for finding robust solutions. In Robert Schaefer, Carlos
Cotta, Joanna Kolodziej, and Günter Rudolph, editors, Parallel Problem
Solving from Nature – PPSN XI, volume 6238 of Lecture Notes in Computer
Science, pages 214–223. Springer Berlin / Heidelberg, 2011.

[5] Johannes W. Kruisselbrink, Edgar Reehuis, André Deutz, Thomas Bäck,
and Michael Emmerich. Using the uncertainty handling cma-es for finding
robust optima. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pages 877–884, New York, NY,
USA, 2011. ACM.

[6] J.W. Kruisselbrink, M.T.M. Emmerich, A.H. Deutz, and T. Bäck. A Robust
Optimization Approach using Kriging Metamodels for Robustness Approx-
imation in the CMA-ES. In IEEE Congress on Evolutionary Computation
(CEC 2010), pages 1–8, 2010.

[7] Ofer M. Shir and Thomas Bäck. Niching with derandomized evolution strate-
gies in artificial and real-world landscapes. 8:171–196, March 2009.

[8] O.M. Shir, M.T.M Emmerich, and T. Bäck. Adaptive Niche Radii and Niche
Shapes Approaches for Niching with the CMA-ES. Evolutionary Computa-
tion, 18(1):97–126, 2010.

[9] Shigeyoshi Tsutsui and Ashish Ghosh. Effects of adding perturbations to
phenotypic parameters in genetic algorithms for searching robust solutions,
pages 351–365. Springer-Verlag New York, Inc., New York, NY, USA, 2003.

26

Appendix A

Dynamic peak identification

1 function [num_peaks , dps] = dynamic_peak_identification (n , q , rho , xo , sortindex)
2 % [] = dynamic_peak_identification()

3 % Input:

4 % - N - Number of dimensions

5 % - n - Size of the population lambda * q

6 % - q - Number of peaks to identify

7 % - rho - The niching radius

8 % - xo - The current population

9 % - sortf - Order of the indices

10 %

11 % Output:

12 % - num_peaks - Number of peaks found

13 % - niches - Niches found

14

15 i = 1 ;
16 num_peaks = 0 ;
17 dps = −1 ∗ ones (q , 1) ;
18 while (num_peaks < q && i <= n)
19 is_niche_leader = true ;
20 k = 1 ;
21 while (k <= num_peaks && is_niche_leader == true)
22 i f (norm(xo (: , dps (k)) − xo (: , sortindex (i))) < rho)
23 is_niche_leader = false ;
24 end

25 k = k+1;
26 end

27 i f (is_niche_leader)
28 num_peaks = num_peaks + 1 ;
29 dps (num_peaks) = sortindex (i) ;
30 end

31 i = i + 1 ;
32 end

33 end

27

Appendix B

CMA-ES with niching and

MEM

1 function [stat] = ro_niching_cmaes_mem (problem_specification ,
2 algorithm_parameters , run_parameters)
3 % [stat] = cmaes(problem_specification ,

4 % run_parameters , algorithm_parameters)

5 %

6 % Implementation of the mem scheme and niching into CMA-ES algorithm

7 %

8 % Input:

9 % - problem_specification - A struct containing the problem

10 % definition with:

11 % - problem_type - A string holding description of

12 % the problem type

13 % - problem_name - A string holding the name of

14 % the test function

15 % - objective_function - A function handle to the

16 % objective function

17 % - N - The number of dimensions

18 % of the search space

19 % - lb - A vector of the upper bounds of

20 % the search interval

21 % - ub - A vector of the lower bounds of

22 % the search interval

23 %

24 % - run_parameters - A struct containing the run

25 % parameters with:

26 % - max_generations_termination - The maximum number of generations

27 % - max_evaluations_termination - The maximum number of evaluations

28 % - min_fitness_termination - Stop when a solution is found below

29 % this value

30 % - history_statistics - Maintain history statistics

31 % - internal_parameters_statistics - Maintain statistics of the internal

28

APPENDIX B. CMA-ES WITH NICHING AND MEM 29

32 % parameters

33 % - report_intermediate - Report statistics while running

34 % - report_after_termination - Report after termination

35 % - report_fct - A handle to the report function

36 % - restart_log_intermediate - Maintain a logfile to allow for

37 % restarts

38 % - restart_log_after_termination - Store a logfile to allow for

39 % restarts after completing an optimization run

40 % - restart_log_logfile - Filename of the restart logfile

41 %

42 % - algorithm_parameters - A struct containing algorithm

43 % specific parameters

44 % - bch_fct - A handle to the box constraint

45 % handling function

46 % - sampling_fct - The sampling function used for

47 % obtaining the samples for the robustness approximations

48 % - m - The number of samples used for the

49 % robustness approximations

50 % - reuse_disturbances - Specify whether or not to use the

51 % same disturbances for all individuals in the population

52 %

53 % Output:

54 % - stat -

55 %

56 % Last modified: December 9, 2011

57

58 % Problem specification

59 fitnessfct = problem_specification . objective_fct ;
60 N = problem_specification . N ;
61 lb = problem_specification . lb ;
62 ub = problem_specification . ub ;
63 ur_sigma = problem_specification . ur_sigma ;
64

65 % Run parameters

66 stopeval = run_parameters . max_evaluations_termination ;
67 stopgen = run_parameters . max_generations_termination ;
68 minfitness = run_parameters . min_fitness_termination ;
69 history_statistics = run_parameters . history_statistics ;
70 internal_parameter_statistics =
71 run_parameters . internal_parameter_statistics ;
72 report_intermediate = run_parameters . report_intermediate ;
73 report_after_termination = run_parameters . report_after_termination ;
74 report_fct = run_parameters . report_fct ;
75 restart_log_intermediate = run_parameters . restart_log_intermediate ;
76 restart_log_after_termination =
77 run_parameters . restart_log_after_termination ;
78 i f (restart_log_intermediate | | restart_log_after_termination)
79 restart_log_logfile = run_parameters . restart_log_logfile ;
80 end

81

APPENDIX B. CMA-ES WITH NICHING AND MEM 30

82 % Algorithm parameters

83 bch_fct = algorithm_parameters . bch_fct ;
84 sampling_fct = algorithm_parameters . sampling_fct ;
85 m = algorithm_parameters . m ;
86 q = algorithm_parameters . q ;
87

88 %count times of niche restart

89 restart = 0 ;
90 % Set lambda , mu and the weights for recombination

91 r = 0.5 ∗ norm(ub − lb) ;
92 rho = r / qˆ(1/N) ;
93 lambda = 4 + f loor (3 ∗ log (N)) ;
94 mu = 1 ; %only works for mu = 1

95 weights = log (mu + 1) − log (1 : mu) ’ ;
96 weights = weights / sum(weights) ;
97 mueff = sum(weights)ˆ2 / sum(weights . ˆ 2) ;
98

99 % Set parameters

100 cc = 4 / (N + 4) ;
101 cs = (mueff + 2) / (N + mueff + 3) ;
102 mucov = mueff ;
103 ccov = (1 / mucov) ∗ 2 / (N + 1.4)ˆ2 + (1 − 1 / mucov)
104 ∗ ((2 ∗ mueff − 1) / ((N + 2)ˆ2 + 2 ∗ mueff)) ;
105 damps = 1 + 2 ∗ max(0 , sqrt ((mueff − 1) / (N + 1)) − 1) + cs ;
106 chiN = N ˆ0 .5 ∗ (1 − 1 / (4 ∗ N) + 1 / (21 ∗ N ˆ 2)) ;
107

108 % Initialize xmean and step size

109 i f (isfield (algorithm_parameters , ’ xmean in i t ’))
110 xmean = algorithm_parameters . xmean_init ;
111 else

112 xmean = repmat (lb , 1 , q) + repmat (ub − lb , 1 , q) .∗ rand (N , q) ;
113 end

114

115 i f (isfield (algorithm_parameters , ’ s i gma in i t ’))
116 sigma = algorithm_parameters . sigma_init ;
117 else

118 sigma = repmat ((norm(ub − lb)) / (3 ∗ q ∗ sqrt (N)) , 1 , q) ;
119 end

120

121 % Test reuse_disturbances parameter

122 i f (isfield (algorithm_parameters , ’ r e u s e d i s t u r b anc e s ’))
123 reuse_disturbances = algorithm_parameters . reuse_disturbances ;
124 else

125 reuse_disturbances = true ;
126 end

127

128 % Initialize matrices and vectors of the CMA-ES

129 pc = zeros (N , q) ;
130 ps = zeros (N , q) ;
131 B = ones (N , N , q) ;

APPENDIX B. CMA-ES WITH NICHING AND MEM 31

132 D = ones (N , N , q) ;
133 C = ones (N , N , q) ;
134 for i=1:q ,
135 pc (: , i) = zeros (N , 1) ;
136 ps (: , i) = zeros (N , 1) ;
137 B (: , : , i) = eye (N , N) ;
138 D (: , : , i) = eye (N , N) ;
139 C (: , : , i) = eye (N , N) ;
140 end

141

142 % Initialize counters

143 evalcount = 0 ;
144 gencount = 0 ;
145

146 % Statistics administration parameters

147 stat . optimizer_name = ’ ro niching CMA−ES ’ ;
148 stat . run_status = ’ Incomplete ’ ;
149 estimated_stopeval = max(stopeval , stopgen ∗ lambda) ;
150 estimated_stopgen = max(stopgen , ce i l (stopeval / lambda)) ;
151 stat . gencount = 0 ;
152 stat . evalcount = 0 ;
153 stat . x_opt = zeros (N , q) ;
154 stat . f_opt = zeros (1 , q) ;
155 stat . rho = rho ;
156 i f (history_statistics)
157 stat . evalvsgen = zeros (1 , estimated_stopgen) ;
158 stat . hist_x_opt = zeros (N , q , estimated_stopgen) ;
159 stat . hist_f_opt = zeros (q , estimated_stopgen) ;
160 stat . hist_x = zeros (N , estimated_stopeval) ;
161 stat . hist_f = zeros (1 , estimated_stopeval) ;
162 stat . hist_xmean = zeros (N , estimated_stopgen) ;
163 end

164 i f (internal_parameter_statistics)
165 stat . hist_sigma = zeros (1 , q , estimated_stopgen) ;
166 stat . hist_ps = zeros (N , estimated_stopgen) ;
167 stat . hist_pc = zeros (N , estimated_stopgen) ;
168 stat . hist_C = zeros (N , N , estimated_stopgen) ;
169 stat . hist_B = zeros (N , N , estimated_stopgen) ;
170 stat . hist_D = zeros (N , N , estimated_stopgen) ;
171 stat . hist_dps = zeros (q , estimated_stopgen) ;
172 stat . hist_q = q ;
173 stat . hist_N = N ;
174 end

175

176 % If restart then load restart log logfile

177 i f (run_parameters . do_restart && exist (restart_log_logfile , ’ f i l e ’))
178 load (sprintf (’%s ’ , restart_log_logfile)) ;
179 stat . run_status = ’ Incomplete ’ ;
180 end

181

APPENDIX B. CMA-ES WITH NICHING AND MEM 32

182 % Initialization for speedup

183 xo = zeros (N , q ∗ lambda) ;
184 zo = zeros (N , q ∗ lambda) ;
185 fo = zeros (1 , q ∗ lambda) ;
186 zmean = zeros (N , q) ;
187

188 % Evolution loop

189 while ((stopeval == −1 | | evalcount < stopeval) . . .
190 && (stopgen == −1 | | gencount < stopgen) . . .
191 && stat . f_opt (1) > minfitness)
192

193 % Statistics administration

194 gencount = gencount + 1 ;
195 stat . gencount = gencount ;
196 i f (internal_parameter_statistics)
197 for i=1:q ,
198 stat . hist_sigma (: , i , gencount) = sigma (: , i) ;
199 end

200 stat . hist_ps (: , gencount) = ps (: , 1) ;
201 stat . hist_pc (: , gencount) = pc (: , 1) ;
202 stat . hist_C (: , : , gencount) = C (: , : , 1) ;
203 stat . hist_B (: , : , gencount) = B (: , : , 1) ;
204 stat . hist_D (: , : , gencount) = D (: , : , 1) ;
205 end

206

207 % Generate a sample set of input parameter disturbances if they are reused

208 i f (reuse_disturbances)
209 x_dists = sampling_fct (m , N , −ur_sigma ’ , ur_sigma ’) ’ ;
210 end

211 fo_dists = zeros (1 , m) ;
212 xo_dists = zeros (N , m) ;
213

214 % Generate and evaluate lambda offspring

215 for j=1:q
216 i = (j − 1) ∗ lambda ;
217 for k=1:lambda ,
218 % Generate a sample set for every individual

219 i f (˜ reuse_disturbances)
220 x_dists = sampling_fct (m , N , −ur_sigma ’ , ur_sigma ’) ’ ;
221 end

222 zo (: , k+i) = randn(N , 1) ;
223 xo (: , k+i) = xmean (: , j) + sigma (: , j) ∗ (B (: , : , j)
224 ∗ D (: , : , j) ∗ zo (: , k+i)) ;
225 xo (: , k+i) = feval (bch_fct , xo (: , k+i) , lb , ub) ;
226

227 for l=1:m ,
228 xo_dists (: , l) = xo (: , k+i) + x_dists (: , l) ;
229 fo_dists (l) = feval (fitnessfct , xo_dists (: , l) ’) ;
230 end

231 fo (k+i) = mean(fo_dists) ;

APPENDIX B. CMA-ES WITH NICHING AND MEM 33

232

233 % Statistics administration

234 evalcount = evalcount + 1 ;
235 stat . evalcount = evalcount ;
236 i f (history_statistics)
237 stat . hist_x (: , evalcount) = xo (: , k+i) ;
238 stat . hist_f (evalcount) = fo (k+i) ;
239 end

240 end

241 end

242

243 % Sort by fitness and compute weighted mean into xmean

244 [˜ , sortindex] = sort (fo) ; % M I N I M I Z A T I O N

245 [num_peaks , niches] = dynamic_peak_identification (lambda∗q , q ,
246 rho , xo , sortindex) ;
247

248 parxmean = xmean ;
249 parsigma = sigma ;
250 parC = C ;
251 parB = B ;
252 parD = D ;
253 parps = ps ;
254 parpc = pc ;
255

256 for i=1:num_peaks ,
257 dps_parents = niches (i , :) ;
258 par = ce i l (dps_parents / lambda) ;
259

260 zmean (: , i) = zo (: , dps_parents) ∗ weights ;
261

262 Bn = squeeze (parB (: , : , par)) ;
263 Cn = squeeze (parC (: , : , par)) ;
264 Dn = squeeze (parD (: , : , par)) ;
265

266 xmean (: , i) = feval (bch_fct , parxmean (: , par)
267 + parsigma (par) ∗ (Bn ∗ Dn ∗ zmean (: , i)) , lb , ub) ;
268

269 % Cumulation: Update evolution paths

270 ps (: , i) = (1 − cs) ∗ parps (: , par) + sqrt (cs ∗ (2 − cs)
271 ∗ mueff) ∗ (Bn ∗ zmean (: , i)) ;
272 hsig = norm(ps (: , i)) / sqrt (1 − (1 − cs)ˆ (2 ∗ evalcount / lambda))
273 / chiN < 1 .4 + 2/(N + 1) ;
274 pc (: , i) = (1 − cc) ∗ parpc (: , par) + hsig ∗ sqrt (cc ∗ (2 − cc)
275 ∗ mueff) ∗ (Bn ∗ Dn ∗ zmean (: , i)) ;
276

277 % Adapt covariance matrix C

278 Cn = (1 − ccov) ∗ Cn + ccov ∗ (1 / mucov) ∗ . . .
279 (pc (: , i) ∗ pc (: , i) ’ + (1−hsig) ∗ cc ∗ (2 − cc) ∗ Cn) +
280 ccov ∗ (1−1/mucov) ∗ . . .
281 (Bn ∗ Dn ∗ zo (: , dps_parents)) ∗ diag (weights)

APPENDIX B. CMA-ES WITH NICHING AND MEM 34

282 ∗ (Bn ∗ Dn ∗ zo (: , dps_parents)) ’ ;
283

284 % Adapt step size sigma

285 sigma (i) = parsigma (par) ∗ exp ((cs / damps)
286 ∗ (norm(ps (: , i)) / chiN − 1)) ;
287 % Update B and D from C

288 Cn = triu (Cn) + triu (Cn , 1) ’ ;
289 [Bn , Dn] = eig (Cn) ;
290 D (: , : , i) = diag (sqrt (diag (Dn))) ;
291 C (: , : , i) = Cn ;
292 B (: , : , i) = Bn ;
293 end

294

295 while (num_peaks < q)
296 num_peaks = num_peaks + 1 ;
297 restart = restart + 1 ;
298 xmean (: , num_peaks) = lb + (ub − lb) .∗ rand (N , 1) ;
299 i f (isfield (algorithm_parameters , ’ s i gma in i t ’))
300 sigma (num_numpeaks) = algorithm_parameters . sigma_init ;
301 else

302 sigma (num_peaks) = (norm(ub − lb)) / (3 ∗ q ∗ sqrt (N)) ;
303 end

304 pc (: , num_peaks) = zeros (N , 1) ;
305 ps (: , num_peaks) = zeros (N , 1) ;
306 B (: , : , num_peaks) = eye (N , N) ;
307 D (: , : , num_peaks) = eye (N , N) ;
308 C (: , : , num_peaks) = eye (N , N) ;
309 end

310

311 % Statistics administration

312 for i=1:q ,
313 i f (niches (i) < 0)
314 %stat.x_opt(:,i) = [inf, inf];

315 else

316 stat . x_opt (: , i) = xo (: , niches (i)) ;
317 end

318 end

319

320 for i=1:q ,
321 i f (niches (i , 1) < 0)
322 stat . f_opt (i) = Inf ;
323 else

324 stat . f_opt (i) = fo (sortindex (niches (i , 1))) ;
325 end

326 end

327

328 i f (history_statistics)
329 stat . evalvsgen (stat . gencount) = evalcount ;
330 stat . hist_x_opt (: , : , gencount) = stat . x_opt ;
331 stat . hist_f_opt (: , gencount) = stat . f_opt ;

APPENDIX B. CMA-ES WITH NICHING AND MEM 35

332 stat . hist_xmean (: , gencount) = xmean (: , 1) ;
333 stat . hist_dps (: , gencount) = niches (: , 1) ;
334 end

335

336 % Store log for restart

337 i f (restart_log_intermediate)
338 save (sprintf (’%s ’ , restart_log_logfile) , ’ xmean ’ , ’ sigma ’ , ’ pc ’ ,
339 ’ ps ’ , ’B ’ , ’D’ , ’C ’ , ’ e va l coun t ’ , ’ gencount ’ , ’ s t a t ’) ;
340 end

341

342 % Report statistics

343 i f (report_intermediate)
344 report_fct (stat , problem_specification ,
345 algorithm_parameters , run_parameters)
346 end

347 end

348

349 % Complete statistics struct

350 i f (history_statistics)
351 stat . evalvsgen = stat . evalvsgen (1 : gencount) ;
352 stat . hist_x = stat . hist_x (: , 1 : evalcount) ;
353 stat . hist_f = stat . hist_f (: , 1 : evalcount) ;
354 stat . hist_x_opt = stat . hist_x_opt (: , : , 1 : gencount) ;
355 stat . hist_f_opt = stat . hist_f_opt (: , 1 : gencount) ;
356 stat . hist_xmean = stat . hist_xmean (: , 1 : gencount) ;
357 end

358 i f (internal_parameter_statistics)
359 stat . hist_sigma = stat . hist_sigma (: , : , 1 : gencount) ;
360 stat . hist_ps = stat . hist_ps (: , 1 : gencount , :) ;
361 stat . hist_pc = stat . hist_pc (: , 1 : gencount , :) ;
362 stat . hist_C = stat . hist_C (: , : , 1 : gencount , :) ;
363 stat . hist_B = stat . hist_B (: , : , 1 : gencount , :) ;
364 stat . hist_D = stat . hist_D (: , : , 1 : gencount , :) ;
365 end

366 stat . run_status = ’ Complete ’ ;
367

368 % Store log

369 i f (restart_log_intermediate | | restart_log_after_termination)
370 save (sprintf (’%s ’ , restart_log_logfile) , ’ xmean ’ , ’ sigma ’ , ’ pc ’ , ’ ps ’ ,
371 ’B ’ , ’D’ , ’C ’ , ’ e va l coun t ’ , ’ gencount ’ , ’ s t a t ’) ;
372 end

373

374 % Plot statistics

375 i f (report_after_termination)
376 report_fct (stat , problem_specification , algorithm_parameters ,
377 run_parameters)
378 end

379 stat . hist_restart = restart ;
380 end

