
Universiteit Leiden

Opleiding Informatica

Incremental algorithms for solving stochastic constraint

optimisation problems with probabilistic logic programming

Name: Anna L. D. Latour

Date: 21/12/2016

1st supervisor: Dr. Marcello M. Bonsangue
2nd supervisor: Prof. Peter J. F. Lucas
external supervisor: Dr. Siegfried Nijssen

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

This work is the result of a collaboration between the Leiden Institute of Advanced Computer Science
(LIACS) and the DTAI (Declaratieve Talen en Artificiele Intelligentie, or Declarative Languages and

Artificial Intelligence) group at the Computer Science department of KU Leuven, Belgium.

It was supported by a grant from the Erasmus+ programme of the European Commission.

2

Abstract

Stochastic constraint optimisation problems (SCOPs) are constraint optimisation problems in
which constraints are probabilistic, i.e., it is required that certain events happen with a bounded
probability, as determined by a probabilistic model. In this work, we explore how probabilistic mod-
els implemented in probabilistic logic programming languages (PLPs) can efficiently be used when
solving constraint optimisation problems. The naive way of solving SCOPs with PLP is by compiling
optimisation and constraint models into large sentential decision diagrams (SDDs) during a prepro-
cessing phase. This method is intractable for all but the smallest problems due to the compilation
complexity of SDDs. We propose two methods that build SDDs for the models incrementally during
search, thus eliminating the preprocessing phase and limiting the compilation times by keeping the
SDDs small. We define a class of SCOPs on probabilistic social networks for which these incremental
methods outperform naive methods, and show these method’s effectiveness.

3

Contents

1 Introduction 5

2 Related Work 7

3 Background 9
3.1 Prolog: reasoning with facts and rules . 9
3.2 ProbLog . 12
3.3 DTProbLog . 15
3.4 Constraint programming and constraint satisfaction . 17

4 Problem statement 20

5 Instances of Stochastic Constraint Programming 23

6 Approach 26
6.1 Naive methods: building big SDDs . 26
6.2 General optimisations . 29
6.3 Incremental method . 30
6.4 Lazy incremental method . 36
6.5 Optimisations for incremental methods . 39
6.6 Different optimisation and constraint settings . 39

7 Experimental setup 40
7.1 Generating the artificial example problems . 40
7.2 Establishing a benchmark for DAG and SDD compilation 41
7.3 Measuring search times and other search characteristics 41

8 Experimental results 43
8.1 Compilation times of DAGs and SDDs . 43
8.2 Comparison of search times . 43
8.3 Number of search tree node visits . 48
8.4 Size of SDDs . 48

9 Conclusion 51

10 Future work 52

11 Acknowledgements 53

List of Symbols 56

List of Acronyms 57

A An introduction to logic 58
A.1 Propositional logic . 58
A.2 First-order logic . 59

B An introduction to knowledge compilation 61
B.1 AND/OR DAGs . 61
B.2 Ordered Binary Decision Diagrams . 62
B.3 Sentential Decision Diagrams . 63

C More experimental results 66

4

1 Introduction

Imagine you are Moriarty: a mathematics professor with too much time on their hands and a well-nurtured
grudge against the world. You spend your days plotting elegant crimes that are executed by an intricate
network of lesser criminals. Each of these crooks know only a few fellow villains, and are more likely to
communicate with some of their contacts than with others. You have to protect your privacy, so you are
not in direct contact with anyone. You have designed a sophisticated communication system that keeps
your network of culprits in contact through encrypted links, which only you can control.

Familiar with the phrase ‘keep your friends close, keep your enemies closer’, you made sure that part
of your network consists of these tiresome ‘good guys’, so you can keep an eye on them. However, you do
not appreciate them getting too familiar with your plans. . .

Consider the following problem: you have designed an absolutely beautiful plan to destroy the world,
but need to communicate instructions to one of your partners in crime. You’d prefer not to get in touch
with them directly, so you consider sending the message through your network. Being the evil genius that
your are, you designed the communication network for your thugs such that they can only communicate
with their contacts if you open that link for them. Even if it is open, they might not forward information to
their buddies, because they do not trust them at the moment, or might even believe that the information
they received was false. Whatever the reason, you cannot predict what they will do, but you know with
what probability they will pass your message along.

The question is: which links do you open in your criminal network such that the probability that your
message reaches your accomplice is maximised, while the risk of one of the good guys hearing about it
remains below a certain level?

That is an example of the type of problems we consider in this work: Stochastic Constraint Optimisa-
tion Problems (SCOPs) [30, 40], known also in literature as Chance-Constrained Optimisation Problems
(CCOPs) [6].

Another example of a SCOP is the following. Suppose you have different advertisement campaigns
for the same product, but targeted at different demographies. The best marketing is (word-of-mouth)
viral marketing, where people recommend your product to other people, because of the reasons that are
prevalent in you different add campaigns. Who must you target such that the probability of the campaign
messages reaching the correct demographic is maximised, while keeping the probability that it reaches
other demographics is limited (because this might have an adverse effect)?

Particularly, we consider problems that are represented by graphs in which (some of) the edges are
probabilistic. We choose these types of problems because we believe that many real-world problems can
be defined on probabilistic graphs, such as problems in bioinformatics, viral marketing, and epidemics
and pandemics.

We study optimisation criteria and constraints that involve probabilities for paths in probabilistic
graphs. The existence of a certain path in such a graph can be expressed in logic formula, that is true
with a certain probability. We consider the optimisation problem of selecting a subset of the probabilistic
edges, such that the probability for a certain path is optimised. Other paths in the graph are used as
probabilistic constraints: the probability for some of these paths has to stay above or below a certain
threshold. We also consider non-probabilistic optimisation criteria, e.g. maximising the number of selected
probabilistic edges, and problems with additional probabilities, such as uncertainties for the existence of
nodes in the network.

Solving these types of SCOPs, where the constraints are expressed as bounds on the probabilities of
logic formulas, requires a general programming system in which those problems can be encoded. In this
work we propose to combine Probabilistic Logic Programming (PLP) with Constraint Programming (CP),
allowing for the formulation of problems in which distributions are subject to constraints. In this work
we present such a combination, and introduce methods for solving SCOPs.

We observe that we need only compute exact values for the optimisation criterion, while mere bounds
for the probabilities of the constraint paths are generally sufficient to solve the problem. We use this
notion in a proposal for an efficient method for solving Constraint Optimisation Problems (COPs) with
probabilistic constraints in general, and the one described above in particular.

We believe that many real-world problems, such as gene activation problems, the limiting of viral
outbreaks, and viral marketing problems, can be formulated as SCOPs. Even more problems can be
formulated in a SCOP if the programming system used for solving them accommodates utilities as well
as multiple optimisation criteria. The contribution of this work consists of methods that can be part of
such a programming system.

5

Given the problem, combining CP with a PLP language seems natural. In the next chapter we discuss
a number of these languages. We introduce the language of our choice, (DT)ProbLog in Chapter 3. We
formalise the SCOP and its various settings in Chapter 4, where we will also introduce a number of other
example problems. Our proposed methods for solving these kinds of problems are presented in Chapter 6.
We continue with a description of our experimental setup in Chapter 7, after which we present and discuss
the results of these experiments in Chapter 8. Our conclusion and suggestions for future work can be
found in Chapters 9 and 10, respectively. At the end of this document a list of symbols and acronyms is
provided. It is followed by the appendices, which contain a brief introduction to propositional logic and
first-order logic (Appendix A), as well an introduction to knowledge compilation (Appendix B).

6

2 Related Work

The field of PLP has a quarter-century long history, starting with David Poole’s introduction of a Prolog
(see Chapter 3.1) extension for probabilistic Horn abduction in 1991 [23], which could express any model-
based knowledge and any probabilistic knowledge that could be represented by a Bayesian belief network.
In 1995, Taisuke Sato introduced a statistical learning method for probabilistic programs, integrating
symbolic computation (logic programs) with a probabilistic framework (statistical modelling) on the
semantic level by using distribution semantics [31]. Distribution semantics add a random variable to
probabilistic facts and rules in a logic program, or Knowledge Base (KB). New (statistical) knowledge
can be derived from these probabilistically annotated facts and rules. The use of distribution semantics
is typical for most probabilistic logic programming languages.

This statistical learning method evolved into the symbolic-statistical modelling programming language
PRISM [32], in 1997. The PRISM tool learns (the parameters of) statistical models from a logic program
and a set of observations. The tool is still being updated, the latest version was released in March 2016 [33].
PRISM is built on B-Prolog, a logic constraint programming implementation of Prolog [34].

The field of learning stochastic models from examples and logic programs is called Statistical Relational
Learning. For an overview, see Statistical Relational Artificial Intelligence, De Raedt et. al. [14].

Following these methods for learning logical models from probabilistic knowledge, in 1995 a logical
programming language for (multi-agent) decision making under uncertainty was introduced by David
Poole: Independent Choice Logic (ICL) [25]. This offspring of the probabilistic Horn abduction is an
extension of the latter in the sense that where probabilistic Horn abduction only allows a logic program
to compute the consequences of probabilistically independent ‘choices’, ICL allows for multiple agents to
make their own choices. ICL also allows negation as failure in the logic: if ICL fails to find a proof that
shows a statement to be true, this statement is interpreted as being false [24].

Other probabilistic logic programming languages include P-log [2], Bayesian Logic Programs [20], Logic
Programs with Annotated Disjunctions (LPADs) [37].

In 2006 Matthew Richardson and Pedro Domingos proposed Markov Logic Networks (MLNs) as a
combination of first-order logic and probabilistic graphical models in a single representation [26]. MLNs
can perform inference to answer conditional queries on probabilistic logic programs (‘what is the proba-
bility that formula f1 is true, given that formula f2 holds?’), known in literature as the MARG task (for
marginal probability). Another task that is supported by MLNs, is that of finding the most likely state
of a set of variables, known as MAP (Maximum a Posteriori). The inference is performed by Markov
chain Monte Carlo (MCMC). Note that the MAP task is an optimisation task: it can be used to find
which binary values variables should have in order to maximise the probability for a certain formula to
hold. However MLNs do not support hard constraints, and are as such less suitable for the kind of SCOP
considered in this work.

For an overview of PLP methods, see Probabilistic (Logic) Programming concepts, De Raedt et.al. [12].
The probabilistic logic programming problems regarded in this work, however, are implemented using

ProbLog, a probabilistic extension of Prolog that was proposed by Luc De Raedt et.al. in 2007 [13]. It
is a probabilistic extension of Prolog that uses Sato’s distribution semantics, and negation as failure (as
does Prolog). ProbLog 1 was originally proposed as a solving method for link discovery in graphs that
represent biological data. The link discovery task involved computing the probability of there being a path
from one node in the network to another, where the edges are represented by (independent) probabilistic
random variables.

This explains our choice for ProbLog as the PLP language for this work: it was designed for the
computation of the probability of the existence of paths in probabilistic graphs.

Note that PLP languages generally focus on computing the success probability of a query (e.g. ‘what is
the probability that there is a path from node a to node b?’). Programming paradigms such as graphical
models (e.g. Markov (Logic) Networks and Bayesian Networks) focus more on tasks such as computing
the marginal probability of a (set of) random variables, given some evidence (the MARG task mentioned
above), or on finding the most likely joint state of a set of random variables (Most Probable Explanation,
or MPE). When ProbLog 2 was presented in 2013, it also supported the last two inference tasks [17],
making it a versatile logic programming tool. The MAP task is also supported by ProbLog.

In the next chapter we provide an introduction to the syntax, semantics and inference methods of
ProbLog.

While the history of PLP dates back to the early nineties, the dawn of CP took place during the
sixties, when Golomb and Baumert published a backtracking search method [18] (backtracking is the

7

most widely used search method in CP). During the following twenty years, CP research was split into
two tracks that dominated that particular branch of artificial intelligence: the language track and the
algorithmic track [27, ch. 2].

In 1972 the language track brought forth Prolog [9, 27], a language that can be seen as a constraint
programming language. The algorithm track focused mostly on Constraint Satisfaction Problems (CSPs),
for example with Alan Mackworth and Eugene Freuder publishing an analysis of the complexity of
consistency algorithms (see Chapter 3.4) for the solving of CSPs, in 1985 [21].

Ever since, the field of constraint programming has been well-established in AI, with applications in
job scheduling, packing problems and viral marketing.

In the next chapter we first provide introductions to Prolog, ProbLog and a deterministic PLP language:
DTProbLog. We conclude the next chapter with an introduction to some basic solving techniques that
are widely used in CP.

To the best of our knowledge, the combination of CP and PLP for the particular types of SCOP, that
are described in more detail in Chapter 4, have not yet been studied in literature.

8

3 Background

In this chapter we provide an introduction to the logic programming language Prolog, its probabilistic
extension ProbLog and finally its decision-theoretic extension DTProbLog.

We assume that the reader is familiar with both propositional logic and first-order logic. Please refer
to Appendix A for a brief introduction to these logics.

3.1 Prolog: reasoning with facts and rules

The declarative programming language Prolog was developed by Alain Colmerauer and Philippe Roussel
during the early 1970s [9]. Where imperative programming languages require the user to specify how
the computer should solve a problem, declarative programming languages allow the user to describe all
that is known about the problem, and query the computer to find answers to questions, without having
to worry about how those answers are obtained exactly. This makes declarative programming languages
generally easy to learn compared to imperative programming languages.

In the next chapters, we briefly describe the syntax and semantics of Prolog, after which we will discuss
the way in which Prolog performs logical inference. A more detailed description of Prolog can be found
in Learn Prolog Now!, by Patrick Blackburn, Johan Bos and Kristina Striegnitz [4].

Syntax and semantics: querying a knowledge base

As stated before, Prolog allows the programmer to specify all he/she knows about the problem under
consideration. This knowledge is represented in a knowledge base (KB) as facts (mostly in the form of
relations or predicates) and rules. An example of a fact is:

vulcan(spock).

which is a relation that says that spock is a vulcan. Note that spock and vulcan are constants, whose
names always begin with a lowercase letter in Prolog. The predicate isa also starts with a lowercase
letter, as do all predicates in Prolog. Note that lines in Prolog always need to end with a period (.). An
example of a rule is:

actsRationally(X) :- vulcan(X); borg(X).

A rule consists of a head, which is the part left of the :- mark, and a body, which is the part right of the
mark.1 The X in the rule above is a variable, and thus is written with a capital letter. This rule says that
if the constant we substitute for X is a Vulcan or a Borg, then the person represented by this constant
acts rationally. Prolog uses the ‘;’ symbol to express a logical disjunction, and the ‘,’ symbol to express
a conjunction. Logical disjunctions can also be expressed in a different way. The rule above may also be
written as:

actsRationally(X) :- vulcan(X).

actsRationally(X) :- borg(X).

For conjunctions on the other hand, there is only one way of expressing them:

canDoMindMelds(X) :- vulcan(X), trained(X).

Once we have a logic program, we can use Prolog to query that program in order to answer questions
about our problem, such as:

?- canDoMindMelds(spock).

which asks if Spock can do mind-melds, or:

?- actsRationally(X).

which asks Prolog to provide all the people specified in the knowledge base that act rationally. How
Prolog answers these queries is discussed in the next chapter.

A commonly used programming construct in Prolog is that of recursion, which can be used to formulate
problems that describe paths in graphs. An example of such a program is the following:

1Note that the fact above is actually shorthand for the following rule:

vulcan(spock) :- True.

9

Program 1: Brexit.

train(london,paris).

train(paris,brussels).

train(brussels,paris).

train(brussels,amsterdam).

train(amsterdam,brussels).

plane(london,amsterdam).

plane(london,brussels).

connection(X,Y) :- train(X,Y).

connection(X,Y) :- plane(X,Y).

path(X,Y) :- connection(X,Y).

path(X,Y) :- path(X,Z), connection(Z,Y).

This program represents ways to get from one city to another, by using train and air plane connections.
One can get from one city to another if there is a path between those cities. A path from X to Y is either
a direct air plane (plane(X,Y).) or train (train(X,Y).) connection, or a change of such connections.
Note that the paths are directed, and that for this specific example, it is impossible to get to London,
while it is possible to get out of there. We can use this program to ask queries such as ‘list all possible
destinations if I leave from London’:

?- path(london,Y).

Note that Prolog operates under the closed world assumption, which says that facts that are specified
in the knowledge are true, and anything that is not in the knowledge base, is false. Thus, in the example
above, because there is no train specified from, for example, Paris to London, Prolog assumes that such
a train does not exist. However, Prolog also allows for negation in order to create rules for situations in
which something is specifically not true. Other Prolog features include operations on numbers and lists,
but these are all out of the scope of this work. For more information on the use of these features, consult
Learn Prolog Now! [4].

Inference: matching and proof search

So how does Prolog find the answers to the queries it is presented with? This is done through the process
of term matching. Consider the following program:

Program 2: Pride & Prejudice.

1f1 friendof(elisabeth,jane).

2f2 friendof(caroline,jane).

3f3 friendof(mrbingly,caroline).

4f4 friendof(mrdarcy,elisabeth).

5f5 friendof(mrdarcy,mrbingly).

6l1 likes(X,Y) :- friendof(X,Y).

7l2 likes(X,Y) :- friendof(X,Z), likes(Z,Y).

(with the lines labelled for reasons that will become clear) and suppose we pose the query:

?- likes(mrdarcy,jane).

where we ask Prolog if Mr. Darcy likes Jane. Prolog will search for a way to match (or unify) the term
likes(mrdarcy,jane) with a term in the knowledge base. In this work, we will use the (loose) definition
of matching from Learn Prolog Now! :

Definition 1. Two terms match, if they are equal or if they contain variables that can be instantiated in
such a way that the resulting terms are equal.

Thus, term elisabeth matches with elisabeth (they are the same constant), term friendof(mrdarcy,

elisabeth) matches with friendof(mrdarcy,elisabeth) (they are the same predicates) and variable
X matches with the same variable X.

10

l(mrd,j)

fo(mrd,j)

X

fo(mrd,A), l(A,j)

l(e,j) (mrb,j)

fo(e,j) fo(e,B), l(B,j) fo(mrb,j) fo(mrb,D), l(D,j)

� l(j,j)

X

l(c,j)

fo(j,j) fo(j,C), l(C,j) fo(c,j) fo(c,E), l(E,j)

X X

�

X

l1 l2

f4 f5

l1 l2 l1 l2

f1 f1 f3

l1 l2 l1 l2

f2

Figure 1: SLD-tree for the query ?- likes(mrdarcy, jane)., with abbreviations l for likes, f for
friendof, and so on. Branches are labelled with the rule or fact that is being applied there (corresponding
to the labels in Program 2), with the first rule for likes that you encounter when reading the program
from top to bottom is labelled l1, and so on. Upper case letters represent variables. An X represents a
failed proof of likes(mrdarcy, jane). If a path from the root of the tree to a leaf of the tree ends in
a �, this means that that path corresponds to a proof of likes(mrdarcy,jane) One of the proofs for
likes(mrdarcy,jane) is highlighted in green. Dummy variables A – E are introduced by Prolog whenever
this is needed in order to find a match for a term.

However: friendof(mrdarcy,elisabeth) and friendof(mrdarcy,mrbingly) do not match, because
they are not the same and do not contain any variables that can be instantiated such that the resulting
terms are equal. Obviously, friendof(mrdarcy,elisabeth) does not match elisabeth.

In order to match the term t1 = friendof(mrdarcy,X) with t2 = friendof(mrdarcy,elisabeth),
Prolog needs to find a substitution θ such that X is instantiated (or ground) to elisabeth and t1θ = t2θ.

In order find a match in the knowledge base for the term likes(mrdarcy,jane), Prolog takes the term
in the query as its goal and searches the logic program from top to bottom until it finds a rule whose
head matches the term. It this case, there is no such term in the knowledge base, but there might be if
Prolog can find instantiations for X and Y such that it can match the term likes(mrdarcy,jane) with
the term likes(X,Y), which does occur as the head of a rule in the knowledge base.

Prolog now uses a process called Selective Linear Definite clause resolution (or SLD-resolution) to find
proofs that justify substituting X for mrdarcy and Y for jane, to make at least one of the rules l1 and
l2 in Program 2 be true. The process of SLD-resolution can be visualised in an SLD-tree, an example of
which is shown in Figure 1.

Because there are two rules with likes(X,Y) as their heads, Prolog now has two chances of finding
a proof for likes(mrdarcy,jane), and thus introduces two new goals: friendof(mrdarcy,jane) and
friendof(mrdarcy,A), likes(A,jane) (the bodies of the two rules), with A a dummy variable used in
the SLD-resolution process. This is shown in Figure 1as the root splitting in two child nodes, one for each
new goal. Prolog will continue recursively and again search the knowledge base looking for heads of rules
that can be unified with the terms in the goals.

Take for example the first new goal: friendof(mrdarcy,jane) (the left child of the root in Figure 1).
Prolog searches the knowledge base for a fact or rule that unifies with this term. We see that the knowledge
base only includes facts that have the friendof predicate in their heads. As none of the facts can unify
with friendof(mrdarcy,jane), this line of inquiry fails and we reach a dead end. This is marked in
Figure 1 by X.

11

Prolog can now continue searching for proofs with the other new goal (branching to the right child of the
root in Figure 1): friendof(mrdarcy,A), likes(A,j). Prolog first tries to unify friendof(mrdarcy,A)

with a rule head in the database, and finds it has two options: instantiating A with elisabeth will yield
a true fact from the knowledge base, and instantiation A with mrbingly also. However, the goal consisted
of two terms, so the second one has to be matched with a head in a rule in the knowledge base also.
This means Prolog has to try to unify likes(elisabeth,jane) and likes(mrbingly,jane) for these
instantiations, respectively.

As we see in Figure 1, Prolog can find a rule (l1) in the knowledge base, whose head can be matched
with likes(elisabeth,jane). Prolog can unify the body of that rule with a fact (fo1), which means a
proof is found for likes(mrdarcy,jane). This proof is highlighted in Figure 1. Now Prolog will return
:- yes. as an answer to the query.

For Prolog it is only relevant whether or not a proof can be found for the query, so normally the search
would stop once one proof is found. We include however the entire SLD-tree to show that there are two
proofs for this particular query.

The observant reader may have noticed that during the proof search described above, rules are evaluated
in a top-to-bottom fashion. New goals found in the bodies of those rules are evaluated from left to right.
This property of Prolog and its consequences for the procedural meanings of Prolog programs is explained
in more detail in chapters 2 and 3 of Learn Prolog Now! [4].

3.2 ProbLog

The probabilistic extension of Prolog, ProbLog, was introduced in 2007 in ProbLog: A Probabilistic Prolog
and its Application in Link Discovery, by Luc De Raedt et. al. [13]. This chapter is based on that article.
We first introduce the additional syntax and semantics for ProbLog, after which we will discuss the
inference methods used to compute success probabilities for ProbLog queries.

Syntax and semantics: adding probabilities to clauses

Where Prolog is used to describe a logic program, ProbLog is used to define a distribution over logic
programs, by assigning probabilities to rules and facts. The probabilities are assumed to be mutually
independent, and represent the probability that the corresponding clause is true in a randomly sampled
logic program. Consider the following example:

Program 3: Pride & Prejudice (probabilistic).

f1 0.9::friendof(elisabeth,jane).

f2 0.2::friendof(caroline,jane).

f3 0.7::friendof(mrbingly,caroline).

f4 0.6::friendof(mrdarcy,elisabeth).

f5 0.8::friendof(mrdarcy,mrbingly).

l1 1.0::likes(X,Y) :- friendof(X,Y).

l2 0.8::likes(X,Y) :- friendof(X,Z), likes(Z,Y).

In the probabilistic logic program above, we have added probabilities to the facts and rules.2 If we would
pose this query to a Prolog program (such as the one in Program 5), it would return :- yes. if it was
successful in finding a proof for likes(mrdarcy,jane). Posing such a query to a ProbLog program (such
as the one in Program 3, however, returns the success probability for this query, i.e. the probability that
a proof is found for likes(mrdarcy,jane). in a randomly sampled logic program.

More formally: suppose we have a ProbLog program T = {(p1, c1), . . . (pn, cn)} with pi the probability
of clause ci. This ProbLog program defines a probability distribution over logic programs L ⊆ LT =
{c1, . . . , cn}:

P (L | T) =
∏
ci∈L

pi
∏

ci∈LT \L

(1− pi) , (1)

where P (L | T) represents the probability that a particular logic program L is randomly sampled from
a probabilistic logic program T . A randomly sampled program can be seen as a selection of ground rules
and facts from the probabilistic program, where each probabilistic rule or fact corresponds to the atomic

2If there is no probability associated with a clause, the clause effectively has probability 1.

12

choice of including it in the sampled program or not, based on chance. From the program above, the
following ground (probabilistic) rules can be extracted:

Program 4: Pride & Prejudice (ground).

f1 0.9::friendof(elisabeth,jane).

f2 0.2::friendof(caroline,jane).

f3 0.7::friendof(mrbingly,caroline).

f4 0.6::friendof(mrdarcy,elisabeth).

f5 0.8::friendof(mrdarcy,mrbingly).

l11 likes(elisabeth,jane) :- friendof(elisabeth,jane).

l12 likes(caroline,jane) :- friendof(caroline,jane).

l13 likes(mrbingly,caroline) :- friendof(mrbingly,caroline).

l14 likes(mrdarcy,elisabeth) :- friendof(mrdarcy,elisabeth).

l15 likes(mrdarcy,mrbingly) :- friendof(mrdarcy,mrbingly).

l21 0.8::likes(mrbingly,jane) :- friendof(mrbingly,caroline),

likes(caroline,jane).

l22 0.8::likes(mrdarcy,jane) :- friendof(mrdarcy,elisabeth),

likes(elisabeth,jane).

l23 0.8::likes(mrdarcy,caroline) :- friendof(mrdarcy,mrbingly),

likes(mrbingly,caroline).

l24 0.8::likes(mrdarcy,jane) :- friendof(mrdarcy,mrbingly),

likes(mrbingly,jane).

This program contains nine atomic choices: rules l11 – l15 are deterministic. An example of a randomly
sampled program is the following:

Program 5: A randomly sampled Pride & Prejudice program.

f1 friendof(elisabeth,jane).

f4 friendof(mrdarcy,elisabeth).

f5 friendof(mrdarcy,mrbingly).

l1 likes(X,Y) :- friendof(X,Y).

l21 likes(mrbingly,jane) :- friendof(mrbingly,caroline), likes(caroline,jane).

l23 likes(mrdarcy,jane) :- friendof(mrdarcy,mrbingly), likes(mrbingly,jane).

where rules l11 – l15 are again summarised in rule l1. By Equation (1), the probability for this particular
logic program L is:

P (L | T) =
(
.9 · .6 · .8 · (.8)2

)
· ((1− .2) · (1− .7) · (1− .8)) ≈ .013

Now we can define the success probability P (q | T) of a query q given a probabilistic logic program T
as follows:

P (q | L) =

{
1 ∃θ : L |= qθ

0 otherwise
(2)

P (q, L | T) = P (q | L) · P (L | T) (3)

P (q | T) =
∑
L⊆LT

P (q, L | T) , (4)

where P (q | L) represents the probability that a proof for q can be found (through SLD-resolution) in
logic program L, P (q, L | T) represents the probability that this logic program L is obtained through a
random sampling from probabilistic logic program T and a proof for q exists in that logic program, and
finally P (q | T) represents the total success probability for query q, given probabilistic logic program T .

Looking at Equation (4), we see that in order to compute the success probability of a query q, we need
to list all the logic programs that could possibly be obtained by randomly sampling probabilistic logic
program T . As the number of possible logic programs scales exponentially with the number of probabilistic
clauses in the probabilistic logic program, so does the complexity of computing the success probability
of a query, making this method of computing success probabilities infeasible for larger programs. In the
next chapter we describe a method for computing the success probability in a more feasible manner.

13

Inference: Boolean formulas and arithmetic decision diagrams

A key insight for a more feasible method of computing the success probability of a query is the fact that
we need only consider those clauses that are actually involved in proofs for the query. We can identify
those clauses by grounding the ProbLog program: performing SLD-resolution to identify all the possible
proofs for the query, and the clauses that need to be true in order for the proofs to be completed.

Consider the SLD-tree in Figure 1. Two paths from root to leaf correspond to proofs for the query
likes(mrdarcy,jane). We can associate a Boolean variable with each clause that is use on the branches
along the paths that lead to a successful proof. For example, we can associate the Boolean variables `2,
f4, `1 and f1 with the labels on the branches of the proof that is highlighted in green in Figure 1. In
order for the proof to succeed, each of these variables should have value >. Therefore the probability
that this proof succeeds is equal to the probability that the variables `2, f4, `1 and f1 are all true.
With a similar argument for the other proof shown in Figure 1, the total probability that the query
likes(mrdarcy,jane) succeeds, given the ProbLog Program 3 is given by:

P (likes(mrdarcy,jane) | T) = P ((`22 ∧ f4 ∧ `11 ∧ f1) ∨ (`24 ∧ f5 ∧ `21 ∧ f3 ∧ `12 ∧ f2)) . (5)

Here, we have converted the query to a Boolean DNF formula. Note that, as P (`11) = P (`12) = 1.0, the
probability above is equal to:

P (likes(mrdarcy,jane) | T) = P ((`22 ∧ f4 ∧ f1) ∨ (`24 ∧ f5 ∧ `21 ∧ f3 ∧ f2)) . (6)

AND

AND OR

`1 `2 AND AND

f1 f4 f2 f3 f5

Figure 2: An example of an AND/OR
(AND/OR) Directed Acyclic Graph
(DAG) representing a logic formula for
the existence of at least one of the two
proofs shown in Figure 1. Nodes in the
DAG can have an arbitrary number of
parents, and an arbitrary number of
children.

More generally, we can write:

P (q | T) = P

 ∨
b∈pr(q)

∧
bi∈cl(b)

bi

 , (7)

with pr(q) the set of proofs of a query q, and cl(b) the clauses
that are used in a particular proof b. Note that in practice, the
ProbLog implementation does not convert queries to DNFs,
but rather to the more general rooted AND/OR DAGs3. In
these DAGs, internal nodes represent either conjunctions or
disjunctions of their children, and ‘leafs’ represent variables.
An example of such a DAG is shown in Figure 2.

Now that the query is transformed, by means of grounding
the probabilistic logic program through SLD-resolution, into
a logic formula, the probability for that formula to evaluate
to > can be computed.

A method for computing this probability is that of
Weighted Model Count (WMC) [17]. The task of model count-
ing is finding the number of models of a logic formula, i.e. the
number of interpretations that cause the formula to evaluate
to >. WMC is the generalisation of this process, where each
model is assigned a weight. By interpreting the probabilities of the variables as their weights, the weight
of an interpretation (possible world) I of T for a given formula q can simply be defined as follows:

ω(q | I) =

{∏
vi∈I pi

∏
vi 6∈I (1− pi) if I |= q

0 otherwise,
(8)

with I the set of variables that have value > and pi the probability of variable vi ∈ T . The total weight
of a formula q then corresponds to the probability of that formula, given the probabilistic logic program
T :

P (q | T) =
∑
I

ω(q | I). (9)

Note that there are 2Nv possible interpretations (with Nv the number of variables in T that are relevant
for query q), and the computation of the weight of each interpretation involves checking if it is a model

3In the rest of this work, we will simply use ‘DAG’ instead of ‘AND/OR DAG’ for shortness.

14

of q and, if this is the case, performing |V| multiplications. In the general case, WMC is #P-complete [7,
28], as it involves a disjoint sum problem. A more efficient approach is to use knowledge compilation
(see also Appendix B). The aim of knowledge compilation is to convert formulas into a more compact
representation. In Problog, the logic formulas that represent queries are converted into ordered binary
decision diagrams.

f1

f4

`22

f2

f3

f5

`21

`24

0 1

.1

.9

.4
.6

.2

.8

.8

.2

.3

.7

.2

.8

.2

.8

.2 .8

Figure 3: An Ordered Binary Decision Diagram
(OBDD) for the logic formula of Equation (6)
(corresponding to query likes(mrdarcy,jane)

in Program 3). The internal nodes are labelled
with the Boolean variables, their outgoing solid
high (dashed low) branch with the probability
that they have value > (⊥) in a randomly sam-
pled probabilistic logic program. The leafs show
the probability that the query evaluates to true
in the interpretation of the Boolean formula that
corresponds to the truth values assigned to the
Boolean variables on the path from root to leaf.

An OBDD of the DNF in Equation (6) is shown
in Figure 3. For an introduction in OBDDs, see
Appendix B.2. Even though the implementation of
ProbLog that we use for this work uses Senten-
tial Decision Diagrams (SDDs) rather than OB-
DDs, we use OBDDs to explain the principles of
ProbLog, as they are an easier to read, but less
compact alternative to SDDs. For a description of
SDDs, see Appendix B.3. In either case, the DAG
representing a logic formula is used to compile the
OBDD/SDD: the DAG is traversed in a bottom-up
fashion, and increasingly complex OBDDs/SDDs
are compiled to represent the various subformu-
las represented by the sub-DAGs rooted at the dif-
ferent nodes in the DAG. For instance, a formula
f = (`22∧f4∧f1)∨(`24∧f5∧`21∧f3∧f2) is converted
into an OBDD by applying a disjoin operation on
previously constructed OBDDs for g = `22∧f4∧f1
and h = `24 ∧ f5 ∧ `21 ∧ f3 ∧ f2. Generally, OBDDs
are built incrementally, by traversing the DAG in a
bottom up fashion and compiling increasingly com-
plex OBDDs by applying disjoin and conjoin oper-
ations on less complex ones. This process is similar
to TP -compilation [39].

Note that the OBDD in Figure 3 is different from
the ones discussed in Appendix B.2 in that the leafs
now represent probabilities rather than truth val-
ues, and the edges are labelled with probabilities
corresponding to the probabilities in Program 3. We
can compute the success probability for the query
likes(mrdarcy,jane) in a bottom-up fashion with
the algorithm shown in Algorithm 1.

Note that in Algorithm 1 pn corresponds to the
probability that clause n is true in the sampled pro-
gram, while P (h) (P (`)) corresponds to the output
of Probability(h) (Probability(`)), with h (`)
the high (low) child of n in the OBDD.

For our example, applying Algorithm 1 to the
OBDD in Figure 3 yields a success probability

P (likes(mrdarcy,jane) | T) ≈ 0.44.

In summary: by grounding the probabilistic logic program for each query using SLD-resolution, we
can obtain Boolean formulas that represent the query and whose probability can be computed through
OBDDs that are labelled with probabilities rather than truth values.

Note that for the evaluation of ProbLog queries, approximate and anytime algorithms have also been
developed [13, 39].

3.3 DTProbLog

The decision theoretic extension of ProbLog was introduced in 2010 by Guy Van den Broeck et. al. in
DTPROBLOG: A Decision-Theoretic Probabilistic Prolog [35]. This chapter is based on that work. We

15

Algorithm 1 Probability of a query.

Input: OBDD node n
Output: Success probability of query corresponding to the part of the DNF that is made up of the
variable represented by n and those below it in the OBDD

1: procedure Probability(n)
2: if n is 0-terminal then return 0 end if
3: if n is 1-terminal then return 1 end if
4: P (h)← Probability(h) . h is high child
5: P (`)← Probability(`) . ` is low child
6: return pn · P (h) + (1− pn) · P (`)
7: end procedure

will start with an example program to introduce DTProbLog’s syntax and semantics, and then introduce
the inference methods for DTProbLog problems.

Syntax and semantics: adding decision variables and utilities

DTProbLog allows a user to model decision problems with probabilistic components, and to evaluate the
utility (or expected reward) of a set of actions (decisions). Consider the classic example [35]:

Program 6: Umbrella.

?::umbrella.

?::raincoat.

0.3::rainy.

0.5::windy.

broken_umbrella :- umbrella, rainy, windy.

dry :- rainy, umbrella, not(broken_umbrella).

dry :- rainy, raincoat.

dry :- not(rainy).

utility(broken_umbrella, -40).

utility(raincoat, -20).

utility(umbrella, -2).

utility(dry, 60).

The decision theoretic probabilistic logic program DT above contains besides (probabilistic) facts and
rules also decision clauses (the lines prefixed with ?::) and utilities, or rewards. The program represents
a decision problem about what to bring when we go outside: an umbrella, a raincoat, both or neither.
The decision has to be made taking into considerations a weather forecast predicting rain and wind with
certain chances, rules about consequences of choices and weather conditions, and finally reward (that
may be negative) for certain choices and outcomes.

Instead of querying this program to learn about the success (probability) of a query, the program will
compute the strategy σ = {umbrella 7→ bu, raincoat 7→ br}, with bu, br ∈ {>,⊥} (assignment of truth
values to decision clauses) that yields the largest expected utility.

Inference: solving decision problems

Program 6 contains two decision variables: umbrella and raincoat. Solving the decision problem involves
computing the total reward for the different possible assignments to decision variables (strategies). From
the utilities listed at the end of the program, the utilities for just the choices umbrella and raincoat

can be immediately read off, because umbrella and raincoat are chosen to be either true or not. The
expected values for the other utilities have to be computed, as they involve consequences described by a
probabilistic logic program.

16

Computing the expected values of the utilities of broken umbrella and dry is a very natural extension
of the computation of the success probabilities of queries. After all, if the success probability of the query
?- broken umbrella. and ?- dry. are known, the expected values for their utilities are easily obtained
by multiplying them with their respective utilities.

The first step in computing the utilities is therefore to use SLD-resolution to get Disjunctive Normal
Form (DNF) formulas for broken umbrella and dry, and using those to create OBDDs that express the
interpretations of the probabilistic and decision variables in the program that make these queries return
:- true. These OBDDs are shown in Figures 4a and 4b. The outgoing branches of the probabilistic
variables are labelled with the probabilities as specified in Program 6. Success probabilities for the different
strategies are computed by filling in the appropriate weights on the outgoing branches of the internal
nodes representing decision variables in the diagram. For example: if the umbrella is chosen to be taken,
a 1 is placed on the positive branch and a 0 on the negative branch of umbrella in Figure 4a. This yields
a probability of 0.15 for broken umbrella (computed as described in Chapter 3.2).

The next step is to compile an Algebraic Decision Diagram (ADD) [1] that represents the success
probability for each query, as a function of the strategies. These are shown in Figures 4c and 4d. Note
that the solid leaves show the probabilities for the strategies encoded by the paths from the root to those
leaves, as they were computed using the OBDDs of Figures 4a and 4b. Note also that, since the value of
raincoat is irrelevant to query broken umbrella, there are only two strategies for this query (umbrella
and not(umbrella), while there are four different strategies for the dry query.

rainy

umbrella

windy

0 1

.7

.3

.5 .5

(a) OBDD for
broken umbrella.

rainy

umbrella

windy

raincoat

1 0

.7

.3

.5

.5

(b) OBDD for dry.

umbrella

0 0.15

0 -6

(c) ADD for
broken umbrella.

umbrella

raincoat raincoat

0.7 1 0.85

42 60 51

(d) ADD for dry.

umbrella

raincoat raincoat

42 40 32 43

(e) ADD for entire deci-
sion problem.

Figure 4: OBDDs and ADDs used in the computation of the best strategy σ for the problem in Program 6.
The solid leaves in Figures 4c and 4d represent the probabilities for broken umbrella and dry, computed
with the OBDDs in Figures 4a and 4b by ‘plugging in’ the different strategies that are encoded by the
choices corresponding to the paths from root to leaf. The dashed leaves represent the corresponding
expected values for the utilities for these outcomes.

The final step is to combine the diagrams of Figures 4c and 4d and the utilities for umbrella and
raincoat to one ADD from which we can read off what the best strategy is. This ADD is shown in
Figure 4e and shows that the best strategy is to bring an umbrella, but leave the raincoat at home.

In practice the ADDs shown in Figures 4c to 4e are not computed explicitly, but the outcomes are gen-
erated in an algorithm that exhaustively enumerates all possible strategies, computes the corresponding
WMCs using the OBDDs and evaluates the utilities one by one.

3.4 Constraint programming and constraint satisfaction

The subject of this work is combining PLP with CP. This is a natural choice, since CP is a programming
paradigm that specifies a program as a set of relations between variables in the form of constraints. This

17

relational approach is conceptually very similar to the declarative nature of logic programming. In fact,
logic programs are a special case of Constraint Logic Programming (CLP), where solutions to problems
consists of the most specific set of constraints on variables that can be derived from the logical KB [29].
In this work we focus mainly on the probabilistic logic part of this marriage between PLP and CP, but
we do give a brief introduction to CP in this chapter.

The field of CP has produced a myriad of techniques for solving CSPs and COPs, which are applicable
to COPs in general, and are implemented in modern day solvers [27]. In this work we focus on specific
types of COPs (see Chapter 4), developing methods and heuristics that are specific to those problems.
However, general solving techniques are also still applicable. Although we do not use them or implement
them in this work, we introduce them briefly in this chapter, as they are relevant for a possible next step:
integrating specific solving techniques presented in this work with the existing generic solver technology.
This chapter is based on the Handbook of Constraint Programming [27].

Formal definition of constrained satisfaction problems

In the Handbook of Constraint Programming ([27, ch. 2]), a CSP is formally defined as a triple P =
〈X,D,C〉, with X = 〈x1, . . . , xn〉 an n-tuple of variables over a corresponding n-tuple of domains D =
〈D1, . . . , Dn〉, such that xi ∈ Di. The constraints are defined by t-tuple C = 〈C1, . . . , Ct〉, where Cj is a
tuple 〈RSj , Sj〉, with RSj a relation on the variables in Sj , which represents the scope of constraint Cj .
The solution to a CSP P is an n-tuple A = 〈a1, . . . , an〉 with ai ∈ Di, where Cj is satisfied for all j,
meaning that RSj holds under the projection of A on Cj ’s scope Sj .

For solving a COP, it is not sufficient to find some solution, but the task is to optimise the solution
with respect to a certain cost function. The goal is to find the solution with the lowest cost. Note that this
minimisation problem can be turned into a maximisation problem by negating the cost function. That
the search for a solution with a lower value for the cost function (i.e. a better solution) can be guided by
imposing a new constraint: the value of the cost function must be lower than the best value found so far
during the search process.

We now discuss the most common search strategy applied in CP, as well as some inference techniques
that are used to make the search for an (optimal) solution more efficient.

Solving techniques

Most solvers for CSPs and COPs use a combination of search and inference techniques, which we will
briefly discuss here.

The search part of the solving process focusses on traversing the space of possible solutions in a
structured manner. The most commonly used search technique is that of backtracking : a Depth-First
Search (DFS) traversal of a search tree. This work is limited to binary domains of the variables in the
COPs, therefore the corresponding search trees are binary trees. The root of the search tree corresponds
to an empty set of assignments to variables: C = ∅. Branching on this root node corresponds to choosing
one variable to have a value of either true (>) or false (⊥). This choice is added to C, and branching
continues in each of the children of the root in turn, in a depth-first manner. In each node, the constraints
are checked to see if they are still satisfied under the partial assignment to variables that corresponds
to the node. If at least one constraint is violated, the current branch is a dead end, and backtracking
is needed by undoing the latest assignments to variables (in the reverse order of the one in which they
were made), until a variable is found for which there remains a value in the domain that has not yet
been explored. This type of backtracking forms the basis for the new algorithms that are proposed in
Chapters 6.3 and 6.4.

The efficiency of any backtracking technique can be improved by inference techniques such as con-
straint propagation. This technique uses constraints in nodes of the search tree in order to rule out local
inconsistencies. A local inconsistency is an instantiation of some of the variables that in itself satisfies all
constraints, but does not allow the addition of the assignment of any domain value to at least one of the
unassigned variables.

Consider for example a node colouring problem on a path graph with four nodes {t, u, v, w} (with
undirected edges (t, u), (u, v) and (v, w)) and two colours (peach and turquoise). Suppose the constraint
is that adjacent nodes cannot have the same colour. Suppose that the backtracking search algorithm first
assigns the colour peach to node t and turquoise to v. Even though this assignment does not violate the

18

constraint, any colour assignment to u will cause a constraint violation. Thus, this is an example of local
inconsistency.

Suppose the backtracking algorithm now assigns a value to w and saves the assignment to v for last
and only then finds out that there are no valid domain values left to choose from for this variable. For this
small toy problem, not much time is wasted in this unfruitful line of search. However, for larger problems
it can cause a lot of search effort to be done in vain, if it is not detected that a variable has an empty
set of remaining domain values. By checking the validity of domain values for all unassigned variables
(‘looking ahead’), search can be pruned whenever no valid values are found for an unassigned variable.

A special case of local consistency is that of arc consistency. Where the looking ahead method described
above only considers valid value assignments for single variables, maintaining arc consistency involves the
existence of valid assignments for pairs of variables.

Consider an assignment C to all variables in a constraint c, with C[x] the value that is assigned to
variable x. A value a ∈ Dx has a support in constraint c if there exists an assignment C such that a = C[x]
and C[y] ∈ Dy for any variable y in c. The constraint c is said to be arc consistent if for each variable
in c, each value in the corresponding domain has a support in c. This arc consistency is maintained by
removing values from the various domains, until all constraints are either arc consistent, or all values are
removed from the domain of one or more variables. All removed values correspond to branches that can
be pruned during the search, since they correspond to assignments of values to variables that are locally
inconsistent with the current partial assignment C.

A generalisation of arc consistency is that of path consistency, where not the consistency of individual
variables is considered, but the consistency of tuples of variables.

These are just a few examples of search and inference techniques that are developed in the CP com-
munity, but there are many other techniques available. For example: symmetries of constraint problems
can be exploited to speed up inference and search or approximate algorithms can exploit local search
to quickly find very good (although maybe not perfect) solutions to COPs. Different techniques exist
for different domains and different types of problems, like linear programming (or linear optimisation)
for problems with linear constraints, or techniques for solving (combinatorial) problems on structured
domains, and even techniques for solving problems whose precise definition is uncertain or subject to
change. For an overview, see Handbook of Constraint Programming [27].

19

4 Problem statement

In this work we research optimisation methods for solving stochastic constraint optimisation problems
SCOPs. We consider problems that can be described by a probabilistic logic program, containing decision
variables, and that can be solved using a combination of PLP and CP techniques. Specifically, we consider
problems of the following form:

Problem 1. Given a probabilistic logic program T with a set of probabilistic clauses P ⊆ T and a set
of decision clauses D ⊆ T (deterministic clauses are simply probabilistic clauses with probability 1), we
consider constrained optimisation problems whose solution consists of a strategy σ mapping each decision
variable d ∈ D to a truth value. The constraints under consideration are of a probabilistic nature and
come in two forms:

P (qc | T, σ) ≤ ϑ (10)

P (qc | T, σ) ≥ ϑ, (11)

with P (qc | T, σ) the success probability of a query qc (see Chapter 3.2), given probabilistic logic program
T and a strategy σ, and 0 ≤ ϑ ≤ 1. We consider probabilistic optimisation criteria of the forms:

max
σ

(P (qo | T, σ)) (12)

min
σ

(P (qo | T, σ)) , (13)

where P (qo | T, σ) is the success probability of query qo, given T and σ. We also consider counting
optimisation criteria of the forms:

max
σ

(|σ>|) (14)

min
σ

(|σ>|) , (15)

where |σ>| is the size of the set of decision clauses that are chosen to be true in strategy σ. Note that
in this optimisation setting, there is no optimisation query for which to compute the probability, only
constraint queries. The optimisation task is to maximise (or minimise) the size of σ. This work is limited
to problems with one optimisation criterion and probabilistic constraints that are all of the same form.

In this work, we focus specifically on probabilistic logic programs that specify paths in networks, as
problems regarding gene expressions, viral marketing and viral epidemics can often be formulated in
such a way, and ProbLog is typically used for these kinds of problems. We also focus on two particular
settings for the optimisation strategy (the maximisation settings), and one particular type of probabilistic
constraints (an upper bound on probabilities, i.e. Equation (11). We define this more specific problem as
follows:

Problem 2. Given a probabilistic logic program T describing a graph G(V,E). The edges (u, v) ∈ E =
Ed ∪ Ep ∪ Ec are represented by decision variables (Ed), probabilistic variables (Ep) or constants (i.e.
deterministic, Ec). Combinations are also allowed, for example: if an edge e is represented both by a
probabilistic variable and a decision variable, the edge exists with a probability pe if the corresponding
decision variable de = >, and 0 otherwise. The vertices in V = Vp ∪ Vc may be either probabilistic (Vp)
or deterministic (Vc). Probabilistic logic program T does not contain negation.

We select a strategy σ mapping edge decision variables ed ∈ Ed to truth values in order to optimise
one of the following two quantities:

maxProb Maximise the probability that there is a path from node a to node b:

max
σ

(P (path(a, b) | T, σ)) (16)

maxSet Maximise the the size of the set of decision variables with value >:

max
σ

(|σ>|) (17)

subject to probabilistic constraints of the form:

20

constraint The probability that there is a path from node a to node c should not exceed threshold ϑ:

P (path(a, c) | T, σ) ≤ ϑ, (18)

with 0 ≤ ϑ ≤ 1

Note that the graphs described by probabilistic logic program T are unweighted. The edges might
exist with a certain probability, but if they do exist, they have weight 1. As T contains no negation,
the probability that a path exist can never decrease if a decision variable is added to the set of ‘true’
decision variables: the probabilities are monotonic. In the next chapter we present a number of examples
of problems of this form.

The first steps of the naive way of solving such a probabilistic constrained optimisation problem using
probabilistic logic programming are described in Chapters 3.2 and 3.3. The program is compiled into a set
of logic formulas (one for each query that represents a probabilistic optimisation criterion or constraint),
represented by an AND/OR logic directed acyclic graph (DAG, see Appendix B.1) for each formula. Using
the DAG representations of these formulas, they are compiled in a bottom-up fashion into sentential
decision diagrams (SDD, see Chapter 3.2 and Appendix B.3). The problem is solved exhaustively by
generating all possible strategies for the set of decision variables, using each strategy as evidence in the
SDDs and computing the WMC for each of the formulas to evaluate the value of the optimisation criterion
and check if the constraints are respected. The strategy that yields the largest value for the optimisation
criterion is returned, along with that value.

Observe that this naive strategy requires the compilation of queries to SDDs. Darwiche provides some
limited indications of the time complexity of SDDs [10], an analysis of which is outside the scope of this
work. Consider therefore the empirical results on DAG and SDD sizes and compilation times shown in
Figure 5.4

The figure shows benchmark results for the compilation of DAGs and SDDs for one or five queries on
programs with 47 to 139 variables. Observe that SDDs grow more rapidly with the number of variables
than DAGs (with one to four orders of magnitude), and that the compilation time for the largest SDD
is five orders of magnitude larger than that for the largest DAG. We also see that SDD managers for
problems with five queries are one to five orders of magnitude larger than SDD managers for problems
with only one query.

Experiments for larger problems were terminated: while the compilation of their DAGs took (tenths
of) seconds, the compilation of the corresponding SDDs was not finished after 48 hours.

Clearly, compiling SDDs for larger problems becomes infeasible, even if the compilation of DAGs is
still feasible. This observation is one of the motivations for this work.

Observe that, while we need to find an exact value for the optimisation criterion, we do not necessarily
need exact values for the constraints for each strategy. As long as we are certain that the constraints are
either violated or respected, bounds on the constraint are sufficient. This means that compiling the SDDs
for the constraints may not be necessary. The computation of the WMC given an SDD and an strategy
for the set of decision variables can be done efficiently. However, the compilation of SDDs is a bottleneck
for the exhaustive approach described above for all but the smallest problems, as we have shown above.
Therefore the key focus of this work is to evaluate whether strategies that avoid compiling SDDs are
feasible. This focus yields the following key questions we seek to answer in this work:

1. What heuristics and search strategies can we employ to avoid the compilation of large SDDs?

2. How effective are these methods?

3. Which properties of the SCOPs under consideration explain this effectiveness?

In the next chapter we describe artificially generated example problems used in our evaluation of
SCOPs solving techniques.

4For details on the used example problems, see Chapter 5. Details about the experimental setup are presented in
Chapter 7.

21

40 60 80 100 120 140

number of variables

102

103

104

D
A

G
si

ze

DAG size

five queries
one query

(a) Size of the DAG (see Appendix B) as a function of
the number of variables (lin-log scale).

40 60 80 100 120 140

number of variables

103

104

105

106

107

108

109

SD
D

(m
an

ag
er

)s
iz

e

SDD (manager) size

SDDM (five queries)
SDDM (one query)
SDD first query

(b) Size of the SDD manager and of the SDD represent-
ing the first query (see Appendix B) as a function of the
number of variables (lin-log scale).

102 103 104

DAG size

10−2

10−1

100

101

co
m

pi
la

ti
on

ti
m

e
[s

]

DAG compilation time

five queries
one query

(c) Compilation time of DAGs as function of its size
(log-log scale).

103 104 105 106 107 108 109

SDD manager size

10−3

10−2

10−1

100

101

102

103

104

105

co
m

pi
la

ti
on

ti
m

e
[s

]

SDD manager compilation time

five queries
one query
ten hours
one hour

(d) Compilation time of SDD manager as function of its
size (log-log scale).

Figure 5: Compilation benchmark for DAGs and SDDs on fas dataset (see Chapter 5), for problems with
one or five formulas/queries. For more details on the experimental settings, see Chapter 7.

22

5 Instances of Stochastic Constraint Programming

In this chapter we describe the examples of instances of probabilistic constraint programming used for
this work. All example problems contain probabilistic variables and decision variables, and we can define
probabilistic constraints on each of them.

We use three sets of artificially generated examples of probabilistic constraint programming: messages,
tell-your-friends and friends-and-smokers. We describe the logic programs that define the exam-
ple problems in this chapter. Details about how exactly the underlying data for these programs were
generated, can be found in Chapter 7.1.

Messages

The examples in the messages (mes) problem set each represent a social network like the criminal com-
munication network described in Chapter 1. The nodes represent people and each edge is represented by a
decision variable and a probabilistic variable. If we allow an edge (u, v) to exist (by choosing a strategy σ
such that the decision variable d(u,v) has value vσ (d(u,v)) = >), the corresponding probabilistic vari-
able c(u,v) determines the probability that, if u receives a message, they will pass it on to v. Examples
in this problem set encode probabilistic graphs in which we can query the probability that a message can
travel from one person (the source) to another (a target), where we choose which connections between
individuals are allowed to exist with a certain probability (we call these connections active), and which
are not (inactive). An example of a mes problem instance is shown in Figure 6.

?::d(a,b).

?::d(a,c).

?::d(b,a).

?::d(b,c).

?::d(c,a).

?::d(c,b).

0.4::edge(a,b).

0.5::edge(a,c).

0.1::edge(b,a).

0.8::edge(b,c).

0.1::edge(c,a).

0.7::edge(c,b).

connection(X,Y) :- d(X,Y), edge(X,Y).

message(X,Y) :- connection(X,Y).

message(X,Y) :- connection(X,Z), message(Z,Y).

query(message(a,b)).

query(message(a,c)).

b a

c

.8

.1

.4

.5
.1

.7

Figure 6: An example of a mes decision theoretic probabilistic logic program. Edges are represented by
both decision variables (d()) and probabilistic variables (edge()). Nodes exist if they are the begin- or
endpoint of connections that exist, so they are represented only implicitly.

In this case, we query the probability that a message sent from a certain source reaches a certain target.
A maxProb-type optimisation criterion an example in the mes problem sight might be: maximise the
probability that a message sent by a reaches b. A maxSet-type optimisation criterion for such a problem
might be: maximise the number of active edges. A constraint might be: the probability that a message
sent by a reaches c cannot exceed 0.7.

Note that for this type of problem there are exactly as many decision variables as probabilistic variables.

23

Note also that the nodes are encoded implicitly rather than explicitly, as they only exist if they happen
to be the begin point or endpoint of an edge.

Tell-your-friends

The tell-your-friends (tyf) set of example problems is similar to the mes problem set in that it is
about messages being sent through edges by people (nodes). Edges are represented either by decision
variables, or by probabilistic variables. A node is selected as the source node. All its outgoing edges are
decision variables and it has no incoming edges. All other edges are probabilistic. Except for the outgoing
edges of the source, there is an edge (v, u) for each edge (u, v). In these example problems the source
has a piece of news that they want to share with their friends. The outgoing edges (decision variables)
represent the source either telling the friend at the receiving end of the corresponding edge the bit of
news, or not telling them. The message is then sent onwards with a probability that is on the edges. An
example is shown in Figure 7.

?::d(me,a).

?::d(me,b).

?::d(me,c).

0.8::edge(a,them).

0.8::edge(b,them).

0.4::edge(b,d).

0.6::edge(c,d).

0.3::edge(c,e).

0.2::edge(d,b).

0.3::edge(d,c).

0.7::edge(d,you).

0.3::edge(e,c).

0.9::edge(e,you).

0.4::edge(them,a).

0.5::edge(them,b).

0.8::edge(you,d).

0.1::edge(you,c).

connection(X,Y) :- d(X,Y).

connection(X,Y) :- edge(X,Y).

message(X,Y) :- connection(X,Y).

message(X,Y) :- connection(X,Z), message(Z,Y).

query(message(me,you)).

query(message(me,them)).

me

a

b

c

d

e

them

you

.8

.4

.8

.6

.3

.7

.2

.3

.9

.3 .1

.8

.4

.5

Figure 7: An example of a mes decision theoretic probabilistic logic program. Edges are represented either
(d()) by decision variables or by probabilistic variables (edge()). Nodes are implicitly represented as
begin- or endpoints of connections that exist in the program.

An example of a maxProb-type optimisation criterion for problems in the tyf problem set is: maximise
the probability that a message sent by me reaches you. A maxSet-type example is: maximise the number
of friends that I call to tell them my bit of news. A constraint might be: the probability that a message
sent by me reaches them can not exceed 0.5.

A difference between the mes-type problems and the tyf problems is that for the latter, we need not

24

assign a truth value of > to a number of decision variables in order to create one proof for a message
from source to target.

Friends-and-smokers

The underlying program of the friends-and-smokers (fas) problem set is taken from the ProbLog
tutorial by the KU Leuven DTAI team [19]. It represents a social network where nodes represent people
and directed edges represent friendships. Each person is stressed with a certain probability, and being
stressed causes them to smoke. Furthermore, there is a probability that a certain person Y influences
another person X. If Y indeed influences X, Y is a friend of X and Y smokes, then X also smokes. An
example of such a program and the underlying social network is shown in Figure 8.

?::friend(a,b).

?::friend(a,c).

?::friend(b,a).

?::friend(b,c).

?::friend(c,a).

?::friend(c,b).

person(a).

person(b).

person(c).

0.3::stress(X) :- person(X).

0.2::influences(X,Y) :- person(X), person(Y).

smokes(X) :- stress(X).

smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).

query(smokes(b)).

query(smokes(c)).

b a

c

.2

.2

.2

.2.2
.2

Figure 8: An example of a fas decision theoretic probabilistic logic program. Each edge in the graph is
represented by a decision variable (friend()) and a probabilistic variable (influences()). Nodes are
represented by constants (person()) and probabilistic variables (stress()).

The probabilistic logic program in the figure shows two queries: smokes(b). and smokes(c).. These
can be used both as optimisation criterion (for example: maximise the probability that person b smokes)
or as constraint (for example: the probability that person c smokes cannot exceed 0.4).

In this set of SCOPs, the decision variables are the friendships between the different people. The
probabilistic variables come in two kinds and all have the same value. The first type represents the
probability that a person is stressed. The second kind represents the probability that one person influences
another. Note that a fas problem has nf decision variables and nf + np probabilistic variables, with np
the number of people and nf the number of friendships. Note that each example problem is such that for
each friendship friend(u,v) there is a friendship friend(v,u).

25

6 Approach

In this chapter we describe our proposed method for solving COPs on probabilistic graphs. We describe
the algorithms for the maxProb setting with one or more constraints of the P (path(a, b)) ≤ ϑ type.
Recall that the probabilistic logic program T describing an instance of a problem does not contain negation
and the edges of the probabilistic graphs are unweighted. Thus, probabilities behave monotonically.

We start with a description of the naive methods that compile the entire program into one big
SDD and use that to evaluate the different strategies. These methods are based on exhaustively enu-
merating all strategies (the ExhaustiveSearch method) and on performing a depth-first search (the
dfs method), pruning where possible. Then we discuss some general optimisation methods that are used
in the dfsapproach, as the incremental methods described next also use these optimisations.

Recall from Chapter 4 that our goal is to limit the size of the SDDs that are compiled, as compilation
times are infeasibly large for all but the smallest SDDs. We describe the Incremental method in
which not a big SDD is built out of both probabilistic and decision variables, but where SDDs are built
incrementally, out of only the relevant probabilistic variables. Then we propose a lazy version of this
incremental method (LazyIncremental), which limits the size of the built SDDs even more. We end
with a short discussion on how these methods can be used for the maxSet optimisation setting, and why
they cannot trivially be used for optimisations of the types minProb and minSet, and constraints of
the type P (path(a, b)) ≥ ϑ. The algorithms presented in this chapter, and some of their characteristics,
are summarised in Table 1.

Table 1: Some properties of the constrained optimisation problem solving algorithms discussed in this
Chapter.

Algorithm
Base
strategy

SDD
compilation

Variables in
SDD

Optimisation support

ExhaustiveSearch enumeration full
deterministic &
probabilistic

none

dfs DFS full
deterministic &
probabilistic

general

Incremental DFS incremental probabilistic
general and incremental
method specific

LazyIncremental DFS incremental probabilistic
general and incremental
method specific

6.1 Naive methods: building big SDDs

We compare two strategies based on the naive method of solving decision-theoretic probabilistic logic
problems as described in Chapter 4. For this method, the queries in the program DT describing the
problem instance are each compiled into a DAG, and then into an SDD. Then all different strategies
are generated and added as evidence into the SDDs. Given a query q and a strategy σ, the probability
P (q | σ,DT) is computed. If the query is an optimisation criterion, the probability is compared to the best
found value so far. If the query is a constraint, its probability is compared to the appropriate threshold.
The best value for the optimisation criterion and its corresponding solution are updated if appropriate.

The two strategies based on this method we compare are ExhaustiveSearch and dfs. The first
strategy simply generates all possible strategies one by one. Its pseudocode is given in Algorithm 2.
Note that this strategy requires at least 2Nd evaluations of the optimisation criterion, with Nd = |DF |
the number of decision variables in DT that are relevant for the optimisation and constraint queries
in F . The number of constraint evaluations depends on the number of constraints, the value of their
corresponding thresholds ϑ, the order in which they are evaluated and the found strategies that respect
the constraints. Thus the online complexity (that of the search itself, excluding preprocessing) in terms
of query evaluation is Θ

(
No2

Nd
)
, with No the number of optimisation criteria (in the scope of this work:

1), and O
(
(Nc +No) 2Nd

)
, with Nc the number of constraints. Observe that these naive methods also

26

require pre-compiled SDDs as input, which is very costly for all but the smallest problems, as was shown
in Figure 5 in Chapter 4.

Algorithm 2 Exhaustive search. The procedure WMC is analogous to the one described in Algorithm 1,
only for SDDs rather than OBDDs. Abusing notation, we use the same symbol for a (sub) SDD as for
the root of that sub SDD.

Input: a compiled SDD with a set of roots of sub SDDs that encode logic formulas, representing the
probabilistic constraints, each with a corresponding threshold: (fc, ϑc) ∈ C . Also a root of the sub
SDD representing an optimisation criterion fo.
Output: solution to constrained optimisation problem

1: procedure ExhaustiveSearch(C , fo)
2: vmax ← 0, σsol ← None
3: F ← {fc | (fc, ϑc) ∈ C } ∪ {fo}
4: for strategies σ ∈ SDF do . with SDF the set of strategies for the decision variables in DF

5: vo ← WMC(fo, σ)
6: if vo > vmax then
7: cok ← CheckConstraints(C , σ)
8: if cok then vmax ← vo, σsol ← σ end if
9: end if

10: end for
11: return vmax, σsol
12: end procedure

13: procedure CheckConstraints(C , σ)
14: for (fc, ϑc) ∈ C do
15: vc ← WMC(fc, σ)
16: if vc > ϑc then return False end if
17: end for
18: return True

19: end procedure

The second strategy (dfs) is based on a depth-first search. The pseudocode for this strategy, in its
most naive form, is shown in Algorithm 3. With this strategy we can associate a search tree (see Figure 9
for an example). In the root of the tree, we start with no assignments to decision variables. Each internal
node of the search tree corresponds to a choice to assign either > or ⊥ to a variable (where in a node
at level δ, a choice for variable dδ+1 is made, with the root being level 0). The leaves correspond to full
strategies.

We want to be able to perform pruning whenever we find that the current partial choice of assignments
to decision variables cannot yield a solution that respects the constraints. Therefore, when the algorithm
enters an internal node, it first checks if the constraints are satisfied according to the partial assignment
that corresponds to that node (line 15 in Algorithm 3). However, as we use the WMC method to compute
probabilities, we cannot simply use that partial assignment, but need to provide weights (truth values)
for all decision variables. As we can only prune whenever we are certain that the constraints cannot be
satisfied, we compute a lower bound for each query (both constraint and optimisation) by assuming all
unassigned variables to have value ⊥.

If the constraints are indeed satisfied, we first branch on ‘true’ for the next decision variable (line 18),
because we look at maximisation problems and hope to find a good solution soon. The algorithm continues
recursively, until it returns to the internal node, after which it branches on ‘false’ (line 20).

Only in leaf nodes we evaluate the value for the optimisation criterion (line 8), as we do need an exact
value for this query. If it turns out to be a better value than the best value found so far, and the current
strategy respects the constraints, the best value and its corresponding strategy are updated. We evaluate
the optimisation criterion first because in this work we only consider problems with one optimisation
criterion, but they might have multiple constraints, so we expect it to be generally more efficient to
evaluate the optimisation criterion first.

The full search tree corresponding to the dfs approach contains
∑Nd
i=0 2i = 2Nd+1 − 1 nodes. The

evaluation of the optimisation query happens only in leafs of the tree. In a worst case scenario, the

27

Algorithm 3 Depth-first search with fully compiled SDDs. The CheckConstraints method is that of
Algorithm 2, the WMC method is analogous to Algorithm 1. Abusing notation, we use the same symbol
for a (sub) SDD as for the root of that sub SDD.

Input: a compiled SDD with a set of roots of sub SDDs that encode logic formulas, representing the
probabilistic constraints, each with a corresponding threshold: (fc, ϑc) ∈ C . Also a root of the sub
SDD representing an optimisation criterion fo.
Output: solution to constrained optimisation problem

1: procedure dfs(C , fo)
2: F ← {fc | (fc, ϑc) ∈ C } ∪ {fo} . Global constant
3: return Branch(∅, 0, C , fo, 0, ∅)
4: end procedure

5: procedure Branch(Cδ, δ, C , fo, vmax, σsol)
6: σ ← Cδ ∪ {(d 7→ ⊥) | d ∈ DF , (d 7→ b) 6∈ Cδ, b ∈ B}

Base case: all decision variables have been assigned a value
7: if δ = Nd then
8: vo ← WMC(fo, σ)
9: if vo > vmax then

10: cok ← CheckConstraints(C , σ)
11: if cok then vmax ← vo, σsol ← Cδ end if
12: return vmax, σsol
13: end if

Recursive case: some decision variables remain unassigned
14: else
15: cok ← CheckConstraints(C , σ)
16: if cok then

Branch on >
17: Cδ+1 ← Cδ ∪ {(dδ+1 7→ >)}
18: vmax, σsol ← Branch(Cδ+1, δ + 1, C , fo, vmax, σsol)

Branch on ⊥
19: Cδ+1 ← Cδ ∪ {(dδ+1 7→ ⊥)}
20: vmax, σsol ← Branch(Cδ+1, δ + 1, C , fo, vmax, σsol)
21: end if
22: end if
23: return vmax, σsol
24: end procedure

dfs method would therefore perform as many evaluations of the optimisation criterion as the Exhaus-
tiveSearch method: 2Nd , as this is the number of leafs in the search tree. Constraint queries are evalu-
ated in internal nodes of the search tree, and in leafs only if the probability for the optimisation criterion
exceeds the best value found so far. In a worst case, the naive dfs method performs twice as many eval-
uations as the ExhaustiveSearch method. Thus has a worst case complexity of O

(
No2

Nd +Nc2
Nd+1

)
(and a lower bound of Θ(1)). Thus, optimisations such as a sufficient amount of pruning, are needed for
dfs to outperform ExhaustiveSearch.

Note that the dfs method could use an upper bound for the optimisation criterion to prune the
search. It could simply assume all unassigned variables have value > and compute the probability for the
optimisation query. If the resulting value is lower than the best value found so far, the search tree can be
pruned. We do not yet use this pruning method, because it requires the full compilation of the SDD that
represents the optimisation query. In this work, we investigate methods that avoid building full SDDs,
therefore we do not yet use this type of ‘upper bound’ pruning, as it would not be applicable in the other
algorithms proposed in this chapter.

28

Both the ExhaustiveSearch and dfs method stop the search once a solution with the ‘perfect score’
is found: 1.0 in case of the maxProb setting. Note that this is typically very unlikely to happen for the
mes and fas problem types described in Chapter 5, although it might happen for the tyf problems. In
addition to the ‘lower bound’ pruning to limit the size of the search tree, our dfs implementation makes
use two optimisations that are discussed in the next chapter.

6.2 General optimisations

In this chapter we discuss a number of optimisation methods that we have implemented for DFS-based
search techniques: dfs, Incremental and LazyIncremental. Note that we do not include these opti-
misations explicitly in the pseudocode, for reasons of simplicity and readability.

Simple subset pruning

The simple subset pruning optimisation (sssp) is based on the following principle. Given a strategy
σ = {(d 7→ b) | d ∈ DF , b ∈ B}, which maps relevant decision variables to Boolean values, and respects all
constraints. Now σ> (σ⊥) represents the set of decision variables that are assigned the value > (⊥), such
that σ> ∩σ⊥ = ∅ and σ> ∪σ⊥ = {d | (d 7→ b) ∈ σ}. The strategies σ′ = {(d 7→ >) | d ∈ σ′>}∪{(d 7→ ⊥) |
d ∈ σ′⊥}, with σ′> ⊂ σ′> and σ′⊥ = σ⊥ ∪ (σ> ∩ σ′>), are also solutions that respect the constraints.

However, these strategies will not yield larger values for the optimisation criterion because of the
monotonic behaviour of the query probabilities. We therefore need not evaluate those strategies.

We apply a simple method for pruning the search tree based on this principle, illustrated in Figure 9.
Whenever we find a solution at a leaf, we prune the part of the search tree that is left of the longest path
of consecutive ‘true’ choices (solid branches in Figure 9) and ends in the leaf. In other words: if the last
‘false’ choice was made at depth δ for decision variable dδ+1, we do not branch on ‘false’ for the ancestors
di of the leaf for i ≤ δ + 1, and thus go back to depth δ − 1 to continue branching.

start with ‘true’
d1

d2 d2

d3 d3 d3 d3

σ5
sol1

σ13
sol2

∗

δ

0

1

2

3

4

d4 d4 d4 d4 d4 d4d4 d4

σ12 σ11 σ10 σ9 σ4 σ3 σ2 σ1σ16 σ15 σ14 σ8 σ7 σ6

Figure 9: An illustration of subset pruning on a problem with four decision variables. The labels of the
internal nodes represent the decision variable that is being branched on in that node. The labels in the
leaves represent the strategies in the order in which they are encountered. In the simple version of subset
pruning, the greyed-out branches are pruned once solution 1 (sol1) is found. A more sophisticated version
would also prune the sub tree rooted at the d3 node marked with ∗. Note that the tree is traversed from
right to left; always starting with the ‘true’ branch (solid branches), and then branching on ‘false’ (dashed
branches).

Consider the search tree in Figure 9. We see that a solution is found for strategy σ> = {d1, d3, d4},
σ⊥ = {d2} (σ5 in the figure). Now we need not continue branching to strategies σ6 — σ8. Similarly,
we will find a solution at σ13 and can prune again. This optimisation works particularly well for loose
constraints, as it is likely that for those constraints, solutions are found with many decision variables set
to >, allowing a lot of pruning if they happen to be in a long chain to a leaf.

Note that we would actually also not need to consider any of the strategies in the sub tree rooted at
the d3-node labelled with ∗, but in our implementation of simple subset pruning, we do not yet prune
that entire sub tree.

29

Finally, we still do consider many other strategies σ′ for which σ′> ⊂ σ> holds for a found solution σ,
so this simple subset pruning can still be expanded into a less simple version.

Validity check

While sssp is an optimisation designed to limit the size of the search tree, the validity check is a method
for limiting the number of probabilistic constraint checks.

It is based on the observation that when we check if the constraints may still be satisfied given the
current partial assignment (line 15), we compute a lower bound for the probability of the constraint
queries by assuming all unassigned decision variables to have value ⊥. Therefore, if the algorithm enters
a node nδ at depth δ in the search tree through a negative branch (dashed branch in Figure 9), such that
⊥ has just been assigned to decision variable dδ, and we need not check the constraints again, because
they were already checked for this partial assignment in nδ’s parent. We know that the current partial
assignment may still yield a valid solution, and we need not check the constraints again.

Observe that this has consequences for the worst case complexity of the dfs method: because for half
of the nodes in the search tree, an evaluation of the constraint queries is no longer necessary, the worst
case complexity changes to O

(
(No +Nc) 2Nd

)
.

6.3 Incremental method

So far we have described (naive) methods based on the compilation of a full SDD out of all the relevant
decision variables and probabilistic variables. In this chapter we describe a method that builds up SDDs
out of probabilistic variables only, using a method that is inspired by TP -compilation [39] and based on
depth-first search: Incremental.

Introductory observations on how to keep SDDs small

We observe that solving the problem involves trying out different strategies, i.e. different assignments
to decision variables. The strategies described in Chapter 6.1 simply change the weight of the decision
variables in the compiled SDD to evaluate the result of different strategies. The results in Figure 5 show
that compiling SDDs becomes infeasible when problems consist of about 150 variables or more. We see
an opportunity of reducing overall solving times (preprocessing plus search) by building SDDs out of
probabilistic variables only, thus keeping them smaller and therefore quicker to compile.

Building SDDs solely out of probabilistic variables comes at the price of having to build an SDD for
each strategy under consideration. Given a certain strategy σ = {(d1 7→ b1) , . . . , (dNδ 7→ bNd)}, with Nd
decision variables di and bi ∈ B, the decision variables di in the DAG representation of a query can be
substituted by constants representing their truth values (> and ⊥), through a substitution θ = {di/bi |
(di 7→ bi) ∈ σ} (see also Appendix A.2). The newly obtained DAGθ can now be used to build an SDD in
the same bottom-up fashion as described in Chapter 3.2. The resulting SDD contains only probabilistic
variables (and, of course, constants > and ⊥). Therefore, it is generally smaller than an SDD compiled
out of both probabilistic and decision variables, simply because it contains fewer variables.

Generally, the resulting SDD is also smaller for another reason: consider an AND-node in the DAG
that has at least one decision variable d amongst its child nodes, representing the following formula:
fAND = c1 ∧ · · · ∧ di ∧ · · · ∧ cn. In the compiled SDD, there is a sub-SDD that represents the formula
that is represented by this AND-node, and this sub-SDD has a non-zero size (because at the very least,
it needs to represent the two possible choices for the value of d). Now suppose d is assigned value ⊥ in
strategy σ. This means that fAND |= ⊥: the AND-node in the DAG represents a formula that evaluates
to ⊥, no matter what values the other children of the AND-node in the DAG have. The sub-SDD can then
be replaced by the terminal node ⊥, which has size zero. A similar argument can be made for OR-nodes
in the DAG.

Consider as an example the mes problem set. An edge (u, v) in this set is represented by a decision
variable duv and a probabilistic variable euv. In order for the edge to exist, both must be true, and an
SDD that represents the existence of this edge has size 2. By representing this edge by its probabilistic
edge only, we compile a zero-sized SDD consisting of the terminal representing euv in case duv 7→ > in
strategy σ, or a zero-sized SDD consisting of the terminal that represents ⊥ in case (duv 7→ ⊥) in σ.
Either way, the result is a smaller SDD than if both decision variables and probabilistic variables were
used to build the SDD.

30

The incremental part of this strategy comes from the fact that search is based on the depth-first
search method described in Chapter 6.1. The search starts with all decision variables set to ⊥, causing
the entire SDD to be deterministically ⊥, and thus having size 0, for each query. During the search,
decision variables are set to > one by one, causing some of the sub proofs in the program to no longer
be deterministically ⊥: they can be represented by small SDDs that live in the SDD manager (see also
Appendix B.3). A particular SDD representing a query path(s,t) only stops being deterministically ⊥
when a path from source s to target t is found.

(Example) execution of Incremental algorithm

path(a, b) path(a, c)

OR OR

AND AND

AND AND AND AND

dcb ecb dac eac dab eab dbc ebc

Figure 10: The AND/OR DAG for the queries
path(a, b) and path(a, c) in the graph shown in Fig-
ure 6. The DAG has two roots that represent for-
mulas fab = (dab ∧ eab)∨ ((dcb ∧ ecb) ∧ (dac ∧ eac))
and fac = (dac ∧ eac) ∨ ((dab ∧ eab) ∧ (dbc ∧ ebc)).
DAG and roots are used as input for the Incre-
mental method.

The pseudocode of the Incremental method is
given in Algorithm 4. Contrary to the dfs and
ExhaustiveSearch methods, the Incremen-
tal algorithm requires as input only the compiled
AND/OR DAG and the roots of the sub DAGs
that represent queries: SDDs for the queries are
built incrementally during search. Figure 10 shows
an example of a compiled DAG that is used as
input for the Incremental method. Figure 11
visualises what happens during the execution of
the Incremental algorithm in two nodes of the
search tree. The example problem in Figures 10
and 11 is an instance of the mes problem set of
Chapter 5.

In the initialisation phase of the Incremen-
tal algorithm, an SDD manager M is initialised
with all the terminal SDD nodes that may be nec-
essary to build larger SDDs: one terminal node
for each probabilistic variable, plus nodes for >
and ⊥ (line 4). During the execution of the algo-
rithm, we build small SDDs whenever necessary,
each of which is associated with a node in the
AND/OR DAGθ (shown in Figure 11 below the
search tree). Here, DAGθj contains formulas fθj ,
substituting decision variables for their truth val-
ues in the choice (C, a partial assignment of truth values to decision variables) that is currently under
consideration in search tree node j. Incremental uses an array A of pointers to link each node in the
DAG to the root of a sub SDD in the SDD manager that represents the same formula as the sub DAG
rooted at the DAG node. Note that this sub SDD might only be a single terminal node, for example ⊥
or a probabilistic variable. As with the dfs method, the Incremental method starts with all decision
variables set to ⊥, so this is how the array is initialised (line 7 in Algorithm 4).

In the root of the search tree, Incremental branches on > for the first variable: dab in Figure 11,
branching to node i. The figure shows what happens in this visit tot node i: because now dab 7→ >, a sub
proof in the DAG can be reconstructed with an SDD: dab ∧ eab = > ∧ eab = eab, so node 11 in the DAG
now points to the SDD consisting of only the terminal node eab. One of its parents, OR-node 15 in the
left DAG in Figure 11, now also stops being deterministically ⊥, and also points to eab. This updating
of the DAG-node-to-SDD-root happens in line 28 of Algorithm 4. Observe that the SDD manager still
only contains terminal nodes, each of which has size 0, so the total size of all SDDs in the SDD manager
is still 0.

In the next node visit (to node ii in Figure 11), dac is set to >, causing another AND-node in the
DAG (node 10) and its parent OR-node 16 to point to eac. This is shown in the right DAG of Figure 11
and its associated DAG-node-to-SDD-root array and SDD manager. Again, the total size of all SDDs in
the SDD manager is 0.

Suppose that P (path(a, b)) → max is the optimisation criterion that maximises the probability for a
path from a to b, and the constraint is that the probability for a path from a to c should not exceed 0.33
(P (path(a, c)) ≤ 0.33). Checking the constraint now yields the conclusion that the partial assignment
(choice) Cii = {(dab 7→ >) , (dac 7→ >)} cannot lead to a strategy that respects the constraints, because

31

P (eac) = 0.5 > 0.33. This means that the search tree can be pruned at this point without having build
any SDDs yet, for either optimisation criterion or constraint query.

Had the constraint been less strict, e.g. P (path(a, c)) ≤ 0.9, the search would have had to continue by
branching on dbc 7→ >. This would cause the first non-zero-sized SDD to be built in the SDD manager
(line 28), representing the formula (dab ∧ eab) ∧ (dbc ∧ ebc) = eab ∧ ecb, which corresponds to node 14 in
the DAG of Figure 11. Node 14’s parent, node 16, can also be updated, and an SDD is built out of sub
SDDs in the SDD manager so node 16 can be linked to (the root of) an SDD representing the formula
eac ∨ (eab ∧ ecb).

Note that in our implementation, SDDs may be compiled several times, each in different branches of
the search tree, because we save the current state of the SDD manager in each node before updating it
and branching on ‘true’, and use that saved manager to later branch on ‘false’.

Notes on complexity of the Incremental method

In terms of the number of search tree node visits, the Incremental method has the same complexity
as dfs. The methods differ in initialisation complexity: the dfs method compiles a big SDD before the
search begins, and the Incremental method compiles no SDDs during initialisation, but small ones
during search. In each search tree node ni (at depth i) whose corresponding choice (partial strategy) Ci
satisfies the constraints, the SDD manager M is updated for Ci+1 ← Ci ∪ {di+1 7→ >}, before branching
on ‘true’ for decision variable di+1. This requires a ‘sweep’ through part of the DAG (the part that
corresponds to the nodes that are ancestors of di+1), to update the SDDs such that they reflect the
(partial) formulas in DAGθi+1. Therefore complexity increases with the size of the DAG, as well the size
of the SDDs that are compiled during search.

32

Algorithm 4 Depth-first search with incrementally compiled SDDs. The CheckConstraints method
is that of Algorithm 2, the WMC method is analogous to Algorithm 1. Abusing notation, we use the
same symbol both for the sub diagram in a DAG rooted at that node, and for the node itself. Similarly,
we use the same symbol both for the root of an SDD and for the sub diagram rooted at that root.

Input: a compiled DAG with a set of roots of sub DAGs that encode logic formulas representing the
probabilistic constraints, each with a corresponding threshold: (fc, ϑc) ∈ C . Also a root of the sub
DAG representing an optimisation criterion fo.
Output: solution to constrained optimisation problem

1: procedure Incremental(DAG, C , fo)
2: DAG, C , fo . Global constants
3: F ← {fc | (fc, ϑc) ∈ C } ∪ {fo} . Global constant

Initialise SDD manager:
4: M← {p | p ∈PF} ∪ {>,⊥} . p is a probabilistic variable

Initialise DAG-node-to-SDD-root array, A[n] represents (the root of) the (sub) SDD in M that
represents the same formula as the (sub) DAG rooted at n:

5: for node n ∈ DAG do
6: if n ∈P then A[n]← n
7: else A[n]← ⊥
8: end if
9: end for

10: return Branch(∅, 0, M, A, 0, ∅)
11: end procedure

12: procedure Branch(Cδ, δ, M, A, vmax, σsol)
Base case: all decision variables have been assigned a value

13: if δ = Nd then
14: σ ← Cδ ∪ {(d 7→ ⊥) | d ∈ DF , (d 7→ b) 6∈ Cδ}
15: θ ← {d/b | (d 7→ b) ∈ σ}
16: M,A← UpdateManager(M, A, Cδ, DAGθ)
17: vo ← WMC(A[fo], σ)
18: if vo > vmax then
19: cok ← CheckConstraints({(A[f], ϑ) | (f, ϑ) ∈ C)}, σ)
20: if cok then vmax ← vo, σsol ← σ end if
21: return vmax, σsol
22: end if

Recursive case: some decision variables remain unassigned
23: else
24: cok ← CheckConstraints({(A[f], ϑ) | (f, ϑ) ∈ C)}, σ))
25: if cok then

Branch on >
26: Cδ+1 ← Cδ ∪ {(dδ+1 7→ >)}
27: θ ← {d/b | (d 7→ b) ∈ Cδ+1} ∪ {d/⊥ | (d 7→ b) 6∈ Cδ+1, d ∈ DF}
28: Mupdate,Aupdate ← UpdateManager(M, A, Cδ+1, DAGθ)
29: vmax, σsol ← Branch(Cδ+1, δ + 1, Mupdate, Aupdate, vmax, σsol)

Branch on ⊥
30: Cδ+1 ← Cδ ∪ {(dδ+1 7→ ⊥)}
31: vmax, σsol ← Branch(Cδ+1, δ + 1, M, A, vmax, σsol)
32: end if
33: end if
34: return vmax, σsol
35: end procedure

33

Algorithm 4 Continuation of Incremental pseudocode.

36: procedure UpdateManager(M, A, C, DAGθ)
37: Q← DF . queue of nodes in DAGθ whose associated SDD may have to be updated
38: while Q 6= ∅ do
39: n← pop(Q)
40: if (n 7→ b) ∈ C then
41: A[n]← b . b ∈ B
42: else if n is disjunction then
43: n← or({M[nc] | nc ∈ DAGchildren(n,DAGθ)})
44: else if n is conjunction then
45: n← and({M[nc] | nc ∈ DAGchildren(n,DAGθ)})
46: end if
47: Q← Q ∪ {np | np ∈DAGparents(n, DAGθ), np 6∈ Q}
48: end while
49: return M,A
50: end procedure

34

b a

c

.8

.1

.4

.5
.1

.7

dab

dac dac

dbc dbc dbc dbc

dcb dcb dcb dcb dcb dcb dcb dcb

σ16 σ15 σ14 σ13 σ12 σ11 σ10 σ9 σ8 σ7 σ6 σ5 σ4 σ3 σ2 σ1

AND/OR DAGθi

path(a, b) path(a, c)

OR
15 16

AND AND13 14

AND AND AND9 10 11 12

⊥ ecb eac > eab ⊥ ebc

1 2 3 4 5 6 7 8

AND/OR DAGθii

path(a, b) path(a, c)

OR
15 16

AND AND13 14

AND AND AND9 10 11 12

⊥ ecb eac > eab ⊥ ebc

1 2 3 4 5 6 7 8

OR OR

AND AND

⊥ >

array: DAG-node-to-SDD-root (A)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ecb eac

eab
ebc

> ⊥

SDD manager (M)

array: DAG-node-to-SDD-root (A)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ecb eac

eab
ebc

> ⊥

SDD manager (M)
i ii

i

ii

Figure 11: Example of two node visits in the execution of the Incremental method described in Chap-
ter 6.3 for the example problem of the mes set of example problems in Figure 6. The graph representing
the problem is repeated in the top part of this figure. The two queries under consideration are path(a, b)
and path(a, c) (where we only consider simple paths). In the upper part of the figure we show the search
tree over all decision variables of the problem. For two node visits in the search tree (labelled i and
ii) the state of the DAG and and SDD manager are shown, with the array mapping each node of the
corresponding DAGs to the root of an SDD in the SDD manager. The DAG nodes are labelled with
their indices in the array. A decision variable for an edge (u, v) is denoted by duv, while euv denotes the
corresponding probabilistic variable. The coloured internal nodes in the DAG indicate those that are not
deterministically ⊥.

35

6.4 Lazy incremental method

The Incremental method in the previous chapter is designed to postpone the compilation of (complex)
SDDs as long as possible, and only compile them when it is absolutely necessary, thus saving unnecessary
compilation time. The next method we propose takes this concept a step further. Recall the notion that
only bounds for the probabilities of constraint queries are needed, no exact values. For the Incremen-
tal method we achieve that by assuming all unassigned decision variables to be ⊥ during the search,
computing lower bounds for the probabilities of the constraint queries.

We propose a LazyIncremental method, based on the Incremental method, in which we (tem-
porarily) assume all probabilistic variables to be deterministically true. The pseudocode is given in Al-
gorithm 5. In the initialisation phase, all probabilistic variables are substituted by > (lines 7 and 11 in
Algorithm 5). Because of this assumption of determinism, SDDs are kept very small during the search.
After all: near the root of the search tree many variables will either be deterministically ⊥ (decision
variables) or deterministically > (probabilistic variables), causing most conjunctions and disjunction to
also be deterministically ⊥ or >. This yields an overestimation of the lower bound of the probabilities
of the queries. When this estimate exceeds the threshold ϑ for one of the constraints, the temporar-
ily deterministic probabilistic variables need to be reset to their true probabilistic variables (lines 26
and 36, RemoveDeterminismFromConstraints). This will either yield SDDs representing queries
whose probabilities do not exceed ϑ, in which case the search can continue, or the lower bound will turn
out to be too high, and the search can be pruned.

Removing (some of the) temporary determinism from the SDDs that represent the constraint queries
happens as follows. The algorithm loops over the constraints that are violated and resets temporarily de-
terministic probabilistic variables that are relevant to that constraint one by one to their true probabilistic
variables, until either the constraint is no longer violated, or the constraint contains no more temporar-
ily deterministic probabilistic variables. The LazyIncremental method always selects the temporarily
deterministic probabilistic variable with the smallest probability to reset to its true value first, hoping to
need few of these resets to find that the constraint can still be satisfied. Resetting a temporarily deter-
ministic variable to a probabilistic variable cannot increase the estimate for the value of the probability
of the constraint query. When the estimate for the probability of a constraint query drops below the
corresponding threshold, the temporarily deterministic probabilistic variables that are relevant solely to
that constraint query, are not reset during this round of removing temporary determinism. Note that it
is not always necessary to remove all of the temporary determinism from an SDD that represents an con-
straint: if the overestimation of the lower bound for the probability of the constraint query drops below
the threshold, we continue search. We can only be certain that a partial strategy violates a constraint if
all the temporary determinism is removed from the SDD that represents that constraint. Therefore, in
case of violated constraints, all temporary determinism does have to be removed from the SDD.

Observe that in lines 53 and 68 the SDD manager is updated in a way that is similar to the one
described in UpdateManager in Algorithm 4: if a temporarily deterministic probabilistic variable is
reset to its true probabilistic value, this change is propagated through the entire SDD manager, since it is
updated in a bottom-up fashion in UpdateManager (in Algorithm 4). This means that coincidentally,
by removing temporary determinism from the SDD manager because of the violation of one constraint,
other violated constraints may become non-violated.

Note that while it may be sufficient to remove some of the temporary determinism from the constraints
to know if pruning is possible or not, all temporary determinism needs to be removed from the SDD that
represents the optimisation query in order to know if a new optimum is found. Since generally not all
probabilistic variables are needed for the proof of the the optimisation query, some probabilistic variables
may remain temporarily deterministic in this process, because they are relevant only to one or more
constraints, even though all the determinism is removed from the SDD representing the optimisation
query. The resetting of temporarily deterministic variables that are relevant solely to the optimisation
criterion only happens in leafs of the search tree. Here an exact value for the probability of the optimisation
query is needed (RemoveDeterminismFromOptimisation in Algorithm 5), if the overestimation of
the lower bound in that leaf is larger than the best (true!) value found so far. This is done in a way
that is similar to that of removing temporary determinism from constraints: by simply looping over all
relevant temporarily deterministic probabilistic variables and resetting them in the SDD manager to their
probabilistic values. When the estimate drops below the best found value, LazyIncremental can stop
removing the temporary determinism in the probabilistic variables relevant to the optimisation criterion,
and backtrack. Hence, it is likely that LazyIncremental only removes all determinism from the SDD

36

Algorithm 5 Depth-first search with incrementally compiled SDDs, lazily making probabilistic variables
temporarily deterministically >. The CheckConstraints method is that of Algorithm 2, the WMC
method is analogous to Algorithm 1, UpdateManager is defined in Algorithm 4. Abusing notation, we
use the same symbol both for the sub diagram in a DAG rooted at that node, and for the node itself.
Similarly, we use the same symbol both for the root of an SDD and for the sub diagram rooted at that
root.

Input: a compiled DAG with a set of roots of sub DAGs that encode logic formulas representing the
probabilistic constraints, each with a corresponding threshold: (fc, ϑc) ∈ C . Also a root of the sub
DAG representing an optimisation criterion fo.
Output: solution to constrained optimisation problem

1: procedure LazyIncremental(DAG, C , fo)
2: DAG, C , fo . Global constants
3: F ← {fc | (fc, ϑc) ∈ C } ∪ {fo} . Global constant

Initialise SDD manager:
4: M← {p | p ∈PF} ∪ {>,⊥} . p is a probabilistic variable

Initialise DAG-node-to-SDD-root array, A[n] represents (the root of) the (sub) SDD in M that
represents the same formula as the (sub) DAG rooted at n:

5: for node n ∈ DAG do
6: if n ∈P then A[n]← n
7: else if n ∈ D then A[n]← >
8: else A[n]← ⊥
9: end if

10: end for
Initially, all probabilistic variables are temporarily set to a deterministic >:

11: θp ← {p/> | p ∈PF}
12: return Branch(∅, 0, M, A, 0, ∅, θp)
13: end procedure

14: procedure Branch(Cδ, δ, M, A, vmax, σsol, θp)
Base case: all decision variables have been assigned a value

15: if δ = Nd then
16: σ ← Cδ ∪ {(d 7→ ⊥) | d ∈ DF , (d 7→ b) 6∈ Cδ}
17: θd ← {d/b | (d 7→ b) ∈ σ}
18: M, A← UpdateManager(M, A, Cδ, DAGθd)
19: vo ← WMC(A[fo], σ)
20: while vo > vmax and SDD rooted at A[fo] contains temporary determinism do
21: M, A, newopt, vo, θp ← RemoveDeterminismFromOptimisation(M, A, vo, vmax,

DAG, θd, θp, σ)
22: end while
23: if newopt then
24: cok ← CheckConstraints({(A[f], ϑ) | (f, ϑ) ∈ C)}, σ)
25: if not cok then
26: M, A, θp, cok ← RemoveDeterminismFromConstraints(M, A, C , DAG, θd, θp)

27: end if
28: if cok then vmax ← vo, σsol ← σ end if
29: end if
30: return vmax, σsol

37

Algorithm 5 Continuation of LazyIncremental pseudocode.

Recursive case: some decision variables remain unassigned
31: else
32: σ ← Cδ ∪ {(d 7→ ⊥) | d ∈ DF , (d 7→ b) 6∈ Cδ}
33: θd ← {d/b | (d 7→ b) ∈ σ}
34: cok ← CheckConstraints({(A[f], ϑ) | (f, ϑ) ∈ C)}, σ)
35: if not cok then
36: M, A, θp, cok ← RemoveDeterminismFromConstraints(M, A, C , DAG, θd, θp)
37: end if
38: if cok then

Branch on >
39: Cδ+1 ← Cδ ∪ {(dδ+1 7→ >)}
40: Mupdate, Aupdate ← UpdateManager(M, A, Cδ+1, DAGθd)
41: vmax, σsol ← Branch(Cδ+1, δ + 1, Mupdate, Aupdate, vmax, σsol, θp)

Branch on ⊥
42: Cδ+1 ← Cδ ∪ {(dδ+1 7→ ⊥)}
43: vmax, σsol ← Branch(Cδ+1, δ + 1, M, A, vmax, σsol, θp)
44: end if
45: end if
46: return vmax, σsol
47: end procedure

48: procedure RemoveDeterminismFromOptimisation(M, A, fo, v, vmax, DAG, θd, θp, σ)
49: while fo contains temporary determinism and v > vmax do
50: p← SelectVariable(fo) . p ∈PF is temporarily deterministic and relevant to fo
51: θp ← θp \ {(p/>)}
52: θ ← θd ∪ θp
53: M, A← RemoveDeterminismFromManager(M, A, DAGθ)
54: v ← WMC(fo, σ)
55: end while
56: if v > vmax and fo contains no determinism then return M, A, True, v, θp
57: else if v ≤ vmax and fo contains no determinism then return M, A, False, v, θp
58: else if v ≤ vmax and fo contains determinism then return M, A, False, v, θp
59: end if
60: end procedure

61: procedure RemoveDeterminismFromConstraints(M, A, C , DAG, θd, θp, σ)
62: for (fc, ϑ) ∈ C do
63: cfc ok ← CheckConstraints({(A[fc], ϑ)}), σ
64: while fc contains temporary determinism and not cfc ok do
65: p← SelectVariable(fc) . p ∈PF is temporarily deterministic and relevant to fc
66: θp ← θp \ {(p/>)}
67: θ ← θd ∪ θp
68: M, A← RemoveDeterminismFromManager(M, A, DAGθ)
69: cfc ok ← CheckConstraints({(A[fc], ϑ)}, σ)
70: end while
71: if not cfc ok then return M, A, False end if
72: end for
73: return M, A, True
74: end procedure

38

for the optimisation criterion if it finds a solution that is better than the best solution we found earlier.
This means that only in these cases, a (relatively) big SDD for this query needs to be built, while the
Incremental method requires the building of (relatively) large SDDs in each leaf that is reached during
search.

Notes on complexity of LazyIncremental method

The size of the search tree for the LazyIncremental method is exactly the same as that of Incremen-
tal. The algorithms differ in the number of sweeps over (part of) the DAG that are needed to update
the SDD manager. After all: these updates happen for the Incremental method at most once per visit
to a search tree node, while LazyIncremental also needs them each time one temporarily deterministic
probabilistic variable is reviewed and made probabilistic again. Note that generally, these sweeps are less
expensive for LazyIncremental, since the SDDs that are created during the process are kept smaller,
because of the temporary determinism of other probabilistic variables.

6.5 Optimisations for incremental methods

Although not explicitly stated in the pseudocodes of the Incremental and LazyIncremental methods
presented above, some optimisations can be applied to these algorithms. One is that of being more smart
about updating the SDD manager. In our implementation of Incremental and LazyIncremental,
the queue Q with DAG nodes that may have to be updated is not initialised with all decision variables
or (temporarily deterministic) probabilistic variables, but only with those whose substitution is different
from their substitution the last time the SDD manager was updated. This way, only the part of the SDD
manager that might need an update, is updated. This optimisation can be expanded by only compiling a
new SDD for node n in DAGθ if the SDDs that represent n’s children in the DAG have changed during
this call to UpdateManager.

Further possible optimisations are discussed in Chapters 6.6 and 10.

6.6 Different optimisation and constraint settings

All the search methods described in this chapter can easily be adapted for the maxSet optimisation
setting. We no longer need to compute the WMC for the optimisation criterion, but can simply count the
number of decision variables that are set to >. For the maxSet setting, we can perform an additional
way of pruning: whenever the sum of decision variables that map to > in partial assignment C and the
number of unassigned decision variables does not exceed the size of σ> for the best solution found so far,
the search can be pruned.

Note also that this optimisation setting does not require an SDD to be built for the optimisation
criterion, and that some probabilistic variables may not be relevant to the constraints, and can thus
remain deterministic in the LazyIncremental method, limiting the size of the resulting SDDs even
further.

The Incremental and LazyIncremental methods in their current form cannot be used for optimi-
sation criteria of the types minProb and minSet, combined with constraints of the form P (q) ≥ ϑ yet.
The reason was already touched upon in Chapters 6.1 and 6.3: it would require the computation of upper
bounds for the constraint queries. Compiled SDDs could be kept small by assuming non-assigned decision
variables to be ⊥ when computing lower bounds for query probabilities, causing probabilistic variables to
be no longer relevant and thus not included in the SDD. In order to compute an upper bound, however,
unassigned decision variables should get value >, which causes many probabilistic variables to be relevant
after all, which yields large SDDs.

39

7 Experimental setup

In this chapter we specify the methods and settings used for the experimental part of this work. Please
refer to Chapter 5 for a description of the artificially generated example sets of SCOPs used in this
work. All experiments are performed on a 4-thread machine, with four Intel(R) Xeon(R) CPU E3-1225
v3 @ 3.20 GHz CPUs and 32 Gb memory, using the Python ProbLog library [15, 16], which uses the
SDD library from the Automated Reasoning Group of UCLA [8], and the implementations of our own
algorithms in Python 2.7.

7.1 Generating the artificial example problems

We introduced the sets of examples of instances of stochastic constraint programming in Chapter 5. In
this chapter we provide more details on how these example sets were generated.

General graph generation parameters

As mentioned in Chapter 5, the example problems are all based on social networks generated with
gengraph [38]. The bash script gengraph can generate random graphs whose degree distribution obeys
the power law:

P (X = k) = k−α, (19)

with P (X = k) the probability that a node X has degree k and α the parameter that represents the
heavy-tail behaviour. The script ask us to specify α, the number of nodes N and a degree interval
specifying what the minimum and maximum degrees are that should be found in the result. We choose
α = 2.5, choose the interval [2, . . . , N] as the degree interval and then try different numbers of nodes N .
If the script is able to generate a graph fitting the α and degree interval requirements, we save it. For
the mes and fas problem set, the number of edges determines the number of decision variables. Thus, we
save graphs that have the desired number of edges. The examples for the tyf problem set are generated
slightly differently. We generate a graph and add a node that will act as the source. The outgoing edges
of this node are the decision variables. In our problem set, we add outgoing edges to half of the nodes
in the graph. Thus, a graph generated by gengraph is saved if its number of nodes is twice the desired
number of decision variables.

The gengraph script returns strongly connected, directed graphs with for each edge (u, v) also an edge
(v, u). The source node of the mes problems is randomly chosen, weighted by the outdegree of the nodes
in the network. For the tyf problem set the node with the largest outdegree is chosen as the source. The
candidate targets are chosen such that there exists at least one path of length at least three and at most
ten from source to target. The actual targets for the queries are selected randomly and uniformly.

The graphs that are generated by the gengraph script can be used almost directly for the mes problem
set. All that is needed for the mes problems is to generate probabilities for the edges. The probabilities
are drawn randomly and uniformly from {0.1, . . . , 0.9}, where the probability associated with edge (u, v)
may be different from the one associated with edge (v, u). For the tyf problems the extra source node
and outgoing edges are added. Finally, probabilities for the other edges are generated and assigned in
the same way as for the probabilistic edges in the mes problems. For the fas problem set, no alterations
need to be made to the network, and no probabilities need to be generated, as the probabilities are fixed
by the program specified in Chapter 5.

Characteristics and limitations of the artificial stochastic constraint optimisation instances

The graph generation tool gengraph is designed by Viger and Latapy as an algorithm for generating large
graphs in O(n log n) time (with n the number of vertices). They present experiments done on graphs with
n = 104 vertices; several orders of magnitude more than the graphs we generate. We can therefore not be
certain of the quality and consistency of the test examples generated by this tool. We see this reflected
in the diversity of graph topologies in our problem set.

As an example consider Figure 12. The figure shows three graphs from our mes problem set. The graphs
show very different characteristics for, for example, closeness and betweenness centrality.

40

0

2

5

6

3

4

1

2

3
8

4

6

0
7

5

1

3 4

6 7

0 1

5 2

Figure 12: Some examples of graphs generated for by the gengraph tool for the mes problem set. These
graphs correspond to problems with twenty decision variables and twenty probabilistic variables.

7.2 Establishing a benchmark for DAG and SDD compilation

In Chapter 4 we discussed the complexity of compiling logical formulas to DAGs and SDDs. We perform
a simple experiment to establish at what size the SDDs become infeasible to compute, for our sets of
example probabilistic constrained optimisation problems (the results of which can be found in Figure 5
in Chapter 4, instead of in Chapter 8).

We take a program with Nv = Nd+Np variables (Nd decision variables and Np probabilistic variables)
and Nq = No+Nc optimisation and constraint queries. We compile the program into a DAG and measure
its size. The size of a DAG is defined as its number of nodes (see Appendix B.1). We also measure the
time needed to compile the DAG. Note that such the DAG has several roots: one for each query. These
roots generally share descendants, so we expect the size of the DAG to depend both on the number of
variables and on the number of queries.

Then we compile the logic formulas expressed by the DAG into SDDs. Similar to the DAG, we have
an SDD manager that contains various sub SDDs (see Appendix B.3 and Chapter 6.3). Each query has
its own root and may share sub-SDDs with other SDDs. We measure the total size of the SDD manager
and that of the SDD for the first query. We expect the size of the SDD of the first query as well as the
size of the SDD manager to depend both on the number of variables and on the number of queries.

Finally, we measure the time needed for the compilation of both the DAG and the SDD. We repeat
the experiment for problems with different numbers of decision variables. Test problems always have a
multiple of ten decision variables. For each number of decision variables, we repeat the experiment on
ten different instances of such a problem. We do not aggregate over the data.

Specifically, we perform the DAG and SDD compilation benchmark on the fas problem set, with
problems on numbers of decision variables ranging from twenty to sixty. The corresponding total numbers
of variables range from 47 to 139 variables. We did not consider larger problems because compiling the
SDD for the first problem on seventy decision variables was terminated after 48 hours, which we consider to
be an indication that compiling the SDD for problems on seventy decision variables or more is unfeasable.
We repeat the experiment for problems with one and five queries. Because this experiment only involves
preprocessing, the optimisation type, constraint type and threshold ϑ are irrelevant to this experiment.

7.3 Measuring search times and other search characteristics

The focus of our work is on the search process rather than the preprocessing (compilation of DAG and,
in case of the naive methods, compilation of the big SDD out both probabilistic and decision variables).
Therefore most of our experiments are on search times. Again, we have ten problem instances for each
number of decision variables. After initialising each search strategy, we measure the time needed to find
a solution to the constrained optimisation problem. We use a timer on the experiments and stop each
search after 3600 seconds (one hour), unless indicated otherwise.

We perform the experiments on the three artificially generated sets of SCOPs, for the maxProb
optimisation setting, using one or three constraints of type P (q) ≤ ϑ, with q a query and different
values of ϑ, the exact values of which depend on the problem type. The mes and tyf problems contain
probabilistic variables ranging from 0.1 to 0.9, so we expect constraints to be likely to be violated (and
respected) for a range of ϑ’s. On the other hand, the fas problem contains the 0.3::stress(X) :-

41

person(X). clause. This means that each query has a base success probability of 0.3, so any constraint
of the form P (smokes(X)) ≤ ϑ with ϑ < 0.3 is automatically violated. We therefore need not look at ϑ’s
that are smaller that 0.3. Similarly, the probability of someone smoking is not that large. A simple lower
bound estimate (assuming the probability of a friend smoking to be 0.3) gives that a person with one
friend has a probability of being a smoker that is bounded below by 0.405. This increases to roughly 0.69
if they have five friends, and to roughly 0.86 if they have ten. The example problems being but small,
people generally have not many friends, and we expect that for ϑ > 0.4 it is easy to find solutions that
satisfy the constraint. In experiments with more than one constraint, we use the same value for ϑ for
each of the constraints.

The experiments that evaluate search times and search behaviour for ExhaustiveSearch, dfs,
Incremental and LazyIncremental methods, we perform experiments on small example problems
only. Specifically, maxProb experiments on the mes and fas problem sets are done on problems of twenty
and thirty decision variables. The maxProb type experiments on the tyf example instances are done
on problems with only ten decision variables, as these problems contain more probabilistic variables than
the mes and fas problems, causing the query evaluations during search to be slower.

Because the search times for the ExhaustiveSearch search method do not vary much, as is expected
based on the nature of the strategy, we benchmark this method once for a single threshold only (specifically
ϑ = 0.3), and compute the mean search time µs and corresponding standard deviation σs. In Chapter 8
we present µs and the 90% confidence interval (±0.96σs). If one or more of the searches were timed
out, only the mean search time of the remaining examples is given, along with the number of timed-out
examples.

For all the other search methods (each based on depth-first search), we benchmark on different values
for ϑ. We expect search times to be lower for small values of ϑ, because of pruning due to partial strategies
that violate the constraints. We also expect search times to decrease for large values of ϑ, because of the
application of sssp.

In order to gain more insight in the pruning, we record the number of nodes visited at each level of the
search tree, for all DFS-based strategies. We compare this to the number of possible strategies, because
the ExhaustiveSearch method evaluates that number of possible strategies (2Nd , see Chapter 6.1).
The strategies differ in when and how constraint queries and optimisation criteria are evaluated, and this
also depends highly on the problem and, for example, the order in which decision variables are branched
on. However, we can still use this number as a measure for the effectiveness of the pruning. Note that
the dfs, Incremental and LazyIncremental methods each traverse the search tree in the same order
(and visit the same nodes).

The Incremental and LazyIncremental methods each attempt to keep the compiled SDDs as
small as possible. In order to gauge their performance, we measure the size of the largest SDD created
during search for each query, as well as the average size of the SDDs compiled for that query. We expect
the size of the largest SDD to be a bottleneck for the performance of the algorithm. The mean size of
SDDs is an indication of how large the SDDs are during search. We expect the SDDs to only grow large
near the leaves of the search tree. We compare these sizes to the size that the SDD would have, was it
compiled out of both probabilistic and decision variables for the naive methods.

Furthermore, we record for each query what the largest size of the SDD representing that query is on
each path from root to leaf in the search tree. We expect the distribution of largest SDD sizes to provide
an indication of the possible efficiency of a greedy and non-exhaustive version of the Incremental and
LazyIncremental methods. After all, not only the size of the largest SDD that needs to be compiled
is a bottleneck for the total search time, but also the number of times that a large SDD needs to be
compiled.

Note that aside from the actual search times, the number of nodes visited in the search tree as well
as the size of the SDDs provide information about the effectiveness of the different approaches. The last
two, combined with additional information from the value of ϑ and details about the specific problems,
can be used to gain insight in the characteristics of both the solving methods and the problems that make
the methods effective (or less effective) for solving these kinds of problems.

42

8 Experimental results

In this chapter we present and discuss some of our results in order to answer the second and third research
questions: how effective are the methods presented in Chapter 6 for the type of problem described in
Chapter 4, and why? Because of the many parameters in our experiments (four different algorithms, two
optimisation settings, three types of problems, different problem sizes, different values for ϑ, different
numbers of constraints), we limit the results in this chapter to a selection. Some other results can be
found in Appendix C. In this chapter we do mention the main conclusions we can draw from those results,
but they are discussed in some more detail in Appendix C.

8.1 Compilation times of DAGs and SDDs

60 80 100 120 140

number of variables

10−3

10−2

10−1

100

101

102

103

104

105

co
m

pi
la

ti
on

ti
m

e
[s

]

Compilation time of SDDs

five queries
one query
ten hours
one hour

Figure 13: Compilation time of SDDs as a function
of the number of variables (both probabilistic and
decision). Data from examples in fas problem set.

Recall the results presented in Figure 5. They show
how the sizes of the DAGs representing queries
and the corresponding SDDs and SDD manager
increase with the number of variables (both deci-
sion variables and probabilistic variables) present
in those DAGs and SDDs (Figures 5a and 5b).
From the results we conclude that the size of the
SDDs increases more rapidly with the number of
variables than the size of the DAGs, and that the
SDDs also tend to be larger than those of the
DAGs in an absolute sense.

Figures 5c and 5d show the compilation times
of DAGs and SDDs, respectively, as a function
of their sizes. Again, we see that the compilation
times for SDDs increase more rapidly than those
for DAGs.

Consider the results in Figure 13. We see that
from roughly 140 variables onwards, there are ex-
amples for which the compilation time is in the
order of hours. Add more variables and compiling an SDD becomes a matter of days. These results pro-
vide an indication of how much room there is to repeatedly build smaller SDDs. Recall from Chapter 4
and Chapter 6 that SDDs built by Incremental and LazyIncrementalare built out of roughly half
the number of variables than the ones built by ExhaustiveSearch and dfs (or even less). From the
results in Figure 13 we deduce that building an SDD from about seventy variables takes over five orders
of magnitude less time than building one out of roughly 140 variables. A naive guess would led us to
believe that this means that Incremental and LazyIncremental can build about 105 of these smaller
SDDs before the total SDD building time exceeds that of the naive approach.

Of course, in practice it is not that simple. After all: SDDs are built incrementally, so the definition of
the building time of one SDD becomes somewhat complicated. Furthermore, given the rather naive way
in which these SDDs are built, SDDs building times also depend on the size of the corresponding DAGs
and factors such as the order in which the search tree branches on decision variables, the order in which
constraints are evaluated, and the order in which LazyIncremental sets temporarily deterministic
variables to their true probabilistic values.

8.2 Comparison of search times

A first step towards evaluation the second research question, is to compare the search times of the different
algorithms.

Search times for the maxProb optimisation setting

Let us first consider the maxProb setting. As a benchmark, search times for the ExhaustiveSearch and
dfs methods are presented in Figures 14a and 14d for the mes and tyf problem sets. Each of these figures
shows the search times needed by the dfs method for different problem instances against the value for
ϑ. Additionally, the plots show a dotted line, which represents the time after which the search in one
example was terminated. The dashed lines represent the mean search time µs that was needed by the

43

ExhaustiveSearch method for problems on twenty decision variables (Figure 14a) or ten decision
variables (Figure 14d), for ϑ = 0.3.

Given the mean search times for ExhaustiveSearch on problems of twenty (ten) decision variables,
we can extrapolate these to mean search times for problems on thirty (twenty) decision variables. This
yields mean search times of several hundred hours, so we have not performed those experiments. Note
that the given 90% confidence interval for Figures 14d and 15d is not a typo. One of the optimisations
implemented in ExhaustiveSearch (and the other algorithms) mentioned in Chapter 6.1 is that the
search is stopped when the perfect score is found. Because of the way the graphs and queries are generated
for tyf problems, it might happen that the target node in the optimisation query is a neighbour of the
source node. In that case, choosing the (s, t) edge to be > yields a probability for path(s, t) of 1: a perfect
score. If this is part of a (partial) strategy that satisfies the constraints, the search is stopped. Therefore,
search times of ExhaustiveSearch may vary a lot for problems of type tyf after all.

Looking at the results in Figure 14, we immediately see that the different problem sets show very
different behaviour. As expected, we see that problems on fewer decision variables are generally solved in
less time (within the same set of SCOP instances). We also observe a large variation in dfs’s, Incremen-
tal’s and LazyIncremental’s search times for different examples with the same number of decision
variables, the same threshold and the same number of constraints: there are problems that take several
orders of magnitude less time to solve than others.

Looking at the behaviour for different types of example problems, we see some differences. We see that
for the mes and tyf examples in Figure 14, search times may be high or low for different examples for
all kinds of constraints. The results for fas in Figure 23 in Appendix C show that only for very specific
values of ϑ, fas problems take a long time to solve. The results for the mes (and fas) problems do seem
to confirm that sssp is an effective pruning method, as the problems with loose constraints (high values
of ϑ) tend to be solved very quickly.

Now consider the search time results for the Incremental method in Figures 14b and 14e. The first
observation is that the results look very similar to those presented for the dfs method, but there are some
differences. For example: it seems that the Incremental method solves the tyf problems faster than
the dfs method, especially for ϑ = 0.2. That being said, the mes problems show slightly larger search
times when solved by the Incremental method, than if they are solved by the dfs method. We also see
that the variation in solving times seems to be a bit larger for the Incremental method than for the
dfs method (this can be clearly seen when comparing the results in Figure 14a and Figure 14b). It is
remarkable that search times for tyf problems tend to be lower for the Incremental method than for
the dfs method, except that one example tends to time-out more often with the Incremental method
than the dfs method (the problem instance that times out is in both cases the same one).

We can explain the result that the incremental methods tend to do better on the tyf examples than the
dfs method by considering the nature of the tyf problems. Suppose one of the (partial) proofs in a SCOP
is that for a path from a to b: path(a, b). Recall from Chapter 5 that in the mes and fas problems, several
decision variables need to be set to > in order to create a probabilistic path from one node to another: one
decision variable for each edge on the path. Suppose one of the paths from a to b is the following: pathab =
a→ u→ v → w → b, with corresponding formula fpathab = dau ∧ eau ∧ duv ∧ euv ∧ dvw ∧ evw ∧ dwb ∧ ewb
(with d a decision variable and e a probabilistic variable). As long as not all of the decision variables in
fpathab are chosen to be >, fpathab |= ⊥ holds. Therefore, while building the SDD that corresponds to
that proof, the incremental algorithms have to traverse part of the DAG each time one of the decision
variables on the path is chosen to be >, to see if the expression for pathab changes, while fpathab |= ⊥
unless dau = duv = dvw = dwb = >. Traversing part of the DAG to update formulas whose expression
does not change, even though variables in the formula do change their values, takes time while nothing
new is learned. Suppose that path(a, b) is a constraint query, and now the algorithm finds out that with
a non-⊥ proof for pab, the constraint is violated. That means that backtracking needs to take place and
the algorithm has just wasted a lot of time.

On the other hand, the same query in a tyf examples would correspond to a formula fpathab =
dau ∧ euv ∧ evw ∧ ewb. Therefore, with choosing dau = >, the algorithm immediately obtains a non-⊥
expression for pab and can immediately prune the search, if necessary.

In other words: while for the mes (and fas) problem sets new information is typically only gained if sets
of decision variables are set to >, for tyf problems information is gained with only a single assignment
of > to a decision variable. This results in less work for the incremental algorithms to be done on proofs
for tyf problems, than for proofs on mes problems.

44

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]
m
e
s

pr
ob

le
m

s,
m

ax
P

ro
b,

on
e

co
ns

tr
ai

nt

D
F

S
30

de
c.

va
rs

.
D

F
S

20
de

c.
va

rs
.

T
im

e
ou

t
µ
s

(E
S
)

20
de

c.
va

rs
.

(a
)
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

a
n
d
d
f
s,
µ
s

(e
s)

=
0
.6

8
±

0
.0

8
·

1
0
3

s.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

m
e
s

pr
ob

le
m

s,
m

ax
P

ro
b,

on
e

co
ns

tr
ai

nt

IN
C

R
.

30
de

c.
va

rs
.

IN
C

R
.

20
de

c.
va

rs
.

T
im

e
ou

t

(b
)
In

c
r
e
m
e
n
t
a
l
,
m
e
s

p
ro

b
le

m
se

t,
o
n
e

co
n
st

ra
in

t.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

m
e
s

pr
ob

le
m

s,
m

ax
P

ro
b,

on
e

co
ns

tr
ai

nt

L
A

Z
Y

30
de

c.
va

rs
.

L
A

Z
Y

20
de

c.
va

rs
.

T
im

e
ou

t

(c
)
L
a
z
y
In

c
r
e
m
e
n
t
a
l
,
m
e
s

p
ro

b
le

m
se

t,
o
n
e

co
n
st

ra
in

t.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

t
y
f

pr
ob

le
m

s,
m

ax
P

ro
b,

on
e

co
ns

tr
ai

nt

D
F

S
10

de
c.

va
rs

.
T

im
e

ou
t

µ
s

(E
S
)

10
de

c.
va

rs
.

(d
)
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

a
n
d
d
f
s,
µ
s

(e
s)

=
3
±

1
3
·1

0
3

s
(o

n
e

ti
m

e-
o
u
t)

.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4
searchtime[s]

t
y
f

pr
ob

le
m

s,
m

ax
P

ro
b,

on
e

co
ns

tr
ai

nt

IN
C

R
.

10
de

c.
va

rs
.

T
im

e
ou

t

(e
)
In

c
r
e
m
e
n
t
a
l
,
t
y
f

p
ro

b
le

m
se

t,
o
n
e

co
n
st

ra
in

t.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

t
y
f

pr
ob

le
m

s,
m

ax
P

ro
b,

on
e

co
ns

tr
ai

nt

L
A

Z
Y

10
de

c.
va

rs
.

T
im

e
ou

t

(f
)
L
a
z
y
In

c
r
e
m
e
n
t
a
l
,
t
y
f

p
ro

b
le

m
se

t,
o
n
e

co
n
st

ra
in

t.

F
ig

u
re

14
:

S
ea

rc
h

ti
m

es
fo

r
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

an
d
d
f
s

(l
ef

t)
,
In

c
r
e
m
e
n
t
a
l

(m
id

d
le

)
a
n

d
L
a
z
y
In

c
r
e
m
e
n
t
a
l

(r
ig

h
t)

fo
r
m
e
s

p
ro

b
le

m
se

t
(t

o
p

)
a
n

d
t
y
f

p
ro

b
le

m
se

t
(b

ot
to

m
),

in
th

e
m

a
x
P

ro
b

se
tt

in
g

w
it

h
o
n

e
co

n
st

ra
in

t.
J
it

te
r

a
d

d
ed

in
h

o
ri

zo
n
ta

l
d

ir
ec

ti
o
n

to
se

p
a
ra

te
d

a
ta

p
o
in

ts
.

45

Search times for the maxSet optimisation setting

Let us now move on to the results for the maxSet optimisation setting. We expect that these problems
are easier to solve. After all: they allow for extra pruning due to the fact that it is easy to determine
whether or not it is still possible to improve on the current best solution, on the current path in the
search tree.

The results in Figure 15 seem to confirm this. The figure shows results for problems with two con-
straints. On the one hand this means that the number of query evaluations done per possible strategy
(for the ExhaustiveSearch algorithm) or search tree node (for the other algorithms) is comparable to
that for the maxProb setting. On the other hand it also means that it is more likely that a constraint
is violated by a (partial) strategy, which influences pruning.

All in all, the figure does show that search times are lower for the maxSet setting. Most notably, we
see that the search times for the mes problems drop significantly. Consider Figures 15b and 15e. It is
remarkable that, while problems of the mes type seem to be hard when the constraint is tight (low values
of ϑ and easy when the constraint is loose (high values of ϑ), the opposite seems to hold for problems
of the tyf type. Analysing the data shows that for the mes dataset, setting all decision variables to >
is a solution to each of the ten problems on twenty decision variables for ϑ = 0.9, causing almost the
entire search tree to be pruned away, while more search is necessary for ϑ = 0.1. On the other hand: for
the examples of tyf problems on ten decision variables, we find that for ϑ = 0.1 a lot of pruning can be
performed because of the strict constraints.

Some general search time observations

At this stage, it seems that the algorithms that build SDDs incrementally do not yet outperform the DFS-
based algorithm that builds a large SDD during the preprocessing stage. After all: as Figure 13 shows,
for these numbers of variables (40–90, including both probabilistic variables and decision variables), it is
generally possible to compile SDDs within ten seconds. As Figures 14 and 15 show: dfs generally solves
problems faster than Incremental and LazyIncremental do. Those ten seconds (at most!) needed
for preprocessing are generally not sufficient for dfs to be beaten by Incremental or LazyIncremen-
tal in terms overall performance. Similar observations can be made for problems in the fas problem set
(Figures 23 and 24 in Appendix C).

Exceptions to this rule are found in the tyf dataset: compiling the SDDs that represent two queries in
a tyf problem on ten decision variables takes up to three hours, while the results in Figures 14e and 15e
show that there are values for ϑ for which the Incremental search for each of the examples takes less
than one hour. In these cases dfs is outperformed by Incremental.

We remark that many aspects of the Incremental and LazyIncremental algorithms are still very
naively implemented: such as the SDD updating method in Algorithm 4 or the order in which temporarily
deterministic probabilistic variables are reset to their true probabilistic variables in Algorithm 5. Con-
sequently, there are opportunities to make these algorithms more time-efficient. Before we continue the
discussion of our experimental results by looking into the effectiveness of Incremental’s and LazyIn-
cremental’s distinguishing feature, keeping the SDDs small, we first perform a small evaluation of the
search efficiency of all three DFS-based methods.

46

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]
m
e
s

pr
ob

le
m

s,
m

ax
Se

t,
tw

o
co

ns
tr

ai
nt

s

D
F

S
30

de
c.

va
rs

.
D

F
S

20
de

c.
va

rs
.

T
im

e
ou

t
µ
s

(E
S
)

20
de

c.
va

rs
.

(a
)
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

a
n
d
d
f
s,

m
e
s

p
ro

b
le

m
se

t,
tw

o
co

n
st

ra
in

ts
,
µ
s

(e
s)

=
0
.5
±

0
.7
·1

0
3

s.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

m
e
s

pr
ob

le
m

s,
m

ax
Se

t,
tw

o
co

ns
tr

ai
nt

s

IN
C

R
.

30
de

c.
va

rs
.

IN
C

R
.

20
de

c.
va

rs
.

T
im

e
ou

t

(b
)
In

c
r
e
m
e
n
t
a
l
,
m
e
s

p
ro

b
le

m
se

t,
tw

o
co

n
st

ra
in

ts
.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

m
e
s

pr
ob

le
m

s,
m

ax
Se

t,
tw

o
co

ns
tr

ai
nt

s

L
A

Z
Y

30
de

c.
va

rs
.

L
A

Z
Y

20
de

c.
va

rs
.

T
im

e
ou

t

(c
)

L
a
z
y
In

c
r
e
m
e
n
t
a
l
,
m
e
s

p
ro

b
le

m
se

t,
tw

o
co

n
-

st
ra

in
ts

.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

t
y
f

pr
ob

le
m

s,
m

ax
Se

t,
tw

o
co

ns
tr

ai
nt

s

D
F

S
10

de
c.

va
rs

.
T

im
e

ou
t

µ
s

(E
S
)

10
de

c.
va

rs
.

(d
)
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

a
n
d
d
f
s,

t
y
f

p
ro

b
le

m
se

t,
tw

o
co

n
st

ra
in

ts
,
µ
s

(e
s)

=
8
±

2
3
·1

0
3

s
(t

w
o

ti
m

e-
o
u
ts

).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4
searchtime[s]

t
y
f

pr
ob

le
m

s,
m

ax
Se

t,
tw

o
co

ns
tr

ai
nt

s

IN
C

R
.

10
de

c.
va

rs
.

T
im

e
ou

t

(e
)
In

c
r
e
m
e
n
t
a
l
,
t
y
f

p
ro

b
le

m
se

t,
tw

o
co

n
st

ra
in

ts
.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

t
y
f

pr
ob

le
m

s,
m

ax
Se

t,
tw

o
co

ns
tr

ai
nt

s

L
A

Z
Y

10
de

c.
va

rs
.

T
im

e
ou

t

(f
)

L
a
z
y
In

c
r
e
m
e
n
t
a
l
,
t
y
f

p
ro

b
le

m
se

t,
tw

o
co

n
-

st
ra

in
ts

.

F
ig

u
re

15
:

S
ea

rc
h

ti
m

es
fo

r
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

an
d
d
f
s

(l
ef

t)
,
In

c
r
e
m
e
n
t
a
l

(m
id

d
le

)
a
n

d
L
a
z
y
In

c
r
e
m
e
n
t
a
l

(r
ig

h
t)

fo
r
m
e
s

p
ro

b
le

m
se

t
(t

o
p

)
a
n

d
t
y
f

p
ro

b
le

m
se

t
(b

ot
to

m
),

in
th

e
m

a
x
S

e
t

se
tt

in
g

w
it

h
tw

o
co

n
st

ra
in

ts
.

J
it

te
r

a
d

d
ed

in
h

o
ri

zo
n
ta

l
d

ir
ec

ti
o
n

to
se

p
a
ra

te
d

a
ta

p
o
in

ts
.

47

8.3 Number of search tree node visits

mes tyf fas

problem set

0.0

0.5

1.0

1.5

2.0

fr
ac

ti
on

of
st

ra
te

gi
es

node visits as fraction
of total number of strategies,

for DFS, ϑ = 0.4, maxProb, one constraint

20 dec. vars.
10 dec. vars.

EXHAUSTIVESEARCH

Figure 16: Number of search tree node visits of
dfs (and thus Incremental and LazyIncre-
mental methods), divided by 2Nd : the number
of strategies that are evaluated by the Exhaus-
tiveSearch method.

The results in Chapter 8.2 show that the
dfs method tends to outperform the Exhaus-
tiveSearch method in terms of search time. In
Chapter 6 we discussed measures of search time
complexity for the different search algorithms.
The total number of evaluations of queries seems
a natural choice for this complexity measure.
However, using this measure, it is hard to com-
pare the performances of all strategies. The im-
plementation of the ProbLog Python library does
not allow the evaluation of single queries (one is
forced to always evaluate all), and with the re-
moval of temporary determinism by the Lazy-
Incremental method, counting the number of
evaluations consistently also gets more compli-
cated. We therefore use the number of visits to
nodes of the search tree as a measure for the com-
plexity in case of the DFS-based methods, and
compare that to the number of strategies that are
evaluated by the ExhaustiveSearch method.

Recall that the number of evaluations is pro-
portional to 2Nd for the ExhaustiveSearch ap-
proach. For the DFS-based algorithm (dfs,
Incremental and LazyIncremental), the
number of query evaluations is proportional to
the number of nodes in the search tree, or 2Nd+1, in the most naive implementation of a DFS-based
search. This means that the pruning of the search tree must be sufficiently efficient for the DFS-based
methods in order for them to generally be more efficient than the ExhaustiveSearch method in terms
of query evaluations. Recall that, because of the validity check optimisation (Chapter 6.2) the worst-case
number of evaluations done by DFS-based methods is also proportional to O

(
2Nd

)
. Therefore, we know

that if the number of visits to nodes in the search tree done by the DFS-based algorithms is at most
2Nd , the number of query evaluations is less or equal to the number of query evaluations done by the
ExhaustiveSearch method (in the worst-case limit).

Figure 16 shows for the three sets of example problems the value of n/2Nd : the number of visits to
search tree nodes (n), divided by the number of strategies for which ExhaustiveSearch needs to
evaluate queries 2Nd . It is shown for problems on twenty (mes and fas) and ten (tyf) decision variables,
for problems with one constraint with ϑ = 0.4. The dark line represents 2Nd/2Nd = 1. All data points on
or above this line correspond to problems for which DFS-based algorithms have to do as many query
evaluations as the ExhaustiveSearch method, in the worst case.

The figure shows that, for these problems, pruning is in most cases sufficient to suggest that the total
number of query evaluations is typically (much) smaller than the total number of strategies, and thus
that DFS-based methods would typically outperform ExhaustiveSearch on these problems.

8.4 Size of SDDs

Having shown that DFS-based search algorithms tend to perform fewer query evaluations in Chapter 8.3,
we move on to investigate the effectiveness of the search methods that are based on the incremental
compilation (during search) of small SDDs out of probabilistic variables only: Incremental and Lazy-
Incremental.

Mean and maximum sizes

Figures 14d and 14e show that Incremental solves problems of the tyf type more efficiently than
dfs. As we have seen in the SDD compilation results in Figure 5, the size of the largest SDD that
is compiled during the search may be a bottleneck for overall performance. We want to know if the
Incremental method does indeed compile SDDs solely out of probabilistic variables that are smaller

48

than the big SDD built out of both decision variables and probabilistic variables that is needed for the
ExhaustiveSearch and dfs methods.

Figure 17 shows for the Incremental search algorithm (Figure 17a) and the LazyIncremental al-
gorithm (Figure 17b) what the size is of the largest SDD that is built during the entire search process,
for a number of problem instances.

1 2 3 5 6 7 8 9 10

problem instance

100

101

102

103

104

105

106

107

si
ze

SDD sizes, ϑ = 0.4, tyf problems (10 dec. vars.)

big SDD1 (ES)
max SDD1 (INCR.)
mean SDD1

big SDD2 (ES)
max SDD2 (INCR.)
mean SDD2

(a) Incremental

1 2 3 5 6 7 8 9

problem instance

100

101

102

103

104

105

106

107

si
ze

SDD sizes, ϑ = 0.4, tyf problems (10 dec. vars.)

big SDD1 (ES)
max SDD1 (LAZY)
mean SDD1

big SDD2 (ES)
max SDD2 (LAZY)
mean SDD2

(b) LazyIncremental

Figure 17: Sizes of SDDs built during/for different search methods, for two different queries (1, the
constraint query, and 2, the optimisation query) and different instances of a tyf problem on ten decision
variables, in the maxProb setting, with one constraint with ϑ = 0.4. The big SDD is the SDD that is built
out of both probabilistic variables and decision variables for the ExhaustiveSearch and dfs methods.
The max SDD is the largest SDD that is compiled online out of solely probabilistic variables during the
execution of the Incremental (a) or LazyIncremental (b) search. The figures also show the size of
SDDs compiled during the execution of the Incremental and LazyIncremental incremental methods,
averaged over all visited nodes of the search tree. Missing instances are those whose search process was
timed out. All other sizes that are missing from the figures have value 0, and thus do not appear on a
graph with a logarithmic vertical axis.

Our first observation from Figure 17 is that the big SDD compiled out of both probabilistic and decision
variables for the ExhaustiveSearch and dfs methods is consistently about two orders of magnitude
larger than the largest SDD that is compiled out of solely probabilistic variables during the execution of
the Incremental algorithm. For problem instances 2, 3 and 9 we see that maximum size of the SDD
representing the optimisation query is zero. This last result is due to the fact that for the tyf example
problems, it is possible to have a probability of 1.0 that there is a path from the source to the target.
This can be represented by an SDD of size zero.

The second observation is that the mean sizes of SDD representing the two queries are not that much
smaller than the largest sizes. This is not a surprising result, since SDDs representing queries tend to get
larger near the leafs of the tree, and that is also where the most nodes visits take place, so the size of
the SDDs near the leafs dominates the average. Note that, as these SDDs are built incrementally, these
results do not imply that in each leaf a ‘large’ SDD is built from scratch.

Maximum size from root to leaf

Looking at Figure 17b, we see that the SDDs built by the LazyIncremental approach do indeed tend
to be smaller than the ones built by the Incremental algorithm. To further analyse this result, please
consider the data presented in Figure 18.

Each data point in the figure corresponds to a leaf of the search tree that was visited during a DFS-
based search for the solution to a typical example of a tyf problem on ten decision variables. Note that
in this context: a leaf is a node in the search tree that corresponds to a full strategy (so one at depth
Nd). I.e. internal nodes at which the search is pruned because the constraints were not satisfied are not

49

0 500 1000 1500 2000 2500 3000

size of largest SDD on path INCR.

0

500

1000

1500

2000

2500

3000

si
ze

of
la

rg
es

t
SD

D
on

pa
th

L
A

Z
Y

total #leafs: 124
total smaller: 85

Comparison of largest SDD size on path

constraint: p(x20,x10)
size in solution leaf

equal size

(a) Sizes of SDD representing the constraint query.

0 1000 2000 3000 4000

size of largest SDD on path INCR.

0

1000

2000

3000

4000

si
ze

of
la

rg
es

t
SD

D
on

pa
th

L
A

Z
Y

total #leafs: 124
total smaller: 108

Comparison of largest SDD size on path

optimisation: p(x20,x11)
size in solution leaf

equal size

(b) Sizes of SDD representing the optimisation query.

Figure 18: Comparison of largest SDD encountered on each path from root to leaf, by the Incremen-
tal method (horizontal axis) and the LazyIncremental method (vertical axis). Each point in the
graphs represents one path from root to leaf. Points on the diagonal correspond to paths where the
largest SDD built by the LazyIncremental method had the same size as the largest SDD built by the
Incremental method. The cross represents the leaf in which the solution to the SCOP was found. Jitter
is applied to data points in order to separate them, and the colour indicates the density of the data points
(red is denser than blue). Results for the constraint query (a) and the optimisation query (b) are shown
for problem instance 7 of the tyf problems on ten decision variables (maxProb setting with ϑ = 0.4).

included in this figure.
The figure plots the size of the largest SDD that was built along the path from the root of the search tree

to that particular leaf by the Incremental method (horizontal axis) and the LazyIncremental method
(vertical axis). Recall that both methods traverse the search tree in exactly the same way and thus visit
the same leafs. If the LazyIncremental method is successful at keeping the SDDs smaller than those
that are compiled by the Incremental algorithm, we expect data points below the diagonal in the plots.
If the LazyIncremental method is really good at keeping SDDs small, we expect many data points in
the lower right corner of the figures.

What we observe these figures is that the LazyIncremental method does indeed keep the largest
SDDs on paths from root to leaf generally smaller than the Incremental method does. Especially for the
optimisation query (Figure 18b) we see that in 108 out of 124 paths, the largest SDD that was compiled
by LazyIncremental was smaller than the largest one compiled by Incremental. Moreover, we see
that even for the largest SDDs compiled by the Incremental method, some of the SDDs compiled by
LazyIncremental are an order of magnitude smaller.

From the figures we can also conclude that the SDDs built in the solution leaf were not that large com-
pared to the largest SDDs built during the search. This important, because it means that a non-exhaustive
method, based on incrementally building SDDs, that uses local search guided by smart heuristics might
be a very effective one on these problems.

Appendix C contains some more examples of these figures that show slightly different behaviours. In
general we can state that LazyIncremental is most effective at keeping the SDDs small for the tyf

examples, and less so for the mes and fas types of problems.

50

9 Conclusion

In this work we used probabilistic logic programming (PLP) and constraint programming (CP) to solve
stochastic constraint optimisation problems (SCOPs) of a particular kind: problems that involve paths in
graphs whose edges are represented by probabilistic variables and/or decision variables. These problems
were encoded in ProbLog programs [13, 35]. Optimisation criteria were of the form P (path(a, b))→ max,
and constraints of the form P (path(a, c)) ≤ ϑ, with P (path(x, y)) the probability of there being a path
from x to y.

Naive methods for solving these types of problems use an initialisation phase to compile optimisation
and constraint queries to large sentential decision diagrams (SDDs) consisting of both probabilistic and
decision variables. After this initialisation phase, they perform a search (either based on enumeration for
the ExhaustiveSearch method or depth-first search (DFS) for the dfs method) over assignments to
decision variables to find the optimal strategy.

Because the compilation of such large SDDs is infeasible for all but the smallest problems, we pro-
posed two incremental methods that build smaller SDDs during the search process (and do not require the
building of SDDs during a preprocessing phase). The Incremental method builds SDDs out of proba-
bilistic variables only, in a manner that is reminiscent of TP -compilation [39]. The SDDs that are built by
Incremental are kept smaller because they contain probabilistic variables only, and their incremental
compilation is stopped once it becomes clear that constraints are being violated. The LazyIncremen-
tal method takes this concept a step further, by temporarily assuming that probabilistic variables are
in fact deterministically ‘true’, thus eliminating even more variables from the SDDs, and only reviewing
this assumption when constraints are being violated or an exact probability for the optimisation query
is required.

We have tested these methods on small example problems consisting of social networks with different
topologies and various types of probabilistic and decision variables. From these empirical results, we
conclude that the Incremental method outperforms the naive ExhaustiveSearch and dfs methods
on problems with certain characteristics. Specifically: problems for which it is possible to obtain proofs
for paths from a source node to a target node by assigning the value > (‘true’) to only one decision
variable (these are the tell-your-friends, or tyf, problems described in Chapter 5). For problem types
where sets of decision variables have to have value >, Incremental is outperformed by dfs. While the
LazyIncremental method proves to be effective in keeping SDDs smaller than the SDDs generated by
Incremental, the overhead is too large for LazyIncremental to outperform Incremental on any of
the problems that were tested, in terms of search time.

We observe that the SDDs that represent the queries for the strategy that is the optimal solution to
the problems, are typically kept relatively small by both the Incremental and the LazyIncremen-
tal methods. This indicates that, given the right heuristics and strategy, these incremental methods are
suitable for the development of greedy approximation algorithms.

Taking into consideration that the implementation for Incremental and LazyIncremental is very
naive, but they are effective in keeping SDDs small, we conclude that these methods have the potential
to be further developed into algorithms that outperform the naive methods on more different types of
examples. We expand on this in the next chapter.

51

10 Future work

As the empirical results presented in Chapter 8 indicate, the Incremental and LazyIncremental meth-
ods (have the potential to) outperform the naive ExhaustiveSearch and dfs methods on certain types
of SCOPs. Since these algorithms are still implemented rather naively, we propose the following lines of
enquiry for improving the efficiency of these methods:

1. More efficient updating of the SDD manager: no need to propagate changes to ancestors of a DAG
node if the corresponding formula has not changed its value.

2. Using heuristics to determine an order in which decision variables are assigned values, because the
order makes a difference for the number of search tree nodes that are visited and the size of the
SDDs that are compiled in those nodes.

3. Making Simple subset pruning (sssp) smarter.

4. Assigning truth values to groups of decision variables rather than individual variables.

5. Using heuristics to determine an order in which constraints are evaluated.

6. Using efficiently computable upper bounds for the optimisation query and/or efficiently computable
lower bounds for constraints to detect pruning opportunities more efficiently (for the maxProb
setting).

7. More efficient (partial) removal of temporary determinism from SDDs by taking into consideration
which probabilistic variables might actually contribute to the total probability of a query (based
on truth values of decision variable).

8. Developing better heuristics for determining the order in which temporarily deterministic variables
are reviewed.

9. Improving the order in which temporary determinism is removed from constraints.

10. Investigating how general inference techniques developed by the CP community can be used for the
development of more specific inference techniques for the kind of SCOPs studied in this work.

11. Implementing lifted inference techniques [5, 36] to improve efficiency.

All of these are improvements of the efficiency of the incremental algorithms presented in this work.
We also see opportunities for the development of variations on these methods:

1. Developing support for multi-optimisation problems.

2. Developing support for different optimisation settings (minProb and minSet).

3. Developing support for programs that use negation.

4. Developing support for programs that use (possibly negative) utilities next to probabilities.

5. Using local search or greedy search for approximate algorithms.

Finally, the integration of the developed incremental solving techniques with existing PLP languages
and CP solvers would provide availability of efficient implementations of the incremental algorithms for
solving SCOPs to anyone.

52

11 Acknowledgements

This work could not have been done without the support of professor Luc De Raedt, who welcomed me in
the DTAI group (Declaratieve Talen en Artificiele Intelligentie, or Declarative Languages and Artificial
Intelligence) at the Computer Science department of KU Leuven. I am grateful to him and to dr. Anton
Dries and dr. Angelika Kimmig for supervising me during the time I spent in Leuven.

I would also like to thank the other members of the department in general and the DTAI group in
particular for their hospitality. They have welcomed me more warmly into the group than I could ever
have expected.

This work was also supported by the Erasmus+ programme of the European Commission, which
awarded me a grant for my stay in Belgium.

At Leiden University I would like to thank dr. Jeannette de Graaf, dr. Marcello Bonsangue and professor
Aske Plaat. Their support during my time as a student at the Leiden Institute of Advanced Computer
Science (LIACS) was of great importance to me. In the same spirit, I would like to thank dr. Frank Takes
and professor Thomas Bäck for sparking my interest in the field of computer science in the first place,
and encouraging me to continue to give it my one hundred percent later on.

I would like to thank professor Peter Lucas and dr. Marcello Bonsangue for being my supervisors for
this project, and for their feedback and support.

Finally, I am very grateful to dr. Siegfried Nijssen. His trust, dedication, understanding, humour,
preciseness, creativity, sincerity and occasional kick-in-the-butt have been incredibly helpful during the
entire project.

Anna Latour, Leiden, December 21st, 2016

53

References

[1] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo,
and Fabio Somenzi. “Algebraic Decision Diagrams and Their Applications”. In: Proceedings of the
1993 IEEE/ACM International Conference on Computer-aided Design. ICCAD ’93. Santa Clara,
California, USA: IEEE Computer Society Press, 1993, pp. 188–191. isbn: 0-8186-4490-7.

[2] Chitta Baral and Matt Hunsaker. “Using the Probabilistic Logic Programming Language P-log
for Causal and Counterfactual Reasoning and Non-Naive Conditioning.” In: Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence. IJCAI’07. 2007, pp. 243–249.

[3] Mordechai Ben-Ari. Mathematical Logic for Computer Science. 3rd. Springer Publishing Company,
Incorporated, 2012. isbn: 1447141288, 9781447141280.

[4] Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn Prolog Now! 2006. url: http://
www.learnprolognow.org (visited on 04/2016).

[5] Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. “Lifted first-order probabilistic inference”.
In: Proceedings of the 19th international joint conference on Artificial intelligence. Citeseer. 2005,
pp. 1319–1325.

[6] Abraham Charnes and William W. Cooper. “Chance-Constrained Programming”. In: Management
Science 6.1 (1959), pp. 73–79.

[7] Mark Chavira and Adnan Darwiche. “On probabilistic inference by weighted model counting”. In:
Artificial Intelligence (2008).

[8] Arthur Choi and Adnan Darwiche. SDD Advanced-User Manual. English. Version 1.1. Automated
Reasoning Group, Computer Science Department of University of California, Los Angeles. Nov.
2013. 32 pp. November 7, 2013.

[9] Alain Colmerauer and Philippe Roussel. “The birth of Prolog”. In: History of programming languages—
II. ACM. 1996, pp. 331–367.

[10] Adnan Darwiche. “SDD: A new canonical representation of propositional knowledge bases”. In:
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. Vol. 2.
IJCAI’11 1. 2011, pp. 819–826.

[11] Adnan Darwiche and Pierre Marquis. “A Knowledge Compilation Map”. In: J. Artif. Int. Res. 17.1
(Sept. 2002), pp. 229–264. issn: 1076-9757.

[12] Luc De Raedt and Angelika Kimmig. “Probabilistic (logic) programming concepts”. In: Machine
Learning 100.1 (2015), pp. 5–47.

[13] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.” In: Proceedings of the Twentieth International Joint Conference on
Artifical Intelligence. Vol. 7. IJCAI’07. 2007, pp. 2462–2467.

[14] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. “Statistical Relational
Artificial Intelligence: Logic, Probability, and Computation”. In: Synthesis Lectures on Artificial
Intelligence and Machine Learning 10.2 (2016), pp. 1–189.

[15] DTAI Research Group. ProbLog 2.1 manual. English. KU Leuven. 2016.

[16] KU Leuven DTAI Research Group. ProbLog Python library. https://bitbucket.org/problog/
problog. Version 2.1. 2015–2016.

[17] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. “Inference and learning in probabilistic logic programs
using weighted Boolean formulas”. In: Theory and Practice of Logic Programming 15 (03 May
2015), pp. 358–401. issn: 1475-3081.

[18] Solomon W. Golomb and Leonard D. Baumert. “Backtrack programming”. In: Journal of the ACM
(JACM) 12.4 (1965), pp. 516–524.

[19] KU Leuven DTAI Research Group. ProbLog tutorial: Social networks (Friends & Smokers). https:
//dtai.cs.kuleuven.be/problog/tutorial/basic/05_smokers.html. 2015.

[20] Kristian Kersting and Luc De Raedt. “Basic principles of learning Bayesian logic programs”. In:
Probabilistic Inductive Logic Programming. Springer, 2008, pp. 189–221.

54

http://www.learnprolognow.org
http://www.learnprolognow.org
https://bitbucket.org/problog/problog
https://bitbucket.org/problog/problog
https://dtai.cs.kuleuven.be/problog/tutorial/basic/05_smokers.html
https://dtai.cs.kuleuven.be/problog/tutorial/basic/05_smokers.html

[21] Alan K. Mackworth and Eugene C. Freuder. “The complexity of some polynomial network consis-
tency algorithms for constraint satisfaction problems”. In: Artificial intelligence 25.1 (1985), pp. 65–
74.

[22] Knot Pipatsrisawat and Adnan Darwiche. “A Lower Bound on the Size of Decomposable Negation
Normal Form”. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.
AAAI’10. Atlanta, Georgia: AAAI Press, 2010, pp. 345–350.

[23] David Poole. “Representing Diagnostic Knowledge for Probabilistic Horn Abduction”. In: Proceed-
ings of the Twelfth International Joint Conference on Artificial Intelligence. Vol. 2. IJCAI’91. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1991, pp. 1129–1135.

[24] David Poole. “The Independent Choice Logic and Beyond”. In: Probabilistic Inductive Logic Pro-
gramming: Theory and Applications. Springer Berlin Heidelberg, 2008, pp. 222–243.

[25] David Poole. “The independent choice logic for modelling multiple agents under uncertainty”. In:
Artificial Intelligence 94.1 (1997), pp. 7 –56.

[26] Matthew Richardson and Pedro Domingos. “Markov Logic Networks”. In: Mach. Learn. 62.1-2
(Feb. 2006), pp. 107–136.

[27] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming. Elsevier,
2006.

[28] Dan Roth. “On the Hardness of Approximate Reasoning”. In: vol. 82. 1-2. Essex, UK: Elsevier
Science Publishers Ltd., 1996, pp. 273–302.

[29] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3rd Edition). 3rd ed.
Prentice Hall, Dec. 2009.

[30] Nikolaos V. Sahinidis. “Optimization under uncertainty: state-of-the-art and opportunities”. In:
Computers & Chemical Engineering 28.6–7 (2004). FOCAPO 2003 Special issue, pp. 971–983.

[31] Taisuke Sato. “A Statistical Learning Method for Logic Programs with Distribution Semantics”.
In: IN PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LOGIC PRO-
GRAMMING (ICLP95). MIT Press, 1995, pp. 715–729.

[32] Taisuke Sato and Yoshitaka Kameya. “Parameter learning of logic programs for symbolic-statistical
modeling”. In: Journal of Artificial Intelligence Research 15 (2001), pp. 391–454.

[33] Taisuke Sato, Neng-Fa Zhou, Yoshitaka Kameya, and Yusuke Izumi. PRISM. http://rjida.

meijo-u.ac.jp/prism. Version 2.2. 2016.

[34] Afany Software. B-Prolog. www.picat-lang.org/bprolog. Version 8.1. 2014.

[35] Guy Van den Broeck, Ingo Thon, Martijn Van Otterlo, and Luc De Raedt. “DTProbLog: A decision-
theoretic probabilistic Prolog”. In: Proceedings of the twenty-fourth AAAI conference on artificial
intelligence. AAAI Press. 2010, pp. 1217–1222.

[36] Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt. “Lifted
probabilistic inference by first-order knowledge compilation”. In: Proceedings of the Twenty-Second
international joint conference on Artificial Intelligence-Volume Volume Three. AAAI Press. 2011,
pp. 2178–2185.

[37] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. “Logic programs with annotated dis-
junctions”. In: International Conference on Logic Programming. Springer. 2004, pp. 431–445.

[38] Fabien Viger and Matthieu Latapy. “Efficient and Simple Generation of Random Simple Connected
Graphs with Prescribed Degree Sequence”. In: Computing and Combinatorics: 11th Annual Inter-
national Conference, COCOON 2005 Kunming, China, August 16–19, 2005 Proceedings. Ed. by
Lusheng Wang. Springer Berlin Heidelberg, 2005, pp. 440–449.

[39] Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt.
“Anytime inference in probabilistic logic programs with Tp-compilation”. In: IJCAI’15 (2015).

[40] Toby Walsh. “Stochastic constraint programming”. In: ECAI. Vol. 2. 2002, pp. 111–115.

55

http://rjida.meijo-u.ac.jp/prism
http://rjida.meijo-u.ac.jp/prism
www.picat-lang.org/bprolog

List of Symbols

A SDD array: contains for each node in a DAG a pointer to the root of an SDD in the
SDD manager.

B Set of Booleans: {>,⊥}.

C Choice mapping some decision variables d in DF to truth values: {(d 7→ b) | b ∈ B}.
C Set of (f, ϑ) pairs (generally) representing constraints of the form P (f) ≤ ϑ.

D Set of decision clauses or decision variables in a logic program.
DF Set of decision clauses or decision variables in a logic program that are relevant to

formulas in F .
d Decision variable.
δ Depth in search tree (root has depth 0).
DT Decision theoretic probabilistic logic program.

⊥ Truth value ‘False’.
F Set of logic formulas.
fc Logic formula corresponding to a constraint query qc. Depending on context, fc may

also refer to the (root of the) compiled SDD or DAG that represents qc.
fo Logic formula corresponding to an optimisation query qo. Depending on context, fo

may also refer to the (root of the) compiled SDD or DAG that represents qo.

I Interpretation of a set of logic formulas F , mapping atoms in F to truth values:
{a 7→ b | a ∈ f, f ∈ F , b ∈ B}.

L Logic program {c1, . . . , cn}, with ci a clause.
LT Set of all logic programs L that can be sampled from probabilistic logic program T .

µs Mean search time.

Nc Number of constraints.
Nd Number of relevant decision variables: |DF |.
No Number of optimisation criteria.
Np Number of relevant probabilistic variables: |PF |.
Nq Total number of queries: No +Nc.
Nv Total number of probabilistic and decision variables: Np +Nd.

P Set of probabilistic clauses or probabilistic variables in a logic program.
PF Set of probabilistic clauses or probabilistic variables in a probabilistic logic program

that are relevant to formulas in F .

Q Queue of nodes in a DAG that need to be updated during the execution of the
Incremental or LazyIncremental method.

q Query to (probabilistic) logic program.

S Set of strategies σ.
σ Strategy mapping decision variables to truth values: {(d 7→ b) | d ∈ D , b ∈ B}. For

shortness sometimes given as set of all decision variables that map to >.
σ⊥ Set of all decision variables in strategy σ that map to ⊥: {d | (d 7→ ⊥) ∈ σ}.
σs Standard deviation of search time.
σ> Set of all decision variables in strategy σ that map to >: {d | (d 7→ >) ∈ σ}.
M SDD manager: an object containing several (sub) SDDs that represent formulas.

56

T Probabilistic logic program {(p1, c1), . . . , (pn, cn)} with pi the probability of clause
ci.

> Truth value ‘True’.
θ Substitution {x1/t1, . . . , xn/tn}.
ϑ Threshold for probabilistic constraint.
ts Search time.

List of Acronyms

sssp Simple subset pruning.
fas friends-and-smokers.
mes messages.
tyf tell-your-friends.

ADD Algebraic Decision Diagram.

CCOP Chance-Constrained Optimisation Problem.
COP Constraint Optimisation Problem.
CP Constraint Programming.
CSP Constraint Satisfaction Problem.

DAG (AND/OR) Directed Acyclic Graph.
DFS Depth-First Search.
DNF Disjunctive Normal Form.

ICL Independent Choice Logic.

KB Knowledge Base.

MLN Markov Logic Network.

OBDD Ordered Binary Decision Diagram.

PLP Probabilistic Logic Programming.

SCOP Stochastic Constraint Optimisation Problem.
SDD Sentential Decision Diagram.

WMC Weighted Model Count.

57

A An introduction to logic

In this chapter we give a basic introduction in propositional logic (Boolean operators and atoms) and
first-order logic (reasoning with Boolean operators, quantifiers, relations, predicates and sets of atoms).
This chapter is based on Mathematical Logic for Computer Science, Mordechai Ben-Ari [3]. Here we
introduce some of the logical concepts that are relevant for this work. For a detailed discussion on the
exact logical rules or proofs of theorems, consult for example Ben-Ari’s work.

This chapter serves mainly as a reference for some of the concepts that are used throughout the rest
of this work, and can be consulted if short descriptions in the list of symbols are not sufficient.

A.1 Propositional logic

We introduce propositional logic formulas, interpretations, models and truth tables.

Propositional logic formulas

Table 4: Boolean operators in propositional logic,
with their type and order of precedence (lower
means stronger binding).

Operator Symbol Type Order

negation ¬ unary 1
conjunction ∧ binary 2
disjunction ∨ binary 3

nand ↑ binary 2
nor ↓ binary 3

implication → binary 4
equivalence ↔ binary 5
exclusive or ⊕ binary 5

A formula in propositional logic consists of atomic
propositions, or atoms, and Boolean operators.
Atoms are typically written as lowercase letters,
such as p, q and r. The two constants, True and
False, are also atoms and written as > and ⊥, re-
spectively. We denote the set of all atomic proposi-
tions as P. Atomic propositions can be assigned a
meaning. For example: we might assign the mean-
ing ‘Spock is a Vulcan’ to the symbol p, ‘Spock is
a Borg’ to q and ‘Spock acts rationally’ to r. We
can combine the atomic propositions to formulas
using the Boolean operators given in Table 4.

Boolean operators can be applied to both atoms
and formulas. For example, we can conjoin atoms
p and q to p ∨ q, and then create an implication:
(p∨ q)→ r (which may also be written as p∧ q →
r, because of the order of precedence of Boolean
operators). With the Vulcan example above, this
has the meaning:

Spock is a Vulcan ∨ Spock is a Borg → Spock acts rationally,

which is read as ‘If Spock is a Vulcan or Spock is a Borg, then Spock acts rationally.’ Note that this
is a declarative sentence: a sentence that is either true or false, and thus different from a sentence like
‘Who is this Spock person, anyway?’ We use propositional logic for constructing declarative sentence, or
formulas. We denote the set of all logical formulas that can be constructed using the atomic propositions
in P and the Boolean operators in Table 4 with F .

Note that the first three operators in Table 4 are fundamental, and all the other ones can be expressed
in terms of the first three. For example, we can write a → b as ¬a ∨ b. We say that these two formulas
are logically equivalent, which means that the one can be substituted for the other without changing the
meaning of what was written. Logical equivalence is denoted with ≡. In our example: a→ b ≡ ¬a ∨ b.

Interpretations of (sets of) formulas

We can use a set of formulas S = {A1, . . .} to describe a world for which exactly that set of formulas
holds. An interpretation IS of S maps each atom in the union of sets of atoms of formulas in S to a
truth value in {>,⊥} = B. Now for any Ai ∈ S, vIS (Ai) represents the truth value of Ai under S.

Suppose we have set of formulas S = {p, q, r, p ∨ q, p ∨ q → r} such that S ⊆ F , with interpretation

58

IS(p) = >, IS(q) = ⊥ and IS(r) = >, then the truth values of the formulas under IS are:

vIS (p) = IS(p) = >
vIS (q) = IS(q) = ⊥
vIS (r) = IS(r) = >
vIS (p ∨ q) = >
vIS (p ∨ q → r) = >

Note that the equivalence operator and logical equivalence are related, but different. Particularly, it
holds that A1 ≡ A2 if and only if A1 ↔ A2 is true in every interpretation, for A1, A2 ∈ F .

Models and truth tables

If, for a certain interpretation IS , it holds that vIS (Ai) = > for each Ai ∈ S, the interpretation is called
a model of S. If there exists a model for a set of propositional logic formulas S, we call this set satisfiable.
An example of a satisfiable set of propositional logic formulas is {a, b}. If all interpretations for S are
models of S, we say that S is valid or that S is a tautology. An example of a valid set of formulas is
{a∨¬b}. We denote the fact that S is valid as |= S. If a set of formulas has no models, that set is called
unsatisfiable. An example of an unsatisfiable set is {a,¬b}. Finally, if there exist interpretations for which
not all logical formulas in S have truth value >, S is falsifiable, denoted 6|= S. An example of a falsifiable
set of formulas is {a, b}. These terms are also used for individual formulas, rather than sets of formulas.

Table 5: A truth table for p ∨ q → r.

p q r p ∨ q p ∨ q → r

> > > > >
> > ⊥ > ⊥
> ⊥ > > >
> ⊥ ⊥ > ⊥
⊥ > > > >
⊥ > ⊥ > ⊥
⊥ ⊥ > ⊥ >
⊥ ⊥ ⊥ ⊥ >

Let S ⊆ F be a set of formulas and A ∈ F a particular
formula. If every model for S is also a model for A, we say that
A is a logical consequence of S, denoted S |= A.

We can analyse the models of (sets of) formulas by creating
truth tables, such as the one shown in Table 5. In this table, we
write down each possible interpretation for the atoms in {p, q, r},
and compute the truth value for the formula p ∧ q → r.

A.2 First-order logic

We now continue with a short introduction to first-order logic, a
generalisation of propositional logic. We will start by explaining
this generalisation, then discuss the concept of interpretation
for first-order logic, and finally have some notes on the subject
of substitution.

Functions in formulas

Recall the example about Spock and acting rationally. Spock is
not the only member of the Star Trek cast we might want to consider: Tuvok is another character who
might act rationally. Suppose we have a Star Trek set of propositional logic sentences that looks like this:

{Spock is a Vulcan ∨ Spock is a Borg → Spock acts rationally}.

Now we want to expand this set by adding information about Tuvok, so we obtain:

{Spock is a Vulcan ∨ Spock is a Borg → Spock acts rationally,

Tuvok is a Vulcan ∨ Tuvok is a Borg → Tuvok acts rationally}.

Now we want to include other information about Vulcans and Borgs, which yields the following set:

{Spock is a Vulcan ∨ Spock is a Borg → Spock acts rationally,

Tuvok is a Vulcan ∨ Tuvok is a Borg → Tuvok acts rationally,

Vulcans can do mind-melds ∧ Spock is a Vulcan → Spock can do mind-melds,

Vulcans can do mind-melds ∧ Tuvok is a Vulcan → Tuvok can do mind-melds,

Borgs can assimilate ∧ Spock is a Borg → Spock can assimilate,

Borgs can assimilate ∧ Tuvok is a Borg → Tuvok can assimilate}

(20)

59

Our Star Trek set of propositional formulas will expand rapidly any time we add new information about
particular characters, or about Vulcans or Borgs in general to our set. We can encode the same information
more efficiently using first-order logic.

Where we needed the sentences ‘Spock is a Vulcan’ and ‘Tuvok is a Vulcan’ to express the facts that
Spock and Tuvok are Vulcans in propositional logic, we use a predicate to express the same information
in first-order logic:

isa(Spock, Vulcan),

isa(Tuvok, Vulcan).

A predicate is a function that maps an n-ary domain (in this case the binary domain of characters from
the Star Trek cast and humanoids from the Star Trek universe) to truth values. In this case, isa(Spock,
Vulcan) maps to > because Spock is a Vulcan, whereas isa(Picard, Vulcan) would map to ⊥, because
captain Picard is not.

The improvement in compactness comes from the fact that we can now use variables to express rules,
which enables us to write down the rules of (20) more compactly as:

{isa(X, Vulcan) ∨ isa(X, Borg) → actsRationally(X),

canDoMindMelds(Vulcan) ∧ isa(X, Vulcan) → canDoMindMelds(X) ,

canAssimilate(Borg) ∧ isa(X, Borg) → canAssimilate(X) .}

Herbrand interpretations

Note that the use of function in formulas makes it harder to define the set of all possible interpretations
for those formulas. This is partly due to the fact that the domain of the interpretation is not immediately
clear.

Where an interpretation in propositional logic simply takes the set of constants (such as q or ‘Spock
is a Vulcan’) in a formula as its domain, first-order logic needs the concept of an Herbrand universe. The
Herbrand universe HS of a set of formulas S is constructed recursively and contains:

� each constant a ∈ A, with A the set of all constants that occur in formulas in S;

� each function symbol f ∈ F , with F the set of all function symbols that occur in formulas in S;

� all terms that can be derived by recursively applying functions to elements in the Herbrand universe.

In other words: a Herbrand universe is the set of all ground atoms that can be generated recursively using
the predicates, functions and constants in S. Here a formula is called ‘ground’ if it contains no variables.

Now the Herbrand interpretation of a set of formulas is defined as follows:

I = {HS , {R1, . . . , Rk}, {f1, . . . , f`},A},

with {R1, . . . , Rk} arbitrary relations over the domain HS and {f1, . . . , f`} functions over variables in
domain HS , such that assignments in I are as follows:

vI (a) = a,

vI (f(t1, . . . , tn)) = f (vI (t1), . . . , vI (tn)) .

In other words: in an Herbrand interpretation, constant symbols are interpreted as the constants they rep-
resent, and function symbols are interpreted as the functions they represent. Note that an interpretation
only contains ground expressions.

Substitutions

In this work, we use the concept of substitution in different contexts. For example, we use it in the expla-
nation of SLD-resolution in Chapter 3.2 when variables are substituted for constants. We also use it in
Chapters 6.3 and 6.4 to describe the formulas for which the Incremental and LazyIncremental al-
gorithms build SDDs.

A substitution θ = {x1/t1, . . . , xn/tn} maps each variable xi to a term ti that is not identical to xi.
When applied to an expression f , which is written as fθ, all xi that occur in f are instantaneously
replaced by their corresponding ti. This instantaneous substitution means that if ti is identical to some
xj in θ, xi is not replaced by tj , but simply by ti.

60

B An introduction to knowledge compilation

Knowledge compilation is a way of handling computational intractability in propositional reasoning.
The computational complexity is concentrated in an off-line phase in which propositional formulas are
compiled into a target language that allows for polytime querying in the on-line phase of the problem
solving. [11]

In this chapter we provide an introduction to ordered binary decision diagrams (OBDDs) and sentential
decision diagrams (SDDs), but first we discuss a more naive way of visualising propositional formulas:
AND/OR directed acyclic graphs (DAGs).

B.1 AND/OR DAGs

Consider the directed probabilistic graph and its (decision theoretic) probabilistic logic program in Fig-
ure 19, and consider all the simple paths (no loops) from a to b. These can be expressed in the following
logical formula:

pab =[dab ∧ eab]∨
([dac ∧ eac] ∧ [dcb ∧ ecb])∨
([dad ∧ ead] ∧ ([ddb ∧ edb] ∨ ([ddc ∧ edc] ∧ [dcb ∨ ecb]))) ,

(21)

where pab is a Boolean variable indicating if there is a path from a to b, duv is a Boolean (decision)
variable indicating if the edge (u, v) is ‘allowed’ to exist, and euv is a (probabilistic) Boolean variable
corresponding to the edge() predicate in Figure 19 that is true with a certain probability.

?::d(a,b).

?::d(b,c).

?::d(a,c).

?::d(a,d).

?::d(c,b).

?::d(d,b).

?::d(d,c).

0.4::edge(a,b).

0.8::edge(b,c).

0.5::edge(a,c).

0.9::edge(a,d).

0.7::edge(c,b).

0.3::edge(d,b).

0.2::edge(d,c).

connection(X,Y) :- edge(X,Y), d(X,Y).

path(X,Y) :- connection(X,Y).

path(X,Y) :- connection(X,Z), path(Z,Y).

query(path(a,b)).

query(path(a,c)).

b a

c

d

0.8

0.4

0.5

0.9

0.7

0.3

0.2

Figure 19: A program representing a network in which each query is represented by a probabilistic variable
and a decision variable. Queries to the existence of at least one path from a to b and at least one from a
to c are included.

Note that some of the Boolean variables occur more than once in this formula, so the formula could
be represented more compactly. A way to do that, is to compile the formula into an AND/OR graph, an
example of which is shown in Figure 20.

61

Figure 20: The AND/OR DAG corresponding to the queries in the program of Figure 19.

In fact Figure 20 shows the AND/OR DAGs for both queries in the program of Figure 19. It is simply
a visualisation of Boolean logic formulas.

The size of an AND/OR DAG is defined as the number of its nodes. Thus, the DAG shown in Figure 20
has size 31.

Note that in the particular implementation of ProbLog used for this work, the DAGs get slightly larger
due to the fact that cycle breaking to keep paths simple happens in the compilation phase rather than
in the ProbLog program itself. This choice was made because the compilation of ProbLog programs that
only allow simple paths is extremely slow due to the usage of Prolog lists.

B.2 Ordered Binary Decision Diagrams

Recall the truth table in Table 5, Appendix A.1. Note that, in order to list all possible interpretations
explicitly, the number of rows doubles with each addition of a new variable. A more compact and intuitive
way of encoding the same information is to convert it to a decision diagram. In a decision diagram each
node corresponds to an atom and each branch corresponds to either choosing that atom to be true, or
choosing it to be false. The leaves of the tree correspond to the truth value of the formula under the
interpretation that is obtained by following the choices made in the path from root to leaf.

An example is shown in Figure 21a. Decision trees can grow quite large, as the total number of nodes in
the tree is

∑n
i=0 2i, with n the number of variables in the formula. We can represent the same information

more space efficiently by converting the decision tree in an OBDD. An example of the algorithm for turning
a decision tree into an OBDD is shown in Figure 21.

In general, we can apply two rules:

1. Merge isomorphic nodes (nodes labelled vi whose low branches point to nodes labelled vj and whose
high branches point to nodes labelled vk);

2. Remove each node whose outgoing edges point to the same child, connecting the branch that pointed
from the node’s parent to that node to the node’s child.

We apply whichever rule can be applied, until no rules can be applied any more.
For our example, observe that in Figure 21a, we have leafs with values > and ⊥ their outgoing branches

point to the same subdiagrams (they don’t have any outgoing branches, so this is automatically true), so
we can apply rule 1 and merge all leafs with the same values. Doing so yields the diagram in Figure 21b.
Now we see that both outgoing branches of the left r-node point to the >-node. The value for r chosen
on that particular path from root to leaf therefore has no influence on the end result. We can thus apply
rule 2 and remove this node, obtaining the diagram in Figure 21c. Now we see that we have three r-nodes
whose outgoing branches point to the same subdiagrams (the negative branch pointing to the ⊥-leaf and
the positive branch to the >-leaf). These r-nodes are therefore isomorphic, and we can apply rule 1 again,

62

p

q q

r r r r

> > > > >⊥ ⊥ ⊥

(a) A decision tree for the formula p ∨ q → r.

p

q q

r r r r

> ⊥

(b) Merge leafs that have the same value.

p

q q

r r r

> ⊥

(c) Remove nodes that do not add any
information.

p

q q

r

> ⊥

(d) Merge isomorfic nodes.

p

q

r

> ⊥

(e) An OBDD for the formula p ∨
q → r.

Figure 21: Turning a decision tree (a) for the formula p ∧ q → r into an ordered binary decision diagram
(e). Internal nodes represent atoms. Solid branches (high branches) represent the choice that the atom
has truth value >, dashed branches (low branches) represent the choice that the atom has truth value
⊥. The child of a node pointed to by its low (high) branch is called the low (high) child. A path from
root to leaf corresponds to an interpretation. The leafs show the truth values for p ∨ q → r under the
interpretations, and correspond to the values in the truth table of Table 5.

obtaining the diagram in Figure 21d. Applying rule 2 one more time yields the OBDD in Figure 21e. We
have reduced a binary decision tree with fifteen nodes to an OBDD with only five.

Note that the word order is of importance here. For this algorithm to work, the order in which the
variables are encountered in a path from root to leaf in the decision tree should be the same for all those
paths. Different orders yield different OBDDs, with different levels of compression.

B.3 Sentential Decision Diagrams

Sentential decision diagrams (SDDs) [10] can be seen as a generalisation of OBDDs, in the sense that
they are canonical, can be constructed using rules similar to the rule for constructing OBDDs and that
any OBDD is also an SDD. While an OBDD can only branch on the truth value of individual variables,
an SDD can branch on the truth values of logical sentences (formulas). Here we briefly introduce a few
basic concepts regarding SDDs. For a more detailed discussion, see Darwiche’s work [10].

An SDD is a data structure for Boolean formulas that is based on two concepts: that of (X,Y)-
decomposition of Boolean formulas and that of vtrees corresponding to those formulas.

63

Definition 2. Consider a Boolean function f (X,Y) with X and Y sets of variables such that X∩Y =
∅. If f = (p1(X) ∧ s1(Y)) ∨ . . . ∨ (pn(X) ∧ sn(Y)), then {(p1, s1), . . . , (pn, sn)} is called an (X,Y)-
decomposition of f . Each ordered pair (pi, si) is called an element of the decomposition, where pi is called
a prime and si a sub. If pi ∧ pj = ⊥ for i 6= j, the decomposition is called strongly deterministic on
X. [10, 22]

SDDs use a more structured type of decomposition:

Definition 3. Let α = {(p1, s1), . . . , (pn, sn)} be a (X,Y)-decomposition of a function f . Now α is
called an X-partition of f iff: [10]

1. each prime pi is consistent (pi 6|= ⊥);

2. every pair of primes are mutually; exclusive

3. the disjunction of all primes is valid (
∨
i pi |= >).

Observe that by the first condition in definition 3,⊥ can never be a prime, and that by the second, if> is
a prime, it is the only one. It can also be shown that, if ◦ is a Boolean operator and {(p1, s1), . . . , (pn, sn)}
and {(q1, r1), . . . , (qm, rm)} are X-partitions of f(X,Y) and g(X,Y), then {(pi∧ qj , si ◦ rj) | pi∧ qj 6= ⊥}
is an X-partition of g ◦ f . [10] This accounts for a lot of the properties of SDDs.

To create OBDDs, we have to define an order on the variables. SDDs use a generalisation of the concept
of order: they are based on vtrees. A vtree is a full binary tree with variables in the leafs, each variable
occurring only once. In vtrees there is a strict difference between the left child of a node and its right
child. Loosely speaking: a node nSDD in an SDD is said to respect a node nv in a vtree, if the formula f
that is represented by nSDD is decomposed in such a way that:

� all the variables that occur in primes of the decomposition of f occur in the subtree rooted at the
left child of nv, and

� all the variables that occur in subs of the decomposition of f occur in the subtree rooted at the
right child of nv. [10]

6

2 5

0 1 3 4
q p s r

(a) A vtree for variables p,
q, r and s. Numbers simply
represent node labels.

6

> r ¬q

2 2 5

q p ¬q ⊥ q ¬p s r ¬s ⊥

terminals

(b) An SDD for (p∧ q)∨ (q∧ r)∨ (r∧ s), respecting
the vtree in (a).

q

r r

s p

⊥ >

(c) An OBDD for (p ∧ q) ∨
(q ∧ r) ∨ (r ∧ s), with order
q < r < p < s.

Figure 22: A vtree defining an order on variables p, q, r and s (a). The nodes in the SDD in (b) representing
logic formula (p ∧ q) ∨ (q ∧ r) ∨ (r ∧ s) and respecting this vtree, are labelled with the nodes in the vtree
that they respect. A corresponding OBDD is shown in (c). Example from Darwiche [10].

An example of a vtree is shown in Figure 22a. Figure 22b shows an SDD for the logic formula (p ∧
q) ∨ (q ∧ r) ∨ (r ∧ s) that respects the vtree in Figure 22a. A node nSDD of the SDD is shown as a circle
and is labelled with the vtree node nv that it respects. Node nSDD’s outgoing edges lead to recursively
defined decompositions, for which the variables in the primes are elements of the subtree rooted at the
left child of nv and the variables in the subs are elements of the subtree rooted at the right child of nv.

Recalling the definition of a decomposition, we see for example that node 5 in Figure 22b represents
the logical formula (s ∧ r) ∨ (¬s ∧ ⊥) = s ∧ r.

A corresponding OBDD is shown in Figure 22c. For OBDDs the size of the OBDD depends on the
order that was chosen. The same holds for SDDs: a different vtree typically yields a different SDD. The
size of an SDD is determined by its number of nodes and the number of children of those nodes. The size

64

of a single node is equal to its number of children. The SDD in Figure 22b has four nodes, three of which
have two children and one of which has three children. Decompositions have size zero, as do terminal
nodes5. This brings the total size of the SDD to 2 + 2 + 2 + 3 = 9. [8]

Note that more than one formula can be turned into an SDD at the same time. In that case, a diagram
is created with more than one root, where each root represents a logic formula, similar to the way that
different formulas are represented in the single DAG in Figure 20. The SDD representing one particular
formula may share nodes with other SDDs. The size of a single SDD is simply that of the part of the
diagram that consists of the root of that SDD and all its descendants. The size entire diagram (or the
SDD manager) is simply the sum of the sizes of all its nodes. As with OBDDs, redundancy is removed
from SDDs where possible.

5Terminal nodes are either (negations of) single variables or constants (>, ⊥). In Figure 22b they are shown seperately,
but in the SDD implementation used for this work, they are not redundantly present. [8]

65

C More experimental results

In this chapter we present and discuss some more of our experimental results, complementing those
presented in Chapter 8.

Search time results for fas problems

We start with the search time results for the fas problem set. Figure 23 shows the search times for fas

problems on twenty and thirty decision variables for maxProb optimisation problems with one and three
constraints.

Looking at Figure 23, we immediately observe that our prediction (Chapter 7.3) that there is a certain
window of values for ϑ for which problems are hard to solve for the DFS-based methods. In this window,
little sssp can be performed (other than for high values for ϑ, or loose constraints) and little pruning
based on violated constraints (as happens for low values for ϑ, or strict constraints). We also note that
search times tend to be larger for problems with three constraints than for problems with one constraint
(Figures 23a and 23d), with differences up to several orders of magnitude in case of the Incremental and
LazyIncremental methods.

The results for fas problems in the maxSet optimisation setting are shown in Figure 24 do not
show any surprising results. Search times generally are lower for maxSet problems than for maxProb
problems, just like we saw for mes and tyf in Chapter 8.2. We continue with more results on the sizes of
the SDDs that are compiled during search by the incremental algorithms.

SDD sizes from root to leaf

Consider the result in Figure 25. This figure shows the same largest SDD from root to leaf comparison
as Figure 18 in Chapter 8.4, but for an instance of the fas problems on twenty decision variables that
is a typical representative of these problems. We observe two mayor points in which these results differ
from the ones shown in Figure 18. One is that, for fas problems, LazyIncremental seems to not build
smaller SDDs than Incremental on some queries (like the one in Figure 25a). The other one is that only
for tyf problems, we observe the data point representing the solution leaf to appear under the diagonal,
rather than on the diagonal. We will address these two observations in order.

When LazyIncremental does not keep SDDs smaller

Consider the results shown in Figure 25 for the largest size of an SDD built on a path from root to leaf
in the search tree (where we only consider leafs that correspond to full strategies, not nodes where the
search was pruned because a partial strategy violated a constraint).

We see that a smaller fraction of the largest SDDs is smaller for LazyIncremental than for Incre-
mental than with the results for the tyf problem in Figure 18. We also see a difference in behaviour
for the constraints. Specifically, we see that the largest sizes of the SDD representing the first constraint
query (Figure 25a) are exactly the same for both algorithms. For the second constraint query (Figure 25b),
some SDDs are smaller for the LazyIncremental method than for the Incremental method, although
the differences are but small. The largest number of SDDs that is below the diagonal is found for the
optimisation query (Figure 25d), although again the differences are not very large. We also see that the
SDD for the optimisation query that is built for the solution to the problem is relatively large. Finally
observe that most data points in Figures 25a, 25b and 25d are located in the lower left corner: there
where the SDDs are smallest.

We can explain the behaviour shown in the sizes of the three constraints as follows. Recall that
the LazyIncremental algorithm first removes determinism from the first constraint, until it is either
satisfied or does not contain any temporary determinism any more. The results in Figure 25 can be
explained by the fact that it apparently is necessary to remove all determinism from the first constraint.
Then, if it is found to be violated, it is no longer necessary to perform the same procedure for the
other constraints, so they may remain smaller during the execution of the LazyIncremental algorithm
than during that of the Incremental method. The reason that all temporary determinism needs to be
removed from the SDD for first constraint is as follows. The first constraint is P (smokes(x1)) ≤ 0.4.
Node x1 has two neighbours in the graph underlying the problem of Figure 25: x0 and x6. If the decision
variables d01 and d61 representing the incoming edges of x1 are chosen to be >, the probability that the

66

0.10

0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.60

0.70

0.80

0.90

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]
f
a
s

pr
ob

le
m

s,
m

ax
P

ro
b,

on
e

co
ns

tr
ai

nt

D
F

S
30

de
c.

va
rs

.
D

F
S

20
de

c.
va

rs
.

T
im

e
ou

t
µ
s

(E
S
)

20
de

c.
va

rs
.

(a
)
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

a
n
d
d
f
s,

f
a
s

p
ro

b
le

m
se

t,
o
n
e

co
n
st

ra
in

t,
µ
s

(e
s)

=
1
.1
±

0
.3
·1

0
3

s.

0.10

0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.60

0.70

0.80

0.90

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

f
a
s

pr
ob

le
m

s,
m

ax
P

ro
b,

on
e

co
ns

tr
ai

nt

IN
C

R
.

30
de

c.
va

rs
.

IN
C

R
.

20
de

c.
va

rs
.

T
im

e
ou

t

(b
)
In

c
r
e
m
e
n
t
a
l
,
f
a
s

p
ro

b
le

m
se

t,
o
n
e

co
n
st

ra
in

t.

0.20
0.25
0.30
0.35
0.40
0.45
0.50

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

f
a
s

da
ta

se
t,

m
ax

P
ro

b,
on

e
co

ns
tr

ai
nt

L
A

Z
Y

30
de

c.
va

rs
.

L
A

Z
Y

20
de

c.
va

rs
.

T
im

e
ou

t

(c
)
L
a
z
y
In

c
r
e
m
e
n
t
a
l
,
f
a
s

p
ro

b
le

m
se

t,
o
n
e

co
n
st

ra
in

t.

0.10

0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.60

0.70

0.80

0.90

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

f
a
s

pr
ob

le
m

s,
m

ax
P

ro
b,

th
re

e
co

ns
tr

ai
nt

s

D
F

S
30

de
c.

va
rs

.
D

F
S

20
de

c.
va

rs
.

T
im

e
ou

t
µ
s

(E
S
)

20
de

c.
va

rs
.

(d
)
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

a
n
d
d
f
s,
µ
s

(e
s)

=
1
.6
±

0
.7
·1

0
3

s.

0.20

0.30
0.35
0.40
0.45
0.50

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4
searchtime[s]

f
a
s

pr
ob

le
m

s,
m

ax
P

ro
b,

th
re

e
co

ns
tr

ai
nt

s

IN
C

R
.

30
de

c.
va

rs
.

IN
C

R
.

20
de

c.
va

rs
.

T
im

e
ou

t

(e
)
In

c
r
e
m
e
n
t
a
l
,
f
a
s

p
ro

b
le

m
se

t,
th

re
e

co
n
st

ra
in

ts
.

0.30
0.35
0.40
0.45
0.50

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

f
a
s

pr
ob

le
m

s,
m

ax
P

ro
b,

th
re

e
co

ns
tr

ai
nt

s

L
A

Z
Y

30
de

c.
va

rs
.

L
A

Z
Y

20
de

c.
va

rs
.

T
im

e
ou

t

(f
)

L
a
z
y
In

c
r
e
m
e
n
t
a
l
,
f
a
s

p
ro

b
le

m
se

t,
th

re
e

co
n
-

st
ra

in
ts

.

F
ig

u
re

23
:

S
ea

rc
h

ti
m

es
fo

r
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

an
d
d
f
s

(l
ef

t)
,
In

c
r
e
m
e
n
t
a
l

(m
id

d
le

)
a
n

d
L
a
z
y
In

c
r
e
m
e
n
t
a
l

(r
ig

h
t)

fo
r
f
a
s

p
ro

b
le

m
se

t
in

m
a
x
P

ro
b

se
tt

in
g

w
it

h
on

e
co

n
st

ra
in

t
(t

op
)

an
d

w
it

h
th

re
e

co
n

st
ra

in
ts

(b
o
tt

o
m

).
J
it

te
r

a
d

d
ed

in
h

o
ri

zo
n
ta

l
d

ir
ec

ti
o
n

to
se

p
a
ra

te
d

a
ta

p
o
in

ts
.

67

0.20
0.25
0.30
0.35
0.40
0.45
0.50

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

f
a
s

pr
ob

le
m

s,
m

ax
Se

t,
tw

o
co

ns
tr

ai
nt

s

D
F

S
30

de
c.

va
rs

.
D

F
S

20
de

c.
va

rs
.

T
im

e
ou

t
µ
s

(E
S
)

20
de

c.
va

rs
.

(a
)
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

a
n
d
d
f
s,

f
a
s

p
ro

b
le

m
se

t,
tw

o
co

n
st

ra
in

ts
,
µ
s

(e
s)

=
0
.5
±

0
.7
·1

0
3

s.

0.20
0.25
0.30
0.35
0.40
0.45
0.50

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

f
a
s

da
ta

se
t,

m
ax

Se
t,

tw
o

co
ns

tr
ai

nt
s

IN
C

R
.

30
de

c.
va

rs
.

IN
C

R
.

20
de

c.
va

rs
.

T
im

e
ou

t

(b
)
In

c
r
e
m
e
n
t
a
l
,
f
a
s

p
ro

b
le

m
se

t,
tw

o
co

n
st

ra
in

ts
.

0.20
0.25
0.30
0.35
0.40
0.45
0.50

ϑ

1
0
−

3

1
0
−

2

1
0
−

1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

searchtime[s]

f
a
s

pr
ob

le
m

s,
m

ax
Se

t,
tw

o
co

ns
tr

ai
nt

s

L
A

Z
Y

30
de

c.
va

rs
.

L
A

Z
Y

20
de

c.
va

rs
.

T
im

e
ou

t

(c
)

L
a
z
y
In

c
r
e
m
e
n
t
a
l
,
f
a
s

p
ro

b
le

m
se

t,
tw

o
co

n
-

st
ra

in
ts

.

F
ig

u
re

24
:

S
ea

rc
h

ti
m

es
fo

r
E
x
h
a
u
st

iv
e
S
e
a
r
c
h

an
d
d
f
s

(l
ef

t)
,
In

c
r
e
m
e
n
t
a
l

(m
id

d
le

)
a
n

d
L
a
z
y
In

c
r
e
m
e
n
t
a
l

(r
ig

h
t)

fo
r
f
a
s

p
ro

b
le

m
se

t,
in

th
e

m
a
x
S

e
t

se
tt

in
g

w
it

h
tw

o
co

n
st

ra
in

ts
.

J
it

te
r

ad
d

ed
in

h
or

iz
on

ta
l

d
ir

ec
ti

o
n

to
se

p
a
ra

te
d

a
ta

p
o
in

ts
.

68

0 100 200 300 400

size of largest SDD on path INCR.

0

100

200

300

400
si

ze
of

la
rg

es
t

SD
D

on
pa

th
L

A
Z

Y
total #leafs: 46598
total smaller: 0

Comparison of largest SDD size on path

constraint1: smokes(x1)
size in solution leaf

equal size

(a) Sizes of SDD representing the first constraint query.

0 100 200 300 400

size of largest SDD on path INCR.

0

100

200

300

400

si
ze

of
la

rg
es

t
SD

D
on

pa
th

L
A

Z
Y

total #leafs: 46598
total smaller: 1488

Comparison of largest SDD size on path

constraint2: smokes(x0)
size in solution leaf

equal size

(b) Sizes of SDD representing the second constraint
query.

0 50 100 150 200 250 300 350

size of largest SDD on path INCR.

0

50

100

150

200

250

300

si
ze

of
la

rg
es

t
SD

D
on

pa
th

L
A

Z
Y

total #leafs: 46598
total smaller: 3174

Comparison of largest SDD size on path

constraint3: smokes(x3)
size in solution leaf

equal size

(c) Sizes of SDD representing the third constraint query.

0 100 200 300 400

size of largest SDD on path INCR.

0

100

200

300

400

si
ze

of
la

rg
es

t
SD

D
on

pa
th

L
A

Z
Y

total #leafs: 46598
total smaller: 4084

Comparison of largest SDD size on path

optimisation: smokes(x2)
size in solution leaf

equal size

(d) Sizes of SDD representing the optimisation query.

Figure 25: Comparison of largest SDD encountered on each path from root to leaf, by the Incremen-
tal method (horizontal axis) and the LazyIncremental method (vertical axis). Results are shown for
problem instance 7 of the fas problems on twenty decision variables, for the constraint queries (a)—(c)
and the optimisation query (d). Note that (c) has a slightly different range of SDD sizes than the other
figures.

person represented by x1 smokes, is given by:

P (sm(x1)) = 1−((1− P (str(x1))) · (1− P (sm(x0))P (infl(x0, x1))) · (1− P (sm(x6))P (infl(x6, x1)))) ,

69

with sm, str and infl abbreviations for smokes, stressed and influence. If all relevant probabilistic
variables are temporarily deterministic, the probability that x1 smokes is:

P (sm(x1)) = 1− ((1− 1) · (1− 1 · 1) · (1− 1 · 1)) = 1.

Clearly, the constraint is violated. The LazyIncremental proceeds to remove the temporary determin-
ism from the SDD that represents query smokes(x1), starting with the probabilistic variables that have
the smallest probabilities. In this case, these are the variables that correspond to the influences(x, y)
predicates. If all these are set to their true probabilistic values (0.2), the probability that x1 smokes is as
follows:

P (sm(x1)) = 1− ((1− 1) · (1− 1 · 0.2) · (1− 1 · 0.2)) = 1.

Now, one by one, the temporarily deterministic variables representing the probability that people are
stressed are set to their probabilistic values. Suppose this process starts with the probability that x1
themself is stressed. The resulting probability of x1 being a smoker is:

P (sm(x1)) = 1− ((1− 0.3) · (1− 1 · 0.2) · (1− 1 · 0.2)) = 1−
(
0.7 · 0.82

)
= 0.552.

Still the constraint is violated, so LazyIncremental continues removing determinism. Suppose x0 is
stressed but has no people that consider them a friend, this brings the probability of x1 being a smoker
to:

P (sm(x1)) = 1− ((1− 0.3) · (1− 0.3 · 0.2) · (1− 1 · 0.2)) = 1− (0.7 · 0.94 · 0.8) = 0.4736,

still violating the constraint. Only if the probability that also x6 is stressed, is no longer deterministically
equal to 1, the constraint may be satisfied (under the optimistic assumption that x6 is also friendless and
therefore has a probability of 0.3 that they smoke):

P (sm(x1)) = 1− ((1− 0.3) · (1− 0.3 · 0.2) · (1− 0.3 · 0.2)) = 1−
(
0.7 · 0.942

)
= 0.38148.

We conclude that if both incoming edges for the constraint are chosen to be >, LazyIncremental has to
reset at least nf,C+3 temporarily deterministic probabilistic variables to their true probabilistic values in
order to satisfy the constraint (with nf,C the number of friendships that exist for partial assignment C).
Observe that even if x1 has no friends in partial assignment C, the SDD representing query smokes(x1)
consists of only a terminal node that represents stressed(x1), which has the same size if it is temporarily
deterministic, as it then consists of only terminal node >.

Largest SDD on path from root to solution leaf

Note that in all figures in Figure 25, the solution leaf is located on the diagonal. This is what we expect
for the optimisation criterion, as all the determinism needs to be removed from the SDD that represents
the optimisation query in order to know for sure that a found value is better than previously found
values. The fact that the same holds for the SDDs representing the constraint queries, is explained by the
characteristics of the fas problems. Since the networks representing the graphs are strongly connected,
all probabilistic variables are relevant to each possible query. Therefore, when removing determinism
from the SDD that represents the optimisation query, the same determinism is also removed from the
SDDs representing the constraint queries.

So why did we observe different behaviour in the tyf results of Figure 18? The answer lies in the
characteristics of the tyf problems. As described in Chapter 5, we select target nodes for queries such
that there exists at least one path of length three from source to target. However, the network remain
rather small, because otherwise the problems get too large for our experiments. It thus may happen that
a target node t is chosen that also happens to be a neighbour of the source node s.

Consider a query P (path(s, t) | T, σ) for a tyf problem. Somewhere on a path from root to leaf in the
search tree, a proof for path(s, t) is found, while dst, the decision variable for the edge from s to t is still
unassigned, and therefore assumed to be ⊥. Suppose also that the SDD built by Incremental is larger
than the SDD built at the same node in the search tree by LazyIncremental, because the latter still
contains temporarily deterministic probabilistic variables because no constraints are violated.

Now suppose that the algorithms move on in the search tree, branching on > for dst. Now path(s, t) =
>, which means that the SDD representing the formula is simply that of >, and therefore contains

no variables, and thus no temporary determinism in the case of LazyIncremental. When the search
process now ends up in a leaf node that corresponds to a total choice, the size of the largest SDD built

70

by the Incremental algorithm to get to this leaf is larger than the largest SDD that was built by
LazyIncremental, hence the corresponding data point is located under the diagonal.

We conclude that the reason that this is observed for tyf problems and not for fas and mes problems,
is that in the tyf problems it is possible to be certain that there is a path from source to target, while
for the fas and mes problems, this is not possible.

Other observations on SDD sizes

Figure 26 shows results for a fas problem on thirty decision variables, in the maxSet optimisation
setting with three constraints. What we observe in these figures, is some structure in the plot: we see
lines in the data points below the diagonal. This could indicate that entire subproofs are never compiled
by LazyIncremental for certain strategies. Note that the scale of Figure 26b is rather different than
the scales of the other two figures. It is remarkable that it is for this particular constraint, that the largest
SDDs that was compiled on the path from root to solution leaf, is very small indeed.

71

0

10
00

20
00

30
00

40
00

size of largest SDD on path INCR.

0

1000

2000

3000

4000

si
ze

of
la

rg
es

t
SD

D
on

pa
th

L
A

Z
Y

total #leafs: 11774
total smaller: 1205

Comparison of largest SDD size on path

constraint1: smokes(x0)
size in solution leaf

equal size

(a) Sizes of SDD representing the first constraint query.
0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

size of largest SDD on path INCR.

0

2000

4000

6000

8000

10000

12000

14000

16000

si
ze

of
la

rg
es

t
SD

D
on

pa
th

L
A

Z
Y

total #leafs: 11774
total smaller: 1255

Comparison of largest SDD size on path

constraint2: smokes(x1)
size in solution leaf

equal size

(b) Sizes of SDD representing the second constraint
query.

0

10
00

20
00

30
00

40
00

size of largest SDD on path INCR.

0

1000

2000

3000

4000

si
ze

of
la

rg
es

t
SD

D
on

pa
th

L
A

Z
Y

total #leafs: 11774
total smaller: 1154

Comparison of largest SDD size on path

constraint3: smokes(x2)
size in solution leaf

equal size

(c) Sizes of SDD representing the third constraint query.

Figure 26: Comparison of largest SDD encountered on each path from root to leaf, by the Incremen-
tal method (horizontal axis) and the LazyIncremental method (vertical axis). Results are shown for
problem instance 1 of the fas problems on thirty decision variables, in the maxSet optimisation setting,
so figures show SDDs for the three constraints only. Note that (b) has a very different range of SDD sizes
than the other figures.

72

	Introduction
	Related Work
	Background
	Prolog: reasoning with facts and rules
	ProbLog
	DTProbLog
	Constraint programming and constraint satisfaction

	Problem statement
	Instances of Stochastic Constraint Programming
	Approach
	Naive methods: building big SDDs
	General optimisations
	Incremental method
	Lazy incremental method
	Optimisations for incremental methods
	Different optimisation and constraint settings

	Experimental setup
	Generating the artificial example problems
	Establishing a benchmark for DAG and SDD compilation
	Measuring search times and other search characteristics

	Experimental results
	Compilation times of DAGs and SDDs
	Comparison of search times
	Number of search tree node visits
	Size of SDDs

	Conclusion
	Future work
	Acknowledgements
	List of Symbols
	List of Acronyms
	An introduction to logic
	Propositional logic
	First-order logic

	An introduction to knowledge compilation
	AND/OR DAGs
	Ordered Binary Decision Diagrams
	Sentential Decision Diagrams

	More experimental results

