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Abstract

Neural networks have been applied to various safety-relevant applications. Although they per-
form very well under normal conditions, it has been shown that they are susceptible to adversarial
input perturbations, leading them to misclassify images. Methods to adversarially train the net-
work in order to improve its robustness have been developed, but they come at the cost of very
high training times. This thesis investigates whether it is possible to transfer robustness from al-
ready existing adversarially trained source models and if it is computationally beneficial. We train
models adversarially and conventionally from scratch on MNIST and CIFAR datasets and anal-
yse their robustness. We perform transfer learning to adapt the source models to the target do-
main using conventional retraining. We then compare accuracy scores, robustness distributions
and training times of the different models. We find that robustness could be successfully trans-
ferred, and approximately 66% of the robustness could be retained. We also find that transfer
learning is roughly 10 to 250 times faster than adversarial training from scratch. We further tried
to improve the transferred model’s accuracy by experimenting with replacing the last layer with a
multi-layer perceptron and adversarially retraining the network instead of conventionally retrain-
ing it. We conclude that this method has various applications. For example, if one’s running time
is restricted and one does not necessarily require maximum robustness and accuracy, one could
apply this method. Also, if one wants to adapt an adversarially trained source model to multiple
different target domains one could apply this method, because running time savings scale up.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Neural networks are widely used for tasks such as modelling, pattern recognition, prediction, and
classification tasks [1]. The subfield of image classification encompasses various applications such
as medical image classifications [2, 3, 4], object recognition [5], satellite imagery analysis [6], and
autonomous traffic sign detection for self-driving cars [7]. Safety is a major concern for some of
those applications. It is imperative that a classified road sign or a medical image is correctly classi-
fied and not vulnerable to adversarial attacks.

Research by Szegedy et al. [8] has shown that neural networks are vulnerable to perturbations.
Perturbations are small changes or disturbances to the image that are often imperceptible to the
human eye [9]. This can lead the network to misclassify images that are easily recognisable by
humans and, under normal conditions, also by the network. This results in potentially severe
outcomes like car accidents or false medical decisions [10]. It is therefore crucial to evaluate and
to improve the robustness of neural networks against those perturbations. This can be done by
adversarial training, a method in which instances are perturbed before they are fed into the training
loop [11].

To assess the robustness of neural networks, recent research has investigated how neural network
robustness can be quantified and how it can be computed. Bosman et al. [12] have introduced
the concept of robustness distributions to assess the robustness of a neural network dependent on
the perturbation radius. This circumvents the limitations of the previously commonly used metric
robust accuracy, which indicated the percentage of inputs that are classified correctly, regardless of
the perturbation within a predefined bound ε.

Since training machine learning models from scratch requires significant data, resources, and run-
ning time, transfer learning has emerged as a new research field [13]. It is a method to speed up
the training of networks for similar domain datasets by transferring the knowledge acquired from
one task to another, exploiting the structure of a neural network to keep the feature extractors
unchanged and only retrain the classification heads to adapt it to the new domain [14].

The work by Shafahi et al. [14] showed that robust feature extractors can be recycled from existing
networks and that lifelong training methods can be utilised to prevent the network from forget-
ting robustness during retraining. They especially focused on transferring robustness from larger
models trained on larger datasets to smaller datasets. This thesis is further based on the earlier
work performed by Baumann [15], who retrained networks layer by layer from the end in order
to investigate the influence of each layer on the robustness of the network. It has been shown that
robustness can be transferred from MNIST to EMNIST models. The state of the art of research still
lacks data on the transfer of robustness from smaller datasets to larger datasets, such as CIFAR-10
to CIFAR-100. Our work will close this gap and extend the research to new datasets and domains.

This thesis aims to investigate the transferability of robustness from adversarially trained neural
networks trained on a smaller source domain dataset to a target model using conventional re-
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CHAPTER 1. INTRODUCTION

training on a similar but extended target domain dataset. We will study the following three main
questions.

1. Does robustness transfer from an adversarially trained source neural network to a target
domain dataset using conventional retraining?

2. Does transfer learning of robustness produce a model with similar robustness and accuracy
as adversarial training of a target domain model from scratch?

3. Is transfer learning of robustness computationally more efficient than adversarial training of
a target domain model from scratch?

We will explore those research questions by training the networks conventionally, adversarially,
and by transferring robustness from the adversarially trained source model to the conventionally
trained target model. We will compare the performance of the networks and investigate their
robustness using robustness distributions using incomplete verification. We expect that we can
transfer robustness and achieve similar or slightly worse robust accuracy scores than adversarially
trained neural networks from scratch. We hypothesise this to be achievable with substantially less
training time than adversarial training from scratch. During the experimentation phase, we will
conduct additional side experiments, exploring adversarial retraining for transfer learning and
replacing the last layer of networks with multi layer perceptrons.

The thesis is structured as follows. First, the background concepts are explained in Chapter 2. In
Chapter 3, we discuss a paper and a master’s thesis that are directly related to this work. Then we
show the methods in Chapter 4 and experimental setup in Chapter 5. In Chapter 6, we analyse the
experiments, present the outcomes and discuss the limitations of the work. Some conclusions and
future work are discussed in Chapter 7.
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CHAPTER 2. BACKGROUND

Chapter 2

Background

This chapter introduces the fundamental concepts and techniques, laying the foundation for the
later work in this thesis.

2.1 Neural Networks

Neural networks are computational models inspired by the structure and function of the brain [16].
They are commonly used for regression or classification tasks [1]. The following explanations about
neural networks are based on the standard literature by Goodfellow et al. [17]. Neural networks
consist of neurons organised in layers. The input layer is fed with the input data (features), and
the output layer represents the prediction or classification of the neural network. The number of
neurons in the input layer is equal to the number of input features, and the neurons in the output
layer could, for example, represent a probability score (for classification) or a continuous value (for
regression). The layers in between the input and the output layer are called hidden layers.

Input Output

Hidden 1 Hidden 2 Hidden 3

Feature extractors Classification head

Figure 2.1: Schematic sketch of a neural network. The dashed lines represent possibly convolutional layers.
The normal lines represent fully connected layers.

The neural network can be characterised by the width, depth, and size. The width is the maximum
number of neurons in any layer. The depth represents the number of layers in the networks, and the
size of the neural network is the total number of neurons across all layers. There are many different
kinds of neural networks. Commonly researched models are fully-connected and convolutional
neural networks. In fully-connected neural networks, all neurons of a layer are connected to all the
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2.2. LOCAL ROBUSTNESS CHAPTER 2. BACKGROUND

neurons of the preceding and following layers. Convolutional neural networks are models in that
not all neurons are necessarily connected among layers. The convolutional model can be thought
of as consisting of a feature extractor part and a classification head. The feature extractor contains
the convolutional layers, which act as a filter for the neural network, extracting scale- and location-
invariant features. It can detect both simple features like edges and corners, and complex features
like textures, shapes, and parts of objects. This representation is then passed to the classification
head, which consists of fully connected layers. It maps the features to a discrete set of class labels
or a probability distribution, resulting in the final prediction of the network. Convolutional models
outperform traditional networks on image classification tasks and are widely used in research [18].

Mathematically, a model can be described as a classifier mapping f : Rm → {1, . . . , N} from image
pixel values to a discrete label set. The training of the it consists of a forward and a backward pass.
The following explanations about the training loop are based on the work by Hertz et al. [19]. In
the forward pass, an example input xi with labels yi is chosen and applied to the input layer v0

i :

v0
i = xi. (2.1)

Now, the applied activation is forward passed through the layer until the last layer is reached. The
neuron inputs along this activation path are calculated using

hk
i = ∑

j
wk

ijv
k−1
j , (2.2)

where wk
ij is the connection weight of the connection from neuron j in layer k − 1 to neuron i in

layer k and vk−1
j is the output of neuron j in layer k − 1. The neuron outputs are then calculated

with
vk

i = g
(
hk

i
)
, (2.3)

using an activation function g. This can be a function like ReLU, sigmoid, or tanh. It introduces
non-linearity into the network, which is crucial for enabling the model to learn complex patterns
in non-linear data. ReLU has emerged as the state of the art in research. This way, the input is
forward-passed until the last layer is reached. At the last layer the loss of the last layer is calculated:

δK
i = g′

(
hK

i
)[

yi − vK
i
]
. (2.4)

yi is the expected, labeled output for input xi and vK
i is the output of the neurons i of the last

layer K and g′ is the derivative of g. Now the backward pass of the training loop begins, where
the adaptation and learning of the network happen. The loss is layer-by-layer back-propagated
through the network, using the chain rule from calculus with

δk−1
i = g′

(
hk−1

i
)
∑

j
wk

jiδ
k
j . (2.5)

Lastly, the weights of the neurons are updated with the learning rate η, depending on the loss with

wk
i = wk

i + ηδK
i vk−1

j . (2.6)

2.2 Local Robustness

The following formal concepts are mainly based on the work by Szegedy et al. [8]. In this and the
following paragraphs, we let away the indices indicating the neurons and layers that we used in
Section 2.1.
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One can assess the performance of neural networks by calculating their accuracy. However, this
reveals nothing about the security of the network. It is possible that models with very high accu-
racy scores of close to 100% can still be fooled by possibly maliciously perturbed images [20]. If a
perturbed image leads the network to misclassify the data, the image is called adversarial example
or counterexample [8].

Robustness describes the ability of a neural network to maintain the correct classification for per-
turbed images. A model is ε-robust for a given instance x0, if its prediction arg max f (x0) stays the
same despite a perturbed input with regards to a norm p, which Baumann [15] formally described
by the condition

∀x : ∥x − x0∥p ≤ ε ⇒ arg max f (x) = arg max f (x0). (2.7)

In this equation, D is a subset of a dataset, x is the perturbed input, x0 is the clean input, and ε is
the perturbation radius, i.e., the maximum magnitude of allowable input perturbations [21].

Local robustness implies robustness for a specific set of images, whereas global robustness implies
robustness for all possible inputs. Also, local robustness refers specifically to small perturbations,
and global robustness could be any faults in images. Global robustness would be a favourable
metric, but it is impossible to compute. Therefore, local robustness is the only possible way to
assess the robustness of a network [22].

One can quantify the robustness of neural networks through various metrics, such as robust accu-
racy or local robustness verification. Robust accuracy is the percentage of inputs that are provably
classified correctly, regardless of the perturbation within the bound ε [23]. This metric has some
limitations and cannot fully capture important aspects of robustness. It requires domain knowl-
edge to pre-specify acceptable perturbation levels, and it does not indicate what level of perturba-
tion is tolerated [12].

2.3 Verification and Robustness Distributions

Local robustness verification methods formally assess whether a neural network’s prediction re-
mains correct when a small, predefined perturbation ε is applied to the image. Two categories of
methods can be employed for this task: incomplete and complete verification. Both methods are
sound, which is a mathematical guarantee that the network is actually robust when the verifier
states it. But only complete verification, given enough running time and resources, results in a
definitive, either robust or not robust outcome. It provides a formal, mathematical proof that a net-
work is robust for all possible inputs. While complete methods are exact and provide the highest
level of assurance, the underlying problem is NP-hard. Hence, complete verification is computa-
tionally expensive and does not scale well to large networks or datasets. Incomplete verification
sacrifices exactness for the sake of computational efficiency. It still guarantees that a model is ro-
bust for a predefined ε, if the verifier states it. However, its verification query can also result in an
unknown outcome, for which the instance could either be verified as robust or not robust [24].

While verification methods can guarantee robustness for a predefined ε, they do not determine the
extent to which a neural network is robust. To assess the exact magnitude of perturbation required
to cause a misclassification, Bosman et al. [12] suggest the concept of critical ε∗. The critical ε∗ value
is defined as the value such that any perturbed input

x ∈ {x : ∥x − x0∥∞ ≤ ε∗} (2.8)

cannot lead to misclassification, and some perturbations larger than ε∗ provably lead to misclassi-
fication. This concept has also been described in other work as adversarial radius [25], adversarial
result [26] and maximum perturbation bound [27]. An empirical lower-bound of the critical ε value
is determined by searching a discretised set of ε-values, e.g. S = {0.001, 0.003, 0.005, ..., 0.399}, for
the transition point from robust to non-robust. This transition point is then called the empirical
lower bound ε̃∗. A k-binary search algorithm is employed to search for this transition point. In or-
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2.4. ADVERSARIAL TRAINING CHAPTER 2. BACKGROUND

der to analyse a network for various inputs, Bosman et al. [12] introduce robustness distributions,
which are a distribution of critical ε∗ values over a set of test images. This robustness measure
offers a holistic view of a network’s vulnerability. The shape of this distribution reveals valuable
information about the kind of robustness of the network and the generalisation to unseen instances.
Both complete and incomplete verification methods can be employed to find critical ε∗ values [25].

Furthermore, there are methods to estimate upper bounds for critical ε∗ values, with running times
two to four magnitudes faster than complete verification. Berger et al. [28] suggests using adver-
sarial attacks, such as the later explained Projected Gradient Descent [29], for determining upper
bounds for robustness distributions of a model f . A binary search algorithm is used to find the
smallest perturbation radius that causes a misclassification, called the minimum adversarial per-
turbation p∗, producing near-optimal upper bounds for ε∗. We will employ this method in this
thesis. Overall, one can summarise the gap between the various methods as follows:

ε∗incomplete ≤ ε∗ ≤ p∗. (2.9)

For comparing robustness distributions of different models, we will determine the median of the
p∗ values. This will give a nuanced robustness metric for the networks, which makes it possible to
compare the models with each other. The metric indicates that 50% of the instances have a higher
p∗ and 50% have a lower p∗. We choose the median over the mean because it is robust to outliers,
which is common for robustness distributions.

2.4 Adversarial Training

Conventional training involves performing training on the training set with the goal of maximising
accuracy on the validation set [17]. Adversarial training tries to maximise accuracy and robustness
at the cost of significantly longer training time [29]. Goodfellow et al. [11] suggested to improve
robustness by training the model with adversarial examples. This can be done by applying an
adversarial attack before the first training step, which is successful when it can break Equation 2.7.
This example is added in the training loop of the neural network in Equation 2.1 and used for the
training loop. The adversarial examples are created by using adversarial attack methods, which
are further described in this section.

Adversarial attack methods can be categorised into white and black-box attacks. White-box at-
tacks have full access to the model. They can access the architecture as well as parameters such as
weights and gradients. Black-box attacks, on the other hand, have no access to the model architec-
ture or its internal parameters. They solely function based on the output the model produces for a
specific input [29].

The Fast Gradient Sign Method (FGSM) is a white-box adversarial attack that exploits the hypothe-
sis that deep neural networks are too linear [11]. Due to this linearity, many imperceptible changes
to the input can accumulate into a large, impactful change on the network’s output. The attack tries
to find a perturbation that maximises the loss-function in a single step, by taking the sign of the
gradient ∇ of the loss-function δ, such as the one described in Equation 2.4, with model parameters
θ and multiplying it by a predefined ε [11, 29]:

x = x0 + ε sgn
(
∇x0 δ(θ, x0, y)

)
. (2.10)

Madry et al. [29] observed that this single-step approach can cause overfitting on the adversarial
examples and decrease the accuracy on natural examples. Therefore, they suggest an iterative
multi-step process called Projected Gradient Descent (PGD). Instead of applying a single step that
maximises the loss, it solves this maximisation problem more nuanced. Training a neural network
can be seen as a minimisation problem of the loss function from Equation 2.4. Adversarial training
is an inner maximisation problem of this loss function within this minimisation problem. The
authors found that the loss landscape corresponding to this problem has a surprisingly tractable
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2.5. TRANSFER LEARNING CHAPTER 2. BACKGROUND

structure of local maxima [29]. To find those true local maxima, the gradient methods used in
FGSM are iteratively applied in multiple small gradient steps:

xt+1 = ∏
x+S

(
xt + α sgn(∇x0 δ(θ, x0, y))

)
. (2.11)

In this equation, S is the set allowed perturbations, ∏ is the projection operator, ensuring that
the adversarial example stays within the range x + S and α is the size of each small step t. After
each step, PGD projects the perturbed input back onto the ε-ball. PGD can find more challenging
counterexamples and has emerged as one of the most popular and effective tools for adversarial
training [9].

Recently Zou et al. [30] developed a new Dice Adversarial Robustness Distillation (DARD) frame-
work. This framework is built upon the Dice Projected Gradient Descent training method, which
relies on a Dice Loss and a dynamic weighting strategy. This approach mitigates overfitting on the
specific attack patterns used by standard adversarial attacks, such as PGD, by shifting the attack’s
focus gradually from perturbing correctly classified samples to misclassified samples in the later
iterations. DARD uses this to train a teacher model adversarially. The teacher model then provides
soft labels, which are probability distributions over the classification labels, for both natural and
adversarial examples. The student model is then adversarially trained on those soft labels. By
using soft labels instead of hard labels, which only tell the true class, knowledge about both clean
and adversarial instances can be transferred from the teacher model to the student model. With
this method, the authors could notably improve both clean and robust accuracy at the same time
compared to standard adversarial training.

2.5 Transfer Learning

Transfer learning has the primary goal to improve the learning of a target model by utilising knowl-
edge extracted from a source domain and task [13]. It can be used to speed up training when train-
ing data is limited for the target domain or to avoid expensive and time-consuming data gathering
[31]. This has broad applications in areas like fine-tuning image classification models to recognise
different classes of objects or medical image classification networks, where models trained on ex-
tensive amounts of natural images are fine-tuned to medical images. However, transfer learning
methods require that the source and target domains are similar. If they are not, performance could
even be hurt, which is called negative transfer [32, 33].

Three central questions emerge about transfer learning: "What to transfer", "When to transfer",
and "How to transfer". The latter refers to the algorithm that needs to be developed to transfer
knowledge. The other two questions are used in the literature to further categorise the different
transfer learning settings [13, 32].

The question "When to transfer" enables three categorisations: Inductive transfer learning, trans-
ductive transfer learning, and unsupervised transfer learning, as shown in Figure 2.2. In inductive
transfer learning, the source and target tasks are different, the domains can be related or not. For
this setting, some labelled data in the target domain is required. Transductive transfer learning has
similar source and target tasks, but the domains are different. There is only labelled data available
in the source, not in the target domain. When the tasks are different between the target and the
source domain, and neither of the domains has labels available, the setting is unsupervised transfer
learning [13, 32].

Transfer learning can further be split into four categories based on the question "What to transfer".
In instance-based transfer learning, it is assumed that parts of the data in the source domain can be
reused for learning in the target domain by employing techniques like reweighting or importance
sampling. Feature representation transfer focuses on learning an optimal feature representation
for the target domain, where the knowledge to be transferred is encoded into this feature represen-
tation. Another method is parameter transfer, which assumes that models for related tasks share
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2.5. TRANSFER LEARNING CHAPTER 2. BACKGROUND

Figure 2.2: An overview of different transfer learning methods. Taken from [13].

some parameters or prior distributions of hyperparameters, encoding the transferred knowledge
into these shared components. Lastly, relational knowledge transfer knowledge transferred is a
similar relationship among data in the source and target domains [32].

Our methodology employs an inductive transfer learning approach, specifically a feature represen-
tation transfer. The approach was initially experimentally investigated by Yosinski et al. [34], and
we will adhere to the technique presented in their work. First, one has to adapt the given source
model, which is already trained on the source domain dataset, to the target domain. This can be
done by replacing the final layer of the network with a layer which is suitable for the target domain.
For example, if a network is trained on a dataset with 10 labels and one transfers its knowledge
to a target domain with 100 labels, the final layer has to be replaced with a layer consisting of 100
neurons instead of 10. The other characteristics of the last layer, such as input features and bias, are
taken over from the original classification head. Now, the network could technically be retrained
on the target domain dataset. Before doing so, one has to decide which layers are kept and which
are retrained. One can perform transfer learning with different configurations, from retraining only
the classification head to retraining the whole network besides the very first layer. For retraining
k layers of a neural network with depth K, one freezes the first K − k layers and retrains the last k
layers. Instead of freezing the first K − k layers, one could also decide to fine-tune the first K − k
layers. For freezing the first K − k layers, one sets the learning rate of the neurons in the frozen
layers to zero, and for fine-tuning the first K − k layers, the learning rate is reduced by a factor,
e.g. 0.01. Usually, retraining is done with conventional training methods, but because of our fo-
cus on robustness, we will also investigate the effects of adversarial retraining, i.e. employing the
methods discussed in Section 2.4 for retraining the layers.
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Chapter 3

Related Work

After we have described the general knowledge about the topics local robustness, verification,
robustness distributions, adversarial training and transfer learning, we discuss now some more
work, which is directly related to this thesis. This specifically focuses on transfer learning of ro-
bustness.

3.1 Adversarially Robust Transfer Learning

Shafahi et al. [14] investigated the transferability of robustness among CIFAR-10, CIFAR-100 and
ImageNet networks. They found that robustness in a neural network stems from robust feature
extractors, which are resistant to adversarial perturbations. For that finding, they iteratively re-
trained the last block, then two, and so on until all layers of a Wide-ResNet 32-10 are re-initialised.
With blocks, the authors refer to individual ResNet blocks and, for the last two blocks, to the batch
norm and average pooling layer for the penultimate block and the fully connected layer for the last
block.

Furthermore, they could successfully transfer robustness from a robust CIFAR-100 model to CIFAR-
10. For that, they explored three methods: just retraining the last layer, replacing the last layer with
a multi-layer perceptron and fine-tuning the whole network with lifelong learning and learning
without forgetting methods. They could successfully transfer robustness with all three methods.
They found that the more similar (in terms of distributions, number of classes, etc.) the source and
target models are, the better the robustness transfers. The transfer of robustness by just retraining
the last layer caused a drop in validation accuracy. To mitigate this, the authors studied the effect of
replacing the last layer with a multi-layer perceptron instead of just adapting it to the target domain
and retraining it. They found that adding just one additional hidden layer with 2048 neurons led
the model to achieve 100% training accuracy. However, adding more layers only improved train-
ing accuracy but did not significantly improve validation accuracy. The authors assume overfitting
to be the reason for this behaviour. Also, they found that adding more hidden layers improved the
robustness to PGD attacks. This shows that adding additional layers does not hurt robustness [14].

They further examined another approach to solve the described generalisation issue. When simply
retraining the entire network, the target model tends to forget the source model’s robustness. In-
stead, they proposed using lifelong learning methods, especially learning without forgetting. They
first retrained the fully connected parameters. Then the learning rate is cut, and both feature extrac-
tors and fully connected parameters are retrained. Also, they use a loss function that incorporates
a distillation term from the robust source model, causing the feature representations of the source
and target networks to remain similar. With this approach, they could improve validation accuracy
while preserving the robust feature representations [14].
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3.2 Evaluating the Transferability of Local Robustness in Neural

Networks

Baumann [15] studied in his thesis whether robustness could be transferred from an adversarially
trained MNIST network to EMNIST.

First, he explored which layers of a neural network have an impact on the network’s robustness in
order to determine which layers he could retrain for the domain adaptation. For that, he retrained
the network layer by layer from the back on the same MNIST dataset until he completely retrained
the model. He found that the network could be retrained until a specific drop point, at which the
critical ε decreased drastically. This drop point was suggested to be the optimal cutoff for transfer
learning, as it is a good trade-off between improving generalisability and remaining robustness.
A polynomial function was fitted to the dependence of robustness on the number of layers and
parameters, and it was shown that it could reliably predict the drop point. The author also found an
unexpected increase of robustness in non-ReLU networks (specifically Tanh), when the networks
were fully retrained [15].

The same experiment was repeated with retraining of an adversarially pre-trained MNIST model
on the balanced EMNIST dataset for all possible cutoffs. It was shown that robustness could be
transferred using this transfer learning approach. The robustness and accuracy metrics of the dif-
ferent cutoffs were compared with the predicted best cutoff using the drop point method from the
previous experiment. It was validated that the optimal cutoff lays precisely on the calculated drop
point. Therefore, the author concluded that using the drop point method is a good trade-off be-
tween accuracy and robustness. Also, they estimated that the approach using transfer learning led
to a training speedup of 3.5 times compared to adversarial training from scratch [15].

The research in my thesis will build upon this work. We will reuse the algorithms used for transfer
learning. The scope of my work will be primarily on the training time to confirm that the novel
method actually leads to improved computational efficiency. Also, instead of working on the drop
point, we will focus more on the comparison of accuracy and robustness between models trained
using transfer learning and adversarial training from scratch.
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Chapter 4

Methods

In order to investigate the transferability of robustness, we conduct an empirical study. Figure 4.1
shows a brief overview of our methodology.

Figure 4.1: This is an overview of our methodology. Transfer learning of an adversarially trained source
model to the target domain is performed using conventional retraining. The obtained target model is then
compared to an adversarially trained target model regarding model accuracy scores, running times and ro-
bustness distributions.

We train neural networks conventionally and adversarially on both a source domain dataset and a
target domain dataset, and measure their training time for later comparison. Adversarial training
is performed using the PGD algorithm discussed in Section 2.4. We will explain specific settings
in Section 5.2. To avoid ambiguity, we will call the neural network trained on the smaller and
simpler source domain dataset ’source model’ and the neural network trained on the dataset with a
similar but extended target domain dataset ’target model’. The adversarially trained source model
lays the foundation for further work in this thesis. It is used as a foundation for the following
transfer learning step. The adversarially trained target models are later used as a benchmark for
comparison of accuracy, robustness and running time. We train the model adversarially using the
PGD method explained in Section 2.4.

When we have trained all source and target models, we can perform the transfer learning experi-
ments. Transfer learning is performed using the inductive transfer learning approach with frozen
layers as explained in Section 2.5. We perform transfer learning experiments with retraining k
layers, ∀k ∈ {1, ..., K}, where K is the depth of the model. In later plots and tables, we use the
notation TL #k for transfer learned models, which stands for transfer learning by retraining the last
k layers. When we obtain the transfer learned models, we compare the models trained with this
method to the adversarially trained target model regarding accuracy, running time and robustness
distributions. The robustness distributions are created using the attack-based estimation method

11
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using PGD explained in Section 2.3. This reduces the running time for creating the distributions
significantly, while producing near-optimal upper bounds for ε∗.

We use the tools as represented in the overview in Figure 4.2. For conventional and adversarial
training and transfer learning we use the adversarial training box. It saves the training time and di-
rectly evaluates the model and stores the clean accuracy of the model. The adversarial training box
is accessible on GitHub via this link https://github.com/Aaron99B/adversarial-training-box.
We improved and adapted it to work better for our specific use case. Also, we included transfer
learning scripts that make use of the adversarial training box. The source for all scripts used to per-
form the experiments and create the plots is provided in this repository: https://github.com/
Skylake143/bachelorthesis_davidwunsch. Robustness distributions and corresponding
plots are created using ADA-VERONA [12].

Figure 4.2: An overview of the used tools.
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Chapter 5

Experimental Setup

We have explained the methodology for our empirical study in the previous chapter. Now, we
show the specific implementation of our methodology. We show which dataset and which archi-
tectures we use for the models. Furthermore, we discuss how we adversarially train the networks
and how we perform transfer learning. Also, we explain how we obtain the robustness distribu-
tions.

5.1 Data and Model Architectures

We perform transfer learning experiments on MNIST to EMNIST and on CIFAR-10 to CIFAR-100.
We discuss the architectures used for those datasets and the datasets themselves in the following.
An overview of the performed experiments and which network architectures and which datasets
are used is presented in Table 5.1.

Table 5.1: Overview of performed experiments, which shows which models are trained on which datasets
and transferred to which target domain dataset. All models are adversarially trained using PGD with k = 40
iterations on the source dataset. The further details of the training and transfer learning configurations is
explained in this chapter.

Source Dataset Target Dataset Models Transfer Learning
mode

MNIST EMNIST RELU_4_1024, CNN-3,
CNN-4, CNN-7

Conventional
Retraining

CIFAR-10 CIFAR-100

ResNet-18, ResNet-34,
ResNet-50,

WideResnet-28-10,
WideResnet-32-10

Conventional
Retraining

MNIST EMNIST CNN-7 Adversarial
Retraining

CIFAR-10 CIFAR-100 ResNet-34,
WideResNet-34-10

Adversarial
Retraining

13
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5.1.1 MNIST and EMNIST

We start our experimentation on the MNIST and EMNIST datasets [35, 36]. These are one of the
most researched datasets, and they are small enough that adversarial training times are compara-
ble among multiple models. We choose four model architectures for investigation, one of which is
the fully connected mnist_relu_4_1024, as this is large enough to be able to handle the 47 classes of
the EMNIST dataset. Furthermore, we explore four different-sized CNN networks. We investigate
an arbitrary small CNN network (CNN-3), which has one convolutional and one fully-connected
layer. We also investigate the CNN from Madry et al. [29], calling it CNN-4, because of its excep-
tionally high robustness and because it was used in the paper which established the PGD attack.
The network has two convolutional layers and two fully-connected layers. We also use the CNN
model suggested by Yang et al. [37], referring to it as CNN-7, since they investigated generalisa-
tion of adversarially trained neural networks. Their CNN model consists of four convolutional
layers and three fully connected layers. Their CNN model with dropout layers consists of two
convolutional layers, two dropout layers and two fully connected layers.

5.1.2 CIFAR-10 and CIFAR-100

We also perform experiments on the CIFAR-10 and CIFAR-100 datasets [38] to see if the results
found for MNIST and EMNIST also generalise to other, more complex datasets. We choose five
model architectures to explore this. We study three residual networks: ResNet-18, ResNet-34 and
ResNet-50 [39]. Residual networks are especially deep due to their large number of filters and have
been shown to work well for the CIFAR dataset. Also, its network and layer depth are crucial for
successful transfer learning, as more blocks can be adapted when retraining the network to adapt
to the target domain dataset.

64

28

conv1

64 64

28

ResBlock-64

128 128

14

ResBlock-128

256 256

7

ResBlock-256

512 512

4

ResBlock-512

avg pool

10

fc

Figure 5.1: Overview of the ResNet-18 network architecture adapted for CIFAR-10. For transfer learning, we
retrain those blocks, block by block, starting from the back (fully connected) to the beginning (conv1).

Residual networks consist of seven stages, consisting of an initial convolutional layer, four main
residual blocks and a final output head, consisting of an average pooling layer and a fully con-
nected layer such as depicted in Figure 5.1. Residual networks generalise well, which is a require-
ment for successful transfer learning.

Furthermore, we investigate two Wide Residual Networks (WRN), WRN-28-10 and WRN-34-10,
because they have demonstrated state-of-the-art performance on CIFAR-10 and CIFAR-100 [40]. As
shown in Figure 5.2, wide residual networks consist of seven stages with one initial convolutional
stage and a final output head stage, consisting of a batch normalisation, average pooling and a
fully connected layer. The three main stages contain the wide residual blocks.
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Figure 5.2: Overview of the WideResNet-28-10 network architecture adapted for CIFAR-10. For transfer learn-
ing, we retrain those blocks, block by block, starting from the back (fully connected) to the beginning (conv1).
A specificity of wide residual networks is that the batch normalisation and average pooling cannot be re-
trained, because they do not contain trainable parameters, or they would destabilise the retraining of the
other layers. They are therefore kept frozen, and the robustness distribution plots for transfer learning in
Chapter 6 therefore only consist of five robustness distributions.

5.2 Adversarial Training using PGD

We perform adversarial training by perturbing the training data before the forward pass. The
perturbation of the training data is performed using a PGD adversarial attack with ε = 0.3 and 40
iterations as proposed by Madry et al. [29] for MNIST and EMNIST. For CIFAR-10 and CIFAR-100,
we use a PGD adversarial attack with ε = 8/256 and 7 iterations. We use an 80/20 split of the
training dataset for training and validation sets and use the dataset’s test set for final evaluation.
This is a slight difference from the training configuration by Madry et al. [29]. They use the full
training set for training and use the test set for both validation and final evaluation. This causes our
final results to be slightly worse than theirs, although we use the same hyperparameters besides
this. It stems from the fact that our models are evaluated on a completely unseen test set while
theirs is not. For training of all the MNIST and EMNIST networks, we choose the optimiser Adam
and StepLR scheduler, and for the networks trained on CIFAR-10 and CIFAR-100, we use the SGD
optimiser and MultiStepLR scheduler. The configuration and the hyperparameters are shown in
Table A.2 in the Appendix. The choices are based on the configurations based on the training
configurations Madry et al. [29] chose in their initial work. Adversarial training is performed on
the ALICE HPC cluster using nodes equipped with Nvidia L4 GPUs with 24GB of VRAM. The jobs
are configured to use the GPUs exclusively in order to guarantee honest training time comparisons.
The training time is measured GPU-aware using CUDA events and synchronisation. Final testing
is performed using an additional test set with multiple adversarial attack configurations.

To guarantee comparability of training time among the networks and to compare it later on with
the training time using transfer learning methods, we use early stopping for the MNIST and EM-
NIST networks. Usually, early stopping is based on the metrics validation accuracy or loss. In
adversarial training, we observed that validation robust accuracy still improves when validation
accuracy has already converged to a stable value. To ensure that the training is not stopped when
robust accuracy could still improve, we set validation robust accuracy as the early stopping metric.
Because of the noisy nature of this metric, we also apply a moving average with a window of 10
and set the patience to 6. This configuration turned out to be the most effective way to stop closest
when validation robust accuracy converges. For CIFAR-10 and CIFAR-100, we adversarially train
the networks for 200 epochs according to the method used by Madry et al. [29]. For ResNet-34 and
ResNet-50, we ran into issues in the later phase of the training, and the hyperparameters do not
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seem to work as well for those networks. Because training time limitations made hyperparameter
optimisation unfeasible, we decided to use an early stopper for those two networks, which stopped
before the training issues occurred.

5.3 Transfer Learning

For transfer learning, we adhere to the methodology explained in Section 2.5. We first load the
source model and create a copy of it. The layers of the copied model are automatically extracted.
The last layer is identified and adapted to the target domain, keeping the input features the same
and changing the output classes to match the number of classes of the target domain dataset. The
network gradients are frozen, and the last k layers or blocks of the network are unfrozen, and
their parameters are reset. For residual and wide residual networks, the blocks that we retrain
correspond to the blocks in the graphic in Figure 5.1 and Figure 5.2.

The networks are then conventionally retrained with the aforementioned configuration. The rest
of the transfer learning script is therefore equivalent to conventional training using an 80/20 split
for training and validation split using early stopping, and the dataset’s test set for final evaluation.
We use the hyperparameter configuration shown in Appendix A. Transfer Learning is performed
with the exact same hardware and early stopping configuration as described in Section 5.2. The
experiment is performed with all possible numbers of retraining layers k ∈ {1, 2, . . . , K}, where
K is the depth of the neural network. This is later used to create accuracy and robustness plots
dependent on the number of retrained layers. For CIFAR networks, we changed the batch size for
transfer learning from 128 to 256, as this produced better results and accuracy scores.

We furthermore perform additional side experiments to improve the generalisation of the model.
Shafahi et al. [14] suggested replacing the last layer of the model with a multi-layer perceptron.
We do this by taking over the input features of the last layer of the source model and adapting the
output classes to match the number of classes of the target domain. We then try to add between
one and three additional layers with 2048 neurons before the classification head.

Additionally, we perform another side experiment by performing transfer learning with adver-
sarial retraining instead of conventional retraining. Layer extraction, adaptation and freezing are
performed exactly as with transfer learning using conventional retraining. The retraining of the
unfrozen layers is then just done using adversarial training as performed in Section 5.2.

5.4 Robustness Distributions using ADA-VERONA

We create robustness distributions using ADA-VERONA [12]. To determine each critical ε∗, we
use the estimation method discussed in Section 2.3 to determine upper bounds for critical ε∗ using
PGD attacks with k = 40 iterations. The minimum adversarial perturbations p∗ are searched in a
discretised search space of perturbation values ε ∈ {0.000, 0.005, 0.010, . . . , 0.800} for MNIST and
EMNIST models and ε ∈ {0.000, 0.001, 0.002, . . . , 0.110} for CIFAR-10 and CIFAR-100 networks. We
made the decision to use the critical ε∗ estimation method because complete verification methods
would require two to four magnitudes more running time, which would be infeasible for the scope
of this thesis. Robustness distributions are created on the test set of the datasets, which contains
10000 instances for MNIST, CIFAR-10 and CIFAR-100 and a random subset of 10000 instances of
the 18800 instances big EMNIST test set. The distributions are only created from the instances that
are classified correctly if they are unperturbed. The reason for this is that the median p∗ would
be artificially diminished for models with lower clean accuracy, because misclassified instances
would be attributed a p∗ of 0.0. This would make a comparison of robustness distributions among
multiple models with varying clean accuracy scores impossible.

16



CHAPTER 6. RESULTS

Chapter 6

Results

In this chapter, we present the results of our empirical study. First, we analyse whether robustness
transfers at all. Then we weigh off robustness and accuracy and analyse their dependency. Addi-
tionally, we compare the training times for the different approaches. Lastly, we demonstrate the
results for the side experiments.

6.1 Robustness transfer

Our first research objective was to investigate the extent to which robustness is transferable. We
investigated this by training models conventionally and adversarially from scratch and then per-
forming transfer learning from an adversarially trained source model to the target domain by re-
training the network layer by layer conventionally.

The figures in this chapter show robustness distributions and accuracy scores of models trained
from scratch on the left side, and transfer learned models on the right side. The description of
the models trained from scratch indicates whether the model was conventionally (standard) or
adversarially (pgd) trained, and on which dataset the models were trained and evaluated. The
plot on the right side shows the transfer learned models. The number on the x-axis indicates how
many layers were retrained. Thus, k indicates that the last k layers are retrained and the first K − k
layers are frozen.

All of the figures show similar trends, which indicates that robustness could successfully be trans-
ferred for all networks, as detailed in the following.

6.1.1 Transfer Learning from MNIST to EMNIST

Figure 6.1 shows the results for the CNN-7 model. We adversarially trained a source model with
a median p∗ of 0.405. When retraining the models from the back of the network layer by layer,
the median p∗ increases until we retrained five layers, afterwards it drops completely to the same
median p∗ as the conventionally trained target model. We could achieve, at best, a median p∗

of 0.270 for retraining five layers. This corresponds to two-thirds of the median p∗ of the source
model, slightly less than four times the median p∗ of a conventionally trained target model. The
same behaviour can be observed for the CNN-4 network. The results for this are shown in the
appendix in Figure B.2. One network architecture was too small to be able to transfer robustness
to the same extent, which is also shown in the appendix in Figure B.3.

Although two thirds of the robustness could be transferred with regard to the median of the dis-
tribution, it is also important to point out that the distributions are differently shaped. In the box
plots (where the whiskers indicate 75% of the datapoints) it becomes apparent that the model is
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source model to target domain with k retrained layers.

Figure 6.1: Accuracy scores and robustness distributions for CNN-7 networks trained on MNIST and EM-
NIST. One notices that for retraining the models layer by layer from the back, the median p∗ increases until
five layers, followed by a sharp drop of robustness. At best a median p∗ of 0.270 could be achieved for retrain-
ing five layers, which corresponds to two thirds of the median p∗ of the source model adversarially trained
from scratch and is roughly four times the median p∗ of a conventionally trained target model.

mostly distributed between 0.2 and 0.6 for the model adversarially trained on EMNIST. This distri-
bution is different for the transfer learned model, which is distributed between 0.0 and 0.65. This
behaviour becomes apparent when you create a CDF plot of the different models, which is shown
in the appendix in Figure B.1. The models adversarially trained from scratch have a very S-shaped
distribution, while the transfer learned models have a more linear distribution. This suggests that
there are very few instances (only 20%) with a low p∗ of less than 0.3, while there are significantly
more instances for the transfer learned models due to their linear nature.
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Figure 6.2: Accuracy scores and robustness distributions for RELU_4_1024 networks trained on MNIST and
EMNIST. The adversarially trained source model has a median p∗ of 0.395. At best, 0.115 median p∗ could
be reached with retraining the last two layers, which is roughly one third of the median p∗ of the source
model and target model adversarially trained from scratch. It is still more than twice the median p∗ of a
conventionally trained target model.

One notices that robustness transfer works better for deeper, more complex models. For the
two less complex models, robustness could still be transferred, but to a smaller degree. For the
RELU_4_1024 network analysed in Figure 6.2, the source model adversarially trained from scratch
resulted in a median p∗ of 0.395. At best, 0.115 median p∗ could be reached by retraining the last
two layers. This is slightly less than one-third of the median p∗ of the source model and slightly
more than one-third of the median p∗ of a target model trained from scratch. While these are signif-
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icantly worse results than for the two more complex models, it is still more than twice the median
p∗ of a conventionally trained target model.

6.1.2 Transfer Learning from CIFAR-10 to CIFAR-100

For all five of the analysed CIFAR network architectures results were similar. All of the conven-
tionally trained CIFAR-10 and CIFAR-100 models have a median p∗ close to zero. The median p∗

of most CIFAR architectures shows a gradual decline, in accordance with the work from [14]. This
is different compared to transfer learning from MNIST to EMNIST. The CIFAR models seem to
require all convolutional blocks to retain maximum robustness. Only retraining the last two blocks
seems to be the best way to adapt the model to the target domain. We will analyse two networks in
this section; the rest is shown in Appendix B. For the ResNet-34 model adversarially trained from
scratch on CIFAR-10, we achieve a median p∗ of 0.029 and can retain 0.018 when retraining the last
or the last two blocks of the network. This corresponds to approximately 62% of the median p∗ of
the source model. Also, the median p∗ is approximately 85% as high as the median p∗ obtained by
training a target model from scratch.
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Figure 6.3: Accuracy scores and robustness distributions for ResNet-34 networks trained on CIFAR-10 and
CIFAR-100. Adversarially training the source model from scratch results in a median p∗ of 0.029. When
retraining the last or the last two blocks, a median p∗ of 0.018 can be retained, which corresponds to approx-
imately 62% of the median p∗ of the source model and approximately 85% of training a target model from
scratch.

The robustness distributions are very similar for the models trained from scratch and the transfer
learned models. Both span from 0.0 to approximately 0.8. Also, the CDF plots depicted in Fig-
ure B.5 show a very similar distribution in terms of the shape of the distribution. This would also
be logical, because we try to retain the robust feature extractors of the network and only try to
adapt the parts of the network that are responsible for adapting to the target domain.

For the WideResNet-34 architecture, we obtained a median p∗ of 0.028 for adversarial training from
scratch on CIFAR-10. Noticeably, retraining the last block on CIFAR-100 also gives us a median p∗

of 0.028, which is even higher than the median p∗ of 0.018 for an adversarially trained CIFAR-100
network from scratch.

One can conclude that robustness transfers and that approximately two-thirds of the median p∗

of the source model is retained. Next, we want to analyse the dependence and impact of transfer
learning on clean accuracy and its relation to robustness.
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Figure 6.4: Accuracy scores and robustness distributions for WideResNet-34-10 networks trained on CIFAR-
10 and CIFAR-100. We obtain a median p∗ of 0.028 for adversarial training the source model from scratch.
Retraining the last block also gives us a median p∗ of 0.028, which is even higher than the median p∗ of 0.018
for adversarially training the target model from scratch.

6.2 Robustness Accuracy Tradeoff

In the previous section, we analysed the transferability of robustness. Next, we want to investi-
gate the tradeoff between robustness and accuracy scores. For that purpose, we create scatter plots
which show the median p∗ in relation to the clean accuracy for retraining the last k layers of the
networks. One notices a fundamentally different behaviour for transfer learning from MNIST to
EMNIST compared to transfer learning from CIFAR-10 to CIFAR-100. For the investigated MNIST
networks, robustness and accuracy improve until a certain point, followed by a sharp drop in me-
dian p∗. The accuracy keeps improving with the number of retrained layers. For CIFAR networks,
on the other hand, one notices a linear relationship between median p∗ and clean accuracy. For
increased clean accuracy, the median p∗ decreases. Therefore, one has to weigh off the importance
of robustness and accuracy score for CIFAR networks, while one has a specific amount of retrained
layers which work best for an MNIST network.
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Figure 6.5: Scatter plots of median p∗ over clean accuracy of transfer learned models. The numbers on the x-
axis indicate the number of retrained layers k from the back of the model. The plots show a different behaviour
for transfer learning among MNIST datasets and among CIFAR datasets. Transfer learning among MNIST
datasets shows an increased robustness and accuracy score until a certain drop point, while transfer learning
among CIFAR datasets shows a linear negative relationship between median p∗ and clean accuracy.
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All in all, transfer learning using conventional retraining comes with the caveat of mitigated clean
accuracy for CIFAR datasets, forcing one to choose a tradeoff between acceptable clean accuracy
and robustness. For MNIST datasets, one can reach similar clean accuracy scores, as the relation
between median p∗ and clean accuracy is different, and one can retrain more layers to adapt better
to the target domain. We did some further experiments on adapting the last layer with a multi
layer perceptron of either one, two or three additional hidden layers. This method could notably
improve accuracy, while the median p∗ was only slightly lower. The experiment is shown in Fig-
ure B.9.

6.3 Computational Efficiency of Transfer Learning

We analysed the robustness and accuracy scores of the networks. Now we want to analyse whether
transfer learning is computationally beneficial compared to adversarial training from scratch. For
that, we measure the training time of all experiments we performed and compare them in this
section. We show graphic representations of the training times of the previously analysed models
in this section and show all other data in Appendix B. In these figures, TL #k indicates transfer
learning with conventional retraining of the last k layers.

Adversarially training a CNN-7 network on MNIST took 2197 seconds. Adapting it to EMNIST
took between 104 and 211 seconds. Compared to adversarial training of the EMNIST model from
scratch, which took 6819 seconds, this is between 32 and 65 times faster.

Stan
da

rd 
MNIS

T

Stan
da

rd 
EMNIS

T

PGD M
NIS

T 

PGD E
MNIS

T 
TL #

1
TL #

2
TL #

3
TL #

4

Training method

10
2

10
3

10
4

10
5

Tr
ai

ni
ng

 T
im

e 
(s

) [
lo

g]

13
6s

11
1s

33
77

0s

15
58

63
s

24
8s

12
2s

12
7s 16

6s

0s0s0s

Training times for RELU_4_1024

Stan
da

rd 
MNIS

T

Stan
da

rd 
EMNIS

T

PGD M
NIS

T 

PGD E
MNIS

T 
TL #

1
TL #

2
TL #

3
TL #

4
TL #

5
TL #

6
TL #

7

Training method

10
2

10
3

Tr
ai

ni
ng

 T
im

e 
(s

) [
lo

g]

52
s

11
1s

21
97

s

68
19

s

17
6s 21

1s

11
7s

10
4s

10
6s

18
0s

12
3s

0s0s0s

Training times for CNN-7

Figure 6.6: Training times for MNIST and EMNIST networks. TL #k indicates transfer learning with conven-
tional retraining of k layers from the back. One notices that adversarially training from scratch takes two to
three magnitudes longer than conventional training and transfer learning.

Also, for CIFAR networks, transfer learning is significantly faster than training from scratch. For a
ResNet-34 adversarial training of a CIFAR-10 network took 32480 seconds. Transfer learning using
conventional retraining took between 746 and 2339 seconds, which is roughly 14 to 44 times faster
than adversarial training of a CIFAR-100 network from scratch.

Remarkably, the CIFAR-100 networks are slightly faster to train compared to CIFAR-10. Espe-
cially compared to MNIST and EMNIST, where the MNIST models are significantly faster to train.
However, this stems from the fact that we use an early stopper, which often stops a bit earlier for
MNIST compared to EMNIST, while we use a fixed number of training epochs for CIFAR-10 and
CIFAR-100 training.
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Figure 6.7: Training times for CIFAR-10 and CIFAR-100 networks. TL #k indicates transfer learning with
conventional retraining of k layers from the back. One notices that adversarially training from scratch takes
roughly two magnitudes longer than conventional training and transfer learning.

We conclude that transfer learning using conventional retraining is up to three magnitudes faster
compared to adversarial training from scratch and therefore provides great training time benefits.

6.4 Transfer Learning using Adversarial Retraining

For transferring robustness from a CIFAR-10 source model to CIFAR-100, we observed that one has
to trade off clean accuracy and robustness, as they are in a negative linear relation to each other.
Therefore, we were interested in whether this could be solved by adversarially retraining the last
blocks instead of conventionally retraining them. We investigate this approach in this section.
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Figure 6.8: Accuracy scores and robustness distributions for WideResNet-34-10 networks trained on CIFAR-
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Adversarial retraining resulted in a median p∗ of 0.022 for retraining all layers, which is higher than the
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We performed transfer learning using adversarial retraining with a fixed number of 30 epochs of
a WideResNet-34-10 model. This is the same model as we already analysed in Figure 6.4. With
conventional retraining, we achieved a median p∗ of 0.028 at 10.5% accuracy. The results for ad-
versarial retraining are shown in Figure 6.8. Using adversarial retraining, the amount of retrained
layers did not seem to affect the achieved median p∗, which was approximately 0.022 for all re-
trained layers. It is interesting that even for five retrained blocks (which is equivalent to training
from scratch), the median p∗ is higher than the fully trained model from scratch. The robustness
distributions of the transfer learned models even span a wider range of 0.0 to 0.09 compared to
0.0 to 0.07 for the CIFAR-100 model adversarially trained from scratch. CDF plots for the models
are shown in the appendix in Figure B.8. The accuracy was slightly dependent on the number of
retrained blocks and decreased after retraining two blocks. For retraining two blocks, it peaked at
47.8%, which is almost as high as adversarial training from scratch, which resulted in a model with
52.8% accuracy. Therefore, this approach seems to be superior to conventional retraining.

Next, we analyse at what training time cost this superior method comes. In Figure 6.8, we compare
the training times for the different WideResNet-34-10 training methods. While transfer learning
using adversarial retraining takes more than ten times longer than conventional retraining, it is
still ten times faster than adversarial training of a target model from scratch, but delivers a model
comparable in accuracy and robustness. This approach may therefore offer an optimal tradeoff.
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Figure 6.9: Training times for CIFAR-10 and CIFAR-100 networks. TL Standard and TL Adversarial are the av-
erage training times for transfer learning using conventional and adversarial retraining. One notices that ad-
versarially training from scratch takes roughly two magnitudes longer than conventional training and transfer
learning using conventional retraining, and one magnitude longer than transfer learning using adversarial re-
training. Therefore, adversarial retraining is still ten times faster than adversarial training from scratch.

This method seems to be especially beneficial for CIFAR-10 to CIFAR-100 transfer learning. We
repeated the experiment for ResNet-34 and could achieve very similar results, which are presented
in Figure B.12. We also experimented with transfer learning from MNIST to EMNIST, which is
shown in the Figure B.11. We also achieve improvements for median p∗, which are not as big as
for transfer learning among CIFAR models.

6.5 Limitations

One limiting factor was the prohibitively expensive nature of this empirical study, as adversarial
training and verification for robustness distributions are computationally very heavy operations.
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We therefore could not perform hyperparameter optimisation and were forced to use the hyperpa-
rameter configurations from the literature. This caused issues for some networks, as the parameters
might not be ideal for them. Transfer learning could have been done ideally with hyperparameters
which are more suitable for fine-tuning the model. Only the batch size has been adapted slightly,
and the rest of the parameters were kept the same to ensure comparability and for training time
reasons.

Another issue we encountered was that the performance of the models on clean instances might
have an influence on the robustness distributions, as the verifier only creates robustness distri-
butions on instances that are correctly classified if unperturbed. When a model has a low clean
accuracy, fewer instances are available for creating the distributions, and therefore, the distribu-
tions might not include instances that are susceptible to perturbations. This might lead to artificial
improvements of the p∗ found for those models.
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Chapter 7

Conclusion and Outlook

In this thesis, we performed the following experiments:

• We conventionally and adversarially trained source and target models from scratch

• We performed transfer learning from the adversarially trained source models to the target
domain layer by layer

• We analysed the obtained networks with regard to accuracy scores, robustness distributions,
and training times

We found that robustness could be partially transferred for most models as long as they are com-
plex enough. Roughly two-thirds of the robustness could be retained for two of the four MNIST
neural networks. Similarly, for transfer learning from CIFAR-10 to CIFAR-100, roughly two-thirds
of the robustness could be transferred for most networks. For MNIST networks, transfer learning
could be performed with achieving the same or slightly worse accuracy as a target model trained
from scratch. For CIFAR network the correlation between robustness and accuracy was negative
linear, one therefore had to weigh off between accuracy and robustness. With adversarial retrain-
ing, we achieved similar or even slightly better robustness distributions than adversarial training
of a target model from scratch with slightly worse clean accuracy at considerably less training time.

We further found that transfer learning from an existing source model is computationally signifi-
cantly more efficient than adversarially training of a target domain model from scratch. For MNIST
networks, transfer learning using early stopping was between 35 and 45 times faster than adver-
sarial training from scratch. CIFAR transfer learning was between 25 and 250 times faster than ad-
versarially training from scratch. It is also remarkable that with adversarial retraining, robustness
could be fully transferred, and training times were still ten times faster than adversarial training of
a target model from scratch.

These conclusions suggest some applications for transfer learning of robustness. Transfer learning
using conventional retraining is not useful when one simply wants to acquire the best possible
target domain model, and training time does not play a role, as robustness could only be trans-
ferred partly. However, if maximum robustness is not crucial and training time is limited, transfer
learning is very useful. For example, if one already has access to a robust source model and wants
to adapt it to a similar target domain, one could use transfer learning and obtain a robust target
domain model with considerably less training time compared to adversarial training from scratch.
The approach might moreover be particularly useful if one wants to obtain multiple target do-
main models and only wants to adversarially train one source model from scratch, as the training
time benefits scale up. If the best possible robustness is crucial, transfer learning using adversarial
retraining is very useful, as it is still up to ten times faster than adversarial training from scratch.

Some interesting future work would be to further explore transfer learning with adversarial re-
training and investigate other transfer learning approaches, such as learning without forgetting, as
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performed by Shafahi et al. [14]. The authors investigated learning without forgetting for transfer
learning of a more complex source model to a simpler target domain and found that it could im-
prove accuracy and generalisation. However, they did not investigate learning without forgetting
for transfer learning from a simpler source model to a more complex target domain. It would be
interesting to see if this also improves accuracy and generalisation for our use cases. Also, combin-
ing this method with replacing the classification head with a multi layer perceptron, such as shown
in Figure B.9 would be worth investigating. Both methods improve generalisation and accuracy on
the target domain. Therefore, it would be interesting to see if the effects scale up when combined.
Furthermore, incorporating the DARD framework recently developed by Zou et al. [30] for transfer
learning would be an interesting task. Moreover, extending this research from MNIST and CIFAR
datasets to ImageNet and OpenImages would provide even more insights about the generalisation
and scaling of this method to larger datasets.
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Appendix A

Hyperparameters and Verification Parameters

Table A.1: Hyperparameters used for MNIST and EMNIST conventional training and transfer learning.

Parameter Value

Learning rate 0.001
Weight decay 0.0001

Batch size 256
Scheduler step size 10
Scheduler gamma 0.98

Patience 6
Max epoch 300

Table A.2: Hyperparameters used for MNIST and EMNIST adversarial training.

Parameter Value

Learning rate 0.001
Weight decay 0.0001

Batch size 256
Scheduler step size 10
Scheduler gamma 0.98

Attack epsilon 0.3
Patience 6

Max epoch 300

Table A.3: Hyperparameters used for MNIST and EMNIST transfer learning using adversarial retraining.

Parameter Value

Learning rate 0.001
Weight decay 0.0001

Batch size 256
Scheduler step size 10
Scheduler gamma 0.98

Patience 6
Max epoch 30
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Table A.4: Hyperparameters used for CIFAR-10 and CIFAR-100 conventional training. For ResNet-34,
ResNet-50, WideResNet-28-10 and WideResNet-34-10 we used early stopping with patience 6, because the
training crashed for the later smaller learning rates. All other models were fully trained until epoch 200.

Parameter Value

Learning rate 0.1
Weight decay 0.0005

Batch size 128
Scheduler milestones [60,120,160]

Scheduler gamma 0.2
Max epoch 200

Table A.5: Hyperparameters used for CIFAR-10 and CIFAR-100 adversarial training. For ResNet-34 and
ResNet-50 we used early stopping with patience 6, because the training crashed for the later smaller learning
rates. All other models were fully trained until epoch 200.

Parameter Value

Learning rate 0.1
Weight decay 0.0005

Batch size 128
Scheduler milestones [60,120,160]

Scheduler gamma 0.2
Attack epsilon 8/255

Max epoch 200

Table A.6: Hyperparameters used for CIFAR-10 and CIFAR-100 transfer learning using conventional retrain-
ing. Early stopping was activated with patience 6.

Parameter Value

Learning rate 0.1
Weight decay 0.0005

Batch size 256
Scheduler milestones [60,120,160]

Scheduler gamma 0.2
Max epoch 200

Table A.7: Hyperparameters used for CIFAR-10 and CIFAR-100 transfer learning using adversarial retraining.

Parameter Value

Learning rate 0.1
Weight decay 0.0005

Batch size 256
Max epoch 30

Table A.8: Verification parameters for MNIST and EMNIST networks.

Parameter Value

Epsilon search space [0.0, 0.8]
Epsilon step size 0.005

Attack PGD-40



Table A.9: Verification parameters for CIFAR-10 and CIFAR-100 networks.

Parameter Value

Epsilon search space [0.0, 28/256]
Epsilon step size 0.001

Attack PGD-40
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Figure B.1: CDF plots for CNN-7 networks trained on MNIST and EMNIST. The models adversarially trained
from scratch show a more S-shaped robustness distribution while the transfer learned models show a more
linear distribution.
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Figure B.2: Accuracy scores and robustness distributions for CNN-4 networks trained on MNIST and EM-
NIST. An adversarially trained EMNIST model from scratch has a median p∗ of 0.405, while transfer learning
resulted in a median p∗ of 0.260 for retraining two layers, which is roughly two thirds of the median p∗ of the
model trained from scratch.
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Figure B.3: Accuracy scores and robustness distributions for CNN-3 networks trained on MNIST and EM-
NIST. One notices that transfer learning was not as successful for this architecture. At best a median p∗ of
0.050 could be achieved for retraining the last two layers, which corresponds to less than a fifth of the median
p∗ of the source model adversarially trained from scratch and is only slightly better than the median p∗ of a
conventionally trained target model.

Table B.1: Detailed results for RELU_4_1024 architecture.

Model Accuracy Median p* Training Time Early Stopping Epoch

Standard MNIST 97.89% 0.08 136s 16
Standard EMNIST 84.80% 0.05 111s 12

PGD MNIST 98.42% 0.395 33770s 166
PGD EMNIST 77.51% 0.315 155863s 217

TL #1 71.59% 0.105 248s 28
TL #2 76.99% 0.115 122s 15
TL #3 79.97% 0.065 127s 15
TL #4 84.98% 0.05 166s 19
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Figure B.4: Accuracy scores and robustness distributions for ResNet-18 networks trained on CIFAR-10 and
CIFAR-100. At best a median p∗ of 0.015 could be achieved for retraining one block, which corresponds to
slightly more than two thirds of the median p∗ of the source model adversarially trained from scratch and is
roughly eight times the median p∗ of a conventionally trained target model.
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Figure B.5: CDF plots for ResNet-34 networks trained on CIFAR-10 and CIFAR-100. Here the distributions
look very similar.

Table B.2: Detailed results for CNN-3 architecture.

Model Accuracy Median p* Training Time Early Stopping Epoch

Standard MNIST 98.37% 0.08 156s 18
Standard EMNIST 84.79% 0.035 141s 14

PGD MNIST 97.63% 0.355 11549s 74
PGD EMNIST 80.90% 0.27 24537s 70

TL #1 78.81% 0.035 488s 48
TL #2 84.44% 0.05 104s 11
TL #3 84.48% 0.035 200s 20
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Figure B.6: Accuracy scores and robustness distributions for ResNet-50 networks trained on CIFAR-10 and
CIFAR-100. At best a median p∗ of 0.025 could be achieved for retraining two blocks, which is equal to the
median p∗ of the source model adversarially trained from scratch and is roughly 13 times the median p∗ of a
conventionally trained target model.

standard_cifar10 standard_cifar100 pgd_cifar10 pgd_cifar100
Training method

0.00

0.02

0.04

0.06

0.08

M
in

im
um

 a
dv

er
sa

ria
l p

er
tu

rb
at

io
n

0.003 0.002

0.028

0.018

WideResNet-28-10

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ac

cu
ra

cy

0.842

0.656

0.820

0.538

(a) Conventionally and adversarially trained models from
scratch.

1 2 3 4 5
Retrained blocks

0.00

0.02

0.04

0.06

0.08

0.10

M
in

im
um

 a
dv

er
sa

ria
l p

er
tu

rb
at

io
n

0.025
0.018

0.010 0.007
0.003

WideResNet-28-10

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n 
Ac

cu
ra

cy

0.095
0.160

0.403

0.509

0.599

(b) Transfer learned models from adversarially trained
source model to target domain with k retrained layers.

Figure B.7: Accuracy scores and robustness distributions for WideResNet-28-10 networks trained on CIFAR-
10 and CIFAR-100. At best a median p∗ of 0.025 could be achieved for retraining one block, which is even
more than the median p∗ of the source model adversarially trained from scratch and is roughly 13 times the
median p∗ of a conventionally trained target model.

Table B.3: Detailed results for CNN-4 architecture.

Model Accuracy Median p* Training Time Early Stopping Epoch

Standard MNIST 99.06% 0.136 122s 20
Standard EMNIST 87.88% 0.076 146s 14

PGD MNIST 99.03% 0.381 7052s 42
PGD EMNIST 84.59% 0.406 8858s 41

TL #1 84.02% 0.231 190s 21
TL #2 86.02% 0.256 166s 18
TL #3 86.96% 0.101 177s 18
TL #4 87.77% 0.071 161s 15



0.00 0.02 0.04 0.06 0.08 0.10
Minimum adversarial perturbation

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

WideResNet-34-10

Training method
standard_cifar10
standard_cifar100
pgd_cifar10
pgd_cifar100

(a) Conventionally and adversarially trained models from
scratch.

0.00 0.02 0.04 0.06 0.08 0.10
Minimum adversarial perturbation

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

WideResNet-34-10 Adversarial Retraining
Retrained blocks

1
2
3
4
5

(b) Transfer learned models from adversarially trained
source model to target domain with k retrained layers us-
ing adversarial retraining.

Figure B.8: CDF plots for WideResNet-34-10 networks trained on CIFAR-10 and CIFAR-100. All of the transfer
learned models resemble each other very closely.

Table B.4: Detailed results for CNN-7 architecture.

Model Accuracy Median p* Training Time Epochs

Standard MNIST 98.98% 0.140 52s 12
Standard EMNIST 87.38% 0.070 111s 14

PGD MNIST 99.29% 0.405 2197s 36
PGD EMNIST 85.89% 0.415 6819s 58

TL #1 75.74% 0.195 176s 27
TL #2 81.89% 0.205 211s 31
TL #3 85.84% 0.255 117s 17
TL #4 86.95% 0.260 104s 15
TL #5 86.70% 0.270 106s 15
TL #6 86.90% 0.070 180s 23
TL #7 87.48% 0.075 123s 16

TL #1 Adversarial 73.75% 0.265 1357s 20
TL #2 Adversarial 81.37% 0.315 1446s 20
TL #3 Adversarial 85.62% 0.36 1778s 20
TL #4 Adversarial 86.25% 0.38 1760s 20
TL #5 Adversarial 86.72% 0.38 1510s 20
TL #6 Adversarial 84.56% 0.37 1757s 20
TL #7 Adversarial 84.80% 0.39 1745s 20



Table B.5: Detailed results for ResNet-18 architecture.

Model Accuracy Median p* Training Time Epochs

Standard CIFAR10 94.60% 0.004 25855s 200
Standard CIFAR100 76.91% 0.002 18034s 200

PGD CIFAR10 80.18% 0.027 88915s 200
PGD CIFAR100 48.03% 0.021 95024s 200

TL #1 18.43% 0.015 451s 25
TL #2 18.77% 0.014 660s 34
TL #3 38.66% 0.01 1052s 50
TL #4 46% 0.008 1192s 51
TL #5 58.58% 0.005 1453s 56
TL #6 61.3% 0.002 1168s 39
TL #7 61.29% 0.002 919s 30
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Figure B.9: Scatter plot of median p∗ over clean accuracy for transfer learned ResNet-34 models. The light
blue line shows the model obtained using conventional retraining; the other lines are models with additional
hidden layers of 2048 neurons each. Adding hidden layers was performed by replacing the last layer with a
multi layer perceptron and adapting the last layer to the target domain. One notices that adding especially
two or three hidden layers could improve the performance of the models.



Table B.6: Detailed results for ResNet-34 architecture.

Model Accuracy Median p* Training Time Epochs

Standard CIFAR10 83.92% 0.002 1208s 22
Standard CIFAR100 55.06% 0.002 1312s 24

PGD CIFAR10 78.44% 0.029 39858s 84
PGD CIFAR100 47.08% 0.021 32480s 84

TL #1 19.67% 0.018 1448s 46
TL #2 19.25% 0.018 746s 26
TL #3 39.54% 0.011 1324s 44
TL #4 46.52% 0.008 1546s 45
TL #5 58.63% 0.004 2339s 56
TL #6 61.54% 0.002 1593s 34
TL #7 60.42% 0.001 2032s 42

TL #1 Adversarial 44.73% 0.023 16116s 40
TL #2 Adversarial 44.22% 0.023 17038s 40
TL #3 Adversarial 45.28% 0.022 14617s 40
TL #4 Adversarial 42.29% 0.025 15068s 40
TL #5 Adversarial 38.06% 0.023 13826s 40
TL #6 Adversarial 37.12% 0.026 14265s 40
TL #7 Adversarial 35.48% 0.025 15063s 40

TL #1 MLP1 25.79% 0.017 1002s 34
TL #2 MLP1 25.08% 0.017 1291s 43
TL #3 MLP1 39.33% 0.011 1714s 54
TL #4 MLP1 45.01% 0.009 1129s 32
TL #5 MLP1 57.23% 0.004 1933s 46
TL #6 MLP1 59.6% 0.002 1574s 34
TL #7 MLP1 60.84% 0.001 1923s 40
TL #1 MLP2 29.95% 0.016 764s 27
TL #2 MLP2 30.69% 0.016 1651s 54
TL #3 MLP2 44.23% 0.01 2702s 84
TL #4 MLP2 54.91% 0.008 3160s 80
TL #5 MLP2 58.31% 0.004 1926s 44
TL #6 MLP2 61.95% 0.002 1870s 37
TL #7 MLP2 59.74% 0.002 1189s 24
TL #1 MLP3 30.96% 0.015 1279s 39
TL #2 MLP3 30.1% 0.016 717s 24
TL #3 MLP3 41.89% 0.011 1510s 46
TL #4 MLP3 54.27% 0.008 4379s 98
TL #5 MLP3 56.64% 0.005 2003s 43
TL #6 MLP3 61.21% 0.002 1812s 36
TL #7 MLP3 61.28% 0.002 1572s 31



Table B.7: Detailed results for ResNet-50 architecture.

Model Accuracy Median p* Training Time Epochs

Standard CIFAR10 81.04% 0.002 3408s 33
Standard CIFAR100 55.04% 0.002 3331s 32

PGD CIFAR10 53.91% 0.029 41226s 47
PGD CIFAR100 28.49% 0.025 38343s 55

TL #1 9.95% 0.02 921s 21
TL #2 10.32% 0.025 1406s 30
TL #3 28.88% 0.009 1606s 31
TL #4 47.47% 0.005 1820s 32
TL #5 56.96% 0.003 3490s 47
TL #6 60.02% 0.002 2785s 33
TL #7 60.61% 0.002 2871s 33

Table B.8: Detailed results for WideResNet-28-10 architecture.

Model Accuracy Median p* Training Time Epochs

Standard CIFAR10 84.22% 0.003 4502s 26
Standard CIFAR100 65.58% 0.002 20437s 84

PGD CIFAR10 81.95% 0.028 492196s 200
PGD CIFAR100 53.78% 0.018 417888s 200

TL #1 9.48% 0.025 2007s 29
TL #2 16.01% 0.018 1376s 20
TL #3 40.25% 0.01 3911s 44
TL #4 50.92% 0.007 4253s 36
TL #5 59.87% 0.003 5615s 37

Table B.9: Detailed results for WideResNet-34-10 architecture.

Model Accuracy Median p* Training Time Epochs

Standard CIFAR10 84.65% 0.003 5925s 28
Standard CIFAR100 64.61% 0.002 27947s 84

PGD CIFAR10 82.19% 0.028 548219s 200
PGD CIFAR100 52.83% 0.018 486588s 200

TL #1 10.52% 0.028 2188s 26
TL #2 17.33% 0.018 2570s 30
TL #3 38.95% 0.012 2688s 25
TL #4 50.93% 0.007 3884s 28
TL #5 59.01% 0.002 7376s 38

TL #1 Adversarial 45.26% 0.022 51060s 30
TL #2 Adversarial 47.82% 0.022 50025s 30
TL #3 Adversarial 46.17% 0.022 48511s 30
TL #4 Adversarial 42.69% 0.023 47176s 30
TL #5 Adversarial 41.64% 0.022 48161s 30
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(a) Transfer learned ResNet-34 model with k retrained layers.
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(b) Transfer learned ResNet-34 model with one additional
hidden layer with 2048 neurons.
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(c) Transfer learned ResNet-34 model with two additional
hidden layers of 2048 neurons each.
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(d) Transfer learned ResNet-34 model with three additional
hidden layers of 2048 neurons each.

Figure B.10: Accuracy scores and robustness distributions for transfer learned ResNet-34 models with added
hidden layers of 2048 neurons each. Adding hidden layers was performed by replacing the last layer with
a multi layer perceptron and adapting the last layer to the target domain. One notices that adding hidden
layers could improve the accuracy of the models while slightly decreasing median p∗.
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Figure B.11: Accuracy scores and robustness distributions for CNN-7 networks trained on MNIST and EM-
NIST. One notices that for retraining the models from the back layer by layer, the median p∗ increases until
five layers, followed by a sharp drop in robustness. At best, a median p∗ of 0.266 could be achieved for retrain-
ing five layers, which corresponds to two-thirds of the median p∗ of the source model adversarially trained
from scratch and is roughly four times the median p∗ of a conventionally trained target model.
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Figure B.12: Accuracy scores and robustness distributions for ResNet-34 networks trained on CIFAR-10 and
CIFAR-100.
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