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Abstract

Touch interaction with in-vehicle infotainment systems can distract drivers because they
often require a visual glance away from the road. Mid-air hand gesture recognition provides
a more suitable form of interaction and allows drivers to control system functions without
touching the display and with reduced visual demand. However, most existing in-vehicle gesture
recognition systems rely on frame-based cameras. These cameras often perform poorly in
automotive environments, particularly during fast hand motion and under challenging lighting
conditions, where motion blur and sensor noise reduce data reliability. Event-based cameras
offer an alternative approach, because their high temporal resolution and wide dynamic range
make them more robust to rapid motion and challenging lighting conditions. However, there
are currently no available in-vehicle event-based gesture datasets. This thesis addresses this
gap with a pilot in-vehicle event-based hand gesture dataset from a DAVIS346 camera, which
includes 5 subjects, 16 gesture classes, and five recording conditions: daylight static, daylight
driving, nighttime static, sunset static, and nighttime driving.

A convolutional spiking neural network (CSNN) is used to assess the collected dataset.
Experiments show reasonable performance when training and testing use the same condition,
with 84% accuracy for daylight-only evaluation, 72% for nighttime-only evaluation, 77% for
static-only evaluation, and 66% for driving-only evaluation. Generalization across conditions
proves difficult; daylight-to-nighttime transfer reaches 13% accuracy, and static-to-driving
transfer reaches 12% accuracy. Cross-subject evaluation reports accuracies between 15% and
26%. These results show that performance remains high under matched recording conditions,
but drops when conditions or subjects change. This work establishes a baseline for in-vehicle
event-based gesture recognition and identifies key challenges for future research.
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1 Introduction

1.1 Context and motivation

In-vehicle infotainment (IVI) systems support multiple interaction modalities, such as touchscreen
interfaces [FER+14], voice controls [Mou20], and gesture-based interactions [PLGAAC14]. Although
these technologies enhance the driving experience, they also raise questions about how much they
might distract the driver and the possible impact on road safety [Pic05].
One approach to reduce this type of distraction is to rely on methods that require less visual effort
and touch interaction. Gesture-based interaction has been proposed as a potential solution, because
gestures can be performed with one hand, involve a small movement range, and require less direct
visual attention to the display [GMY+16, TCF+24]. As a result, gesture-based interfaces can reduce
visual and manual interference and have the potential to support safer interaction inside the vehicle.
Most existing in-vehicle gesture recognition systems rely on conventional frame-based sensors
[KLR+21, OBT14, PLGAAC14, RGF23]. However, under fast hand motion or challenging illumi-
nation, these sensors are prone to motion blur, limited dynamic range, and latency–power trade-offs
[Del16], which reduce data reliability in real driving scenarios.
Besides these sensor-level limitations, real in-vehicle environments introduce additional sources
of visual complexity that are rarely reflected in existing gesture datasets. In practice, gestures
are performed in a visually dynamic cabin rather than in front of a static background, and the
illumination conditions also vary rapidly. For example, a driver may perform a gesture during
transitions from a tunnel to direct sunlight, or at night under the combined influence of dashboard
lighting and passing streetlights, which creates sudden brightness changes.
Event-based vision offers an alternative approach to address these challenges, because it operates
asynchronously and responds only to pixel-level brightness changes that exceed a given threshold
[GDO+22]. As a result, event-based cameras achieve microsecond temporal resolution, a wide
dynamic range, and low power consumption, which make them well suited to automotive scenarios
with rapid illumination changes and fast hand motion.
However, there is no available dataset that combines in-vehicle hand gesture recordings with
event-based cameras. To address this gap, this thesis presents a pilot dataset that was recorded
with an event-based DAVIS346 camera in a real in-car setting. The data were collected under
different realistic driving and lighting conditions, and this work investigates whether event-based
vision can be used effectively for in-vehicle gesture recognition. Moreover, a Convolutional Spiking
Neural Network (CSNN) is employed as a baseline to assess the dataset.

1.2 Research question

The absence of an event-based hand gesture dataset inside a real vehicle reveals a clear gap in
current research on in-car infotainment interaction. The central research question is as follows: Can
event-based vision be used effectively for in-vehicle hand gesture recognition under realistic driving
and varied lighting conditions?
The following sub-questions are formulated to investigate the main research question:
RQ1: How does recognition accuracy vary under the same recording conditions for an event-based
camera combined with a CSNN in in-vehicle gesture recognition?
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RQ2: How much does recognition accuracy vary when the model is trained on daytime data and
tested on nighttime data?
RQ3: How much does recognition accuracy vary when the model is trained on static recordings and
tested on driving recordings?
RQ4: How much does recognition accuracy vary when the model is evaluated on unseen subjects?

1.3 Contributions

This thesis makes several contributions, it introduces a pilot event-based gesture dataset which is
recorded inside a real vehicle in five conditions: daylight static, daylight driving, nighttime static,
sunset static, and nighttime driving situations. It develops a baseline CSNN to assess whether
event-based data can support in-car gesture classification, and it tests how well this model transfers
between different recording conditions. Moreover, it discusses the challenges which were observed
during the data collection process and outlines considerations for future dataset design.

1.4 Thesis overview

This work is structured as follows: Section 2 reviews the background of event-based vision, summa-
rizes existing datasets, and gesture-recognition approaches. Section 3 describes the creation of the
self-collected in-car gesture dataset, including the recording setup, subjects, conditions, and the
final gesture set. Section 4 outlines the CSNN baseline model. Section 5 shows the experiments
which evaluate the recognition performance under mixed conditions, such as day-to-night, and
static-to-driving transitions. Section 6 discusses the main limitations of the dataset and possible
improvements for future work. Finally, Section 7 concludes the thesis.
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2 Related work

2.1 In-vehicle gesture recognition with frame-based cameras

Most in-vehicle gesture recognition research relies on conventional frame-based cameras. The
DriverMHG dataset provides synchronized RGB, infrared, and depth recordings of micro hand
gestures that were performed on a steering wheel inside a driving simulator [KLR+21]. This simulator
setup allows data collection under multiple lighting configurations, but it does not capture the
continuous illumination changes, motion and vibration that occur during real driving.
Reyes et al. conducted experiments in a real vehicle using a Time-of-Flight depth (ToF) camera,
and reported recognition accuracy of up to 90% with a Convolutional Long Short-Term Memory
Neural Network model [RGF23]. However, the authors report that ToF measurements are sensitive
to noise and that partial depth information is often lost during data capture. They also emphasize
the need for further evaluation under fully realistic driving conditions, where illumination and
motion vary continuously.
Similarly, Ohn-Bar and Trivedi developed a real-time vision-based system, but their data collection
took place in a parking lot [OBT14], which means that their data provide a limited representation of
natural driving behavior and the complex variability of real-world environments. These limitations
motivate the exploration of alternative methods that can operate robustly under challenging
automotive conditions.

2.2 Event-based vision and its application in automotive environments

Event-based sensors differ from conventional frame-based sensors; instead of capturing full images at
fixed intervals, they respond to brightness changes at individual pixels, generate an event whenever
the change exceeds a threshold, and output a tuple of (x,y,t,p), where (x,y) denotes the pixel
location, t the timestamp, and p the polarity of the change [GDO+22]. Event-based vision sensors
have temporal resolution on the order of microseconds and achieve a dynamic range (> 130 dB)
well above that of conventional frame-based cameras (60 dB), which makes them suitable to capture
fast motion under challenging lighting conditions, such as during tunnel exits or under strong
sunlight [ZTO+18].
Event-based sensors have also been explored in real-world automotive environments. For example,
the Multi Vehicle Stereo Event Camera Dataset (MVSEC) [ZTO+18] and the more recent Driving
Stereo Event Camera (DSEC) [GAGS21] provide driving datasets from event cameras under
challenging illumination conditions, such as direct sunlight, dusk, and night. These datasets focus
on outward-facing road scenes rather than in-car interaction, but they show that event cameras can
handle realistic driving conditions where frame-based cameras often struggle. The success of such
event cameras in handling rapid illumination changes and motion in outward-facing automotive
scenarios suggests potential benefits for in-car applications.

2.3 Event-based gesture recognition datasets

Event-based cameras have been applied to gesture recognition in several prior studies. The DAVIS-
Gesture128 dataset captures 11 gesture classes from 29 participants using a DAVIS128 camera
under three lighting conditions [ATB+17]. Participants performed gestures in front of a static back-
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ground. Similarly, the ASL-DAVIS dataset provides a similar experimental setup, with recordings
of American Sign Language gestures from five participants in a stable office environment [Pix].
These datasets follow a similar recording setup. Gestures are performed in front of static backgrounds
and under controlled lighting conditions, which reduces background activity and limits illumination
variation. As a result, the recognition task is simplified and the datasets are suitable for controlled
benchmarking. However, this controlled setting does not reflect the visual complexity in real-world
automotive scenarios. Table 1 summarizes the key differences between existing gesture datasets
and this work.

Dataset Subjects Gestures Environment Lighting Vehicle motion
DriverMHG [KLR+21] 25 7 Simulator 5 conditions Static
Reyes et al. [RGF23] 83 6 Real car Varied Static
Ohn-Bar [OBT14] 8 19 Real car Outdoor Slow driving
DAVISGesture128 [ATB+17] 29 11 Lab 3 conditions N/A
ASL-DAVIS [Pix] 5 24 Office Stable N/A
This work 5 16 Real vehicle 3 conditions Static + Driving

Table 1: Comparison of datasets.

Without the in-vehicle dataset which was collected in this work and its evaluation, it is difficult
to determine whether event-based vision still has its advantages over frame-based vision in real
automotive environments.
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3 In-vehicle gesture dataset

3.1 Data collection equipment and recording configuration

Throughout the entire project, all recordings were conducted using the iniVation DAVIS346 event
camera [ini19] and the DV software platform [ini25]. The camera has a spatial resolution of 346x260
pixels. For each gesture class, a separate continuous recording of 15 seconds was captured, and
participants repeatedly performed the same gesture at a self-selected speed. All recordings were
saved in the AEDAT4 format.
Participants were required to perform all gestures with their right hand, because the dataset was
collected in the Netherlands, where vehicles are left-hand drive. In this configuration, the right hand
offers a larger interaction space near the center display, whereas the left side is mainly constrained
by the door and the window.
The data collection consisted of two phases which were conducted on separate days within a
one-month period. The first phase was a preliminary indoor session to identify the most comfortable
gestures for participants. Based on participant feedback, the second phase involved in-vehicle
recordings using the refined gesture set. The camera position was kept fixed within each phase to
ensure consistency.

3.2 Dataset preparation

3.2.1 Gesture design

Each subject might perform the same gesture in different ways. To address this variability, a
predefined gesture set (Table 4) was used to ensure consistency during data collection. In total 24
gesture variations were designed; some gestures represented the same command, but differed in
execution style. For example, a leftward swipe could be performed with one finger or with the entire
hand moving left. GIFs of the gestures were provided to the participants to help them perform
each gesture in a standardized manner.

3.2.2 Indoor recording and gesture selection

A preliminary experiment was conducted in an indoor setting to determine the final gesture set.
Three participants (one female, two males, aged between 20 and 30, all right-handed and holding
valid driving licenses) took part under the same lighting conditions.
The camera was mounted on a table approximately 25 cm from the participant, positioned slightly
to the right side and angled toward the gesture area. Participants were seated and, before each
gesture recording, watched the corresponding GIF to learn the gesture. For the actual recording,
they assumed a driving posture with their hands positioned in front of them at approximately
steering-wheel height and performed the gesture repeatedly for about 15 seconds using their right
hand. To capture natural gesture variability, participants were instructed to perform the gestures at
a self-selected comfortable speed, as long as the required gesture style was followed and remained
consistent. After completing each gesture, the participants provided feedback on which variants
felt more convenient and intuitive. Based on their feedback, the eight least preferred variants were
removed. Figure 1 shows the final set of hand gestures for the in-vehicle dataset collection, the
density of the event-based representations depends on the speed of the gesture. Faster movements

5



generate more events and denser patterns, whereas slower movements produce fewer events and
sparser patterns. The RGB images are provided as a visual reference to help interpret the gestures
and are not used in the experiments or the neural network.

Figure 1: Visualization of the 16 collected hand gesture classes. (1a–16a) Event-based representations.
(1b–16b) Corresponding RGB frames for visual reference.

The final dataset and the corresponding motion descriptions are summarized in Table 2. For the pilot
dataset, each gesture was assigned a descriptive label representing a typical in-vehicle interaction
command (see Table 5).
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ID Gesture Motion description
0 pinch Thumb and index finger pinch together
1 OK Hand enters the camera view first, then forms the

”OK: gesture
2 swipe right Only the index finger swipes to the right
3 swipe left Only the index finger swipes to the left
4 swipe up The index finger swipes upward
5 swipe down The index finger swipes downward
6 thumb up Thumbs-up gesture
7 thumb down The thumb points downward while the hand moves

slightly
8 number1 The index finger is extended
9 number2 The index and middle fingers are extended
10 number3 Three fingers are extended
11 back and forth Five fingers move left and right repeatedly
12 stop grab The hand performs a grabbing motion
13 make a call The thumb and pinky are extended; the hand moves

slightly
14 rotate clockwise The index finger rotates clockwise
15 rotate counterclockwise The index finger rotates counterclockwise

Table 2: List of hand gestures and their corresponding motion descriptions.

3.3 Real in-vehicle data collection

3.3.1 Recording setup and conditions

Five recording conditions were designed to evaluate the collected dataset under varying illumination
and motion settings. These conditions combined three illumination scenarios (daylight, nighttime,
and sunset) with two motion states (static and driving): daylight static, daylight driving, nighttime
static, nighttime driving, and sunset static. In static conditions, the vehicle remained stationary,
whereas in driving conditions, recordings were collected when the vehicle was in motion. The sunset
static condition was recorded with the vehicle stationary under natural sunset illumination during
the early evening.
The dataset was collected in a Kia EV6, which provided a realistic in-car environment for data
collection. Inside the vehicle, the camera was mounted on the top edge of the central display using
a small stand secured with tape (see Figure 2). The camera was directed toward the area below
the display where in-vehicle gestures are performed and angled slightly downward to capture hand
movements without the need for the driver to adjust their arm position.
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Figure 2: Overview of the in-vehicle recording setup from two perspectives, the event camera is
mounted above the central display.

3.3.2 Participants

For the in-car recordings, five participants took part in the data collection, with ages ranging from 20
to 30 years. The group included two females and three males. Four participants were right-handed,
and one participant was left-handed, but performed all gestures with the right hand as instructed.
Four participants held a valid driving license. Each participant contributed data under one or more
recording conditions. Table 3 summarizes the recording conditions which were contributed by each
participant, where D denotes daytime, N denotes nighttime, and S denotes sunset.

Subject D Static D Drive N Static N Drive S Static
Subject 1 X X X
Subject 2 X X
Subject 3 X X
Subject 4 X X
Subject 5 X

Table 3: Recording conditions covered by each subject.

As shown in Table 3, the distribution of recording conditions was uneven due to practical constraints.
Although four participants held a valid driving license, only two participated in the driving conditions
due to safety and scheduling considerations. As a result, not all participants completed all conditions.
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A total of ten recording sessions were conducted across all participants and conditions. Each session
contained recordings of 16 distinct gestures. In total, the dataset consists of 160 gesture samples.
The preprocessing of the collected data is described in Section 4.
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4 Methodology

This section describes the full pipeline, from data collection to preprocessing, model training, and
evaluation (see Figure 3). In this pipeline, the collected event-based recordings serve as the starting
point for all subsequent processing steps. Raw event streams are first recorded in a real vehicle,
segmented into fixed-length temporal clips, and then converted into voxel-grid representations,
which are then fed as input to a CSNN. Finally, the trained model is evaluated using multiple
experimental settings.

Figure 3: Overview of the methodological pipeline. Event-based gesture recordings are collected
in a real vehicle, preprocessed into voxel-grid representations, and used to train a CSNN baseline,
which is evaluated under different experimental settings.

4.1 Data collection

During data collection, participants were seated in the driver’s seat of the vehicle. Before each
recording, participants viewed the GIF demonstration to familiarize themselves with the required
gesture. Recording started after the participant confirmed readiness and a standardized verbal start
cue was given by the experimenter, and it ended with a verbal stop cue. The event-based camera
recorded only during the gesture trial, and each recording was saved individually in AEDAT4
format using the DV software platform. Between each recording, participants were given time to
review the next gesture and decide when they were ready to proceed.
For the static conditions, participants remained seated in a stationary vehicle, and each gesture
was recorded in a separate 15 seconds trial. For the driving conditions, participants actively drove
the vehicle, and gestures were performed during the separate 15 seconds recordings.

4.2 Data preprocessing

The event stream in this work is stored in AEDAT4 format. Each event in the raw data is generated
by the camera hardware and contains the pixel location, timestamp, and polarity. To create training
samples, each 15 seconds gesture recording is segmented into shorter clips using a sliding-window
approach. A window length of 500 milliseconds and a stride of 250 milliseconds are used, such that
neighboring clips share 50% of their temporal duration. In the implementation, event timestamps
are measured in microseconds, and we convert the window length and stride to 500,000 microseconds
and 250,000 microseconds.
This overlap is used because the exact start and end of a gesture within a 15 seconds recording are
not clearly defined. If there is no overlap, a gesture can be cut off at the clip boundaries. Let tfirst
and tlast denote the timestamps of the first and last event in a recording, and let T = tlast − tfirst
denote the effective event duration. The number of extracted clips is given by

N =

⌊
T −W

S

⌋
+ 1, (1)
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where W denotes the window length, S the stride, and N the number of clips. For an ideal 15
seconds recording, this setting produces a maximum of 59 clips, but the exact number may differ
when fewer events occur.
After temporal segmentation, each 500 millisecond clip is converted into a voxel-grid representation
of size (5, 260, 346), where the first dimension corresponds to the number of temporal bins and
260x346 corresponds to the camera resolution. The bins are used to capture the temporal progression
of the gesture. For example, gestures such as a left swipe and a right swipe may appear similar if
all events within the 500 milliseconds window are aggregated into a single frame. When the window
is divided into multiple bins, the model can observe the temporal order of events, and this helps
distinguish gestures that have similar spatial patterns, but different motion directions.

4.3 Model architecture

The classification model is a CSNN inspired by prior work on event-based spiking architectures
[PTS+24]. The model combines convolutional layers for spatial feature extraction with spiking
neurons that learn spatial and temporal relations in event-based inputs.
An overview of the network architecture is shown in Figure 4. The model takes a voxel-grid
representation of the event stream, and the network is organized into four convolutional blocks; the
convolutional layers extract spatial patterns related to hand shape, and the Leaky Integrate-and-
Fire (LIF) neurons handle temporal information. Through the membrane potential, LIF neurons
integrate evidence across consecutive time bins and gradually forget older inputs, which allows
the network to capture short-term temporal structure. As the network goes deeper, the number of
feature channels increases to represent more complex gesture patterns. At the same time, average
pooling reduces the spatial resolution. After the final convolutional block, dropout is applied to
reduce overfitting. The extracted features are then flattened and passed to a fully connected layer
to produce gesture class predictions. All spiking layers use an arctangent surrogate gradient to
enable backpropagation through the non-differentiable spike function. The model is trained using
the Adam optimizer with an MSE spike-count loss, where higher firing rates are encouraged for the
correct class and lower firing rates for incorrect classes.
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Figure 4: CSNN architecture for 16-class gesture recognition.
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4.4 Model analysis

The primary evaluation metric is the classification accuracy, which is defined as the ratio of correctly
classified samples to the total number of samples in the test set. For each input sample, the CSNN
produces spiking outputs for each gesture class at each discrete time step. In the experiments, the
network is evaluated over five time steps, and the output neurons may emit spikes at each step. To
obtain a single prediction, the spikes of each class are aggregated across all time steps. The class
with the highest total spike count is selected as the predicted gesture label.
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5 Experiments & results

For all experiments except Experiment 1.2 (Leave-one-subject-out), the dataset is randomly shuffled
and divided into three disjoint subsets. 70% of the samples are used for training, the subsequent
15% are used for validation, and the remaining 15% are reserved for testing. For all experiments,
the random shuffling is performed with a fixed random seed (42) to ensure reproducibility.
In Experiment 1.2 (Leave-one-subject-out), the data are partitioned according to subject identity.
All samples from one subject are held out exclusively for testing. Samples from the remaining
subjects are used for model development. Within this training pool, 80% of the samples are used
for training and the remaining 20% are used for validation.
In addition, some experiments involve unequal numbers of samples among different classes or
recording conditions because of the limited data collection. Therefore, numerical values in the
confusion matrices may differ across experiments.

5.1 Experiment 1.1: Mixed-condition baseline

This experiment evaluates the performance of the CSNN model when data from all recording
conditions are combined into a single training and evaluation set. Under this mixed-condition
setting, the model achieves an overall accuracy of 69.82%. The confusion matrix in Figure 5 shows a
clear diagonal structure for many gesture classes, which indicates that correct predictions dominate
for a substantial portion of the dataset. This result shows that the model remains reasonable when
recordings from different illumination and motion conditions are combined.
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Figure 5: Confusion matrix of the CSNN model’s classification results on the mixed dataset after
epoch 25 (accuracy:69.82%).

Several gestures are recognized particularly well in this setting. For example, the thumb down gesture
(Class 7) and the back and forth gesture (Class 11) achieve 82 and 80 correct predictions, respectively.
In contrast, the make a call gesture (Class 13) shows the lowest number of correct predictions, with
only 44 correctly classified samples. The confusion matrix indicates frequent misclassification of this
gesture as pinch (Class 0), swipe right (Class 2), and thumb up (Class 6). A plausible explanation
is that the make a call gesture relies on subtle finger configurations and small-amplitude motions.
As a result, this gesture produces less distinctive event patterns that overlap with those of other
gestures, which makes classification more difficult under mixed recording conditions.

5.2 Experiment 1.2: Leave-one-subject-out

This experiment evaluates the ability of the CSNN model to generalize to unseen subjects under
realistic in-vehicle conditions. Compared to the mixed-condition baseline, the recognition accuracy
drops in the leave-one-subject-out setting, with test accuracies ranging from 15.16% to 26.15% across
different subjects (Figures 6–10). This result highlights the difficulty of cross-subject generalization
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in event-based in-vehicle gesture recognition.
Although all participants performed the same predefined gesture set, clear differences are observed.
Differences in execution speed and recording conditions lead to subject-specific event representations.
As a result, gesture patterns from a subset of subjects do not reliably transfer to an unseen subject,
especially when illumination and vehicle-motion conditions differ.

Figure 6: Confusion matrix for the leave-one-subject-out evaluation with Subject 1 held out for
testing (accuracy: 17.41%).

Figure 6 shows the leave-one-subject-out results for Subject 1. The pinch gesture (Class 0) is
recognized well, with 133 correctly classified samples. At the same time, several other gestures are
frequently misclassified as pinch. For example, the OK gesture (Class 1) is predicted as pinch in
112 cases.
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Figure 7: Confusion matrix for the leave-one-subject-out evaluation with Subject 2 held out for
testing (accuracy: 15.16%).

Figure 7 shows the lowest accuracy within the five leave-one-subject-out experiments. In this case,
the test data mainly come from nighttime recordings, including both static and driving settings.
Although the pinch gesture (Class 0) and the number 1 gesture (Class 8) still achieve relatively
higher numbers of correct predictions (53 and 49 samples, respectively), many other gestures are
poorly recognized. For example, the thumb up gesture (Class 6) and the rotate clockwise gesture
(Class 14) are each correctly classified only three times.

17



Figure 8: Leave-one-subject-out evaluation for Subject 3 (accuracy: 26.15%).

Both Subject 3 and Subject 4 were recorded under the same daylight static and nighttime static
conditions. In the leave-one-subject-out evaluation, Subject 3 achieves the highest accuracy of
26.15%. Subject 4 achieves the third highest accuracy at 23.26%. Although these accuracies are
close, the confusion matrices reveal different class-level behaviors.
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Figure 9: Leave-one-subject-out evaluation for Subject 4 (accuracy: 23.26%).

Figures 8 and 9 show several common patterns in the confusion matrices for Subject 3 and Subject 4.
For both subjects, the thumb down gesture (Class 7) is recognized well, with 87 and 62 correct
predictions, respectively. The pinch gesture (Class 0) also shows similar performance, with 50 correct
predictions for Subject 3 and 57 for Subject 4. The OK gesture (Class 1) follows a comparable
trend, with 54 and 56 correctly classified samples. A notable difference appears for the number 1
gesture (Class 8). This gesture is correctly classified 82 times for Subject 3, but only 16 times for
Subject 4. The number 1 gesture depends on a clear extension of the index finger, which varies
across subjects and leads to different recognition outcomes.
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Figure 10: Leave-one-subject-out evaluation for Subject 5 (accuracy: 24.01%).

Figure 10 shows the confusion matrix for Subject 5. The recordings for this subject were collected
under daylight-to-nighttime static conditions. The model achieves an accuracy of 24.01%, which is
the second highest of the five leave-one-subject-out experiments.
The thumb down gesture (Class 7) is recognized most reliably, with 48 correctly classified samples.
In contrast, the make a call gesture (Class 13) shows the weakest performance, with only one
correctly classified sample. Most make a call samples are misclassified as pinch (Class 0) or stop grab
(Class 12).
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Figure 11: Test accuracy of the CSNN model for each leave-one-subject-out fold. One subject is
used for testing in each fold, and the remaining subjects are used for training and validation. The
dashed horizontal line indicates the mean accuracy.

Figure 11 summarizes the test accuracy across the five leave-one-subject-out experiments, with
a mean accuracy of 21.20%. Subjects 3 (26.15%), 4 (23.26%), and 5 (24.01%) achieve accuracies
above the mean. Subjects 1 (17.41%) and 2 (15.16%) perform below the mean.
The observed performance differences relate to the recording conditions of each subject. Subjects 3, 4,
and 5 were recorded under daylight static and nighttime static conditions that are well represented in
the training data. Subject 2 was the only participant who contributed nighttime driving recordings.
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5.3 Experiments 2 and 3: daylight-only and nighttime-only

Experiments 2 and 3 evaluate the performance of the CSNN model when training, validation,
and testing are restricted to daylight-only and nighttime-only recordings, respectively (Figures 12
and 13).

Figure 12: Daylight-only condition after 25 epochs (accuracy: 84.05%).

Under daylight-only conditions, the model achieves an accuracy of 84.05%. As shown in Figure
12, the overall recognition performance is higher than the mixed-condition baseline (69.82%),
because it has a stronger diagonal structure in the confusion matrix. This suggests that under
consistent illumination conditions, the model can more effectively distinguish between gesture
classes. Misclassifications mainly occur between gestures with similar hand configurations or subtle
motion differences. For instance, OK (Class 1) and swipe-left (Class 3) are sometimes predicted as
pinch (Class 0), because these gestures require the index finger movements that resemble those
of the pinch gesture. In addition, number 3 (Class 10) is often confused with number 2 (Class 9),
which is likely caused by the similar finger extension patterns in the event data.
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Figure 13: Nighttime-only condition after 25 epochs (accuracy: 72.43%).

Under nighttime-only conditions, the model achieves an accuracy of 72.43%. As shown in Figure
13, OK (Class 1), thumb up (Class 6), and make a call (Class 13) are often misclassified as pinch,
which suggests that under reduced illumination these gestures produce event patterns that are
less distinctive and closer to some grasp-like motions. Rotate counterclockwise (Class 15) was well
recognized under daylight conditions but not under nighttime-only conditions.
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5.4 Experiment 4: Daylight-to-nighttime generalization

Figure 14: Confusion matrix of the CSNN model under daylight-to-nighttime generalization condi-
tions (accuracy:13.29%).

Under day-to-night generalization conditions, the model achieves an accuracy of 13.29%. As shown
in Figure 14, the confusion matrix does not show a clear diagonal structure, which means that
the model which is trained on daylight recordings does not generalize well on nighttime data. In
addition, predictions are frequently concentrated on the number 1 gesture (Class 8), with samples
from multiple other gesture classes misclassified into this category.
Experiments 2 and 3 show stable performance when training and testing are restricted to the same
illumination conditions, with higher accuracy under daylight than nighttime recordings.
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5.5 Experiment 5 and 6: static-only and driving-only

Figure 15: Static-only condition after 25 epochs (accuracy: 77.46%).

Under static-only conditions (Figure 15), the model achieves an accuracy of 77.46%. Overall
performance is stable, with a clear diagonal structure in the confusion matrix. Most gestures are
recognized reliably, especially thumb down (Class 7), which reaches 72 correct predictions. However,
some gestures are still challenging even in static conditions. In particular, number 2 (Class 9) and
make a call (Class 13) show lower accuracy. For example, number 2 (Class 9) is frequently confused
with OK (Class 1) and number 1 (Class 8).
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Figure 16: Driving-only condition after 25 epochs (accuracy: 66.34%).

Under driving-only conditions (Figure 16), the accuracy drops to 66.34%, which is 11.12 percentage
points lower than in the static setting. It is important to note that the number of driving samples
is smaller than the number of static samples, because only two subjects contributed to the driving
recordings, whereas four subjects contributed to the static recordings, so the confusion matrix of
the driving-only condition should not be directly interpreted as evidence that the driving gestures
are more difficult than static gestures.
Despite the lower overall accuracy, some gestures are still recognized more consistently in the
driving condition. From the confusion matrix, back and forth (Class 11) has the highest number of
correct predictions.
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5.6 Experiment 7: Static-to-driving generalization

Figure 17: Confusion matrix of the CSNN model under static-to-driving generalization conditions
(accuracy: 12.22%).

Under static-to-driving generalization conditions, the model is trained on static recordings and
evaluated on driving recordings. The overall accuracy drops sharply compared to the static-only
and driving-only experiments.
As shown in Figure 17, many gesture classes are confused with each other, this indicates that the
gesture patterns which are learned from the static conditions do not transfer well to driving scenarios.
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6 Discussion & Future Work

When training and testing data are from the same recording condition, the CSNN demonstrates
relatively stable performance. Accuracies of 84% and 72% are achieved under daylight-only and
nighttime-only conditions, respectively. Similarly, the model reaches 77% accuracy for static-only
evaluation and 66% for driving-only evaluation. These results indicate that, under consistent
illumination and motion settings, the model can learn discriminative event-based representations
for in-vehicle hand gestures.
In contrast, recognition accuracy drops when the evaluation involves changes in illumination, vehicle
motion, or subject, with daylight-to-nighttime accuracy of 13% and static-to-driving accuracy
of 12%. Furthermore, cross-subject evaluation produces accuracies between 15% and 26% across
held-out subjects. These results show that the model does not generalize well to different recording
conditions and subjects with the current dataset. Therefore, this work could be improved in several
aspects to further enhance performance.

6.1 Dataset limitations and collection considerations

The dataset is limited in scale and subject diversity. Only five participants were recorded, which is
insufficient to capture the variability in motion amplitude and execution style that can be expected
across different drivers. The low leave-one-subject-out performance suggests that the subject-specific
patterns play a major role in the learned representations. With such limited subject coverage, it is
difficult for the model to learn gesture features that generalize reliably to unseen users.
In addition, the coverage of recording conditions across participants is uneven, as shown in Table 3.
Only two participants contributed to the driving recordings, and some conditions are only represented
by a single subject. As a result, comparisons between static and driving data, or between daylight
and nighttime data, reflect not only differences in recording conditions but also differences in which
subjects contributed data.

6.2 Future directions for dataset design

Future data collection should aim for more balanced coverage of subjects and recording conditions. It
would be ideal if each participant recorded all defined conditions, or at least a balanced subset. This
would allow clearer isolation of illumination effects and driving-related effects without confounding
subject identity.
The diversity of driving scenarios can be further expanded. The current dataset does not explicitly
vary driving speed, road type, traffic density, or weather conditions. These factors can influence the
visual dynamics of the scene and are likely to affect event density and background activity. A wider
range of driving scenarios with basic metadata such as approximate speed ranges or road types,
would support more detailed analysis in future work.

28



7 Conclusion

This thesis explored the use of event-based vision for in-vehicle hand gesture recognition. To address
the lack of suitable data in this area, a pilot dataset was collected with a DAVIS346 event camera
which was mounted inside a real vehicle. The dataset covers multiple realistic conditions, including
daylight, nighttime, static, driving, and also transitions between these settings. A CSNN was
implemented as a baseline to evaluate if event-based data can support gesture classification in
this context.
The results show strong within-condition performance: when training and testing data come from
the same recording environment, the model achieves high accuracy and the confusion matrices
demonstrate clear class separation. This suggests that event-based vision can capture meaningful
patterns for in-car gestures under consistent conditions. In contrast, cross-condition evaluation
(day-to-night and static-to-driving) leads to an accuracy drop and a loss of diagonal structure in the
confusion matrices. Rather than attributing this outcome solely to the baseline architecture, it is
more likely caused by the limitations of the pilot dataset, because the dataset is imbalanced across
conditions; nighttime and driving data are underrepresented and contributed by fewer participants,
and this makes it difficult for the model to learn stable features.
Overall, this dataset should be considered as a pilot study rather than a complete or large-scale
benchmark. The size of the dataset is limited, and only a small number of subjects were recorded
under some of the defined conditions, and this means that the variability of gesture execution,
driving behavior, and environmental factors are not fully represented in the current data. To solve
this problem, a larger dataset would be needed that includes more participants and more recording
sessions. In addition, more advanced neural networks can be explored to better understand how
well event-based gesture recognition generalizes under different challenging in-vehicle conditions.
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A Complete list of the gesture variations

ID Gesture Gesture execution description
0 pinch Thumb and index finger pinch together
1 OK 1 Hand stays in a stable ”OK” shape; thumb and

index finger form a circle
2 OK 2 Hand enters the camera view first, then forms the

”OK” gesture
3 swipe right 1 Only the index finger swipes to the right
4 swipe right 2 Five fingers swipe right; the hand returns as a fist
5 swipe right 3 The hand starts as a fist, then opens while swiping

to the right
6 swipe left 1 Only the index finger swipes to the left
7 swipe left 2 Five fingers swipe left; the hand returns as a fist
8 swipe left 3 The hand starts as a fist, then opens while swiping

to the left
9 swipe up The index finger swipes upward
10 swipe down The index finger swipes downward
11 thumb up Thumbs-up gesture
12 thumb down 1 The thumb points downward while the hand moves

slightly
13 thumb down 2 The hand begins as a fist, then extends the thumb

downward
14 number1 The index finger is extended
15 number2 The index and middle fingers are extended
16 number3 Three fingers are extended
17 number4 Four fingers are extended
18 number5 All five fingers are extended
19 back and forth Five fingers move left and right repeatedly
20 stop grab The hand performs a grabbing motion
21 make a call 1 The thumb and pinky are extended (”call” gesture);

the hand moves slightly
22 rotate clockwise The index finger rotates clockwise
23 rotate counterclockwise The index finger rotates counterclockwise

Table 4: The complete list of the 24 gesture variations and descriptions of how each gesture is
performed.
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A List of final hand gestures and their functions

ID Gesture Function
0 pinch zoom
1 OK confirm
2 swipe right go to next page
3 swipe left go to previous page
4 swipe up increase volume
5 swipe down decrease volume
6 thumb up like
7 thumb down dislike
8 number1 numeric gesture
9 number2 numeric gesture
10 number3 numeric gesture
11 back and forth activate voice assistant
12 stop grab stop
13 make a call make a call
14 rotate clockwise increase temperature
15 rotate counterclockwise decrease temperature

Table 5: List of hand gestures and their corresponding functions.
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