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Abstract

The research is aimed at goal-oriented agent navigation in a continuous and physics-driven
environment where traditional path-finding methods are difficult to use. Movement in this
environment is influenced by indirect control, caused by momentum and gravity. The paper
proposes a blend of three heuristic navigation strategies: one goal-oriented and the other two
safety-oriented. The heuristics are combined using weights, creating a heuristic navigation
strategy. This approach is developed in a simulation environment motivated by the video game
”Super Monkey Ball”, in which a player is tasked with tilting geometry so that a gachapon
ball with a monkey in it rolls into the goal. The results show that heuristic blending can
enable navigation in simple and moderately complex environments, while revealing that the
performance is sensitive to weight configuration and stage geometry. For more complex stages,
the proposed heuristic combinations are insufficient.
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1 Introduction

Over the past two decades, Game Artificial Intelligence (Game AI) has undergone significant
development, driven by the increase in computational power, better physics simulation and player
expectation | |. Modern games aim to simulate even more realistic interactions, which introduces
new complexity. Amidst technological advancement and growing playing expectations, agent
navigation remains a challenge.

Current trends around Game Al shift their focus to machine learning and deep learning | ]. In
this research, the aim is to investigate decision-making approaches that rely on explicit heuristics
and reactive control, rather than learning-based methods.

To study the application of a heuristic approach to navigation, the research is done in a controlled
but challenging setting emulating the environment of Super Monkey Ball. Super Monkey Ball is
a physics-based platforming game where the player is represented by a monkey in a gachapon
ball. In the main game-mode the player is tasked with rolling the ball into the goal by tilting the
geometry of the level (also referred to as the stage). Because the game takes place in a continuous,
physics-based environment, movement is not only continuous, but also momentum-based. The
research allows for analysis of the agent’s behavior and how the implemented navigational strategy
works in a physics-based, continuous environment.

The control space is minimal, with the analogue stick as the sole parameter; yet the game poses a
challenge for game-Al.

Agent movement is often tackled using traditional pathfinding techniques such as Dijkstra’s
Algorithm, A* and Depth-first or Breadth-first search | ]. Most pathfinding algorithms
work within a discrete and well-structured graph. In continuous environments, the likes of Super
Monkey Ball force, momentum, and stage dynamics make it hard to apply traditional graph-based
pathfinding techniques directly, creating a discontinuity between traditional methods and real-world
applications. While classic algorithms compute exact and optimal solutions, heuristic methods aim
to approximate good solutions more efficiently by using informed estimates of distance or cost.
This thesis proposes a heuristic goal-based navigation technique based on reactive control.
Heuristics can offer an alternative approach in this setting; instead of planning optimal routes,
heuristic strategies can approximate movement. Heuristics aim to find a good solution to a problem
in a reasonable amount of computational time. Heuristic algorithms give nearly the right answer or
provide a solution not for all instances of the problem | ).

1.1 Research Question

The main research question of this thesis is:

How can we use game-Al to create autonomous agent navigation for Super Monkey
Ball

The research is aimed at the goal-based navigation of a physics-based continuous environment
modeled after Super Monkey Ball. In this environment, momentum and gravity make traditional
pathfinding complex; in this setting, heuristics can be applied to offer an alternative approach.
For the research, a goal-based heuristic has been implemented as well as two safety heuristics. By
assigning weights to the three heuristics, we hope to create a heuristic that is able to solve levels.
This research will give insight on trade-offs between aggressive goal-oriented movement and safety-
driven strategies, what blend of the aforementioned heuristics provides the best results, and finally,



the suitability of these specific heuristics in the specified environment.

A more specific sub-question is therefore:

How do different weight configurations influence success rate, distance metrics, and completion
time in a heuristic approach to agent navigation in a continuous physics-based environment?

2 Related Work

Navigation can be separated into two different categories, heuristic approaches and classical
approaches | |. Conventional methods are often limited by several factors, such as high
complexity and dependency on accurate environmental data [ ]. Factors that contribute to
this are high-dimensional search spaces, dynamic and uncertain environments, trade-offs between
optimality and computational efficiency, and scalability | |. In a survey about heuristic and
classical approaches to path planning in the field of robotics, we can see that the popularity of
heuristic approaches to path planning in robotics has risen because of these limitations | ].
A definition of an agent is given as follows: Agents can be defined as autonomous, problem-solving
computational entities capable of effective operation in dynamic and open environments | ].
In-game Al, goal-based agents often control non-player characters (NPCs), which enables them to
exhibit intellectual actions and behavior.

In many navigation systems, agents are designed to operate in a goal-oriented manner, where
behavior is driven by an objective of reaching a specific target state. The following subsection (see
section 2.1) explores common goal-oriented agent models and examines how they traditionally rely
on explicit path planning techniques.

2.1 Goal-Oriented Agent Models

To increase the depth and appeal of computer games in general, the characters contained by the
game should express some kind of intelligence, the characters should then be steered by agents that
are motivated by goals and that are aware of how these goals can be reached [ ].
Goal-based Al agents are an approach in artificial intelligence where agents are programmed to
achieve specific objectives | |. This approach works particularly well in complex environments
where actions need to be adjusted dynamically as the agent can encounter unexpected obstacles
and changes.

Goal-based Al agents work on a few key concepts; Goals, planning, execution, and adaptation
[ ]. Goals are objectives that the agents aim to achieve; in the case of this paper, this denotes
the completion of a stage. Planning refers to determining the sequence of actions required to achieve
the aforementioned goal. Effective planning allows the agent to anticipate obstacles and avoid or
conquer them. Execution indicates the agent’s ability to carry out the specified planned actions,
wherein the agent interacts with the environment and performs tasks that can bring it towards the
goal. Adaptation causes the agent to change its plans as it interacts with the environment and gains
new knowledge. Due to unexpected obstacles or changes, an adaptation in plans or strategy keeps
the agent from straying away from its goal. A goal-based agent not only considers the consequences
of its actions but also whether these actions are in line with the set goals | ].

This research will concern reactive agents, which operate on immediate perception and predefined
rules, without long-term planning. Reactive, goal-driven agent models are particularly great in



dynamic environments, where the cost of maintaining detailed plans outweighs the potential benefits

[ J

2.2 Navigation in Continuous Environments

A continuous environment poses challenges not encountered in discrete environments. The continuous
state space includes continuous variables, including position, velocity, acceleration, and direction,
which cause the environment to have an infinite number of possible states. In terms of navigation,
actions depend on previous choices as momentum and inertia play a role.

The problem of navigation in game Al is often tackled using grids that are composed of vertices or
points connected by edges to represent a graph | ]. Grids can be separated into two different
categories: regular grids and irregular grids. A regular grid is a tesselation of regular polygons; the
opposite are irregular grids. Examples of irregular grids are nav-meshes and way-points.

However, as Reynolds noted, such approaches effectively solve maze-like problems by creating a path
[ ]. In physics-based environments, paths alone do not address the issue of the task of movement.
When continuous dynamics exhibit forces, the agent has to anticipate future consequences.
Without these predefined navigation structures, navigation relies purely on reactive planning
mechanisms. Reactive algorithms operate on the current state of the agent and its perceived
environment.

Using steering, reactive heuristic approaches allow the agent to respond dynamically to changes in
its environment.

2.3 Heuristic Approaches in Agent Architecture

Real-time heuristic search methods can be developed to allow (multiple) agents to perform tasks
within a large search space with limited computation | |. The main drawback of navigation
AT is that it only works in static environments, hindering the full potential of games | ]. This
highlights a need for real-time navigation techniques in games.

At the base of a lot of real-time is an algorithm called Learning Real-Time A* (LRTA*) [ ],
building on A*. This algorithm requires a state graph, makes a planning and estimates costs.
The course taken in this thesis more closely follows a reactive approach to model player decisions.
By evaluating multiple behavioral considerations using a heuristic and assigning weights, an action
is chosen.

3 Methodology

This section will outline and substantiate the steps that have been taken in setting up the experiment
and why they are necessary.

3.1 Research Design

In this study, multiple heuristic navigation techniques are implemented, tested, and compared by
assigning weights to each. The environment in which the experiments are done is modeled after
Super Monkey Ball. The goal of the study is to see how these heuristics and combinations of



heuristics perform in a continuous physics-based environment. The research is comprised of setting
up the simulation (see section 3.2), implementing heuristics (see section 3.3), and finally running
the simulation. After running the experiments, the relation between the weight and performance of
each heuristic is studied. Performance is analyzed according to predefined success metrics.

The core research variables are the weights assigned to each heuristic, as the performance will be
analyzed based on these weights. In future sections (see section 3.5), what the performance metrics
collected and used are.

Super Monkey Ball is closed-source software; it cannot be used for our application, as control of
the frame advancement and extraction of variables is needed in this research. The simulation is,
therefore, not an exact clone of the systems implemented in the actual game. The simulation is
made for this research as it gives a lot of flexibility and does not copy-right laws. The environment
was built according to the needs of the research and provides a level of control and determinism
that is not provided by any other Super Monkey Ball clones. The simulation has full control of the
game loop, deterministic stepping, and allows for repeatable experimentation.

3.2 System Model

The simulation environment replicates essential features of Super Monkey Ball, and is built

using Python, the Panda3D game engine | |, the Bullet physics module | | in Panda3D,
and Blender [Fou]. The stages were selected based on their difficulty, progressively getting more
complicated.

In the following sections, the usage of these software tools will be explained and substantiated;
a more technical and detailed look at the technical aspects of the software will be done in the
”Simulation Setup” section (see section 3.4).

The Levels selected for experimentation are progressively more difficult by introducing new obstacles
for the agent to overcome. In total, it consists of three stages, progressively getting more difficult.
More explanation about the selected stages is given in a future section (see section 3.4.1).

The physics that play in Super Monkey Ball have been replicated by eye and feel, as Super Monkey
Ball is a closed-source game, there was no access to the actual implementation. Therefore, the
physics of the simulation might differ from the original game. Technical specifications of the physics
are expanded upon in later sections (see section 3.4.2).

3.2.1 Environment Description

For the simulation, the Panda3D game engine was used for its flexibility, lightweight nature, and
open-source. Because the physics engine in Panda3D is quite limited out of the gate, the open
source Bullet Physics Engine was used. Panda3D has great support and integration with Bullet
Physics for the included Bullet module, making it a great candidate.

Stage geometry was modeled in Blender and exported to the file format supported by Panda3D,
EGG, using the YABEE exporter | ]. In the simulation, the stage geometry is represented as
multiple nodes using the ” Bullet Physics ”BulletRigidBodyNode” module.

Multiple simplifications are made from the real Super Monkey Ball. The tilting of the stage in
Super Monkey Ball is assumed to be the actual stage geometry moving which lets gravity do the
work. The simulation does not feature tilting geometry, such as the ones that appear in the actual
game. Secondly, there is no score system, nor does the environment include bananas. And thirdly,



the testing environment does not include a camera that moves with the ball, which causes the tilt
input to be more nuanced by rotating towards the direction of the balls velocity.

Technical details about the stage tilt mechanic are described and specified in later sections (see
section 3.4.2).

3.2.2 Agent Architecture

The agent is represented as a rigid-body sphere and is created using the Bullet Physics ” Bullet-
SphereShape” module. The agent is controlled through the tilting of gravity; tilt controls are input
through a 2D vector that acts like a control stick, closely replicating the system in Super Monkey
Ball.

The agent receives the current control vector, the velocity, its position, the position of the goal,
and a list that allows it to see whether or not there is ground nearby. These parameters are used
by the heuristic in a weighted sum to select the best action, which the agent then executes.

The ball has a size, mass, and other parameters (see section 3.4.2 for a detailed overview) that
cause it to approximate the behavior of the gachapon ball from Super Monkey Ball.

For the experimentation, the heuristics chooses an action every frame, with the simulation running
at 30 frames per second. The action chosen consists of a 2-dimensional vector that represents the
input of the control stick.

3.2.3 Goal Specification

The primary objective of the agent is to reach the goal within the given time limit of 60 seconds.
To influence how that goal is reached, we have also optimized for other metrics.

The recorded outcomes that tell us how well the agent has performed in this case are the ” Time’
and ”"Completed” variables, where; The agent operates in a simulated environment that runs at 30
frames per second (fps) with discrete time steps:

)

c € {0,1} is the Completed value.

t €{0,1,...,1800} denotes the time in frames.

When the goal has been reached, the simulation for that specific level with the specified weights
stops immediately. This is represented as a completed value of 1 in the data.

t€{1,2,..., Tinas} With Ty = 1800

c=1

Other termination conditions are time-outs and fall-outs.
Each agent run ends after 60 seconds (1800 ticks/steps), this is called a time-out. In the data, this
will be represented as a time of 1801 frames and a completed value of 0. We can define this as such:

t = 1801

c=10



A fall-out occurs when the ball has fallen off the stage and reached a depth of —20 in-game units.
In the data, a fall-out can be detected by a time less than 1801 frames, and a completed value of 0,
defined as;

t < 1800

c=10

Therefore, each simulation has three different outcomes. For each simulation, it can be evaluated
with two variables: Time, represented as t, and Completed, represented by c. Formally, we can
define it as;

(t, 1), if the goal is reached at time t < T},42,

(t, ¢) = < (Thae + 1, 0), if a time-out occurs,

(¢, 0), if a fall-out occurs at time ¢t < 7,44

3.3 Heuristic Approaches Evaluated

For the experiment, three different heuristic approaches have been implemented for the agent
navigation that are blended using weights. In the following subsections, they will be outlined, as
well as giving further elaboration on why they were chosen.

3.3.1 Heuristic 1: Goal Oriented Movement

The purpose of the first heuristic is to simply move the ball to the goal. To achieve this a vector is
calculated that can be used as a control vector to move the ball straight to the goal. This approach
ignores any risk, and thus doesn’t fare well on its own when obstacles or edges are involved.

(x/7y/) lf |x/|+|y/|>1
moveTowardsGoalHeuristic(b, g) = 2 4y
(', y), otherwise
T =Gz — ba:
Y=gy —by

2’ = max(—1, min(1,v))
where ]
y' = max(—1, min(1,v))

g = The coordinates of the goal

b = The coordinated of the agent

3.3.2 Heuristic 2: Moving to safe ground from the control-vector perspective

The second heuristic approach takes the current control vector and evaluates whether or not the
ball is rolling in the right direction by checking for ground around the ball (For mathematical
definition see section 3.3.3). This heuristic returns a vector that points to the middle of the most
ground it could find. This approach is aimed at keeping the ball on the stage, disregarding the need
for rolling towards the goal. This heuristic helps by counteracting the aggressive approach of the
first heuristic.



3.3.3 Heuristic 3: Moving to safe ground from the velocity perspective

The third heuristic approach works similarly to the second, except this time taking into account
the velocity of the ball instead of the control vector. The velocity of the ball, unlike the control
vector, cannot change immediately. This heuristic is implemented to reduce the risk of the ball

rolling off the stage due to its momentum.
Let:

c= (Z:) The control vector
G = (90,91,---,923), gi €1{0,1} ground list
G = GG circular extension of the ground list

L* = arg max |I| Longest list of uninterrupted ground
LC{0,1,...47}

L continuous, G;=1 VieL
if |[L*|=0 =71=(0,1)
L*
m=L" <{%J) The middle element of the list
~360°
24
, <cos f —sinf
CcC =

sinfl  cosf

0

X (m mod 24) Angle corresponding to midpoint

) ¢ The rotated control vector

preferMostGround(c, G) = normalize(c’)!  The resulting vector

3.3.4 The Blending of Heuristics

Using weights, the three control vectors are blended. The total of the weights cannot exceed 1.00.
In the following formula the weights are represented as w followed by a number denoting to which
heuristics they belong, Heuristics are denoted as H followed by a number that shows the type and
a X or y that denotes the axis of the control vector. Finally ¢ is the resulting control vector.

T =wi iz +wiHs, +wsHs,, (1)
Yy =wiHyy +wyHyy +ws3Hs,,. (2)

-()

The blending of heuristics using weights is aimed at finding a balance between aggressive goal-
seeking behavior and safe behavior that supposedly keeps the agent on the stage geometry. By
analyzing the performance data, trends can be identified, relating the weight of the heuristic to the

overall performance. Furthermore, the method is simple to implement and test, as well as exhibiting
deterministic behavior.

1See section for 3.4.2 normalize function



As described, the influence of heuristics is determined by the assigned weights; the weights are
increased in increments of 0.01. These weights have a value w where

w € {0.00, 0.01, 0.02, ..., 1.00}.

In total, there are three weights, one for every heuristic; the total of the three weights (w, ws, and
ws) cannot exceed 1.00. We can define this as:

wy, wo, w3 € {0.00, 0.01, 0.02, ..., 1.00}, wy + wy + w3 = 1.0

3.3.5 Baseline Methods

To evaluate the effectiveness of the proposed heuristic with its assigned weights, two baseline control
methods are implemented. The baseline methods aim to place the effectiveness of the heuristic on
the spectrum between naive and more engineered control.

The first baseline control method is a heuristic that produces a control vector that always sends the
ball in a straight line forward. This heuristic does not incorporate any information and produces a
vector that corresponds to a fixed control vector of (0,1). This baseline serves as a lower bound on
the performance.

The second baseline control method is more nuanced and more closely represents the tested heuristic.
It is composed of a goal-seeking function and a function that calculates the safest direction for the
control vector. If forward is not a safe direction, the goal-seeking heuristic will have less impact on
the control vector. This heuristic is built on the same heuristics (see section 3.3.1 and 3.3.2 used in
the heuristic tested with weights.

The two baseline methods are chosen to represent contrasting levels of heuristics. The straightforward
heuristic represents uninformed control, while the engineered heuristic demonstrates informed control
with more nuance.

3.4 Simulation Setup

In total, three levels have been selected (see section 3.4.1), increasingly getting more difficult. The
levels have been modeled in Blender 2.70 [Fou] and are exported to Panda3D through the supported
EGG files using the YABEE exporting tool | ]. For every combination of weights, all levels will
be simulated, regardless of failure on the previous level. This means that the total number of trials
per weight configuration is 3.

The simulation relies on two core technologies, Panda3D | | and the Panda3D Bullet Physics
module | ].

Panda3D is a scene-graph-based engine and includes a task manager for updating loops. In the
experiment game-loop, this task manager is advanced in steps after calculating the control vector.
Panda3D is also used for loading models.

For the rigid body dynamics, collision shapes, and physics simulation, the Panda3D Bullet Physics
module is used. Bullet Physics is also used for ray-casting, which is used for creating a list of safe
ground for the heuristic.

While the original Super Monkey Ball runs at a frame rate of 60, this simulation runs at 30 frames
per second; this choice has been made in favor of faster simulation.



3.4.1 Level Selection

The levels chosen for the experiment are modeled after stages 1, 2, and 6 of the ’beginner’ stages
in Super Monkey Ball 1. In the results (see section 5), stage 1 is referred to as level 0, stage 2 is
referred to as level 1, and stage 6 is referred to as level 2.

The stages were selected to increase in difficulty and introduce new obstacles. Later stages pose a
significantly harder challenge for the agent.

Stage 1 (See figure 1) is the starting stage of the beginner levels. Used for getting the player
acquainted with the controls, going straight will solve this level. The agent cannot fall off the stage
geometry thanks to the guardrails; the only method of termination (see section 3.2.3) is a time-out.
This level serves as an absolute baseline for what the heuristic must achieve: reach the goal in the
given amount of time.

%
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i) ®Rotate/Zoom "GPan cameral .

(a) As seen in Super Monkey Ball [Com?2?2] (b) Modeled for simulation using Blender

Figure 1: Stage 1, Plains

Stage 2 (See figure 2) introduces an obstacle in the form of a hole in the middle of the stage
geometry. To reach the goal, the agent must avoid the gap by going around it. The secret goal
found under the stage that advances to level 5 in Super Monkey Ball has been omitted.

Stage 6 (See figure 3) removes outer guard-rails and introduces verticality as well as the need to
move away from the goal. As the agent does not account for the need to move away from the goal,
this will pose a challenge. Verticality will introduce external forces on the agent, adding to the
difficulty.

3.4.2 Simulation Of Physics

The simulation game simulated a tilting board by rotating the gravity vector rather than tilting
the stage geometry.

Super Monkey Ball uses a custom physics system; all implemented physics are based on the visuals
of the game. The gravity value has been set to 9.81, this is interpreted by Bullet Physics as
units/second?. The simulation is based on the principle 1 Panda3D Unit = 1 Meter, emulating
the gravity on Earth.
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(a) As seen in Super Monkey Ball [( om22] (b) Modeled for simulation using Blender

Figure 2: Stage 2, Diamond
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(a) As seen in Super Monkey Ball [Com?2?2] (b) Modeled for simulation using Blender

Figure 3: Stage 6, Slopes

For the world, ”BulletWorld()” is used, holding all physics bodies, managing gravity, and handling
ray tests and collision queries.
The ball uses the ”BulletSphereShape” for its shape and ”BulletRigidBodyNode” for the body. The

10



following physics constants are applied:

radius = 0.4

mass = 15.0
friction = 1.0

linear damping (rolling resistance) = 0.02
angular damping (spin decay) = 0.3

restitution (bounciness of the ball) = 0.7

The stage geometry consists of bullet collision bodies. The ”fromCollisionSolids()” was used to
convert the stage models’ collision solids into Bullet rigid bodies. The following physics parameters
are applied to the stage geometry:

mass = 0.0

restitution (bounciness) = 0.5

The velocity of the ball is calculated by Bullet and is determined solely by external forces. Based
on the input vector, the direction of gravity changes.

Let:
g= 9.81 = gravity magnitude
= (%) = the input vector
Oy
0, € [—1,1] = tilt input of the z-axis
0, € [—1,1] = tilt input of the y-axis
k= 0.5 = tilt multiplier

G = (gx, 9y, g.) = resulting gravity vector

The input-vector ¢ is first normalized using the following formula:

9179
if \/637%?% L (62, 0,) \592:4_11)92
T Yy

Secondly, the horizontal components of the gravity vector are computed;
9z = kg0,
Gy = kgey

The vertical component of the gravity vector is calculated using the following formula;

g:= /9>~ (63 + 2)

The resulting gravity vector is then;
G = (92,94 9:)

Finally, to prevent jitter, gravitational smoothing is applied, with the gravity value of the previous
frame denoted as oldG and the new gravity vector denoted as newG:

newG = oldG x 0.8 + gx0.2

11



3.5 Success Metrics

In this section, the different success metrics will be outlined and explained. There are five success
metrics for measuring how close the ball got to the goal, the total distance covered, how far the
ball was when it fell off or timed out, how much time it spent in a level, and finally, whether the
heuristics succeeded.

3.5.1 Distance from the goal

Distance is measured in three ways: the closest the ball has ever been to the goal for that specific
level and the distance when the ball has fallen off the stage or timed out. The first distance metric,
the closest the ball has been to the goal, is the shortest distance the agent has reached to the goal,
and gives insight into the effectiveness of the weight combination. The second distance metric shows
how far from the goal the ball was upon losing the level. This can be useful to see whether the
heuristics did a good job of keeping the ball near the goal. The third metric is the total distance
covered by the agent; this will give insight into how efficient the path taken by the agent is. If the
level has been completed, both of these metrics are 0.

3.5.2 Success Rate

The success rate is either 0 or 1. If a level has been completed, the success rate is 1; if it fails to do
so, the result is 0.

3.5.3 Time

Finally, the time is measured in frames; the agent gets 60 seconds to complete the level, which is
equal to 1800 frames in the simulation. A time of 1801 frames means that it has timed out. Time
can be a double-edged sword; on one hand, the goal should be reached as fast as possible, but on
the other, a longer survival time might be better than instantly rolling off the edge.

3.6 Grid Search

Testing of the weights is done using grid search, which is a method commonly used for hyperparameter
optimization | |. This method simply makes a complete search over a given subset or search
space that satisfies a set of predefined boundaries (see section 3.3.4).

Grid search is an exhaustive and straightforward method that is easily reproducible. Due to grid
search systematically evaluating all combinations of the parameters, it ensures that the optimal
weight combination in the given bounds is identified.

3.7 Data Collection Procedures

The distance the ball has at the moment of termination (see section 3.2.3) of a run is extracted
straight from the simulation from in-game variables, obtained by subtracting the goal position from
the ball position.

Similarly, every frame, the distance between the goal and the ball are evaluated, and the shortest is
stored. This denotes the closest the ball has been to the goal in a simulation.

12



The number of frames a simulation is running is stored in a variable in the main game loop. When
this variable exceeds the max of 1800 frames, the simulation stops immediately.
When a simulation stops, all variables are re-initialized.

3.8 Statistical Analysis

To evaluate the collected data and identify meaningful patterns, a statistical analysis is conducted
using a combination of descriptive summaries and visualization techniques.

To achieve the visualization, the Python package seaborn | | is used.

Multiple forms of data representation are employed to best understand the results. It is done using
table summaries, line plots, and heatmaps. Through these methods, we can make an interpretation
of performance across weights; the combination of line-plots and heatmaps aims to highlight trends
in the data. Tables aim to provide a guide for the data in the dataset and include the mean, median,
and absolute best value in the dataset.

Visualization of the graphs and heatmaps is done using the Python Seaborn | | library. No
outlier treatment or data smoothing is applied during the analysis.

3.8.1 Descriptive Statistics

Descriptive statistics are the primary means of performance evaluation.

Tables (see table 1, 2, and 3) are constructed with three aspects of the dataset, mean, median, and
best score. The agent did not complete level 2 for any weight combination; level 2 is evaluated in a
different way from levels 0 and 1.

Line-plots and heatmaps (Visible in section 5) work together to show trends in data.

The line plots are created using the Pandas library | | for data handling, and the Seaborn and
matplotlib | | libraries for visualization. Data is separated by level. The x-axis represents the
weight, and the y-axis represents the success metric. For each combination of weight and success
metric, a new plot is produced. Seaborn’s line-plotting function is used to compute and display the
mean value for each combination, and on each line, a 95% confidence interval is shown.

In addition, heatmaps are used to study the combined influence of weights. A three-dimensional
scatterplot is constructed where the three axes correspond to the weights and the color corresponds
to the success metric, as shown in the legend. Furthermore, data is separated by level to ensure
comparison within the same experimental conditions. No pre-processing or outlier treatment is
applied to maintain the integrity of the data.

4 Experiments

To optimize our heuristic, we apply a grid search with a set of weights (see section 3.3.4). The
experiment is designed to show how different weight combinations affect agent performance. All
experiments are conducted with the same framework to ensure that there is consistency. The only
variation between runs is the distribution of weights.

Per weight combination, one run is done per level, as the simulation is deterministic. For each
weight, depending on level, the agent has the same starting position and attempts to reach the goal
in the predefined maximum time limit of 60 seconds.
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During the run, the agent evaluated its heuristics every frame and produced the control vector
according to the assigned weights The simulation terminated when certain conditions were met
(see sections 3.2.3).

For each run, data is recorded (see section 3.5) and stored, including weights and level in a csv file.
The primary variable in this research is the weight assigned at every run. A grid search (see section
3.6) method is used to generate all possible combinations of weights with the given bounds.
Weight combinations are evaluated separately per level. The levels are selected on the criteria of
progressively increasing in difficulty (see section 3.4.1), with more complex levels introducing new
challenges.

In total, 15453 simulations have been run and recorded, meaning 5151 different weight combinations
have been run on 3 different levels.

5 Results

Results in the tables (see table 1, 2, and 3) are sorted by level and the completion boolean. If a level
has been completed, we want to optimize different parameters compared to uncompleted levels.
In completed levels (table 1 and 2), the heuristic performed best if the time and total distance
are minimized, as this means a faster and more efficient finish. In incomplete levels (table 3), the
importance of time and total distance metrics is up for debate, metrics that tell us the performance
is the closest distance the agent has gotten to the goal and the distance from the goal at simulation
termination.

The line plots and heatmaps are not separated by completion value and instead intend to show
trends corresponding to weights. The axes of the graphs correspond to the weights.

Weight 1 represents goal-oriented movement (see section 3.3.1).

Weight 2 represents the safety heuristic from the perspective of the current control vector (see
section 3.3.2).

Weight 3 represents the safety heuristic that reasons from the perspective of the agent’s velocity
(see section 3.3.3).

Table 1: Level 0, Completed

Success Metric Mean Median Best Score

Time 190.50 186 185
Total Distance 14.27 14 14

Table 2: Level 1, Completed

Success Metric Mean Median Best Score

Time 1137.52 1068 436
Total Distance 144.15 134 80
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Table 3: Level 2, Not Completed

Success Metric Mean Median Best Score
Time 912.79 804 N/A
Closest 3828 36 1

Total Distance 228.16 242 N/A
Distance at Termination 50.55 50 22

5.1 Total Distance Covered

Heatmap analysis (sce figure 4):

Level 0: When weight 1 is set to 0, the agent exhibits minimal movement towards the goal.
The observed higher value in this case can be attributed to physics effects that result in small
movements that add up over time. For a higher value than 0 for weight 1, the total distance covered
converges to around 14 units, corresponding to the distance between start-position and the goal.
This means that, for level 0, a small amount of weight 1 is enough to guide the agent to the goal.
Level 1: In this environment, a lower value of weight 1 is associated with an increase in total
distance covered. This suggests a less risky or more conservative approach, leading the agent to
take longer but safer trajectories. Low total distance covered in this level is often associated with
failure (see the heatmap for level 1 in figure 12).

Level 2: A lower value of weight 1 is associated with a reduced total distance, enhanced further
with the addition of a high weight 3. This effect is likely due to the agent not moving much because
of the surrounding hazards. A high total distance with a relatively high weight 1 in this instance is
caused by the verticality of the level.

Level 0 Level 1 Level 2

1.0 1.0

Figure 4: Heatmap of total distance covered

Trend analysis (see figure 5):

Weight 1 (see figure 5a) has a positive correlation with total distance in level 2, a negative
correlation with level 1, and minimal influence in level 0, except at a very low value.

Weight 2 (see figure 5b) has a positive effect on distance in both levels 0 and 1 until very high
levels, where it starts fluctuating. There is a weak and inconclusive impact on level 2.

Weight 3 (see figure 5¢) Exhibits a positive impact on total distance for levels 0 and 1 and a
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negative impact on level 2. The latter indicates that this safety heuristic dampens movement in
dangerous areas.
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Figure 5: Effect of weight parameters on total distance covered across levels

5.2 Distance at Time of Simulation Termination

For this success metric, a lower value is generally better. A value of zero corresponds to the goal
being reached while higher values indicate the agent was far away from the goal at the time of
termination (see section 3.2.3 for termination criteria).

Heatmap analysis (see figure 6):

Level 0: Across most weight configurations, the goal is reached, thus the distance is zero. However,
for a weight 1 of zero, the goal is often not reached, due to the agent not exhibiting any goal-seeking
behavior.

Level 1: The best performance is observed here for a high weight 2 (around 0.9) in combination
with a low weight 1 (around 0.1). Increasing weight 1 beyond this leads to worse outcomes, until
the distance lowers again. This can be attributed to the agent falling through the gap in the stage
(see section 3.4.1) at a higher speed, thus reaching closer to the goal under the stage geometry. At
low weight 1 in combination with weights other than a weight 2 of 0.9, the agent seems to exhibit
inconsistent or unstable behavior and have highly variable results.

Level 2: Due to the strong verticality in the level, performance improves with very high values of
weight 1. A high weight 3 seems to result in low agent movement, causing a high distance at the
time of termination. Because the heuristic tied to weight 2 works with the control vector, movement
is still happening.

Trend analysis (see figure 7):

Weight 1 (see figure 7a). At level 0, the goal is almost always reached unless the weight is 0. For
level 1, the performance fluctuates for a value under 0.2. Upon a high weight, the performance
seems to increase; this is likely due to the ball falling off the stage at a higher velocity, thus getting
closer to the goal, albeit under the stage geometry. A high weight value causes the agent to get
closer to the goal in level 2, once again this is due to the verticality of the stage, with optimal
results at weightl ~ 0.9

Weight 2 (see figure 7b) has a relatively subtle effect, across all levels, although extremely high
values have a negative impact on movement entirely. Overall, a slightly positive impact above a
weight value of 0.6 can be observed in levels 1 and 2.
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Weight 3 (see figure 7c) shows a highly negative impact on performance on level 2 and a slightly
positive impact on level 1 past the midway point. Very high levels of weight 3 negatively impact
performance because of the lack of movement.
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Figure 6: Heatmap of distance between agent and goal at the time of termination of the simulation
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Figure 7: Effect of weight parameters on distance at time of simulation termination across levels

5.3 Closest Distance the Agent Reached the Goal

The metric studied is the closest distance to the goal achieved by the agent during a simulation. A
lower value indicates better performance, as the agent has gotten closer to the goal.

Heatmap Analysis (see figure 8:

Level 0: For nearly all weight combinations, including a very low weight 1 value, the agent has
gotten close to the goal. A very large portion of the simulations have successfully finished.

Level 1: The best performance is observed when weight 1 is below 0.2. Variations in weights 2
and 3 have little effect on the outcome.

Level 2: Optimal results are observed when weight 1 is a high value, which is consistent with the
verticality of the level, as mentioned previously. The worst results are observed when weights 1 and
2 are low (approximately under 0.2), and weight 3 is high; this combination leads to minimal agent
movement.

Trend Analysis (See figure 9):

Weight 1 (See figure 9a), when very low, produced the worst outcome for level 0. In level 1, the
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best performance is achieved with a low value of weight 1, in particular under 0.1. The performance
in level 2 improves by increasing weight 1, with peak performance around a weight of 0.85 and 0.9.
Weight 2 (See figure 9b) has a slight positive impact in levels 1 and 2, indicated by a weak
downwards trend in the graph. However, an extremely high weight has a negative influence on
performance across all levels, likely due to limited movement.

Weight 3 (See figure 9¢) has a positive impact on performance in level 1, and a negative influence
on performance in level 2. This indicates that, when faced with a more hazardous level, the heuristic
causes limited agent movement.

Level v Level L Level £

10 1.0 10 10

Figure 8: Heatmap of the closest the agent has gotten to the goal
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Figure 9: Effect of weight parameters on the closest the ball has gotten to the goal across levels

5.4 Time Spent in Simulation

Reduction in time can be beneficial if the termination is the result of a completed level. If a level is
not completed, the amount of time can tell us how safe a heuristic is.

Heatmap analysis (See figure 10):

Level 1: a weight 1 value of zero results in more time spent in the simulation, in some cases
leading to time-outs. This is due to the lack of goal-based behavior.

Level 2: lower values of weight 1 are associated with longer simulation, meaning that the agents
remain on the stage for longer periods of time. Additionally, whether it is a higher weight 2 or 3
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does not seem to influence the total simulation time.

Level 3: a combination of low weights 1 and to a lesser extent weight 2 leads to longer simulation
time. With a high weight 3 being associated with frequent time-outs. Weight 1 accelerates the
termination of simulations through failure, as no weight combinations have completed level 2 (see
figure 12).

Trend analysis (see figure 11):

Weight 1 (see figure 11a) exhibits a negative impact on the amount of time spent in the simulation.
Weight 2 (see figure 11b) has a positive effect on time spent in the simulation for levels 0 and 1
and little effect in level 2. The increase in time in level 0 means a less optimal path is taken.
Weight 3 (see figure 11c) has a positive effect on the amount of time spent across all levels. As
previously mentioned, however, this can be a negative result.
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Figure 10: Heatmap of time spent in the simulation
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Figure 11: Effect of weight parameters on the time the ball has spent in levels

5.5 Completion

Level 0: only fails for a very low-weight 1 value. Level 1: completes for some weight combinations
where weight 1 | 0.2, works best with a higher weight 2 value. Level 2: Does not ever complete

Heatmap analysis (see figure 10):
Level 0: The agent successfully reaches the goal for nearly all weight combinations, with the

exception being a very low weight 1 value.
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Level 1: For this level, certain parameter combinations have to be satisfied. Weight 1 should be
below approximately 0.2. Performance is best with a higher value of weight 2, which suggests that
this component plays a more important role for this specific level.

Level 2: The agent never completed this level under all tested weight configurations. Suggesting
that the tested heuristics or weight combinations prove insufficient.
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Figure 12: Heatmap of successful and unsuccessful weight combinations

5.6 Baseline Results

When comparing the tables for the weighted heuristics (see table 1, 2, and 3) with the result of the
baseline methods (see section 3.3.5), we can see that improvements have been made with certain
weight configurations.

Although level 2 is completed by the fine control baseline, the optimal weight combination out-
performs it in terms of time. The established fine-control baseline outperforms the weight-based
heuristics in terms of total distance.

Table 4: Baseline, Straightforward

Level Closest Termination Total Distance Time Completed

0 0 0 14 185 1
1 12 21 95 326 0
2 65 117 290 583 0

Table 5: Baseline, Fine control

Level Closest Termination Total Distance Time Completed

0 0 0 14 185 1
1 0 0 122 1228 1
2 45 69 235 719 0
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5.7 Optimal Weight Configurations

Each level has a different optimal weight combination; on completed levels, heuristics show their
optimal weights in a different way from incomplete levels.

For completed levels, we want to minimize the amount of time the agent spends in simulation. This
occurs for the weight configuration:

(weightl = 0.13, weight2 = 0.43, weigth3 = 0.44)
Which has a combined time of 799 frames in levels 0 and 1 (see table 6).

Table 6: Optimal weight configuration for levels 0 and 1

Level Closest Termination Total Distance Time Completed

0 0 1 14 186 1
1 0 1 115 799 1
2 41 29 228 941 0

For incomplete levels, we can minimize the " closest” value and secondly the ” Distance at termination”
value. By minimizing these values, we find the optimal weight configuration for level 2.

(weightl = 0.77, weight2 = 0.02, weigth3 = 0.21)
Which has a closest value of 1 and a distance at termination value of 45 (see table 7).

Table 7: Optimal weight configuration for level 2

Level Closest Termination Total Distance Time Completed

0 0 1 14 185 1
1 17 21 38 316 0
2 1 45 257 711 0

6 Discussion

This chapter explains the outcomes of the experiments carried out in the previous section (see
section 5) and interprets the results in the context of the research question (see section 1.1). The
primary objective of the research was to develop a heuristic approach for a goal-oriented agent
using weighted goal- and safety-oriented heuristics, and investigate if this approach is suitable
for autonomous agent navigation in a continuous, physics-based environment inspired by Super
Monkey Ball. The proposed methods do not rely on planning and are purely reactive.

The discussion will focus on three points.

1. The relation between the weights and navigation performance.

2. The interplay of goal-seeking and safety heuristics in the given environment.

3. Broader implications.
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The results indicate that the heuristic blending with the developed heuristics can be a viable
approach for navigation, given that the environment does not exceed a barrier of complexity. In
more complex and dynamic environments, limitations are found; the environment must be simple
to moderately complex, as seen in levels 0 and 1 in the results.

6.1 Interpretation of results

A central takeaway of the research is that no single proposed heuristic has the best performance
across all levels. Optimal performance is highly dependent on the level geometry and assigned
weights.

This highlights that navigation in the specified environment cannot be solved solely using purely
the proposed goal-seeking or safety heuristics alone.

Goal-Oriented and Safety-oriented trade-offs:

As expected, across all experiments, the goal-seeking heuristic proved to be essential for reaching
the goal. The weight assigned to the goal-seeking heuristic had to be non-zero for the agent to
reliably reach the goal on levels 0 and 1. A weight of zero caused limited movement and often
caused the simulation to result in a time-out.

Level 1 (see figure 2) introduced a gap in the middle of the stage geometry. This level could be
solved with a relatively low weight assigned to the goal-seeking heuristic and high weights assigned
to the safety-heuristics. As expected, more aggressive goal-seeking behavior resulted in a fall-out.
Level 2 (see figure 3) highlighted a limitation of the proposed heuristics. In order to reach the goal,
the agent had to move away from the goal, which is not possible with a non-zero weight assigned
to the goal-seeking heuristic. High values of the goal-seeking weight cause the agent to reach closer
to the goal; this method failed fast and is only possible through the verticality of the geometry.
Distance and Time metrics:

Distance-based metric proved insight into the agent’s behavior, in completed levels, minimized
time, and total distance covered correlate with the effectiveness of the heuristic.

As expected, these metrics become more ambiguous in levels without completion; a short total
distance, for example, can indicate minimal movement, and a low time value indicates a fall-out.

6.2 Generalization

Although the research is inspired by Super Monkey Ball, it can be generalized to a broader spectrum
of continuous physics-driven games and simulations.

This encompasses games that involve rolling, sliding, and inertia-based control, such as marble
rolling games and physics-based vehicle racing games.

Blended heuristic can serve as an alternative to full-planning; however, the approach suggested in
this research scales poorly with growing environmental complexity.

6.3 Scope

Several limitations can be identified in this research.
To start, the simulation is inspired by Super Monkey Ball and does not perfectly replicate its
environment. Simplifications from the original game likely impact the agent’s behavior.
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The use of grid search in this research assumes that the priorities of the agent will not change
throughout the levels.

The agent does not dynamically change its priorities throughout a level.

The set of evaluated heuristics is minimal. This is done to study the effects of blending; it also
limits the expressive ability of the agent.

6.4 Future Work

The results of this research indicate several limitations that spawn directions for future research.

Several additional heuristics can be created and blended. Some examples are: Slope awareness,
detecting if the agent stays in the same area for a long time, and moving away from the goal if
there is no direct path.

The agent can take advantage of reinforcement learning to learn optimal weight configurations or
switch between weights to select different priorities.

Weight adaptation can be used to change the priorities of the agent during a simulation. If, for
example, the agent is close to an edge, it might prioritize moving away from said edge over moving
towards the goal.

If an improved version is created, it will need more complex and diverse levels that introduce new
obstacles; for example, moving platforms.

7 Conclusion

In this research, a heuristic-based navigation model is developed for continuous physics-based
environments inspired by Super Monkey Ball. Traditional graph-based techniques are complicated
in this context due to the nature of the environment.

To address this, the research explored whether a weighted heuristic could allow goal-oriented
navigation for an autonomous agent.

7.1 Summary of Findings

The research question asked how, using game AI, an autonomous agent can be created in Super
Monkey Ball-like environments.

For these three heuristics were implemented: a goal-oriented heuristic and two safety heuristics
that base their result on the control vector and velocity of the agent. By blending these heuristics
through weighted sums and evaluating their performance through predefined performance-metrics
across levels that increase in difficulty, the effect of each heuristic can be studied.

The results show that through this method, the agent can successfully reach its goal in a moderately
complex environment.

Experiments revealed clear limitations; the most complicated level could not be completed under
any weight configuration, indicating that the proposed approach is insufficient for more complex
environments. While certain weight combinations caused the agent to come close to the goal, this
was through the verticality of the level and the agent rolling off the edge towards the goal.
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Overall, results agree that different weight configurations influence success rate, distance metrics,
and time. The optimal weight configuration of the heuristics is highly dependent on level-design,
meaning that no single weight configuration is optimal across all environments.
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