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Abstract

Deep learning has shown strong performance in side-channel attacks (SCA) but remains
difficult to interpret due to the black-box nature of neural networks. Recent research introduced
mechanistic interpretability (MI) techniques to understand what deep learning models learn.
This thesis applies several MI methods to convolutional neural networks (CNN) and multi-layer
perceptrons (MLP) trained on the ASCAD variable key dataset using the Identity leakage
model. Results show that both models can extract meaningful internal features. However, the
clarity of internal representations is weaker than in prior work. This thesis provides insights
into the interpretability of deep learning in SCA and provides suggestions for further research.
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1 Introduction

In recent years, side-channel attacks (SCA) have emerged as a powerful technique for extracting
secret information from cryptographic implementations by analyzing physical leakages such as
power consumption | |, electromagnetic radiation | |, or timing | ]. Using deep
learning for SCAs has proven highly effective | ]. A big challenge with deep learning
models is that they operate as a black box. Even when a model successfully recovers a cryptographic
key, it is typically unclear which part of the trace was used, what features were extracted, and why
certain decisions were made | ]. This lack of interpretability limits the practical usefulness of
such models in security evaluation settings, where understanding the attack mechanism is just as
important as achieving key recovery.

Mechanistic interpretability (MI) tries to reverse engineer the internal behavior of neural networks.
Recent research has applied MI techniques such as logit analysis, activation visualization, and
activation patching to better understand what features deep learning models are using during
SCA. These techniques have shown promising results on specific datasets and model configura-
tions | ]. This study investigates whether the mechanistic interpretability techniques from
Karayalgin et al. | ] work on different models and datasets in DLSCA.

The research question is: How well do the techniques proposed in the paper ”It’s Not Just a
Phase: On Investigating Phase Transitions in Deep Learning-based Side-channel Analysis” perform
on other models and datasets from the literature?

1.1 Contributions

This thesis contributes the following:

e This thesis extends previous work from Karayalgin et al. (2025) | |. Tt uses simpler
MLP models from | | and introduces a CNN architecture from | | into mech-
anistic interpretability analysis of profiling SCA, to explore how these techniques apply to
convolutional models.

e It focuses on the identity (ID) leakage model in the ASCAD variable key dataset. Unlike
the LSB-biased traces used in | |, this setup presents a more challenging target, as no
strong bit biases are present. The dataset also differs in trace preprocessing: 1400 carefully
selected points of interest are used rather than 2000 resampled points from a larger window

of 20,000 samples.

e It evaluates how well mechanistic interpretability techniques generalize to different architec-
tures (CNN and MLP) and leakage models (ID).

1.2 Thesis overview

This undergraduate thesis was written at the Leiden Institute of Advanced Computer Science
(LTACS) under the supervision of Nele Mentens and Sengim Karayalgin. The thesis is structured as
follows: Section 2 provides background on side-channel analysis, deep learning, and interpretability.
Section 3 gives definitions of key concepts and terms. Section 4 discusses related work. Section 5



describes the experimental setup and results. Section 6 discusses the results. Section 7 concludes
the thesis and discusses future research directions.



2 Background Information

This section provides the necessary background for understanding mechanistic interpretability (MI)
in deep learning-based side-channel analysis (DLSCA). It begins with an introduction to SCA and
leakage models, then describes the ASCAD dataset and deep learning models, and closes with an
explanation of MI.

2.1 Side-channel Analysis

Side-channel analysis (SCA) is a form of attack that extracts secret information from cryptographic
implementations by observing unintended physical leakages such as power consumption | ],
electromagnetic radiation | |, or timing variation | |. Instead of exploiting weaknesses
in the cryptographic algorithm itself, SCA focuses on the physical behavior of devices while
executing cryptographic operations | , ]. In a DLSCA attack, an attacker records
multiple power traces during encryption and uses these to infer intermediate computations inside
the cryptographic algorithm. Machine learning techniques can be trained to derive parts of the
secret key by analyzing power consumption patterns, for example. SCA has proven successful even
against strong cryptographic schemes such as Advanced Encryption Standard (AES) | .
AES is a byte-oriented block cipher that operates over multiple rounds, each consisting of several
nonlinear and linear operations. Due to its widespread use when encrypting information, AES is
also a usual target in side-channel analysis research | ]. A common target point in AES is
the output of the S-box operation because an S-box combines key and plaintext information in
a nonlinear way. As a result, many attacks focus on recovering one byte of the key (subkey) by
analyzing this intermediate value:

IV = S-box(p & k)

where p is a plaintext byte and k is the corresponding key byte. In SCA, if the attacker recovers a
subkey byte, this is often enough because this process can be repeated to reconstruct the entire
secret key | |. The essence of SCA is to match secret-dependent predictions of physical
leakages with actual measurements to determine the most likely data being processed | .

There are two forms of SCA: profiling and non-profiling | ]. In profiling attacks, the attacker
has access to a duplicate of the target device and could collect labeled data with known keys to train
a model. This model is later applied to unlabeled traces from the target device. Profiling attacks are
generally more powerful, especially when using deep learning | ]. In non-profiling attacks,
the attacker learns directly from the target’s traces. In this paper, we look at profiling attacks.

To defend against SCA, many implementations include countermeasures such as masking (ran-
domizing internal values) and hiding (flattening power signatures). However, recent work shows
that even masked implementations can be vulnerable to modern attacks, like those based on deep
learning | : ].

So, the dataset contains measurement data and labels, but these labels are based on something:
a leakage model. Such a model determines how the physical leakages are related to secret values.

2.1.1 Leakage Models

To apply supervised machine learning techniques in SCA, labeled data is needed. Each power trace
must be associated with a specific value that the model should learn to predict. Since the secret key



itself is not directly observable, researchers define leakage models: as functions that map internal
cryptographic states (such as intermediate values in AES) to labels that approximate how physical
leakage behaves | ].

Several standard leakage models that are commonly used in deep learning-based SCA (DLSCA)
are Hamming Weight (HW), Most/Least Significant Bit (MSB/LSB), and Identity (ID). The HW
model suggests that the amount of leakage is correlated with the number of "1’ bits in a processed
byte. For example, the byte value 0xF0 (11110000) has an HW of 4. It maps each byte to an integer.
The HW model has 9 possible output classes (0 to 8). This leakage model assumes that each bit
has the same contribution to the leakage. The Most/Least Significant Bit assumes that the leakage
depends on a specific bit position, especially the most or least significant bit. Lastly, the Identity
leakage model assumes that the leakage is proportional to the values at the intermediate variable,
here the output of the S-box. So, this assumes that each bit has a different importance. This model
has 256 output classes: one for each byte. So each of these models makes different assumptions
about the hardware’s physical leakage. | , .

Finally, it is important to note that the true leakage behavior of a device may not perfectly
match any of the models. In short, leakage models tell us what the model is supposed to learn.

To evaluate side-channel leakages, a dataset is necessary. The next section introduces the most
widely used benchmark in this domain: the ASCAD dataset.

2.2 ASCAD Data Set

To evaluate deep learning-based side-channel attacks in a controlled and reproducible setting, the
ASCAD dataset introduced in 2018 has become the standard benchmark | ]. ASCAD stands
for Advanced Side-Channel Analysis Database.

The dataset contains power traces captured from an 8-bit ATmega microcontroller while it
performs AES-128 encryption. Each trace corresponds to a single encryption and consists of
measurements of the device’s power consumption over time. These traces capture the physical
leakage that SCA tries to exploit | |. To avoid processing lots of data, a window of 1400
points of interest is extracted around the leakage spot. The ASCAD dataset includes two main
labeled datasets:

e 200000 profiling traces: Used to train machine learning models, with known plaintexts
and keys.

e 100000 Attack traces: Used to evaluate the performance of the previously trained model
on unseen traces.

In most side-channel evaluations, the point of interest is the output of the S-box, which combines
key and plaintext in a nonlinear way. The goal is to recover this intermediate value or infer its
structure based on physical traces. The ASCAD dataset thus provides a structured way to test
whether machine learning models can learn these relationships. Deep learning, a subfield of machine
learning, has become more popular in SCA in recent years. The next section provides an introduction
to deep learning models.



2.3 Deep Learning Models

Deep learning is a subfield of machine learning that is inspired by how the human brain processes
information. It uses multi-layered artificial neural networks to model complex relationships in
high-dimensional data. Deep learning has already been successfully applied to many fields like
image recognition [ | and natural language processing | |, and more recently in
side-channel analysis | : ].

A deep learning model is trained in multiple epochs. In each epoch, the model processes
the entire training dataset and optimizes its internal parameters to minimize a loss function,
using optimization techniques such as gradient descent. The gradient indicates how the function
changes, and the gradient descent uses that information to adjust the parameters and improve the
model | |. In this section, we discuss two common types of deep learning used in SCA:
the Multi-Layer Perceptron (MLP) and the Convolutional Neural Network (CNN).

2.3.1 Multi-layer Perceptron

A Multi-layer Perceptron (MLP) is one of the most commonly used deep learning models. It consists
of fully connected layers, where each neuron in a layer is connected to all neurons in the next
layer | , ]. Inspired by biological neurons, these artificial neurons perform simple
mathematical operations in parallel.

An MLP is a feedforward neural network: the signals flow from the input layer through one or more
hidden layers to the output layer, without cycles. Each neuron applies a weighted transformation
to its input, adds a bias term, and passes the result through a nonlinear activation function [ ,

|. Figure 1 | | (left) illustrates a basic MLP architecture, where the input vector
X =uxq,29,...,1, is transformed into an output vector Y = y1,4s, ..., 4, through hidden layers.
While relatively simple, MLPs are capable of learning complex nonlinear patterns.

Input layer Hidden layers Output layer

ouTPUT

Figure 1: Left: an example of a Multi-layer Perceptron, with input layers, hidden layers, and output
layers | |; Right: example of a Convolutional neural network that classifies handwritten
digits [ ]-



2.3.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a deep learning model designed to detect local patterns
in structured data, such as images or time series. In contrast to a fully connected architecture like
the MLP, CNNs consist of different types of layers: convolutional layers, pooling layers, and fully
connected layers. While an MLP treats each input value independently, a CNN is better at processing

spatial regions simultaneously by applying filters (kernels) [ , |. The convolutional
layer applies a set of learnable filters that slide over the input data, where each filter is designed
to detect specific features, such as edges or local patterns | |. The output of the convolution

layer is a feature map, highlighting where the detected patterns occur in the input [ ].
Following the convolutional layer, there is a pooling layer, which reduces the spatial dimensionality
of the feature maps, a process known as downsampling. This reduces the computational cost and
increases robustness to small shifts in the input. A common pooling operation is max pooling,
where the maximum value within a local window is selected | , ] At the final stage, the
network includes fully connected layers, which function similarly to those in a standard MLP and
produce a final class decision at the end | ]. An example of a CNN architecture is shown in
Figure 1 | |, which classifies handwritten digits. Similar CNNs can be used to classify power
traces in SCA.

CNNs are particularly effective in SCA because they can handle desynchronization: small
variations in the timing of power traces. This makes them more robust than MLPs in real-world
SCA scenarios | ].

2.3.3 Deep Learning Models for SCA

Deep learning has significantly advanced SCA in recent years. When the ASCAD dataset was
introduced in 2018 | ], key recovery required many traces and was computationally intensive.
Now, deep learning models can often break these targets using only a single trace | ] There
are two main advantages of deep learning-based SCA (DLSCA). First, it can effectively break targets
even when protected with countermeasures, such as masking and hiding, as said in 2.1. Second, it
has the ability to learn directly from raw traces, often eliminating the effort for pre-processing. These
advantages make deep learning powerful in SCA | ]. An interesting phenomenon observed in
DLSCA training is phase transitions or grokking effect | |. After several epochs with minimal
improvement, the model may suddenly generalize and start recovering key information. This turning
point often corresponds to internal changes in the learned representations. Understanding how
and where these transitions occur could improve both the design of robust countermeasures and
our understanding of deep learning itself. The next section introduces the concept of Mechanistic
Interpretability, which aims to reverse-engineer the internal behavior of deep learning models.

2.4 Mechanistic Interpretability

The goal of mechanistic interpretability (MI) is to reverse-engineer deep neural networks. This is
done by trying to uncover internal structures and processes that lead to model predictions | ].
Unlike black-box interpretability approaches, MI treats the network as a mechanistic system:
a composition of understandable parts, such as neurons, weights, and circuits. The goal is to
decompose network behavior into interpretable components, allowing researchers to understand not
just what the model predicts but also why it makes those predictions.



A challenge in MI is to overcome the curse of dimensionality, as neural networks operate in
high-dimensional spaces. Olah | | suggests two strategies for this challenge: (1) studying
networks with low-dimensional inputs, and (2) analyzing local behavior around specific data points.
This allows for a manageable examination of parameters, activations, and memory representations,
ideally segmenting them into variables that can be interpreted independently.

In a related work, Olah et al. | | propose a more detailed approach to understanding
neural networks, suggesting that rather than seeking high-level, simplified explanations, the focus
should be on ”"zooming in” on individual neurons and their connections. By closely looking at
the relationships between neurons and the flow of activations, the authors demonstrate that it
is possible to uncover meaningful algorithmic structures embedded in the weights of a network.
They argue that neural networks may be made up of meaningful, reusable circuits that are groups
of neurons and weights that implement specific functions. Examples of those circuits are curve
detectors in vision models or frequency filters. These circuits, formed by weighted connections
between interpretable features, can be studied analogously to biological neural systems. The authors
propose that understanding these circuits may eventually enable a full mechanistic understanding
of neural models in tasks and domains.

Building on these ideas, Karayalgin et al. | | apply MI techniques to Deep Learning-based
Side-channel Analysis (DLSCA). The hypothesis is that deep learning models perform things as
some kind of meaningful interpretable algorithms, and then reverse engineer at the location of or
after the phase transitions | ]. Below, the main techniques used in this work are described.

2.4.1 Probing

Probing is a method used to study the internal representations of neural networks | , ].
The key idea is to test whether certain features are encoded in the activations of a trained model.
Features can be specific bits of an intermediate value for example. A probe is a small, typically
linear classifier trained on the frozen activations of a network layer to predict a selected feature. If
the probe can predict the feature with accuracy significantly above chance (0.5 for binary bits),
this indicates that the feature is represented within that layer’s activations. By training probes
across layers and at different epochs, it is possible to analyze where and when a model begins to
encode relevant features | .

2.4.2 Logit analysis

This technique analyzes the model output (before applying softmax) for different classes immediately
after phase transitions. By examining these outputs, it becomes possible to identify which classes
the model distinguishes most clearly and which are commonly confused. The height of the class
indicates how strongly the model ”considers” that class as a possible outcome. This helps to assess
how strongly the model associates certain inputs with specific outputs and whether certain patterns
are well represented internally.

2.4.3 Activation Analysis (PCA)

This technique explores the internal representations of the model by applying Principal Component
Analysis (PCA) to activation vectors in intermediate layers. PCA reduces the dimensionality of
the activations while preserving variance, so the learned ’structure’ can be visualized in 2D plots.



Clusters in PCA plots can indicate that the model internally represents certain input patterns or bit
combinations. For example, diagonal or grid-like patterns may correspond to interactions between
secret shares or masked intermediaries. This form of visualization helps trace how meaningful
representations emerge during training.

2.4.4 Activation patching

After identifying the relevant principal components, activation patching tests whether these compo-
nents are causally responsible for the predictions. The idea is to fix all directions in the activation
space except one and vary that one direction across inputs. This allows for controlled interventions:
if changing a single component alters the model’s output, that component is causally relevant.
Finally, the Signal-to-Noise Ratio (SNR) is used to assess whether patched outputs align with
known physical leakage points.

2.5 Evaluation Metrics

To assess what a model has learned and how information is represented internally, evaluation
techniques:

e Perceived Information (PI): A measure that estimates how much information about the
key (or subkey) is present in the model’s output probabilities. If the model assigns a low
probability to the correct subkey, it has probably not captured the true leakage relationships,
making the internal representations less meaningful. A higher PI indicates better recovery of
secret information.

e Probe Accuracies: Probe accuracies measure how well individual bits of secret intermediate
values can be linearly predicted from hidden activations. Hidden activations in this experiment
are S-box input/output bits. Linear probes are trained for each bit, using frozen activations
of the model as input. Accuracy above random (0.5) indicated that the bit is represented in
the network’s internal representations. For example, a probe trained to predict bit 1 of the
S-box output with an accuracy of 0.8 implies that this bit is actively encoded and likely used
in decision making | ].

e Logit Distributions: Logits are analyzed per class and per trace group (Y;) to detect
common misclassifications and output patterns. In each group, the median logit values are
plotted for the 256 output classes. Ideally, the red markers that represent the expected classes
for that group should coincide with the highest peaks in the blue logit lines. When this
alignment occurs, it indicates that the model strongly associates that input group with the
correct output classes, suggesting that it has learned a structured internal representation.

e Principal Component Analysis (PCA): Used to visualize activation structure in a lower-
dimensional space. Clustering or alignment of activation projections with specific input/output
bit combinations suggests an interpretable internal structure.

e Activation Patching and Signal-to-Noise Ratio (SNR): Activation patching is used
to test whether specific principal components are causally responsible for predictions. The



resulting model outputs are then analyzed using SNR to quantify the strength of signal-leakage
alignment.



3 Definitions

This section defines key concepts and terms used throughout the thesis.

Activation Patching A mechanistic interpretability technique where activation components are
replaced to test their causal role in predictions.

ASCAD Widely used SCA dataset for evaluating side-channel attacks.

Probe accuracy A metric that indicates how well a linear classifier (probe) can predict specific
bits of internal intermediate values (e.g., S-box output) from hidden layer activations. Higher
accuracy indicates stronger internal encoding | -

Hamming Weight (HW) A leakage model that assumes that leakage is proportional to the
number of "1’ bits in a byte.

Identity (ID) A leakage model that assumes that leakage is proportional to the actual value of
the intermediate variable.

Leakage model An assumption about how the physical leakage relates to the secret internal state
(e.g HW, ID, and LSB/MSB models)

Logit The raw output of the final layer of a neural network, before applying softmax. The higher
the logit, the more confident the model is in predicting the class.

NIST Advanced Encryption Standard (AES) cipher A widely used algorithm used for sym-
metric encryption and decryption | ].

Perceived Information (PI) A measure that estimates how much information about the key is
present in the model’s output probabilities | , ].

Phase Transition, Grokking A point during training where a sudden increase of learned infor-
mation and where the model starts to generalize and extract information after several training
steps, where there was no improvement | ].

Principal Component Analysis (PCA) A dimensionality reduction technique used to visualize
internal activations by projecting them in directions of maximum variance.

Side-Channel Attack (SCA) A form of attack where the attacker looks for physical leaks (e.g.,
time, power consumption) to recover secret keys.

Softmax An activation function that converts logits into a probability distribution over classes,
used as an output for classification networks.
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4 Related Work

Several studies have investigated the application of deep learning in SCA. When the ASCAD
dataset was proposed in 2018, recovering secret keys still required significant effort, and research
on deep learning for SCA was limited | |. Now, secret keys can often be recovered using
single attack traces, even when countermeasures are present | |. Because DLSCA is a
relatively new field, most studies have only focused on optimizing deep learning networks rather than
on explainability and interpretability | |. This section discusses studies that specifically
investigate interpretability in deep learning-based profiling SCA, with an emphasis on techniques
that try to explain the internal workings of neural networks.

We begin with studies that are not so focused on the interpretability of all layers, but are
nevertheless concerned with understanding neural networks in a broad sense. We start with Zaid et
al. (2020) | ], who applied visualization techniques, such as weight visualization and feature
maps to better understand feature selection and the role of hyperparameters. Their goal was to
investigate whether classification complexity could be reduced by simplifying feature selection in
the early stages of training. Their work did not aim to localize side-channel leakages, but rather
to optimize network efficiency. They concluded that CNNs do not need to be highly complex to
achieve good performance in SCA. This insight is important, as it suggests that simpler models
may offer a better trade-off between accuracy and efficiency in practical applications. Masure et
al. (2019) | ] focused on input gradients to identify important sample points. This method
provides a way to visualize which parts of the input data had the most influence on the model’s
decisions. We can conclude that both studies | , | focus on the input layer, they
provide valuable insights but not much information about the internal workings of the hidden
layers.

Some studies focused more directly on internal representations and explaining them, but are
limited in how good they are. For example van der Valk et al (2021) | .| | tries
to explore what hidden layers in neural networks learn from side-channel traces in profiling SCA
by using Singular Vector Canonical Correlation Analysis (SVCCA). They applied this method to
both MLPs and CNNs and found that internal representations differ across datasets and masking
schemes. Interestingly, they also observed similarities between datasets that, on the surface, appear
unrelated. SVCCA proved useful for comparing neural network layers and models and revealed that
datasets sharing the same leakage model had more similar internal structures than datasets with or
without countermeasures. This finding suggests that leakage models play a more crucial role in
shaping internal representations than the presence of countermeasures. Wu et al. | | used
ablation techniques to evaluate the sensitivity and resilience of individual layers, by systematically
removing components to assess their impact. However, they noted that interpreting the results of
such analyses remains complex and challenging.

Other research has applied information-theoretic approaches to understand internal processes.
Perin et al (2020) | | used mutual information to make an early stopping mechanism, allowing
the model to stop training if they have captured enough information about the secret key. In
another work, Perin et al. (2022) | ] studied how deep learning models encode internal
information during profiling SCA. They introduced the concept of ExDL-SCA, a framework that
uses information-theoretic metrics to better understand what is represented in the hidden layers.
Their approach builds on the information bottleneck theory (IB), which views deep learning training
as a process consisting of first fitting the data and then compressing unnecessary information. They
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employed perceived information to quantify how much information about hidden values, such as
masks, is encoded in internal representations. This work is directly relevant to our study because it
also wants to explain the role of hidden layers in profiling SCA, although it focuses on analyzing
internal layers rather than linking them to specific trace points or physical leakage locations.

Finally, Karayalcin et al. (2025) | ] introduced mechanistic interpretability techniques that
are central to our work. They applied methods such as logit analysis, PCA, and activation patching
to reverse engineer trained models and identify which features contribute to key recovery and what
leakages are being exploited. Their work provided insights into how specific internal structures
of neural networks relate to side-channel leakage. Our study builds on these methods but applies
them to different parts of the ASCAD dataset and to models with slightly different architectures,
to assess how well these techniques generalize.

In summary, prior studies show valuable first steps in the interpretability of deep learning in
profiling SCA. However, much of the existing work focuses on input layers or provides limited
insight into internal processes. To improve countermeasures in the future, there remains a need for
techniques that systematically explain the internal workings of models and provide insight into
how and where side-channel leakages are exploited.
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5 Experiments

5.1 Experimental Setup

This experiment follows the approach of Karayalgin et al. (2025) [ |, assuming that the
correct subkey is already known during evaluation. This allows for assessment of whether the
model is learning meaningful features, and whether its predictions become increasingly aligned with
the correct subkey values. To investigate this, the Perceived Information (PI) is tracked over
training epochs, which measures how much information about the correct subkey is present in the
model’s output distribution. A rising PI indicates that the model is learning something relevant.

Next, several mechanistic interpretability analyses are applied that were proposed in the original
work to investigate how and where the model internally encodes this information:

1. Probe accuracy to evaluate to what extent individual bits of the S-box input and output are
encoded in intermediate layers. For each bit, a separate linear probe is trained to predict the
bit value based on layer activations. Accuracy above chance (here 0.5) suggests meaningful
internal coding | -

2. Logit analysis examines the model’s raw output scores before softmax for trace groups Y;,
grouped by specific input and output combinations.

3. Principal Component Analysis (PCA) of hidden activation, where activations are
visualized and colored by relevant input and output bit values to assess clustering structure.

The model was trained on the ASCAD variable key from the GitHub repository ASCAD GitHub
repository from | | using the Identity (ID) leakage model. The variable key dataset has a
more complex masking scheme, so this is a harder and more realistic dataset than the fixed key.
The input consisted of 1400 points of interest (POIs), selected from the interval [80945, 82345].
The labels correspond to the S-box output byte, and the model is trained with a softmax output
layer containing 256 units (one per possible byte value).

Three neural network architectures were evaluated:

e Using a CNN and ID leakage: The CNN was based on the best-performing configura-
tion proposed in the GitHub repository at feature selection dlsca repository described in
the | | article. The network architecture of the CNN consists of three convolutional
layers with ’selu’ activation, each followed by max pooling and batch normalization, followed
by two dense layers and a softmax output layer. The training was performed for 100 epochs,
and the Adam optimizer with a learning rate of 0.001 was used. Furthermore, a batch size of
300 and a categorical cross-entropy loss.

e Using an MLP and ID leakage: The MLP used in this experiment was also based on the
best-performing configuration proposed in the GitHub repository at feature selection _dlsca
repository described in | |. The model consists of three hidden layers, each with 20
neurons and selu activation, followed by a softmax output layer with 256 classes. The weights
were initialized with the random_uniform initializer, and the model was trained using the
Adam optimizer with a learning rate of 0.0005 and a batch size of 100.

13


from https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_keydataset
from https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_keydataset
https://github.com/AISyLab/feature_selection_dlsca/blob/master/experiments/ASCADr/OPOI/best_models.py
https://github.com/AISyLab/feature_selection_dlsca/blob/master/experiments/ASCADr/OPOI/best_models.py
https://github.com/AISyLab/feature_selection_dlsca/blob/master/experiments/ASCADr/OPOI/best_models.py

5.2 Results
5.2.1 CNN

Figure 2 shows the perceived information (PI) over training epochs for both train and test sets.
PI increases during the first 30 epochs, so there is a phase transition. After that, it rises steadily
afterward, indicating that the network successfully learns relevant features under the ID leakage
model.

The middle panel of Figure 2 shows bitwise accuracy over training epochs. Input bits 0 and
1 show significantly higher accuracy (= 0.6) compared to other bits, which remain near chance.
Still, it has a low accuracy in general when compared to the paper | |. Tt can be concluded
that this dataset makes inference more difficult. Most bits perform near chance level, with bit 1 of
the S-box output showing particularly low accuracy. As a result, it was excluded from subsequent
logit plots. Overall, the dataset contains less exploitable information, which explains the reduced
accuracy.

In the right panel of Figure 2, the median logits are plotted per class for 8 subsets Y;, where each
Y; is defined by a combination of bits 0 and 1 of the S-box input and bit 0 of the S-box output. Red
markers indicate the expected S-box values (i.e., output classes) for each Y; group, and the blue
lines indicate the median logit value per output class. The peaks of the lines match the red markers
well, implying that the model strongly associates these trace groups with the correct output classes.
Notably, i = 2, 3,4, 5, the peaks are higher than for the other four groups, suggesting a stronger
distinction. This uneven performance is probably due to more irregular leakage patterns in this
part of the ASCAD dataset.

1 0 Median Logits for Y; with output bit 0 and input bits 0,1
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Figure 2: Left: Perceived Information evolution over epochs for the CNN trained with the ID leakage
model. Middle: Probe accuracy over epoch for selected S-box and input bits. Right: Median logits
per group Y;.

Figure 3 presents PCA projections of the activations across CNN layers. From layer 5 onward,
clustering begins to emerge, especially in the S-box input bit. While four distinct clusters were not
consistently visible, several projections showed two or three clear groupings as seen in the left and
middle picture of 3. Notably, values like 00 and 11 tend to appear close together, suggesting that
the model may encode bitwise parity rather than full identity. In the attack label bit, the clusters
are significantly less distinct, as shown in Figure 3.
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Layer 7 | S-box input bits [0,1] | PCO vs PC1 Layer 10 | S-box input bits [0,1] | PCO vs PC1 Layer 10 | Attack label bit 0 | PCO vs PC3

Figure 3: PCA projections of CNN activations. Left: layer 7 (S-box input bits). Middle: layer 10
(S-box input bits). Right: layer 10 (attack bit 0).

5.2.2 MLP

Figure 4 shows the training progression and internal behavior of the model. The Perceived Informa-
tion (PI) increases sharply in the first 20 epochs and then flattens out. The accuracy of probes
shows that input bits 0 and 1 reach around 0.6, while other bits remain close to chance level. This
indicated that the MLP can extract some secret information, but less effectively than in the paper
[[KIKP25]. The logit analysis in Figure 4 (right) shows that the red markers (expected classes for
each Y; group) align only partially with the high logits. In particular, groups Y5 to Y5 show more
confident predictions, while others remain flat and uninformative. This suggests that the model
only learns distinguishable structures for a subset of trace groups.

1 0 Median Logits for Y; with output bit 0 and input bits 0,1
. SBox Bit 0
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Figure 4: Left: Perceived Information and probe accuracy over epochs for the MLP trained with ID
leakage. Middle: Probe accuracy over epoch for selected S-box and input bits. Right: Median logits
per group Y; at epoch 30.

Finally, Figure 5.2.2 shows PCA projections of activations from the first and second layers of
the MLP. There is some clustering in the S-box input bit, indicating that the MLP captures some
relevant features. But, just like the CNN, these are noisier and less structured than in the paper,
which indicates that the internal representations are less well-structured. For the S-box output bit
used as an attack label, only weak clustering is observed as shown in Figure 5.2.2 on the right.

15



Layer 1 | S-box input bits [0,1] | PCO vs PC1 Layer 2 | S-box input bits [0,1] | PCO vs PC1 Layer 2 | Attack label bit 0 | PC2 vs PC3

Figure 5: PCA projections of MLP activations. Left: layer 1 (S-box input bits). Middle: layer 2
(S-box input bits). Right: layer 2 (attack bit 0).
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6 Discussion

The results demonstrate that both the CNN and MLP models are capable of learning meaningful
features from side-channel traces when trained on the ASCAD variable key dataset using the Identity
leakage model. Across both architectures, similar trends were observed in multiple interpretability
metrics. For instance, the Perceived Information (PI) curves followed nearly identical patterns over
training epochs, and both models show above-random probe accuracy (around 0.6) for S-box input
bits 0 and 1. These findings suggest that both architectures are able to encode information about
the key internally, despite their structural differences.

Interestingly, this study found no major interpretability advantage for one of the deep learning
models. The logits of both models exhibited comparable behavior: in both cases, the expected
class for each group Y; tended to correspond to the peak of the logit distribution, although, for the
MLP, these peaks appeared slightly higher. Similarly, PCA projections showed the emergence of
some clustering structures for both models, though the patterns were generally less clean and more
diffuse than those reported in the original study by Karayal¢in et al. | |. The differences
in internal representation clarity and strength likely stem from variations in the datasets, model
complexity, or training, which would be valuable to investigate further.

Overall, the similarity in results between CNN and MLP suggests that for this dataset and leakage
model, the architectural choice may play a smaller role in interpretability than expected. However,
more extended studies across leakage models and datasets are needed to validate this finding.
Furthermore, while probe accuracies and clustering provide useful signals, deeper causal techniques
such as activation patching could strengthen the conclusions about what internal structures are
truly responsible for model behavior. The fact that both models achieve similar probe accuracies
for specific bits suggests that their internal representations, though trained independently, encode
similar types of information.
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7 Conclusions and Further Research

This thesis applied mechanistic interpretability techniques from Karayalgin et al. | | both
CNN and MLP models trained on the ASCAD variable key dataset using the ID leakage model.
The goal was to evaluate how well these interpretability techniques generalize to different model
and dataset combinations within DLSCA.

The results indicate that the interpretability methods provide valuable insights: probe accuracies
showed higher accuracies for individual bits, logit values matched, and clustering patterns were
observed in the PCA plots. However, the insights were less robust than those in the original paper.
This suggests that the effectiveness of these interpretability techniques is sensitive to both the
dataset and the models.

For future work, it would be valuable to explore the use of different leakage models (e.g., HW) to
provide different insights into model behavior, look at more models with other architectures, or
look at other (parts of) datasets like the ASCAD fixed key dataset.
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