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Abstract

Recommender systems are used to help navigate users through online services by providing
personalized suggestions. The field of recommender systems is undergoing a significant trans-
formation with the advent of Large Language Models (LLMs). Although traditional sequential
recommendation models have significantly improved recommender systems, LLM-based models
are beginning to become more prevalent. The use of LLMs allows the models to give recommen-
dations with little to no input data. This thesis compares the performance of BERT4Rec and
SASRec, two traditional sequential models, with BIGRec, a generative LLM-based model, on
two unified datasets, MovieLens and Amazon Games. In order to measure the models, NDCG
and Recall will be used as performance metrics. The results show that SASRec is the best
performing model on average based on the performance metrics. The two traditional models
show a big decrease in performance on the Games dataset, indicating that they struggle on
less popularity biased datasets. The NDCG and Recall of BIGRec is poor compared to the
traditional models on the MovieLens dataset. BIGRec was able to outperform the models
when fully trained on the Games dataset. There was no significant decrease in performance on
the Games dataset, indicating its property of not taking advantage of popularity bias. Further
research should focus on fully training BIGRec and comparing the performance on larger
datasets.
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1 Introduction

Recent developments in technology and the increasing reliance on online services have resulted in
recommender systems becoming an increasingly important part of digital platforms. Recommender
systems help users navigate through the massive amount of online content by applying personalized
filters to users to automatically suggest items that likely align with the interests of the user. Digital
platforms such as streaming services, e-commerce, and gaming make use of recommender systems
to provide users with relevant recommendations to meet customer satisfaction by giving users a
personalized experience.

In the past, Traditional recommender systems used techniques such as collaborative filtering | ]
(CF) and content-based filtering | ] to recommend items to users. They use historical interac-
tions between users and items to predict relevant items. Sequential Transformer | | models
like BERT4Rec | ], and SASRec | ] further enhance the ability to recommend items
by analyzing user behavior sequences | .

More recently, Large Language Model-based [ | recommender systems have emerged
as a new way to generate recommendations. These systems use Large Language Models (LLMs)
with increased semantic understanding and contextual understanding. They also have a better
understanding of natural language. This allows the systems to use zero-shot prediction | ]
and few-shot prediction | ] to recommend items to the user with little to no data. BI-
GRec | | is an example of an LLM-based model.

Most studies have tended to focus on evaluating models using a limited set of configurations.
As a result of this, it is difficult to make direct comparisons between the models.

This thesis focuses on evaluating the performance of two traditional recommendation models
and one LLM-based recommendation model on two different datasets. One dataset has a significant
bias towards popular items, and the other has a more balanced spread, with a better distribution
between popular and less popular items, ensuring a weaker bias. The Normalized Discounted
Cumulative Gain (NDCG) and the Recall of each model are the two performance metrics to be
compared. The aim of this thesis is to provide insight into the strengths and weaknesses of each
model relative to each other.

The developers of the three recommendation models have published their codes on GitHub.
However, each model uses different datasets and has a unique approach to splitting the data. This
thesis will analyze the models on the MovieLens-1M!, and Amazon Video Games? datasets. The
datasets will be divided into an 8:1:1 split, where 80% of the dataset is the training set, 10% is the
testing set, and 10% is the validation set. Full ranking will be performed to ensure fairness. The
results of the ranking are compared against each other to determine the best performing model.

lhttps://grouplens.org/datasets/movielens/1m/
’https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
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1.1 Thesis overview

Section 2 provides an overview of the existing research in the field of recommendation models and
LLMs for recommendation systems. Section 3 will explain each of the three recommendation models
used for the experiments. The two datasets used for the experiments and how the experiments are
conducted will be shown in section 4. The results of the experiments will be interpreted in section 5
and discussed in section 6. Finally, the conclusion and possible future research is contained in
section 7.

This thesis compares the NDCG and Recall metrics of traditional sequential and LLM-based
recommendation models. This will be conducted on a strongly popularity biased and a lesser
popularity biased dataset.

This Bachelor’s thesis is supervised by Dr. Z. Ren and PhD student J. Zhao at the Leiden
Institute of Advanced Computer Science (LIACS).

1.2 Research Question

The aim of this research is to answer the following research questions:

e What are the differences in ranking and retrieval performance between traditional and
LLM-based models on a dataset with strong popularity bias?

e What are the differences in ranking and retrieval performance on a dataset with a lesser
degree of popularity bias?

2 Related Work

Throughout the years, there have been many developments in recommendation models, with recent
developments focusing on LLMs.

2.1 Collaborative Filtering

Historically, collaborative filtering (CF) has been one of the most popular approaches for recommen-
dation systems | ]. By incorporating data from past user behavior into a rating feedback
matrix, new ratings can be predicted with the help of CF. The relationship between users and
items allows the recommender system to predict whether or not a user who did not interact with a
certain item would enjoy interacting with that item based on the ratings of users who have similar
ratings | |. In addition, the recommender system will gain the ability to predict new items
for the same user based on their existing ratings. One model that uses CF is CF-Diff | ], a
collaborative filtering method based on diffusion models.

However, better recommendation models have been developed more recently. These models are
able to analyze user historical interactions in a sequential manner as opposed to CF models, where
each interaction is separate.



2.2 Sequential Recommendation Models

Sequential recommendation models extend beyond traditional CF by explicitly modeling the tem-
poral dynamics of user behavior. The aim is to provide the next item to the user by analyzing user
behavior sequences | ]. The properties of the item, user, and behavior are stored for future ref-
erence By interacting with chronologically ordered items | |. This allows the models to better
predict the next item that a user is likely to engage with. Because of this, these models are capable of
developing over time as they recognize that user interests shift over time. This is because, unlike its
predecessors, sequential recommendation takes chronologically ordered user-item sequences as input.

There are a lot of sequential recommendation models, including BERT4Rec | ] and SAS-
Rec | |, which are used in the experiments of this research. Other models include the Markov
Decision Processes-based recommender system | |, a model that applies Markov chains to
recommendation models. A Markov chain is a stochastic process that is used to describe systems
that transition from one state to another in a sequence of steps | |. Another model is
GRU4Rec | |, a session-based sequential recommendation model using Gated Recurrence
Units (GRUs) to predict the next item in a user’s session without requiring long-term user histories.
This addresses the limitations caused by the sparse sequential data.

2.3 LLM-based Recommendation Models

As LLMs have developed substantially over the course of recent years, researchers began exploring
the use of LLMs to generate recommendations | |. By interpreting and generating natural
language, these models are able to provide more personalized recommendations. They are also
capable of adapting to the change in user interests in real-time. LLM-based recommendation models
allow zero-shot prediction | ], the ability to predict tasks, which is giving recommendations in
our case, without the need to see an example of this during the training process. This is done using
semantic information such as attributes, descriptions, and relationships present in known items.
Few-shot prediction | ] is another feature of LLM-based models. It allows the model to
perform tasks with only a small number of training examples. By averaging embeddings, comparing
new instances to existing items, and self-fine-tuning, the model will be able to learn to perform the
new task.

Although many LLM-based models have recently emerged, different parts of the models are
targeted. LC-Rec | | aims to bridge the semantic mismatch by aligning the collaborative
semantics with the language semantics of the LLM in a unified framework. LETTER, a LEarnable
Tokenizer for generaTivE Recommendation | | attempts to improve item tokenization by
creating a learnable tokenizer to adaptively generate tokens that identify items. This model uses
LC-Rec and TIGER, a Transformer Index for GEnerative Recommenders | | to retrieve
items.

3 Methodology

The aim of this research is to compare the performance between traditional and LLM-based
recommendation models to determine which is better at generating recommendations.



3.1 Performance Metrics

The two metrics used to measure the performance of the recommendation models are NDCG and
Recall.

3.1.1 NDCG

NDCG measures and ranks the items according to their relevance. The most relevant items are
ranked at the top. The score is between 0 and 1, with 1 being a perfect ranking, where the items are
all sorted correctly by relevance, while a score of 0 means that no item is relevant. To calculate the
NDCG value for the top k recommendations, the Discounted Cumulative Gain (DCG) is divided
by the Ideal Discounted Cumulative Gain (IDCG).

DCGQk
IDCGQk

In order to compute the DCG, the following formula is used:

NDCG@k = (1)

k 27‘617; -1
D = _ 2
CGQk ;1% T D (2)

where k is the cutoff rank and rel; is the relevance score of the item at position :. DCG is calculated
by accumulating relevance scores of the recommended items while applying logarithmic discount
to lower ranks. This causes lower ranked items to become less relevant. The IDCG is calculated
by taking the maximum DCG at k. It is the maximum possible DCG when all items are perfectly
ranked. NDCG will address the ranking performance of the research question, because both presence
and ordering are important for the ranking performance. This evaluates the performance of giving
the best recommendations possible.

3.1.2 Recall

Recall, also known as the True Positive rate, measures how many retrieved items are relevant. The
score is also between 0 and 1, with 1 indicating that each retrieved item is relevant, while a score
of 0 means that no retrieved item is relevant. The Recall value of the top k recommendations is
calculated using the following formula:

Recall@k [{relevant items} N {top-k recommended items}|
eca =

3
[{relevant items}| 3)
where k is the cutoff rank. The retrieval performance of the research question will be answered using
the Recall metric due to Recall being determined by the proportion of relevant items retrieved.
Because Recall disregards the positions and thus ordering of the items, it is primarily used to
determine the coverage of each model.

3.2 BERT4Rec

BERT4Rec is a sequential recommendation model that uses a bidirectional transformer encoder
to perform sequential recommendation tasks | |. The aspect that makes BERT4Rec stand



out from other sequential models is that BERT4Rec uses bidirectional self-attention as opposed to
left-to-right unidirectional architecture to model user behavior. This enables each item in the user
sequence to take both past and future items into account.

The BERT4Rec model consists of multiple Transformer layers. In each layer, an output sequence
is generated from an input sequence of the same length. Each Transformer layer consists of a
Multi-Head Self-Attention sublayer and a Position-wise Feed-Forward Network sublayer. In the
Multi-Head Self-Attention layer, the model weighs the importance of all other items in the same
input sequence as the item it is trying to predict. It is able to look at both past and future
items because of the bidirectional property. The output of this layer then passes through the
Position-wise Feed-Forward Network layer to let the model learn non-linear relationships within
each item embedding.

In order to train the model, a Masked Language Model (MLM), also known as the Cloze task | s
is used | |. By replacing a portion of the items in the input sequence with a [MASK] token,
the model will be trained to predict the masked items based on the other items in the sequence.
For inference, a [MASK] token will be appended to the last item of the input sequence. From here,
the trained model will predict the masked item. The items with the highest probability will be the
resulting recommendation.
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Figure 1: An illustration of the model architecture of BERT4Rec| ]



BERT4Rec will run calling main. py using the train_bert template | ]. The template provides
the model with the arguments used. In the case of this experiment, 5 and 50 epochs will be used
during the training process. Before training, the input sequences have to be of the same length, as a
Transformer processes fixed-length sequences. This will be done by padding shorter sequences. [PAD]
is added until the sequence reaches the desired sequence length, which is 100 in this experiment.
Some of the unpadded input will be masked by replacing them with the [MASK] token. The masked
sequence will be processed in the model, starting with the embedding and transformer layers, and
then the output corresponding to the masked positions is passed through the prediction layer to
get logits for all possible items.

The output goes through a softmax function to convert the logits into a probability function,
then the loss is calculated | ]. Afterwards, the model attempts to predict the next item by
evaluating it on the test split. The last item of each input sequence will be replaced with a [MASK]
token. The model then attempts to predict the last item. Instead of using negative sampling during
the evaluation, the item will be compared against all possible items, and the NDCG and Recall
scores are calculated.

3.3 SASRec
Unlike BERT4Rec, SASRec is a unidirectional Self-Attentive Sequential Recommendation model
that only uses past items in an input sequence to generate a new item | ]. The model consists

of an Embedding layer, where each item will be converted into a dense vector representation. A
learnable position embedding is also used, which allows the model to become aware of the position of
each item within its sequence. SASRec also has a Self-Attention layer. However, unlike BERT4Rec,
it is unable to look at future items in the sequence because the attention mask is causal. The model
looks at all previous items to predict the next item. Similarly to BERT4Rec, the output will be
passed through a Feed-Forward Network once it is finished. Afterwards, residual connections and
layer normalization will be applied to the output.

The self-attention blocks use the Scaled Dot-Product Attention | | formula in Formula
4 with inputs described in Formulab.

Attention(Q, K, V) = softmax(Qj(ng) 1% (4)

Q denotes the queries, K denotes the keys, and V denotes the values of an item. Each item is

represented with a row. The formula uses -~ to prevent extremely large dot products due to high

Vi
values of dj.
S =SA(E) = Attention(EWQ, EWE, E’WV> : (5)

where the projection matrices W, WX WV € R4 These projection matrices are converted
using linear projections on the input embedding E. This allows the model to learn asymmetric
interactions due to its increased flexibility.

Once the model has finished computing the output from the self-attention blocks, it will con-
tinue in the prediction layer, where the next item will be predicted. A ranking will be created based



on the relevance of each item. The most relevant items will have the highest ranking. This ranking
representation will then be used to predict the next item.
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Figure 2: A simplified illustration of the training process of SASRec[lK )M 15].

For SASRec [[KXM 18], the input sequences also have to be padded. 5 and 50 epochs will be used
during the training process. The maximum length of an input sequence is set to 200, and the
dropout_rate will be set to 0.2 [Hua20]. There will be two stacked Transformer blocks and one
attention head in the Self-Attention layer. The model will go through the stacked Transformer
layers and the Self-Attention layer before predicting the output inside of the Prediction layer.
SASRec uses binary cross-entropy (BCE) loss with negative sampling. For each positive user-item
interaction in a training sequence, a set of negative items is randomly sampled from the entire item
catalog. The model is then trained to predict a score of 1 for positive items and 0 for negative
items.

= D |log(a(ra) + > log(l = a(r;e) (6)
SveSs te[l,2,...,n] jésv

Formula 6 [[<{)\18] represents the loss function, where o(-) is the sigmoid function, r,,; is the
predicted relevance score for the ground truth item o; at timestep ¢, and j represents a negative
item sample not in the input sequence S".

During the training process, the model will attempt to predict the next item i + 1 for each
item 7 in the sequence. The BCE loss will be computed and the model will evaluate on the test split.



The last item will be predicted for each input sequence. Since the experiments use full ranking,
negative sampling is replaced, and the NDCG and Recall will be computed by comparing against
all items.

3.4 BIGRec

BIGRec is a Bi-step Grounding Paradigm for Recommendation model | | that aims to
recommend actual items that exist in the real world. This is achieved by grounding the language
space to the recommendation space, which then gets grounded to the actual item space. The
model will first perform instruction tuning to restrict the output from the language space. This
must be done because the language space contains all possible language sequences that the model
can generate. The model will be fine-tuned to generate a recommendation based on a user’s past
interactions with items. Thus, the model will not generate output irrelevant to what it is trained
for.

However, not all generated recommendations exist in the real world. Sometimes, the model might
recommend items that are not part of the actual item space. Therefore, the output must be grounded
once more, from the recommendation space to the actual item space. The generated items will be
mapped to real-world items before the latent representations are extracted. Afterwards, a similarity
search will be performed to find the actual items most similar to the generated ones. Then a ranking
is decided on the basis of similarity and popularity, and the final recommendation will be given.

For the ranking of BIGRec, it uses Formula 7 | ] to calculate the Euclidean distance (L2
distance) between the embeddings of the actual items.

D; = ||emb; — oracle||, (7)

emb; represents the embedding of the i-th item, and oracle is the embedding of the output generated
by the LLM. BIGRec then defines popularity and collaborative information. This is calculated in
Formula 8 | -

Oi - minjef{C'j} (8)
max;e{Cj} — minje {C;}

C;

i =

N is the set of user-item interactions in the training data, N7 is the number of observed interactions
for item 7 in N, Z is the set of all items, C; is the popularity of the ¢-th item, and P; is the
normalized value of C;. By incorporating a modified version of Popularity-bias Deconfounding and

Adjusting (PDA) | |, the Euclidean distance is reweighted using Formula 9 | ].
ZA) _ Dz — minjg{Dj}
HlanGI{Dj} — mianI{Dj}’ (9)
b D
(2 (1 + R)'y?



D; is the Euclidean distance between the i-th item embedding and the embedding of the outputs
generated by the LLMs, D; is the normalized D;, and D, reweights D; using popularity. Inverse
popularity and a hyperparameter v are used for the reweighting of D;.

In order to successfully run BIGRec | ], the items and users have to be embedded.
Recommendation-specific instruction tuning will be performed to ground the language space
to the recommendation space. The loss function will be a BCE with negative sampling.
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Figure 3: An illustration of the grounding process of BIGRec| ].

The model will be trained with its epoch count set to 5 and 50 and a maximum input sequence
length of 512. Few-shot training will be utilized, since 1024 and 2048 samples will be used to train
the model. During training, each sequence will construct an input prompt based on the history
of the user. The next item of each sequence will be generated, and the loss will be calculated
between the actual item tokens and the generated item tokens. Once this is done, inference will
be performed to evaluate the performance of the model. The generated items will be converted
into vector embeddings, which will be compared with the vector embeddings of the actual items.
A similarity search will be performed to determine whether or not a generated item exists. The
generated list with the top ranked items will be compared to the next item in the test set to
calculate the NDCG and Recall.

4 Experiment Setting

4.1 Datasets

For the experiments, two datasets are used. The first dataset used is MovieLens-1M?. This dataset
has a significantly higher bias towards popular items and will answer the first research question.
The Amazon Video Games* dataset has a lesser degree of popularity bias. It contains a better
distribution between popular and unpopular items. This is shown using Figure 4.1. There is a

3https://grouplens.org/datasets/movielens/1m/
“https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
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substantial drop in the interaction ratio in popularity groups 6 to 9 in the Movielens dataset,
whereas the Amazon Games dataset has a better distribution. This indicates a noticably weaker
popularity bias for the Amazon Games dataset, as the users interact with a broader set of items
compared to the MovieLens users. Using these two datasets allows the experiments to determine
whether popularity bias affects the models.

Popularity Bias

.\ —eo— Amazon Games (5-core)
MovielLens-1M

\\\

10_1j

10_2;

Interaction Ratio (log scale)

1073 -

T T

0 1 2 3 4 5 6 7 8 9
Popularity group

Popular items Unpopular items

Figure 4: The popularity distribution of the two datasets

The datasets used in the experiments are already split into usable parts. For the MovieLens-1M
dataset, the movies, ratings, and tags are already divided into their respective .dat files. The
Amazon Video Games dataset used is the 5-core subset. The datasets will be split into an 8:1:1
ratio, and the test and validation sets will be limited to the first 5000 items, because of the slow
runtime from BIGRec. Each recommendation model is modified to use the same data split.

4.2 Evaluation Method

All models will provide the Recall and NDCG evaluation metrics based on 5 epochs and 50 epochs
on both datasets. BIGRec will use few-shot prediction using 1024 training samples as opposed to
the entire training set, with the exception of the Games dataset with 5 epochs. This is because
BIGRec has very long training times. BIGRec will also be trained using 2048 samples to compensate
for the inability to train fully. Because the performance of full ranking are compared as opposed to
regular recommendation, BERT4Rec and SASRec are modified to perform full ranking.

10



4.3 Implementation Details

All experiments will be conducted using Python, PyTorch, and various packages required for the
models to operate. The specific versions used are shown in the following table. BIGRec requires a

Model Python PyTorch Torchvision CUDA Toolkit

BERT4Rec 3.6.13 1.5.0 0.6.0 10.1.243
SASRec 3.7.1 1.6.0 0.7.0 10.2.89
BIGRec 3.9.21 2.5.1 0.20.1 11.7.0

Table 1: Conda environment configurations for BERT4Rec, SASRec, and BIGRec.

slightly different set of packages compared to the requirements.txt file provided by the GitHub
repository of BIGRec®. The differing package versions are:

e accelerate 1.4.0

bitsandbytes 0.39.0

peft 0.17.0

transformers 4.49.0

scipy 1.13.1
e numpy 2.0.2

Due to version incompatibilities between the required packages and the Leiden SSH servers,
BERT4Rec and SASRec will run on an NVIDIA Geforce GTX 1660 Ti GPU on a local device,
while BIGRec will run on 2 NVIDIA Geforce RTX 3090 on the vibranium.liacs.nl server. All models
will run with seed 42 and will have their own conda environment. BERT4Rec and SASRec will be
trained using the commands provided by their repositores. Conversely, BIGRec uses a shell script to
run training and inference. The meta-llama/Llama-2-7b-hf® model will be used as the base model.
Furthermore, a learning rate of le—4 will be used to train the datasets. The lora hyperparameters
and the cutoff length remain unchanged.

5 Experiment Results

The results of the experiments will be provided and analyzed in Section 5.1 and Section 5.2. In
order to compare the performances of the models, two different epoch counts are used to determine
whether the epoch counts influence the performance of the traditional and LLM-based models
relative to each other. In Section 5.1.1 and Section 5.2.1, the results of 5 epochs on the datasets
will be provided. Section 5.1.2 and Section 5.2.2 will contain the results of the performance of 50
epochs on the datasets. Due to very long training times, it was only possible to run BIGRec fully
trained on the Games dataset with 5 epochs.

Shttps://github.com/SAI990323/BIGRec
Shttps://huggingface.co/meta-1lama/Llama-2-7b-hf
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5.1 Performance Comparison on a Strongly Biased Dataset (RQ1)

The first experiment compares the performance of the models on a strongly popularity biased
dataset. The MovieLens-1M" dataset is used to conduct this experiment.

5.1.1 5 Epochs

From the results of the three models on the MovieLens-1M dataset as depicted in Table 2, SASRec
can be observed as the model with the highest performance. It consistently outperforms the other
models across all metrics, achieving the highest Recall and NDCG values. BIGRec using few-shot
prediction is the worst performer. Using 2048 training samples improved the performance of BIGRec
by a significant amount, but it was still less than 50% of the performance of BERT4Rec.

Dataset Metric BERT4Rec SASRec BIGRec (1024) BIGRec (2048)

Recall@j 0.0246 0.0523 0.0068 0.0104
Recall@10 0.0468 0.0854 0.0108 0.0206
ML-1M Recall@20 0.0832 0.1412 0.0172 0.0350
NDCG@5 0.0153 0.0338 0.0039 0.0068
NDCG@10 0.0224 0.0445 0.0052 0.0100
NDCG@20 0.0315 0.0584 0.0068 0.0136

Table 2: Performance comparison of the models on a strongly popularity biased dataset (5 epochs)

5.1.2 50 Epochs

When the models are run with 50 epochs instead of 5, the Recall and NDCG performance metrics
are shown to have an increase of 100% on average in the traditional models, whereas BIGRec
(1024) shows a bigger difference, with an increase of up to 436% (NDCG@5). Table 5.1.2 shows
that SASRec has the highest performance on the MovieLens-1M dataset. BIGRec demonstrates
a stronger performance compared to its performance with 5 epochs when run with 1024 training
samples. In contrast to this, the performance of BIGRec with 2048 training samples is slightly worse
than 1024 samples. Relative to the traditional models, BIGRec (2048) significantly underperformed
compared to the performance with 5 epochs.

"https://grouplens.org/datasets/movielens/1m/

12


https://grouplens.org/datasets/movielens/1m/

Dataset Metric BERT4Rec SASRec BIGRec (1024) BIGRec (2048)

Recall@h 0.0540 0.1068 0.0184 0.0168
Recall@10 0.0922 0.1654 0.0268 0.0232
ML1M Recall@20 0.1612 0.2495 0.0382 0.0344
NDCG@5 0.0324 0.0705 0.0144 0.0128
NDCG@10 0.0445 0.0892 0.0171 0.0148
NDCG@20 0.0618 0.1104 0.0199 0.0177

Table 3: Performance comparison of the models a strongly popularity biased dataset (50 epochs)

5.2 Performance Comparison on a Lesser Biased Dataset (RQ2)

The second experiment compares the performance of the models on a weaker popularity biased
dataset. The Amazon Video Games® dataset is used to conduct this experiment.

5.2.1 5 Epochs

From the results of the three models on the Amazon Games dataset as depicted in Table 4, BIGRec
can be observed as the model with the highest performance when fully trained. When only few-shot

prediction from BIGRec is considered, BIGRec still outperforms the traditional models on both
NDCG and Recall with the exception of Recall@20.

Dataset Metric BERT4Rec SASRec BIGRec (1024) BIGRec (2048) BIGRec (Full)

Recall@b 0.0094 0.0141 0.0056 0.0178 0.0292
Recall@10 0.0168 0.0226 0.0098 0.0254 0.0344
Games Recall@20 0.0302 0.0389 0.0166 0.0354 0.0444
NDCG@5 0.0066 0.0086 0.0038 0.0116 0.0253
NDCG@10 0.0089 0.0113 0.0052 0.0141 0.0270
NDCG@20 0.0123 0.0154 0.0069 0.0166 0.0296

Table 4: Performance comparison of the models on a weaker popularity biased dataset (5 epochs)

For the traditional models, there is a significant drop in both Recall and NDCG metrics on
the Games dataset compared to the MovieLens-1M dataset. In contrast, the difference in the
performance of BIGRec on both datasets is not as great. There is a slight decrease in Recall when
BIGRec is run with 1024 training samples, and an increase in performance across all metrics when
it is run with 2048 training samples.

5.2.2 50 Epochs

When the models are run with 50 epochs instead of 5, the Recall and NDCG performance metrics
once again have an average increase of 100% in the traditional models, whereas BIGRec (1024)
shows a bigger difference. Table 5.1.2 shows that SASRec is the best performing model on the

8https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
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Amazon Games dataset. BIGRec demonstrates a similar performance to a fully trained BIGRec
with 5 epochs. The Recall and NDCG values on the Games dataset for BIGRec are comparable to
those of SASRec with the exception of Recall@20, where SASRec is shown to have a 56.5% increase
over BIGRec (1024). BIGRec (2048) shows similar performance to that of BIGRec (1024).

Dataset Metric BERT4Rec SASRec BIGRec (1024) BIGRec (2048)

Recall@b 0.0236 0.0252 0.0262 0.0242
Recall@10 0.0372 0.0410 0.0324 0.0310
Games Recall@20 0.0616 0.0670 0.0428 0.0414
NDCG@5 0.0154 0.0154 0.0204 0.0205
NDCG@10 0.0197 0.0204 0.0224 0.0227
NDCG@20 0.0259 0.0269 0.0251 0.0253

Table 5: Performance comparison of the models on a weaker popularity biased dataset (50 epochs)

For the traditional models, the significant drop in both Recall and NDCG metrics on the Games
dataset compared to the MovieLens-1M dataset is still present when using 50 epochs. In contrast,
BIGRec shows a greater performance on the Games dataset, with a higher NDCG and Recall on
every metric.

6 Discussion

This thesis aims to analyze the performance of BERT4Rec and SASRec, two traditional sequential
recommendation models, with BIGRec, an LLM-based recommendation model. The models are
run on the MovieLens-1M, a strongly popularity biased dataset, and Amazon Video Games 5-core,
a dataset with weaker popularity bias. 5 epochs and 50 epochs are used in the experiments and the
Recall and NDCG metrics are computed by the models.

6.1 Evaluation of the results

From the results of the experiments discussed in Section 5, there are a variety of observations to
be made. The results with 5 epochs indicate that SASRec is the best performing model on the
MovieLens-1M dataset, followed by BERT4Rec, with BIGRec having the lowest Recall and NDCG
scores by a good margin.

For the Games dataset, BIGRec has the highest performance if the model is fully trained, and the
highest NDCG scores with 2048 training samples if only few-shot prediction is considered. When
the models are run with 50 epochs, SASRec significantly outperforms the other models on the
MovieLens-1M dataset. This is likely due to SASRec being specifically designed to predict the next
item. It is also the least complex model of the three, allowing it to reach its maximum results
in an earlier epoch. BIGRec is significantly more complex, so it is possible that 50 epochs is not
enough for BIGRec to reach its best results using few-shot prediction with 1024 and 2048 training
samples. The NDCG metrics of BIGRec on the Games dataset are similar to those of SASRec, but
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its overall performance is the weakest. In both experiments, the performance of the traditional
models is significantly lower on the Games dataset compared to the MovieLens-1M dataset.

MovieLens-1M contains significantly more popular items than the Games dataset, which has
a better balance between popular and unpopular items. Both BERT4Rec and SASRec are sequen-
tial models, which allow the capture of strong short-term sequential patterns around frequently
interacted items. This results in a notable increase in performance compared to the less biased
Games dataset. Conversely, BIGRec grounds items from the language space, to the recommendation
space, and then to the actual item space. It does not notice the pattern and it does not take
advantage of the popularity bias accordingly.

This is also the reason why BIGRec has similar scores across both datasets. With the Games
dataset, there is substantially less popularity bias for the sequential models to capitalize on. This
results in BERT4Rec and SASRec having lower metrics compared to the MovieLens-1M dataset.
This allows BIGRec to achieve similar results despite having only a fraction of training samples
using few-shot prediction.

6.2 Limitations

There are several limitations that hinder the evaluation of the experiments. Firstly, it is only
possible to run BIGRec fully on the Games dataset with 5 epochs using this experiment setting.
All other settings are unable to be computed due to the extremely long training time of BIGRec.
By observing the fully trained BIGRec metrics on the Games dataset, it is entirely possible for
BIGRec to outperform BERT4Rec and SASRec on both datasets if BIGRec is able to train using
all training samples.

Although experiments were conducted with 2048 training samples to attempt to compensate
for this, the results show very similar, and in most metrics, slightly lower performance compared
to 1024 training samples when the models are training with 50 epochs. The higher epoch count
likely causes a training sample size increase of 100% to be insignificant. This indicates that a small
increase in training samples only shows benefits when there are fewer complete passes through the
training sets.

Secondly, both test and validation sets contain only 5000 samples instead of everything. Us-
ing the full test and validation sets would result in a better representation of the experiments. This
could result in BIGRec performing better than its current performance. This was not feasible due to
the long inference and evaluation times of BIGRec. Furthermore, the experiments are performed on
relatively small datasets. MovieLens-1M is used instead of MovieLens-10M due to the slow runtime
of BIGRec during the research process.

7 Conclusions and Further Research

This thesis focuses on comparing the performances of BERT4Rec and SASRec, two traditional
sequential recommendation models, with BIGRec, an LLM-based recommendation model, on
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MovieLens-1M and Amazon Video Games, two public benchmark datasets with varying degrees of
popularity bias. The data is divided into 80% training, 10% testing, and 10% validation sets. The
models are run with 5 epochs and 50 epochs to get the Recall and NDCG metrics. For BIGRec,
few-shot prediction is used due to the computational cost. From the results, it can be concluded that
BIGRec has a higher performance ceiling than the traditional models when the dataset contains
a lower degree of popularity bias. When the runtime of the models is considered, SASRec is the
best performing model. The effectiveness of traditional and LLM-based recommendation models is
compared in the conducted experiments.

Further research should aim to compare the performance of the models on larger datasets. Due to
limitations of the hardware used in the experiments, it was not possible during this research. Com-
parison of the performance metrics of the fully trained BIGRec model is also a point of investigation.
BIGRec has consistently outperformed both traditional models when fully trained on the Games
dataset with 5 epochs. This could open the possibility of BIGRec outperforming the traditional
models in all experiments. Lastly, using Retrieval-Augmented Generation (RAG) | ] to
enhance the performance of the models is also a topic that could be focused on. RAG enhances the
quality and relevance of the generated data by gathering information from specified documents
relevant to the data.
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