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Abstract

Repeats in DNA sequences play an important role in both forensic and biomedical science,
yet existing nomenclature systems such as HGVS lack sufficient rules to consistently describe
repeat structures. This thesis addresses the problem of how repeats in a DNA sequence can
be described.

We first study the problem of identifying all repeats in a string. A naive algorithm is
introduced, followed by a detailed description of an existing linear time algorithm based on
s-factorization and suffix trees. Building on this, we introduce the maximal cover method,
which aims to describe a DNA sequence by selecting a set of non-overlapping repeats that
together cover as many symbols as possible.

Several algorithms are developed to compute such descriptions, including a brute-force
approach, two greedy algorithms, a dynamic programming algorithm, and a linear time
algorithm.

Finally, experiments on synthetic sequences and real DNA data from dbSNP are conducted
to evaluate both runtime performance and the quality of the resulting descriptions. The results
show that, while the greedy algorithms are fast, they often fail to achieve the maximum
number of covered symbols. In contrast, the dynamic programming and linear time algorithms
do achieve this with efficient runtimes. Moreover, the experiments demonstrate that in some
cases our method produces descriptions identical to those in dbSNP, while in other cases it
describes more repeats. However, this sometimes results in longer descriptions.
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1 Introduction

A tandem repeat is a pattern that occurs at least twice consecutively. Repeats within DNA sequences
play an important role in several scientific fields, including forensic science and biomedical science.
In forensic science, repeats are widely used for human identification, as both the length and the
sequence composition of repeats vary significantly between individuals [But07]. In the biomedical
domain, repeats are also of major importance. While many repeats normally occur in small copy
numbers, abnormal expansions of repeat regions can occur in exceptional cases. Such expansions
are associated with severe genetic disorders, including Huntington’s disease [Xu24].
However, the study by Santcroos et al. [SKL+25] shows that the HGVS nomenclature lacks sufficient
rules to consistently describe certain complex forms of repeats, known as mixed repeats. The HGVS
nomenclature is an internationally recognized standard for the description of DNA sequence variants.
Unlike simple repeats, mixed repeats consist of multiple, consecutive repeat motifs that differ in
sequence.
Due to the absence of well-defined rules for mixed repeats, no standardized representation currently
exists for describing such structures. As a consequence, mixed repeat descriptions are frequently
rejected by official validation tools, such as the NCBI Variation Service. Consider, for example,
the sequence CACACACACTCTCTC. This sequence can be described either as CA[4]TC[3]C[1] or as
C[1]AC[4]TC[3], where the number within square brackets indicates the number of repetitions of
the preceding pattern.

C A C A C A C A C T C T C T C

C A C A C A C A C T C T C T C

C A C A C A C A C T C T C T C

Figure 1: Consider the string S = CACACACACTCTCTC. This string can be described either as
CA[4]TC[3]C[1] or as C[1]AC[4]TC[3].

These multiple interpretations lead to challenges in the standardization, validation, and storage of
such variants in existing databases.
Furthermore, the study by Van der Gaag and De Knijff [vd15] also highlights the need for a new
way to describe repeats within DNA sequences. This need arises from developments in Massively
Parallel Sequencing (MPS). This technology allows repeated DNA to be studied in greater detail.
Unlike the current approach, capillary electrophoresis, which only determines how long a DNA
fragment is, the new method reveals the exact order of the DNA building blocks. This makes it
possible to detect differences within repeated regions that were previously invisible. However, this
increased level of detail also necessitates a new nomenclature to accurately describe the observed
variation.
To address these challenges, a method for describing repeats in DNA sequences is required. This
leads to the following main research question:

RQ: How can tandem repeats in a four-character alphabet be described?

To answer this research question, multiple algorithms are developed. The first two algorithms
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extract all repeats from a given DNA sequence, whereas the remaining five algorithms describe the
sequence based on the previously identified repeats.
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2 Background

All living organisms are composed of cells, which are complex and dynamic structures containing
a range of molecular components. These include the plasma membrane, cytoplasm, organelles,
and deoxyribonucleic acid (DNA). [SuRM+24] This research focuses specifically on DNA. DNA
contains the complete set of hereditary information required for an organism to function, grow, and
reproduce.
The DNA molecule is composed of units known as nucleotide triphosphates. Each nucleotide consists
of a triphosphate group, a deoxyribose sugar, and one of four nitrogenous bases: adenine (A), guanine
(G), thymine (T), or cytosine (C). DNA exists as a double-stranded molecule arranged in a helical
structure, where each base on one strand forms hydrogen bonds with its complementary base on
the opposite strand. Adenine pairs exclusively with thymine, and cytosine pairs with guanine.
DNA can be extracted from cells and sequenced to determine the order of its bases. A DNA sequence
is typically represented as a string over a four-letter alphabet, where each letter corresponds to one
of the four nitrogenous bases.
Human body cells are diploid, meaning that they contain two complete genomes, two copies of
all the genetic information. A single haploid genome consists of 23 chromosomes and contains
approximately 3.2 billion base pairs (bp). The lengths of individual chromosomes vary substantially.
For example, chromosome 1 is approximately 250 million bp long, whereas chromosome 22 contains
roughly 50 million bp. Because diploid cells contain two copies of the genome, the total length of
DNA in a human body cell is approximately 6.4 billion bp. [GLH11]
In essence, a DNA sequence can be regarded as a very long string over a four-letter alphabet.
Within such sequences, various structural patterns can be observed, among which repeats are
particularly common. A repeat is defined as a pattern that occurs at least twice consecutively
within the DNA sequence. As discussed earlier in Section 1, repeats play an important role in
multiple fields, including forensic science [But07, STR24] and biomedical research [Pau18, OZ07].

2.1 Repeats in Forensic Science

The aim of using genetic analysis for forensic casework is to produce a DNA profile that is highly
discriminating. This allows biological evidence from the scene of a crime to be matched to an
individual with a high level of confidence and can be very powerful forensic evidence. The ability to
produce highly discriminating profiles depends on genetic variation between individuals, as no two
individuals have identical DNA, not even monozygotic twins. [vvv+25] However, individuals are
actually very similar at the genetic level. [GLH11] Humans share around 99.9% of our genetic code
with each other. From a forensic perspective, there is little value in analyzing regions of human
DNA that are shared among individuals. Fortunately, there are well characterized regions within
the genome that are variable between individuals and these have become the focus of forensic
genetics. One important category of tandem repeats that is widely used in forensic genetics is short
tandem repeats (STRs).

Short Tandem Repeats (STRs) Short tandem repeats (STRs) are currently the most com-
monly used genetic markers in forensic genetics, as they satisfy the key requirements for forensic
identification. STRs consist of short DNA patterns of 1 to 6 bp that are repeated consecutively.
Variation between individuals arises from differences in the number of repeat units, typically
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resulting in total sequence lengths ranging from tens to several hundreds of base pairs. Although a
large number of STRs have been identified, only approximately 20 are commonly used in forensic
genetics. These commonly used STRs have repeat patterns of 4 or 5 bp and can be classified into
four structural categories: simple repeats, simple repeats with non-consensus repeats, compound
repeats, and complex repeats. [GLH11]. Before discussing these categories in more detail, two key
terms are introduced: locus and allele. A locus refers to a specific position in the DNA where all
individuals share the same type of genetic marker, whereas an allele represents the variant form of
that marker present at a given locus in an individual.

• Simple repeat: A simple repeat consists of a single repeat pattern that is repeated consecu-
tively without interruption or mixing with other repeat patterns.

• Simple repeat with non-consensus repeats: The consensus repeat is the standard and
most frequently occurring repeat sequence used as the reference for a given locus. A simple
repeat with a non-consensus structure refers to a locus with one type of repeat pattern in
which most repeats conform to the consensus sequence, but one or a small number of repeats
deviate slightly from it. Figure 2 illustrates an example of such a structure at the TH01 locus.
At this locus, AATG is the consensus repeat. Allele 7 consists of seven complete AATG repeats,
whereas allele 9.3 contains nine full AATG repeats and one truncated repeat (ATG), resulting in
a slight deviation from the consensus sequence.

• Compound repeat: A compound repeat is composed of multiple different repeat patterns
that occur in a fixed order. While the repeat order remains constant, the number of repeats
for each pattern may vary between individuals. An example of a compound repeat is shown
in Figure 2 for the FGA locus. The alleles at this locus consist of six distinct repeat pattern
arranged in a consistent order. For instance, the repeat pattern CTTT occurs nine times in
allele 17, whereas it occurs twelve times in allele 20.

• Complex repeat: A complex repeat consists of a combination of multiple repeat pattern
with DNA sequences that are not considered part of the repeat structure. Figure 2 shows an
example of a complex repeat at the D21S11 locus. This locus contains a mixture of repeat
pattern such as TCTA, TCTG, and TA, which differ in length. In addition, several DNA regions
are present that are not included in the repeats and therefore do not contribute to the allele
designation.
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Figure 2: Example of a simple repeat with non-consensus allele, compound repeat, and complex
repeat sequence. [GLH11]

2.2 Repeats in Biomedical Science

Repeats are common in the human genome and occur in many different genomic regions. Every
individual contains numerous repetitive DNA sequences. In most cases, these repeats have a stable
length and do not cause any problems. However, in some regions of the genome, repeats can become
unstable and increase in length. When repeats expand far beyond their normal size, they can lead
to genetic disorders known as repeat expansion diseases. Currently, more than forty hereditary
diseases are associated with repeat expansions [Pau18].
Repeat expansion diseases differ in the length of the expansion, the repeated motif, and the genomic
location of the repeat. One well-known example is Huntington’s disease, which is caused by an
expansion of the trinucleotide repeat CAG. In healthy individuals, this repeat usually occurs between
6 and 34 times. In contrast, individuals affected by Huntington’s disease carry between 36 and 121
consecutive CAG repeats [OZ07].
Another example is myotonic dystrophy type 2 (DM2), which is caused by the expansion of a CCTG

repeat. In unaffected individuals, this repeat typically occurs between 10 and 26 times. In patients
with DM2, however, the CCTG pattern can be repeated consecutively from about 75 up to more
than 10,000 times. [OZ07]
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3 Primitive Maximal Repeats

Repeats are important structural features of DNA sequences and can occur in a wide variety of
forms and genomic locations. Therefore, it is first necessary to identify all repeats in the sequence
before a method for describing these repeats can be defined. In Section 2.1, four classes of repeats
were described, which are specific to short tandem repeats (STRs) in forensic genetics. In this
thesis, however, we do not distinguish between different types of repeats.

We consider a string S over a finite alphabet Σ. In this research, Σ = {A, C, G, T}, as the focus
is on DNA sequences. Let Si,j denote the substring of S consisting of the consecutive symbols
SiSi+1 . . . Sj, where 0 ≤ i ≤ j < n and n = |S|.
A repeat is a substring r of S that can be written as r = uc, where u is a non-empty string and
c ≥ 2. The substring u is called the repeat unit, and its length p = |u| is referred to as the period of
the repeat. The integer value c is called the count of the repeat and indicates how many times the
repeat unit occurs consecutively.
A repeat is maximal if it cannot be extended to the left or to the right by a single symbol without
increasing its period. [KK99] In addition, a maximal repeat can have a shift. The shift is defined as
the number of symbols by which the run could be shifted to the right. Equivalently, it corresponds
to the length of the longest prefix of the maximal repeat that immediately follows the run. The
shift value is always smaller than the period.
Finally, a maximal repeat is called primitive if the repeat unit u is primitive, meaning that u itself
cannot be written as an integer power of a shorter string. [KK99] Formally, u is primitive if there
exists no substring t and integer c ≥ 2 such that u = tc.
Each Primitive Maximal Repeat (PMR) is described by the annotation:

(start, period, count, shift).

The value start indicates the starting position of the PMR in the string. As an example, consider
the string S = CATCATACATACTACTAAAAA. This string contains four PMRs, as listed in Table 1.
Consider the PMR r2 with annotation (9, 3, 2, 2). The repeat unit of this PMR is TAC, giving a
period of 3. The PMR starts at position 9 and the repeat unit occurs twice consecutively, yielding
a count of 2. The shift value equals 2, meaning that the PMR can be shifted two positions to the
right. Consequently, the rotations ACT and CTA are also maximal repeats, starting at positions 10
and 11, respectively.

Repeat unit Annotation

r0 CAT (0,3,2,0)
r1 CATA (3,4,2,1)
r2 TAC (9,3,2,2)
r3 A (16,1,5,0)

Table 1: All primitive maximal repeats (PMRs) of the string S = CATCATACATACTACTAAAAA. The
last column provides the annotation of each PMR, consisting of four values: the starting index, the
period, the count, and the shift.
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To identify the PMRs in a string, one algorithm is implemented. The input to the algorithm is
string S, and the output consists of all PMRs present in string S. Each PMR is represented by a
data structure containing four fields: index, period, count, and shift.

3.1 Naive Algorithm

To identify all PMRs, we first developed a naive algorithm. This algorithm iterates over every
symbol in the string S. For each position, it examines all possible period lengths and verifies how
many times the corresponding repeat unit occurs consecutively. Additionally, it checks whether
each detected repeat satisfies the requirements of a PMR. An illustrative example is provided in
Figure 3. Consider the example S = CATCATACATA. For the first symbol, there are five possible
period lengths, namely {1, 2, 3, 4, 5}, since the maximum possible period length at position i is

given by |S|−i
2

. For each possible period, the algorithm verifies whether the associated repeat unit
occurs at least twice consecutively. As shown in Figure 3, the first symbol has a period of length 3
whose associated pattern is repeated twice.

0 1 2 3 4 5 6 7 8 9 10
C A T C A T A C A T A

i = 0 C A

C A T C

C A T C A T

C A T C A T A C

C A T C A C A T C A

2 A T

A T C A

A T C T A C

. . .

Figure 3: Example of the string S = CATCATACATA illustrating all possible period lengths at
position 0 and the first possible period lengths at position 1. Repeat units highlighted in red do not
form repeats, whereas the repeat unit highlighted in green forms a repeat. The symbols shown in
light gray represent the symbols of the string immediately following each repeat unit.

3.1.1 Computational Complexity

Let n = |S|. To determine the computational complexity of the algorithm, we derive a coarse upper
bound. Iterating over all symbols in the string S takes O(n) time. For each position, the algorithm
iterates over all possible periods, which are bounded by n/2 and therefore take O(n) time. For
each possible period, the algorithm checks how many times the repeat unit occurs, which is also
bounded by n/2 and therefore takes O(n) time.
Consequently, the overall computational complexity of this naive algorithm is:

O(n · n · n) = O(n3),

as a function of the input size n.
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3.2 Linear Time Algorithm

As discussed earlier in Section 2, DNA sequences can be extremely long. An algorithm with a time
complexity of O(n3) with respect to the input size n makes the naive approach impractical for large
input sizes. To efficiently analyze large DNA sequences, an algorithm with linear time complexity
is preferable.
In 1999, Kolpakov and Kucherov introduced a linear time algorithm capable of computing all PMRs
in a string [KK99]. This section provides a detailed description of how all PMRs in a string can be
computed using this algorithm. For clarity, we divide the algorithm into four phases.

S-factorization. To find all PMRs using the linear algorithm, the input string S must first be
decomposed using s-factorization, also called Lempel-Ziv factorization and LZ77 factorization. Let
S be a string, then the s-factorization of S is:

S = u1u2 . . . uk,

where the factors ui are defined as follows:

• If the next symbol directly after u1u2 . . . ui−1 does not occur in u1u2 . . . ui−1, then we define
ui = symbol. In other words, whenever a completly new symbol appears in the string, this
symbol forms a new factor.

• Otherwise, ui is the longest prefix of ui . . . uk that has another occurence to the left in S.

This s-factorization plays a central role in efficiently locating PMRs. This s-factorization can be
computed in lineair time using suffix trees.

3.2.1 Phase 1 — Constructing Suffix Tree

A suffix tree is a tree that contains all suffixes of a string S as paths from the root to the leaves.
Figure 4 illustrates an example of a suffix tree for S = xabxa$. The structure of a suffix tree is
determined by the following key properties [Gus97b]:

• The root node may have zero or more children.

• Each internal node has at least two children.

• Every edge is labeled with a non-empty substring of S.

• No two edges leaving the same node may begin with the same character.

Constructing a suffix tree using a naive approach requires O(n2) time for a string S of length
n [Gus97b]. Therefore, a linear time algorithm is used to construct the suffix tree. There are several
algorithm that construct a suffix tree in lineair time. However, in this work we focus on Ukkonen’s
algorithm. Ukkonen’s algorithm offers a space-saving improvement over Weiner’s algorithm [Gus97b].
Hence, Ukkonen’s algorithm is the method of choice for most problems requiring the construc-
tion of a suffix tree [Gus97a]. In the following, we explain how this algorithm works [Gus97b, Ukk95].
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Figure 4: Suffix tree for the string S = xabxa$. The labels on the edges are indicated by substrings
of S, and the numbers on the leaves indicate the corresponding suffixes.[Gus97b]

This algorithm incrementally builds an implicit suffix tree for every prefix of S. For example,
implicit suffix tree Tj+1 is constructed by extending Tj with the new character S[j + 1]. An implicit
suffix tree differs from an (explicit) suffix tree. For example, not all suffixes necessarily end in leaf
nodes. Some suffixes may end in the middle of an edge. In addition, the tree does not contain the
unique termination symbol that forces every suffix to be represented explicitly. The final suffix tree
is obtained from Tn (for n = |S|) by appending a termination symbol to ensure that all suffixes end
in leaves.
The construction process consists of n phases, one for each prefix S[1 . . . j]. Within each phase,
every suffix S[i . . . j] of the current prefix is inserted into the implicit suffix tree according to one of
the following rules:

• Rule 1: If the path from the root labbelled S[i . . . j − 1] ends at the leaf edge and S[j − 1] is
the last character on the leaf edge. Then character S[j] is just added to the end of the label
on that lead edge.

• Rule 2a: Add new leaf edge if there is no path from the root that begins with S[j].

• Rule 2b: If there is a path from the root that matches S[i . . . j − 1], but S[j] does not match
after it and the mismatch occurs in the middle of an edge, then the edge is split at the
mismatch position and a new internal node is created. The first child of the new internal
node is the remaining part of the original edge after the mismatch position, and the second
child is a new leaf edge labeled with S[j].

• Rule 3: If there is a path from the root that matches S[i . . . j], then do nothing.

For each of the n phases, all suffixes S[i . . . j] of the current prefix S[1 . . . j] must be extended
according to one of the three extension rules described above. For every suffix, we must first
locate the endpoint of the path labeled S[i . . . j − 1] in the current implicit suffix tree. A naive
implementation would start this traversal from the root for every suffix and match characters one
by one. This will take O(n3) time to build the suffix tree. To achieve linear time construction,
Ukkonen’s algorithm introduces several key optimizations to avoid repeated traversal from the root.
These optimizations are described below.

9



Active Point To efficiently determine the endpoint of the path S[i . . . j] in the current implicit
suffix tree, Ukkonen’s algorithm maintains an active point. The activepoint stores the exact
location where the previous suffix or phases ended and consists of three components: activeNode,
activeEdge, and activeLength. Here, activeNode denotes the node from which traversal begins,
activeEdge identifies the outgoing edge from activeNode, and activeLength indicates how many
symbols along that edge have already been matched. The key idea is that the location where phase
j or suffix i ends is precisely the location where phase j + 1 or suffix i+ 1 must begin.

Suffix Links A second mechanism used to accelerate traversal is the suffix link. A suffix link is a
pointer from one internal node to another. Let the path label of an internal node v be xA, where x
is a single symbol and A is a (possibly empty) substring of S. If there exists another internal node
w whose path label is exactly A, the algorithm creates a suffix link from v to w. If A is the empty
string, the suffix link points to the root.

Skip/Count Trick The third optimisation is the skip/count trick, which speeds up downward
traversal over long edge labels. Suppose we must descend y symbols starting from a node w. If the
current edge contains fewer than y symbols, the entire edge can be skipped in one step. If the edge
contains more than y symbols, we can jump directly to the appropriate symbol position on that
edge without inspecting the symbols one by one. With this trick, the traversal time depends on
the number of edges, rather than the number of symbols on those edges. This trick works because
whenever a node v has a suffix link to w, any path labelled with a string y reachable from node v
is also reachable from node w.

By combining the active point, suffix links, and the skip/count trick, S[i . . . j − 1] can be located
much more efficiently. The active point ensures that each new search starts exactly where the
previous one ended, avoiding repeated traversal from the root. From this position, the algorithm
moves up to the parent node, and from there it follows the suffix link to the node. Starting from
that node, the skip/count trick allows the algorithm to walk down the required path in only a few
steps, skipping entire edges rather than comparing symbols one by one. Together, these techniques
drastically reduce the amount of work per extension.

Show Stopper This optimisation concerns the behaviour of rule 3. rule 3 applies when the
substring S[i . . . j] is already present in the current implicit suffix tree, in which case no further action
is required. A key observation is that once rule 3 applies for a particular suffix S[i . . . j] during phase
j, it will also apply for all remaining suffixes in that phase S[i+ 1 . . . j], S[i+ 2 . . . j], . . . , S[j . . . j].
This means that no further modifications to the tree are needed. As a result, the algorithm can
immediately terminate the current phase as soon as rule 3 is triggered. This show stopper behaviour
significantly reduces the number of suffixes that must be processed.

Once a leaf, always a leaf If phase j and suffix i create a leaf, this leaf will remain a leaf in all
later phases. In a later phases, such a leaf is simply extended with the newly read symbol, which
corresponds to rule 1. Because a leaf never becomes an internal node, it will never be revisited
for splitting. However, in a naive implementation, extending a leaf in each phase would require
explicitly updating the end index in the edge label of every leaf created so far. Since rule 1 may
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apply to many leaves in every phase, repeatedly updating all of their end indices would be expensive.
To avoid this, Ukkonen introduced a global variable. Instead of storing a fixed end index in each
leaf edge, all leaves simply store the global variable. Incrementing the global variable in each phase
automatically updates the end index of every leaf edge in the tree. This mechanism allows all
leaves affected by rule 1 to be extended in constant time, without the need to update each leaf
individually.

Edge-Label Compression If every edge in the suffix tree stored its full substring explicitly, the
total memory usage would be O(n2), since many substrings appear repeatedly along different paths.
To avoid this, the tree stores only the start and end indices of each edge label. This compression
reduces the total space requirement from O(n2) to O(n).

All these implementation techniques together form Ukkonen’s algorithm, which enables the con-
struction of a suffix tree for a string in linear time.

3.2.2 Phase 2 — Computing the S-Factorization Using a Suffix Tree

To compute the s-factorization from a suffix tree, the Lempel-Ziv (LZ) algorithm can be used.[Smy03]
Before the factorization can be computed, the suffix tree must satisfy the following property. Each
internal node v is labeled with the smallest starting position among all suffixes represented by the
leaves in the subtree rooted at v. We denote this value by Label(v). The root node is assigned the
label 0.

Each factor ui in the s-factorization is represented by a pair (iL, ℓ), where iL denotes the starting
position of the leftmost occurrence of ui in u1 · · ·ui−1, and ℓ = |ui|. Let i0 denote the first position
in S immediately following the prefix u1 · · ·ui−1.
For each position i0, the algorithm searches the suffix tree for the longest prefix of the suffix
S[i0 . . . n], this will always lead to the leaf with Label = i0. However, the suffix is not the factor.
Instead, the factor may only correspond to a substring that already occurs in u1 · · ·ui−1. Therefore,
the search proceeds down the path only as long as the current node v satisfies Label(v) < i0. As soon
as this condition is violated, the search is terminated. The last node v for which Label(v) < i0 holds
determines the factor. We set iL = Label(v) and ℓ equal to the length of the substring represented
by v. If the last node v is the root, then a new symbol has been identified, and we set (iL, ℓ) = (i0, 0).

If the suffix tree is implemented with the Ukkonen’s algorithm, then the s-factorization can be
computed at the same time as the suffix tree is created.[Smy03]

3.2.3 Phase 3 — Finding Leftmost PMRs

This s-factorization of the string can now be used to find PMRs. The usefullness of the s-factorization
can be explained by dividing the repeats in two classes.

• Type 1 repeat: repeat r such that start(r) ≤ start(ui) and start(ui) ≤ end(r) < end(ui) for
some s-factor ui.
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• Type 2 repeat: repeat r such that start(ui) < start(r) < end(r) < end(ui). So, this type of
repeat lies completely in ui

Because a Type 2 repeat lies entirely within ui and ui has another occurrence to the left in the
string, Type 2 repeats also have another occurrence to the left in the string. Consequently, finding
all Type 1 runs guarantees finding all leftmost occurrences of distinct PMRs.
To find all Type 2 repeats, assume we are given the S-factorization S = u1u2 . . . uk. For each factor
ui with 2 ≤ i ≤ k, we consider the substring tiui. Here, ti = ti[1 . . .m] denotes the suffix of u1 . . . ui−1

of length |ui−1|+ 2|ui|, and ui = ui[1 . . . n]. Consequently, we define v = tiui = v[1 . . .m+ n]. For
each possible period p, there exists at most one PMR of period p in v that starts in ti, ends in ui,
and whose periodicity is visible within ui.
PMRs that span tiui may have their period expressed either within ti or within ui. For algorithmic
purposes, however, the detection of such PMRs is divided into two symmetric cases: the algorithm
searches for PMRs by considering the periodic structure in either ti or ui, but never both simulta-
neously. In this section, we focus on PMRs whose period lies in ui; PMRs whose period lies in ti
can be found symmetrically.
These PMRs can be found with the following arrays:

• LongestPrefix (LP [p]), for 2 ≤ p ≤ n: the length of the longest prefix of ui that is also a
prefix of ui[p..n]. For example, let ti = TCTATATA and ui = TATC. Then LP [3] = |b| = 1, since
the longest prefix of ui = babc is also a prefix of ui[3..n] = TC has length 1.

• LongestSuffix (LS[p]), for 1 ≤ p ≤ n: the length of the longest suffix of ti that is also
a suffix of v[1..m + p] = tiui[1..p]. For example, let ti = TCTATATA and ui = TATC. Then
LS[2] = |baba| = 4, since the substring v[1..m+ 2] = TCTATATATA ends with baba, which is
the longest suffix of ti = TCTATATA occurring as a suffix of v[1..m+ 2].

Note by Theorem 6 of [KK99], for 1 ≤ p ≤ n, there is at most one PMR of period p starting in ti,
ending in ui, and having a period in ui iff LS[p] + LP [p+ 1] ≥ p. If the equality holds, this repeat
is tiui[m− LS[p] + 1 . . .m+ p+ LP [p+ 1]].

Following [Mai89], the two arrays LP and LS can be computed in linear time using a variation
of the Knuth–Morris–Pratt algorithm. In [ML84], it is shown how the arrays lppattern and lptext
can be computed. The value lppattern[i] denotes the length of the longest substring of the
string pattern that begins at position i and is a prefix of pattern. Thus, by taking pattern = ui,
lppattern[i] corresponds to LP [i].
Similarly, lptext[i] denotes the length of the longest substring of the string text that begins at
position i and is a prefix of the string pattern. In this case, if both strings are reversed and text
corresponds to v while pattern corresponds to ti, then LS can be computed using the algorithm for
calculating lptext[i].

Constructing the LP Array To obtain the values of LP [p] for 2 ≤ p ≤ n, we construct an
array LP [1 . . . n]. This can be achieved using Algorithm 1 introduced in [ML84] for computing
lppattern[i]. This algorithm reuses previously computed values to avoid unnecessary symbol
comparisons.
Suppose we want to compute LP [p] and have already calculated LP [2] . . . LP [p− 1]. Suppose we
have remembered the value of k in range 2 ≤ k < p which maximaizes the sum k + LP [k]. If
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the overlap at position k extends beyond position p (that is, if p < k + LP (k)), then position p
lies inside the region where a prefix match is already known to hold. In that case, the value of
LP [p−k+1] gives some information on what LP [p] is. This holds because, if p lies inside the region
this holds ui[p . . . k + LP [k]− 1] = ui[p− k + 1 . . . LP [k]] = x. Therefore, if LP [p− k + 1] < |x|,
then LP [p] = LP [p − k + 1]. Otherwise, if LP [p − k + 1] ≥ |x|, then LP [p] ≥ |x|. In this case,
additional symbols are compared until a mismatch occurs. As a result, the entire LP array can be
constructed in linear time.
For example, let ui = CACACCAC and consider the computation of LP [5]. Table 2 shows the LP array
for the positions that have already been computed. Let k = 3. Then k+LP [k] = 3+LP [3] = 6, which
implies that the condition p < k+LP [k] holds. Therefore, the value LP [p−k+1] = LP [3] provides
information about LP [5]. Let x = ui[p . . . k+LP [k]− 1] = ui[5 . . . 5] = C. Since LP [p− k+1] ≥ |x|,
it follows that LP [5] ≥ 1.

1 2 3 4 5 6 7 8
ui C A C A C C A C

LP [p] - 0 3 0 ?

Table 2: Example of the string S = CACACCAC with the LP array, showing the values that have
already been computed.

Constructing the LS Array To obtain the values of LS[p] for 1 ≤ p ≤ n, we construct an array
LS[1..n]. This can be achieved using Algorithm 2 introduced in [ML84] for computing lptext[i].
This algorithm is structurally identical to the algorithm for computing lppattern[i]. The only
difference is that Algorithm 2 matches the string pattern against the string text rather than against
itself.

3.2.4 Phase 4 — Finding Remaining PMRs

After all Type 1 maximal repetitions have been identified, the remaining Type 2 maximal repetitions
must be found. As discussed earlier, every Type 2 maximal repetition lies entirely within some
s-factor ui, and each ui has an earlier occurrence in the string S. Consequently, previously identified
Type 1 repetitions can be used to derive the Type 2 repetitions. Before this can be done, all Type 1
repetitions are sorted.
First, all Type 1 maximal repetitions are sorted by their end position. To achieve this, the repetitions
are distributed into n = |S| lists according to their end positions, such that list j contains all
repetitions that end at position j. As a result, all repetitions are ordered by increasing end position.
Next, the repetitions are traversed in this order and sorted again into n lists using bucket sort
according to their starting positions. After this second sorting step, repetitions with the same
starting position are stored in the same list and are ordered by increasing end position.
Let vi denote the earlier occurrence of ui, and let ∆i = start(ui)− start(vi).
For each s-factor ui with 1 ≤ i ≤ k and for each position j, we consider all PMRs that start at
position j −∆i in vi and end within vi. Each such PMR is shifted by ∆i to the right to obtain a
corresponding PMR in ui. This is done by iterating over the list containing PMRs that start at
position j −∆i and selecting those whose end positions lie within vi. Each selected PMR is then
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shifted by ∆i and inserted at the head of the list corresponding to position j. This insertion order
is valid because all existing PMRs in list j end inside ui and therefore have larger end positions
than the newly inserted repetitions.

In conclusion, the algorithm introduced by Kolpakov and Kucherov [KK99] is a linear time algorithm
that can be used to compute all PMRs in a string. This algorithm achieves linear time complexity
by combining s-factorization, suffix trees, and variants of the Knuth–Morris–Pratt algorithm. In
this research, the algorithm of Kolpakov and Kucherov is not implemented. However, this remains
an interesting direction for future work.
A limitation of the current linear time approach is that it is based on suffix trees. Suffix trees
require a significant amount of memory to store the complete tree structure. While this is not
problematic for short strings, the associated memory consumption becomes a limiting factor for
long DNA sequences.
A possible way to address this issue is to replace suffix trees with suffix arrays, which are considerably
more space-efficient [CIS08]. Using suffix arrays would require changes to the algorithm. In particular,
the suffix tree construction in the first phase would need to be replaced, and the computation of
the s-factorization would have to be adapted to work with a suffix array.
How these changes can be implemented, or whether alternative data structures or approaches may
offer better performances. Is not explored furher in this work and is left for further research.
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4 Maximal Cover

After all PMRs have been identified in the string S, we want to describe the string using its repeats.
We therefore introduce the maximal cover approach, which selects PMRs such that they cover the
largest possible number of symbols in the string. A cover is a selection of PMRs whose occurrences
cover positions in S. Each cover corresponds to one specific combination of selected PMRs. We
define the cover size as the total number of symbols in S covered by a cover. A maximal cover is a
cover that maximizes the cover size.
All detected PMRs may be used for the cover, but several rules must be followed. PMRs in the cover
may not overlap, although they may be placed directly next to each other. Each PMR may be used
only once in the same cover. A PMR does not have to be used in its full length. For every PMR, a
shorter run uc with c > 1 is allowed. It is also possible to use shifted versions of a PMR, as long as
the shift remains within the PMRs allowed shift range. A run of a PMR is a valid occurrence of
that PMR, obtained by choosing an allowed shift and count c > 1. Each run represents a possible
way in which the PMR can be included in a cover. c is an integer, which implies that runs consist
exclusively of whole periods.
For example, Figure 5 shows the PMR with annotation a = (0, 3, 3, 2). The figure illustrates all
possible runs of this PMR that can be used in a cover. Runs 1, 4, and 7 correspond to the full run,
while the remaining runs use only two periods instead of three. Runs 4–9 represent shifted variants
of the PMR, with runs 4–6 shifted one symbol to the right and runs 7–9 shifted two symbols to the
right.

0 1 2 3 4 5 6 7 8 9 10
C A T C A T C A T C A

run: 1
2
3
4
5
6
7
8
9

Figure 5: Illustration of a PMR with annotation (0, 3, 3, 2) showing the nine possible runs that can
be used in a cover.

Covers can be represented as descriptions. In these descriptions, the number in square brackets
indicates the number of repetitions of the preceding repeat unit, and semicolons are used to separate
runs and uncovered symbols. This notation differs from others, such as the dbSNP notation, which
does not use separators and represents uncovered symbols by appending [1] to the end of the region.
Throughout this research, we adopt a single, consistent notation, as it makes comparisons between
different descriptions easier and clearly distinguishes covered regions from uncovered symbols. The
number in round brackets at the end of a description indicates the cover size of the corresponding
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cover.
For example, consider the string S = CATCATCATCA shown in Figure 5. If we have the cover that
includes run 1, then the corresponding description is CAT[3];CA (9).

4.1 Brute-Force Algorithm

As an initial approach, a brute-force algorithm is implemented to compute the maximal cover. The
algorithm first determines all possible runs of each PMR. Subsequently, it iterates over all possible
covers and computes the cover size. For each new cover, it checks whether the cover size is larger
than the best result found so far.
Consider the example S = CATCATACATACTACTA. Figure 6 illustrates all covers evaluated by the
algorithm. The rightmost column indicates the cover size. As shown, cover 5 yields the largest cover
size and is therefore selected as the maximal cover. If multiple covers result in the same largest
cover size, all such covers are returned as maximal cover.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C A T C A T A C A T A C T A C T A

Cover: 1 A C 12
2 A C 12
3 A C 12
4 A 6
5 B C 14
6 B 8
7 B 8
8 C 6
9 C 6
10 C 6
11 0

Figure 6: Example of the string S = CATCATACATACTACTA containing three PMRs: PMRA =
(0, 3, 2, 0), PMRB = (3, 4, 2, 1), and PMRC = (9, 3, 2, 2). The figure illustrates all covers evaluated
by the brute-force algorithm. The rightmost column indicates the cover size.

4.1.1 Computational Complexity

Let n = |S|. To determine the computational complexity of the algorithm, we derive a coarse
upper bound. The algorithm first computes all possible runs induced by the PMRs. It iterates over
all PMRs in the string. Since the maximal number of PMRs in a string S of length n is linearly
bounded in n [KK99], this step takes O(n) time.
For each PMR, the algorithm enumerates all possible runs that can be used in a cover. This is
done using a nested loop over the repetition count. Since the repetition count is bounded by n/2,
this takes O(n2) time. For each segment, the algorithm iterates over all shifts of the PMR. The
shift is also bounded by n/2 and therefore this takes O(n) time. Consequently, the generation of all
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possible runs has a computational complexity of:

O(n · n2 · n) = O(n4)

as a function of the input size n.

In the second phase, the algorithm computes the cover size of every possible cover by considering
all combinations of runs. In the worst case, each PMR induces O(n3) candidate runs. Since a cover
can contain at most one run per PMR, calculating the cover size of every cover has a computational
complexity of:

n∏
i=1

O(n3) = (O(n3))n = O
(
(n3)n

)
.

as a function of the input size n.

Consequently, the overall time complexity of the brute-force algorithm is:

O
(
O(n4) +O

(
(n3)n

))
= O

(
(n3)n

)
as a function of the input size n.

4.2 Greedy Algorithm

The maximal cover problem considered in this research shares several similarities with the activity-
selection problem.[CLRS09] In the activity-selection problem, a set of activities is given, each with
a start time and a finish time, and the goal is to select a maximum number of non-overlapping
activities.
Similarly, in our problem the input consists of PMRs, each described by an annotation
(start, period, count, shift). From each PMR we derive a set of runs, where each run can be viewed
as an interval in string S with a start position and end position. As in the activity-selection problem,
overlapping runs are not permitted. Moreover, both problems aim to maximize a specific value. In
the activity-selection problem, the goal is to maximize the number of activities, whereas in our
problem the goal is to maximize the cover size.
An optimal solution to the activity-selection problem is obtained by a greedy algorithm that
repeatedly selects the activity with the earliest finishing time. Assuming the activities are initially
sorted by their finishing times, the algorithm runs in linear time.[CLRS09]

4.2.1 Greedy Algorithm Based on End Position

Based on the similarities with the activity-selection problem, we develop a greedy algorithm that
constructs a cover by selecting the run with the smallest end position. As in the brute-force
algorithm, the greedy algorithm first determines all runs of each PMR. Once all runs have been
identified, they are sorted in increasingly order of their end positions.
After sorting, the greedy algorithm constructs a cover by repeatedly selecting the run with the
smallest end position that does not overlap with the already selected runs. Figure 7 illustrates the
construction of the cover for the string S = CATCATACATACTACTA. As shown earlier, this example
contains three PMRs. PMRA = (0, 3, 2, 0), PMRB = (3, 4, 2, 1), and PMRC = (9, 3, 2, 2).
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As shown in Figure 7, the algorithm first selects a run derived from PMRA, followed by a run
derived from PMRC. In this case, the unshifted version is selected, as it yield the smallest end
positions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C A T C A T A C A T A C T A C T A

Step: 1 A
2 A C 12

Figure 7: Example of the string S = CATCATACATACTACTA containing three PMRs: PMRA =
(0, 3, 2, 0), PMRB = (3, 4, 2, 1), and PMRC = (9, 3, 2, 2). The figure illustrates how the greedy
algorithm based on end position constructs the cover for the string S.

Greedy algorithms make locally optimal choices at each step in the hope of obtaining a globally
optimal solution. However, greedy algorithms do not always yield optimal results. As illustrated in
Figure 7, the cover constructed by the greedy algorithm has a cover size of 12, whereas Figure 6
shows that the maximal cover for this string has a cover size of 14. This demonstrates that the
greedy algorithm does not obtain a globally optimal solution in this case.
To evaluate how often this greedy algorithm produces an optimal solution, we computed the
cover size for 612 strings of length 10 and compared the results to the maximal cover obtained
by the brute-force algorithm. The string considered of non-isomorphic binary words, Fibonacci
words, and Lyndon words, which are described in more detail in Section 5.1 Out of the 612 strings
considered, the greedy algorithm does not obtain a maximal cover for 532 strings. In these cases,
the cover size is on average 2.98 smaller than that of the maximal cover. For instance, consider the
string S = AAAAAAAAAA. The brute-force covers this string as A[10], whereas the greedy algorithm
produces the cover A[2];AAAAAAAA. This difference arises because the greedy algorithm always
selects the run with the smallest end position first. Once this run is selected, the remaining symbols
cannot be covered, as no additional runs are available: the only PMR has already been used.

String S: AAAAAAAAAA

Greedy end position cover: A[2];AAAAAAAA (2)
Maximal cover: A[10] (10)

4.2.2 Greedy Algorithm Based on Length

To explore whether this can be improved, we introduce a second greedy algorithm. This algorithm
has the same structure as the previous greedy algorithm, but differs in the selection criterion.
Instead of selecting the run with the smallest end position, this algorithm selects always the run
with the largest covered length. As before, the algorithm first determines all runs of each PMR.
These runs are then sorted in decreasing order of their length, and the cover is constructed by
selecting the longest run at each step.
Figure 8 illustrates the construction of the cover for the string S = CATCATACATACTACTA. As
shown, a run derived from PMRB = (3, 4, 2, 1) is selected first, followed by a run derived from
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PMRC = (9, 3, 2, 2). In this case, the algorithm selects a shifted version of PMRC, as the other
possible runs overlap with the previously selected run.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C A T C A T A C A T A C T A C T A

Step: 1 B
2 B C 14

Figure 8: Example of the string S = CATCATACATACTACTA containing three PMRs: PMRA =
(0, 3, 2, 0), PMRB = (4, 4, 2, 1), and PMRC = (9, 3, 2, 2). The figure illustrates how the greedy
algorithm based on run length constructs the cover for the string S.

As shown in Figure 8, the greedy algorithm based on run length obtains the maximal cover for
this example. To evaluate how often this greedy algorithm produces an optimal solution, we again
computed the cover size for the same 612 strings and compared the results with the maximal covers
obtained by the brute-force algorithm.
Out of the 612 strings considered, the greedy algorithm fails to obtain a maximal cover for 140
strings. In these cases, the resulting cover size is on average 1.56 smaller than that of the maximal
cover. For example, consider the string S = AACAACAACC. The brute-force algorithm covers this
string as A[2];CAA[2];C[2], whereas the greedy algorithm produces the cover AAC[3];C. This
difference arises because the greedy algorithm prioritizes the run with the largest covered length.
Once this run is selected, only a single symbol remains uncovered, which cannot be covered by any
additional run.

String S: AACAACAACC

Greedy length cover: AAC[3];C (9)
Maximal cover: A[2];CAA[2];C[2] (10)

4.2.3 Computational Complexity

Let n = |S|. To determine the computational complexity of the algorithm, we derive a coarse
upper bound. The algorithm first computes all possible runs induced by the PMRs. It iterates over
all PMRs in the string. Since the maximal number of PMRs in a string S of length n is linearly
bounded in n [KK99], this step takes O(n) time.
For each PMR, the algorithm enumerates all possible segments of the repeat that can be used in
a cover. This is done using a nested loop over the repetition count. Since the repetition count is
bounded by n/2, this takes O(n2) time. For each segment, the algorithm iterates over all shifts of
the PMR. The shift is also bounded by n/2 and therefore this takes O(n) time. Consequently, the
generation of all possible runs has a computational complexity of:

O(n · n2 · n) = O(n4),

as a function of the input size n.
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To apply the greedy selection, the 2D structure of runs is flattened into a 1D vector in O(n4) time.
The runs are then sorted, which has worst-case time complexity O(n4 log n4)[sor25]. After sorting,
the algorithm performs a iteration over the run vector, this step takes O(n4) time. Finally, the
resulting cover produced by the greedy algorithm is sorted once more, which incurs a worst-case
time complexity of O(n4 log n4). This additional sorting step is necessary because a run with a
larger run length may also have a larger end position and therefore appear earlier in the cover than
a run with both a smaller length and a smaller end position.
Consequently, the overall time complexity of the greedy algorithm based on end position is:

O
(
n3 + n4 + n4 log n4 + n4

)
= O(n4 log n4).

The overall time complexity of the greedy algorithm based on end position is:

O
(
n3 + n4 + n4 log n4 + n4 + n log n

)
= O(n4 log n4).

as a function of the input size n.

4.3 Dynamic Programming Algorithm

The brute-force algorithm runs in O((n3)n) time and therefore becomes impractical for long DNA
sequences. Moreover, the greedy algorithm does not always produce an optimal solution. To address
these limitations, we introduce a dynamic programming algorithm.
The dynamic programming algorithm computes the maximal cover for every prefix of the string S.
Formally, for each position i in S, the algorithm computes the maximal cover for the prefix S0,i. At
each position i, the algorithm considers whether including the symbol S[i] in the cover leads to
a larger cover size than excluding it. If S[i] is excluded, the cover size equals the maximal cover
size computed for the prefix S0,i−1. If S[i] is included, the algorithm determines which runs end at
position i. These runs are referred to as valid runs. This determination is based on the values ρ
and σ, defined as:

ρ = (i− start+ 1) mod period,

σ =
i− start+ 1

period
.

Here, ρ denotes the offset within the period at position i, and σ represents the number of full
periods of the PMR that have been completed at position i. For example, consider the string
S = CATCATCATCA with annotation (0, 3, 3, 2). Let i = 8. Then σ = 8−1+1

3
= 3 which means that

three full periods are completed at position 8. Since a run must consist of at least two periods,
there are σ − 1 = 2 valid runs at position 8. These runs are marked blue in Figure 9.
The length of a valid run at position i is denoted by ℓc, where c is the count of the run and satisfies
2 ≤ c ≤ σ. For example, run 1 has length ℓ3, while the run 3 has length ℓ2.
To compute the maximal cover at position i, the algorithm evaluates the cover size obtained by
including each valid run at position i. For a valid run of length ℓc, the corresponding cover size is
given by:

Size[i− ℓc] + ℓc.
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Here, Size is an array that stores the maximal cover for each prefix of the string, where Size[i]
denotes the maximal cover size of the prefix S0,i.
Among all valid runs ending at position i, the algorithm selects the run that yields the largest cover
size. To determine the maximal cover at position i, the algorithm then takes the maximum between
excluding the symbol S[i] and including the best valid run:

Size[i] = max
(
Size[i− 1], Size[i− ℓc] + ℓc

)
,

where ℓc is the length of the valid run with the highest cover size.
For example, consider again the previous example. The two valid runs marked in blue yield
the following cover sizes: run 1 gives Size[8 − 9] + 9 = Size[−1] + 9 = 9, and run 3 gives
Size[8− 6] + 6 = Size[2] + 6 = 6. Thus, run 1 yields the larger cover size. The maximal cover at
position 8 is therefore computed as:

Size[8] = max
(
Size[7], Size[8− 9] + 9

)
= max(6, 9) = 9.

Once the maximal cover has been computed for each position i in the string S, the value Size[n−1],
where n = |S|, represents the maximal cover of the entire string.

0 1 2 3 4 5 6 7 8 9 10
C A T C A T C A T C A

run: 1
2
3
4
5
6
7
8
9

Size[i] 0 0 0 0 0 6 6 6 9 9 9

Figure 9: Illustration of a PMR with annotation (0, 3, 3, 2) showing the nine possible runs that can
be used in a cover. The runs marked in blue are the valid runs for i = 8.

Constructing a Cover To reconstruct a cover that leads to the maximal cover, the algorithm
iterates over the Size array from the last index to the first. Let i denote the current position. If
there exists a run of length ℓc ending at position i such that:

Condition 1: Size[i] = Size[i− ℓc] + ℓc,

then this run is included in the cover, and the algorithm continues at position i− ℓc. The algorithm
always considers runs in decreasing order of c, thereby preferring longer runs. If Condition 1 does
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not hold, the value of c is decreased by one, and Condition 1 is evaluated again using the new value
of ℓc. If no valid run satisfies Condition 1, then:

Condition 2: Size[i] = Size[i− 1],

must hold, and the algorithm moves one position backward to i− 1. If Size[i] = 0, the algorithm
terminates, since no valid runs remain in the prefix S[0 . . . i].

As an example, consider the string S = AGAAAGAAAGAAAGAGA, which contains two PMRs with
annotations (0, 4, 3, 3) and (12, 2, 2, 1). Figure 10 shows the corresponding Size array for this string.
To reconstruct the cover, the algorithm starts at position i = 16. At this position, there exists
a valid run derived from the PMR with annotation (12, 2, 2, 1). This run has length ℓ2 = 4 and
satisfies the Condition Size[16] = Size[12] + 4. The algorithm therefore moves to position i = 12.
At i = 12, a valid run derived from the PMR with annotation (0, 4, 3, 3) exists. This run has
length ℓ3 = 12 and satisfies Size[12] = Size[0] + 12. The algorithm then moves to i = 0, where it
terminates since Size[0] = 0. Figure 10 also illustrates the resulting cover.
This cover construction always selects the longest valid run first. An interesting direction for future
research would be to explore alternative strategies, such as prioritizing shorter runs or reconstructing
the cover by traversing the Size array from left to right.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A G A A A G A A A G A A A G A G A

Size[i] 0 0 0 2 3 3 3 8 8 8 8 12 12 12 12 16 16

Cover:

Figure 10: Illustration of S = AGAAAGAAAGAAAGAGA, which contains two PMRs with annotations
(0, 4, 3, 3) and (12, 2, 2, 1). This Figure shows the constructed cover. The blue and orange marked
intervals are the runs used in the cover.

Constructing All Covers For some strings, multiple covers can lead to the maximal cover. We
therefore also developed an algorithm that constructs all there covers. This algorithm follows the
same general approach as the one described above. However, instead of terminating after finding
a single cover, it backtracks to explore whether other valid runs satisfy Condition 1 or whether
position i satisfies Condition 2. In this way, all distinct covers are generated.

As an example, consider again the string S = AGAAAGAAAGAAAGAGA, which contains two PMRs with
annotations (0, 4, 3, 3) and (12, 2, 2, 1). The algorithm first constructs the initial cover, shown as
cover 1 in Figure 11. It then begins to backtrack.
The algorithm first returns to position i = 12. At this position, it checks whether there exists
an alternative valid run for which Condition 1 holds. However, no such run exists. Condition 2
does hold, and the algorithm therefore moves to i = 11. At position i = 11, a valid run satisfies
Condition 1, which results in the construction of cover 2.
The algorithm then moves to position i = 15, since at i = 11 neither Condition 1 nor Condition 2
holds. From position i = 15, the algorithm constructs the third and final cover.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A G A A A G A A A G A A A G A G A

Size[i] 0 0 0 2 3 3 3 8 8 8 8 12 12 12 12 16 16

Cover: 1
2
3

Figure 11: Illustration of S = AGAAAGAAAGAAAGAGA, which contains two PMRs with annotations
(0, 4, 3, 3) and (12, 2, 2, 1). This Figure shows all the possible constructed covers. The blue and
orange marked intervals are the runs used in the covers.

4.3.1 Computational Complexity

Let n = |S|. To determine the computational complexity of the algorithm, we derive a coarse upper
bound. Iterating over all positions in the string S takes O(n) time. Since the maximal number of
PMRs in a string S of length n is linearly bounded in n [KK99], this step takes O(n) time. For
each position and each PMR whose interval contains that position, the algorithm iterates over the
repetitions of the corresponding repeat unit. The repetition count is bounded by n/2 and therefore
takes O(n) time.
Consequently, the overall computational complexity of this dynamic programming algorithm is:

O(n · n) = O(n2),

as a function of the input size n.
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4.4 Linear Algorithm

When a PMR has a large count, the dynamic programming algorithm must iterate over a large
number of valid runs determine the best one a given position. For example, consider Figure 12 and
the string S = ACTCTCTCTCT, which contains a single PMR with annotation a = (0, 2, 6, 0). Let
i = 12. Then σ = 12−1+1

2
= 6 and position 13 has σ − 1 = 5 valid runs. Consequently, the dynamic

programming algorithm must compute the cover size for all five valid runs at this position.

0 1 2 3 4 5 6 7 8 9 10 11 12
A C T C T C T C T C T C T

run: 1 *
2 *
3 *
4 *
5 *

Figure 12: String S = ACTCTCTCTCTCT with annotation a = (0, 2, 6, 0), and let i = 12. This figure
illustrates all runs that need to be evaluated at position i = 12. The symbol ∗ denotes a lookup
in the Size array at the indicated index. For instance, for run 2, the algorithm performs an array
lookup of Size[6].

Since STRs can have lengths of up to several hundred base pairs with periods ranging from 1 to
6 base pairs, their counts can be very large. In such cases, the dynamic programming algorithm
becomes inefficient.
Every valid run length can be defined as ℓc = pc, where p is the period. Since c > 1, c can be
expressed as:

c = 2a+ 3b,

with non-negative integers a and b, at least one of which is non-zero. This can be proven by
considering two cases.

• Case 1 — c is even: In this case, c can be written as c = 2k with k ≥ 1. Choosing a = k and
b = 0 yields c = 2a+ 3b = 2k + 3 · 0 = 2k. Since k ≥ 1, a is non-zero.

• Case 2 — c is odd: In this case, c can be written as c = 3+(c−3). Since c−3 is even, we have
c− 3 = 2k for some k ≥ 0. Choosing a = k and b = 1 yields c = 2a+ 3b = 2k + 3 · 1 = 2k + 3.
Since k ≥ 0, b is non-zero.

Consider the example below: ℓ7 = pc = p3·1 · p2·2.

p p p p p p p

Let i denote the current position in the string S. Then there are three possible situations.
If σ = 2, then there is one valid run at position i. The maximal cover at position i is computed as:

Size[i] = max
(
Size[i− 1], Size[i− ℓ2] + ℓ2

)
.
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If σ = 3, then there are two valid runs at position i. The maximal cover at position i is computed
as:

Size[i] = max
(
Size[i− 1], Size[i− ℓ2] + ℓ2, Size[i− ℓ3] + ℓ3

)
.

If σ > 3, then there are more than two valid runs at position i. Each ℓc can be decomposed into
p2a · p3b, and for each ℓc with c > 3 a part as already been computed. Therefore, the maximal cover
at position i can be computed in exactly the same way as for σ = 3.
Figure 13 shows an example for the string S = CTCTCTCTCTA with annotation a = (0, 2, 5, 0). The
figure shows all valid runs that are evaluated at positions 3, 5, 7, and 9 in the dynamic programming
algorithm. It also shows how each ℓc with c > 3 can be decomposed into smaller runs (ℓ2 and ℓ3).
For example, run A evaluated at i = 3 can be combined with run D evaluated at i = 7 to form a
valid run with ℓ4 at position i = 7.

0 1 2 3 4 5 6 7 8 9 10
C T C T C T C T C T A

i = 3 A ℓ2
5 B ℓ2

C ℓ3
7 D ℓ2

E ℓ3
A D ℓ4

9 F ℓ2
G ℓ3

B F ℓ4
C F ℓ5

Figure 13: String S = CTCTCTCTCTA contains a single PMR with annotation (0, 2, 5, 0). This figure
illustrates how all valid runs at positions i = 3, 5, 7, and 9 can be decomposed into ℓ2 and ℓ3 runs.

4.4.1 Computational Complexity

Let n = |S|. To determine the computational complexity of the algorithm, we derive a coarse upper
bound. Iterating over all positions in the string S takes O(n) time. Since the maximal number of
PMRs in a string S of length n is linearly bounded in n [KK99], this step takes O(n) time. For
each position and each PMR whose interval contains that position, the algorithm computes the
maximal cover for at most three segment lengths, namely ℓ0, ℓ2, and ℓ3. This step therefore takes
constant time, O(3) = O(1).
Consequently, the overall computational complexity of this lineair algorithm is:

O(n · 1) = O(n),

as a function of the input size n.
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5 Experiments and Discussion

To evaluate the introduced algorithms, we conducted a series of experiments. The experiments focus
on two main aspects: the runtime performance of the algorithms for constructing maximal covers
and the quality of the resulting descriptions. We conducted experiments on both synthetic input
sequences and real genomic data. Synthetic sequences are used to analyze runtime performance,
while real DNA sequences from dbSNP are used to evaluate the descriptions. All experiments
were conducted on a modern PC equipped with a 12th-generation Intel Core i7 processor with a
maximum clock frequency of 4.7GHz.

5.1 Synthetic Sequences

In this experiment, we execute all algorithms that determine the maximal cover in order to evaluate
and compare their runtime performance. To ensure a fair comparison, only input strings with a
fixed length are used. Three different types of input strings are considered:

• Non-isomorphic binary words: All non-isomorphic words of a fixed length over a binary
alphabet Σ = {A,C}. Non-isomorphic words are words that differ in structure. For example,
the non-isomorphic words of length 4 are AAAA, AAAC, AACA, AACC, ACAA, ACAC, ACCA, and
ACCC.

• Fibonacci word: A prefix of a given length of the infinite Fibonacci word. A Fibonacci
word is defined over a binary alphabet and is constructed by concatenating the two preceding
words in the sequence. For example, the Fibonacci word of length 4 is ACAA.

• Lyndon words: All Lyndon words of a specified length over an ordered alphabet, generated
using Duval’s algorithm. [BP94] A Lyndon word is strictly smaller in lexicographic order than
all of its circular rotations. For instance, for length 4, the Lyndon words are AAAC, AACC, and
ACCC.

As the string length increases, the number of input strings also increases. This is because the
number of non-isomorphic binary words and Lyndon words grows rapidly with the length of the
string. In contrast, the Fibonacci word always contributes a single input string. For example, at a
string length of n = 20, the number of input strings increases to 576,666. Consequently, the runtime
results are reported as the average runtime per input string.

Short Input Strings First, we ran all algorithms on strings of lengths {8, 10, 14, 16, 18, 20}.
The results are shown in Figure 14. We observed that the two greedy algorithms, the dynamic
programming algorithm, and the linear algorithm show nearly identical runtimes. Therefore, only
the linear time algorithm is included in the figure. For strings of length 8, 10, and 14, the average
runtime is almost identical across all algorithms. However, as the string length increases, the average
runtime of the brute-force algorithm grows significantly, while the remaining algorithms continue
to show similar runtimes.
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Figure 14: Results of the brute-force and linear algorithms for input strings of lengths 8, 10, 14, 16, 18,
and 20. For each length, multiple input strings were evaluated, and the reported values represent
the average running time per input string in seconds.

Long Input Strings Since the number of input strings grows prohibitively large for n > 20, we
evaluate the algorithms on larger input sizes using only the Fibonacci word. Because the brute-force
algorithm already shows substantially higher runtimes for string lengths {16, 18, 20}, it is excluded
from this evaluation.
The results are shown in Figure 15. All runtimes remain low, even for input strings of length up to
40,000. A notable observation is that the linear algorithm shows the highest runtime among the four
algorithms. This can be explained by the fact that the linear algorithm only outperforms the dynamic
programming algorithm when PMRs have very high repetition counts. In Fibonacci words, however,
the average repetition count remains between 2 and 3. As a result, the dynamic programming
algorithm performs comparably to the linear algorithm in this setting. This performance difference
can be explained by the structure of the implementations. The linear variant relies on additional
function calls and conditional checks, which introduce a small overhead when repetition counts are
low.
Finally, we observe that the greedy algorithm based on run length is significantly faster than the
greedy algorithm based on end position. Although both greedy algorithms are identical except for
the sorting step, one sorts runs by end position whereas the other sorts runs by covered length. This
suggests that the observed performance difference is primarily caused by the sorting of the runs.
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Figure 15: Results of the two greedy algorithms, the dynamic programming algorithm, and the
linear algorithm for input strings of lengths 10,000, 20,000, 30,000, and 40,000.

5.2 DNA Sequences from dbSNP

In this experiment, we compare our constructed maximal cover with the variant descriptions
available in the Single Nucleotide Polymorphism Database (dbSNP). dbSNP is a public database
that catalogs single nucleotide polymorphisms (SNPs) as well as other small-scale genetic variations.
Submissions to dbSNP originate from a wide range of sources, including individual research
laboratories, large-scale genome sequencing projects, and private industry [PZW+24].
We analyze the same set of 338,582 mixed repeat variants that was previously studied in [SKL+25].
In that work, the proposed method was unable to produce mixed repeat descriptions. We therefore
use the same dataset in this experiment, as it provides a large and representative collection of
mixed repeat variants, relying on the variant descriptions provided in dbSNP Build 156. For all
variants on the genomic reference sequence NC 000001.11 (chromosome 1 of GRCh38), both the
SPDI and dbSNP descriptions are retrieved. The SPDI descriptions are used as input sequences for
our algorithms, while the corresponding HGVS descriptions are used as a reference for comparison
with the constructed maximal covers. All maximal covers in this experiment were computed using
the linear algorithm. The results of this experiment are presented in Table 3.

We observed that dbSNP descriptions are structured such that they always start with a repeat. If
multiple repeats are present, they occur consecutively in the dbSNP description. Consequently, any
uncovered symbols in the description always appear at the end of the dbSNP description. As a
result, repeat structures that consist of multiple distinct repeats with uncovered symbols occurring
in between, such as the complex repeats described in Section 2.1, cannot be represented by the
dbSNP description.
Our results show that, out of 338,582 descriptions, there are 31,139 cases in which the dbSNP
description exactly matches the maximal cover constructed by our algorithm. Furthermore, there
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are 61,951 cases in which both descriptions cover the same number of symbols but do not match
syntactically. In these cases, the algorithm for constructing all covers, described in Section 4.3, can
be used to obtain a description that exactly matches the dbSNP description.
Consequently, for 245,492 cases, the maximal cover differs from the dbSNP description. An analysis
of these mismatches reveals two distinct types of differences.

Table 3: The categorized counts of the comparison between dbSNP description in dbSNP and our
generated description.

One cover All covers
Identical cover size
Identical description 31139 93090
Distinct description 61951 -

Type 1
Single repeat 89178 140085
Short period 37951 57028
Long period 9599 26749

Other
Type 2 108764 21630

Total 338582 338582

5.2.1 Type 1

The first type of difference occurs in 136,728 cases. In these cases, all repeats in the dbSNP
description occur at the exact same positions as in our description. This means that the prefixes
of both descriptions are identical. However, the suffixes of the two descriptions differ. Specifically,
the suffix of the dbSNP description contains only uncovered symbols, whereas the suffix of our
description contains one or more repeats. This type is futher divided into the following classes;
suffix with a single repeat, suffix with small periods, and suffix with long period.

Suffix With a Single Repeat In the class suffix with a single repeat, the suffix of our description
contains exactly one repeat. An example of this case is shown below. This case occurs in 89,178
instances. Our method describes the suffix AAAAAAAAAAAAAAAA as A[16], whereas the dbSNP
description represents this suffix without using any repeat notation. In this class, our description is
more compact than the dbSNP description, particularly for longer sequences, where this compact
representation is more space-efficient. Moreover, our method improves readability by explicitly
indicating the length of the repeat in the suffix.

Selected substring: AAAAAAAAAAAAAAAAAAAAAAAAATAAAAAAAAAAAAAAAA

dbSNP description: A[25];TAAAAAAAAAAAAAAAA (25)
Maximal cover: A[25];T;A[16] (41)
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Suffix with Small Periods In the class suffix with small periods, the suffix of our description
contains multiple repeats, none of which has a period longer than 3. This case occurs in 37,951
instances. An example is shown below. Our method describes the suffix CCAAGCGCCGGAGCGCG as
C[2];A[2];GC[2];C;G[2];AG;CG[2], whereas the dbSNP description represents this suffix without
using any repeat notation.
As illustrated by this example, the description produced by our method is longer than the dbSNP
description due to the presence of many short repeats. To quantify how often this situation occurs,
we examined how frequently our method yields a shorter description than the dbSNP description
within this class. Out of the 37,951 cases, there are 14,441 strings for which the description produced
by our method is shorter than the corresponding dbSNP description. This indicates that in the
majority of cases within this class, our method produces a longer description, probably due to the
presence of many short repeats.
As the example demonstrates, the presence of numerous short repeats causes the description to
become cluttered and difficult to read. Unless the descripted short repeats are biologically relevant,
this representation reduces readability without providing meaningful additional information.

Selected substring: GCGCGGGGCCAAGCGCCGGAGCGCG

dbSNP description: GC[2];G[4];CCAAGCGCCGGAGCGCG (8)
Maximal cover: GC[2];G[4];C[2];A[2];GC[2];C;G[2];AG;CG[2] (22)

Suffix With Long Period In the class suffix with long period, the suffix of our description
contains multiple repeats, of which one or more have a period longer than 4. This case occurs in
9,599 instances. An example is shown below. In this example, the suffix produced by our method
contains four repeats with a period of 5. Such longer repeats can be biologically relevant and may
be overlooked in the dbSNP descriptions that do not explicitly represent these repetitions.

Selected substring: AGCCCAGCCCAGCCCAGCCCGGCCCGGGCCGGGCCGGGCCCGGCCCGGCCCAGCCCAGC

CCAGCCCAGCCCAGCCCAGCCCAGC

dbSNP description: AGCCC[4];GGCCCGGGCCGGGCCGGGCCCGGCCCGGCCCAGCCCAGCCCAGCCCAGCC

CAGCCCAGCCCAGC (20)
Maximal cover: AGCCC[4];G[2];C[2];CGGGC[3];CCGGC[2];CCAGC[7] (84)

5.2.2 Type 2

The second type of difference occurs in 108,764 cases. In this category, not all repeats present in
the dbSNP description also occur in the description produced by our method. An example is shown
below. This example shows that the repeats in the dbSNP description does not match with the
repeats in the description produced by our method.
As explained earlier, we have implemented an additional algorithm that enumerates all covers
yielding the maximal cover. For these 108,764 cases, we examined whether an alternative cover
exists that more closely matches the dbSNP description. Due to extensive overlap between repeats,
some strings have an extremely large number of covers that yield the maximal cover. For this
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Selected substring: AAAAGAAAGAAAGAAAGAAAGAAAGAAAAGAAAGAAA

dbSNP description: A[4];GAAA[6];AGAA[2];A (36)
Maximal cover: A[3];AGAA[4];AGAAAGAAA[2] (37)

reason, we decided to terminate the process once 10,000 distinct covers had been generated. In
1,005 cases, the algorithm was terminated early. As a result, not all possible covers were obtained,
and it is therefore possible that the best-matching cover was not included.

As shown in Table 3, there are 50,981 cases for which an alternative cover leading to the maximal
cover can be classified as a Type 1 suffix with single repeat. Furthermore, based on the analysis of
alternative covers, 19,104 cases are now classified as Type 1 suffix with small periods, and 17,092
cases as Type 1 suffix with long period.
There are 21,630 cases in which the description cannot yet be classified as Type 1. We therefore
analyze these cases in more detail. For all such cases, we consider two descriptions. First, we use
the description obtained from the algorithm that returns a single cover, which we refer to as the
main cover. Second, we use the algorithm that enumerates all covers that lead to the maximal cover.
From these covers, we select the shortest description, which we refer to as the shortest description.

Shorter Description We examined how often our algorithm produces a shorter description
compared to the dbSNP description. Out of the 21,630 cases, there are 6,328 cases in which the main
cover yields a shorter description than the dbSNP description. A small improvement is observed
when considering all covers. In this setting, there are 6,771 cases in which the shortest description
among all constructed covers is shorter than the corresponding dbSNP description. This behavior
can potentially be explained by the lengths of the repeats and their associated periods.

Difference in Repeat Periods We also examined the differences in repeat periods across the
various descriptions. Specifically, we analyzed how often repeats of a given period occur in each
description. Since the frequency with which a period appears does not capture the lengths of the
corresponding repeats, we additionally considered the total counts associated with each period.
The results are presented in Table 4.

The example below illustrates how this works. In this example, the main maximal cover differs from
the shortest maximal cover. This difference arises because the main maximal cover is constructed
from right to left and prioritizes longer runs over shorter ones. For this example, the dbSNP
description contains one repeat with period > 6 (total count = 2). The main cover contains two
repeats with period 1 (total count = 2 + 2 = 4) and five repeats with period 2 (total count
= 3 + 4 + 2 + 3 + 4 = 16). In contrast, the shortest cover contains one repeat with period 1 (total
count = 2), three repeats with period 2 (total count = 3 + 4 + 3 = 10), and one repeat with period
> 6 (total count = 2).
As shown in Table 4, the dbSNP descriptions contain fewer repeats for every period length compared
to both the main cover and the shortest description. The observed difference is especially noticeable
for repeats with short periods. Moveover, for short periods, the total count is only slightly larger
than the number of occurrences. For example, for period p = 1 in the main cover, this period occurs
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Selected substring: GGTGTGTGGTGTGTGTCTGTGTGGTGTGTGGTGTGTGT

dbSNP description: GGTGTGT[2];GTCTGTGTGGTGTGTGGTGTGTGT (14)
Main maximal cover: G[2];TG[3];GT[4];CT;GT[2];G[2];TG[3];GT[4] (36)
Shortest maximal cover: G[2];TG[3];GT[4];CT;GTGTGGT[2];GT[3] (36)

39,668 times, while the sum of counts is 137,529. This implies that repeats with period 1 have an
average count of approximately 3. Such short repeats contribute little to the overall coverage.
Differences are also observed for larger repeat periods. In particular, for period 6, the description
produced by our method contains approximately twice as many repeats as the dbSNP description.
Repeats with longer periods can be biologically relevant, which indicates that the dbSNP description
may not capture some of these important repeats.
The differences between the main cover and the shortest description are relatively small. However,
as shown in Table 4, the shortest description contains fewer repeats with periods 1, 2, and 3, and
more repeats with periods 4, 5, and 6. While the main cover contains more repeats with periods
greater than 6 overall, the shortest description has a larger total sum of counts, indicating that
its repeats are longer on average. Descriptions consisting of fewer but longer repeats tend to be
shorter and are generally more readable.

Table 4: Total numbers of periods and total counts for repeat periods 1, 2, 3, 4, 5, 6 and > 6
for the main cover description, shortest cover description, and dbSNP description. The leftmost
column indicates the period. The next three columns report the total number of repeats for each
description, and the three rightmost columns report the corresponding total counts.

Total periods Total counts

Main Shortest dbSNP Main Shortest dbSNP

p = 1 39668 37476 5662 137529 131991 47658
2 32583 31837 10841 111854 111164 48379
3 8972 8898 2854 21446 21247 8122
4 15653 15963 9746 52666 54496 40060
5 4735 4934 3137 15056 15799 11296
6 2568 2605 1126 5563 5642 2652

> 6 9068 9038 6669 19368 19483 14471

Difference in Uncovered Symbols We also examined the differences in the number of uncovered
symbols across the descriptions. A substantial difference is observed. The maximal cover contains a
total of 46,015 uncovered symbols, corresponding to an average of approximately two uncovered
symbols per string. In contrast, the dbSNP descriptions contain a total of 440,889 uncovered
symbols, which corresponds to an average of about 20 uncovered symbols per string.
This difference is not necessarily a sconcern if the uncovered symbols do not form biologically
relevant repeats. However, as shown in Table 4, the dbSNP descriptions also miss a considerable
number of repeats with longer periods, which can be biologically important.
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6 Conclusion

In this research, we addressed the problem of describing repeats in DNA sequences. Repeats play
an important role in several domains, including forensic and biomedical science. However, existing
standards such as the HGVS nomenclature lack sufficient rules to consistently describe complex
forms of repeats.
We first studied the problem of identifying all repeats in a sequence. We introduced a naive
algorithm. In addition, we provided a detailed description of an existing linear time algorithm for
finding all repeats, although this algorithm was not implemented.
Subsequently, we introduced five different algorithms to describe a sequence using repeats by
selecting combinations of primitive maximal repeats that maximize the number of covered symbols.
These algorithms were examined with respect to their runtime performance.
The experimental results show that the brute-force algorithm becomes impractical for larger input
sizes. In contrast, the remaining four algorithms efficiently process sequences of length up to 40,000.
However, the two greedy algorithms do not always produce a maximal cover. Both the dynamic
programming algorithm and the linear time algorithm consistently yield a maximal cover.
We also examined the quality of the descriptions produced by our method in comparison to
descriptions from dbSNP. The results show that our method is able to identify more repeats than
the dbSNP descriptions and cover a larger number of symbols in the sequence. However, our method
may sometimes result in longer descriptions.

6.1 Further Research

Although the experiments clearly demonstrate the effectiveness of our methods, several directions
for further research remain, beyond those discussed earlier in this thesis.
In this work, the objective is to describe a DNA sequence by constructing a maximal cover, thereby
maximizing the number of covered symbols. While this criterion ensures maximal coverage, it does
not necessarily result in the most compact description. Future research could therefore explore
alternative optimization objectives, such as minimizing the total length of the resulting description.
Since our methods always prioritize maximal coverage, biologically meaningful repeats, such as
specific short tandem repeats (STRs), may be overlooked when overlapping repeats yield a higher
overall cover. An interesting direction for future research would be to incorporate biological relevance
into the selection process, for example by prioritizing biologically meaningful repeat.
A limitation of our approach is that repeats are detected only when they occur as exact repetitions.
If mutations are present within a repeat, such as in the case of simple repeats with non-consensus
repeat described in Section 2.1, the repeat may be interrupted or not detected at all. Future research
could investigate methods for detecting imperfect repeats by allowing mutations within repeat
units.

6.2 Implementation

The implementation used in this thesis is publicly available on GitHub at https://github.com/
elinerodoe/repeats.git. All algorithms are implemented in C++. The experimental framework is
implemented in Python.
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