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Abstract

This thesis replicates the Hyp-RL framework and evaluates its transferability to a new domain.
It investigates whether the framework’s ability to achieve strong results with fewer trials
holds when applied to tune tabular reinforcement learning on varying environments. We
compare two reinforcement learning-based hyperparameter optimisation methods, which
select hyperparameter configurations from a discrete hyperparameter configuration space.
One method uses the original DQN agent, and the other uses a newly adapted PPO agent
for hyperparameter optimisation. These are tested against common baselines, i.e. Bayesian
optimisation and random search. The experiments use trial budgets of 10 and 50. Results show
that the DQN and PPO agents are better at achieving high returns with only a few trials,
reaching 95% of the best return quickly across all environments. This is consistent with prior
findings of the original paper. At low budgets, the DQN and PPO agents perform better in two
of the evaluated environments, while in the others, the performance of all methods is similar.
When the budget is increased, the relative ranking shifts and traditional baselines achieve
comparable final returns, whereas in the environment with the highest reward stochasticity,
performance remains unchanged. Overall, our findings suggest that the DQN and PPO agents
are particularly effective under low trial budgets, while traditional methods perform better
when more evaluations are possible.
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1 Introduction

Hyperparameter optimisation (HPO) is the process of supporting the human in the loop in selecting
the configuration that maximises a model’s performance on a given task | ]. In reinforcement
learning, hyperparameters play a particularly critical role; the choice of values can make the
difference between an agent that converges to a useful policy (the mapping from states to actions)
and one that performs poorly or fails to improve | |. This sensitivity arises from the stochastic
nature of reinforcement learning environments, the high variance of rewards, unstable learning
dynamics, and the sequential nature of updates. All of which makes the performance of reinforcement
learning agents heavily dependent on the chosen hyperparameters | ].

Traditional HPO methods, such as random search | | and Bayesian optimisation | ],
have been widely applied to reinforcement learning | |. While these approaches can be effective,
they often require relatively many trials compared to more informed and adaptive HPO methods
[ |; each new task requires starting the search from scratch, evaluations can be noisy, and
performance degrades sharply when the evaluation budget is small | ].

A possible alternative is reinforcement learning-based hyperparameter optimisation, which frames
the HPO problem itself as a sequential decision-making task. Here, a reinforcement learning agent
learns a policy for proposing hyperparameters, conditioned on observations of the current task and
the outcomes of past configurations of both the current and training tasks. This approach offers
several potential advantages: knowledge can be reused across tasks, experience can accumulate
over many optimisation runs, and the search can adapt dynamically to partial results rather than
following a fixed trajectory [ ]. Reinforcement learning-based hyperparameter optimisation has
shown promise in supervised learning (tuning the hyperparameters of neural networks) | ], but
its effectiveness for optimising reinforcement learning agents themselves remains largely unexplored.
This thesis will focus on a discrete configuration space consisting of 42 possible hyperparameter
configurations, where each configuration corresponds to a specific choice of hyperparameter values.
This thesis adapts the Hyp-RL framework | |, which introduces a reinforcement learning-based
hyperparameter optimisation method using a Deep Q-Network (DQN) agent and meta-features.
Hyp-RL demonstrated quick convergence towards promising configurations when applied to tuning
neural networks for supervised learning. An experiment consists of using one HPO method across 5
independent runs of a specified trial budget for a single task. This thesis does not propose a new
framework; instead, it aims to reproduce and evaluate Hyp-RL when applied to a new domain,
the tuning of tabular reinforcement learning agents | |. The methodology follows the same
approach as Hyp-RL, but with an intentionally smaller experimental scope, focusing on a new
domain.

In addition to reproducing the DQN agent from Hyp-RL, this thesis also has the novel contribution
of adapting a Proximal Policy Optimisation (PPO) | | agent to HPO. Unlike Hyp-RL,
where the DQN agent tuned neural networks, both DQN and PPO agents here are applied to
optimising reinforcement learning agents. The PPO agent uses the same setup as the DQN agent
to ensure a fair comparison, allowing us to contrast the two approaches. Both the agents, will be
selecting hyperparameter configurations from the discrete hyperparameter configuration space of
size 42.

The goal of this thesis is to assess whether the advantages reported for Hyp-RL carry over
when applied to reinforcement learning agents beyond the originally tested task. Specifically, we
examine across three new environments whether the DQN agent retains its quick convergence



when tuning a SARSA tabular reinforcement learning agent (a classical on-policy method for
learning action-value functions in tabular settings), whether a PPO variant can serve as an
alternative reinforcement learning-based hyperparameter optimisation method, and how the relative
performance of reinforcement learning-based hyperparameter optimisation methods and traditional
baselines changes as the optimisation budget increases. Concretely, we compare methods under
budgets of 10 and 50 trials, where a trial corresponds to one full training and evaluation of a
SARSA agent with a particular hyperparameter configuration. In brief, DQN agents extend tabular
Q-learning with deep neural networks to approximate value functions, and a PPO agent is a
policy-gradient method designed for stable and efficient updates.

1.1 Research Questions

The primary goal of this study is to reproduce, extend, and evaluate the generalisability of the
Hyp-RL framework (Jomaa et al., 2018) for tabular reinforcement learning agents. In this study,
we investigate two reinforcement learning-based hyperparameter optimisation methods, which are
two variants of the Hyp-RL framework, the original DQN agent and a novel PPO variant. Thus,
the research question is:

How do the reinforcement learning-based hyperparameter optimisation methods perform when
tuning SARSA agents under fixed evaluation budgets compared to standard baselines such as
Bayesian optimisation and random search, in terms of final performance and convergence metrics?
These metrics include (i) the number of trials required to reach 95% of the overall best return
(trials to 95%), (ii) the fraction of runs that reach the 95% threshold within the first 40% trials
(success rate at 40%), and (iii) the median number of configurations exceeding 95% of the best
return within the first 40% trials (good-performing configurations at 40%).

The research question is addressed using 3 sub-questions:

1. To what extent can the original DQN agent from the Hyp-RL framework be applied to tuning
SARSA agents, and how does its performance compare to Bayesian optimisation and random
search baselines based on convergence metrics?

2. Under a fixed budget of 10 trials, how does the PPO variant of the Hyp-RL framework compare
to the DQN agent in optimising SARSA agents across three unseen tabular environments,
based on the final mean return?

3. When the budget increases from 10 to 50 trials, how do the relative performances and rankings
of the DQN and PPO agents, Bayesian optimisation, and random search change, based on
the final mean return and convergence metrics?

1.2 Thesis overview

The remainder of this thesis is organised as follows: Chapter 2 reviews related work on HPO in
reinforcement learning; Chapter 3 dives deeper into the intuition and explanation of reinforcement
learning-based hyperparameter optimisation methods and explains other important aspects required
for the thesis. Chapter 4 describes the methodology, including the reinforcement learning-based
hyperparameter optimisation methods; Chapter 5 describes the experimental design; Chapter 6
presents the results and their analysis; Chapter 7 discusses the findings in the context of existing



literature and interprets their implications; Chapter 8 concludes with a summary of the main
contributions, limitations, and outlines potential avenues for future research.
The code and experimental data are available at https://github.com/Honzus/RL-HPO

2 Related Work

This section reviews key literature relevant to the thesis, focusing on reinforcement learning-based
hyperparameter optimisation and its application to optimising tabular reinforcement learning agents.
Despite an extensive literature search, reinforcement learning-based hyperparameter optimisation
remains a relatively under-explored area, possibly due to the complexity of integrating reinforcement
learning techniques into HPO frameworks or the novelty of the approach. Nevertheless, reinforce-
ment learning has been commonly used for neural architecture search | |, most famously
by Zoph et al. (2016) | ], but also for example in NASNet | | and MetaQNN | .
The following works provide the theoretical and empirical foundation for the proposed reinforcement
learning-based hyperparameter optimisation framework and its evaluation, highlighting both the
potential and challenges of this methodology.

Jomaa et al. (2019) | ] propose the Hyp-RL framework, which models HPO as a Markov
Decision Process. In their approach, a Deep Q-Network (DQN) agent dynamically selects hyperpa-
rameter configurations for supervised learning models, focusing on topological neural networks. The
DQN agent learns a policy to navigate the hyperparameter space by leveraging meta-features, such
as dataset size, feature count, and class imbalance, to generalise across datasets. Their experiments
demonstrate that Hyp-RL outperforms traditional methods such as random search and Bayesian
optimisation in terms of validation accuracy and the ability to achieve strong performance with
few samples. Specifically, Hyp-RL achieves superior performance in benchmark datasets while
requiring fewer evaluations, due to its ability to transfer learned policies across similar tasks. This
transferability is particularly relevant to this thesis, as it aims to extend Hyp-RL by adapting its
framework to optimise hyperparameters for tabular reinforcement learning agents and incorporating
domain-specific meta-features to enhance performance in reinforcement learning environments.
However, Jomaa et al.’s work is limited to supervised learning, leaving open the question of its
applicability to the stochastic and dynamic nature of reinforcement learning tasks, which this thesis
seeks to address.

Eimer et al. (2023) | | investigate the impact of HPO on reinforcement learning agents,
comparing automated methods such as Bayesian optimisation and evolutionary algorithms against
manual tuning. Their findings indicate that automated HPO consistently outperforms manual
tuning, achieving higher normalised scores in standard reinforcement learning environments such as
Brax | | and ProcGen | |. However, they highlight significant challenges in comparing
HPO methods across reinforcement learning environments due to high variance in performance,
driven by factors such as environment stochasticity and algorithm sensitivity. For instance, their
experiments show that evolutionary algorithms are more robust to noisy environments but require
more computational resources than Bayesian optimisation. Eimer et al. emphasise the need for
robust and adaptive optimisation methods to improve reinforcement learning performance, sup-
porting this thesis’s hypothesis that reinforcement learning-based hyperparameter optimisation
can address these challenges by dynamically exploring the hyperparameter space. Their work also
underscores the importance of standardised evaluation protocols, which this thesis will incorporate
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to ensure reliable comparisons between reinforcement learning-based hyperparameter optimisation
methods and other HPO methods.

Parker-Holder et al. (2022) | | describe automated reinforcement learning (AutoRL) as a
bi-level optimisation problem: an outer loop chooses design decisions such as hyperparameters,
architectures, or algorithms, while an inner loop trains the agent. They argue that reinforcement
learning’s brittleness and non-stationarity make automation, especially HPO, essential. The survey
categorises HPO methods into static searches (grid and random search), multi-fidelity approaches
(e.g. Hyperband, BOHB), model-based Bayesian optimisation using training curves, evolutionary
or population-based schedules, and meta-gradient or black-box schemes that adapt hyperparame-
ters during training. Key findings indicate that dynamic schedules outperform static ones due to
changing data distributions, multi-fidelity evaluation reduces tuning cost, and robust evaluation
across seeds using distribution-aware metrics (e.g. interquartile mean or optimality gap) is crucial
given reinforcement learning’s high variance. Open challenges include scaling to larger mixed search
spaces, handling non-stationarity over time, transferring configurations across tasks, and creating
standard benchmarks, some of which this thesis aims to address.

Henderson et al. (2018) | | provide critical insights into the reproducibility challenges in
deep reinforcement learning, emphasising the sensitivity of reinforcement learning algorithms to
hyperparameters and environmental factors. Their study demonstrates that small changes in hy-
perparameters, such as learning rate or discount factor, can lead to performance differences (e.g.,
up to 15-34% in cumulative rewards) across environments such as MuJoCo | ] tasks. They
attribute this variability to factors including random seed differences, implementation details, and
inconsistent evaluation protocols. For example, their experiments with Deep Deterministic Policy
Gradient show that performance can vary significantly across runs with different seeds, even with
identical hyperparameters. Henderson et al. advocate for standardised evaluation frameworks and
robust HPO methods to mitigate these issues, aligning with the motivation for this thesis to develop
a reinforcement learning-based hyperparameter optimisation approach that ensures consistent and
reproducible optimisation of reinforcement learning agents. Their findings highlight the necessity
of addressing hyperparameter sensitivity, which this thesis will tackle by leveraging reinforcement
learning-based hyperparameter optimisation’s ability to adaptively explore and exploit the hyper-
parameter space.

Other approaches have explored concepts related to this thesis, such as Hyperband [ ], a
bandit-based method that efficiently allocates resources to promising hyperparameter configurations
through successive halving. While Hyperband does not directly employ reinforcement learning, its
adaptive resource allocation strategy shares similarities with reinforcement learning’s exploration-
exploitation trade-off, offering insights into efficient hyperparameter search.

Additionally, Snoek et al. (2012) | | explore Bayesian optimisation for HPO in machine
learning models, demonstrating its effectiveness in optimising complex hyperparameter spaces with
fewer evaluations than grid or random search. Their work highlights the importance of modelling the
hyperparameter response surface, which is relevant to reinforcement learning-based hyperparameter
optimisation’s use of learned policies to navigate similar spaces. While their focus is on supervised
learning, their findings on the importance of uncertainty quantification in optimisation decisions
provide insights for designing reinforcement learning-based hyperparameter optimisation frameworks
that balance exploration and exploitation in reinforcement learning settings.

Recent studies have further explored meta-reinforcement learning for HPO, with a focus on lever-
aging environment meta-features to enhance optimisation efficiency. Wu et al. (2023) | ]



introduce a meta-reinforcement learning framework that optimises hyperparameters by incorporat-
ing task-aware representations derived from environment characteristics, such as dataset properties
and task-solving experience. Their approach demonstrates improved optimisation efficiency com-
pared to baselines such as Bayesian optimisation, highlighting the value of meta-features in guiding
hyperparameter selection. This work is conceptually relevant to this thesis, as it aligns with our
use of meta-features to adapt reinforcement learning-based hyperparameter optimisation methods,
where we extend the Hyp-RL framework to reinforcement learning contexts with the SARSA tabular
reinforcement learning agent. While general HPO can be computationally intensive, Wu et al.’s
method aims to mitigate this through meta-learning, which is similar to this thesis, which uses
DQN and PPO agents with meta-learning.

Together, these works underscore the potential of reinforcement learning-based hyperparameter
optimisation to address the limitations of traditional HPO methods in reinforcement learning
contexts. They also highlight challenges such as performance variance, computational efficiency,
and the need for standardised evaluation.

2.1 Critique of Hyp-RL

The original Hyp-RL framework employs a DQN agent, which is inherently designed to manage
high-dimensional data. However, the explicit motivation for selecting this precise algorithm is
unclear.

When evaluating HPO in general, the number of hyperparameters subject to optimisation is often
limited. From a reinforcement learning perspective, these problems can realistically be categorised
as low-dimensional (tens of hyperparameters), thus enabling the application of standard tabular
reinforcement learning methods, such as Q-learning | ]. An advantage of the tabular methods
lies in their interpretability, as neural networks often function as 'black boxes’.

It is important to mention that Hyp-RL incorporates meta-features into its state representation,
which expands the dimensionality of the state space. Furthermore, the formulation of the action
space being all ’explored’ hyperparameter configurations can also lead to a combinatorial explosion,
potentially posing challenges for tabular methods. Nevertheless, this could be an interesting, simpler
avenue to think about.

3 Background

3.1 Hyperparameter Optimisation for Supervised Learning

In this section, we focus on HPO in the context of vanilla supervised machine learning, where the
objective is to learn from labelled data by minimising a loss function.

Hyperparameters, unlike model parameters, are set before training and greatly impact the perfor-
mance, robustness and generalisability of machine learning models | ]. On the other hand,
model parameters are learned during the training phase. As a result, the field of HPO has risen
within automated machine learning (AutoML), and develops algorithms/methods that optimise
hyperparameters of machine learning models | |. Intuitively, HPO is the systematic selection
of hyperparameter configurations to maximise a model’s performance, or equivalently, minimise a
given loss function. Some commonly used HPO techniques/methods include grid search, Bayesian
optimisation or random search | , ; ].



Formally, a machine learning model learns a mapping from the input space X (the space of all
possible inputs) to the output space Y (the space of all possible output) | |:

f(x,0,0): X =Y (1)

where 6 are the learned model parameters, A € A is a fixed hyperparameter configuration from the
set of all hyperparameters, and x is an input vector in the input space X. In the following equations,
y denotes the corresponding label of the input vector x in the output space Y. The model learns by
minimising some arbitrary loss function £ on the training set. Thus, training equates to finding the
optimal model parameters 8* for a given hyperparameter configuration, by minimising the given
loss function over N training samples | , , ] :

g*(\) = argmln ( Zﬁ X, 0, ), )) (2)

Training can be described as a function that finds the optimal model parameters for a given
hyperparameter configuration in the training set. HPO can then be thought of as minimising the
same loss function for the optimal model parameters for all hyperparameter configurations. To
find this optimal hyperparameter configuration A*, hyperparameter selection is the outer loop, and
the training phase is the inner loop. The hyperparameter configuration is then evaluated on the
validation set after the model parameters are found | , , |:

A" —argm1n< Zﬁ f(x,0%(N), A), )) (3)

where M is the number of validation samples in the validation set | ]. Equations 2 and 3
describe the standard HPO process for supervised machine learning tasks, where the objective is to
minimise a given loss function. In contrast, for reinforcement learning, the objective is to maximise
the cumulative reward r(6*(\), \) over a predefined number of episodes, since we are not dealing
with labelled datasets as in supervised machine learning. The cumulative reward reflects the SARSA
agent’s long-term performance | ]. Moreover, in reinforcement learning, hyperparameters are
tuned based on the cumulative reward of evaluation episodes rather than in a separate validation
phase, as held-out validation samples are not used. This requires exploring the high-dimensional
hyperparameter space A, which poses computational challenges due to its size and complexity

[ J

3.2 Reinforcement Learning

Reinforcement learning is a field within machine learning which focuses on training agents to

make sequential decisions by interacting with an environment | ]. Through interacting with
the environment, the agent’s objective is to maximise cumulative reward, which is contrary to
conventional supervised learning that uses labelled data [ |. Reinforcement learning problems

are generally formulated using Markov Decision Processes, which provide a mathematical framework
for modelling sequential decision-making | ].

A Markov Decision Process is defined as a tuple (S, A, P, R, ). Here S is the set of all possible
states, A is the set of all possible actions the agent can take, P(s'|s,a) is the state transition

6



probability distribution describing the likelihood of moving to state s’ from state s after taking
action a. More generally, one can think of the distribution as describing transitions between any two
states. The state transition probability distribution is also referred to as the transition function 7.
R(s,a,s’) is the reward function returning the expected reward for a given transition, and ~y € [0, 1]
is the discount factor balancing immediate and future rewards | , ].

At any discrete time step t, the agent observes the state s; € S, selects an action a; € A, and
receives a reward r = R(s, ar, S¢41). The environment transitions to a state sy ~ P(+|sy, a¢). The
process repeats until termination; the process from start to end is called an episode. The agent
aims to maximise the expected cumulative discounted reward | : |:

Z 7t7’ t] (4)

The agent seeks an optimal policy 7*(a|s) that maximises G. To do so, it balances exploration and
exploitation.

Reinforcement learning agents learn optimal policies via value-based, policy-based, or actor-critic
methods. Value-based methods estimate the value of state-action pairs through the Q-function

[5B98]:

G=E

Q(s,a) =E

thn | so = 8,00 = a] (5)
t=0
For small or discrete state spaces, tabular algorithms such as Q-Learning or SARSA are applicable
[ |. For large or continuous spaces, deep reinforcement learning algorithms such as DQN
approximate (s, a) with neural networks | ].

Conversely, policy-based approaches directly optimise the policy m(a|s) using gradient ascent on
the expected cumulative reward | ):

J(0) = E,

Z WtTt] (6)

Tabular policy-gradient methods (e.g. REINFORCE) or deep reinforcement learning variants (e.g.
PPO) can be used depending on the problem scale | ) ].

Actor-critic methods combine both paradigms: an actor learns a parametrised policy my(als) while
a critic estimates a value function to reduce variance in policy updates, yielding improved stability.

[SB9S]

3.3 Motivation for reinforcement learning-based hyperparameter opti-
misation

The motivation for using reinforcement learning-based hyperparameter optimisation lies in its ability
to model HPO as a sequential decision-making problem, where states (evaluations of hyperparameter
configurations) are inherently linked to prior states due to the iterative nature of the HPO process
[ |. Unlike systematic methods such as grid search, which evaluate models over a predefined
set of hyperparameter combinations, reinforcement learning exploits this sequential structure to
optimise hyperparameters systematically | |. Compared to other non-systematic methods



like Bayesian optimisation, which treat hyperparameter evaluations independently and fail to
leverage relationships between configurations | |, this sequential approach is particularly
advantageous for reinforcement learning agents whose stochastic behaviour amplifies the need for
adaptive optimisation. This should enable reinforcement learning-based hyperparameter optimisation
methods to efficiently navigate complex hyperparameter spaces, improving performance and speed
of convergence to promising configurations | ].

4 Methodology

4.1 Reinforcement learning-based hyperparameter optimisation envi-
ronment formulation

This thesis follows the same environment formulation and Markov Decision Processes as in Hyp-RL
[ ]. States s € S are defined as tuples combining dataset meta-features D and the history of
evaluated hyperparameter configurations and their rewards | |:

S=Dx(AxR)" (7)

The action space A is the hyperparameter grid A, that is A = A, allowing the agent to select
discrete hyperparameter configurations. Then the reward function R is defined as the cumulative
reward of the agent in an environment configured with an action a on a dataset D. By which, the
agent tries to pick actions that maximise rewards | .

R(D,a) =r(D,a) (8)

Moreover, the transition function 7 (see 3.2), as defined in Hyp-RL, appends the latest hyperparam-
eter configuration and its performance (cumulative reward of the SARSA agent) to the state history,
updating the state to reflect the new evaluation. The episode terminates when the evaluation
budget (the total number of actions in the action space) is exceeded, or the optimising agent (PPO
or DQN in the context of this thesis) selects the same action twice, ensuring efficient resource use.

4.2 Reinforcement learning Algorithms Used
4.2.1 Deep Q-Network

The Deep Q-Network (DQN) algorithm extends traditional Q-Learning for large or continuous state
spaces | |. It approximates the value function, Q(s, a), with a neural network with parameters
0, written as | , |:

Qo(s,a) (9)

This function estimates the expected cumulative reward of choosing an action a in a state s. The
DQN agent is trained by minimising the Temporal-Difference (TD) error, which measures the
difference between the current estimate of the Q-value and the target Q-value derived from the
Bellman optimality equation:

2
L(0> = E(sva»rvs,)NDreplay |:<r + PY IIIG?/X Q07 (8,7 a/) - Q9<S7 a)) :| (10)

8



Here, the environment formulation is the same as described in Section 4.1, r is the reward
(performance achieved by evaluating a given hyperparameter configuration) taking action a (a
discrete hyperparameter configuration) in state s (meta-features and history of previously evaluated
hyperparameters of the current dataset), v is the discount factor, and 6~ are the parameters of a
target network, which is updated periodically to stabilise learning.

To reduce correlations between sequential experiences and improve sample efficiency, an experience
replay buffer D, .4y is used. It stores past transitions (s, a,r, s’) and samples them uniformly during
training. This allows the DQN agent to learn from diverse past experiences and prevents instability
caused by highly correlated updates.

4.2.2 Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) is an actor-critic policy-gradient algorithm which makes stable
and efficient policy updates | |. The environment formulation is the same as was described
in Section 4.1.

PPO consists of two components.

1. Actor - a stochastic policy my(als), a neural network parametrised by 6, which selects actions.

2. Critic - a value function V,,(s), a neural network parametrised by w, estimating the expected
cumulative reward of being in state s.

The actor is trained to maximise a clipped surrogate objective, which is an objective function that
limits how much the policy can change in a single update to prevent instability | |:

L®(9) = E, [min <MAt, clip <M|St)) 1—¢€1+ e) Atﬂ , (11)

To1a (at|3t) TOo1a (at|st

here, A; is the advantage estimate representing how much better the selected action is compared

to the expected value of the current state. The policy ratio % measures how much the
old

probability of taking action a; in the state s; has changed under the new policy compared to the
old policy. 0,4 are the policy parameters before the update, and € is a small positive constant that
limits the maximum allowed change in the probability a policy has in selecting a specific action.
The clip() function constrains the policy ratio to stay within (1 — €, 1 4 €), preventing large updates
that could destabilise training.

The combined loss updates both the actor and the critic simultaneously | |:

L(0,w) = L (0) — 1B [(Vw(st) — V)| + caH (mo(:s0)), (12)

where, ¢; and ¢y weigh the critic’s value loss (error between predicted and computed state values
V(s)) and the entropy bonus (extra reward encouraging the agent to explore more diverse actions)
[ ]. V; is the target value used to train the critic, and H(my) denotes the policy’s entropy, a
measure of randomness in the agent’s action selection, higher entropy encourages more exploration
[ J

Clipping the policy update in PPO prevents large changes that could destabilise learning | ].
In the context of HPO, this allows the agent to safely explore and evaluate different hyperparameter
configurations while steadily improving its policy for selecting high-performing hyperparameter
configurations.



4.3 Agent Architectures and Training

Within this thesis, we adapt and implement two reinforcement learning-based hyperparameter
optimisation methods: the original DQN agent and a novel PPO agent.

DQN Agent

The DQN agent follows the same architecture as in the original Hyp-RL framework [ |. Tt
employs a neural network combining Long Short-Term Memory (LSTM) layers with multilayer
perceptrons and ReLLU activations to approximate Q-values, which estimate the expected cumulative
reward of selecting a given hyperparameter configuration based on the current state (dataset
meta-features and previously evaluated hyperparameters). The LSTM processes the sequence of
past hyperparameter configurations and rewards, capturing temporal dependencies in the search
process. Its initial hidden state is initialised using dataset meta-features through a learnable linear
transformation, allowing the policy to adapt to different datasets from the start. The LSTM output
is passed through a fully connected layer to produce Q-values for each hyperparameter configuration
in the discrete grid, enabling action selection through an e-greedy policy.

To ensure stable learning, the agent uses an experience replay buffer that stores past transitions
(s,a,r,s") and samples mini-batches during training to reduce correlations between updates. The
model is trained using the Adam optimiser to minimise the TD error. The agent balances exploration
and exploitation using an e-greedy strategy: with probability e, it selects a random action to explore,
otherwise it chooses the action with the highest predicted Q-value. The value of ¢ decays over
time, gradually making the agent more exploitative. Dataset cycling is used to simulate varied
tasks, helping the agent generalise and potentially transfer learned hyperparameter strategies across
different reinforcement learning environments.

PPO Agent

The PPO agent uses the same neural architecture as the DQN agent for both the actor and
the critic. Unlike the DQN, it employs a PPO buffer to store full trajectories and compute
Generalised Advantage Estimates (a method to reduce variance in policy gradient updates by
smoothing advantage estimates across time steps), which are normalised to stabilise training
and mitigate issues with missing or unstable values (NaNs) | |. Such NaNs can appear
when value estimates diverge early in training or when the variance of the advantages becomes
very small, causing numerical instability. Policy updates are carried out over multiple epochs
using mini-batches, and the clipped surrogate objective is optimised with the Adam algorithm
to ensure stable yet effective policy improvements. Actions are sampled from a softmax-scaled
categorical distribution, introducing controlled stochasticity that supports exploration of alternative
hyperparameter configurations. Dataset cycling follows the same procedure as for the DQN agent.

4.4 Meta-features

Meta-features are critical components of state representation for reinforcement learning-based
hyperparameter optimisation. They form part of the environment formulation and define how states
are represented. Thanks to meta-features, agents can make more informed decisions within the
optimisation environment | ]. Meta-features are descriptive characteristics of the reinforcement

10



learning environment, such as the size of the state space, the number of possible actions, or the
structure of the reward functions | ]

In traditional machine learning datasets, meta-features typically describe dataset properties, such
as the number of features or class imbalance. However, reinforcement learning environments are
dynamic and partially observable, with data characteristics that are largely unknown without
extensive exploration | |. This makes traditional meta-features less effective. Instead, this
thesis uses environment-based meta-features that capture structural or statistical properties of
the reinforcement learning task, such as the state space size or the cardinality of the action
space | |. These meta-features enable the reinforcement learning-based hyperparameter
optimisation methods to generalise HPO strategies across different environments or datasets,
enhancing transferability.

Since many environment-based meta-features are categorical, they are encoded using one-hot
encoding to create numerical representations suitable for neural network inputs. Numerical meta-
features, such as action space size, are included directly or normalised. The encoded meta-features
are concatenated with the hyperparameter configuration history and cumulative rewards to form
the state vector, which is processed by the DQN and PPO agents’ neural networks | ].

The table of meta-features used in this thesis can be seen below.
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Meta-feature

Description

Observation Space Type

Type of observation space, encoded as an integer using
OBS_SPACE_TYPES mapping

Observation Space Shape

Unique SHA-1 hash of the shape of the observation space

Observation Space Data Type

Data type of observation space, encoded as an integer using
DTYPE MAP

Is image observation?

1 if observation space is a Box with 2+ dimensions, 0 otherwise

State Space Size

Number of states if observation space is Discrete, 0 otherwise

Observation Space Bound Low

Lower bound of observation space (Box only), multiplied by 1000,
-999999 for -inf, or None if unavailable

Observation Space Bound High

Upper bound of observation space (Box only), multiplied by 1000,
999999 for inf, or None if unavailable

Action Space Type

Type of action space encoded as an integer using AC-

TION_SPACE_TYPES mapping

Is Action Space Discrete?

1 if action space is Discrete, 0 otherwise

Action Space Shape

Number of actions if Discrete, otherwise hashed shape of action space
if Box

Action Space Bound Low

Lower bound of action space (Box only), multiplied by 1000, -999999
for -inf, or None if unavailable

Action Space Bound High

Upper bound of action space (Box only), multiplied by 1000, 999999
for inf, or None if unavailable

Reward Range Minimum

Minimum reward value, multiplied by 1000, -999999 for negative, or
0 if unknown

Reward Range Maximum

Maximum reward value, multiplied by 1000, 999999 for infinity, or 0
if unknown

Reward Density

Reward density sparse, dense, unknown, encoded as 0, 1, or 2 using
REWARD DENSITY mapping

Is episodic?

1 if environment has a defined maximum episode length, 0 otherwise

Max Episode Steps

Maximum number of steps per episode, 0 if not episodic

Is goal-based?

1 if environment name suggests a goal-based task, 0 otherwise

Available Render Modes

Bitmask of supported render modes using RENDER_MODES mapping

Is deterministic?

1 if deterministic, 0 if non-deterministic, 2 if unknown

Is time-dependent?

1 if environment name suggests time-dependent dynamics, 0 otherwise

Table 1: Meta-features used for state representation in reinforcement learning-based hyperparameter
optimisation and their encodings.

5 Experimental Setup

This thesis investigates the transferability of reinforcement learning-based hyperparameter opti-
misation methods to tabular reinforcement learning tasks, comparing their performance against
traditional HPO baselines. The methodology evaluates both the efficiency and effectiveness of
reinforcement learning-based hyperparameter optimisation methods, focusing on their ability to
locate high-return hyperparameter configurations across diverse tabular reinforcement learning
environments. Results are collected for individual agents.

1. Environment selection: Tabular reinforcement learning environments are selected from
Gymnasium’s maintained suite (e.g. Cliff Walking-v0, Taxi-v3, FrozenLake-v1), compati-
ble open-source counterparts (e.g. Sepsis/ICU-Sepsis-v2), and custom environments (e.g.

12



ComplexMaze-v0). All environments use the Gymnasium library | | to ensure consis-
tent interfacing.

. SARSA agent implementation: The SARSA tabular reinforcement learning agent is
implemented with three tunable hyperparameters: learning rate («), discount factor (), and
exploration rate (€). Policies follow an e-greedy strategy, and value functions are stored in
exact tables

. Baseline HPO methods: Bayesian optimisation and random search are implemented using
the Optuna library, operating on the same three-dimensional hyperparameter search space of
the SARSA agent.

. Reinforcement learning-based hyperparameter optimisation methods: The original
DQN agent from Hyp-RL is adapted to optimise tabular reinforcement learning. A PPO
agent is developed with the same environment formulation as the DQN agent.

. Offline data generation: For each environment, the SARSA agent is run on 42 hy-
perparameter configurations (Cartesian product of o € {0.01,0.02,0.05,0.1,0.3,0.5} and
e € {0.05,0.1,0.2,0.3,0.4,0.5,0.6}, with v = 0.99 fixed). Each configuration is executed with
five random seeds for 10,001 episodes (20,001 for FrozenLake-8x8). After training, € is set to
0 and the agent is evaluated for 200 episodes with fresh seeds. Environment meta-features
and performance data are collected to form the offline training dataset for reinforcement
learning-based hyperparameter optimisation methods.

. Training reinforcement learning-based hyperparameter optimisation methods:
DQN and PPO agents are trained on the offline datasets collected for each environment.

. Evaluation in test environments: The trained reinforcement learning-based hyperparame-
ter optimisation methods are used to optimise the SARSA agent in three previously unseen
environments (ComplexMaze-v0, SimpleMaze-v0, Sepsis/ICU-Sepsis-v2). Each method is
evaluated with 10 optimisation trials, repeated across five independent runs. Experiments are
then repeated with 50 trials instead.

. Baseline evaluation in test environments: Bayesian optimisation and random search
are used to optimise the SARSA agent in the same three test environments under identical
conditions (10 and 50 trials, five seeds per environment).

. Performance metrics: Evaluate every HPO method using:

Final mean episodic return of the best configuration in each run,

Interquartile range (IQR) of the best return,

Standard deviation (SD) of the best return achieved,

Number of trials required to reach 95% of the best overall return,

Success rate (fraction of runs reaching the 95% threshold within the first 40% of trials),

Median number of good-performing configurations (exceeding 95% of the best return
within the first 40% of trials).
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These metrics jointly capture final performance, stability, and convergence speed, directly
addressing the research objectives.

5.1 Test environments

The performance of the four HPO methods is evaluated on three unseen environments: SimpleMaze-
v0, ComplexMaze-v0, and Sepsis/ICU-Sepsis-v2. The first two are custom grid-world environments
inspired by open-source implementations such as SimpleGrid.

SimpleMaze-v0 is a deterministic 4 x 4 grid-world with 16 states. The agent can take four actions:
up, down, left, or right. Rewards are sparse: the agent receives +1.0 for reaching the terminal state
and 0 otherwise, giving a maximum cumulative reward of 1.0.

ComplexMaze-v0 is a stochastic 5 x 5 grid-world with the same action set as SimpleMaze-v0. In
addition to the terminal reward of +1.0, two special states provide a bonus reward of +0.5 with
probability 0.2, yielding a maximum cumulative reward of 2.0.

Sepsis/ICU-Sepsis-v2 is an open-source reinforcement learning environment simulating sepsis
treatment in an intensive care unit [('GT24]. The agent selects between approximately 5 and 25
discrete actions, depending on 750-1500 patient states, to maximise patient recovery. Rewards
are sparse: +1.0 for recovery, —1.0 for death, and 0 otherwise. High stochasticity due to patient
variability makes this the most challenging environment for tabular reinforcement learning. There
is a default maximum of 20 steps per episode.

All experiments were run with five independent seeds, consisting of 10 and 50 trial budgets per seed.
For the DQN agent, a linear e-decay schedule from 0.7 to 0.1 was used. The PPO agent applied a
linear entropy-coefficient decay from 0.7 to 0.1. These schedules were reset at the start of each run.

6 Results

Figure 1 presents a heatmap of returns for a SARSA agent in the Cliffwalking-v0 environment,
parametrised by exploration rate (€) and learning rate («). The visualisation shows substantial
variation in performance across the hyperparameter space, with maximum returns consistently
occurring in the low-€¢/low-a region. This pattern indicates a strong interaction effect between

Cumulative Reward Heatmap for Cliffwalking-v0

-100

Figure 1: Heatmap showing how the cumulative reward of a SARSA agent varies with learning rate and exploration
parameter (epsilon), with discount factor fixed to 0.99
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exploration and learning rate: conservative learning strategies coupled with limited exploration
yield optimal performance in this environment.

These observations motivate the application of the Hyp-RL framework, which reformulates HPO
as a sequential decision process. The method identifies high-reward trajectories through the
hyperparameter space (conceptually represented as paths across the heatmap) that maximise the
sum of returns. When applied to new environments, the reinforcement learning-based hyperparameter
optimisation methods first explore, then gradually converge towards the trained trajectories. This
balanced approach leverages prior policy knowledge while acquiring environment-specific response
surface characteristics to prevent premature convergence to suboptimal regions.

While the heatmap highlights a clear optimal region, this finding is specific to Cliffwalking-v0. In
smoother or noisier environments, the same low-¢/low-a regime may not generalise. Additionally,
because the analysis uses a discretised hyperparameter grid, local optima between grid points
may be missed. Nonetheless, the heatmap provides a useful diagnostic, illustrating why sequential
decision-making approaches to HPO can capture meaningful structure in the search space, while
also highlighting the limitations of grid-based approximations.

6.1 RQ1: Reproduction

Mean length over past 100 episodes Mean reward over past 100 episodes
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N
,, f MWW !

M 1.5M Y 1.5M

(b) Mean reward of the DQN agent, calculated over a rolling

(a) Mean episode length of the DQN agent, calculated over a
window of 100 episodes and smoothed with a factor of 0.5.

rolling window of 100 episodes and smoothed with a factor of 0.5.

TD Error Average Q-values

M 1.5M

500k M 1.5M

(d) Mean of all Q-values estimated by the DQN agent at each

(c) TD error of the DQN agent at each time step.
training time step.

Figure 2: Training behaviour of the DQN agent adapted from the Hyp-RL framework for the hyperparameter
optimisation of a SARSA agent. Across all four metrics: mean reward, mean episode length, TD error, and Q-values,
the agent shows consistent improvement and convergence during training, indicating successful learning.

Figure 2 shows the behaviour of the adapted DQN agent during training over 2 million time-
steps. Panel a) shows the rolling mean episodic reward increasing steadily from an initial value

15



of approximately 0 to 5.3, with a modest slope reflecting consistent progress in selecting effective
hyperparameter configurations, despite variance from adapting to diverse dataset-specific optima.
Panel b) displays the average episode length decreasing from 10 to 5 steps, indicating more efficient
decision-making as the agent converges to a subset of optimal hyperparameters from 42 possible
actions, with minor fluctuations due to occasional exploration of new configurations. Panel c)
depicts the TD error, which peaks at 20 early in training due to random exploration, then declines
to near 0 by 500,000 time-steps, stabilising with minor fluctuations, reflecting convergence to
accurate Q-value predictions. Panel d), showing the Q-value curve mirrors this trend, with an initial
overestimation spike (Q-values are inflated from exploration) followed by a decline and oscillations
toward stability, driven by epsilon decay and increased experience. This initial overestimation is
a common occurrence among DQN agents and is the result of taking the max operator of early
noisy observations | , |. The use of a Cartesian grid for hyperparameter configurations
enables the agent to isolate the causal effect of single hyperparameter changes, yielding interpretable
Q-table gradients and robust policy updates despite stochasticity. Together, these graphs show that
the Hyp-RL framework effectively learns an optimisation policy after the domain shift, addressing
the first part of the first research sub-question.

Mean reward over past 100 episodes Mean episode length over past 100 episodes

i o B MWW
10 B ; MM
, |8 MWW
N
Mo g
(a) Mean reward of the PPO agent, calculated over a rolling (b) Mean episode length of the PPO agent, calculated over a rolling
window of 100 episodes and smoothed with a factor of 0.5. window of 100 episodes and smoothed with a factor of 0.5.

Mean policy loss over past 100 episodes

(c) Policy loss of the PPO agent, calculated over a rolling window
of the previous 100 episodes and smoothed with a factor of 0.5.

Figure 3: Training curves of the PPO agent adapted for hyperparameter optimisation of a SARSA agent. (a) Mean
reward curve. (b) Mean episode length curve. (c¢) Policy loss (clipped surrogate objective) curve, showing convergence.
These curves confirm that the PPO agent successfully learns.

Figure 3 shows the training behaviour of the PPO agent over 3 million time-steps. Panel a) shows

the rolling mean episodic reward first jumps to approximately 4 and then rises steadily from
approximately 4 to 12, reflecting successful learning of effective hyperparameter configurations,
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with minor fluctuations due to adaptation to diverse training environments. Panel b) displays
the average episode length increasing from approximately 7 to 11 steps, indicating sustained
interactions as the agent explores more promising hyperparameter configurations, in contrast to
the DQN agent’s focus on fewer optimal configurations. Panel ¢) depicts the policy loss, which
exhibits high initial variability, peaking at -0.01, then stabilising near 0 by 2.5 million time-steps
with tiny fluctuations, reflecting convergence to a stable action distribution within PPO’s clipped
surrogate objective. Additionally, the value loss (Appendix) initially rises to approximately 2.5
due to random exploration, then gradually declines without fully flattening, suggesting continuous
improvement in the value network’s predictions. The approximate KL divergence (Appendix) shows
minor fluctuations near zero with occasional sharp drops, confirming stable policy updates close
to prior policies. The entropy decreases from approximately 3.0 to 1.0, indicating a shift from
exploration to a more deterministic policy. These trends collectively demonstrate that the PPO
variant effectively learns an HPO policy for the tuning of a SARSA agent | , ],
establishing it as a valid counterpart for comparative analyses in later research questions. Compared
to the DQN agent, the PPO agent adapts more cautiously to diverse environments, indicated by a
higher episode length, which may come at the cost of slower convergence.

To assess convergence speed, we evaluated the number of trials required for each method to achieve
95% of its best-found return within a 10-trial budget, as shown in Figure 4. In SimpleMaze-v0 (panel
a), the DQN agent reaches the 95% threshold in a median of 3.0 trials (IQR = 2.0), outperforming
random search (median = 7.0, IQR = 6.0) and Bayesian optimisation (median = 7.0, IQR = 6.0),
demonstrating superior ability to locate promising configurations quickly. In ComplexMaze-v0
(panel b), random search and Bayesian optimisation achieve the threshold the same again (median
= 7.0, IQR = 6.0, range = [1,10]), and are outperformed by the DQN agent (median = 3.0, IQR =
1.0, range = [1,5]). DQN’s tighter IQR, lower median and narrower range indicate good consistency,
making it more reliable for locating promising configurations in familiar complex environments. In
Sepsis/ICU-Sepsis-v2 (panel c), all methods reach the threshold in a median of 1.0 trial (IQR =
0.0) due to the flat reward surface. Overall, the DQN agent consistently achieves the lowest median
and mean, along with low variance, which comes from the learned Q-values generalising to unseen
environments. This reinforces its advantage in using few samples to find good configurations, as
originally reported by [ ], and addresses the first research sub-question.
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Box and Whisker Plot of the trials to 95% of maximum performance for SimpleMaze-v0 Box and Whisker Plot of the trials to 95% of maximum performance for ComplexMaze-v0

T T :

Trials to 95% of maximum performance
>
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Trials to 95% of maximum performance

Random search Bayesian optimisation DaN Random search Bayesian optimisation DON
Methods Methods

(a) SimpleMaze-v0: DQN attains the smallest median number of (b) ComplexMaze-v0: DQN attains the smallest variance of trials
trials to reach 95%. to reach 95%.

Box and Whisker Plot of the trials to 95% of maximum performance for Sepsis/ICU-Sepsis-v2

Trials to 95% of maximum performance

096

Random search Bayesian optimisation ban

(c) Sepsis/ICU-Sepsis-v2: flat reward surface yields identical me-
dian of 1 trial for all methods.

Figure 4: Trials required to reach 95% of the best return under the 10-trial budget. Boxes show median and IQR
across five independent seeds; whiskers extend to min—max. Lower values indicate a more efficient search of promising
configurations.
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6.2 RQ2: 10-Trial Performance Comparison

SimpleMaze-v0: Mean of each run's best return (10 trials) ComplexMaze-v0: Mean of each run's best return (10 trials)
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(a) SimpleMaze-v0 (b) ComplexMaze-v0

Sepsis/ICU-Sepsis-v2: Mean of each run's best return (10 trials)
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(c) Sepsis/ICU-Sepsis-v2

Figure 5: Final mean return (mean 4+ SD, 5 seeds) after exactly 10 trials for the three unseen environments.

To address the second research sub-question, we evaluated the final mean return of each HPO
method after 10 trials, averaged over 5 independent runs, across three unseen environments, as
shown in Figure 5. In SimpleMaze-v0 (panel a), only the DQN and PPO converge to the maximum
return of 1.00 £ 0.00, while both random search and Bayesian optimisation achieve a lower and
less stable return of 0.96 £ 0.08. In ComplexMaze-v0 (panel b), PPO performs best with a mean
return of 1.72 £+ 0.01, followed closely by DQN (1.72 & 0.01). The difference between the two
methods is near indistinguishable, and their small deviations indicate good consistency. Random
search and Bayesian optimisation achieve the same reward again (1.41 4 0.33), trailing with higher
deviations and lower returns. The baselines underperform due to the inability to explore the
hyperparameter search space sufficiently. This is why Bayesian optimisation behaves exactly like
random search, as the Gaussian process does not find stable patterns to exploit and is forced to
keep exploring [SSW16]. In Sepsis/ICU-Sepsis-v2 (panel ¢), all methods yield nearly identical
returns of 0.79 + 0.005 reflecting the flat reward surface.

The DQN and PPO agents perform well in ComplexMaze-v0 and SimpleMaze-v0, answering RQ2
by consistently finding high-return hyperparameters in structured environments. The demonstrated
advantage of the reinforcement-learning-based methods over baselines suggests that for small
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budgets, the baseline methods require more trials to achieve comparable final mean returns.
Generally, the small three-environment suite may limit conclusions about performance in more
varied reward settings.

Performance trajectory of each method across 5 runs of 10 trials (SimpleMaze-v0) Performance trajectory of each method across 5 runs of 10 trials (ComplexMaze-v0)
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Figure 6: Best-so-far mean episodic return across the 10-trial budget (mean 4+ SD, 5 seeds). Panel (a) SimpleMaze-v0,
(b) ComplexMaze-v0, (c) Sepsis/ICU-Sepsis-v2.

To evaluate how quickly each method approaches peak performance within the 10-trial budget, we
tracked the best-so-far mean episodic return across all runs at each trial (Figure 6).

For SimpleMaze-v0, PPO showed the greatest improvement magnitude, starting from the lowest
initial returns (likely due to noisy evaluations). Bayesian optimisation exhibited equal performance
to random search, indicating slow, consistent progress. However, neither consistently achieved
a maximum return of 1.0 across all runs, leading to slightly lower convergence. Random search
and Bayesian optimisation both displayed significant standard deviation in their whole trajectory,
reflecting their inherent instability. The most stable methods was the PPO agent, which is the
result of its stable update mechanism | ]. The DQN agent began with slightly higher initial
returns, but also showed consistent improvement. Both the PPO and DQN agents ultimately
converged to optimal returns of 1.0 with no deviation. However, the overall good performance of all
methods demonstrates this environment’s easy optimisation landscape.

In ComplexMaze-v0, Bayesian optimisation and random search again demonstrated the weakest
performance, achieving the lowest returns at every trial despite continuous improvement, eventually
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converging to ~ 1.41, with significant deviation. This indicates fundamental challenges in navigating
this environment’s complex hyperparameter search space. Conversely, the DQN agent showed quick
improvement, reaching near-peak performance within 4.0 trials and achieving the shared highest
final return (1.72). The PPO agent exhibited the quickest and steepest improvement, thanks to
poor initial returns; the PPO agent quickly converged to promising configurations. However, due
to sensitivity to initial returns, the PPO agent once converged prematurely to poorly performing
configurations. Bayesian optimisation and random search showed the highest variance, correlating
with their poor overall performance.

All methods produced nearly identical learning curves for Sepsis/ICU-Sepsis-v2 (Figure 5), with
returns minimally changing throughout optimisation. The small y-axis scale highlights the absence
of meaningful differentiation, consistent with this environment’s flat reward surface.

These results show that the convergence speeds of HPO methods depend heavily on the environment
when trials are limited. The DQN and PPO agents perform strongly in ComplexMaze-v0 and
SimpleMaze-v0, showing they learned transferable policies to propose promising hyperparameters.
However, in Sepsis/ICU-Sepsis-v2, the flat reward structure reduced the benefits of all learning-based
methods.

6.3 RQ3: Budget Increase from 10 to 50 trials

We compare the methods with 10 and 50-trial budgets on the SimpleMaze-v0, ComplexMaze-v0 and
Sepsis/ICU-Sepsis-v2 environments. Figure 7 presents the final mean return (+ standard deviation)
for each method. Rank changes between methods are indicated by asterisks above corresponding
bars. In ComplexMaze-v0 (panel a), from the front-runners at 10 trials: DQN (1.721 + 0.022)
and PPO (1.719 £ 0.007) agents, only the PPO drops to third place at 50 trials. Random search
improves dramatically, going from a return of 1.412 to a return of 1.740, jumping to second place
at the 50-trial budget. However, at 50 trials, the best three methods have very similar final mean
returns, making their differences tiny. Bayesian optimisation underperforms at 50 trials (1.591 +
0.301). Both random search and Bayesian optimisation with a greater budget can explore more,
thus significantly improving their performance. The Gaussian process behind Bayesian optimisation
is now able to identify some patterns, making it behave differently from random search.

For SimpleMaze-v0, in the 50-trial budget, both baselines now reach the maximum reward of 1.0
in all their runs, as they have had more trials to locate promising configurations. The asterisks
indicate their improved performance, as all methods now have the same final mean return. Clearly,
this environment is trivial as all methods in the 10-trial budget essentially reached the maximum
performance. For Sepsis/ICU-Sepsis-v2 (panel b), all methods maintain statistically indistinguish-
able performance across trial budgets (=~ 0.798 + 0.003), indicating no exploitable structure for
additional optimisation. Although rank changes occur, practical performance differences are negligi-
ble.

The improved performance of all HPO methods in ComplexMaze-v0 with a larger budget reveals
that traditional methods can match the performance of reinforcement learning-based hyperpa-
rameter optimisation methods. The DQN and PPO agents rapidly propose good hyperparameter
configurations but can be surpassed in final mean returns by traditional baselines with larger
budgets.
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Figure 7: Final mean return over 5 seeds (mean £+ SD) at 10 and 50 trial budgets. Panel a) ComplexMaze-v0, panel
b) Sepsis/ICU-Sepsis-v2, panel c¢) SimpleMaze-v0
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Figure 8: Box-plots of trials required to reach 95% of the best-found return on (a) ComplexMaze-v0, (b) Sepsis/ICU-
Sepsis-v2 and (c¢) SimpleMaze-v0 under 10 and 50 trial budgets. Boxes show median and IQR across five seeds;
whiskers extend to min—max. Lower boxes indicate faster convergence.

To quantify convergence speed under increased evaluation budgets, we measured the median trials
required to reach 95% of the best-found return. Figure 8 presents these results as comparative
box-plots for 10 and 50 trial budgets.

In ComplexMaze-v0 (panel a), median trials remain stable for both the DQN and PPO agents
(median = 3.0 across budgets). The baselines, in general, take advantage of the increased budget,
with the IQR increasing, but the medians staying at 7.0. The IQR increases from 6.0 to 8.0 for
Bayesian optimisation, and increases from 6.0 to 18.0 for random search, indicating poor consistency
in locating promising configurations. This confirms previous findings that the DQN and PPO agents
maintain the observed superiority even at larger budgets, while Bayesian optimisation and random
search demonstrate improved performance with larger budgets.

For SimpleMaze-v0, there are no substantial changes, indicating that this environment is trivial.
The superiority of the PPO (median = 3.0) and DQN (median = 2.0) agents remains the same
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as in the 10-trial budget. The baselines both hold the same median of 7.0 and IQR of 6.0 across
budgets. Bayesian optimisation has a smaller range of values than random search at the larger
budget, showing that the Gaussian process has had enough data to form a useful surrogate model.
For Sepsis/ICU-Sepsis-v2 (panel b), all methods achieve the 95% threshold within a median of 1.0
trial (IQR = 0.0) under both budgets, confirming additional sampling provides no convergence
acceleration on this reward landscape. The singular exception is the one run of the DQN agent
requiring 2.0 trials at a budget of 50 trials, which represents sampling noise rather than systematic
behaviour.

Random search can perform well at small budgets due to its exploratory nature, but has a higher
chance of success with larger budgets. Bayesian optimisation shows improvement, thanks to a more
informative Gaussian process, but struggles with the inherently complex hyperparameter space of
reinforcement learning.

Figure 9: Complete metrics at the 10-trial budget. Final mean return shows mean + SD over 5 seeds. Trials to 95%
of best return is reported as the median, IQR and SD; Success Rate @ 40% is the proportion of runs reaching 95% of
the best return within the first 4 trials; Good-Performing Configurations @ 40% median number of hyperparameter
configurations achieving at least 95% of the best return within the first 4 trials; Rank: 1 = best, with ties sharing
the same rank.

Median Trials

Environment Method Final Mean Return + SD
to 95%
SimpleMaze-v0 Random search 0.960 £ 0.080 7.0
Bayesian optimisation 0.960 £ 0.080 7.0
DQN Agent 1.000 £ 0.000 3.0
PPO Agent 1.000 £ 0.000 2.0
ComplexMaze-v0 Random search 1.412 £ 0.385 7.0
Bayesian optimisation 1.412 + 0.385 7.0
DQN Agent 1.721 £ 0.022 3.0
PPO Agent 1.719 £ 0.007 3.0
Sepsis/ICU-Sepsis-v2 Random search 0.789 £ 0.005 1.0
Bayesian optimisation 0.789 4+ 0.005 1.0
DQN Agent 0.788 + 0.003 1.0
PPO Agent 0.794 + 0.009 1.0
IQR of Trials to 95% SD of Trials to 95% SR @ 40% GPC @ 40% Rank
6.0 3.464 0.4 0.0 3
6.0 3.464 04 0.0 3
2.0 1.744 0.6 1.0 2
1.0 0.400 1.0 2.0 1
6.0 3.499 0.6 1.0 3
6.0 3.499 0.6 1.0 3
1.0 1.327 0.8 1.0 1
1.0 1.020 1.0 1.0 2
0.0 0.0 1.0 4.0 2
0.0 0.0 1.0 4.0 2
0.0 0.0 1.0 4.0 3
0.0 0.0 1.0 4.0 1
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Table 9 summarises key performance metrics at the 10-trial budget for ComplexMaze-v0 and



Sepsis/ICU-Sepsis-v2.

In ComplexMaze-v0, the PPO agent demonstrates the quickest ability to find good configurations
and perfect early-stage performance (SR@40% = 1.0). DQN achieves a marginally higher final mean
return but with worse early-stage performance (SR@40% = 0.8). Bayesian optimisation and random
search consistently perform poorly on convergence metrics (median = 7.0 trials, SR@Q40% = 0.6).
All the methods have the same GPC@40% scores of 1.0. However, the reinforcement learning-based
hyperparameter optimisation methods still perform better in this metric with more context. The
mean for this metric (mean number of promising configurations in 4 trials) is 1.2 for the DQN
agent, and 1.6 for the PPO agent, compared to a mean of 0.8 for both baselines.

In the SimpleMaze-v0 environment, one can clearly see the superiority of both the DQN and PPO
agents, as their SR@Q40 (0.6 and 1.0, respectively) and GPC@40 (1.0 and 2.0, respectively) are both
better than those of the baselines (both SR@40 = 0.4 and GPC@40 = 0.0). The reinforcement
learning-based hyperparameter optimisation methods can locate promising configurations more
quickly and consistently. For Sepsis/ICU-Sepsis-v2, all methods show statistically indistinguishable
performance. There are universally good convergence metrics (median = 1.0 trial) and perfect
success rates (SR@40% = 1.0). Moreover, the statistically insignificant differences in final mean
returns further show that the methods are all roughly equal in terms of performance for this
environment, and that the ranks for this environment can be ignored.

Together, these results establish a performance baseline, providing reference rankings for extended
budget analysis. The DQN and PPO agents’ low variances and strong early performance show their
ability to quickly suggest reliable hyperparameters, likely due to effective learning from the offline
training data.
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Figure 10: Complete metrics at the 50-trial budget (40% corresponds to 20 trials now), same metrics as in the above
(Table 9)

Median Trials

Environment Method Final Mean Return + SD
to 95%
SimpleMaze-v0 Random search 1.000 £ 0.000 7.0
Bayesian optimisation 1.000 £ 0.000 7.0
DQN Agent 1.000 £ 0.000 3.0
PPO Agent 1.000 £ 0.000 2.0
ComplexMaze-v0 Random search 1.740 4+ 0.020 7.0
Bayesian optimisation 1.591 £ 0.301 7.0
DQN Agent 1.750 £ 0.015 3.0
PPO Agent 1.733 £ 0.018 3.0
Sepsis/ICU-Sepsis-v2 Random search 0.800 &£ 0.001 1.0
Bayesian optimisation 0.795 £+ 0.002 1.0
DQN Agent 0.795 + 0.003 1.0
PPO Agent 0.796 + 0.006 1.0

IQR of Trials to 95% SD of Trials to 95% SR @ 40% GPC @ 40% Rank

6.0 3.980 1.0 3.0 4
6.0 6.274 1.0 6.0 3
2.0 1.497 1.0 5.0 2
0.0 2.800 1.0 9.0 1
18.0 9.786 0.6 1.0 3
8.0 17.971 1.0 3.0 4
2.0 1.497 1.0 6.0 1
1.0 1.020 1.0 8.0 2
0.0 0.0 1.0 20.0 1
0.0 0.0 1.0 20.0 3
0.0 0.400 1.0 20.0 4
0.0 0.0 1.0 20.0 2
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As can be seen in Table 10 in ComplexMaze-v0, the DQN agent achieves the highest final mean
return (1.750 £ 0.015), with good convergence metrics (SR@Q40% = 1.0, GPCQ40% = 6.0, median =
3.0). The PPO agent has a slightly lower final mean return (1.733 £ 0.018), with marginally better
convergence metrics (SRQ40% = 1.0, GPC@40% = 8.0, median = 3.0). Random search achieves a
final mean return similar to the other two methods (1.740 £ 0.020), with far worse convergence
metrics (SRQ40% = 0.6, GPCQ@40% = 1.0, median = 7.0), similar to the 10-trial budget. Bayesian
optimisation maintains the worst final mean return (1.591 + 0.301), with slightly better convergence
metrics compared to random search (SR@40% = 1.0, GPCQ40% = 3.0, median = 7.0). Both the
DQN and PPO agents have superior convergence metrics compared to the baselines, reaching the
threshold more quickly and consistently. Bayesian optimisation’s convergence metrics improve with
the increased budget, as the Gaussian process can use more trials to identify patterns. Random
search shows improved final return, yet remains outperformed by the DQN agent. The PPO agent
emerges as the most effective method for finding promising configurations quickly, further supported
by its IQR of 1.0, while DQN still performs well, with a respectable IQR of 2.0. The increased
budget illustrates a clear trade-off: baselines can yield equal or even marginally better performance
with many trials, whereas reinforcement learning-based hyperparameter optimisation methods
require few trials to achieve comparable performance.

In SimpleMaze-v0, we can see that the reinforcement learning-based hyperparameter optimisation
methods still maintain their superiority. However, Bayesian optimisation actually overtakes the
DQN agent in GPC@40, as it achieves 6.0, compared to the DQN’s 5.0. This is the result of
the Bayesian optimisation’s more informative Gaussian process. In the first 10 trials, Bayesian
optimisation behaves identically to random search, to gather information and identify patterns,
which is easier thanks to the trivial structure of SimpleMaze-v0. After these 10 trials, it can exploit
the Gaussian process to select more promising configurations, whereas the DQN continues to explore.
For Sepsis/ICU-Sepsis-v2, all methods consistently achieve the 95% threshold within a median of
1.0 trial (IQR = 0.0), confirming that additional budget reveals no exploitable structure. Clearly,
the optimal HPO method hinges on environment characteristics, as the flat reward structure of
Sepsis/ICU-Sepsis-v2 mitigates the advantages of all methods.

7 Discussion

This chapter interprets the experimental findings in relation to the three research sub-questions,
situates them within the context of prior work, and discusses their implications and limitations.
Overall, the results suggest that the effectiveness of reinforcement-learning-based hyperparameter
optimisation methods depends strongly on both the budget and the structure of the test environment.

7.1 RQ1: Reproduction

Across three unseen environments, the DQN agent quickly converged to high-return configurations
in SimpleMaze-v0 and ComplexMaze-v0, reaching 95% of the best return within a few trials
(e.g. ComplexMaze-v0: median = 3). Increasing rewards, shorter episode lengths, and decreasing
TD errors confirm successful learning | , | and indicate that the optimisation policy
progressively selects effective hyperparameter configurations | |. This demonstrates that Hyp-
RL transfers successfully to tabular reinforcement learning tasks.
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Performance was strongly environment-dependent. In SimpleMaze-v0, a ceiling effect occurred, with
all methods quickly reaching maximum performance. In ComplexMaze-v0, the DQN agent exhibited
quick and stable convergence, whereas random search and Bayesian optimisation produced highly
variable results. In Sepsis/ICU-Sepsis-v2, the flat reward surface led to indistinguishable outcomes
across methods, consistent with the difficulty of optimising noisy or sparse rewards | , .
These findings suggest that transfer is most effective for tasks that are similar to the training data.
However, the experimental setup may overestimate transferability to more complex domains, a
limitation also noted in the AutoML survey, where generalisation and robust evaluations remain
open challenges | ]

7.2 RQ2: 10-Trial Performance Comparison

Under a 10-trial budget, the relative advantage of reinforcement learning-based optimisers became
evident in structured environments. In ComplexMaze-v0, the DQN and PPO agents achieved
similar high mean returns with low variance, outperforming Bayesian optimisation and random
search. This supports prior evidence that reinforcement learning-based hyperparameter optimisation
can efficiently reuse prior experience under limited evaluation budgets [ | , and that such
quick convergence is vital in practical hyperparameter tuning scenarios | |. Both Bayesian
optimisation and random search showed high variability and low mean returns, as they both were
inefficient and unstable. This is a result of Bayesian optimisations’ sensitivity to low budgets
[  SLA12).

In Sepsis/ICU-Sepsis-v2 and SimpleMaze-v0, performance was nearly identical across methods due
to flat or trivial reward structures. Thus, the benefit of reinforcement learning-based hyperparameter
optimisation methods lies in the objective function having an exploitable structure or being complex.

7.3 RQ3: Budget Increase from 10 to 50 trials

With a larger 50-trial budget, performance rankings shifted. In ComplexMaze-v0, both random
search and Bayesian optimisation improved substantially, with random search surpassing the PPO
agents in final mean return. The PPO agent, however, maintained the fastest early convergence. This
illustrates a trade-off noted in the literature: model-based HPO methods (Bayesian optimisation)
can eventually catch up or outperform learning-based HPO methods (PPO, DQN) as evaluation
data accumulates | , ]. For SimpleMaze-v0, the performance of Bayesian optimisation
improved with the 50-trial budget, as it was more consistent in choosing promising configurations.
This is due to the simplicity of SimpleMaze-v0, allowing the Gaussian process to identify exploitable
patterns, unlike in the stochastic ComplexMaze-v0. In Sepsis/ICU-Sepsis-v2, performance remained
similar across methods, confirming that the flat reward landscape limits the potential of adaptive
search.

7.4 Limitations
Several limitations qualify the conclusions drawn from this work:

e Baselines Random search, and Bayesian optimisation were selected as representative yet
relatively simple baselines. More recent multi-fidelity or hybrid methods, such as Hyperband
[ ] or BOHB | ], may provide a more up-to-date and accurate comparison.
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e Generalisability The search space for the reinforcement learning-based hyperparameter
optimisation methods was deliberately restricted to a discrete two-dimensional domain to
allow controlled evaluation and ease of interpretability. Consequently, performance in higher-
dimensional or more complex search spaces remains to be validated.

¢ Resource cost Training the optimisation agent and constructing the offline dataset are
computationally expensive, as noted in other AutoRL studies | |. The benefit of
reinforcement learning-based hyperparameter optimisation methods must outweigh these
costs to justify practical adoption.

e Recursive HPO The optimisation agents themselves introduce additional hyperparameters,
raising the possibility of recursive tuning. Developing approaches for such self-optimising
systems remains an open research question [ ].

Despite these limitations, the study demonstrates that reinforcement learning-based hyperparameter
optimisation methods can be competitive under low budgets and that they can be successfully
transferred to new domains.

8 Conclusion and Future Work

This thesis evaluated whether the Hyp-RL framework, originally developed for tuning neural
networks, can be effectively transferred to tune SARSA agents under limited evaluation budgets.
The results demonstrate that the framework retains its quick convergence, but also highlight the
conditions under which traditional hyperparameter optimisation methods remain competitive.
RQ1 investigated whether the original DQN agent from the Hyp-RL framework can be successfully
applied to tabular reinforcement learning tasks. The results indicate that the DQN agent effectively
adapts to this new setting, outperforming random search and Bayesian optimisation by reaching
95% of the best observed return in only three trials and achieving the lowest performance variance
on ComplexMaze-v0. This reproduces similar findings originally reported for neural network tuning
JGS19)

RQ2 examined how these methods perform under low evaluation budgets of 10 trials. In this setting,
both the DQN and PPO optimisers outperformed traditional baselines on SimpleMaze-v0 and
ComplexMagze-v0. The performance advantage largely disappeared in noisier environments, such as
Sepsis/ICU-Sepsis-v2, suggesting that the benefits of reinforcement learning-based hyperparameter
methods may depend on task complexity and signal stability.

RQ3 explored performance under more generous evaluation budgets of 50 trials. On ComplexMaze-
v0 and SimpleMaze-v0, the DQN and PPO agents maintained faster convergence than random
search and Bayesian optimisation. In contrast, on Sepsis/ICU-Sepsis-v2, all methods exhibited
low and statistically indistinguishable performance, indicating that environment stochasticity and
reward noise can limit the effectiveness of adaptive optimisation strategies.

Taken together, these findings clarify where reinforcement learning-based hyperparameter optimi-
sation methods are best, under low evaluation budgets and in moderately complex environments.
Here, the methods yield measurable improvements in convergence speed and performance stability.
When evaluation budgets are larger or the problem is noisy, traditional methods such as Bayesian
optimisation remain more reliable.
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Future Work The findings of this thesis suggest several avenues for further research:

e Mitigate Q-value overestimation: Currently, the DQN agent exhibits the well-known
overestimation bias of standard Q-learning. Implementing a Double DQN variant, where
action selection and evaluation are separated, could address this issue. Benchmarking the
new Double DQN against the current agent would show whether the optimising agent can
learn faster and improve performance | .

e Develop robust meta-features for reinforcement learning environments: The meta-
features used in this work were designed in an ad-hoc manner due to limited prior literature
on meta-features specific to reinforcement learning. Future work should systematically identify
features that capture environment characteristics and evaluate how the predictive power of
these features translates into improved HPO performance.

¢ Expand the hyperparameter space: The SARSA agent has three primary hyperparameters:
the learning rate, exploration rate, and discount factor. In this work, the discount factor was
fixed to 0.99 to reduce the search space to two dimensions. Expanding the hyperparameter
search space to include the discount factor and other relevant parameters would expose
reinforcement learning-based hyperparameter optimisation methods to more sensitive reward
landscapes and test their scalability.

e Apply to deep reinforcement learning: While this thesis argued that applying the
proposed reinforcement learning-based hyperparameter optimisation to tabular agents may
be unnecessarily complex, extending these methods to deep reinforcement learning algorithms
would provide a more rigorous test of their effectiveness. Deep reinforcement learning involves
larger hyperparameter spaces and highly non-stationary reward surfaces | |, offering a
more challenging domain in which the proposed methods may better align with the underlying
task complexity.

e Beyond traditional baselines: The proposed methods were benchmarked against random
search and Bayesian optimisation. Future work should evaluate their generalisability against
more advanced methods, such as model-based and population-based optimisation approaches.
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A Additional Results

Mean value loss over past 100 episodes

500k M 1.5M 2M

(a) Mean value loss of the PPO agent, calculated
over a rolling window of the previous 100 episodes
and smoothed with a factor of 0.5.

Mean entropy over past 100 episodes

500k M 1.5M 2M 2.5M

(b) Mean entropy of the PPO agent, calculated over
a rolling window of the previous 100 episodes and
smoothed with a factor of 0.5.

Mean approximate KL divergence over past 100 episodes

00k M

(c) Mean approximate KL divergence of the PPO
agent, calculated over a rolling window of the pre-
vious 100 episodes and smoothed with a factor of

0.5.

Figure 11: The remainder of the training curves of the PPO agent are designed for tabular SARSA

hyperparameter optimisation.
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Run Method Best Value Best Configuration

1 Random search 1.022 (0.383, 0.964)
2 Random search 0.868 (0.346, 0.186)
3 Random search 1.704 (0.026, 0.436)
4 Random search 1.757 (0.279, 0.649)
5  Random search 1.710 (0.006, 0.976)
1 Bayesian optimisation 1.220 (0.383, 0.964)
2 Bayesian optimisation 0.868 (0.346, 0.186)
3 Bayesian optimisation 1.704 (0.026, 0.436)
4 Bayesian optimisation 1.757 (0.279, 0.649)
5  Bayesian optimisation 1.710 (0.006, 0.976)
1 DQN Agent 1.760 (0.020, 0.200)
2 DQN Agent 1.696 (0.010, 0.400)
3 DQN Agent 1712 (0.050, 0.600)
4 DQN Agent 1.728 (0.010, 0.300)
) DQN Agent 1.710 (0.050, 0.500)
1 PPO Agent 1.723 (0.050, 0.300)
2 PPO Agent 1.724 (0.050, 0.500)
3 PPO Agent 1712 (0.050, 0.600)
4 PPO Agent 1728 (0.010, 0.300)
) PPO Agent 1.710 (0.050, 0.500)

Table 2: Detailed Results for ComplexMaze-v0 for 10 trials, configurations are listed as (learning rate, €)
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Run Method Best Value Best Configuration

1 Random search 0.785 (0.646, 0.424)
2 Random search 0.795 (0.878, 0.205)
3 Random search 0.783 (0.514, 0.135)
4 Random search 0.795 (0.511, 0.291)
5  Random search 0.789 (0.715, 0.973)
1 Bayesian optimisation 0.785 (0.646, 0.424)
2 Bayesian optimisation 0.795 (0.878, 0.205)
3 Bayesian optimisation 0.783 (0.514, 0.135)
4 Bayesian optimisation 0.795 (0.511, 0.291)
5  Bayesian optimisation 0.789 (0.715, 0.973)
1 DQN Agent 0.787 (0.050, 0.500)
2 DQN Agent 0.785 (0.010, 0.500)
3 DQN Agent 0.791  (0.020, 0.200)
4 DQN Agent 0.786 (0.050, 0.600)
) DQN Agent 0.792 (0.050, 0.600)
1 PPO Agent 0.789 (0.500, 0.200)
2 PPO Agent 0.796 (0.500, 0.300)
3 PPO Agent 0.808  (0.050, 0.500)
4 PPO Agent 0.780  (0.100, 0.400)
5  PPO Agent 0.797  (0.500, 0.050)

Table 3: Detailed Results for Sepsis/ICU-Sepsis-v2 for 10 trials, configurations are listed as (learning rate, €)
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Run Method Best Value Best Configuration

1 Random search 0.800 (0.383, 0.964)
2 Random search 1.000 (0.559, 0.417)
3 Random search 1.000 (0.026, 0.436)
4 Random search 0.800 (0.279, 0.649)
5  Random search 1.000 (0.216, 0.698)
1 Bayesian optimisation 0.800 (0.383, 0.964)
2 Bayesian optimisation 1.000 (0.559, 0.417)
3 Bayesian optimisation 1.000 (0.026, 0.436)
4 Bayesian optimisation 1.000 (0.279, 0.649)
5  Bayesian optimisation 1.000 (0.216, 0.698)
1 DQN Agent 1.000 (0.050, 0.500)
2 DQN Agent 1.000 (0.010, 0.400)
3 DQN Agent 1000 (0.010, 0.400)
4 DQN Agent 1.000 (0.050, 0.600)
) DQN Agent 1.000 (0.050, 0.600)
1 PPO Agent 1.000 (0.100, 0.600)
2 PPO Agent 1.000 (0.300, 0.400)
3 PPO Agent 1000 (0.300, 0.600)
4 PPO Agent 1000 (0.050, 0.600)
) PPO Agent 1.000 (0.100, 0.600)

Table 4: Detailed Results for SimpleMaze-v0 for 10 trials, configurations are listed as (learning rate, €)
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Run Method Best Value Best Configuration

1 Random search 0.800 (0.096, 0.838)
2 Random search 0.798 (0.700, 0.589)
3 Random search 0.802 (0.483, 0.640)
4 Random search 0.799 (0.067, 0.597)
5  Random search 0.799 (0.182, 0.498)
1 Bayesian optimisation 0.791 (1.000, 1.000)
2 Bayesian optimisation 0.796 (0.665, 1.000)
3 Bayesian optimisation 0.795 (0.130, 1.000)
4 Bayesian optimisation 0.797 (0.076, 0.871)
5  Bayesian optimisation 0.796 (0.233, 0.806)
1 DQN Agent 0.792 (0.050, 0.300)
2 DQN Agent 0.792 (0.300, 0.300)
3 DQN Agent 0.795 (0.500, 0.100)
4 DQN Agent 0.793 (0.010, 0.600)
5  DQN Agent 0.797  (0.500, 0.050)
1 PPO Agent 0.801 (0.050, 0.300)
2 PPO Agent 0.796 (0.500, 0.300)
3 PPO Agent 0.808  (0.050, 0.500)
4 PPO Agent 0.795  (0.500, 0.600)
5  PPO Agent 0.790  (0.050, 0.400)

Table 5: Detailed Results for Sepsis/ICU-Sepsis-v2 for 50 trials, configurations are listed as (learning rate, €)
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Run Method Best Value Best Configuration

1 Random search 1.765 (0.096, 0.837)
2 Random search 1.734 (0.130, 0.288)
3 Random search 1.733 (0.113, 0.973)
4 Random search 1.757 (0.278, 0.649)
5  Random search 1.710 (0.006, 0.976)
1 Bayesian optimisation 1.783 (0.148, 0.926)
2 Bayesian optimisation 0.992 (0.543, 1.000)
3 Bayesian optimisation 1.706 (0.046, 0.458)
4 Bayesian optimisation 1.757 (0.279, 0.649)
5  Bayesian optimisation 1.720 (0.117, 1.000)
1 DQN Agent 1749 (0.050, 0.400)
2 DQN Agent 1742 (0.020, 0.200)
3 DQN Agent 1.712 (0.050, 0.600)
4 DQN Agent 1728 (0.010, 0.300)
5  DQN Agent 1710 (0.050, 0.500)
1 PPO Agent 1762 (0.050, 0.400)
2 PPO Agent 1742 (0.020, 0.200)
3 PPO Agent 1.712 (0.050, 0.600)
4 PPO Agent 1.731 (0.020, 0.400)
) PPO Agent 1.717 (0.020, 0.300)

Table 6: Detailed Results for ComplexMaze-v0 for 50 trials, configurations are listed as (learning
rate, €)
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Run Method Best Value Best Configuration

1 Random search 1.000 (0.781, 0.462)
2 Random search 1.000 (0.559, 0.417)
3 Random search 1.000 (0.026, 0.436)
4 Random search 1.000 (0.279, 0.649)
5  Random search 1.000 (0.216, 0.698)
1 Bayesian optimisation 1.000 (0.362, 0.809)
2 Bayesian optimisation 1.000 (0.559, 0.417)
3 Bayesian optimisation 1.000 (0.026, 0.436)
4 Bayesian optimisation 1.000 (0.279, 0.649)
5  Bayesian optimisation 1.000 (0.216, 0.698)
1 DQN Agent 1.000 (0.050, 0.600)
2 DQN Agent 1.000 (0.010, 0.400)
3 DQN Agent 1.000 (0.100, 0.400)
4 DQN Agent 1000 (0.050, 0.600)
5  DQN Agent 1000 (0.050, 0.600)
1 PPO Agent 1.000 (0.100, 0.600)
2 PPO Agent 1.000 (0.300, 0.400)
3 PPO Agent 1.000 (0.300, 0.600)
4 PPO Agent 1.000 (0.100, 0.400)
) PPO Agent 1.000 (0.010, 0.600)

Table 7: Detailed Results for SimpleMaze-v0 for 50 trials, configurations are listed as (learning rate,

€)
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